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Abstract. In this paper, we study the problem of out-of-distribution
(OOD) detection in skin lesion images. Publicly available medical data-
sets have a limited number of lesion classes compared to the number
of possible diseases in real-life clinical applications. It is thus essential
to develop methods that leverage available disease classes in existing
datasets to detect previously-unseen types in an unsupervised manner.
Toward this goal, we propose an unsupervised and non-parametric OOD
detection approach, called DeepIF, which learns the normal distribution
of features in a pre-trained CNN using Isolation Forests. We conduct
comprehensive experiments on two different datasets and compare our
DeepIF against four baseline models. Results demonstrate state-of-the-
art performance of our proposed approach on the task of detecting unseen
skin lesions.

1 Introduction

Deep convolution neural networks (CNNs) have shown outstanding potential
in dermatology for skin cancer detection and classification [4,5,24]. While such
models have achieved high classification accuracy on various benchmark datasets,
their use for automatic differential diagnosis is hindered by the diversity of skin
diseases in real-life clinical applications. For instance, the well-known HAM10000
dataset [22] contains eight different skin lesion classes in its training set, whereas
the actual number of known skin lesion types and subtypes can be in the thou-
sands [4]. It is therefore essential to develop methods that can leverage the lim-
ited types of disease in existing datasets to detect previously-unseen diseases in
an unsupervised manner, a problem known as out-of-distribution (OOD) detec-
tion. A simple yet powerful strategy for OOD image detection is to model the
distribution of features from a pre-trained CNN with a parametric model like a
Gaussian [11], and then use this model to estimate the normality score of new
examples. While this strategy achieves good performance for detecting OOD
images in standard datasets like CIFAR10 and SVHN, it is poorly suited for the
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problem of skin lesion detection, where inter-class variability is low yet intra-class
differences can be significant.

To address this limitation, we propose a novel OOD detection framework
based on Isolation Forest (IF) [13]. This anomaly detection method, building on
the well-known idea of decision tree ensembling, is based on the intuition that
abnormal samples are scarce and are different from normal samples, thus they
can be classified in leaf nodes of a decision tree with fewer splits. Compared to
most unsupervised anomaly detection approaches, IF has the advantage of being
non-parametric, and requires no assumption about the distribution or family of
normal samples. Moreover, it has a low computational complexity and can be
used in scenarios where training samples are few and have high dimensionality.

We introduce a non-parametric and scalable OOD detection method called
DeepIF, which estimates the normality score of skin lesion images by training
IFs on the features of a pre-trained deep CNN. Our contributions are as follows:

– To our knowledge, this is the first application of Isolation Forest for OOD
image detection on features from a pre-trained deep CNN. Unlike the majority
of existing OOD techniques, it is non-parametric and can be added to any
classification model without having to re-train this model. Our method also
differs from other OOD approaches by using intermediate features instead
of the network output. This enables it to learn more meaningful differences
between normal samples and outliers.

– We present a comprehensive evaluation of DeepIF on two large and very
different skin lesion datasets, i.e. HAM10000 [22] and DermNet [17], and
show that our method outperforms four recently-proposed OOD detection
approaches.

2 Related Works

In recent years, a broad range of approaches have been proposed for OOD detec-
tion. The work in [7] introduces a simple heuristic applying a threshold on
the softmax probability of a deep network for the predicted class. The ODIN
approach, proposed by Liang et al. [12], uses softmax temperature scaling and
adversarial input perturbation to make softmax scores of in-distribution and out-
of-distribution examples better separated. As described in [16], softmax-based
methods suffer from the problem that OOD images are forced to be divided over
known classes. Based on the assumption that features computed by a pre-trained
network follow a class-conditional Gaussian distribution, Lee et al. [11] obtain
improved performance for OOD and adversarial sample detection by measuring
the Mahalanobis distance in the predicted class distribution. Our method can be
seen as a non-parametric extension of this last approach, which is more suitable
to the high complexity and variability of skin lesion images. In [21], a one-class
kernel Support Vector Machine (SVM) is trained on features from a deep neu-
ral net to perform anomaly detection. In this paper, we show that our DeepIF
method outperforms these existing approaches on tasks where unseen labels are
present.



Out-of-Distribution Detection for Skin Lesion Images 93

Fig. 1. Proposed DeepIF method for detecting OOD skin lesion images.

