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Abstract. Functional connectivity (FC) networks with the resting-
state functional magnetic resonance imaging (rs-fMRI) help advance
our understanding of brain disorders, such as Alzheimer’s disease (AD)
and its prodromal stage, i.e., mild cognitive impairment (MCI). Recent
studies have shown that FC networks demonstrate significant dynamic
changes even in the resting state. However, previous studies typically
focus on model the low-order (e.g., second-order) dynamics, without
exploring the high-order dynamic properties of FC networks. In this
paper, we propose to build a high-order dynamic functional connectivity
network (hoDFCN) from the second-order FC networks, and define two
novel measures to characterize the temporal and spatial variability of
hoDFCN. Furthermore, we employ both spatial and temporal variability
features for brain disease classification. Experimental results on 149 sub-
jects with baseline resting-state functional MRI (rs-fMRI) data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest the effec-
tiveness of our proposed method in brain dementia identification.

1 Introduction

Functional magnetic resonance imaging (fMRI) using the blood-oxygenation-
level-dependent (BOLD) signal is emerging as an advanced imaging technique
for the study of brain function and activity [1]. Resting-state fMRI (rs-fMRI)
has great potential to serve as a biomarker for neurophysiological diseases.
Brain functional connectivity (FC) networks constructed from rs-fMRI data
can characterize the inter-region neural interactions of the brain, and has been
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Fig. 1. Illustration of the proposed high-order dynamic functional connectivity net-
work learning framework, including four main steps: image pre-processing, high-order
dynamic connectivity networks construction, feature learning and classification.

successfully used to the computer-aided diagnosis of various brain diseases,
e.g., Alzheimer’s disease (AD) and its prodromal stage (i.e., mild cognitive
impairment, MCI) [2]. Many studies have indicated that the structure of FC
networks is associated with cognitive state [3] and brain diseases [4].

In traditional methods for FC network analysis, it is implicitly assumed that
the FC between distinct brain regions is constant (i.e., temporally stationary)
throughout the recording period in rs-fMRI [5]. However, recent studies have
suggested that the brain region correlations demonstrate significant dynamic
changes even in the resting state [6], and changes in FC networks may contain a
wealth of information for better understanding the brain’s functional organiza-
tion [5]. Increasing evidence has shown that the dynamics of FCs are associate
with cognitive brain states [7], and altered dynamics are reported in patients with
brain diseases [4]. In the literature, dynamic functional connectivity networks
derived from rs-fMRI have been successfully used for classification of brain dis-
eases [8,9]. Existing studies usually construct the low-order (i.e., second-order)
dynamic FC networks (DFCN) by using sliding windows, in which the FCs are
estimated using the original BOLD signals of brain regions, characterizing just
the correlation of paired brain regions. In fact, studies in neuroscience have found
significant high-order interactions in cortical activities [10]. However, few works
explore the high-order dynamic interaction among multiple brain regions based
on rs-fMRI data. Intuitively, modeling the high-order dynamics of brain FC net-
works can provide more prior knowledge that can be potentially used to boost
the diagnosis performance.

Accordingly, in this paper, we propose to construct a high-order dynamic
FC network (hoDFCN) from the conventional second-order FC networks. We
further define two new measures to characterize the temporal variability and
spatial variability of hoDFCN for brain disease classification. Figure 1 illustrates
the framework of the proposed hoDFCN method. Specifically, we first construct
a set of traditional (i.e., second-order) FC networks by computing the Pearson
correlation coefficient (PCC) of BOLD signals from paired brain regions based
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Table 1. Characteristics of the studied subjects (Mean ± Standard Deviation). MMSE:
Mini-Mental State Examination; SD: Standard Deviation.

Group lMCI eMCI NC

Male/Female 26/17 21/35 21/29

Age (Mean ± SD) 72.1 ± 8.2 71.1 ± 6.8 75.0 ± 6.9

MMSE (Mean ± SD) 27.2 ± 2.0 28.1 ± 1.5 28.9 ± 1.6

on a non-overlapping sliding window strategy. Then, for each FC network, we
further compute the correlation between two functional architectures (i.e., all
FCs associated with the brain region) of brain regions. With this strategy, we
can construct the high-order dynamic FC networks. Here, the obtained FCs
are high-order since they are computed based on two functional architectures
involving all brain regions. Then, both spatial and temporal eigenvalue features
are extracted as feature representations of each subject, followed by a manifold
regularized multi-task feature learning (M2FL) for feature selection. Based on the
selected features, a multi-kernel support vector machine (SVM) is employed for
classification. The experimental results on 149 subjects with baseline rs-fMRI
data from Alzheimer’s Disease Neuroimaging Initiative (ADNI1) demonstrate
the effectiveness of our proposed method.

