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Abstract. Inpainting lesions is an important preprocessing task for
algorithms analyzing brain MRIs of multiple sclerosis (MS) patients, such
as tissue segmentation and cortical surface reconstruction. We propose
a new deep learning approach for this task. Unlike existing inpainting
approaches which ignore the lesion areas of the input image, we leverage
the edge information around the lesions as a prior to help the inpainting
process. Thus, the input of this network includes the T1-w image, lesion
mask and the edge map computed from the T1-w image, and the output
is the lesion-free image. The introduction of the edge prior is based on our
observation that the edge detection results of the MRI scans will usually
contain the contour of white matter (WM) and grey matter (GM), even
though some undesired edges appear near the lesions. Instead of losing all
the information around the neighborhood of lesions, our approach pre-
serves the local tissue shape (brain/WM/GM) with the guidance of the
input edges. The qualitative results show that our pipeline inpaints the
lesion areas in a realistic and shape-consistent way. Our quantitative eval-
uation shows that our approach outperforms the existing state-of-the-art
inpainting methods in both image-based metrics and in FreeSurfer seg-
mentation accuracy. Furthermore, our approach demonstrates robustness
to inaccurate lesion mask inputs. This is important for practical usabil-
ity, because it allows for a generous over-segmentation of lesions instead
of requiring precise boundaries, while still yielding accurate results.
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1 Introduction

Multiple Sclerosis (MS) is a common autoimmune disease of the central nervous
system characterized by focal demyelinating lesions visible on brain MRI. In the
long term, the clinical progression of the disease is closely linked to brain atrophy,
which makes the estimation of brain atrophy an important tool for longitudinal
monitoring [11]. In order to measure the GM and WM atrophy, algorithms such
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as brain tissue classification and cortical surface reconstruction/thickness mea-
surement are necessary. However, the presence of MS lesions is problematic for
most automated algorithms and can lead to biased morphological measurements.
To mitigate this problem, many lesion inpainting methods have been proposed
[2–4,6,9,12–14,17,18]. These methods, whether conventional or deep-learning-
based, consider the areas of lesions as “missing” during inpainting. Discarding
the original lesion voxels is a common practice in MS lesion inpainting, and is
consistent with the inpainting techniques in computer vision. Nevertheless, much
structural information is lost when the lesion voxels are discarded. As a conse-
quence, the algorithms are highly likely to produce inaccurate predictions if the
lesion masks cross the tissue boundaries.

In this work, we re-consider the difference between the MS lesion inpainting
and the general-purpose inpainting task in computer vision. We hypothesize
that, specifically for MS lesion refilling (and potentially for other medical image
inpainting tasks), the areas that require inpainting are not “missing” but rather
contain information useful for inpainting and, thus, should not be discarded.
Even though the lesions have different intensities than normal-appearing brain
tissue, the structural information around lesions can and should be preserved.
Therefore, we introduce the edge information from the input images as a prior.

Contributions. The main contributions of this paper are summarized below:

– Instead of considering the lesion areas as missing, we use the edge information
extracted from the input image as a prior to guide the inpainting. This is more
appropriate for MS inpainting as it preserves the shape and boundary of
normal-appearing tissue around the lesions in the inpainted images. Different
from [10] which infers the edges with an extra network, we believe the input
image itself already contains the information for constraining the inpainting.

– Our method makes no assumptions about the characteristics of the lesions,
which makes it suitable for both white matter lesions and gray matter lesions.
This could also allow for the generalization to different modalities.

– We demonstrate that the proposed method can handle highly inaccurate
lesion masks, which makes it robust to errors in lesion delineations. This
reduces the dependence on highly accurate lesion segmentation, which is an
elusive goal even for experts. Also, while incorrect lesion masks can cause
artifacts for some methods such as FSL [2] and SLF [17], our method does
not create such artifacts.

– The introduction of edge information as a prior to inpainting algorithms is
architecture-agnostic. It can be readily used in conjunction with other deep
learning algorithms, which may further improve performance.

2 Methods

2.1 Datasets and Pre-processing

We use an in-house dataset of 15 healthy controls and 40 patients with relapsing-
remitting MS (RRMS) or secondary progressive MS (SPMS). At Brigham and
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Women’s Hospital, 3T T1-w MPRAGE and FLAIR images were acquired for
each subject, at 1mm3 isotropic resolution. FLAIR images were co-registered to
T1-w space [1]. All were skull-stripped with BET [15], followed by N4ITK [16].