In [3], Devries et al. use an auxiliary loss function to generate a confidence
score in another branch of the network. This loss function encourages the network
to identify examples for which its prediction is unsure. The main challenge,
however, is setting the task versus confidence loss hyper-parameter, which can
have a large impact on results and whose optimal value greatly varies from one
dataset to another. Vyas et al. [23] train an ensemble of classifiers in a self-
supervised manner, considering a random subset of training examples as OOD
data and the rest as in-distribution data. A margin-based loss is proposed to
impose a given margin between the mean entropy of OOD and in-distribution
samples. A drawback of this approach is the need to train multiple deep networks,
which significantly increases computational times and memory requirements. In
[16], Masana et al. use metric learning to derive an embedding space where
samples from the same in–distribution class form clusters that are separated from
other in–distribution classes and OOD samples. An important limitation of this
approach is that it requires to have a large set of OOD samples during training.
The method in [18] uses transfer learning as a general abnormality detection for
medical images. Likewise, Hentrycks et al. [8] use an auxiliary dataset to model
OOD samples and minimize the objective during training along with the original
in-distribution objective. In a follow-up work [9], they show that adding self-
supervised training loss to the original supervised loss can increase the robustness
of OOD detection. Finally, [20] uses the likelihood ratio between the output
probability of two deep networks, the first one modeling in-distribution data
and the second capturing background statistics, as measure of normality. While
these approaches require modifying the original training algorithm, our method
is more flexible as it only needs a pre-trained network and can use a black-box
algorithm for training.

Most of the above studies have focused on natural images. As shown in our
experiments, methods designed for such images perform poorly on skin lesion
images which have less inter-class variability. So far, only a few works have inves-
tigated OOD detection for images of skin lesions. Pacheco et al. [19] use the mean
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Shannon entropy of the softmax output for correctly classified and misclassified
validation examples to detect outliers, yielding a 11.45% OOD detection rate for
the ISIC 2019 dataset. In a different approach, Lu et al. [14] consider the like-
lihood of a variational autoencoder (VAE) to identify OOD skin lesion images.
Different from these approaches, our method does not presume any distribution
for the OOD classes. As we will empirically demonstrate, this makes our OOD
method more robust.

3 Method

Our DeepIF method for detecting OOD skin lesion images is illustrated in Fig. 1.
An arbitrary CNN f parameterized by vector θ is first pre-trained to predict the
K normal classes in the training data. Given an image x, the CNN outputs a vec-
tor f(x; θ) ∈ [0, 1]K of class probabilities. To explain our method, we suppose the
CNN computes a representation φ(x) comprised of convolutional features, which
is then converted to the output vector with a linear transformation producing a
vector of logits, followed by a softmax:

f(x; θ) = softmax
(
W · φ(x)

)
. (1)

Although any suitable loss function can be considered, we suppose that cross-
entropy is used to train the network. Let Dtrain = {(xi, y)}N

i=1 be the set of
training images xi and their corresponding normal class label y ∈ {1, . . . , K},
the loss function is defined as

LCE(θ;Dtrain) = − 1
N

N∑

i=1

K∑

k=1

1[yi = k] log fk(xi; θ) (2)

Given a pre-trained network, our method uses the network’s latent representation
φ(x) to detect OOD samples. Toward this goal, we use a two-step approach
similar to the one proposed in [11]. In the first step, the representation vectors of
training examples are used to learn a model of in-distribution classes. Then, the
learned model is used on the representation vectors of test examples to compute
their normality scores. OOD examples are found by applying a threshold on the
scores or via a ranking strategy.

The approach in [11] uses a Gaussian to model the distribution of each nor-
mal class. For OOD detection, they calculate the Mahalanobis distance between
the representation vector of a test example and the mean vector of each class,
and use the smallest distance among all classes as the normality score. As shown
in our results, a simple uni-modal Gaussian distribution is not expressive enough
to capture the complex distribution of representations from skin lesion images.
To overcome this problem, our method instead leverages the non-parametric
Isolation Forest (IF) algorithm, which builds on the idea of decision tree ensem-
bling. In IF, a set of decision trees is constructed by splitting the data points in
the training set. To build a tree, at each node, a random feature from a subset
of features, the size of which is controlled by hyper-parameter Nf , is selected.
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Then, a random value between the minimum and maximum values of that fea-
ture is chosen to split data points. A node is considered to be a leaf node when
it reaches a specified maximum depth or the number of data points at that node
is less or equal to a specified number. We construct a total of Ne decision trees
to form our IF.

