
Marco Gribaudo
David N. Jansen
Anne Remke (Eds.)

LN
CS

 1
22

89

17th International Conference, QEST 2020
Vienna, Austria, August 31 – September 3, 2020
Proceedings

Quantitative Evaluation
of Systems

Lecture Notes in Computer Science 12289

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Marco Gribaudo • David N. Jansen •

Anne Remke (Eds.)

Quantitative Evaluation
of Systems
17th International Conference, QEST 2020
Vienna, Austria, August 31 – September 3, 2020
Proceedings

123

Editors
Marco Gribaudo
Politecnico di Milano
Milan, Italy

David N. Jansen
Chinese Academy of Sciences
Beijing, China

Anne Remke
University of Münster
Münster, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-59853-2 ISBN 978-3-030-59854-9 (eBook)
https://doi.org/10.1007/978-3-030-59854-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1415-5287
https://orcid.org/0000-0002-6636-3301
https://doi.org/10.1007/978-3-030-59854-9

Preface

This volume contains the papers presented at the International Conference on Quanti-
tative Evaluation of Systems (QEST 2020), held online during August 31 – September 3,
2020, and organized by TU Wien, Austria. Following the path of several previous
editions, this conference was part of a greater event, this time called QONFEST. This
larger forum brought together the 31st Conference on Concurrency Theory (CONCUR
2020), the 18th International Conference on Formal Modelling and Analysis of Timed
Systems (FORMATS 2020), the 25th International Conference on Formal Methods for
Industrial Critical Systems (FMICS 2020), as well as QEST 2020. QONFEST also
included workshops and tutorials before and after these major conferences.

As one of the premier fora for research on quantitative system evaluation and
verification of computer systems and networks, QEST covers topics including classic
measures involving performance and reliability, as well as quantification of properties
that are classically qualitative, such as safety, correctness, and security. QEST wel-
comes measurement-based studies as well as analytic studies, diversity in the model
formalisms and methodologies employed, as well as development of new formalisms
and methodologies. QEST also has a tradition of presenting case studies, highlighting
the role of quantitative evaluation in the design of systems, where the notion of system
is broad. Systems of interest include computer hardware and software architectures,
communication systems, embedded systems, infrastructural systems, and biological
systems. Moreover, tools for supporting the practical application of research results in
all of the aforementioned areas are also of interest to QEST. In short, QEST aims to
encourage all aspects of work centered around creating a sound methodological basis
for assessing and designing systems using quantitative means.

Following the tradition of previous years’ editions of QEST, a special session on
frontier topics in the current research landscape was proposed. The topic selected this
year was “Predictive performance by machine learning,” and it focused on work
considering the combination of machine learning and performance prediction.

Thanks to the organization of the QONFEST event, this year’s edition of QEST
featured three keynote speakers. Evgenia Smirni (College of William and Mary
Williamsburg, USA) gave a talk on “Machine Learning Models for Reliability of Large
Scale Systems,” Annabelle McIver (Mcquarie University, Australia) spoke about “On
Privacy and Accuracy in Data Releases,” and Tom Henzinger (IST, Austria) presented
“A Survey of Bidding Games on Graphs.” We also had two tutorials, specifically
addressed to the QEST community: “Flexible nets” by Jorge Júlvez (University of
Cambridge, UK) and “Verifying Probabilistic Programs” by Benjamin Kaminski
(University College London, UK), Joost-Pieter Katoen (RWTH Aachen University,
Germany), and Christoph Matheja (ETH Zürich, Switzerland).

The Program Committee (PC) consisted of 32 experts and we received a total of 42
submissions. Each submission was reviewed by at least three PC members or external
reviewers. Based on the reviews and the PC discussion phase, the committee decided to

accept 20 submissions, of which 19 papers were included in these proceedings (12 full
papers and 7 shorter contributions, which also include tool presentations and demos).
The program also included a tool demo “Compact and explainable strategy represen-
tations using dtControl” by P. Ashok, M. Jackermeier, J. Křetínský, and M. Weininger,
not followed by a paper in this book. Conversely, these proceedings also include the
contribution “Machine Learning for Reliability Analysis of Large Scale Distributed
Systems” by one of the invited speakers, and the abstracts of the tutorials.

We want to thank a lot of people for their efforts despite the generally difficult
situation during which this event was organized. Firstly, we thank all the authors who
submitted papers, as without them there simply would not be a conference. We feel that
in this particular year, thanking the authors is even more important, since everybody
experienced a lot of difficulties in cooperating with colleagues as well as in finding
novel and different ways of communicating, while coping with new restrictions and
regulations never seen before. We would also like to express the same gratitude to the
PC members and the additional reviewers for their hard, timely work and for sharing
their valued expertise with the rest of the community, as well as EasyChair for sup-
porting the electronic submission and the reviewing process. In particular, we would
like to thank Alfred Hofmann and Anna Kramer for their help in preparing this LNCS
volume, and we thank Springer for kindly sponsoring the prize for the Best Paper
Award. We thank the QONFEST Platinum Sponsor Interchain Foundation, and also the
Vienna Center for Logic and Algorithms (VCLA) and TU Wien for their financial
support. Special thanks go to the local organization chair and general chair, Ezio
Bartocci, for his dedication and excellent work, and to the publicity chair, Carlos E.
Budde, who was of great help during all the stages of preparation of the conference
program. Finally, we would like to thank Enrico Vicario, chair of the QEST Steering
Committee, and Jane Hillston, former chair, for their guidance throughout the past two
years, as well as the members of the QEST Steering Committee.

We hope that you find the conference proceedings rewarding and will consider
submitting to QEST 2021.

August 2020 Marco Gribaudo
David N. Jansen

Anne Remke

vi Preface

Organization

Program Committee

Alessandro Abate University of Oxford, UK
Simona Bernardi Universidad de Zaragoza, Spain
Peter Buchholz TU Dortmund, Germany
Carlos E. Budde University of Twente, The Netherlands
Davide Cerotti Politecnico di Milano, Italy
Florin Ciucu University of Warwick, UK
Yuxin Deng East China Normal University, China
Pedro R. D’Argenio Universidad Nacional de Córdoba and CONICET,

Argentina
Marco Gribaudo Politecnico di Milano, Italy
Arnd Hartmanns University of Twente, The Netherlands
András Horváth University of Turin, Italy
David N. Jansen Institute of Software, Chinese Academy of Sciences,

China
William Knottenbelt Imperial College London, UK
Jan Křetínský Technical University of Munich, Germany
Andrea Marin University of Venice, Italy
Andrew Miner Iowa State University, USA
Laura Nenzi University of Trieste, Italy
Gethin Norman University of Glasgow, UK
Marco Paolieri University of Southern California, USA
David Parker University of Birmingham, UK
Tuan Phung-Duc University of Tsukuba, Japan
Riccardo Pinciroli College of William and Mary, USA
Pavithra Prabhakar Kansas State University, USA
Daniel Reijsbergen The University of Edinburgh, UK
Anne Remke WWU Münster, Germany
Markus Siegle Universität der Bundeswehr, Germany
Meng Sun Peking University, China
Mirco Tribastone IMT, Lucca, Italy
Benny Van Houdt University of Antwerp, Belgium
Andrea Vandin Sant’Anna School of Advanced Studies, Italy
Verena Wolf Saarland University, Germany
Katinka Wolter Freie Universität zu Berlin, Germany

Additional Reviewers

Ashok, Pranav
Backenköhler, Michael
Brihaye, Thomas
Castro, Pablo
de Boer, Pieter-Tjerk
Demasi, Ramiro
Eisentraut, Julia
Gouberman, Alexander
Gros, Timo P.
Großmann, Gerrit
Hasanbeig, Mohammadhosein
Lal, Ratan
Lu, Yuteng
Meggendorfer, Tobias
Molyneux, Gareth
Putruele, Luciano
Sun, Weidi
Weininger, Maximilian
Wijs, Anton
Wolovick, Nicolás

viii Organization

Contents

Invited Paper

Machine Learning for Reliability Analysis of Large Scale Systems 3
Evgenia Smirni

Predictive Performance and Machine Learning

Tracking the Race Between Deep Reinforcement Learning
and Imitation Learning. 11

Timo P. Gros, Daniel Höller, Jörg Hoffmann, and Verena Wolf

SafePILCO: A Software Tool for Safe and Data-Efficient
Policy Synthesis . 18

Kyriakos Polymenakos, Nikitas Rontsis, Alessandro Abate,
and Stephen Roberts

StochNetV2: A Tool for Automated Deep Abstractions for Stochastic
Reaction Networks . 27

Denis Repin, Nhat-Huy Phung, and Tatjana Petrov

Model Checking and Verification

Alternative Characterizations of Probabilistic Trace Equivalences
on Coherent Resolutions of Nondeterminism . 35

Marco Bernardo

Probabilistic Model Checking of AODV . 54
Mojgan Kamali and Joost-Pieter Katoen

Multi-player Equilibria Verification for Concurrent Stochastic Games 74
Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos

Loss-Size and Reliability Trade-Offs Amongst Diverse Redundant
Binary Classifiers . 96

Kizito Salako

Bayesian Inference by Symbolic Model Checking . 115
Bahare Salmani and Joost-Pieter Katoen

Queuing Networks

CogQN: A Queueing Model that Captures Human Learning of the User
Interfaces of Session-Based Systems . 137

Olivia Das and Arindam Das

A Matlab Toolkit for the Analysis of Two-Level Processor
Sharing Queues. 144

Andrea Marin, Sabina Rossi, and Carlo Zen

M/M/1 Vacation Queue with Multiple Thresholds: A Fluid Analysis 148
Mehmet Akif Yazici and Tuan Phung-Duc

Markov Processes

Bounding Mean First Passage Times in Population Continuous-Time
Markov Chains . 155

Michael Backenköhler, Luca Bortolussi, and Verena Wolf

Markovian Arrival Processes in Multi-dimensions . 175
Andreas Blume, Peter Buchholz, and Clara Scherbaum

Automatic Pre- and Postconditions for Partial Differential Equations 193
Michele Boreale

Importance of Interaction Structure and Stochasticity for Epidemic
Spreading: A COVID-19 Case Study. 211

Gerrit Großmann, Michael Backenköhler, and Verena Wolf

Applications

The Dynamic Fault Tree Rare Event Simulator . 233
Carlos E. Budde, Enno Ruijters, and Mariëlle Stoelinga

Entropy Measurement of Concurrent Disorder . 239
Victor Cook, Christina Peterson, Zachary Painter, and Damian Dechev

Hardening Critical Infrastructure Networks Against
Attacker Reconnaissance . 258

Kartik Palani and David M. Nicol

Sensitivity Analysis and Uncertainty Quantification of State-Based
Discrete-Event Simulation Models Through a Stacked Ensemble
of Metamodels . 276

Michael Rausch and William H. Sanders

Correction to: The Dynamic Fault Tree Rare Event Simulator. C1
Carlos E. Budde, Enno Ruijters, and Mariëlle Stoelinga

x Contents

Tutorials

Flexible Nets . 297
Jorge Júlvez

Verifying Probabilistic Programs . 298
Benjamin Kaminski, Joost-Pieter Katoen,
and Christoph Matheja

Author Index . 299

Contents xi

Invited Paper

Machine Learning for Reliability Analysis
of Large Scale Systems

Evgenia Smirni(B)

Department of Computer Science, William and Mary, Williamsburg, VA, USA
esmirni@cs.wm.edu

http://www.cs.wm.edu/∼esmirni

Abstract. As distributed systems dramatically grow in terms of scale,
complexity, and usage, understanding the hidden interactions among
system and workload properties becomes an exceedingly difficult task.
Machine learning models for prediction of system behavior (and anal-
ysis) are increasingly popular but their effectiveness in answering what
and why is not always the most favorable. In this talk I will present two
reliability analysis studies from two large, distributed systems: one that
looks into GPGPU error prediction at the Titan, a large scale high-
performance-computing system at ORNL, and one that analyzes the
failure characteristics of solid state drives at a Google data center and
hard disk drives at the Backblaze data center. Both studies illustrate the
difficulty of untangling complex interactions of workload characteristics
that lead to failures and of identifying failure root causes from monitored
symptoms. Nevertheless, this difficulty can occasionally manifest in spec-
tacular results where failure prediction can be dramatically accurate.

Keywords: Data centers · HPC · Storage systems · Reliability ·
GPUs · SSDs · HDDs

1 Overview

Effective workload prediction hold the answers to the conundrum of efficient
management in distributed and scaled out systems. Being able to accurately
predict the upcoming workload within the next time frame (i.e., in the next
10 min, half hour, hour, or even week) allows the system to make proactive
decisions [14], improve its reliability and performance [11,12], and result in bet-
ter user experience [16]. Machine learning predictors have been used widely to
improve on the operating conditions of data centers, see [11–16] and references
within.

Beyond the above efforts that mainly focus on predicting workload peaks
and system usage, accurately predicting failures of systems components and

The work was partially supported by NSF grants CCF-1649087, CCF-1717532, and IIS-
1838022. The work presented here was done in collaboration with J. Alter, L. Yang,
B. Nie, J. Xue, R. Pinciroli, D. Tiwari, A. Jog, A. Dimnaku, R. Birke, and L. Chen.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 3–7, 2020.
https://doi.org/10.1007/978-3-030-59854-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_1

4 E. Smirni

identifying the reason behind these failures becomes a pressing problem [6]. As
systems dramatically increase in scale and complexity, machine learning predic-
tors become critical for understanding the hidden interaction between systems
and workload that leads to failures and can result in their proactive system
management to dramatically improve on system robustness. In this talk, I will
concentrate on how workloads can affect the reliability of two hardware com-
ponents of data centers, general purpose GPUs (GPGPUs) and storage devices
(HDDs and SSDs) and illustrate how the judicious use of machine learning pre-
dictors can lead to better understanding of the workload/hardware interaction
and system robustness.

2 GPGPU Error Prediction

As GPGPUs are more widely adopted in scale-out computing architectures, GPU
soft errors become a critical challenge. Evaluation of application resilience to
soft errors has been the focus in many recent works [5,9,17]. Understanding
the source of GPU soft errors adds further to the challenge. Past work has
shown evidence that indicates a plausible relationship between power/cooling
infrastructure and GPU errors [6], but there exists no clear understanding on
the exact conditions that trigger faults. We focus on understanding the interplay
between workload/temperature/power consumption and GPU soft errors on the
Titan, one of America’s fastest supercomputers for open science [1].

Workload analysis on Titan traces shows that workload characteristics, cer-
tain GPU cards, temperature and power consumption could be indicative of GPU
errors, but it is non-trivial to exploit them for error prediction [7,8]. Acknowledg-
ing the necessity of an error predictor, we elaborate on the challenges, process,
and solutions involved in building effective machine-learning-based prediction
models. We show how to systematically select features by categorizing them into
spatial and temporal dimensions. We illustrate how to overcome the imbalanced
dataset challenge and trade-offs by taking advantage of the inherent features
of the dataset. We use the selected features to train various machine learning
models, including Logistic Regression (LR), Gradient Boosting Decision Tree
(GBDT), Support Vector Machine (SVM), and Neural Network (NN).

Finally, we evaluate the machine learning models via different metrics and
under diverse testing scenarios. Our results indicate that the proposed models
achieve good prediction quality and are robust. In particular, the GBDT-based
prediction significantly outperforms other models and results in conservative
predictions in identifying as many soft error cases as possible. Our evaluation
also uncovers interesting insights from comparison across different models, train-
ing/testing data, and feature combinations. We show that the proposed predic-
tion models impose moderate overhead and are practically feasible for GPU soft
error prediction.

Machine Learning for Reliability Analysis of Large Scale Systems 5

3 The Life and Death of HDDs and SSDs

Storage devices, such as hard disk drives (HDDs) and solid state drives (SSDs),
are among the components that affect the data center dependability the most [4],
contributing to the 28% of data center failure events [10]. Accurate prediction of
storage component failures enables on-time mitigation actions that avoid data
loss and increases data center dependability. Failure events observed in HDDs
and SSDs are different due to their distinct physical mechanics, it follows that
observations from HDD analysis cannot be generalized to SSDs and vice-versa.

We focus on failures of HDDs and SSDs by analyzing disk logs collected from
real-world data centers over a period of six years. We analyze Self-Monitoring,
Analysis and Reporting Technology (SMART) traces from five different HDD
models from the Backblaze data center [3] and the logs of three multi-level
cell (MLC) models of SSDs collected at a Google data center. Though we are
unaware of the data centers’ exact workflows for drive repairs, replacements,
and retirements (e.g., whether they are done manually or automatically, or the
replacement policies in place), we are able to discover key correlations and pat-
terns of failure, as well as generate useful forecasts of future failures. Being able
to predict an upcoming drive retirement could allow early action: for example,
early replacement before failure happens, migration of data and VMs to other
resources, or even allocation of VMs to disks that are not prone to failure.

Drive failures are triggered by a set of attributes and different drive features
must be monitored to accurately predict a failure event. Similar to the GPU
study, there is no single metric that triggers a drive failure after it reaches a
certain threshold. We show that machine learning models that are trained from
monitoring logs achieve failure prediction that is both remarkably accurate and
timely, both in the HDD and SSD domains. Random forests are especially effi-
cient in their prediction and can be used for further interpretation: they can
provide valuable insights on which errors and workload characteristics are most
indicative of future catastrophic failures. The predictors are able to anticipate
failure events with reasonable accuracy up to several days in advance. We further
show that there exist different ways to partition the HDD and SSD datasets to
increase model accuracy. This partitioning is based on workload analysis that
was first developed in [2] for SSDs and focuses on the discovery of certain drive
attributes. We saw that similar partitioning can be also successfully applied
for the case of HDDs. We find that in both HDD and SSD cases, datasets
may be partitioned to improve the performance of the classifier. Partitioning
SSDs on the Drive age attribute and HDDs on head flying hours (i.e., SMART
240) dramatically increases model accuracy. Finally, the interpretability of the
machine learning models derive insights that can be used to drive proactive disk
management policies.

