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Abstract. Vessel segmentation and anatomical labeling are of great sig-
nificance for vascular disease analysis. Because vessels in 3D images are
the tree-like tubular structures with diverse shapes and sizes, and direct
use of convolutional neural networks (CNNs, based on spatial convo-
lutional kernels) for vessel segmentation often encounters great chal-
lenges. To tackle this problem, we propose a graph convolutional network
(GCN)-based point cloud approach to improve vessel segmentation over
the conventional CNN-based method and further conduct semantic label-
ing on 13 major head and neck vessels. The proposed method can not only
learn the global shape representation but also precisely adapt to local
vascular shapes by utilizing the prior knowledge of tubular structures
to explicitly learn anatomical shape. Specifically, starting from rough
segmentation using V-Net, our approach further refines the segmenta-
tion and performs labeling on the refined segmentations, with two steps.
First, a point cloud network is applied to the points formed by initial
vessel voxels to refine vessel segmentation. Then, GCN is employed on
the point cloud to further label vessels into 13 major segments. To eval-
uate the performance of our proposed method, CT angiography images
(covering heads and necks) of 72 subjects are used in our experiment.
Using four-fold cross-validation, an average Dice coefficient of 0.965 can
be achieved for vessel segmentation compared to that of 0.885 obtained
by the conventional V-Net based segmentation. Also, for vessel labeling,
our proposed algorithm achieves an average Dice coefficient of 0.899 for
13 vessel segments compared to that of 0.829 by V-Net. These results
show that our proposed method could facilitate head and neck vessel
analysis by providing automatic and accurate vessel segmentation and
labeling results.
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1 Introduction

Vascular disease has been one of the top and severe diseases with high mortality,
morbidity and medical risk [1]. Blood vessel binary segmentation and anatomical
labeling are of high interest in medical image analysis, since vessel quantifica-
tion is crucial for diagnosis, treatment planning, prognosis and clinical outcome
evaluation. In clinical practice, users have to manually edit or correct tracking
error by defining the starting and ending points of each vessel segment, which
is a time-consuming effort. It is therefore desirable to automatically and accu-
rately segment and label vessels to facilitate vessel quantification. Computed
tomography angiography (CTA) is the commonly used modality for studying
vascular diseases. As shown in Fig. 1, head and neck vessels have long and tor-
tuous tubular-like vascular structures with diverse shapes and sizes, and span
across the entire image volume. Particularly, vessels inside the head are much
thinner than those going through the neck. Therefore, it is challenging to handle
vessels with varied shapes and size.

Fig. 1. An example of head and neck CTA image, along with major vessels. (a) A
coronal slice of CTA; (b) A 3D vessel mask consisting of all major head and neck
vessels; (c) 13 annotated segments: AO, BCT, L/R CCA, L/R ICA, L/R VA, and BA
in the neck and L/R MCA, ACA and PCA in the head; (d) Point cloud representation
of the head and neck vessels.

In the literature, traditional techniques have been developed for head and
neck vessels segmentation [1,2] from CTA images, as well as for cerebral vas-
culature segmentation and labeling [3,4] from MRA images. Convolutional neu-
ral networks (CNNs) have also been developed for this purpose [5]. However,
despite of these efforts, CNN-based segmentation still encounters great chal-
lenges in handling complicated structures. Particularly, although, because of the
nature of spatial convolution, CNN-based techniques outperform many tradi-
tional algorithms for blob or larger region segmentation, the complicated shapes
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Fig. 2. Overview of the proposed method.

such as vessels and surfaces have to be considered specifically by re-designing
the networks or the loss functions. Thus, head and neck vessel segmentation and
labeling from CTA images remain an open field to be explored.

Possible vital techniques to tackle this problem is to effectively consider
spatial relationship among vascular points. Recently, point cloud learning has
attracted much attention in 3D data processing [6]. As shown in Fig. 1(d), point
cloud representation of head and neck vessels allows for quantification of spatial
relationship among points in vascular structures, as well as effective extraction
of vessel by leveraging their spatial information in the entire volume. Previous
point cloud methods [7–9] have shown impressive performance in 3D classifi-
cation and segmentation. Balsiger et al. [10] reported the improved volumetric
segmentation of peripheral nerves from magnetic resonance neurography (MRN)
images by point cloud learning. However, compared to peripheral nerves, head
and neck vessels have more complicated structures. On the other hand, graph
convolutional network (GCN) has already been used in vessel segmentation in
the literature [11–14], for learning tree-like graph structures in the images.