The application of IF for OOD detection is based on the idea that OOD
data points are few and different, thus should be separable from in-distribution
data on some features with fewer splits. Hence, by averaging the splits in the
IF, OOD data points should have a smaller number of splits compared to the
in-distribution data points. In the proposed method, we build K different IF
models, one for each of the normal classes in the training data. Once these
IF models are constructed, we calculate the normality score of a test example
x ∈ Dtest with respect to class k as

zk = −2−E[P e
k (φ(x))]/P avg

k + 0.5. (3)

Here, P e
k (φ(x)) is the number of tree nodes (i.e., path length) traversed by φ(x)

from the root node to the terminal leaf node of the e-th decision tree in the IF of
class k. Moreover, E[P e

k (φ(x))] is the average of path lengths across all trees in
the IF of class k, and P avg

k is the average path length for training representation
in the same IF. The intuition is that anomaly data points have extreme values
on certain features, so they can be easily isolated within shorter paths. Thus,
E[P e

k (φ(x))] would be small for abnormal data points, resulting in small zk close
to −0.5, whereas in-distribution data points would have large E[P e

k (φ(x))] close
to P avg

k , resulting in a zk close to 0.5.
The representation φ(x) of test examples x is fed to the IF model of each

class to obtain normality scores {z1, . . . , zK}. To compare examples on the same
scale, we then normalize these score as follows:

ẑk =
zk − mean(z1, . . . , zK)

std(z1, . . . , zK)
. (4)

Last, the final normality score is computed as the maximum value of class-specific
scores, i.e.

score(x) = max(ẑ1, . . . , ẑK). (5)

Since the class with highest normality score is the one to which x most likely
belongs, a low maximum score indicates that x can be still easily separated from
its most similar samples.

4 Experiments

Datas and Setup. Our OOD detection method is evaluated on two different
datasets: HAM10000 [22] and DermNet [17]. The HAM10000 dataset contains
skin lesion images taken from dermoscopes. The training set contains 25,331
images from 8 lesion classes: Melanoma (MEL), Melanocytic nevus (NV), Basal
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cell carcinoma (BCC), Actinic keratosis (AK), Benign keratosis (BKL), Der-
matofibroma (DF), Vascular lesion (VASC), Squamous cell carcinoma (SCC).
For each experiment, we hold out 1 class as the Anomaly Class, which we refer
to as an OOD set. We pre-train the network with the remaining 7 classes as in
a regular classification task. For each of the 7 classes, a 90% – 10% split is made
for the training and validation sets. We treat the validation set as in-distribution
set.

The DermNet dataset comprises skin lesion images taken from standard cam-
eras and thus has a distribution completely different from HAM10000. The
training set contains 22,494 images from 23 lesion classes. We treat 4 classes
having less than 500 images each (Cellulitis-Impetigo, Hair-Diseases, Contact-
Dermatitis, and Urticaria-Hives) as a single OOD set, and pre-train the network
on the other 19 classes. The same 90% – 10% split is made on each of the 19
classes for the training and validation sets. Once more, the validation set is used
as in-distribution set.

Evaluation Metrics. We adopt the same metrics as in other studies on OOD
detection [3,11,12]: area under the ROC curve (AUROC); area under the pre-
cision recall curve where in-distribution is specified as the positive (AUPR in);
area under the precision recall curve where OOD is specified as the positive
(AUPR out); true negative rate (TNR) when the true positive rate is as high
as 95% (TNR95TPR). In the latter, the TNR is computed as TN/(TN+FP),
where TN is the number of true negative and FP the number of false positives.
We also show the classification accuracy on the validation dataset.

Implementation Details. We pre-train the skin lesion classification network
with a standard approach: an image resized to 224× 224 is fed into a ResNet152
[6] to get the predictions for each class. Cross-entropy loss is calculated and
back-propagated to the network. SGD is adopted to optimize the network with
a learning rate of 1e-4. We train the network 200 epochs with a batch size of
32. In the training stage, the OOD set is held out, and treated as an anomaly
class. Once the training procedure finishes, the parameters of the network are
fixed throughout the rest of the procedures. For constructing the IF models, we
empirically set Ne to be 200, and Nf to be 1.0. Final scores for in-distribution
and OOD sets are stored separately for evaluation.

Baselines. As our goal is having a detection algorithm that is agnostic to the
specific training algorithm, we compare directly with baselines that can be conve-
niently added to existing models without the need to re-train. We thus compare
our method against three baselines supporting this setup: the Mahalanobis dis-
tance approach using the implementation from [10], the One-class SVM from
[21], and the VAE approach in [14] which measures the normality score based
on reconstruction error. We also compare to a strong baseline Confidence learn-
ing [3], which learns to predict the confidence score in joint training with the
regular classification task. We use the implementation from [2] but keep the same
pre-trained network as our DeepIF.
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Table 1. Results on the HAM10000 dataset. We report the mean performance across 8
experiments, each one using a different class as hold-out OOD set. Except for accuracy
on the validation set (Val. Acc), all metrics are measure on the OOD test set.

