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Abstract. Building a large dataset with high-quality annotations for
medical image segmentation is time-consuming and highly depends on
expert knowledge. Therefore semi-supervised segmentation has been
investigated by utilizing a small set of labeled data and a large set of
unlabeled data with generated pseudo labels, but the quality of pseudo
labels is crucial since bad labels may lead to even worse segmentation. In
this paper, we propose a novel semi-supervised segmentation framework
which can automatically estimate and refine the quality of pseudo labels,
and select only those good samples to expand the training set for self-
training. Specifically the quality is automatically estimated in the view
of shape and semantic confidence using variational auto-encoder (VAE)
and CNN based network. And, the selected labels are refined in an adver-
sarial way by distinguishing whether a label is the ground truth mask or
not at pixel level. Our method is evaluated on the established neuroblas-
toma(NB) and BraTS18 dataset and outperforms other state-of-the-art
semi-supervised medical image segmentation methods. We can achieve a
fully supervised performance while requiring ∼4x less annotation effort.

Keywords: Medical image segmentation · Semi-supervised learning ·
Quality estimation and refinement

1 Introduction

Recently, deep Fully Convolutional Neural networks (FCN) [1] have gained much
popularity in the medical image segmentation because of its ability to learn the
most discriminative pixel-wise features. Based on the encoder-decoder structure
of FCN, U-Net [2] proposes a skip connection between the encoder and decoder
layers which can utilize the low level features to improve the segmentation. How-
ever, supervised learning requires laborious pixel-level annotation which is very
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time-consuming and needs expert knowledge. In practice, usually only a small
set of data with pixel-level annotations are affordable while most of the data left
unlabeled. Semi-supervised learning(SSL) aims to solve this challenge by explor-
ing the potential of unlabeled data to improve the performance of a segmentation
model.

Because of the characteristics of fuzzy texture structure, low-contrast inten-
sity and limited amount of data, medical image segmentation is extremely chal-
lenging in learning based semi-supervised setting, and some methods have been
proposed to address the problem. The work in [3,4] have explored the consistency
of transformation between labeled and unlabeled data, where a consistency loss
is incorporated into the loss function and provides regularization for training the
network. Another direction in semi-supervised segmentation is co-training [5–7],
which tries to improve segmentation with the assistance of other auxiliary tasks.
Also, transfer learning is adopted in semi-supervised segmentation such as [8,9]
by employing external labeled data sets via domain adaption.

One practical direction for semi-supervised learning is self-training [10] which
is the earliest SSL approach and became popular in deep learning schemes [15,
16]. In this setting, after finishing the supervised training stage of a segmentation
model, it is possible to continue the learning process on new unlabeled data
by creating pseudo labels for the unlabeled data. However, the quality of the
generated pseudo labels is not guaranteed for retraining the segmentation model,
which limits their potential for improvements from the data with pseudo label
and sometimes even makes the updated model worse. The work in [11] just selects
the confident region in the segmentation map to train the network which focuses
more on the background area and ignores the tumor region. Such method can
limit the negative impact of bad pseudo labels but it can not make full use of
the unlabeled data.

In this paper, we propose a novel self-training method which can automat-
ically estimate and refine the quality of pseudo labels, and select only those
good samples to expand the data set for retraining the segmentation network.
The quality of the pseudo label is estimated from the view of shape confidence
and semantic confidence. The former estimates the shape matching between
the prediction map and the label mask, while the latter evaluates the semantic
matching between the prediction map and the raw image. By ranking the qual-
ity of the predicted segmentation, we choose the top K samples as the pseudo
labels. In considering that the selected pseudo labels may still have some obvi-
ous mis-segmentation for possible improvement, we further refine the label in an
adversarial way by distinguishing whether it is the ground truth mask or not at
pixel level. After quality estimation and refinement, the samples with good qual-
ity pseudo labels are added to expand the training set, which is then utilized to
retrain and update the segmentation network. This process can be iterated until
to a satisfied result. In addition, the refinement network can also be employed
during inference to obtain a refined and better segmentation.
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Fig. 1. Overview of the architecture of our proposed semi-supervised approach.

In this work, our contributions can be summarized as follows:

• We propose a novel semi-supervised segmentation method which can auto-
matically estimate the quality of a segmentation and refine it in an adversarial
way. Then a segmentation model can be retrained by the expanded dataset
with the selected good pseudo labels in a self-training way.

• We design a robust quality estimation network by estimating the shape confi-
dence and the semantic confidence with Variational Auto-encoder(VAE) and
VGG [12] based network. Also, a refinement network is proposed to refine the
generated pseudo label for higher quality expanded dataset.