References

1. Top500 Supercomputer Sites, November 2018. https://www.top500.org/lists/
2018/11/

https://www.top500.org/lists/2018/11/
https://www.top500.org/lists/2018/11/

6 E. Smirni

2. Alter, J., Xue, J., Dimnaku, A., Smirni, E.: SSD failures in the field: symptoms,
causes, and prediction models. In: Taufer, M., Balaji, P., Peña, A.J. (eds.) Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2019, Denver, Colorado, USA, 17–19 November 2019, pp.
75:1–75:14. ACM (2019). https://doi.org/10.1145/3295500.3356172

3. Backblaze: Hard drive data and stats. https://www.backblaze.com/b2/hard-drive-
test-data.html. Accessed 28 Apr 2020

4. Birke, R., Björkqvist, M., Chen, L.Y., Smirni, E., Engbersen, T.: (Big)data in a
virtualized world: volume, velocity, and variety in cloud datacenters. In: Schroeder,
B., Thereska, E. (eds.) Proceedings of the 12th USENIX conference on File
and Storage Technologies, FAST 2014, Santa Clara, CA, USA, 17–20 February
2014, pp. 177–189. USENIX (2014). https://www.usenix.org/conference/fast14/
technical-sessions/presentation/birke

5. Nie, B., Jog, A., Smirni, E.: Characterizing accuracy-aware resilience of GPGPU
applications. In: 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing, CCGRID 2020, Melbourne, Australia, 11–14 May 2020, pp.
111–120. IEEE (2020). https://doi.org/10.1109/CCGrid49817.2020.00-82

6. Nie, B., Tiwari, D., Gupta, S., Smirni, E., Rogers, J.H.: A large-scale study of
soft-errors on GPUs in the field. In: 2016 IEEE International Symposium on
High Performance Computer Architecture, HPCA 2016, Barcelona, Spain, 12–
16 March 2016, pp. 519–530. IEEE Computer Society (2016). https://doi.org/10.
1109/HPCA.2016.7446091

7. Nie, B., Xue, J., Gupta, S., Engelmann, C., Smirni, E., Tiwari, D.: Characterizing
temperature, power, and soft-error behaviors in data center systems: insights, chal-
lenges, and opportunities. In: 25th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, MAS-
COTS 2017, Banff, AB, Canada, 20–22 September 2017, pp. 22–31. IEEE Com-
puter Society (2017). https://doi.org/10.1109/MASCOTS.2017.12

8. Nie, B., et al.: Machine learning models for GPU error prediction in a large scale
HPC system. In: 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2018, Luxembourg City, Luxembourg, 25–28 June
2018, pp. 95–106. IEEE Computer Society (2018). https://doi.org/10.1109/DSN.
2018.00022

9. Nie, B., Yang, L., Jog, A., Smirni, E.: Fault site pruning for practical reliability
analysis of GPGPU applications. In: 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 2018, Fukuoka, Japan, 20–24 October 2018,
pp. 749–761. IEEE Computer Society (2018). https://doi.org/10.1109/MICRO.
2018.00066

10. Pinciroli, R., Yang, L., Alter, J., Smirni, E.: The life and death of SSDs and
HDDs: Similarities, differences, and prediction models, pp. 1–14 (2020). (under
submission)

11. Xue, J., Birke, R., Chen, L.Y., Smirni, E.: Managing data center tickets: predic-
tion and active sizing. In: 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2016, Toulouse, France, 28 June–1 July
2016, pp. 335–346. IEEE Computer Society (2016). https://doi.org/10.1109/DSN.
2016.38

12. Xue, J., Birke, R., Chen, L.Y., Smirni, E.: Tale of tails: anomaly avoidance in data
centers. In: 35th IEEE Symposium on Reliable Distributed Systems, SRDS 2016,
Budapest, Hungary, 26–29 September 2016, pp. 91–100. IEEE Computer Society
(2016). https://doi.org/10.1109/SRDS.2016.021

https://doi.org/10.1145/3295500.3356172
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.usenix.org/conference/fast14/technical-sessions/presentation/birke
https://www.usenix.org/conference/fast14/technical-sessions/presentation/birke
https://doi.org/10.1109/CCGrid49817.2020.00-82
https://doi.org/10.1109/HPCA.2016.7446091
https://doi.org/10.1109/HPCA.2016.7446091
https://doi.org/10.1109/MASCOTS.2017.12
https://doi.org/10.1109/DSN.2018.00022
https://doi.org/10.1109/DSN.2018.00022
https://doi.org/10.1109/MICRO.2018.00066
https://doi.org/10.1109/MICRO.2018.00066
https://doi.org/10.1109/DSN.2016.38
https://doi.org/10.1109/DSN.2016.38
https://doi.org/10.1109/SRDS.2016.021

Machine Learning for Reliability Analysis of Large Scale Systems 7

13. Xue, J., Birke, R., Chen, L.Y., Smirni, E.: Spatial-temporal prediction models for
active ticket managing in data centers. IEEE Trans. Netw. Serv. Manag. 15(1),
39–52 (2018). https://doi.org/10.1109/TNSM.2018.2794409

14. Xue, J., Nie, B., Smirni, E.: Fill-in the gaps: spatial-temporal models for miss-
ing data. In: 13th International Conference on Network and Service Management,
CNSM 2017, Tokyo, Japan, 26–30 November 2017, pp. 1–9. IEEE Computer Soci-
ety (2017). https://doi.org/10.23919/CNSM.2017.8255983

15. Xue, J., Yan, F., Birke, R., Chen, L.Y., Scherer, T., Smirni, E.: PRACTISE:
robust prediction of data center time series. In: Tortonesi, M., Schönwälder, J.,
Madeira, E.R.M., Schmitt, C., Serrat, J. (eds.) 11th International Conference on
Network and Service Management, CNSM 2015, Barcelona, Spain, 9–13 Novem-
ber 2015, pp. 126–134. IEEE Computer Society (2015). https://doi.org/10.1109/
CNSM.2015.7367348

16. Xue, J., Yan, F., Riska, A., Smirni, E.: Scheduling data analytics work with perfor-
mance guarantees: queuing and machine learning models in synergy. Clust. Com-
put. 19(2), 849–864 (2016). https://doi.org/10.1007/s10586-016-0563-z

17. Yang, L., Nie, B., Jog, A., Smirni, E.: Practical resilience analysis of GPGPU
applications in the presence of single- and multi-bit faults. IEEE Trans. Comput.
(2020). https://doi.org/10.1109/TC.2020.2980541

https://doi.org/10.1109/TNSM.2018.2794409
https://doi.org/10.23919/CNSM.2017.8255983
https://doi.org/10.1109/CNSM.2015.7367348
https://doi.org/10.1109/CNSM.2015.7367348
https://doi.org/10.1007/s10586-016-0563-z
https://doi.org/10.1109/TC.2020.2980541

Predictive Performance and Machine
Learning

Tracking the Race Between Deep
Reinforcement Learning
and Imitation Learning

Timo P. Gros(B), Daniel Höller, Jörg Hoffmann, and Verena Wolf

Saarland University, Saarland Informatics Campus, 66123 Saarbrücken, Germany
{timopgros,hoeller,hoffmann,wolf}@cs.uni-saarland.de

https://mosi.uni-saarland.de, http://fai.cs.uni-saarland.de

Abstract. Learning-based approaches for solving large sequential deci-
sion making problems have become popular in recent years. The resulting
agents perform differently and their characteristics depend on those of
the underlying learning approach. Here, we consider a benchmark plan-
ning problem from the reinforcement learning domain, the Racetrack,
to investigate the properties of agents derived from different deep (rein-
forcement) learning approaches. We compare the performance of deep
supervised learning, in particular imitation learning, to reinforcement
learning for the Racetrack model. We find that imitation learning yields
agents that follow more risky paths. In contrast, the decisions of deep
reinforcement learning are more foresighted, i.e., avoid states in which
fatal decisions are more likely. Our evaluations show that for this sequen-
tial decision making problem, deep reinforcement learning performs best
in many aspects even though for imitation learning optimal decisions are
considered.

Keywords: Deep reinforcement learning · Imitation learning

1 Introduction

In recent years, deep learning and especially deep reinforcement learning (DRL)
have been applied with great successes to the task of learning near-optimal poli-
cies for sequential decision making problems [1,8,9,13–15]. It relies on a feedback
loop between self-play and the improvement of the current strategy by reinforc-
ing decisions that lead to good performance.

Passive imitation learning (PIL) is another well-known approach of deep
learning, where a policy is based on data which was labeled by an expert [12]. An
extension of this approach is active imitation learning (AIL), where after an ini-
tial phase of passive learning, additional data is iteratively generated by explor-
ing the state space based on the current strategy and subsequent expert label-
ing [6,11]. AIL has successfully been applied to common reinforcement learning
benchmarks such as cart-pole or bicycle-balancing [6].

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 11–17, 2020.
https://doi.org/10.1007/978-3-030-59854-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_2

12 T. P. Gros et al.

Here we aim at an in-depth study of empirical learning agent behavior for
a range of different learning frameworks. We train different agents on a simple
benchmark problem named Racetrack [2–4,10,16], using DRL, PIL, and AIL
and study their characteristics. We first apply PIL and train agents represented
by linear functions and artificial neural networks. For AIL, we use the DAGGER
approach [11] to train agents represented by neural networks. Based on the same
network architecture, we apply deep reinforcement learning. More specifically,
we use deep Q-networks [9]. We compare the resulting agents considering three
different aspects: the success rate, the quality of the resulting action sequences,
and the relative number of optimal and fatal decisions.

Amongst other things, we find that, even though it is based on optimal train-
ing data, imitation learning leads to unsafe policies, much more risky than those
found by RL. Upon closer inspection, it turns out that this apparent contradic-
tion actually has an intuitive explanation in terms of the nature of the application
and the different learning methods: to minimize time to goal, optimal decisions
navigate very closely to dangerous states. This works well when taking optimal
decisions throughout – but is brittle to (and thus fatal in the presence of) even
small divergences as are to be expected from a learned policy. We believe that
these finding might carry over to many other applications beyond Racetrack.

This short paper repeatedly lacks some details. For further information we
refer to the extended version [5].

2 Racetrack

Racetrack has been used as a benchmark in the context of planning [3,10] and
reinforcement learning [2,16]. It can be played on different maps. Initially, a car
is placed randomly at one of the discrete positions on the start line with zero
velocity. In every step it can speed up, hold the velocity or slow down in x and/or
y dimension. Then, the car moves in a straight line with the new velocity from
the old position to a new one, where we discretize the maps into cells. The game
is lost when the car crashes, i.e. the straight line between the old position and
the new one intersects with or ends in a wall (which surround the track). The
game is won when the car either stops at or drives through the goal line. Given
a Racetrack map, the game can be modeled as a Markov decision process.

States. The current state is uniquely defined by the position p = (x, y) and the
velocity v = (vx, vy).

Actions. Actions represent the acceleration a. As the car can be accelerated
with values {−1, 0, 1} in the x and in the y dimension, there are exactly 32 = 9
different actions available in every state.

Transitions. We assume a wet road, so with a chance of 0.1, the acceleration
cannot be applied, i.e. a = (0, 0). Otherwise, with probability 0.9, the accelera-
tion is as selected by the action. The new velocity v′ = (vx ′, vy ′) is given by the
sum of the acceleration a = (ax , ay) and the current velocity. The new position
p′ = (x′, y′) is given by adding v′ to the current position.

https://arxiv.org/abs/2008.00766

Tracking the Race Between Deep RL and Imitation Learning 13

Rewards/Costs. As we consider both planning and learning approaches, we
define the following two functions: For planning we consider a uniform cost
function, such that an optimal planner will find the shortest path to reach the
goal line. For RL we consider a reward function that is positive if the step
reaches the goal, negative if the step is invalid and 0 otherwise. As RL makes
use of discounting, both functions motivate to reach the goal as fast as possible.

Simulation. For a given map, we consider several variants of the simulation. We
distinguish between normal start (NS), i.e. starting on the start line and random
start (RS), i.e. starting on a random (valid) position on the map. Further we
consider starting with velocity zero (ZV) and with a random velocity (RV) up to
a given upper bound. Lastly we consider both, a noisy (N) and a deterministic
(D) version of the game. In the latter, the wet road assumption is dropped.

3 Learning

We train the agents by using imitation learning and reinforcement learning.
Although a state is uniquely given by the car’s position and velocity, we

provide several other features that can be used as state encoding to improve the
learning procedure, such as wall sensors and goal distances.

3.1 Imitation Learning

Imitation learning is based on labeled training data. To create datasets that
can be used for imitation learning, we consider several different variants. In
the base case, we uniformly sample possible states, i.e. positions and velocities,
and then label them with an optimal action, i.e. an optimal acceleration, by
using an expert. This expert is a Racetrack-tailored version of the A∗ algorithm.
We further consider sampling through the state space with several other options,
namely (1) learning from complete trajectories from the uniformly sampled state
until the goal, (2) considering all optimal actions instead of a random one, and
(3) considering only states with a unique solution. Combined with the (RS)/(NS)
and (RV)/(ZV) options of the simulation, this results in several different com-
binations, of which we consider the six most promising ones to create data sets.
All datasets contain approximately 105 entries.

Passive Imitation Learning. We consider linear functions and neural net-
works to represent PIL policies. To train linear functions we use the package
sklearn to apply both Linear Discriminant Analysis (LDA) and Logistic Regres-
sion (LR). To train neural networks we use the package PyTorch [7]. We make
use of the MSE as loss function.

Active Imitation Learning. To represent the class of active imitation learning
algorithms, we consider DAGGER [11]. In contrast to PIL, we here consider neu-
ral networks only. To have a fair comparison, DAGGER has the same number of
samples as PIL, i.e. 105. While the pre-training is important for sampling within
the first iteration of the algorithm, the main idea is to generate further entries,

14 T. P. Gros et al.

which are more important for the training of the agent. Thus, we pre-trained
the agent on each of our data sets and then additionally allowed DAGGER to
add 105 samples.

3.2 Deep Reinforcement Learning

Reinforcement learning is based on self-play without prior knowledge. We focus
on the value-based approach of deep Q-learning (DQN) [9]. We apply the deep
Q-learning algorithm and make use of experience replay and fixed targets [9].

To enable a fair comparison, we restrict the agents to (1) 105 entries in the
replay buffer (the maximal number of entries an agent can learn from at the
same time) and (2) 105 episodes that the agent can play in total. The neural
network is not pre-trained but initialized randomly. Besides the given options
of either starting on the start line (NS) or anywhere on the map (RS), DRL
can benefit from learning while the noisy (N) version of Racetrack is simulated
instead of the deterministic (D) one. This gives us four different training modes.

4 Results

To have an extensive comparison, we consider six possible combinations given
by the simulation parameters as described in Sect. 2.

For each learning method we present the best-performing parameter combi-
nation of all those that we trained. We investigate three aspects of the behav-
ior of the resulting agents: the success rate, the quality of the resulting action
sequences, and the relative number of optimal and fatal decisions.

4.1 Success Rate

We first compare how often the agents win a game, i.e. reach the goal, or lose,
i.e. crash into a wall. We compare the agents on 104 simulation runs. For each
run, all agents start in the same initial state. The results for two of the settings
can be found in Fig. 1.

Fig. 1. Success rate results for all classes of examined agents.

Tracking the Race Between Deep RL and Imitation Learning 15

The linear PIL agents perform worst. Especially with random starting points
and velocities, they regularly fail to reach the goal. DAGGER outperforms the
passive imitation learning agents, as it has been designed to cope with sequential
decision making. Throughout all settings, the DRL agents perform best. They
clearly outperform DAGGER, for instance reaching the goal more than 1.5 times
more often in the NS-ZV-N setting.

4.2 Quality of Action Sequences

We illustrate results for the quality of the chosen action sequences in Fig. 2.
The left plot gives the cumulative reward reached by the agents averaged

over all runs (also over those that are not successful). DRL clearly achieves
the highest cumulative reward. We remark that the optimal policies computed
via A∗ give higher cumulative rewards as the goal is reached faster. However,
imitation learning achieves lower results on average as it fails more often.

The right of Fig. 2 gives results for the number of steps. When a car crashes,
we are not interested in the number of steps taken. Therefore – in this specific
analysis – we only report on successful runs. They show that – while reinforce-
ment learning has the most wins and is the best agent considering the reward
objective – it is consuming the highest number of steps when reaching the goal.
It even takes more steps than linear PIL classifiers.

4.3 Quality of Single Action Choices

Next we examine whether the agents choose the optimal acceleration, i.e. an
acceleration that does not crash and leads to the goal with as few steps as pos-
sible, for different positions and velocities. We distinguish between (1) optimal
actions, (2) fatal actions that unavoidably lead to a crash, and (3) secure actions
that are neither of the former.

The results are given in Fig. 3. Especially when we start from a random
position on the map, we see that (independent of the setting) passive imitation
learning with neural networks selects optimal actions more often than active
imitation learning or deep reinforcement learning. Interestingly, DAGGER and
RL select both secure and fatal choices more often than PIL.

4.4 Discussion

We found that passive imitation learning agents perform poorly (see Fig. 1) even
though they select optimal actions most often. One reason for this is that the
data sets from which they learn contain samples that have not been generated by
iteratively improving the current policy. Hence, it is not biased towards sequences
of dependent decisions leading to good performance. We have observed that
DAGGER and in particular DRL sometimes do not select optimal actions, but
those with lower risk of hitting a wall. As a result, they need more steps than
other approaches before reaching the goal, but the trajectories they use are more

16 T. P. Gros et al.

Fig. 2. Average reward (left) and average number of steps (right) for all agent classes.

Fig. 3. Quality of selected actions.

secure and they crash less often. This is an interesting insight, as all approaches
(including PIL) try to optimize the same objective: reaching the goal as soon as
possible without hitting a wall.

The fact that both, DAGGER and RL have a relatively high number of fatal
actions, but not an increased number of losses, leads us to the assumption that
these agents avoid states where they might make fatal decisions, even though
these states could help reaching the goal faster.

In summary, DRL performs surprisingly well. In some aspects, it performs
even better than active imitation learning, which is not only considered state of
the art for sequential decision making [6], but – in contrast to DRL – even has
the chance to benefit from expert knowledge.

5 Conclusion

We have presented an extensive comparison between different learning
approaches to solve the Racetrack benchmark. Even though we provided opti-
mal decisions during imitation learning, the agents based on deep reinforcement
learning outperform those of imitation learning in many aspects.

We believe that our observations carry over to other applications, in particu-
lar to more complex autonomous vehicle control algorithms. We plan to consider
extensions of the Racetrack problem, which include further real-world charac-
teristics of autonomous driving. We believe that, to address the difficulties we
observed with imitation learning, further investigations into the combination of
expert data sets and reinforcement learning agents are necessary.

Tracking the Race Between Deep RL and Imitation Learning 17

Acknowledgements. This work has been partially funded by DFG grant 389792660
as part of TRR 248 (see https://perspicuous-computing.science).

References

1. Agostinelli, F., McAleer, S., Shmakov, A., Baldi, P.: Solving the Rubik’s Cube with
deep reinforcement learning and search. Nat. Mach. Intell. 1(8), 356–363 (2019)

2. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artif. Intell. 72(1–2), 81–138 (1995)

3. Bonet, B., Geffner, H.: GPT: a tool for planning with uncertainty and partial
information. In: Proceedings of the IJCAI Workshop on Planning with Uncertainty
and Incomplete Information, pp. 82–87 (2001)

4. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statis-
tical model checking. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS,
vol. 12136, pp. 96–114. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
50086-3 6

5. Gros, T.P., Höller, D., Hoffmann, J., Wolf, V.: Tracking the race between deep
reinforcement learning and imitation learning – extended version. arXiv preprint
arXiv:2008.00766 (2020)

6. Judah, K., Fern, A.P., Dietterich, T.G., Tadepalli, P.: Active imitation learning:
formal and practical reductions to I.I.D. learning. J. Mach. Learn. Res. 15(120),
4105–4143 (2014)

7. Ketkar, N.: Introduction to PyTorch. In: Ketkar, N. (ed.) Deep Learning with
Python, pp. 195–208. Apress, Berkeley (2017). https://doi.org/10.1007/978-1-
4842-2766-4 12

8. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

9. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

10. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
revisiting determinization. In: Proceedings of the 24th International Conference on
Automated Planning and Scheduling (ICAPS), pp. 217–225. AAAI Press (2014)

11. Ross, S., Gordon, G.J., Bagnell, D.: A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In: Proceedings of the 14th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS). JMLR
Proceedings, vol. 15, pp. 627–635. JMLR.org (2011)

12. Schaal, S.: Is imitation learning the route to humanoid robots? Trends Cogn. Sci.
3(6), 233–242 (1999)

13. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–503 (2016)

14. Silver, D., et al.: A general reinforcement learning algorithm that masters Chess,
Shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

15. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550, 354–359 (2017)

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning, 2nd edn. The MIT Press, Cambridge (2018)

https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-50086-3_6
http://arxiv.org/abs/2008.00766
https://doi.org/10.1007/978-1-4842-2766-4_12
https://doi.org/10.1007/978-1-4842-2766-4_12
http://arxiv.org/abs/1312.5602

SafePILCO: A Software Tool for Safe
and Data-Efficient Policy Synthesis

Kyriakos Polymenakos(B), Nikitas Rontsis, Alessandro Abate,
and Stephen Roberts

University of Oxford, Oxford, UK
kpol@robots.ox.ac.uk

Abstract. SafePILCO is a software tool for safe and data-efficient pol-
icy search with reinforcement learning. It extends the known PILCO
algorithm, originally written in MATLAB, to support safe learning.
SafePILCO is a Python implementation and leverages existing libraries
that allow the codebase to remain short and modular, towards wider use
by the verification, reinforcement learning, and control communities.