In this paper, we refer to the healthy controls as original healthy control
images (OHC) and the generated images as simulated lesion images (SL, see
Sect. 3), in contrast to real lesion images (RL) from MS patients.

We use the original healthy control images (without any lesions, real or simu-
lated) in the training phase. This forces the network to only learn the appearance
of healthy tissue. In the test phase, we use the simulated lesion images (see Sect.
3) for both the qualitative and quantitative experiments; we also present quali-
tative results from the real lesion images.

2.2 Edge Detection

Due to the lack of ground truth pairs for training, a simple translation between
the lesion and lesion-free images, e.g. using pix2pix [7], cannot be performed.
Instead, the current inpainting methods consider the lesion areas as “missing”
and train the network to infer the masked regions based on their surrounding
areas. This idea is straightforward but causes the network to, by construction,
ignore the lesion areas in the test phase, which means all the structure or shape
information within the lesion masks is lost. Instead, our goal is to preserve such
information in the test phase, while making no assumption on lesion appearance
(e.g., a specific intensity profile relative to surrounding tissue) during training.

We use the classical Canny edge detector to extract the edge information from
the lesion image. In Fig. 1, A-1 is a RL image, and A-2 is the corresponding edge
map (σ = 0.8 for Gaussian filter, first step of edge detection). The boundaries
between different brain tissues remain visible even when the lesions are present.

In the training phase, we use only OHC images. We provide random ROIs as
the lesion mask, and the network has to learn to reconstruct the original T1w
image. However, this means all the edges from the input will be preserved in the
network output for the training set, whereas for the testing set, it is desirable that
the edges from the lesion are ignored while the edges from tissue (e.g., WM/GM
boundary) will be preserved. To alleviate this discrepancy, and to teach the
model to ignore certain edges while preserving others, we use augmentations of
the input edges during the training phase. This is illustrated in Fig. 1, where
B-1 is a slice from OHC image, and B-2 is the corresponding edge map. By
adding Gaussian noise to B-1 and detecting the edges from it, we get B-3, which
contains some random edges compared to (B-2). We hypothesize that, with these
augmentations, the network will learn to deal with the edges caused by the
lesions.

2.3 Network Structure and Loss Functions

We adopted the network architecture described in [10] for MS inpainting. This
network follows the encoder-decoder structure as shown in Fig. 2. Similar to the
2.5D methods in [19], the training input is the cropped 128× 128 2D slices from
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Fig. 1. Edge maps. (A-1) T1-w image with real lesions (RL) outlined in red; (A-2)
Edges from A-1. (B-1) T1-w image of OHC; (B-2) Edges from B-1; (B-3) Edges after
adding Gaussian noise to B-1. Orange pixels in (B-3) mark the newly generated edges.
(Color figure online)

Fig. 2. Overview of the network architecture. The input is the concatenation
of the binary lesion mask, the masked T1-w and edge detection of T1-w
after adding random noise. The output is the inpainted T1-w image. Purple:
7 × 7 Convolution-SpectralNorm-InstanceNorm-ReLU; Green: 4 × 4 Convolution-
SpectralNorm-InstanceNorm-ReLU layer, stride = 2 for down-sampling; Orange: resid-
ual blocks; Blue: similar to green, up-sampling; Gray: scaled tanh. (Color figure online)

all the 3 orientations and the test output is the consensus of the prediction from
axial, coronal and sagittal views.

Our loss function is defined as Ltotal = Lrec + 250Lstyle + 0.1Lperceptual,
where Lrec is the reconstruction loss, i.e., the pixel-wise L1 distance between the
ground truth and the output image. Lperceptual and Lstyle are the perceptual loss
and content loss introduced by [8], and they capture the difference of high-level
features instead of raw images. We use perceptual loss and content loss to help
the network generate realistic inpainting results with natural texture.

3 Experiments

Ground truth. Unlike lesion segmentation, which usually has gold standard
lesion delineations, there is no gold standard for pairs of T1-w images with
lesions and the corresponding lesion-free images. We thus use a lesion simulator
on OHCs to evaluate in-painting methods: 1) the OHC image serves as ‘ground
truth’ for what the corresponding inpainting result should look like, and 2) the
tissue classification of the OHC image serves as ‘ground truth’ for the tissue
classification of the corresponding inpainted images.
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With our in-house dataset, we split 4/5 of the OHC subjects into the training
set and 1/5 into the test set. We then obtained 11 SL-OHC pairs for the test set
by simulating multiple SL images for each OHC image.