• We establish a neuroblastoma segmentation dataset which contains 430 cases
of young children’s CT with manually-annotated label by doctors. Experi-
ments on NB and BraTS18 dataset demonstrate the robustness and effective-
ness of our method compared to other semi-supervised methods.

2 Method

2.1 Overview

The overview structure of our proposed framework is shown in Fig. 1 which
consists of three modules: segmentation fS , quality estimation fQE and refine-
ment fR.

Given a set of labeled data XL = {x1
L, x2

L, ..., xm
L } with corresponding label

YL = {y1, y2, ... , ym} and a large set of unlabeled data XU = {x1
U , x2

U , ... , xn
U},

we can generate pseudo label Y
′
U and uncertainty map U for XU with fS . How-

ever, the quality of generated pseudo label Y
′
U is not guaranteed for retraining the

segmentation model. The addition of good quality training data can improve the
performance of the segmentation model greatly so we need to filter the pseudo
label Y

′
U to ensure that the model can obtain a high-quality subset Y

′
sub and

X
′
sub to expand the training data. To this end, we design a quality estimation

module fQE which can provide a reliable estimation about the quality of the
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pseudo label Y
′
U . In considering that the selected pseudo labels may still have

some obvious mis-segmentation for possible improvement, we introduce a refine-
ment module fR to refine the pseudo labels Y

′
sub in an adversarial way. Our goal

is to retrain the segmentation model fS from training data XT = XL ∪ X
′
sub,

training label YT = YL ∪ Y
′
sub in a self-training way. We repeat the above steps

till to obtain a final model fS with expected results.

2.2 Network Architecture and Loss Functions

Quality Estimation Module: A segmentation network is very vulnerable to
the quality and quantity of annotations as it implements segmentation at pixel
level. This quality estimation module can provide a reliable estimation about
the quality of the predicted segmentation or the pseudo label Y

′
U so we can use

it to select a subset Y
′
sub of Y

′
U to expand the training dataset.

We consider the quality of the pseudo label from the view of shape confidence
and semantic confidence. As shown in Fig. 2(a), we utilize a VAE for shape
representation learning where the encoder learns a low dimensional space for the
underlying distribution of the shape prior such as the continuity and boundary
smoothness etc. We utilize the latent vector z to distinguish whether it is the
real mask or the prediction map in order to provide a shape confidence of the
prediction map.

We also introduce the semantic confidence network which looks into the rela-
tionship between the prediction map and its surrounding tissue to evaluate the
semantic matching between the prediction map and the input image. Besides the
original image and the segmentation map, we also feed the semantic confidence
network with the uncertainty map U produced by the segmentation network
to provide it with information about the uncertainty region in the segmenta-
tion map. VGG16 [12] is the backbone architecture of the semantic confidence
network.

We then fuse the shape and semantic confidence to form the final quality by
several FC layers. We adopt mean absolute error loss Lq, binary cross entropy
loss Ld and mean square error loss Lvae to train the semantic and fusion branch,
discriminator and VAE respectively.

Lq = |q − y| (1)

Ld = −(yz log(D(z)) + (1 − yz) log(1 − D(z))) (2)

Lvae =
∑

|x′
i − xi| + KL(p(z|x)||q(z)) (3)

Where q is the quality output, y is the true DSC, z is the latent vector of the
VAE and yz is {0, 1} where 0 for prediction and 1 for label, xi and x′

i is the
input and reconstruction data, q(z) ∼ N(0, I).

Refinement Module: The selected pseudo labels may still have some obvious
mis-segmentation, so we design a refinement module to refine the pseudo labels in
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Fig. 2. (a) Quality estimation network consists of two branches. One is to estimate
the shape matching by distinguish the latent vector z of prediction and label while
reconstructing them, the other is to estimate the semantic matching between the pre-
diction and the image from VGG16. Two confidences are fused by FC layers to form the
estimated quality. (b) Refinement network is to improve the prediction by adversarial
learning.

an adversarial way as shown in Fig. 2(b). Our generator utilizes the U-Net [2] as
the backbone and takes the original image and the corresponding segmentation
map as input and outputs a refined map. Different from the typical discriminator
which discriminates the map at the image level, we propose a fully convolutional
discriminator like [13] that learns to differentiate the predicted probability maps
from the ground truth segmentation distribution at pixel level.

We train the refinement network fR by minimizing a weighted joint of binary
cross entropy and adversarial loss Lr:

Lr = −((yi log(fR(xi)) + (1 − yi) log(1 − fR(xi))) + λLadv) (4)

Ladv = Eyi∼Y [log(D(yi))] + Ey′
i∼Y ′ [log(1 − D(y′

i))] (5)

where Ladv is the adversarial loss, λ is the weighted coefficient.