1 Introduction

Goals and Design Philosophy. Reinforcement learning (RL) is a well-known,
widely-used framework that has recently enjoyed breakthroughs using model-
free methods based on deep neural networks [12,14,19]. Notable shortcomings
of model-free deep RL algorithms are their need for extensive training datasets,
the lack of interpretability, and the difficulty to verify their outcomes. It is data-
efficient, which makes it appealing for applications involving physical systems.
PILCO [11] (Probabilistic Inference for Learning COntrol) represents a state-of-
the-art model-based RL method that relies on Gaussian processes (thus, not on
deep neural networks). PILCO does not incorporate safety constraints and comes
as a MATLAB implementation. SafePILCO, based on [21], extends the original
algorithm with safety constraints embedded in the training procedure and as
learning goals, and comes as a concise and clean Python implementation1.

SafePILCO is underpinned by an object-oriented architecture, enabling code
re-use by keeping the implementation short and modular, with the capability
to flexibly replace individual components. It takes advantage of available open
source libraries, both as building blocks of the core algorithm, and as predefined
tasks for evaluating the performance of the algorithm. It uses standard libraries
to implement specific sub-tasks and to facilitate extensions, e.g. the GPflow
library gives access to an array of models with a consistent interface. Addition-
ally, by using standard scenarios for experimental evaluation, SafePILCO enables
users to employ it as a benchmark to easily compare their own methods against.
1 An extended version of this paper is at: http://arxiv.org/abs/2008.03273.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-59854-9 3) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 18–26, 2020.
https://doi.org/10.1007/978-3-030-59854-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_3&domain=pdf
http://arxiv.org/abs/2008.03273
https://doi.org/10.1007/978-3-030-59854-9_3
https://doi.org/10.1007/978-3-030-59854-9_3
https://doi.org/10.1007/978-3-030-59854-9_3

SafePILCO: A Software Tool for Safe and Data-Efficient Policy Synthesis 19

Related Work. The original PILCO algorithm [7,11] is a policy search frame-
work [9], employing Gaussian processes (GPs) [22] to learn the model dynamics
and to maximise data efficiency. In [10], constraints are incorporated as negative
rewards, discouraging the system from visiting parts of the state space. How-
ever, these rewards have to be hand-tuned to balance performance and safety.
SafePILCO implements a procedure in [21], introduced to synthesise policies sat-
isfying spatial constraints, while retaining safety during training.

Bayesian optimisation has also been used to train policy parameters [2,13,23]
towards data efficiency and safety, mapping parameters to the loss/reward
directly instead of modelling the system dynamics. Other model-based RL
approaches have been proposed recently, describing the system dynamics through
probabilistic models based on ensembles of deep neural networks [6,26], or GPs
[5,24]. These methods have not been used in combination with safety require-
ments encoded as spatial constraints. Other GP-based methods either focus on
stability [25] or take an approach [15] that provides more conservative guaran-
tees, but which restricts scalability by increasing computational demands.

2 Description of the Software Tool

SafePILCO comes as an open source Python package2. To make reproduction of
the experiments easier we provide additional functionalities (such as logging, post
processing results and creating the plots in the paper) in a separate repository3.
In a standard object-oriented fashion, the main components of the algorithm are
organised as objects, following a hierarchy of classes. The main components are:

– the Gaussian process model, providing short-term and long-term predictions;
– the controller, selecting an action based on the state at each time step;
– the parametric reward function, which captures the performance of the algo-

rithm and is also tasked with enforcing safe behaviour;
– scenarios that capture environment dynamics specific to a case study.

Firstly, the environment that the agent interacts with needs to be specified.
SafePILCO is designed to seamlessly interface with any environment following
the OpenAI gym API. Therefore, gym environments can be directly invoked, as
well as user-defined environments equipped with the necessary functionalities.

The PILCO class is the central object of the package, encapsulating the GP
model, the controller, and the reward function as attributes. PILCO employs the
model and the controller to predict a trajectory, calls the reward function to eval-
uate it, and uses the gradients calculated through automatic differentiation, to
improve the controller parameters. The SafePILCO subclass combines the com-
mon additive reward function component used for performance, with a multiplica-
tive component that encodes the risk of violating the safety requirement over any
time step of the episode (this is used to enforce safety during training) (Fig. 1).
2 Main package repository: https://github.com/nrontsis/PILCO.
3 Experiments and figures reproduction repository: https://github.com/kyr-pol/

SafePILCO Tool-Reproducibility.

https://github.com/nrontsis/PILCO
https://github.com/kyr-pol/SafePILCO_Tool-Reproducibility
https://github.com/kyr-pol/SafePILCO_Tool-Reproducibility

20 K. Polymenakos et al.

Fig. 1. The basic structure of the SafePILCO implementation. Black arrows correspond
to object-attribute relationship, dashed lines to inheritance, and wide arrows to data
flow. Classes are represented by blue boxes and key functions by green boxes. (Color
figure online)

The mgpr class implements the multi-input, multi-output Gaussian process
regression that underpins the dynamical model. Specifically, mgpr combines sev-
eral, multi-input/single-output GP models. These GP models are provided by
GPflow, along with standard GP functionalities. Our code provides GP predic-
tions for multiple output dimensions, when the inputs are multi-dimensional and
noisy. The mgpr class also allows for priors on the GP hyperparameters.

The policy (or controller) defines how the agent selects appropriate actions at
each time step. Policies are implemented as memory-less, deterministic feedback
controllers: the control input is directly dependent on the environment state that
the agent observes at the current time step. The agent implements a policy π of
the form u = πθ(x), where θ are the policy parameters. The package provides
the controller class with two subclasses, one for linear controllers, and one for
controllers based on radial basis functions (RBF). The only extra requirement
from the controller is the ability to calculate, for a Gaussian-distributed state
(including the predicted states during the planning phase), a similarly Gaussian-
distributed control input, so that the state and input are jointly Gaussian. The
policies are parametric and optimising the values of these parameters θ consti-
tutes the overall policy search objective.

The final part concerns the specification of the reward function. We note that
this is different from some RL literature: in SafePILCO, much like for the original
PILCO [11] algorithm, the reward function is known analytically a-priori : this is
necessary for the GP model to estimate the reward of a proposed policy, without

SafePILCO: A Software Tool for Safe and Data-Efficient Policy Synthesis 21

(a) Mountain
Car

(b) Inverted
Pendulum

(c) Pendulum
Swing-Up

(d) Double
Pendulum

(e) Swimmer

Fig. 2. Snapshots of the Open-AI gym environments used in the case studies.

interacting with the environment. The reward class implements the standard
reward, while also encoding an adaptively weighted penalty that encourages
constraint satisfaction. The class provides, at any given state, scalar outputs
that capture the expected reward and the constraint violation probability. A
composite reward function is used to train the policy that combines these two
components. We further note that it is the choice of reward function, along with
the environment, that defines a task: indeed, we can design multiple tasks with
a shared environment by varying the reward function. This setup is therefore
suitable for multi-task learning [8], as the same model is valid for multiple tasks.

Libraries. The tool relies on other Python packages, allowing us to leverage
their optimised functionalities and to keep the codebase succinct. Furthermore,
this allows users to easily apply our algorithm to new tasks. We use Tensorflow [1]
to obtain automatic gradient computations (often referred to as auto-diff), which
simplifies the policy improvement step4. GPflow [18] is a Python package for
Gaussian Process modelling built on Tensorflow. GPflow provides a full set of GP
functionalities, and gives access to many specialised models. Having a Tensorflow
back-end, gradients in all the GPflow models are also calculated automatically.
Additionally, GPflow allows the user to readily define priors and to employ
different optimisers or alternative implementations of sparse approximations for
GPs. Finally, our implementation is interfaced with the Open-AI Gym [3], a suite
of RL tasks widely used in the community. Gym tasks have consistent interfaces
and detailed visualisation capabilities for a wide range of tasks varying over
different sorts of complexity: dimensionality, smoothness of dynamics, length of
episodes, and so on. Users can prototype their algorithms using easier tasks and
move to more complex, time-consuming experiments, as the project matures.

3 Case Studies

To evaluate the performance of the package we run a set of experiments on
different tasks. Visualisations of the environments used for the case studies are

4 By way of comparison, all gradient calculations in the PILCO Matlab implementa-
tion are hand-coded, thus extensions are laborious as any additional user-defined
controller or reward function has to include these gradient calculations too.

22 K. Polymenakos et al.

shown in Fig. 2. Details of the OpenAI gym [3] tasks used are on the gym website
(https://gym.openai.com/). Experiments are presented in order of increasing
complexity. As mentioned in Sect. 2, SafePILCO assumes a predetermined, closed-
form reward function. Most of the tasks we apply our method on come with
reward functions that are not in analytical form, as assumed. Thus we make the
following distinction: the algorithm is evaluated on the original reward function
coming with the environments, but is trained with a closed-from reward function
of our design. Designing or “shaping” a reward function that results in a desired
behaviour (in our case, a behaviour that maximises accumulated return measured
with a different reward function), is broadly studied and shown to be in general
challenging [17,20], however in our experience and for the environments used, it
did not require extensive hyperparameter searches.

3.1 Plain PILCO

We give specific information for each environment and the associated reward
functions. The Mountain Car experiment uses the MountainCarContinuous-v0
gym environment. Small negative rewards are given at those states where the
car is not at the top of the hill (goal state), whereas a large reward is given
exclusively as the agent gets to the top. The goal state is the terminal state
for the environment and no further reward is obtained. This is captured with a
negative exponential reward, centered at the goal state.

For the Inverted Pendulum, the OpenAI gym [3] InvertedPendulum-v2 envi-
ronment is used. It is a variant of the cart-pole stabilisation task, where a pendu-
lum is attached to a cart on a rail, and the controller applies a force to the cart.
The pendulum starts close to the upright position and the controller stabilises
it by moving the cart to the left or right on the rail. For this task, and for the
double pendulum task below, the reward function provides a +1 reward when
the pendulum angle is less than some given threshold, whereas for training an
exponential reward centered at the upright position is used. Once out of this
area the episode terminates, as the controller cannot exert a stabilising input.

For the Pendulum Swing-Up task, we modify part of the default behaviour
of the gym Pendulum-v0 environment: the initial starting state distribution of
the pendulum is too wide for unimodal planning. We restrict the initial distribu-
tion to the pendulum starting close to the downward position. The environment
penalises the agent with negative rewards correlated to the distance from the
goal position, where the pendulum is upright. An exponential reward is again
used.

The inverted Double Pendulum task uses InvertedDoublePendulum-v2. It
is similar to InvertedPendulum-v2, except the pendulum now consists of two
links. We apply force to the cart and have to stabilise the system to the upright
position. We add a wrapper to the default environment that only slightly changes
its interface, replacing a state variable that is an angle with its sine and cosine
values. This corresponds to an existing functionality from PILCO [7,11].

In the Swimmer setup, from the Swimmer-v2 OpenAI gym, a robot with
two joints navigates a 2-d plane by “swimming” in a viscous fluid. Its joints are

https://gym.openai.com/

SafePILCO: A Software Tool for Safe and Data-Efficient Policy Synthesis 23

(a) Mountain Car (b) Inverted Pendulum (c) Pendulum Swing-Up

(d) Double Pendulum (e) Swimmer average (f) Swimmer best

Fig. 3. Results for different OpenAI gym tasks. Episode rewards on the y-axis and
iteration number on the x-axis (blue, mean and two standard deviations around it).
The performance of a random policy (red dashed line) is shown for comparison. For
the Swimmer setup we report both the average performance of 10 random seeds at
each iteration, and the best performance from all previous iterations of each random
seed. (Color figure online)

controlled by an actuator, and the system is rewarded for moving in the direction
of the x-axis. This is a more challenging task, with an 8D state space, 2D control
space, and nonlinear dynamics. Furthermore, it requires coordination between
the two controllers for the robot to start moving towards the right direction:
this makes the acquisition of a reward signal at the early stages of training hard
[16]. The rewards are given for distance travelled in the positive direction of the
x-axis, based on the position of the root link. This position variable however is
not one of the observed state variables and the task does not have a specific goal
position. Thus we define a reward linear to the x-axis velocity of the agent, and
we lightly penalise extreme angles at the joints, which leads to a smoother gait
and improved generalisation outside of the planning horizon.

3.2 SafePILCO

In this section we add constraints over the state space of the environments. The
experimental structure is similar to that in Sect. 3.1, however we report metrics
differently (cf. Table 1): we list the number of constraint violations incurred
during training (Const. viol.) and the best performance achieved in episodes
where the system has respected the constraints. We also report the average
number of episodes when the safety check has prohibited interaction with the
system (Stopped epis.) and the maximum number of episodes the algorithm is

24 K. Polymenakos et al.

allowed to interact with the system (Max epis.). The risk threshold for each
case study (the estimated probability of violating the constraints over which
interaction with the system is blocked) is reported as ε.

Table 1. SafePILCO results on constrained
environments.

LinearCars BAS SafeSwimmer

Const. Viol. 0.0± 0.0 0.0± 0.0 0.4± 0.49

Best return −10.7± 2.7 1.2± 0.9 11.6± 8.2

Max Epis. 8 4 12

Stopped Epis. 1.4± 1.5 0± 0 1.1± 1.3

ε 0.05 0.05 0.2

The Linear Cars scenario is sim-
ilar to the one in [21], where two
cars are approaching a junction, and
the algorithm controls one of them
by either braking or accelerating.
The goal is for the controlled car to
cross the junction as soon as possi-
ble, without causing a collision. The
state space is 4-dimensional, with
linear dynamics. The input u has one dimension, proportional to the force applied
to the first car. To avoid a collision, the cars must not be simultaneously adjacent
to the junction (set at the origin (0,0)). This can be formulated as a constraint
|x1| > a OR |x3| > a over the position of the two cars. We want to encourage the
first car to cross the junction as soon as possible: a simple reward could be −1 for
every time-step where first car has not crossed the junction, and +1 otherwise.
However, this is discontinuous and cannot be used by SafePILCO directly, so we
use instead a linear reward, proportional to the position of the first car.

In the Building Automation Systems (BAS) we consider a problem in the
domain of automation systems for buildings. The environment comes from [4]
(Case Study 2), which has developed a simulator5 based on real measurement
data. The task is to control the temperature in two adjacent rooms from a
common heated air supply. The original cost function is the quadratic error
between the temperatures in each of the two rooms and corresponding reference
temperatures. For SafePILCO we use the standard exponential reward function.

The Safe Swimmer case study is based on the Swimmer-v2 environment, but
we add the following constraints: we require that the angles at the two joints
remain below a certain threshold (95◦). Constraints of this sort are common in
robotics, since pushing the joints to the edge of their functional ranges can lead
to accumulated damage to the joints, the motors, or the robot links.

3.3 Results

The results in Fig. 3 (for Plain PILCO)and Table 1 (for SafePILCO) are averaged
over 10 random seeds. To evaluate the controller at each iteration more accu-
rately, for each random seed, we report the mean of 5 runs. The results show
that SafePILCO is flexible enough to tackle a wide selection of RL problems,
with good performance and data efficiency, and high rate of constraint compli-
ance when constraints are imposed. For reference, in [27] model-based methods
are evaluated on gym tasks, with a low-data (200k points) and a high-data
(2 × 106 points) regime, while for the Swimmer SafePILCO uses only 625 points
from ∼3000 interactions steps.

5 Code for the BAS simulator: https://gitlab.com/natchi92/BASBenchmarks.

https://gitlab.com/natchi92/BASBenchmarks

SafePILCO: A Software Tool for Safe and Data-Efficient Policy Synthesis 25

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/. software available from tensorflow.org

2. Berkenkamp, F., Krause, A., Schoellig, A.P.: Bayesian optimization with
safety constraints: safe and automatic parameter tuning in robotics. CoRR
abs/1602.04450 (2016). http://arxiv.org/abs/1602.04450

3. Brockman, G., et al.: OpenAI Gym. arXiv preprint arXiv:1606.01540 (2016)
4. Cauchi, N., Abate, A.: Benchmarks for cyber-physical systems: a modular model

library for building automation systems. In: Proceedings of ADHS, pp. 49–54
(2018)

5. Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V., Mouret,
J.B.: Black-box data-efficient policy search for robotics. In: 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 51–58. IEEE
(2017)

6. Chua, K., Calandra, R., McAllister, R., Levine, S.: Deep reinforcement learning
in a handful of trials using probabilistic dynamics models. In: Advances in Neural
Information Processing Systems, pp. 4754–4765 (2018)

7. Deisenroth, M.P.: Efficient reinforcement learning using Gaussian processes. Ph.D.
thesis, Karlsruhe Institute of Technology (2010)

8. Deisenroth, M.P., Englert, P., Peters, J., Fox, D.: Multi-task policy search for
robotics. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3876–3881. IEEE (2014)

9. Deisenroth, M.P., Neumann, G., Peters, J., et al.: A survey on policy search for
robotics. Found. Trends R© Robot. 2(1–2), 1–142 (2013)

10. Deisenroth, M.P., Rasmussen, C.E., Fox, D.: Learning to control a low-cost manipu-
lator using data-efficient reinforcement learning. In: Robotics: Science and Systems
(2011)

11. Deisenroth, M.P., Rasmussen, C.E.: PILCO: a model-based and data-efficient app-
roach to policy search. In: In Proceedings of the International Conference on
Machine Learning (2011)

12. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep
reinforcement learning for continuous control. In: International Conference on
Machine Learning (ICML), pp. 1329–1338 (2016)

13. Duivenvoorden, R.R., Berkenkamp, F., Carion, N., Krause, A., Schoellig, A.P.:
Constrained Bayesian optimization with particle swarms for safe adaptive con-
troller tuning. In: Proceedings of the IFAC (International Federation of Automatic
Control) World Congress, pp. 12306–12313 (2017)

14. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290 (2018)

15. Koller, T., Berkenkamp, F., Turchetta, M., Krause, A.: Learning-based model pre-
dictive control for safe exploration. In: 2018 IEEE Conference on Decision and
Control (CDC), pp. 6059–6066. IEEE (2018)

16. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

17. Mataric, M.J.: Reward functions for accelerated learning. In: Machine Learning
Proceedings 1994, pp. 181–189. Elsevier (1994)

18. Matthews, A.G.d.G., et al.: GPflow: a Gaussian process library using TensorFlow.
J. Mach. Learn. Res. 18(40), 1–6 (2017). http://jmlr.org/papers/v18/16-537.html

https://www.tensorflow.org/
http://arxiv.org/abs/1602.04450
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1801.01290
http://jmlr.org/papers/v18/16-537.html

26 K. Polymenakos et al.

19. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

20. Ng, A.Y., Jordan, M.I.: Shaping and policy search in reinforcement learning. Ph.D.
thesis, University of California, Berkeley Berkeley (2003)

21. Polymenakos, K., Abate, A., Roberts, S.: Safe policy search using Gaussian pro-
cess models. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1565–1573. International Foundation for
Autonomous Agents and Multiagent Systems (2019)

22. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

23. Sui, Y., Gotovos, A., Burdick, J., Krause, A.: Safe exploration for optimization
with Gaussian processes. In: Proceedings of The 32nd International Conference on
Machine Learning, pp. 997–1005 (2015)

24. Vinogradska, J., Bischoff, B., Achterhold, J., Koller, T., Peters, J.: Numerical
quadrature for probabilistic policy search. IEEE Trans. Pattern Anal. Mach. Intell.
42, 164–175 (2018)

25. Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Romer, A., Schmidt, H., Peters,
J.: Stability of controllers for gaussian process forward models. In: Proceedings of
The 33rd International Conference on Machine Learning, pp. 545–554 (2016)

26. Vuong, T.L., Tran, K.: Uncertainty-aware model-based policy optimization. arXiv
preprint arXiv:1906.10717 (2019)

27. Wang, T., et al.: Benchmarking model-based reinforcement learning (2019)

http://arxiv.org/abs/1906.10717

StochNetV2: A Tool for Automated Deep
Abstractions for Stochastic Reaction

Networks

Denis Repin, Nhat-Huy Phung, and Tatjana Petrov(B)

Department of Computer and Information Sciences, University of Konstanz,
Konstanz, Germany

den.ne.repin@gmail.com, tatjana.petrov@uni-konstanz.de

Abstract. We present a toolbox for stochastic simulations with CRN
models and their (automated) deep abstractions: a mixture density deep
neural network trained on time-series data produced by the CRN. The
optimal neural network architecture is learnt along with learning the
transition kernel of the abstract process. Automated search of the archi-
tecture makes the method applicable directly to any given CRN, which is
time-saving for deep learning experts and crucial for non-specialists. The
tool was primarily designed to efficiently reproduce simulation traces of
given complex stochastic reaction networks arising in systems biology
research, possibly with multi-modal emergent phenotypes. It is at the
same time applicable to any other application domain, where time-series
measurements of a Markovian stochastic process are available by experi-
ment or synthesised with simulation (e.g. are obtained from a rule-based
description of the CRN).