In this paper, we propose a GCN-based point cloud learning framework to
improve CNN-based vessel segmentation and further perform vessel labeling.
Specially, the first point cloud network, named as I, is used for two-class classifi-
cation to improve vessel segmentation and the second point cloud network (joint
with GCN), names as II, is employed for thirteen-class classification to label
vessel segments. The proposed method incorporates 1) the advantage of GCN to
utilize the prior knowledge of tree-like tubular structures of vessels and 2) the
advantage of point cloud-based networks to handle the whole image volume, and
learns anatomical shapes to obtain accurate vessel segmentation and labeling.
The performance of our proposed method is evaluated on 72 subjects, by using
the overlapping ratio as a metric to evaluate binary segmentation and labeling
of vessels.

2 Method

Figure 2 shows the overall workflow of the proposed method, with two stages:
1) Vessel segmentation with point cloud refinement. In particular, a V-Net

[16] model is first applied for coarse vessel segmentation, from which the point
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SA: Set Abstraction Module
FP: Feature Propogation Module
FC: Fully Connection Module
GAP: Global Average Pooling
Npoints: point number of  a point cloud
N: number of points
C: number of features
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Fig. 3. The proposed GCN-based point cloud network (the point cloud network II).
(a) The point cloud network I utilized to improve binary segmentation of vessels, and
(b) GCN branch.

cloud is constructed. Then, the first point cloud network I is applied to refining
the coarse segmentation.

2) Anatomical labeling with GCN-based point cloud network. A GCN-based
point cloud network II is constructed to further label the vessels into 13 major
segments. The detailed architecture of the GCN-based point cloud network is
shown in Fig. 3.

2.1 Vessel Segmentation Refinement with Point Cloud Network

Coarse Vessel Segmentation. A V-Net is trained to delineate the coarse
head and neck vessels as initialization of our proposed method. In particular,
we dilate the ground-truth mask (labeled by radiologists) to expand the vessel
segmentation area for ensuring inclusion of all vessel voxels (even with high false
positive segmentations). Using the dilated masks to train the V-Net network,
vessel segmentation can be performed, for generating a probability map IQ for
each image.

Point Cloud Construction. A vessel point cloud P as shown in Fig. 2(a)
can be constructed from the aforementioned probability map IQ by setting a
threshold θ. Note that the amount of points depends on the output of V-Net
and also the size of the object to be segmented. We denote the point cloud P as
P = [p1, p2, ..., pN ] with N points pi ∈ R3. Each voxel v ∈ IQ with its probability
q ∈ [0, 1] larger than θ is set as a point pi = (x, y, z), which are the Cartesian
coordinates of v.
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Point Cloud Network I for Vessel Segmentation Refinement. The first
point cloud network (I) is designed to improve vessel segmentation by removing
false positive points from the vessel point cloud P . The point cloud network is
built upon the relation-shape CNN introduced by Liu et al. [7]. As shown in
Fig. 3(a), the network includes a hierarchical architecture to achieve contextual
shape-aware learning for point cloud analysis. The encoding structure gradually
down-samples the point cloud to capture the context, followed by a decoding
structure to upsample the point cloud. Features are combined through skip con-
nections. The set abstraction (SA) module is used for operation of sampling,
grouping and relation shape convolution (RS-Conv). In the SA module, a set of
L representative points are sampled from the input vessel point cloud P using
the farthest points sampling (FPS) to perform RS-Conv. RS-Conv is the core
layer of RS-CNN. Multi-scale local subsets of points that are grouped around
a certain point serve as one input of RS-Conv, and a multi-layer perceptron
(MLP) is implemented as the convolution to learn the mapping from low-level
relations to high-level relations between points in the local subset. Further, the
feature propagation (FP) module propagates features from subsampled points to
the original points for set segmentation. Then, two fully-connected (FC) layers
decrease the features of each point to the number of classes. Finally, a softmax
function gives the class probabilities of each point. Image information, contained
in the original images and the probability map IQ, are fed into the first SA oper-
ator with the point Cartesian coordinates. Image information of each point is
extracted from a nearby volume of interest Ip ∈ RX×Y ×Z using a sequence of
two 3D convolutions, and then transformed into a vector of input point cloud size
to be fed into the network. The trained point cloud network I is applied on the
point cloud P , and a refined point cloud P ′ shown in Fig. 2(b) can be obtained
and converted into 3D volumetric image as the refined binary segmentation of
vessels.