2 Method

2.1 Subjects and Image Preprocessing

In this study, we use 149 subjects with rs-fMRI data from the ADNI database,
including 43 late MCI (lMCI), 56 early MCI (eMCI) and 50 health controls
(HCs). Data acquisition was performed as follows: the image resolution is 2.29-
3.31mm for inplane, and slice thickness is 3.31mm, TE = 30ms and TR = 2.2-
3.1 s. The clinical and demographic information of these subjects is given in
Table 1.

Following [8], we use the standard pipeline to preprocess the rs-fMRI data,
including (1) discarding the first 10 rs-fMRI volumes, (2) slice timing correction,
and (3) head motion correction. The brain space of fMRI scans is partitioned
into 116 regions-of-interest (ROIs) using the Automated Anatomical Labeling
(AAL) template [11] with a deformable registration method [12]. The band-pass
filtering is performed within a frequency interval of [0.025Hz, 0.100Hz]. The
BOLD signals from the gray matter tissue are extracted, and the mean time
series of each ROI is calculated to construct the FC network.

2.2 High-Order Dynamic FC Network Construction

In this section, we first introduce the construction process of traditional dynamic
FC networks, and then present the details of the proposed method for construc-
tion of high-order dynamic FC network.
1 http://adni.loni.usc.edu.

http://adni.loni.usc.edu
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Traditional Dynamic FC Network Construction. Based on the mean time
series of ROIs, we first construct the traditional dynamic FC networks (DFCN)
based on successive and non-overlapping time windows. As illustrated in Fig. 1,
the PCC is used as a measure of functional connectivity between a pair of brain
regions. Specifically, for each subject, we first segment the whole time series
of ROIs equally into m successive and non-overlapping time windows. Then,
an FC network (corresponding to an adjacency matrix) Ct (t = 1, · · · ,m) is
constructed by calculating the PCC between time series of paired ROIs at the
tth window, as follows

Ct(i, j) = corr(xt
i, x

t
j) (1)

where corr denotes the correlation between two time series (the PCC is used in
this study). Here, xt

i and xt
j denote segments of the BOLD signals of the ith and

the jth ROIs within the tth time window.
According to definition in Eq. 1, Ct(i, j) can only characterize the second-

order interaction of paired brain regions. Therefore, given m time windows, we
can generate a set of FC networks C = {C1,C2, · · · ,Cm}, which could implicitly
characterize the dynamics of second-order FC networks.

High-Order Dynamic FC Network Construction. Based on the second-
order FC network at the tth time window, we proposed to construct a high-order
FC network Ht by calculating the correlation between functional architectures
of paired region r and q as follows

Ht(r, q) = corr(Ct(r, :),Ct(q, :)) (2)

where Ct(r, :) = [Ct(r, 1),Ct(r, 2), · · · ,Ct(r,R)] is a functional architecture of
brain region r, corresponding to the rth row entity in Ct, reflecting the correla-
tion between the rth (r = 1, · · · , R) region and all the other brain regions, and
R is the number of brain regions.

According to Eq. 2, Ht(r, q) characterizes the high-order correlation between
brain regions r and q, considering that it is calculated based on functional
architectures of the regions r and q. Since such functional architectures involve
the relationship between each ROI and all the other ROIs, our constructed
Ht(r, q) can explicitly capture the high-order information among ROIs. Given
m time windows, we can obtain a set of high-order FC networks, i.e., H =
{H1,H2, · · · ,Hm}, characterizing the dynamics of high-order FC networks.