Method AUROC AUPR AUPR TNR at Val. Acc %

in out 95% TPR

DeepIF (ours) 0.7560 0.7527 0.7255 0.2091 90.3

Mahalanobis [10] 0.5771 0.5728 0.5516 0.0672

OCSVM [21] 0.6073 0.7224 0.6110 0.0548

VAE [14] 0.5315 0.5418 0.5054 0.0357

Confidence [3] 0.6783 0.7137 0.6315 0.1238 86.1

Table 2. Result on the DermNet dataset. We treat 4 diseases (having less than 500
images each) as a single OOD dataset. Except for accuracy on the validation set (Val.
Acc), all metrics are measure on the OOD test set.

Method AUROC AUPR AUPR TNR at Val. Acc %

in out 95%TPR

DeepIF (ours) 0.6908 0.6933 0.6498 0.1125 71.44

Mahalanobis [10] 0.5761 0.5882 0.5472 0.0637

OCSVM [21] 0.5065 0.4816 0.3144 0.0148

VAE [14] 0.6002 0.6067 0.5666 0.0622

Confidence [3] 0.6208 0.6492 0.5820 0.0855 60.11

5 Results

5.1 Comparison to Baselines

Results for the HAM10000 and DermNet datasets are shown in Table 1 and
Table 2, respectively. Our DeepIF method outperforms all tested baselines on all
metrics for both datasets. Specifically, we obtain large AUROC improvements
of 0.1789 for HAM10000 and 0.1147 for DermNet, compared to the Mahalonbi
distance baseline. This confirms our hypothesis that parametric OOD detection
approaches are less suitable when there is huge intra-class diversity and low
inter-class variability. Our method also yields a significantly better performance
than VAE and OCSVM.

Although the Confidence learning approach is a strong baseline, as it is jointly
trained with the regular classification task, our DeepIF method still achieves
better results on all metrics and datasets. Additionally, we find that using this
baseline decreases the classification performance on validation data, with a 4.2%
drop in mean accuracy for HAM10000 and a 11.3% drop for DermNet. We believe
that learning to predict confidence adds an extra requirement to the training
process which can hurt performance for the main task. An OOD framework
like ours, that is independent from the training procedure, has the advantage of
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Fig. 2. ROC curves for OOD experiments on DermNet. DeepIF (blue curve) achieves
the highest ROC performance compared with other baselines. (Color figure online)

Table 3. Result of DeepIF on HAM10000 using features from different layers of the
pre-trained network. Llogit−j refers to the j-th layer before the logits.

Layer AUROC AUPR AUPR TNR at

in out 95% TPR

Llogit−1 0.7560 0.7527 0.7255 0.2091

Llogit−2 0.5763 0.6076 0.5502 0.0673

Llogit−3 0.5520 0.5508 0.5352 0.0607

Llogit−4 0.5293 0.5243 0.5296 0.0770

preserving the model performance. The ROC curves for 5 approaches in Fig. 2
also validate that DeepIF has the best performance differentiating in-distribution
and OOD data.

5.2 Analysis of Hidden Representations

Our proposed DeepIF uses hidden representations from the last convolutional
layer, as it should contain the richest information. In this experiment, we ana-
lyze the effect of using representations from different layers Llogit−j , where
j = {1, 2, 3, 4} is the distance to the layer of logits. The results shown in Table 3
on HAM10000, confirm that employing the last convolutional layer provides the
best performance, and that this performance drops as we use features in shal-
lower layers. However, performance metrics similar to those of baselines can also
be obtained from these shallower layers, demonstrating the power and flexibility
of our proposed method.
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6 Discussion and Conclusion

In this paper, we studied the problem of OOD detection on medical image
datasets where intra-class difference is large and inter-class variability is low.
We proposed a non-parameteric framework based on Isolation Forests which
learns the normal distribution of features from a pre-trained CNN and then pre-
dicts the normality of test examples based on the path length from root to leaf
nodes in decision trees. Our framework is agnostic to the pre-training tasks, and
thus can be easily applied to any existing classification model to perform OOD
detection. We evaluated our approach on two large skin lesion datasets of very
different distributions: HAM10000 [22] which containts dermoscopic images, and
DermNet [17] comprised of camera images. Experiments show our approach to
achieve state-of-the-art performance for differentiating in-distribution and OOD
data.

To further validate our method, we aim to cover a broader range of medical
image datasets where there exists huge intra-class diversity, for instance, Dia-
betic Retinopathy, CT, and MRI datasets. Moreover, while our DeepIF focuses
on image data, our method can be easily transferred to other non-image data,
such as electric medical records data, or time sequence data including electroen-
cephalogram (EEG) and electrocardiogram (ECG). In future work, we would
also like to compare our DeepIF with more non-parametric algorithms such as
Dirichlet Process Mixture Model (DPMM) [1] or a self-organizing network [15].
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