1 Introduction

Predicting stochastic cellular dynamics as emerging from the mechanistic models
of molecular interactions is a long-standing challenge in systems biology: low-
level chemical reaction network (CRN) models give rise to a highly-dimensional
continuous-time Markov chain (CTMC) which is computationally demanding
and often prohibitive to analyse in practice. Deep abstractions of CRN mod-
els, proposed in [2], use deep learning to replace this CTMC with a discrete-
time continuous state-space process, by training a mixture density deep neural
network with traces sampled at regular time intervals (which can be obtained
either by simulating a given CRN or as time-series data from experiment).
Deep abstractions are dramatically cheaper to execute, while preserving the

TP’s research is supported by the Ministry of Science, Research and the Arts of the
state of Baden-Württemberg, and the DFG Centre of Excellence 2117 ‘Centre for the
Advanced Study of Collective Behaviour’ (ID: 422037984), DR’s research is supported
by Young Scholar Fund (YSF), project no. P83943018FP430 /18 and by the ‘Centre
for the Advanced Study of Collective Behaviour’. The authors would like to thank to
Luca Bortolussi for inspiring discussions on the topic.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 27–32, 2020.
https://doi.org/10.1007/978-3-030-59854-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_4&domain=pdf
http://orcid.org/0000-0002-9041-0905
https://doi.org/10.1007/978-3-030-59854-9_4

28 D. Repin et al.

statistical features of the training data. The abstraction accuracy improves with
the amount of training data. However, the overall quality of the method will also
depend on the choice of neural network architecture. In practice, the modeller
has to find the suitable architecture manually, through a trial-and-error cycle.
In [8], we proposed to learn the optimal neural network architecture along with
learning the transition kernel of the abstract process [3,7]. A similar idea has
been recently employed for emulating epidemiological spread [4]; However, this
work has focused on a single, uni-modal model of epidemics and only stationary
regime, while our method is generic - applicable to any given CRN.

In this paper, we present StochNetV2Toolbox1- a tool for MDN-based deep
abstractions of CRNs. Deep abstractions provide time-series trajectories which
abstract the trajectories of the original CRN. Abstract models are implemented
with neural networks, which predict a distribution for sampling the next system
state. Moreover, StochNetV2Toolbox allows to, in addition to the initial state,
parametrise the neural network with the kinetic rates (as a part of the input).
The method is described in [8]. For illustration purposes, the tool includes a
functionality for simulating multiple CRN instances on a spatial grid, where
CRNs communicate via a subset of shared species which are diffused across
neighbouring grid nodes.

2 Tool Architecture and Functionality

StochNetV2is implemented with four entities: CRN model, Dataset, StochNet,
and Trainer (see Fig. 1 for an overview). Two latter classes each have two
different implementations: (i) a static implementation, used for standard deep
abstractions as suggested in [2], and (ii) a dynamic implementation, used for
automated deep abstractions, where the architecture of the neural network is
learn along with the kernel of the process [8].

The general workflow proceeds in the following steps: (1) define a CRN model,
(2) produce trajectories, (3) create dataset from trajectories, (4) configure
StochNet, (5) train it with Trainer, (6) produce trajectories. Finally, the user
has the option to simulate multiple CRN instances on a spatial grid with class
Grid runner.

2.1 CRN Models

The module contains base and example classes defining CRN models. These
models can be simulated with Gillespie algorithm provided by gillespy2 pack-
age. CRN models are used as a source of synthetic data to train and evaluate
abstract models. An instance of CRN model class can

– generate randomized initial concentrations (populations),
– generate randomized reaction rates,
1 The tool name makes it transparent that the tool was inspired by [2] called

‘StochNet’.

StochNetV2 29

– set initial concentrations and reaction rates,
– produce trajectories.

A new CRN model should be inherited from BaseCRNModel class and imple-
ment all abstract methods. Several example models are provided (e.g. SIR,
Bees, Gene, X16). In general, SBML models (Systems Biology Markup Lan-
guage) can be imported, but it should be noted that the variability of the
SBML format makes automated imports practically tedious, and for most mod-
els some pre-processing is required, e.g. editing reaction rates formulas, rewriting
reversible reactions as two separate reactions, etc. see BaseSBMLModel and EGFR
classes for examples.

2.2 Dataset

The dataset module implements functions and classes for creation and oper-
ations over trajectories data. It supports shuffling and applying pre-processing
functions (such as adding noise) on-the-fly.

2.3 StochNet (Static)

StochNet class implements an interface for an abstract model. It is wrapped
around a neural network (Mixture Density Network) which can be trained
on simulation datasets and then used to produce trajectories. MDN con-
sists of two parts: body (neural network extracting features of input state)
and mixture (probability distribution with parameters depending on the
extracted features). StochNet is initialized with body and mixture con-
figuration files (config-file examples in stochnet v2/examples/configs). A
set of pre-defined building blocks for the body-part can be found in
stochnet v2/static classes/nn bodies file, which provides flexibility in the
sense that custom building blocks can be added by the user. The supported
distributions (the ‘components’ we use) for the mixture part can be found in
stochnet v2/static classes/top layers.

2.4 Training (Static)

Once StochNet is initialized, it can be trained with Trainer. When training is
finished, all necessary files are saved to the model folder. A saved model can be
loaded to produce trajectories at any time.

2.5 NASStochNet (Dynamic)

NASStochnet is an extension of the StochNet class. Instead of designing the
body-part of MDN, it takes only a few hyper-parameters, such as an overall
depth (number of layers) and width (number of neurons in layers). It starts with
an over-parameterized probabilistic meta-model, which (by sampling so-called
architecture parameters) represents many architectures at once. During train-
ing, the set of preferred layers, their order, and inter-connections are optimized
automatically for given data.

30 D. Repin et al.

2.6 Training (Architecture Search)

For the Architecture Search, training consists of two stages: (I) search for opti-
mal configuration. This stage is a two-level optimisation, i.e. we run two sepa-
rate optimisation procedures in altering manner for several epochs each: (main)
update network parameters - weights in layers, (arch) update architecture param-
eters - weights of candidate operations in mix-layer, (II) fine-tuning of the found
architecture after all redundancies are pruned.

After the search and fine-tuning stages, all necessary files are saved to the
model folder, and the model can be loaded for simulations. Either StochNet or
NASStochNet can be used to load trained model and run simulations.

2.7 Grid Runner

GridRunner implements a simulation of multiple CRN instances on a (spatial)
grid with communication via spreading a subset of species across neighboring
grid nodes. GridRunner is initialized with a model and GridSpec, which specifies
a grid. Then, GridRunner stores state values for every model instance which
can be updated by either in-node (one forward step of the model in every node)
reactions, or on-grid interactions (diffusion of shared species across the grid).

2.8 Luigi Workflow Manager

The workflow is wrapped with the luigi library designed for running complex
pipelines of inter-dependent tasks. Alternatively to manually run the above com-
mands, one can fill a luigi configuration file, and it will run the whole sequence
of tasks taking care of the right order and pre-requisites for every task.

3 Implementation

StochNetV2is written in Python 3 and uses Python libraries, mainly
tensorflow, gillespy2, luigi and dependencies thereof. Source code of the
tool with previously published Jupyter notebooks can be downloaded from
GitHub - https://github.com/dennerepin/StochNetV2.

4 Evaluation and Applications

To evaluate the quality of abstract models, we compare distributions (his-
tograms) of species of interest (e.g. Fig. 2a). For this, we simulate many trajec-
tories of the original model starting from a set of random initial settings. Then
an evaluation script runs from the same initial settings (example runtime com-
parison given in Fig. 2b). The evaluation script saves: (1) overall average value
of histogram distance, (2) plots of species histograms after different number of
steps, (3) plots of average (over different settings) distance between histograms
produced by original and abstract model after different number of time-steps.

https://github.com/dennerepin/StochNetV2

StochNetV2 31

The case studies in the toolbox include applications in systems biology and
collective behavior, such as the model of signaling pathway (EGFR [5], challeng-
ing multi-modal gene regulatory models (e.g. from [9]), and a reaction-based
model of collective defence in honeybees (see [6] and GitHub page for details -
https://github.com/dennerepin/StochNetV22).

5 Related Tools

The original idea of using Mixture Density Networks was proposed in [2], which
is followed by a theoretical work [1]. We are not aware of other tools using deep
learning to abstract stochastic CRNs.

Trainer

GridRunner

StochNet
(static)

DataSetCRNModel
(gillespy2 Model)

StochNet
(trained)

trajectories
(original model)

trajectories
(abstract model)

collective trajectories
(abstract model)

produces training examples
(state transitions)

user-defined architecture

NAS TrainerStochNet
(NAS)

optimizes MDN weights

optimizes MDN weights
and architecture

dynamic architecture

B: Architecture Search (NAS)

runs model instances on
spatial grid with diffusion-like

interactions

A: static training

Fig. 1. Main components and workflow.

0.1

600

- Gillespie
- NN

[# proteins]

normalised histogram after one time step
NN SSA

time
[s]

14

settings
traj. per setting

200
200

settings
traj. per setting

200
200

Fig. 2. (left) X40 case study from [9]: histograms of protein P2 concentration after 1
time step and (right) the comparison of simulation run-time with NN and SSA, wrt.
the number of initial settings and trajectories per setting.

References

1. Bortolussi, L., Cairoli, F.: Bayesian abstraction of Markov population models. In:
Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 259–276. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30281-8 15

2 While we performed specific performance evaluation, e.g. in Fig. 2 and [8], a system-
atic scalability analysis is beyond the scope of this tool presentation.

https://github.com/dennerepin/StochNetV2
https://doi.org/10.1007/978-3-030-30281-8_15

32 D. Repin et al.

2. Bortolussi, L., Palmieri, L.: Deep abstractions of chemical reaction networks. In:
Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 21–38. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99429-1 2

3. Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target
task and hardware. CoRR abs/1812.00332 (2018). http://arxiv.org/abs/1812.00332

4. Davis, C.N., Hollingsworth, T.D., Caudron, Q., Irvine, M.A.: The use of mixture
density networks in the emulation of complex epidemiological individual-based mod-
els. PLoS Comput. Biol. 16(3), 1–16 (2020). https://doi.org/10.1371/journal.pcbi.
1006869

5. Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-
based systems. Theoret. Comput. Sci. 431, 137–164 (2012)

6. Hajnal, M., Nouvian, M., Šafránek, D., Petrov, T.: Data-informed parameter syn-
thesis for population Markov chains. In: Češka, M., Paoletti, N. (eds.) HSB 2019.
LNCS, vol. 11705, pp. 147–164. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-28042-0 10

7. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In:
International Conference on Learning Representations (2019). https://openreview.
net/forum?id=S1eYHoC5FX

8. Petrov, T., Repin, D.: Automated deep abstractions for stochastic chemical reaction
networks. arXiv preprint arXiv:2002.01889 (2020)

9. Plesa, T., Erban, R., Othmer, H.G.: Noise-induced mixing and multimodality in
reaction networks. Eur. J. Appl. Math. 30(5), 887–911 (2019)

https://doi.org/10.1007/978-3-319-99429-1_2
http://arxiv.org/abs/1812.00332
https://doi.org/10.1371/journal.pcbi.1006869
https://doi.org/10.1371/journal.pcbi.1006869
https://doi.org/10.1007/978-3-030-28042-0_10
https://doi.org/10.1007/978-3-030-28042-0_10
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
http://arxiv.org/abs/2002.01889

Model Checking and Verification

Alternative Characterizations
of Probabilistic Trace Equivalences

on Coherent Resolutions
of Nondeterminism

Marco Bernardo(B)

Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy
marco.bernardo@uniurb.it

Abstract. For nondeterministic and probabilistic processes, the validity
of some desirable properties of probabilistic trace semantics depends both
on the class of schedulers used to resolve nondeterminism and on the capa-
bility of suitably limiting the power of the considered schedulers. Inclu-
sion of probabilistic bisimilarity, compositionality with respect to typical
process operators, and backward compatibility with trace semantics over
fully nondeterministic or fully probabilistic processes, can all be achieved
by restricting to coherent resolutions of nondeterminism. Here we provide
alternative characterizations of probabilistic trace post-equivalence and
pre-equivalence in the case of coherent resolutions. The characterization
of the former is based on fully coherent trace distributions, whereas the
characterization of the latter relies on coherent weighted trace sets.

1 Introduction

Quantitative models of computer, communication, and software systems com-
bine, among others, functional and extra-functional aspects of system behavior.
On the one hand, these models describe system activities and their execution
order, possibly admitting nondeterminism in case of concurrency phenomena or
to support implementation freedom. On the other hand, they include some infor-
mation about the probabilities or the timing of activities and events in which
the system is involved.

In the probabilistic setting, a particularly expressive model is given by prob-
abilistic automata [24], because they encompass as special cases fully nondeter-
ministic models like labeled transition systems [21], fully probabilistic models like
action-labeled variants of discrete-time Markov chains [22], and reactive proba-
bilistic models like Markov decision processes [13]. In a probabilistic automaton,
the choice among the transitions departing from the current state is nondeter-
ministic and can be influenced by the external environment, while the choice
of the next state reached by the selected transition is probabilistic and made
internally by the process.

Behavioral relations [1,4,16,20,28] play a fundamental role in the analysis
of probabilistic models. They formalize observational mechanisms that permit
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 35–53, 2020.
https://doi.org/10.1007/978-3-030-59854-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_5

36 M. Bernardo

relating models that, despite their different representations in the same mathe-
matical domain, cannot be distinguished by external entities when abstracting
from certain internal details. Moreover, they support system modeling and verifi-
cation by providing a means to relate system descriptions expressed at different
levels of abstraction, as well as to reduce the size of a system representation
while preserving specific properties to be assessed later.

In this paper, we focus on trace semantics for nondeterministic and proba-
bilistic processes represented through a variant of simple probabilistic automata.
A trace is a sequence of activities labeling a sequence of transitions performed
by a process, thus abstracting from branching points in the process behavior.
Several execution probabilities may be associated with the same trace, each
corresponding to a different resolution of nondeterminism. The discriminating
power of probabilistic trace semantics thus depends on the class of schedulers
used to resolve nondeterminism, but in general it turns out to be excessive. This
may hamper the achievement of a number of desirable properties.

The problem with almighty schedulers yielding a demonic view of nondeter-
minism is well known, both for trace semantics and for testing semantics. In the
case of a process given by the parallel composition of several subprocesses, or
in a testing scenario where a process is composed in parallel with a test, sched-
ulers come into play after assembling the various components. As a consequence,
schedulers can solve both choices local to the individual subprocesses and choices
arising from their interleaving execution. This centralized approach thus gives
the possibility to make decisions in one component on the basis of those made
in other components, especially in the case of history-dependent schedulers [30].

To cope with the aforementioned information leakage, the idea of distributed
scheduling was proposed in [10]. Given a number of modules, i.e., of variable-
based versions of automata, that interact synchronously by updating all variables
during every round, for each module there are several schedulers. One of them
chooses the initial and updated values for the module external variables; for each
atom, intended as a cluster of variables of the module, a further scheduler chooses
the initial and updated values for the private and interface variables controlled
by that atom. Compose-and-schedule is thus replaced by schedule-and-compose.

Distributed scheduling was then applied in [9] to the asynchronous model of
switched probabilistic input/output automata. Following the terminology of [29],
given a reactive interpretation to input actions and a generative interpretation
to output actions, an input scheduler and an output scheduler are considered
for each automaton occurring in a system. A token passing mechanism among
the automata eliminates global choices by ensuring that a single automaton at
a time can select a generative output action, to which the other automata can
respond with reactive input actions having the same name.

Both [10] and [9] guarantee the compositionality of the probabilistic trace-
distribution equivalence of [25]. This is not a congruence with respect to paral-
lel composition under centralized scheduling; as shown in [23], the coarsest con-
gruence contained in that linear-time equivalence turns out to be a variant of
the simulation equivalence of [27], which is a branching-time equivalence. Dis-
tributed scheduling was further investigated in [15] for interleaved probabilistic

Alternative Characterizations of Probabilistic Trace Equivalences 37

input/output automata, a variant of switched ones in which an interleaving sched-
uler replaces the token passing mechanism. The examined problem was the attain-
ment of the extremal probabilities of satisfying reachability properties under dif-
ferent classes of distributed schedulers (memoryless vs. history-dependent, deter-
ministic vs. randomized), knowing that in the centralized case those probabilities
are obtained when using memoryless deterministic schedulers [6].

Indeed, the overwhelming power of schedulers already shows up in the mem-
oryless case, i.e., when neglecting the path followed to reach the current state.
Under centralized scheduling, in [14] additional labels were used so that the
same decisions are made by schedulers in distinct copies of the same state of
a testing system, thus weakening the discriminating power of the probabilistic
testing equivalences of [18,26,31] that, as shown in [11,19], can be characterized
in terms of branching-time, simulation-like relations. An analogous weakening
result under the same class of schedulers was obtained in [3] by means of a differ-
ent definition of probabilistic testing equivalence, in which success probabilities
are compared in a trace-by-trace fashion rather than cumulatively.

Likewise, under memoryless schedulers, a different definition of probabilistic
trace equivalence allows compositionality to be recovered without resorting to
distributed scheduling. In the probabilistic trace-distribution equivalence of [25],
for each resolution of either process there must exist a resolution of the other pro-
cess such that the two resolutions are fully matching, in the sense that, for every
trace, both resolutions feature the same probability of executing that trace. We
call it probabilistic trace post-equivalence as the quantification over traces occurs
after the quantifications over resolutions. In [3] it was proposed to exchange the
order of those quantifications, which avoids hardly justifiable process distinc-
tions and regains compositionality. Given an arbitrary trace, for each resolution
of either process there must exist a resolution of the other process such that
both of them exhibit the same probability of executing that trace. In this case,
we speak of partially matching resolutions, as a resolution of either process can
be matched by different resolutions of the other process with respect to different
traces. We call the resulting relation probabilistic trace pre-equivalence, because
the quantification over traces occurs before the quantifications over resolutions.