2.3 Temporal and Spatial Variability of hoDFCN

Recent studies have suggested that the temporal and spatial properties of FC
networks may contain a wealth of information to help understand the brain
networks and brain diseases [6]. Motivated by [8], we define two new metrics
to characterize the temporal and spatial variability of a given brain region, and
then use these metrics to assess the temporal and spatial variability of high-order
dynamic FC networks. Figure 2 illustrates the construction process of temporal
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Fig. 2. Illustration of construction process of the temporal/spatial variability for the
brain region r.

and spatial variability matrices associated with a specific brain region r. Specifi-
cally, given the set of high-order dynamic FC networks H = {H1,H2, · · · ,Hm},
to characterize the temporal changing properties of hoDFCN at a specific brain
region r, we first construct a matrix Er ∈ Rm×m as follows

Er(t, l) = 1 − corr(Ht(r, :),Hl(r, :)) (3)

where corr(Ht(r, :),Hl(r, :)) computes the correlation (i.e., similarity) between
functional architectures of brain regions r across time windows t and l. Thus,
the matrix Er characterizes the temporal variability of functional architectures
of a specific brain region r across all time windows.

Using a similar strategy, we construct another matrix Sr ∈ R(R−1)×(R−1) to
reflect the spatial variability of a given brain region r, which is defined as

Sr(p, q) = 1 − corr(H(:)(r, p),H(:)(r, q)) (4)

where H(:)(r, p) = [H1(r, p),H2(r, p), · · · ,Hm(r, p)]T is defined as the functional
sequence between a pair of specific brain regions, denoting changing profile of
FC between brain regions r and p within all time windows. Besides, the term
corr(H(:)(r, p),H(:)(r, q) defines the similarity between two functional sequence
associate with region r across different brain regions. Therefore, the matrix Sr

reflects the spatial variability of functional sequences associated with a specific
region r across all brain regions.

To further model the dynamic changes of high-order FC networks, for each
brain region r, we calculate the eigenvalues of the corresponding matrices Er and
Sr, and select two maximum eigenvalues as features to measure the temporal
variability and spatial variability of brain region r, respectively. For each type
of variability, we extract a set of eigenvalue features from constructed hoDFCN
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of each subject. Thus, for each subject, we can obtain two sets of eigenvalue
features to measure the temporal and spatial changing properties of FC networks,
respectively.

2.4 Feature Learning and Classification

For each subject, we first extract two kinds of eigenvalue features (i.e., temporal
variability and spatial variability) from constructed high-order FC networks to
represent each subject. Since these two kinds of eigenvalue features may con-
tain irrelevant information, we further perform manifold regularized multi-task
feature learning (M2FL) [13] to jointly select more discriminative features for
brain disease classification. Finally, based on the selected features, we employ a
multi-kernel support vector machine (SVM) [14] to perform brain disease clas-
sification.

3 Experiment

3.1 Experimental Setting

In this work, we perform two classification tasks: 1) lMCI vs. eMCI classifica-
tion, and 2) eMCI vs. NC classification, by using a leave-one-out (LOO) cross-
validation strategy. Following [8], we construct the hoDFCN using different val-
ues of m (i.e., m = {5, 6, · · · , 12}), and compute the average value of tempo-
ral/spatial eigenvalue features for all values of m to avoid the effect of different
window lengths. In the process of multi-kernel SVM classification, we adopt a
grid search strategy on training subjects to find optimal combination of multiple
kernels, and use a linear SVM classifier with default parameter values for classi-
fication. To evaluate performance of different methods, we employ four metrics,
i.e., accuracy (ACC), sensitivity (SEN), specificity (SPE), and the area under
the receiver operating characteristic (ROC) curve (AUC).

We first compare the proposed hoDFCN method with low-order DFCN meth-
ods, including 1) the method proposed in [8] (denoted as DFCN-mean), and 2)
the method that integrates temporal and spatial eigenvalue features extracted
from low-order DFCN networks (denoted as DFCN-eigen). Moreover, we com-
pare the proposed method with three hoDFCN-based methods, including 1)
the method that combines temporal and spatial mean features extracted from
hoDFCNs (denoted hoDFCN-mean), 2) the method using only the temporal
eigenvalue features (denoted hoDFCN-temporal), and 3) the method using
only the spatial eigenvalue features (denoted hoDFCN-spatial). In addition,
we compare our hoDFCN with the Baseline method using clustering coefficient
features from stationary FC networks.