Segmentation Module: The architecture of the segmentation module is same
to U-Net [2] which has skip-connections, allowing the transfer of low-level fea-
tures from the encoder to the decoder. It accepts the image and produces a
segmentation probability map with an uncertainty map which is sent to the
quality estimation network fQE . The objective function Ls of this module is a
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sum of binary cross entropy Lbce and the Kullback–Leibler divergence loss Lkl

which can provide a distribution constraint between mask Y and prediction P .

Lbce = −(yi log(fS(xi)) + (1 − yi) log(1 − (fS(xi)))) (6)

Lkl = yi ∗ (log(yi/pi)) (7)

Ls = Lbce + Lkl (8)

The output uncertainty map U = {ui} is obtained from the prediction map
P by calculating the margin between the positive and negative probability ui =
1 − |pi − (1 − pi)|, where pi is the predicted probability for pixel xi.

2.3 Training Strategy

Our entire algorithm is summarized in Algorithm 1. To improve the performance
of our core quality estimation module fQE , we can pre-train it on any public
datasets and tranfer it to our target dataset. The training of fQE follows that
the VAE and discriminator are firstly trained with Lvae and Ld respectively, and
then train the CNN network and fusion layers with Lq by fixing the VAE and
discriminator.

Algorithm 1. Training process of our method.
Step 1: Pre-train fQE with any public datasets.
Step 2: Train fS , fR and fine-tune fQE with labeled data XL, YL by Eq.1 – Eq.8.

Step 3: Generate pseudo label Y
′
U for XU with fS . Select a subset Y

′
sub and refine it

by fQE and fR respectively.

Step 4: Expand train dataset XT = XL+X
′
sub, YT = YL+Y

′
sub. Retrain and update

fS with XT , YT .
Step 5: Repeat step 3 and step 4 for several iterations.

3 Experiment Results

3.1 Dataset and Implementation Details

NB Dataset: We establish a neuroblastoma segmentation dataset which con-
sists of 430 CT scans of children, with a manually-annotated label by expert
doctors from Shanghai Children’s Medical Center. The dataset is divided
into two parts: training set (344 cases) and testing set (86 cases). The intra-slices
resolution is 512 × 512, and the number of slices varies from 67 to 395 and the
voxel size is 0.49 × 0.49 × 1.24mm3 in average.

BraTS18 Dataset [17]: 210(train:160, test:50) MRI scans from patients with
high grade glioma and 75(train:60, test:15) MRI scans from patients with low
grade glioma are split into training set and testing set. To simplify comparison
between different segmentation methods, we perform binary classification and
segment only the whole tumor with the FLAIR sequence.
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Table 1. Experiment results on NB dataset by different methods.

Labeled

(unlabeled)

33(311) 106(238) 169(175) 344(0)

Methods DSC HD ASD DSC HD ASD DSC HD ASD DSC HD ASD

U-Net 54.76 24.49 3.54 68.21 17.69 0.82 71.85 16.65 0.88 77.91 14.09 0.80

MASSL [5] 63.94 18.53 1.67 72.72 17.41 1.07 74.92 14.88 0.84 - - -

ASDNet [11] 65.39 21.01 1.43 72.93 17.47 1.41 75.88 14.45 0.66 - - -

TCSM [4] 68.15 17.55 1.12 73.09 17.31 1.08 76.70 13.98 0.81 - - -

Ours 71.79 17.46 1.09 77.64 15.13 0.78 80.01 13.44 0.61 - - -

Implementation Details: The proposed method is implemented on a NVIDIA
GeForce GTX1080Ti GPU in Keras [14]. The adaptive moment estimation opti-
mizer(ADAM) and weight decay are used. The initial learning rate is set to be
0.001, 0.0001 and 0.001 for segmentation module and quality estimation mod-
ule and refinement module respectively. The coefficient λ is set to be 1 and the
number of iterations is 3 in our experiment as the results remain stable when
the number of iteration is greater than 3 so we just set it to be 3 for simplicity.
In our experiment, K has an important impact on the results. If K is too small,
the selected data with pseudo label won’t be enough. If K is too large, it will
lead to an increase of low-quality data with pseudo labels, so we set K to be
50% for balance. When segmenting NB(BraTS18) dataset, we pre-train fQE on
BraTS18(NB) dataset.