Using a publicly available lesion simulator1, several lesion images with dif-
ferent lesion size, location and volume were generated for each healthy control.
The lesion load followed a log-normal distribution Log − N(log(15), log(3)

3 ).

Implementation Details. For training, we use an Adam optimizer with a
momentum of 0.5 and the initial learning rate (lr) of 0.0002. We use the initial
learning rate for 100 epochs and let it decay to 0 within another 100 epochs.
For validation, we choose the model with best F1 score (see below) for each fold.
During training, we perform random lesion mask dilation for data augmentation.

Evaluation Metrics. The performance is evaluated from two aspects:

– Compare the two images in the image domain (i.e., synthesis error).
• We calculate the mean squared error (MSE) to measure the distance

between the inpainted images and the original images. For a more intuitive
presentation, we report PSNR, which is based on MSE.

• We compare the edge detection result between the output image and the
ground truth images. To take both precision and recall into consideration,
the F1 score is calculated from the binary edge maps.

– Compare the brain segmentation results (i.e., volume error and tissue over-
lap). The brain segmentation results will be affected by MS lesions, however,
the lesion filling methods are expected to reduce this effect. We use FreeSurfer
[5] for segmentation.
• Absolute volume difference (AVD) for WM and GM is computed as AVD

= |Vo−Vgt|
Vgt

×100% where Vo and Vgt are the volume of a given class in the
segmentation of the inpainting output and the ground truth, respectively.

• The F1 score and Jaccard similarity coefficient (IoU) over all classes are
also reported to provide an overall evaluation of the segmentations.

With the exception of PSNR, all the metrics are reported on the lesion neigh-
borhoods to focus on the changes caused by lesions, since there are practically
no differences away from the lesion ROIs. The neighborhoods are defined by the
dilation of lesion masks (3D dilation using octahedron kernel, k = 5).

Compared Methods. We compared our approach with three existing inpaint-
ing algorithms on T1-w images: the lesion filling tool included in FSL library [2],
the SLF toolbox [17], and the recently proposed non-local partial convolutions
(NLPC) inpainting method which is deep-learning-based [18]. Since NLPC is not
publicly available, to make a fair comparison, we kept everything the same as
our methods for training and evaluating NLPC except the network architecture.

1 https://github.com/CSIM-Toolkits/LesionSimulatorExtension.

https://github.com/CSIM-Toolkits/LesionSimulatorExtension
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Fig. 3. Qualitative evaluation (simulated dataset). Group (A) uses “ground truth”
lesion mask inputs. Group (B) uses dilated (k = 3) lesion mask inputs. (1) T1-w image
of a healthy control; (2) T1-w image with lesions (lesion boundaries are marked in red);
(3–6) Inpainted results using FSL, SLF, NLPC and our method, respectively. (Color
figure online)

4 Results

Qualitative Analysis. The qualitative evaluation results are shown in Fig. 3.
In group (A), an OHC image (A1) and the corresponding lesion simulation

results (A2) are shown. The inpainting results by FSL (A3), SLF (A4), NLPC
(A5) and our proposed method (A6) are shown. Panel insets show a zoomed-
in view near the lesion in temporal lobe. We note that SLF and FSL failed to
preserve the brain structure of the sulcus by erroneously inpainting GM tissue.
While for the deep-learning-based approaches, NLPC and the proposed method
provide reasonable inpainting results. However, compared to NLPC, our method
produced a more similar GM sulcus to the ground truth T1-w image.

Next, we explore the effect of inaccurate lesion delineations by dilating the
input lesion masks. Group (B) contains the results filled with the dilated (k
= 3) lesion masks. Similar results with dilation kernels k = 2 and k = 4 are
presented in the appendix. In group (B), we can observe that SLF and FSL
performance deteriorates because of the dilated masks. Additionally, because
NLPC discards voxels within the lesion mask, it lacks adequate information and
cannot preserve GM structure either. Our method, however, still presents results
similar to ground truth and preserves the boundary between WM and GM.