3.2 Classification Results

The results of all seven methods are summarized in Table 2. Figure 3 plots the
ROC curves of all methods. From Table 2 and Fig. 3, we can see that our proposed
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Table 2. Results of seven methods in two classification tasks. ACC: accuracy; SEN:
sensitivity; SPE: specificity.

Method lMCI vs. eMCI (%) eMCI vs. NC (%)

ACC SEN SPE AUC ACC SEN SPE AUC

Baseline 56.6 55.8 57.1 55.1 59.4 66.1 52.0 56.9

DFCN-mean 78.8 74.4 82.1 78.3 78.3 82.1 74.0 77.1

DFCN-eigen 78.8 74.4 82.1 81.5 78.3 83.9 72.0 78.3

hoDFCN-temporal 72.7 74.4 71.4 77.1 71.7 75.0 68.0 75.5

hoDFCN-spatial 73.7 74.4 73.2 78.1 72.6 76.8 68.0 75.8

hoDFCN-mean 80.8 79.1 82.1 80.3 80.2 80.4 80.0 80.7

hoDFCN (Ours) 81.8 79.1 83.9 81.9 81.1 85.7 76.0 79.3

Fig. 3. ROC curves of seven methods on tasks of (a) lMCI vs. eMCI classification, and
(b) eMCI vs. NC classification.

hoDFCN method achieves better classification performance when compared to
six competing methods. For example, the proposed hoDFCN achieves the ACC
values of 81.8% and 81.1% in two classification tasks (i.e., lMCI vs. eMCI and
eMCI vs. NC), respectively, while the best accuracy of the competing methods
are 80.8% and 80.2% (by hoDFCN-mean). This suggests the efficacy of our
proposed method in rs-fMRI based brain disease classification.

In addition, from Table 2 and Fig. 3, we could observe that two hoDFCN-
based methods (i.e., hoDFCN-mean and hoDFCN) consistently outperform the
two DFCN-based methods (i.e., DFCN-mean and DFCN-eigen), suggesting the
advantages of high-order FC network over traditional (i.e., second-order) FC
networks. In addition, the proposed hoDFCN method consistently outperforms
the competing methods that use only single eigenvalue features (i.e., hoDFCN-
temporal, and hoDFCN-spatial). These results imply that the proposed spatial
variability and temporal variability features contain complementary information
to further improve the classification performance.
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Fig. 4. Results achieved by our proposed method using different combining weights of
temporal and spatial eigenvalue features on (a) lMCI vs. eMCI classification, and (b)
eMCI vs. NC classification. Here, βTEF = 1 − βTSF .

3.3 Influence of Different Combining Schemes

In the proposed method, we integrate temporal and spatial eigenvalue features
using multi-kernel SVM technique for classification. To evaluate the effect of
two kinds of eigenvalue features on performance, we test all possible combining
values of two combing weights, i.e., the weight βTEF of temporal eigenvalue fea-
tures, and the weight βTSF of spatial eigenvalue feature, with the constraint of
βTEF + βTSF = 1. Figure 4 plots the obtained ACC and AUC values achieved
by our hoDFCN method with different weights for spatial and temporal vari-
ability features. As can be seen from Fig. 4, one can achieve good classification
performance in the inner intervals of these curves, suggesting that two kinds of
network properties convey different-yet-complementary information, and thus,
should be integrated for improving the classification performance. In addition,
the results in Fig. 4 is inferior to the results of the proposed hoDFCN method
with multi-kernel learning in Table 2. This implies that two kinds of network
features should be integrated adaptively to yield better performance.

4 Conclusion

In this work, we propose a novel method to construct the high-order dynamic FC
network, and also define two measures to characterize the temporal and spatial
variability of FC networks for brain disease classification. Specifically, we con-
struct the high-order FC networks based on the traditional (i.e., second-order)
dynamic FC networks, by calculating the correlation between functional archi-
tectures of pairs of brain regions. Then, we construct two matrices to reflect
the temporal and spatial variability of high-order FC networks, and extract two
eigenvalue features to assess the dynamic properties of FC networks. Finally, we
propose to select discriminative features and use a multi-kernel SVM to inte-
grate two kinds of network features for the classification of brain diseases. The
experimental results on 149 subjects with baseline rs-fMRI data from ADNI
demonstrate the effectiveness of our proposed method.
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