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Abstract. We propose an analytical method for an M/M/1 vacation
queue with workload dependent service rates. We obtain the distribution
of the workload in the system, and consider a power-saving and perfor-
mance trade-off problem. Numerical experiments reveal that square root
service rate function has lower cost than that of linear and quadratic
service functions under certain scenarios.
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1 Introduction

Cloud computing is supported by data centers with a large number of servers and
a huge amount of energy consumption. This calls for energy saving mechanisms in
data centers while keeping service level high. A natural approach to this problem
is to adjust the processing rate of data centers according to the workload level in
the system so as to balance the energy consumption and performance. This can
be realized by turning the servers on and off (ON-OFF policy) in data centers [3],
frequency scaling or dynamic voltage and frequency scaling (DVFS) [5].

In this paper, we model power-saving in data centers by a single server queue-
ing system with vacation and workload-dependent service rate. We are able to
obtain the probability distribution and relevant statistics of the workload in the
system. This allows us to consider the energy-performance trade-off problem and
to investigate optimal service rate function as well as vacation policy.

As related work, Yajima and Phung-Duc [5] consider an M/M/1 system where
the service rate is proportional to the number of jobs in the system and analyze
the response time distribution. Marin et al. [2] consider an M/M/1 system with
SRPT scheduling policy and K speeds. In these papers, the service rate depends
on the number of jobs in the system. In contrast, in our present paper, we
consider the workload in the system instead of the number of jobs. As a closely
related work, Sakuma et al. [4] consider the same model and analyzed it using
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Fig. 1. The modulating CTMC of the fluid model, and the corresponding drift rates.

renewal theory and level-crossing approach. Yazici and Akar [6] analyzed the
MAP/PH/1 queue with workload-dependent behavior.

In this paper, we approach the problem using fluid queues. We numerically
solve the exact distribution of the workload, and analytically compute relevant
statistics. One of the advantages of our approach is that it could easily be
extended to analyze models with MAP arrivals and PH-type service times, which
is the main difference between our work and [4]. The remainder of the paper is
organized as follows. In Sect. 2, we describe our model in detail. Section 3 shows
some numerical results while concluding remarks are presented in Sect. 4.

2 System Model

We consider an infinite-capacity vacation queue with Poisson arrivals, whose
intensity is λ, and exponentially distributed job sizes with mean 1/μ. The ser-
vice rate depends on the instantaneous workload, x, through a piecewise-constant
function, i.e. the rate is ri when Bi−1 < x <= Bi where B0 = 0, BK = ∞
and i ∈ {1, . . . , K}. The server enters vacation when the workload hits 0, and
returns from vacation when the workload reaches BV . Without loss of generality,
we assume BV ∈ {B1, . . . , BK−1}. We model the workload as a fluid and thus,
the system can be described as a multi-regime feedback fluid queue [1] due to
the piecewise dependence of the service rate to the workload. The modulating
continuous-time Markov chain (CTMC) is given in Fig. 1, along with the asso-
ciated drift rates for each state. Notice that transition rates also depend on the
workload, hence producing a multi-regime fluid model.

To obtain the numerical results, we employed the methodology described
in [1]. One important detail worth mentioning is that the drift rate in the vaca-
tion regime is 0, and this needs special treatment. In general, the pdf of the
regimes with 0 drifts can be expressed as a linear combination of the pdf’s of
the remaining states; see equations (20)–(22) in [1] and the explanations therein.
Furthermore, Vacation state does not exist beyond x > BV .