In (A-5) and (A-6), we observe discontinuities between the inpainted regions
and the surrounding tissue. This is due to the fusing of non-lesion regions of
the input and the lesion regions of the output. Even though the lesion masks
from the simulation are considered to be the ‘ground truth’, voxels outside the
lesion mask can still contain abnormal intensities. This discontinuity disappears
in group (B) since most abnormal voxels are included in the inpainted regions.
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Fig. 4. Qualitative evaluation (real lesions). (A) T1-w image with real lesion; (B) Edge
detection from A; (C) FLAIR image corresponding to (A); (D) Edge detection from
C; (E) T1-w with segmented lesions (red pixels mark the boundary of lesions); (F–J)
Inpainted results of FSL, SLF, NLPC, ours with T1-w edge and ours with FLAIR edge.
(F–H) contain many small holes/artifacts, whereas our method avoids this problem. We
note that the lesion between the lateral ventricles is missed by the lesion segmentation
algorithm, and thus is not inpainted by any of the methods.

For some real lesion (RL) images, we observed that the lesions in the T1-w
image can mislead the inpainting model by affecting the edges generated by the
Canny edge detector. However, this can be solved by using the edge detection
results from some other modalities (FLAIR, T2, etc) or their combinations.
Qualitative results illustrating this extension are shown in Fig. 4. In this example,
the lesion segmentation is obtained using [19]. This figure also contains examples
of the artifacts generated by other inpainting methods. Our method provides the
smoothest and most accurate boundaries after inpainting.

Quantitative Analysis. In Fig. 5, we show boxplots of the evaluation metrics
described above. To demonstrate the effect of inaccurate lesion delineations, the
x-axes are the dilation kernel sizes. We also report the same metrics for the
simulated lesion images (without any inpainting) as a baseline.

In the image domain, our method has the best PSNR with all k values; its
PSNR also decreases much slower than the other methods with increasing k-
value. Even when k = 4, our method showed better PSNR than the simulated
images. For the F1 score of the edge detection results, our method again decreases
with the smallest slope among the methods. It falls under the lines of simulated
images when k = 4, and we believe this is due to the variability of edge detection.
The superior performance of our method on the other metrics supports this.

More importantly, for the metrics of segmentation results using FreeSurfer,
our methods performed much better than the comparing methods. For the AVD
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Fig. 5. Quantitative evaluation (simulated dataset). We report results for “ground
truth” lesion mask input (no dilation, k = 1) and dilated lesion mask input (k =
2,3,4). The dotted lines are the medians and the quartiles of the simulated images.

of WM and GM, our method outperformed all other in-painting methods and
the simulated images even when k = 4, which is not the case for any of the
other methods. Interestingly, we noticed that the GM segmentation performance
of our method when k = 2 is better than k = 1. We believe this is due to
the discontinuity between the original lesion masks and the hypo/hyper-intense
areas as discussed in the qualitative analysis. The F1 and Jaccard score over
all the classes also prove the stable performance of our algorithm. Since our
approach demonstrates stable performance, it allows the raters to segment in a
more “aggressive” way, by deliberately oversegmenting instead of attempting to
delineate precise boundaries, and our algorithm can ensure the performance of
the inpainting. This can also be done by segmenting as usual and dilating the
masks before inpainting.

As an ablation study, the results of our method without edge priors are also
provided in Fig. 5. The no-edge experiments show similar performance to NLPC,
and much lower than the with-edge results. This strongly supports our argument
that the stability of our algorithm comes from the introduction of edge priors.

To provide another form of imperfect lesion mask, we used the state-of-the-
art segmentation algorithm [19] to segment the lesions and inpainted using these
imperfect masks. The results are in Appendix. Quantitative analysis for RLs is
not possible since we don’t have ground truth “lesion-free” images.
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5 Conclusion and Future Work

In this work, we proposed a deep neural network for inpainting MS lesions.
The network uses the edge detection results from the input T1-w image as the
prior to guide the refilling operations. Both qualitative and quantitative exper-
iments show that our method outperformed currently available methods. It is
robust to inaccurate lesion mask input and the introduction of the edge prior is
demonstrated to be the main driver of the stable performance. Also, as new deep
learning techniques are developed, the edge prior can be easily incorporated with
new architectures to achieve improved results. In future work, we will explore
allowing the user to manually manipulate the edge map to guide the inpainting
in the test phase. We also plan to evaluate our methods in longitudinal data.
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