Congruence with respect to parallel composition, which is ensured by dis-
tributed scheduling, is not the only desirable property of probabilistic trace
equivalences. In addition to compositionality with respect to other typical pro-
cess operators, it is necessary to address inclusion of probabilistic bisimilarity [27]
as well as backward compatibility with trace equivalences over less expressive
processes such as fully nondeterministic ones [8] and fully probabilistic ones [20].
As recently shown in [2], the validity of all these properties critically depends
on the capability of limiting the freedom of schedulers and can be achieved if we
restrict ourselves to coherent resolutions of nondeterminism. Similar to [14], the
basic idea is that schedulers cannot select different continuations in states of a
process that are equivalent to each other, so that also the states to which they
correspond in any resolution of the process have equivalent continuations.

The focus of this paper is on alternative characterizazions of trace semantics.
In a fully nondeterministic setting, two processes are trace equivalent iff, for each

38 M. Bernardo

trace α, both processes can perform α or neither can. An immediate alternative
characterization is that two trace equivalent processes possess the same trace
set [8], where this set can be viewed as the language accepted by the automata
underlying those processes. Likewise, two fully probabilistic processes are trace
equivalent iff, for each trace α, both processes can perform α with the same
probability, which amounts to possessing the same set of traces each weighted
with its execution probability [20], i.e., the same probabilistic language. In either
case, process equivalence reduces to (possibly weighted) trace set equality.

Straightforward characterizations of that form are not possible in the case of
nondeterministic and probabilistic processes, because (i) traces can have different
execution probabilities in different coherent resolutions and (ii) trace semantics
can be defined according to different approaches leading to probabilistic trace
post-/pre-equivalences. This motivates the investigation of alternative charac-
terizations for the two aforementioned equivalences under coherent resolutions
arising from centralized, memoryless schedulers – i.e., as they were defined in [2]
– which is the subject of this paper.

The construction developed in [2] to formalize the coherency constraints relies
on coherent trace distributions, i.e., suitable families of sets of traces weighted
with their execution probabilities in a given resolution. Therefore, one may
expect that the coherency-based variant of the probabilistic trace-distribution
equivalence of [25], i.e., probabilistic trace post-equivalence, can be characterized
in terms of coherent trace distribution equality. We will show by means of an
example that this is not the case. The characterization of the coherency-based
variant of probabilistic trace post-equivalence relies on the equality of some-
thing stronger, which we will call fully coherent trace distributions and could
also replace coherent trace distributions in the coherency constraints.

The coherency-based variant of the probabilistic trace pre-equivalence of [3]
is less discriminating because it treats traces individually without keeping track
of the resolutions in which they can be executed. We will show that it can thus
be characterized through the equality of something weaker than coherent trace
distributions, which we will call coherent weighted trace sets and is constituted
by suitable sets of traces weighted with their execution probabilities. We will also
illustrate by means of an example that we cannot use them to set up adequate
coherency constraints. In conclusion, fully coherent trace distributions, coherent
trace distributions, and coherent weighted trace sets form a hierarchy in which
every layer serves a different purpose.

This paper is organized as follows. In Sect. 2 we recall simple probabilis-
tic automata and resolutions of nondeterminism, while in Sect. 3 we recall the
two probabilistic trace equivalences together with three anomalies that can be
avoided by resorting to coherent resolutions. In Sect. 4 we show some properties
of coherent trace distributions and coherent resolutions, which are then exploited
in Sects. 5 and 6 to develop the alternative characterizations of the coherency-
based variants of the two equivalences, respectively relying on the equality of
fully coherent trace distributions and on the equality of coherent weighted trace
sets. Finally, in Sect. 7 we provide some concluding remarks.

Alternative Characterizations of Probabilistic Trace Equivalences 39

2 Nondeterministic and Probabilistic Models

We formalize systems featuring nondeterminism and probabilities through a vari-
ant of simple probabilistic automata [24], in which we do not distinguish between
external and internal actions.

Definition 1. A nondeterministic and probabilistic labeled transition system,
NPLTS for short, is a triple (S,A,−→) where S �= ∅ is an at most countable
set of states, A �= ∅ is a countable set of transition-labeling actions, and −→ ⊆
S × A × Distr(S) is a transition relation, with Distr(S) being the set of discrete
probability distributions over S.

A transition (s, a,Δ) is written s
a−→ Δ. We say that s′ ∈ S is not reachable

from s via that a-transition if Δ(s′) = 0, otherwise we say that it is reachable
with probability p = Δ(s′). The reachable states form the support of the target
distribution Δ, i.e., supp(Δ) = {s′ ∈ S | Δ(s′) > 0}. An NPLTS can be depicted
as a directed graph in which vertices represent states and action-labeled edges
represent transitions, with states in the support of the same target distribution
being linked by a dashed line and decorated with the respective probabilities
when these are different from 1 (see the forthcoming Figs. 1, 2, 3, 4 and 5).

An NPLTS represents (i) a fully nondeterministic process when every tran-
sition has a target distribution with a singleton support, (ii) a fully probabilistic
process when every state has at most one outgoing transition, or (iii) a Markov
decision process when for each action any state has at most one outgoing transi-
tion labeled with that action implying the absence of internal nondeterminism.

Definition 2. Let L = (S,A,−→) be an NPLTS and s, s′ ∈ S. We say that the
finite sequence of steps:

is a computation of L of length n ∈ N from s = s0 to s′ = sn compatible with
trace α = a1 a2 . . . an ∈ A∗, written c ∈ CC(s, α), iff for each step si−1

ai−�→ si in c

there is a transition si−1
ai−→ Δi in L such that si ∈ supp(Δi), 1 ≤ i ≤ n, where:

– Δi(si) is the execution probability of step si−1

ai−�→ si conditioned on the selec-
tion of transition si−1

ai−→ Δi at state si−1, or simply the execution probability
of that step if L is fully probabilistic.

– prob(c) =
∏

1≤i≤n Δi(si) is the execution probability of c if L is fully proba-
bilistic, assuming that prob(c) = 1 when n = 0.

– For C ⊆ CC(s, α), we let prob(C) =
∑

c∈C prob(c) if L is fully probabilistic,
provided that no computation in C is a proper prefix of one of the others.

When several transitions depart from the same state s of an NPLTS L, they
describe a nondeterministic choice among different behaviors. A resolution of s
is the result of a possible way of resolving nondeterministic choices starting
from s, as if a scheduler were applied that decides which activity has to be

40 M. Bernardo

performed next. A resolution of nondeterminism can thus be formalized as a
fully probabilistic NPLTS Z with a tree-like structure, whose branching points
correspond to target distributions of transitions deriving from those of L.

Fig. 1. Lack of injectivity breaks structure preservation

In [2] we examined two ways of resolving nondeterminism. The structure-
preserving approach constructs a resolution by importing states and transitions
from the original NPLTS via a deterministic scheduler. In a resolution of the
structure-modifying approach (i) a transition can be produced by probabilisti-
cally combining transitions of the original model via a randomized scheduler [24],
or (ii) a state can be obtained by probabilistically splitting states of the original
model via an interpolating scheduler [12], or (iii) a combination thereof [7].

As in [2], we focus on structure-preserving resolutions arising from central-
ized, memoryless, deterministic schedulers. At each step, a scheduler of this kind
selects one of the transitions departing from the current state, or no transitions
at all thus stopping the execution. As a consequence, the resulting resolution
is isomorphic to a submodel of the original model (or of its unfolding, should
cycles be present), thereby preserving the structure of the original model (or
of its unfolding). If the model is fully nondeterministic, each of its resolutions
coincides with a computation of the model; if the model is fully probabilistic, its
maximal resolution coincides with (the unfolding of) the entire model.

Following [5,17] we introduce a correspondence function corrZ : Z → S from
the acyclic state space of the resolution Z = (Z,A, −→Z) being built, to the
possibly cyclic state space of the considered model L = (S,A,−→L). For each
transition z

a−→Z Δ, the function corrZ must preserve the probabilities of all the
states corresponding to those in supp(Δ) and must be injective over supp(Δ). In
the absence of injectivity, the original structure may not be preserved in the case
that the target distribution of a transition assigns the same probability to several
inequivalent states. This is exemplified in Fig. 1. The correspondence function
that maps z to s, z′

1 and z′
2 to s′

1, and z′′
1 and z′′

2 to s′′
1 would cause the rightmost

NPLTS to be considered a legal resolution of the leftmost NPLTS, which is not
correct as the former is not isomorphic to any submodel of the latter.

Definition 3. Let L = (S,A,−→L) be an NPLTS and s ∈ S. An acyclic NPLTS
Z = (Z,A, −→Z) is a structure-preserving resolution of s, written Z ∈ Ressp(s),
iff there exists a correspondence function corrZ : Z → S such that s = corrZ(zs),
for some zs ∈ Z acting as the initial state of Z, and for all z ∈ Z it holds that:

Alternative Characterizations of Probabilistic Trace Equivalences 41

– If z
a−→Z Δ then corrZ(z) a−→L Γ , with corrZ being injective over supp(Δ)

and satisfying Δ(z′) = Γ (corrZ(z′)) for all z′ ∈ supp(Δ).
– At most one transition departs from z.

b2 b4b3b1 b4b1 b2b3

s1 s2 s3

b1 b2 b4b3

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
a

0.5 0.5
aaaa

Fig. 2. ∼post
PTr is strictly finer than ∼pre

PTr: s1 �∼post
PTr s2 �∼post

PTr s3, s1 ∼pre
PTr s2 ∼pre

PTr s3

3 Probabilistic Trace Equivalences and Their Anomalies

There is only one way of defining trace semantics for fully nondeterministic
processes [8] and for fully probabilistic processes [20]. In contrast, this is not the
case with processes featuring both nondeterminism and probabilities, as shown
in the spectrum of behavioral equivalences for NPLTS models studied in [4].

The first probabilistic trace equivalence that we consider is the one of [25].
Two states are deemed equivalent when every resolution of either state is
matched by a resolution of the other, in the sense that for each trace both resolu-
tions execute that trace with the same probability. We call it probabilistic trace
post-equivalence because the quantification over traces occurs after selecting the
two fully matching resolutions as underlined in the definition below, where zsi

denotes both the initial state of Zi and the state to which si corresponds.

Definition 4. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. We let s1 ∼post
PTr s2

iff for each Z1 ∈ Ressp(s1) there exists Z2 ∈ Ressp(s2) such that for all α ∈ A∗:

and also the condition obtained by exchanging Z1 with Z2 is satisfied.

The second probabilistic trace equivalence is the one of [3], which is a congru-
ence with respect to parallel composition. It is less restrictive than the previous
equivalence because, given two states, a resolution of either state can be matched
by different resolutions of the other with respect to different traces. We call it
probabilistic trace pre-equivalence because traces are fixed before selecting the
two partially matching resolutions.

Definition 5. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. We let s1 ∼pre
PTr s2

iff, for all α ∈ A∗, for each Z1 ∈ Ressp(s1) there is Z2 ∈ Ressp(s2) such that:

and also the condition obtained by exchanging Z1 with Z2 is satisfied.

42 M. Bernardo

s3

s’3
1−p

s"3

s4

s’4

z3

z’3
1−p

z"3

2z

2z’ 2z"
p1−

s1

s’1

2s

2s"
p1−

2s’

s’5

p1−

s6

p1−
s’6 s"6

s5

c1 c2c1 c2

z6

p1−
z’6 z"6

c1

a’

p

a’

a

b c

a’

b c

a’

a

b c

a

a’

p

a’

cb

a
p

b c

a

b c

a
p

b c b c

a

p
b

a
p

b b

a
p

b

Fig. 3. Three anomalies of the probabilistic trace equivalences ∼post
PTr and ∼pre

PTr

In Fig. 2 we show three NPLTS models whose initial states s1, s2, s3 are
pairwise distinguished by ∼post

PTr but identified by ∼pre
PTr, because for all i = 1, . . . , 4

the probability of executing trace a bi is the same in the three models.
Although deterministic schedulers are very intuitive, the rigid preservation

they ensure about the structure of the original model, together with their free-
dom of performing choices inconsistent with each other in states with equivalent
continuations, causes the two considered probabilistic trace equivalences to be
overdiscriminating. This results in the violation of a number of desirable prop-
erties (a fact that also happens with structure-modifying schedulers, but to a
much lesser extent). More precisely, in [2] we showed that ∼post

PTr and ∼pre
PTr:

– are not coarser than probabilistic bisimilarity under deterministic schedulers;
– are not congruences w.r.t. action prefix under deterministic schedulers;
– are not compatible with their version for fully probabilistic processes.

The first anomaly is illustrated by the two NPLTS models in Fig. 3 whose
initial states are s1 and s2. They are probabilistic bisimilar in the sense of [27]
but s1 �∼post

PTr s2 and s1 �∼pre
PTr s2 because of the resolution whose initial state

is z2, where trace a b is executable with probability p instead of 1. This resolution
belongs to Ressp(s2)\Ressp(s1) as it does not preserve the structure of the NPLTS

Alternative Characterizations of Probabilistic Trace Equivalences 43

whose initial state is s1. Therefore, the two probabilistic trace equivalences do
not include probabilistic bisimilarity.

The second anomaly is illustrated by the two NPLTS models in Fig. 3 whose
initial states are s3 and s4. After the two a-transitions, two distributions are
reached that are probabilistic trace equivalent, in the sense that for each class of
equivalent states they both assign the same probability to that class. However,
it holds that s3 �∼post

PTr s4 and s3 �∼pre
PTr s4 due to the resolution whose initial

state is z3, where trace a a′ b is executable with probability p instead of 1. This
resolution belongs to Ressp(s3) \ Ressp(s4) as it does not preserve the structure
of the NPLTS whose initial state is s4. Therefore, the two probabilistic trace
equivalences are not congruences with respect to the action prefix operator,
which concatenates the execution of an action with a process distribution.

The third anomaly is illustrated by the two NPLTS models in Fig. 3 whose
initial states are s5 and s6. They are identified by the trace equivalence for fully
probabilistic processes of [20], which does not use schedulers at all as in those
processes there are no nondeterministic choices to be solved. However, it turns
out that s5 �∼post

PTr s6 and s5 �∼pre
PTr s6 because ∼post

PTr and ∼pre
PTr do make use of

schedulers, and schedulers may decide of stopping the execution. This is wit-
nessed by the resolution whose initial state is z6 – notice that the scheduler has
decided to stop the execution at z′′

6 – where not only trace a b c1 but also trace a b
is executable with probability p. This resolution belongs to Ressp(s6)\Ressp(s5)
as it does not preserve the structure of the NPLTS whose initial state is s5.
Therefore, the two probabilistic trace equivalences are not backward compatible
with the one for fully probabilistic processes.

4 Properties of Coherency

The anomalies shown in Fig. 3 are due to the freedom of schedulers of making
different decisions in states enabling the same actions. In [2] we proposed to
limit the excessive power of schedulers by restricting them to yield coherent
resolutions. Intuitively, this means that, if several states in the support of the
target distribution of a transition are equivalent, then the decisions made by the
scheduler in those states have to be coherent with each other, so that the states
to which they correspond in any resolution are equivalent as well.

The coherency constraints implementing this idea have been expressed in [2]
by reasoning on coherent trace distributions, i.e., families of sets of traces
weighted with their execution probabilities in a given resolution, built through
the following operations.

Definition 6. Let A �= ∅ be a countable set. For a ∈ A, p ∈ R, TD ⊆ 2A∗×R,
and T ⊆ A∗ × R we define:

44 M. Bernardo

Weighted trace set addition T1 + T2 is commutative and associative, with
probabilities of identical traces in the two summands being always added up
for coherency purposes. In constrast, trace distribution addition is only commu-
tative. Essentially, the two summands in TD1 + TD2 represent two families of
sets of weighted traces executable in the resolutions of two states in the support
of a target distribution. Every weighted trace set T1 ∈ TD1 is summed with
every weighted trace set T2 ∈ TD2 – so to characterize an overall resolution –
unless TD1 and TD2 have the same family of trace sets, in which case summa-
tion is restricted to weighted trace sets featuring the same traces for the sake
of coherency. Due to the lack of associativity, in the definition below all trace
distributions Δ(s′) · TDc

n−1(s
′) exhibiting the same family Θ of trace sets have

to be summed up first, which is ensured by the presence of a double summation.

Definition 7. Let (S,A,−→) be an NPLTS and s ∈ S. The coherent trace
distribution of s is the subset of 2A∗×R]0,1] defined as follows:

TDc(s) =
⋃

n∈N
TDc

n(s)
with the coherent trace distribution of s whose traces have length at most n being
defined as:

TDc
n(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ε, 1) † ⋃

s
a−→ Δ

a .

(
∑

Θ∈tr(Δ,n−1)

tr(TDc
n−1(s

′))=Θ∑

s′∈supp(Δ)

Δ(s′) · TDc
n−1(s

′)

)

if n > 0 and s has outgoing transitions
{{(ε, 1)}}

otherwise
where tr(Δ,n − 1) = {tr(TDc

n−1(s
′)) | s′ ∈ supp(Δ)} and the operator (ε, 1) †

is such that (ε, 1) † TD = {{(ε, 1)} ∪ T | T ∈ TD}.
In the case of a fully probabilistic NPLTS, due to the absence of nondeter-

minism any coherent trace distribution TDc
n(s) contains a single weighted trace

set. This holds in particular for resolutions.

Proposition 1. Let (S,A,−→) be a fully probabilistic NPLTS, s ∈ S, n ∈ N.
Let A≤n = {α ∈ A∗ | |α| ≤ n}. Then TDc

n(s) = {{(α, p) ∈ A≤n × R]0,1] |
prob(CC(s, α)) = p}}.

Alternative Characterizations of Probabilistic Trace Equivalences 45

As for the relationship between TDc
n(s) and TDc

n−1(s), it turns out that
every element of the former contains the same traces as an element of the latter.
As we will see in the next section, their probabilities may differ.

Proposition 2. Let (S,A,−→) be an NPLTS, s ∈ S, n ∈ N≥1. Then for all
T ∈ TDc

n(s) there exists T ′ ∈ TDc
n−1(s) such that tr(T ′) ⊆ tr(T).

For the NPLTS models in Fig. 3 we have that:

– TDc(s′
2) = {{(ε, 1)}, {(ε, 1), (b, 1)}, {(ε, 1), (c, 1)}} = TDc(s′′

2) while in the
related resolution states it holds that TDc(z′

2) = {{(ε, 1)}, {(ε, 1), (b, 1)}} �=
{{(ε, 1)}, {(ε, 1), (c, 1)}} = TDc(z′′

2).
– TDc(s′

3) = {{(ε, 1)}, {(ε, 1), (a′, 1)}, {(ε, 1), (a′, 1), (a′ b, 1)}, {(ε, 1), (a′, 1),
(a′ c, 1)}} = TDc(s′′

3) but TDc(z′
3) = {{(ε, 1)}, {(ε, 1), (a′, 1)}, {(ε, 1), (a′, 1),

(a′ b, 1)}} �= {{(ε, 1)}, {(ε, 1), (a′, 1)}, {(ε, 1), (a′, 1), (a′ c, 1)}} = TDc(z′′
3).

– TDc
1(s

′
6) = {{(ε, 1), (b, 1)}} = TDc

1(s
′′
6) but TDc

1(z
′
6) = {{(ε, 1), (b, 1)}} �=

{{(ε, 1)}} = TDc
1(z

′′
6), which indicates that separate coherency constraints

are needed relying on TDc
n sets for every n ∈ N.

Further examples in [2] show that the coherency constraints should be based
on TDc

n sets up to the probabilities they contain, i.e., the constraints should rely
on tr(TDc

n) sets. Moreover, for every n ∈ N, those examples call for a complete
presence in each resolution of computations of length n if any, including possible
shorter maximal computations. Note that trace completeness up to length n is
looser than requiring resolution maximality.