After the distribution of the fluid in each state is obtained, the Arrival and
Vacation Arrival states are censored out, as the linear increases in these two
states represent the abrupt increases in the workload due to job arrivals and in
reality, the system does not spend any time in either of these states.
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To study the effect of the rate function and the vacation threshold, BV , we
consider a cost function as follows [2]:

C =

(
K∑
i=1

pir
2
i

)
+ p0c0 + chE[V ] + csλV (0), (1)

where pi is the probability that the server works at speed ri, p0 is the probability
that the server is on vacation, c0 is the power consumption when the server is
on vacation, ch is the weight placed on the mean workload, i.e., performance,
E[V ] is the mean workload, cs is the switching cost, and V (0) is the probability
that the workload is 0. Here, the product λV (0) is equal to the reciprocal of the
mean cycle time from the beginning of one vacation to the next [4], and hence
represents switching frequency of the server from OFF to ON.

Following the definitions in [1], the pdf of the workload is of the form
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where A
(i)
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(i)
+ are blocks of a matrix obtained through a similarity trans-

form on A(i) = Q(i)(R(i))−1, Q(i) and R(i) being the infinitesimal generator
of the CTMC and the diagonal drift matrix, respectively, for each regime, L
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]
are coefficients obtained through a set of boundary

conditions [1]. Hence, the required statistics can be obtained as

pi =
∫ Bi

Bi−1

f
(i)
S (x) dx, and E[V ] =

K∑
i=1

∫ Bi

Bi−1

x f
(i)
S (x) dx, (3)

where fS(x) is the pdf of the workload in Service state after Arrival and Vaca-
tion Arrival states are censored out. Considering that the pdf expression in (2)
contain matrix exponentials only, it is clear that the integrals in (3) can be
evaluated analytically (We omit the exact expressions due to space limitation.).

3 Numerical Results

We obtained numerical results with λ = 1, μ = 1, Bi = (i/4), i ∈ {1, . . . , 40} via
implementation in Matlab. The parameters c0, ch, cs, and BV are varied. The
service rate functions we experimented with are rsri =

√
Bi−1+1, rlini = Bi−1+

1, rsqi = (Bi−1)2 + 1, representing square root, linear, and square dependence,
respectively, on the threshold values. We first give pdf plots of the workload
in Fig. 2 for BV ∈ {2, 4, 6} and ri = rlini . This illustrates the dynamics of the
workload and the effect of the selection of vacation threshold, BV .

Next, we compare the mentioned rate functions under various operating sce-
narios with respect to c0, ch, cs, and BV . We plot in Fig. 3 normalized service
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Fig. 2. Workload pdf with BV ∈ {2, 4, 6},
and ri = rlini .

0 2 4 6 8 10
0

0.5

1

service cost
p

0
mean workload E[V]

 V(0)

Fig. 3. Cost components against BV .
Service cost and E[V ] are normalized,
with maximum values of 5.8137 and
4.0301, respectively.

cost (C values for c0 = ch = cs = 0), p0, normalized E[V ], and λV (0), with
ri = rlini . As BV is increased, all but λV (0) increase monotonically. Hence, we
conclude that cs is the critical component of the cost against other coefficients.
In Fig. 4, we plot the cost for cs ∈ {10, 30, 50} with ri = rlini . We observe that
the cost function turns out to be convex in this scenario, and there exist opti-
mum BV values for each cs value, which are marked with asterisks on the plots.
Finally, we compare the rate functions with c0 = ch = 1, cs = 30 in Fig. 5.
Again, we observe a similar dynamic with respect to BV .
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Fig. 4. Costs for different values of cs
with ri = rlini , c0 = ch = 1.
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Fig. 5. Costs for different rate func-
tions, c0 = ch = 1, cs = 30.

4 Conclusion

In this study, we model the M/M/1 vacation queue for the purpose of perfor-
mance analysis and optimization of cloud data centers. The main mathematical
tool we use for our model is multi-regime fluid queues. We observe that the cost
is sensitive to the selection of several parameters, as well as the rate function.
We quantitatively demonstrate the behavior of the cost function with respect to
vacation threshold. It is clear that further analysis is necessary to determine real-
istic values for the cost coefficients. Hence, future studies will comprise extensive
experimentation with regards to the cost parameters, and improvement of the
model by considering finite buffer systems and more complicated inter-arrival
time and job size distributions.
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