2.2 Vessel Labeling with GCN-based Point Cloud Network

Point Cloud Construction. Vessel labeling is carried out on the refined ves-
sel point cloud P ′ acquired from the first stage. For training labeling model, the
point cloud representation O = [o1, o2, ..., oM ] with M points oi ∈ R3, namely
the refined vessel point cloud, can be established from the ground-truth anatom-
ical mask Mal annotated by radiologists. Labels of points are represented using
numbers l1, l2, ..., l13. Anatomical point cloud O with labels and constructed
graphs are employed to train the point cloud network II for vessel labeling.

Graph Construction. Point cloud graph G as shown in Fig. 2(b) is built from
the L representative points, namely the vertices, sampled from the point cloud
P ′ using aforementioned FPS. Edges of graph are set as the Euclidean distance
after normalization of coordinates of points. According to the varying diameters
of vessels, a threshold of d is set to determine whether two vertices are connected.
Therefore, vertices and edges are acquired. The output features of the first SA
operator shown in Fig. 3(b) are utilized as the input features of vertices.
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Fig. 4. Qualitative results. Each panel (a, b, c, d) shows the ground-truth vessel seg-
ment, the vessel labeling results by our proposed method, and the corresponding seg-
mentation results by V-Net.

GCN-based Point Cloud Network II for Labeling. The architecture of the
point cloud network III used in Fig. 2(b) is shown in Fig. 3, which is built upon
the point cloud network I. The training process of the second stage is similar to
the first stage, apart from three aspects. First, the input is the point cloud O
and the output is 13 classes (representing 13 labels). Second, image information
of only the original image is used to enrich each point’s representation. Third,
graph branch is constructed to extract structural and spatial features of vessels.
The constructed graph is trained using the two-layer GCN [15]. The output is
concatenated to the input of the last FP operation as additional features to help
labeling. Finally, these features are employed to improve the classification of
every point. The anatomical point cloud R shown in Fig. 2(b) can be obtained
and transformed to 3D image as the final labeling result of vessels.

3 Experiments and Results

3.1 Materials and Parameters Setting

In our experiment, CT angiography images (covering heads and necks) of 72 sub-
jects are used to evaluate our proposed method. The size of the CTA image is
512 × 512 × 533 and the voxel spacing is 0.4063 × 0.4063 × 0.7000 mm3. The head
and neck vessels have been manually annotated by a radiologist and reviewed
by a senior radiologist. Four-fold cross-validation is used in the experiment. An
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ellipse kernel size k is set as 5 for the dilation of ground-truth segmentation.
Threshold θ is set to 0.1 to construct the point cloud P from the V-Net-based
probability map. L is set to 2048, which stands for the number of the represen-
tative points to perform RS-Conv and also the vertex number of the graph. The
size of a volume of interest Ip is set to X = 5, Y = 5, Z = 5 in both the point
cloud networks I and II. In the point cloud network I, we train the network for
85 epochs using Adam optimizer with a learning rate of 0.001 and cross-entropy
loss. Notice that, during the testing, we also randomly extract subsets of 2048
points until all the points of a point cloud have been classified. The labels of
vessel segments l1, l2, ..., l13 are set to 1, 2, ..., 13 in experiment, corresponding to
the vessel segment labels. The threshold d used for edge connection is set to 0.05
after normalization of coordinates of points.

3.2 Results

To make fair comparison between vessel labeling results, both the proposed
method and the V-Net use the same data set and the four-fold validation setting.
Qualitative and quantitative evaluations are performed.

Qualitative Results. The qualitative results for vessel labeling of four patients
are demonstrated in Fig. 4. For each patient, annotations on the images from left
to right stand for the ground-truth vessel labeling, and the vessel labeling results
by our proposed method and the V-Net, respectively. Specially, the V-Net used
to train the labeling model takes the 3D original image as input, the ground-
truth vessel labeling as supervision information, and Dice ratio as loss. As shown
in Fig. 4(a) and Fig. 4(b), the complete head and neck vessel structures can be
segmented and labeled accurately using our proposed method. As illustrated in
Fig. 4(c) and Fig. 4(d), the multi-label segmentation results are obtained without
RCA and LCA. Compared to the ground truth, the corresponding labels are
missing too. This shows that our proposed method has good performance on
both healthy cases and diseased cases. Compared to the labeling results with
direct use of the V-Net, our proposed method has better performance on both
binary segmentation and labeling. As shown in Fig. 4, for head vessels with
small diameter, our proposed method can achieve better performance on their
segmentations.