Definition 8. Let L = (S,A,−→L) be an NPLTS, s ∈ S, and Z =
(Z,A, −→Z) ∈ Ressp(s) with correspondence function corrZ : Z → S. We say
that Z is a coherent resolution of s, written Z ∈ Rescsp(s), iff for all z ∈ Z,
whenever z

a−→Z Δ, then for all n ∈ N:

1. tr(TDc
n(corrZ(z′)))= tr(TDc

n(corrZ(z′′))) =⇒ tr(TDc
n(z′))= tr(TDc

n(z′′)) for
all z′, z′′ ∈ supp(Δ).

2. For all z′ ∈ supp(Δ), the only T ∈ TDc
n(z′) admits T̄ ∈ TDc

n(corrZ(z′)) such
that tr(T) = tr(T̄).

Any complete submodel rooted at a state z of a coherent resolution turns
out to be coherent too, where complete means that no state reachable from z in
the resolution is cut off in the resolution submodel. Completeness is important
for satisfying in particular the second coherency constraint of Definition 8.

Proposition 3. Let L = (S,A,−→L) be an NPLTS, s ∈ S, Z = (Z,A,−→Z) ∈
Rescsp(s) with correspondence function corrZ : Z → S. Let Z ′

z = (Z ′, A, −→Z′)
be the complete submodel of Z rooted at z ∈ Z. Then Z ′

z ∈ Rescsp(corrZ(z)).

The resolutions in Fig. 3 do not respectively belong to Rescsp(s2), Rescsp(s3),
Rescsp(s6). We proved in Thm. 1 of [2] that the examined anomalies disappear
by substituting Rescsp for Ressp in Definitions 4 and 5. This replacement yields
the two coherency-based probabilistic trace equivalences ∼post,c

PTr and ∼pre,c
PTr for

which we will investigate alternative characterizations in the next two sections
by exploiting the properties shown in Propositions 1, 2, and 3.

46 M. Bernardo

5 Alternative Characterization of ∼post,c
PTr

The definition of ∼post,c
PTr essentially requires that two states have the same trace

distributions. Therefore, it is natural to expect an alternative characterization
of ∼post,c

PTr based on the construction of Definition 7. Incidentally, this would fully
justify the construction itself, given that the probabilities contained in the TDc

n

sets have not been exploited in the coherency constraints of Definition 8. How-
ever, for an NPLTS (S,A,−→) and s ∈ S, the set TDc(s) may contain weighted
traces that break coherency, hence that set cannot be used for characterization
purposes.

For example, consider the NPLTS in Fig. 4. We have that:

TDc
1(s1) = {{(ε, 1), (b, 1)}} = TDc

1(s2)

and also:

TDc
2(s1) = {{(ε, 1), (b, 1), (b c, 1)}, {(ε, 1), (b, 1), (b d, 1)}} = TDc

2(s2)

because in the complete submodel rooted at s1 it holds that:

TDc
1(s

′
1) = {{(ε, 1), (c, 1)}, {(ε, 1), (d, 1)}} = TDc

1(s
′′
1)

and hence, when applying Definition 7 to compute TDc
2(s1), according to Def-

inition 6 the summation is restricted to weighted trace sets featuring the same
traces as:

tr(TDc
1(s

′
1)) = {{ε, c}, {ε, d}} = tr(TDc

1(s
′′
1))

Nevertheless, since:

TDc
2(s

′
1) = {{(ε, 1), (c, 1), (c e1, 1)}, {(ε, 1), (d, 1), (d e2, 1)}}

TDc
2(s

′′
1) = {{(ε, 1), (c, 1), (c e3, 1)}, {(ε, 1), (d, 1), (d e4, 1)}}

where:

tr(TDc
2(s

′
1)) = {{ε, c, c e1},{ε, d, d e2}} �= {{ε, c, c e3},{ε, d, d e4}} = tr(TDc

2(s
′′
1))

we subsequently derive that:

TDc
3(s1) = (ε, 1) †

({{(b, p), (b c, p), (b c e1, p)},
{(b, p), (b d, p), (b d e2, p)}} +

{{(b, 1 − p), (b c, 1 − p), (b c e3, 1 − p)},
{(b, 1 − p), (b d, 1 − p), (b d e4, 1 − p)}})

= {{(ε, 1), (b, 1), (b c, 1), (b c e1, p), (b c e3, 1 − p)},
{(ε, 1), (b, 1), (b c, p), (b d, 1 − p), (b c e1, p), (b d e4, 1 − p)},
{(ε, 1), (b, 1), (b d, p), (b c, 1 − p), (b d e2, p), (b c e3, 1 − p)},
{(ε, 1), (b, 1), (b d, 1), (b d e2, p), (b d e4, 1 − p)}}

whereas:
TDc

3(s2) = {{(ε, 1), (b, 1), (b c, 1), (b c e1, p), (b c e3, 1 − p)},
{(ε, 1), (b, 1), (b d, 1), (b d e2, p), (b d e4, 1 − p)}}

Alternative Characterizations of Probabilistic Trace Equivalences 47

1−p

s1

1e 2e

s’1

e3 e4

1−q
2s

s"1
c d

p1−

e31e

p1−

e2 e4

p
b

q

c d

b

c d
p p

a

s

Fig. 4. Full coherency is necessary to reconcile TDc
3(s1) and TDc

3(s2)

Therefore, in the calculation of TDc
4(s) we cannot simply sum up weighted

trace sets in TDc
3(s1) and in TDc

3(s2) that exhibit the same traces. This is due
to the presence in TDc

3(s1) of the following two weighted trace sets:

{(ε, 1), (b, 1), (b c, p), (b d, 1 − p), (b c e1, p), (b d e4, 1 − p)}
{(ε, 1), (b, 1), (b d, p), (b c, 1 − p), (b d e2, p), (b c e3, 1 − p)}

which cannot be exposed by any coherent resolution. The key observation is
that coherency constraints on traces like b c and b d are ignored, hence those
two weighted trace sets in TDc

3(s1) are not extensions of weighted trace sets in
TDc

2(s1). Indeed, neither of those weighted trace sets in TDc
3(s1) includes as a

subset a weighted trace set in TDc
2(s1) because of the different probabilities

of the aforementioned traces in the considered sets (see the sentence before
Proposition 2).

This example reveals that the construction of Definition 7, together with
weighted trace set addition and trace distribution addition as provided in Defi-
nition 6, are appropriate to set up the coherency constraints in Definition 8, but
not to characterize the trace distributions of coherent resolutions. To achieve
this, every set TDc

n(s), with n > 0 and s having outgoing transitions, should
incrementally build on TDc

n−1(s), in the sense that every weighted trace set
in the former should include as a subset a weighted trace set in the latter (a
monotonicity-like property stronger than the one of Proposition 2). We thus
introduce a variant of coherent trace distribution, which we call fully coherent
trace distribution.

Definition 9. Let (S,A,−→) be an NPLTS and s ∈ S. The fully coherent trace
distribution of s is the subset of 2A∗×R]0,1] defined as follows:

TDfc(s) =
⋃

n∈N
TDfc

n (s)
with the fully coherent trace distribution of s whose traces have length at most n
being the subset of TDc

n(s) defined as:

48 M. Bernardo

For the NPLTS in Fig. 4 we have that:
TDfc

3 (s1) = {{(ε, 1), (b, 1), (b c, 1), (b c e1, p), (b c e3, 1 − p)},

{(ε, 1), (b, 1), (b d, 1), (b d e2, p), (b d e4, 1 − p)}} = TDfc
3 (s2)

and overall TDfc(s) =
⋃

0≤n≤4 TDfc
n (s) where:

TDfc
0 (s) = {{(ε, 1)}}

TDfc
1 (s) = {{(ε, 1), (a, 1)}}

TDfc
2 (s) = {{(ε, 1), (a, 1), (a b, 1)}}

TDfc
3 (s) = {{(ε, 1), (a, 1), (a b, 1), (a b c, 1)},

{(ε, 1), (a, 1), (a b, 1), (a b d, 1)}}
TDfc

4 (s) = {{(ε, 1), (a, 1), (a b, 1), (a b c, 1), (a b c e1, p), (a b c e3, 1 − p)},
{(ε, 1), (a, 1), (a b, 1), (a b d, 1), (a b d e2, p), (a b d e4, 1 − p)}}

with the various sets TDfc
n (s) precisely capturing the trace distributions of the

coherent resolutions of s.
Fully coherent trace distributions TDfc

n (s) coincide with coherent ones
TDc

n(s) when n ≤ 2 as a consequence of Definition 6. The example in Fig. 4
shows that, when n ≥ 3, in general TDfc

n (s) cannot be recursively characterized
as TDc

n(s) in Definition 7 even though each element of a fully coherent trace
distribution can be expressed as a sum of elements of other fully coherent trace
distributions.

Proposition 4. Let (S,A,−→) be an NPLTS, s ∈ S, n ∈ N. If n ≤ 2 or s
has no outgoing transitions, then TDfc

n (s) = TDc
n(s), otherwise each element of

TDfc
n (s) is anyhow obtained by summing up a suitable element of TDfc

n−1(s
′) for

every s′ in the support of the target distribution of a transition of s.

By virtue of Proposition 1, the equality TDfc
n (s) = TDc

n(s) extends to all
n ∈ N, i.e., fully coherent trace distributions boil down to coherent ones, in the
case of a fully probabilistic NPLTS. This holds in particular for resolutions.

Proposition 5. Let (S,A,−→) be a fully probabilistic NPLTS, s ∈ S, n ∈ N.
Then TDfc

n (s) = TDc
n(s).

Before presenting the characterization result, we need to revisit the coherency
constraints of Definition 8 in the light of the example of Fig. 4. Suppose that
each of the two terminal states reached by an e1-transition is replaced by a
distribution with two states in its target, reached with probabilities r and 1 −
r and both featuring a nondeterministic choice between an f -transition to a
terminal state and a g-transition to a terminal state. According to Definition 8,
after the leftmost e1-transition either both f -transitions are selected or both
g-transitions are selected, and the same holds after the rightmost e1-transition.

Alternative Characterizations of Probabilistic Trace Equivalences 49

However, from TDc
3(s1) �= TDc

3(s2) it follows that TDc
4(s1) �= TDc

4(s2), so
that on s1 side both f -transitions may be selected while on s2 side both g-
transitions may be selected instead, or vice versa. If we consider an NPLTS
whose initial state s′ has a single outgoing transition, which is labeled with
a and reaches a model isomorphic to the complete submodel rooted at s2 in
Fig. 4 (and extended in the aforementioned way after its only e1-transition), s′

would be distinguished from s instead of being identified with it. The coherency
constraints of Definition 8 thus need to be strengthened by substituting TDfc

n for
TDc

n, in which case Thm. 1 of [2] is still valid and ∼post,c
PTr and ∼pre,c

PTr are modified
accordingly.

The following lemma, where Proposition 1 is exploited again together with
Propositions 3, 4, and 5, lays the basis for a characterization of ∼post,c

PTr in terms
of fully coherent trace distribution equality. In the lemma, zs denotes both the
initial state of Z and the state to which s corresponds.

Lemma 1. Let (S,A,−→) be an NPLTS, s ∈ S, n ∈ N, and T ⊆ A∗ × R]0,1].
Then T ∈ TDfc

n (s) iff there exists Z ∈ Rescsp(s) such that TDfc
n (zs) = {T}.

Theorem 1. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. Then s1 ∼post,c
PTr s2

iff TDfc(s1) = TDfc(s2).

6 Alternative Characterization of ∼pre,c
PTr

As far as ∼pre,c
PTr is concerned, similar to [3] we can provide an alternative charac-

terization based on sets T c(s) built by considering all weighted traces executable
from state s at once, i.e., without keeping track of the resolutions of s in which
they are feasible. This is consistent with the focus of ∼pre,c

PTr on individual traces
rather than on trace distributions. In the definition below, the double summa-
tion used in Definition 7 in the case that n > 0 and s has outgoing transitions
is not needed thanks to the commutativity and associativity of weighted trace
set addition deriving from Definition 6.

Definition 10. Let (S,A,−→) be an NPLTS and s ∈ S. The coherent weighted
trace set of s is the subset of A∗ × R]0,1] defined as follows:

T c(s) =
⋃

n∈N
T c

n(s)
with the coherent weighted trace set of s whose traces have length at most n being
defined as:

T c
n(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{(ε, 1)} ∪ ⋃

s
a−→ Δ

a .

(
∑

s′∈supp(Δ)

Δ(s′) · T c
n−1(s

′)

)

if n > 0 and s has outgoing transitions
{(ε, 1)}

otherwise

50 M. Bernardo

For the NPLTS in Fig. 4 we have that T c(s) =
⋃

0≤n≤4 T c
n(s) where:

T c
0 (s) = {(ε, 1)}

T c
1 (s) = {(ε, 1), (a, 1)}

T c
2 (s) = {(ε, 1), (a, 1), (a b, 1)}

T c
3 (s) = {(ε, 1), (a, 1), (a b, 1), (a b c, 1), (a b d, 1)}

T c
4 (s) = {(ε, 1), (a, 1), (a b, 1), (a b c, 1), (a b d, 1),

(a b c e1, p), (a b c e3, 1 − p), (a b d e2, p), (a b d e4, 1 − p)}
with the various sets T c

n(s) precisely capturing the weighted traces of the coherent
resolutions of s.

It is easy to characterize T c
n(s) in the case of a fully probabilistic NPLTS.

This holds in particular for resolutions.

Proposition 6. Let (S,A,−→) be a fully probabilistic NPLTS, s ∈ S, n ∈
N. Let A≤n = {α ∈ A∗ | |α| ≤ n}. Then T c

n(s) = {(α, p) ∈ A≤n × R]0,1] |
prob(CC(s, α)) = p}.

The construction in Definition 10 turns out to be monotonic, in the sense
that T c

n(s) includes as a subset T c
n−1(s).

Proposition 7. Let (S,A,−→) be an NPLTS, s ∈ S, (α, p) ∈ A∗ × R]0,1], and
n ∈ N≥|α|. Then (α, p) ∈ T c

n(s) implies (α, p) ∈ T c
n+1(s).

The following lemma, which exploits Proposition 6 and 7, provides the basis
for a characterization of ∼pre,c

PTr in terms of coherent weighted trace set equality.
In the lemma, zs denotes both the initial state of Z and the state to which s
corresponds.

Lemma 2. Let (S,A,−→) be an NPLTS, s ∈ S, and (α, p) ∈ A∗ ×R]0,1]. Then
(α, p) ∈ T c(s) iff there exists Z ∈ Rescsp(s) such that prob(CC(zs, α)) = p.

Theorem 2. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. Then s1 ∼pre,c
PTr s2 iff

T c(s1) = T c(s2).

We conclude with two remarks. The first one is that the construction in
Definition 10 is identical to the one in Definition 3.5 of [3], but this should
not be the case as coherency was neglected in [3]. Indeed, before Definition 3.5
of [3] the definition of X + Y – i.e., T1 + T2 using the notation of this paper –
should have included also (α, q1) ∈ X and (α, q2) ∈ Y without summing them
up, otherwise the right-to-left implication in Lemma 3.7 of [3] does not hold as
can be seen from trace a b of the (incoherent) resolution in Fig. 3 of this paper
whose initial state is z2. That definition of X + Y works here instead because
the focus on coherency requires to always sum up the probabilities of weighted
traces sharing the same trace.

The second remark is that looser coherency constraints, based on weighted
trace sets rather than on trace distributions as in Definition 8, would not work.
As anticipated in [2], if we used T c

n sets instead of TDc
n sets, then probabilistic

trace equivalent NPLTS models like the ones in Fig. 5 would be told apart.
Indeed, we would have tr(T c(s′

1)) = {ε, b, b c1, b c2, b c} = tr(T c(s′
2)) – whereas

Alternative Characterizations of Probabilistic Trace Equivalences 51

tr(TDc(s′
1)) �= tr(TDc(s′

2)) – hence in any coherent resolution of s′ traces a b c1,
a b c2, a b c could only be executed with probability 0.5 if present, while s′′ admits
coherent resolutions in which those traces have execution probability 0.25.

c2c1 c1 c2 c1 c2 c1 c2

1s’ 2s’

a
0.5

0.5 0.5
b

c

0.5

0.5 0.5
b

c

a

b
0.25 0.25 0.25 0.25

c c

s"s’

Fig. 5. Using weighted trace sets for coherency breaks probabilistic trace equivalence

7 Conclusions

Based on the notion of coherent resolution of nondeterminism, presented in [2]
to avoid the anomalies of probabilistic trace semantics depicted in Fig. 3, in
this paper we have provided alternative characterizations of ∼post,c

PTr [25] and
∼pre,c

PTr [3], respectively relying on the equality of fully coherent trace distributions
and on the equality of coherent weighted trace sets. Both fully coherent trace
distributions and coherent weighted trace sets are different from coherent trace
distributions, introduced in [2] for defining coherency constraints on resolutions.

We plan to exploit the aforementioned alternative characterizations for study-
ing properties and decision procedures of the two examined coherency-based prob-
abilistic trace equivalences over nondeterministic and probabilistic processes.

References

1. Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Inf. Comput. 200, 149–214 (2005)

2. Bernardo, M.: Coherent resolutions of nondeterminism. In: Gribaudo, M., Iacono,
M., Phung-Duc, T., Razumchik, R. (eds.) EPEW 2019. LNCS, vol. 12039, pp.
16–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44411-2 2

3. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences
for nondeterministic and probabilistic processes. Logical Methods Comput. Sci.
10(116), 1–42 (2014)

4. Bernardo, M., De Nicola, R., Loreti, M.: Relating strong behavioral equivalences
for processes with nondeterminism and probabilities. Theoret. Comput. Sci. 546,
63–92 (2014)

https://doi.org/10.1007/978-3-030-44411-2_2

52 M. Bernardo

5. Bernardo, M., Sangiorgi, D., Vignudelli, V.: On the discriminating power of testing
equivalences for reactive probabilistic systems: results and open problems. In: Nor-
man, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 281–296. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10696-0 23

6. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

7. Bonchi, F., Sokolova, A., Vignudelli, V.: The theory of traces for systems with
nondeterminism and probability. In: Proceedings of the 34th ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS 2019), pp. (19:62)1–14. IEEE-CS Press
(2019)

8. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31, 560–599 (1984)

9. Cheung, L., Lynch, N.A., Segala, R., Vaandrager, F.: Switched PIOA: parallel
composition via distributed scheduling. Theoret. Comput. Sci. 365, 83–108 (2006)

10. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional methods for probabilistic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
351–365. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0 24

11. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising testing
preorders for finite probabilistic processes. Logical Methods Comput. Sci. 4(4:4),
1–33 (2008)

12. Deng, Y., van Glabbeek, R., Morgan, C., Zhang, C.: Scalar outcomes suffice for fini-
tary probabilistic testing. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
363–378. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-
6 25

13. Derman, C.: Finite State Markovian Decision Processes. Academic Press, Cam-
bridge (1970)

14. Georgievska, S., Andova, S.: Probabilistic may/must testing: retaining probabilities
by restricted schedulers. Formal Aspects Comput. 24, 727–748 (2012). https://doi.
org/10.1007/s00165-012-0236-5

15. Giro, S., D’Argenio, P.R.: On the expressive power of schedulers in distributed
probabilistic systems. In: Proceedings of the 7th International Workshop on Quan-
titative Aspects of Programming Languages (QAPL 2009), ENTCS, vol. 253(3),
pp. 45–71. Elsevier (2009)

16. Huynh, D.T., Tian, L.: On some equivalence relations for probabilistic processes.
Fundamenta Informaticae 17, 211–234 (1992)

17. Jonsson, B., Ho-Stuart, C., Yi, W.: Testing and refinement for nondeterministic
and probabilistic processes. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.)
FTRTFT 1994. LNCS, vol. 863, pp. 418–430. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58468-4 176

18. Jonsson, B., Yi, W.: Compositional testing preorders for probabilistic processes.
In: Proceedings of the 10th IEEE Symposium on Logic in Computer Science (LICS
1995), pp. 431–441. IEEE-CS Press (1995)

19. Jonsson, B., Yi, W.: Testing preorders for probabilistic processes can be charac-
terized by simulations. Theoret. Comput. Sci. 282, 33–51 (2002)

20. Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations
for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990.
LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0039071

21. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19, 371–384
(1976)

https://doi.org/10.1007/978-3-319-10696-0_23
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/3-540-44685-0_24
https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1007/s00165-012-0236-5
https://doi.org/10.1007/s00165-012-0236-5
https://doi.org/10.1007/3-540-58468-4_176
https://doi.org/10.1007/3-540-58468-4_176
https://doi.org/10.1007/BFb0039071
https://doi.org/10.1007/BFb0039071

Alternative Characterizations of Probabilistic Trace Equivalences 53

22. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, London (1960)
23. Lynch, N., Segala, R., Vaandrager, F.: Compositionality for probabilistic automata.