3.2 Quantitative and Qualitative Analysis

Metrics: Dice Similarity Coefficient (DSC), Hausdorff Distance(HD) and Aver-
age Surface Distance (ASD) are used as the evaluation metrics. For fair compar-
ison, 5-fold cross validation is employed.

We compare with the backbone U-Net [2] and other state-of-the-art semi-
supervised segmentation methods TCSM [4], MASSL [5], ASDNet [11]. Some
methods are not originally used for binary segmentation and we re-implement
all above methods and apply them to our experiment dataset. In Table 1, our
methods can outperform other methods at least 3.64%, 4.55% and 3.31% in
DSC with 10%, 30%, 50% of labeled data. Besides using quality estimation to
guarantee the quality of the pseudo label, the refinement module is reused in the
inference to get a better result and Kullback–Leibler divergence is adopted in
the loss function which is proved effective in segmentation, so we can achieve a
competing performance with only 106 labelled data to a fully supervised model
with 344 labelled data.

We further investigate the robustness of our proposed semi-supervised seg-
mentation algorithm on BraTS18 dataset. In Table 2, we achieve a DSC of
78.03%, 80.31% and 80.61% with 20, 50 and 110 labeled data, with obvious
margin compared with other methods. Futhermore, we can reach a fully super-
vised performance with only 50 labeled data.



Semi-supervised Based on Quality Estimation and Refinement 37

Table 2. Experiment results on BraTS18 dataset by different methods.

Labeled

(unlabeled)

20(200) 50(170) 110(110) 220(0)

Methods DSC HD ASD DSC HD ASD DSC HD ASD DSC HD ASD

U-Net 70.17 17.99 2.46 72.82 17.77 2.39 74.42 17.59 2.17 80.28 15.38 1.97

MASSL [5] 76.35 19.97 2.82 77.34 17.36 2.44 78.26 16.32 1.88 - - -

ASDNet [11] 75.47 17.59 2.75 77.18 18.20 2.32 78.59 15.10 2.21 - - -

TCSM [4] 74.25 17.58 2.01 78.24 15.34 1.88 79.41 15.86 1.38 - - -

Ours 78.03 15.47 2.24 80.31 14.74 1.75 80.61 14.68 1.59 - - -

Fig. 3. Visual results of quality estimation and
refinement on NB dataset(D: DSC Q: Estimated
Quality).

Table 3. Ablation study of our
method on NB and BraTS18
dataset with 169 and 110 labeled
data. We evaluate the efficiency
of each component in our method
(Selecting strategy, shape con-
fidence branch, semantic con-
fidence branch and refinement
module).

Data NB BraTS18

Methods DSC DSC

U-Net 71.85 74.42

U-Net+All unlabeled

without selection

69.87 72.93

U-Net+random 50%

selection

70.56 73.75

U-Net+Shape 75.94 77.69

U-Net+Shape+

Semantic

78.13 79.05

U-Net+Shape+

Semantic+Refinement

80.01 80.61

Visual results on NB dataset are also presented in Fig. 3, which illustrates
the effectiveness of the quality estimation and refinement modules. The second
and third column indicate that the refinement module can produce a better
prediction with higher DSC and more accurate segmentation. The DSC and
Quality under the prediction and refined prediction show the quality estimation
module can provide a reliable quality with less than 10% estimation error.

Ablation Study: We analyze the efficiency of each component in our pro-
posed method by performing five ablation studies on NB and BraTS18 dataset
as Table 3 shows. First, we examine the effect of using all unlabeled data and
randomly selecting 50% of unlabeled data with pseudo labels to expand the
training set. From the fourth and fifth row of the table, the DSC even decreases
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to 69.87%, 70.56% from 71.85% in NB and 72.93%, 73.75% from 74.42% in
BraTS18 for many low-quality pseudo labels have been added to the train set.
Then we analyse the performance of the shape confidence branch, semantic con-
fidence branch and refinement module. We can see the DSC increases to 75.94%,
78.13%, 80.01% in NB and 77.69%, 79.05%, 80.61% in BraTS18 respectively. The
results show that the quality estimation module has the greatest improvement
on the proposed framework.

4 Conclusion

In this paper, we propose a novel semi-supervised segmentation with self-training
based on quality estimation and refinement. We select the good segmentation
samples to expand the training set by estimating their quality and refine them in
an adversarial way by distinguishing the generated pseudo label with the ground
truth. Moreover, the refinement network can be reused during inference to obtain
more accurate segmentation result. Our method is evaluated on the established
neuroblastoma(NB) and BraTS18 dataset and outperforms other state-of-the-
art semi-supervised medical image segmentation methods. We can achieve a
fully supervised performance while requiring ∼4x less annotation effort.
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