Quantitative Results. For vessel binary segmentation, the first point cloud
network I is used to improve over the V-Net based segmentation. Points in the
point cloud P can be classified into the vessel points belonging to the target and
the outliers not belonging to the target. Average accuracy (ACC) and intersec-
tion over union (IOU) are used to evaluate the performance of the first point
cloud network I. The average ACC in the four-fold cross-validation is 0.972 and
0.986 for the outlier and the vessel points, respectively, and IOU is 0.964 and
0.976, respectively. The Dice coefficient is used to evaluate the binary segmen-
tation of vessels. The refined point cloud P ′ can be transformed into volumetric
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Table 1. Quantitative evaluation of multi-label segmentation; here, the Proposed w/o
represents the proposed point cloud network without GCN.

Label Dice

Index Abbreviation ACC IOU V-Net [16] Proposed w/o Proposed

1 AO 0.989 0.983 0.961 0.972 0.986

2 BCT 0.903 0.880 0.852 0.865 0.883

3 RCCA 0.937 0.913 0.912 0.915 0.928

4 LCCA 0.937 0.874 0.917 0.924 0.942

5 RCA 0.950 0.920 0.861 0.887 0.902

6 LCA 0.949 0.953 0.789 0.873 0.925

7 LVA 0.968 0.951 0.902 0.913 0.937

8 RVA 0.959 0.890 0.903 0.928 0.941

9 BA 0.792 0.781 0.782 0.798 0.813

Average-neck – 0.932 0.905 0.875 0.897 0.917

10 PCA 0.993 0.854 0.706 0.783 0.832

11 ACA 0.944 0.903 0.785 0.851 0.885

12 RMCA 0.988 0.971 0.719 0.822 0.846

13 LMCA 0.973 0.933 0.684 0.819 0.872

Average-head – 0.975 0.915 0.724 0.819 0.859

Average - 0.945 0.910 0.829 0.873 0.899

images as the binary segmentation of result of vessels. The average Dice coef-
ficient is 0.965 for the refined binary segmentation result of vessels, which is
improved by 0.08 compared to the result of 0.885 by the V-Net. This shows
large improvement of binary segmentation of vessels by the first point cloud
network I, which contributes significantly to the vessel labeling.

Vessel labeling is carried out on the binary segmentation results. The quan-
titative results of vessel labeling are presented in Table 1. The 1st column is
the label index and its corresponding abbreviations of vessel segments. The 2nd
column consists of average accuracy (ACC) and intersection over union (IOU)
used to evaluate the performance of the second point cloud network II. The 3rd
column shows the Dice coefficient used to evaluate vessel labeling. Three meth-
ods, i.e., 1) V-Net, 2) the proposed point cloud method without GCN, and 3)
the proposed method, are evaluated. Compared to the V-Net and our proposed
method without GCN, the performance of our proposed method is increased by
0.07 and 0.026, respectively, for the average Dice coefficient of all vessel segments.
Taking various diameters of different segments into account, two groups of head
and neck are separated. Compared to the V-Net, the average Dice coefficient of
the proposed method is increased by 0.042 for neck vessels, while 0.135 for head
vessels. This shows that our proposed method has better performance both on
neck vessels and head vessels with small diameter, and also our proposed method
is robust.



482 L. Yao et al.

4 Conclusion

In this paper, we have proposed a GCN-based point cloud framework for labeling
of head and neck vessels from CTA images. Specifically, we formulated vessel
segmentation problem into a point-wise classification problem, for improving over
the CNN-based binary segmentation results. Then, the GCN-based point cloud
learning can further leverage the vascular structures and anatomical shapes to
improve vessel labeling. Experiment results indicate that our proposed method
is effective in improving volumetric image segmentation and learning complex
structures for anatomical labeling. Future work will focus on the construction of
graph as well as more efficient point-based sparse learning for volumetric image
segmentation.
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