In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 208–221.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45187-7 14

24. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Ph.D. thesis (1995)

25. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:
Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6 17

26. Segala, R.: Testing probabilistic automata. In: Montanari, U., Sassone, V. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7 62

27. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jon-
sson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer,
Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1 35

28. van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Handbook
of Process Algebra, pp. 3–99. Elsevier (2001)

29. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Inf. Comput. 121, 59–80 (1995)

30. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proceedings of the 26th IEEE Symposium on Foundations of Computer
Science (FOCS 1985), pp. 327–338. IEEE-CS Press (1985)

31. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Pro-
ceedings of the 12th International Symposium on Protocol Specification, Testing
and Verification (PSTV 1992), pp. 47–61. North-Holland (1992)

https://doi.org/10.1007/978-3-540-45187-7_14
https://doi.org/10.1007/3-540-60218-6_17
https://doi.org/10.1007/3-540-61604-7_62
https://doi.org/10.1007/978-3-540-48654-1_35

Probabilistic Model Checking of AODV

Mojgan Kamali(B) and Joost-Pieter Katoen

RWTH Aachen University, Aachen, Germany
{mojgan.kamali,katoen}@cs.rwth-aachen.de

https://moves.rwth-aachen.de

Abstract. This paper presents the formal modelling and verification
of the Ad-hoc On-demand Distance Vector (AODV) routing protocol.
Our study focuses on the quantitative aspects of AODV, in particu-
lar the influence of uncertainty (such as packet loss rates, collisions) on
the probability to establish short routes. We present a compositional
model of AODV’s functionality using probabilistic timed automata. The
strength of this model is that it combines hard real-time constraints with
randomised protocol behaviour and can deal with non-determinism (due
to e.g., queue behaviours at network nodes). An automated analysis by
probabilistic model checking provides useful insights on the sensitivity
of AODV’s ability to establish shortest/longest routes and deliver data
packets via such routes.

1 Introduction

Wireless Networks. Wireless technologies are on the rise: laptops and smart
phones are ubiquitous, sensor networks monitor the environment generating vast
amounts of data, and wireless technology is used in M2M (Machine-to-Machine)
and V2V (Vehicle-to-Vehicle) communication and emergency response networks
(Wireless Mesh Networks (WMNs). WMN applications are diverse [22], includ-
ing military networks, sensor networks like Body Area Networks (BAN) [33],
and environmental data tracking services.

Dependability. Reliability and performance aspects play a crucial role for wire-
less protocols in particular for safety-critical applications such as M2M, V2V
and WMN. For example, the quality of the wireless communication channel can
greatly affect the resilience of M2M communication or platoon guidance using
V2V. For safety-critical applications, an assessment of performance and relia-
bility aspects prior to deployment is highly important. This in particular holds
when network protocols become more complex.

Routing Protocols. They are key factors for the reliability and performance of
wireless networks. They find appropriate paths through the network along which

This work is funded by the German Research Foundation DFG.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 54–73, 2020.
https://doi.org/10.1007/978-3-030-59854-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_6

Probabilistic Model Checking of AODV 55

data packets are to be sent. The Ad-hoc On-demand Distance Vector (AODV)
protocol [38] is a prominent routing protocol in wireless networks. It is one of
the four protocols standardised by the IETF MANET Working Group and is
used in Zigbee, a low-power, low data rate, and personal area wireless ad-hoc
network. AODV finds routes on demand whenever needed. That is, it intends
to establish a route between the source and destination node (route discovery)
on injecting a data packet. This paper focuses on a quantitative analysis of
AODV’s functionality with respect to uncertainty factors such as message loss,
message collision(s) and non-determinism due to concurrency (such as queueing
behaviours at network nodes). The central question is how different message
loss rates—how unreliable is a communication link?—and how the location of
a message loss—which communication link is unreliable?—affect finding short-
est/longest routes and packet delivery.

Dependability Analysis by Simulation. As the wireless channel is a random com-
munication medium, system design methodologies need to account for stochastic
metrics. This has mainly been addressed so far through simulations [2,30,32,36].
However, due to the extremely high reliability requirements—in M2M applica-
tions, reliability of 1E-6 are not uncommon—the simulation duration becomes
prohibitive when evaluating protocols at a sufficient level of confidence. For
safety-critical applications, statistical guarantees are insufficient, and hard guar-
antees are called for. In addition, while simulations require defining a given set
of parameters, a bigger interest is in providing worst-case bounds over a set of
design alternatives [42]. Certain alternatives are not quantifiable leading to non-
determinism. For simulations this leads to an even higher computational burden
as a much wider parameter set has to be evaluated.

Our Approach. In order to address these challenges, we apply probabilistic model
checking [28] to the dependability analysis of routing protocols such as AODV.
Given the importance of timing requirements as well as uncertainty aspects such
as message loss rates and message collision(s), we employ probabilistic timed
automata [31] (PTA) as modelling formalism. These extend finite-state automata
with real-valued clock variables and discrete probabilistic branching. PTA are
finite symbolic representations of uncountably large Markov decision processes.
PTA model checking against a rich set of requirements—including dependability
metrics and beyond—is decidable thanks to a finite quotienting technique [35].1

This model allows for modelling hard time-out values, and unpredictable mes-
sage delays (by only providing worst and best case delays but no probability
distribution). We model the AODV protocol in a compositional manner, that is
to say, as a network of communicating probabilistic timed automata. Depend-
ability metrics are described as formal requirements using a probabilistic timed
temporal logic. In contrast to the symbolic execution of protocols [40], this is a

1 A digital clock semantics [35] where timer values are rounded to integral numbers
gives rise to coarse finite abstractions.

56 M. Kamali and J.-P. Katoen

model-based technique, i.e., it is applicable in early stages of the protocol devel-
opment.

Main Contributions. The AODV protocol has been subject to different formal
modelling and verification studies, e.g. [8,10,14,17,26]. Our work has two sig-
nificant contributions: a new, quantitative model of the AODV protocol, and
a rigorous assessment of key performance metrics of AODV. Our model differs
from existing studies of the AODV protocol—or similar routing protocols—in
the sense that in addition to formally model AODV’s functionality, we con-
sider (a) different message loss rates, (b) possible message collisions2, (c) non-
determinism (due to e.g., concurrent treatment of message queues at network
nodes) as well as (d) hard network delays. These aspects are captured by our com-
positional, probabilistic timed automata model of AODV. Related AODV mod-
els, analysed using Uppaal-SMC, do e.g., not model medium access control.3

In contrast to simulations or a statistical model-checking analysis, we exploit
probabilistic model checking [20], in particular mcsta in the MODEST toolset
[21], to quantitatively assess AODV. This approach explores all possible proto-
col behaviour, thus providing hard—rather than statistical—guarantees on the
quantitative metrics of AODV. By verifying varying message loss rates, our anal-
ysis reveals the sensitivity of the AODV’s ability to establish short/long routes
and deliver data packets via such routes for varying message loss rates.

2 Ad-Hoc On-Demand Distance Vector Protocol

AODV [38], a widely used reactive routing protocol applied in WMNs, tries to
find a route from a source to a destination on an on-demand basis. We describe
the functionality of the AODV with an injected packet to node s destined for
node d via intermediate nodes l and m (Fig. 1). The figure shows a linear topology
consisting of 4 nodes and their communication via transmission of control mes-
sages (broadcast and unicast). Dashed arrows depict broadcast communication
and continuous arrows show unicast communication.

Presume node s has a data packet destined for node d. In order to send the
data packet, s searches for a valid path to d in its routing table. If such a path
exists, the data packet is routed along the path to d. Otherwise, s initiates the
route discovery process to find a path to d by broadcasting a rreq message. The
rreq is rebroadcast and forwarded by node l and m until it reaches d (or an
intermediate node that has a valid route to d). On receiving the rreq message,
nodes l and m create a routing table entry to establish a reverse route back to
s. When d (or an intermediate node that has a valid route to d) receives the

2 In our model, collisions can still take place, despite the presence of collision avoidance
protocols, and we deliberately decided to consider both collisions and message losses
due to other causes separately.

3 When a message is broadcast or unicast, the message is immediately queued in the
buffer of the recipient. This neither involves collisions nor MAC aspects.

Probabilistic Model Checking of AODV 57

s l m d

rreq rreq rreq

rrep rrep rrep

Fig. 1. The AODV routing protocol.

rreq, it sends (unicasts) a rrep back to s via the previously established reverse
route. Upon receiving the rrep via s (at the end of the route discovery process),
an end-to-end route between s and d is established which is used to transfer the
data packet. If a rrep message is not received by s, it rebroadcasts another rreq
up to RREQ TRIES times.

When a node (e.g., here node d) unicasts a rrep, it waits to get a rrep-
ack message from the rrep receiver (here node m). If such a message is not
received, the rrep sender (here node d), broadcasts a rerr message, reporting
an unsuccessful unicast of rrep (due to either broken link or lossy link).

3 Formal Modelling

Considering different aspects of the AODV’s core functionality yields a rather
complex protocol state machine. This considerably complicates reliability eval-
uation and analysis of the protocol. A significant question is to what extent an
uncertain environment, e.g., message loss, worsens the protocol’s reliability. The
following features are crucial when modelling AODV:

– Stochastic impact, e.g., lossy communication and message collision(s);
– Non-determinism, e.g., node’s queues and distributed processes interleaving;
– Real-time behaviour, e.g., message delay;
– Very rigorous requirements to be enforced, e.g., route establishment.

A key step in evaluating the reliability and analysis of AODV is a model that
reflects the protocol’s behaviour and detaches the ambiguities from the informal
protocol specification. Traditional evaluation techniques for protocols, including
test-bed experiments and simulation, are not suitable due to enormous simula-
tion efforts. Neither analytical protocol evaluation approaches nor Markov-chain
models are appropriate due to respectively AODV’s complex behaviour and hard
timing constraints. Therefore, we exploit Probabilistic Timed Automata (PTA)
[31], a model that allows dealing with probabilistic behaviour, non-determinism
and real-time characteristics [35]. In order to cope with the complexity of the
AODV protocol, we follow a compositional modelling approach of PTA. To this
end, PTAs are described by the MODEST language [5]. This language supports
the composition of PTAs, is conceptually close to programming languages, and
yields comprehensive and easily extensible models. The MODEST tool [19,21]
allows a direct translation to PTAs [20] (with variables). Using the digital clock
semantics [35], such variable PTAs are mapped onto finite (but typically huge)
MDPs, by encoding the values of clocks in a symbolic manner. The models are
then amenable to model checking by software tools such as PRISM and Storm.

58 M. Kamali and J.-P. Katoen

Fig. 2. A stacked model view on the modelling.

4 A PTA Model of AODV

The PTA model of AODV consists of 3 processes: the injection of data packets
by the user (PacketInjection process), the AODV node’s core-functionality
(a Handler process for each network node), and the medium access controller
(Interface process). These processes run in parallel and synchronise on the pro-
gression of time and on common actions. A high-level view on our model is given
in Fig. 2. Process PacketInjection initiates the route discovery by synchronis-
ing with the Handler of the packet’s source. Communication between nodes
is modelled via the Interface process, receiving messages from the sender’s
Handler and sending them to receiver’s Handler(s). The MODEST model of
AODV (available online4) contains nearly thousand lines of codes formalising
the protocol and its requirements for our analysis and verification.

In order to define the routing table of nodes, we introduce five matrices
(two-dimensional arrays), keeping information about the destination address
as rtDestination, the last sequence number received from the destination as
rtSeqNum, the distance from the destination as rtHops, the next node along
the destination as rtNextHop and validity of the route along the destination as
rtflag, e.g., rtflag[1][2] indicates whether node1 has a valid route to node2.

Buffers of nodes are modelled as FIFO queues represented by eight arrays
of integers5 with constant size QLength= 20. When a node buffers a mes-
sage, these arrays are updated accordingly. Variables buffer and head pointer
show where the next receiving message should be stored and which message
is the next to be processed, respectively. For instance, msgLocalOriginator
keeps track of the receiving message’s originator and if a new message
is subject to be stored, its originator is entered as: msgLocalOriginator
[(buffer+head pointer)%QLength]=msgOriginator.

4 https://git.rwth-aachen.de/mojgan.kamali/qest2020.
5 Due to limitation of MODEST in defining struct type, we define one array for every

message element in the nodes’ buffer.

https://git.rwth-aachen.de/mojgan.kamali/qest2020

Probabilistic Model Checking of AODV 59

We have also introduced several global variables for the nodes communi-
cation purposes. When a message is aimed for a broadcast, the corresponding
Handler copies the message information into the global variables to hand them
to the Interface. For instance, msgOriginator, msgSender, msgDestination
are respectively used to store the global message’s originator, sender and desti-
nation. The routing table of nodes are defined globally to carry out verification
since properties cannot access processes’ local variables.

4.1 Packet Injector Model

Process PacketInjection models injecting the users data packets to a source
node. The first data packet is injected to the source, say OIP, targeted for the
destination, say DIP, in order for AODV to start the route discovery. The rest
of the data packets can be injected subsequently. The total number of injected
packets is defined by the constant Max sent packets (equals to 1 in our experi-
ments) while the variable counter is increased by 1 each time a new data packet
is injected. It can be increased up to Max sent packets, and also indicates the
number of times the process is executed recursively.

4.2 Node Model

The main functionality of AODV at a given node, e.g., generating control mes-
sages, broadcasting, receiving, discarding and rebroadcasting them, updating
routing information, delays, etc., is modelled by the recursive Handler process.
It includes a process main to avoid initialising the Handler’s local variables on
each recursive call. We call the main process recursively inside the Handler. In
this section, we present a key fragment of the Handler model, conditions and
updates (Listing 1.1 and Fig. 3). Numbers on the states of Fig. 3 represent the
corresponding line numbers in Listing 1.1.

As described in Sect. 2, on receiving a packet, the source of the packet looks
for the information about the packet destination in its routing table. If an entry
exists, the packet is routed towards the destination. Otherwise, the source ini-
tiates a route discovery, broadcasting rreq messages through the network (line
7 ff.), where the condition of keyword when asserts that the received message
is a packet (msgLocalType[head pointer]==PACKET), valid information about
destination is absent (line 8) and the handling node is not the destination of
the packet (line 9). If all conditions are met, the Handler updates its unique
sequence number (sn) as well as its rreqID which will be inserted into the
soon-to-be broadcast rreq message, resets its local clock c and waits for broad-
casting rreq. The sequence number and rreqID in rreq messages are used for
indicating the freshness of the messages. In the time interval [Delay-Spread,
Delay+Spread] where Delay= 40 (ms) and Spread= 5 (ms), there are two prob-
abilistic choices denoted by Keyword palt (line 13):

60 M. Kamali and J.-P. Katoen

Listing 1.1. MODEST description of the Handler process snippet.

1 Handler(int (1..N)ip,int (0..100) loss){

2 //initialise local variables

3 . . .
4 urgent {= buffer=0, head_pointer =0 =}; main()

5 main(){alt{. . .
6 //broadcast rreq (initiate route discovery)

7 :: when(msgLocalType[head_pointer] == PACKET

8 && !rtflag[ip][msgLocalDestination [head_pointer]]

9 && msgLocalDestination [head_pointer]!=ip

10 && . . .)
11 tau{= sn=(sn==0) ? 0 : sn+1, rreqID++, c=0 =};

12 invariant(c<=Delay+Spread)

13 when(c>=Delay -Spread) palt{

14 :Collision: collision ()

15 :100-Collision: send

16 {= rreqs[ip][rreqID]=true , msgType=RREQ , msgHops=0,

17 msgrreqID=rreqID , . . . =}}

18 //queue/lose messages

19 :: put_in; urgent alt{

20 :: when(buffer <QLength) urgent palt{

21 :100-loss: {=

22 msgLocalOriginator [(buffer+head_pointer)%QLength]=

23 msgOriginator ,. . . =}

24 :loss: {==}}

25 :: when(buffer >= QLength){==}}

26 //discard rreq

27 :: when(msgLocalType[head_pointer]== RREQ

28 && rreqs[msgLocalOriginator[head_pointer]]

29 [msgLocalrreqID[head_pointer]])

30 tau{= rtDestination[ip][msgLocalSender[head_pointer]]=

31 msgLocalSender[head_pointer],

32 rtNextHop[ip][msgLocalSender[head_pointer]]=

33 msgLocalSender[head_pointer],

34 msgLocalType[head_pointer] = NONE , . . . =}

35 //unicast rrep

36 :: when(msgLocalType[head_pointer]== RREQ

37 && !rreqs[msgLocalOriginator[head_pointer]]

38 [msgLocalrreqID[head_pointer]]

39 && msgLocalDestination [head_pointer]==ip && . . .)
40 tau{= c=0 =}

41 invariant(c<=Delay+Spread)

42 when(c>=Delay -Spread) palt{

43 :Collision: collision ()

44 :100-Collision: deliver

45 {= msgType=RREP , msgHops=0,. . . =};

46 urgent tau {= NextHop=rtNextHop[ip][msgOriginator]=}}

47 . . .
48 }; main()}}

Probabilistic Model Checking of AODV 61

main rreq

queue/
loss

start

rrep

15–17
13

7–11

14

19

25

4

20

24

21–23

36–40

43
4244–45

46

27–34

Fig. 3. PTA model of the Handler process snippet (Listing 1.1).

– A collision occurs. In this study, a collision happens when a node is broadcast-
ing/unicasting a message while receiving messages from its neighbour(s) at
the same time with weight Collision. In such a situation, the receiving node
loses the received message(s) and does not broadcast/unicast its message to
the node(s) it received message(s) from (while it still sends its message to
other nodes in transmission range). The recursive process collision() han-
dles collision(s) by marking nodes that cannot receive messages because of the
collision(s) (line 14). In our study, the value of Collision is 1%, modelling
the probabilistic collision given a low amount of network traffic.

– A broadcast of rreq happens without collision (with weight 100-Collision):
Handler and Interface synchronise on action send, broadcasting rreq (lines
15–17). This happens first by transferring the rreq to the Interface, and
later by transmission of the rreq to the neighbouring nodes.

We model resending of rreq up to RREQ tries by assuming: the first rreq is
broadcast by the source, a rrep is not yet received by the source, there are no
more messages in the network to be broadcast/unicast (no rrep is on the way).
In this case, the next rreq is broadcast.

The Interface process is discussed in Sect. 4.3. For the sake of under-
standability, we assume that synchronisation with the Interface is first done
via the send action and subsequently by the put in action, transferring the
rreq from the Interface to the neighbouring node (line 19). Action put in is
used for transferring all types of messages between Handler and Interface,
e.g., rreq, rrep, rerr and packet. After synchronising on put in, there
are two non-deterministic choices labeled by urgent alt followed by condi-
tions: (1) the node’s buffer is not full (buffer<QLength) and (2) otherwise
(buffer>=QLength). The urgent keyword forces immediate execution of the
following process behaviour.

In case (1), the message will be either stored in the first free positions of the
node’s buffer with weight 100-loss (lines 21–23) or be lost with weight loss

62 M. Kamali and J.-P. Katoen

(line 24). Keyword palt denotes the probabilistic choice. The statement means
that a message is lost with probability loss/100. In case (2), the message is
dropped as the buffer is full.

The internal actions indicated by tau actions cope with the internal
behaviour of node (i.e., behaviours that are independent of other nodes), e.g.,
discarding queued messages. For instance in line 27, the when condition states
that the node does not rebroadcast/forward the message, if the queued message
is a rreq (msgLocalType[head pointer]==RREQ) and the Handler has already
originated/received the rreq with rreqID (lines 28–29). In such a situation, the
node’s routing table is updated only for the sender of the rreq (lines 30–34) and
subsequently the rreq is deleted from the queue.

Handling the unicast of rrep by either the destination or the intermediate
nodes is also modelled in this process. Line 36 ff. presents the case when a
rreq is received by the destination. The when condition asserts that the mes-
sage to be handled is a rreq message (msgLocalType[head pointer] == RREQ),
the rreq is not received before (lines 37–38) and the destination of the mes-
sages is the receiving node (line 39). If this condition holds, c is reset, and the
Handler waits for unicasting a rrep to the originator of the rreq. In the interval
[Delay-Spread, Delay+Spread], there are two probabilistic choices: either a
collision happens as described earlier, or a rrep is sent to the next node towards
the rreq originator (NextHop in line 46) using the deliver action.

4.3 Medium Access Control (MAC) Model

The recursive Interface process models the communication between nodes,
how messages/packets are flooded through the network (broadcast/unicast),
and message collision. It synchronises with network nodes via non-deterministic
actions, e.g., send1,send2, deliver1, etc.

When a node, say Handler node1, broadcasts a rreq or a rerr message, it
synchronises with the Interface on the send1 action, transferring the message
from the node to the medium. The same is the case for Handler node2, etc.
When Handler node1 or Handler node2 unicasts a rrep or a packet, they
respectively synchronise with the Interface on deliver1 or deliver2 actions.

Based on the taken action, e.g., send1 ordeliver1, the interface realises that
the message is either subject to broadcast or unicast.

– If broadcast, the Interface checks (1) which nodes are the receivers using the
connectivity matrix isconnected (showing the direct connectivity between
nodes) and (2) whether the receivers are allowed to receive the message (if
they are not marked by the Handler as the effect of collision(s)).

– If unicast, the Interface investigates (1) who is the receiving node, and
(2) whether the receiving node is allowed to receive the message (if it is not
marked by the Handler as the effect of collision).

Then, the message is broadcast or unicast using the put in action of the receiving
node(s), or assumed collided (unmarking nodes from collision happens here).

Probabilistic Model Checking of AODV 63

5 Analysis Results

Developing a PTA model of AODV enabled deep insight into different aspects
of the AODV protocol. Formal verification of the PTA model helps to check
functional correctness of the protocol as well as QoS properties. We focus in
particular on the following questions: (a) what is the influence of loss probabilities
and message collision on AODV discovering short (or long) routes for different
topologies?, (b) to what extent does it matter which link(s) in the network are
faulty?, (c) how is route discovery affected if several links are unreliable?, (d)
how likely are packets to be delivered once route discovery has completed?, and
(e) how does broadcasting of rreq messages up to RREQ tries times help the
protocol to find routes (short or long) and to deliver data packets?

5.1 Evaluation Metrics

The focus of our formal verification is on route establishment (short or long) and
packet delivery properties of AODV in presence of varying lossy communication
channels, possible message collision(s) as well as broadcast retries by the packet
source. We therefore consider the probability of messages getting lost in the
reception of other nodes in the interval [0, 100] percent and broadcasting of rreq
messages by the packet source up to RREQ tries times. In our experiments, we
fix the message collision probability to 1%.

In order to investigate the correctness of our PTA model, we investigated
a.o. (a) absence of a deadlock, (b) the probability of all nodes besides the packet
source and destination, respectively, to broadcast rreq and rrep messages, and
(c) the probability that irrelevant nodes update their routing tables (correct
routes were found).

1 2 3 4 5

Fig. 4. Chain topology.

1 2 3 5

4

Fig. 5. Triangle topology.

1 2

3

4 5

Fig. 6. Grip topology.

5.2 Verified Properties

We verified the following three properties. They are all formulated using proba-
bilistic (timed) CTL and are of the form Pmax(<> predicate) where <> stands
for eventually. Intuitively, this formula denotes the maximal probability that a
protocol state is eventually reached for which predicate holds. Pmax refers to
considering all possible resolutions of the non-determinism in the AODV’s PTA
model such as the interleaving of all distributed MODEST processes such as
sending and receiving messages.6 Considering Pmax takes an angelic viewpoint
on the protocol’s behaviour. The three properties considered are:
6 We do not verify our properties for Pmin as this probability is always 0 in our analysis.

64 M. Kamali and J.-P. Katoen

Table 1. Evaluation scenarios.

loss1 loss2 loss3 loss4 loss5

Scenario1 0 [0, 100] [0, 100] [0, 100] 0

Scenario2 0 0 0 0 [0, 100]

P1:Pmax(<> (Hops == Distance))

referring to the fact that the distance (Hops) of the route discovered by the
source equals to the shortest distance (Distance) in the network between the
source and destination. The second property

P2:Pmax(<> (Hops > Distance))

refers to the fact that the route discovered by the source is longer than the
shortest possible route in the network. Finally,

P3:Pmax(<> (deliver[DIP] == Max sent packet))

refers to the fact that all packets are eventually delivered at the destination. We
verified these properties for different message losses (Table 1), 1% probability of
messages collision(s) as well as for different RREQ tries between [0,2] times.

5.3 Formal Verification Results

Verification Set-up. We carried out the formal verification of our PTA model
of AODV for several network topologies up to 5 nodes using the model checker
mcsta in the MODEST toolset [21]. We show the verification results for the
network topologies depicted in Fig. 4, 5 and 6. The results for these topologies are
illustrative for the results obtained for other topologies. Our analysis is carried
out on a CPU core of an Intel Skylake Platinum 8160 with 2.1 GHz clock speed
and 192 GB memory.

For each verification experiment, we inject a packet to the source OIP= 1 to
be delivered at destination DIP= 5. This initiates a route discovery process. We
note that our formal analysis of AODV confirms that it does not always find a
shortest path as also shown in [14]. This behaviour occurs if nodes on the short
path are slower than the nodes on the long path when processing the messages in
their queues. Our work extends [14] by adding the probability of losing messages
and the probability of message collision(s) as well as considering the broadcast
of rreq messages up to RREQ tries times, and studies the effects on the ability
of the protocol to find a shortest path.

We verify the properties P1–P3 under varying channel conditions, 1% mes-
sage collision and different values of RREQ tries. We consider the loss probability
for each node as a parameter with values in the interval [0, 100] (as percentage)
shown in Table 1. In scenario1, the loss probabilities for nodes 1 and 5 are
zero (reliable communication) while the loss probability for nodes 2, 3, 4 varies

Probabilistic Model Checking of AODV 65

(a) P1, Scenario1. (b) P2, Scenario1. (c) P3, Scenario1.

(d) P1, Scenario2. (e) P2, Scenario2. (f) P3, Scenario2.

Fig. 7. Chain topology. P1: route discovery via short path, P2: route discovery via long
path, P3: packet delivery. Scenario1: unreliable at node 2, 3 and 4 and Scenario2:
unreliable at node 5. The solid curve corresponds to RREQ tries= 0, the dashed curve
to RREQ tries= 1, and the dotted curve to RREQ tries= 2.

(unreliable communication). In scenario2, the loss probability for nodes 1, 2,
3 and 4 are zero while the loss probability for node 5 is varying. The proba-
bilities regarding the properties are multiplied by 100 (Y axis); 0% and 100%
correspond to probability 0 and 1, respectively.

Chain Topology: Scenario1: As shown in Fig. 7a, the probability of finding
the short path is drastically decreasing when all loss probabilities are increasing
(this probability is 92% when all loss probabilities are 0% because of the message
collision(s) probability of 1%)7. Figure 7b shows that the probability of finding
a long path is 0% as expected. These figures together indicate that when all
loss probabilities are about 70%, no route (neither short nor long) towards DIP
is found even with the increase of RREQ tries (dotted curves in both figures).
Therefore, the probability of delivering packets to DIP (Fig. 7c) is decreasing with
an even steeper slope than in Fig. 7a. For instance, when all loss probabilities
are around 50%, no packet is delivered even when increasing RREQ tries.

Scenario2: Fig. 7d and 7f show a decrease in the probability of finding the
short path and packet delivery, respectively, when loss5 increases, whereas the

7 In all of the topologies when all loss probabilities are 0%, the 1% probability of
message collision(s) yields to a decrease in the probabilities of finding the short/long
path (if any found) as well as the probability of packet delivery. This means that
these probabilities are never 100% even in a fully reliable situation with all loss
probabilities at 0% due to possible message collision(s) probability.

66 M. Kamali and J.-P. Katoen

(a) P1, Scenario1. (b) P2, Scenario1. (c) P3, Scenario1.

(d) P1, Scenario2. (e) P2, Scenario2. (f) P3, Scenario2.

Fig. 8. Triangle topology. P1: route discovery via short path, P2: route discovery
via long path, P3: packet delivery. Scenario1: unreliable at node 2, 3 and 4 and
Scenario2: unreliable at node 5. The solid curve corresponds to RREQ tries= 0, the
dashed curve to RREQ tries= 1, and the dotted curve to RREQ tries= 2.

probability of finding the long path stays constant (always 0%). Increasing loss5
does not have any effect on finding the long path even if RREQ tries increases,
since this long route is never found (as shown in Fig. 7e). Figure 7d and 7f show
that increasing RREQ tries can help finding the short path as well as delivering
packets. This is in contrast to Fig. 7e.

Triangle Topology: Scenario1: Fig. 8a shows that the probability of finding the
short path from OIP to DIP (P1) is monotonically decreasing for all curves on
increasing the loss probabilities. The same occurs for the probability of finding
the long path from OIP to DIP (P2): it decreases when all loss probabilities
increase (Fig. 8b). For instance, if all loss probabilities are 20%, the probability
of finding the short path to DIP for RREQ tries= 0 is 61% (Fig. 8a, solid curve)
while the probability of finding the long path for RREQ tries= 0 is 38% (Fig. 8b,
solid curve). This indicates that—as expected—the probability of discovering the
short route increases when the long route becomes more unreliable. Otherwise
when the loss probability on both short and long path is equal, both the short and
long path are discoverable by AODV. The descending curve in Fig. 8c depicts a
decrease in packet delivery probability when the loss probability on both routes
increases.

Our analysis shows that finding the longer path by AODV is independent of
the increase/decrease of the loss probability on the short path. For instance, in
a fully reliable situation with all loss probabilities at 0%, a short path as well

Probabilistic Model Checking of AODV 67

as a long path are found with the probabilities of 96% and 94%, respectively. So
the probability of finding routes only depends on how lossy that specific route is.
The reason for finding the long path is that when AODV receives a rreq with a
unique ID it processes the message. After that, any rreq with the same ID will
be discarded no matter if it has arrived via a shorter path.8

Our analysis also quantifies the impact of the number of retransmissions of
rreqs. As shown in Fig. 8a–8c, when RREQ tries increases from 0 to 2 (solid,
dashed and dotted curves), the probabilities of finding a short and long path
as well as packet delivery increase. For example, when all probabilities are
40%, the short path to DIP for RREQ tries= 0 is discovered with probability
about 34%. This value increases to around 54% for RREQ tries= 1 and 65% for
RREQ tries= 2.

Scenario2: Fig. 8d, 8e and 8f present our results when destination DIP loses
messages. Figure 8d presents that larger values for loss5 yield a decrease in the
probability of finding the short path to DIP (P1) as well as the probability of
finding the long path to DIP (P2). Therefore when loss5 increases, the probabil-
ity of finding the short and long path to DIP decreases from 96% (loss5= 0) to
0% (loss5= 100). Figure 8f depicts that the probability of packets being deliv-
ered at DIP (P3) is also decreasing when loss5 increases. This is because loss5
is the loss probability of DIP. These figures show when loss5 is less than 34%,
increasing the value of RREQ tries from 1 to 2 does not have any effect on the
probability of finding the short/long path or packet delivery (dashed and dot-
ted curves overlap). However when loss5 increases, larger values of RREQ tries
increase the probabilities of short and long path as well packet delivery. For
instance, considering loss5= 40, the probability of finding the short path to
DIP for RREQ tries= 0 is about 57%. This probability increases to around 66%
for RREQ tries= 1 and 67% for RREQ tries= 2. This quantifies the effect of
increasing RREQ tries. As shown in Fig.8f, RREQ tries does not play a signifi-
cant role for packet delivery. For example, when loss5 = 40%, the probability of
delivering a packet is about 46% for RREQ tries= 0. This probability increases
to only around 54% for RREQ tries= 1 and 55% for RREQ tries= 2.

Grip Topology: Scenario1: Fig. 9a and 9c, respectively, show the decrease in the
probability of finding the short path and the packet delivery probability when
all loss probabilities increase. These two figures reflect a similar behaviour as
in Fig. 8a and 8c for the Triangle topology. However, Fig. 9b does not have
a monotonic trend (increases first and then decreases). The figure shows that
when the loss probability is 0%, AODV finds the long path for such a topology
8 We also analysed an alternative variant of the protocol which not only checks for the
rreq ID, but also if the message has arrived via a short path. Then, the node pro-
cesses the message and rebroadcasts it. The results of our analysis show a seemingly
contradictory results in this situation: when the loss probability increases on the
short path, then the probability of finding the long path is monotonically increasing
(in contrast to Fig. 8b). This shows that finding the longer path by AODV is some-
how dependent on the increase/decrease of the loss probability on the short path in
this setting.

68 M. Kamali and J.-P. Katoen

(a) P1, Scenario1. (b) P2, Scenario1. (c) P3, Scenario1.

(d) P1, Scenario2. (e) P2, Scenario2. (f) P3, Scenario2.

Fig. 9. Grip topology. P1: route discovery via short path, P2: route discovery via long
path, P3: packet delivery. Scenario1: unreliable at node 2, 3 and 4 and Scenario2:
unreliable at node 5. The solid curve corresponds to RREQ tries= 0, the dashed curve
to RREQ tries= 1, and the dotted curve to RREQ tries= 2.

with the probability of 0%. When all loss probabilities increase to 20%, the
probability of finding the long path increases to about 4% for RREQ tries= 0
and to 7% for RREQ tries= 1. After that point, it decreases until it reaches 0%.
The value of RREQ tries has a considerable effect on the number of states and
time for verification. For RREQ tries= 2 we encounter a time out after 432 000 s.
The figure depicts that all loss probabilities equal to 20% provide the peak for
finding the long path. This unusual behaviour can be due to the fact that when
rreq is broadcast via node 1, node 3 receives the message while node 2 loses it.
Later when node 2 gets the message from node 3, it assumes that the messages
is a new rreq. Node 2 processes it and rebroadcasts it. Then the longer path is
discovered.

Scenario2: Fig. 9d and 9f depict a decrease in the probability of finding the
short path and delivering packet, respectively, when loss5 increases, whereas
the probability of finding the long path stays constant (always 0%). This shows
that increasing loss5 does not have any effect on finding the long path even
if RREQ tries increases, since this route is never found. Figure 9d and 9f show
that increasing RREQ tries improves finding the short path as well as delivering
packets, in contrast to Fig. 9e.

Probabilistic Model Checking of AODV 69

Table 2. Number of explored states and time for verification

Chain topology Triangle topology Grip topology

Scenario1 Scenario2 Scenario1 Scenario2 Scenario1 Scenario2

RREQ tries States Time States Time States Time States Time States Time States Time

0 5 646 1 2 698 1 75 092 13 60 304 9 254 958 78 62 486 11

1 58 984 9 4 288 1 1 225 652 1 314 155 988 34 13 278 354 150 907 220 618 67

2 545 200 244 5 878 1 17 594 464 213 646 347 088 146 time out time out 693 674 626

5.4 Verification Statistics

Table 2 summarises the number of explored states of the underlying MDP of our
PTA model together with the time (in seconds) for exploring the MDP for each
topology and scenario. The verification statistics show that when the network
becomes more complex (number of links and/or node connectivity increase), the
number of explored states and time for exploring those states increase accord-
ingly. For instance in the Chain topology, each node is connected to at most 2
nodes, where in the Triangle topology, every node is connected to exactly 2
nodes. The connectivity increases to 3 nodes for the Grip topology (node 2 is
connected to 3 nodes). The value of RREQ tries has a substantial impact on the
state space since the retransmission of rreqs by the source happens only when
all previous messages are handled. Increasing the number of nodes that lose mes-
sages also affect on the number of explored states due to the branching for loss
probabilities, e.g. Scenario2 has fewer number of explored states compared to
Scenario1.

6 Related Work

Wireless protocols, in particular AODV [4,7,9,16,29], have so far been primar-
ily analysed using simulation techniques [2,6,30,36]. In the later case, Cavin
et al. [6] modelled a flooding algorithm in different simulators (OPNET, NS-2,
and GloMoSim). Flooding is a very simple broadcast algorithm and is elemen-
tary for several wireless network protocols, e.g., routing protocols. Their study
shows significantly different and barely comparable simulation results despite
carefully setting the same parameters and using the same scenarios. This can be
for instance due to mismatching of the modellisation of each simulator.

Applying statistical model checking [1], the technique that combines discrete-
event simulation and model checking, has also received quite some attention.
In contrast to classical model checking, this technique monitors many possible
traces of the formal model, and (as simulation) provides statistical guarantees.
The Uppaal-SMC [12] has been applied to the DYMO [39] and the AODVv2 [37]
protocols (the refined versions of AODV) [25,27]. Statistical model checking has
also been applied to analyse the first version of the AODV protocol [11,23,24].
Our analysis of AODV differs from the latter studies in the sense that we apply a
model-checking technique that gives us a hard guarantee on the achieved results.
Moreover, we consider the probability of losing messages as a parameter that can

70 M. Kamali and J.-P. Katoen

be varied in the interval [0, 100], facilitating the protocol analysis for different
message loss values, whereas this probability was fixed in the other studies.
Varying loss probability gives us the insight on the sensitivity of the AODV
protocol relative to message loss probability.

Studies using Uppaal [3] include the formal modelling and analysis of the
LMAC protocol [41] for wireless sensor networks [15], the OLSR protocol [26]
and the BATMAN [8] routing protocol for mesh networks. The latter study
verified properties such as loop freedom, bidirectional link discovery, and route
discovery as well as revealing several ambiguities in the RFC [34]. Formal analysis
of the AODV protocol applying model checking has been studied in [10,14,17].
Our work differs from the other existing studies of the AODV protocol in the
sense that in addition to formally model the AODV protocol, we also consider
lossy communication as well as message collision. We carry out a rigorous analysis
on how lossy communication can affect the network reliability.

There are several studies that have applied the MODEST modelling lan-
guage in the context of wireless networks [13,18,20]. The paper [20] analyses the
Bounded Retransmission Protocol (BRP), the IEEE 802.11 wireless networks
and the IEEE 802.3 CSMA/CD Protocol. In [13], the wireless EchoRing pro-
tocol is modelled and analysed. A formal study of the ZigBee is carried out
[18].

7 Conclusions

In this paper, we have presented the formal modelling and the resulting verifi-
cation of the AODV routing protocol, an employed routing protocol in WMNs.
We provided a compositional modelling of AODV, reflecting the protocol’s core
functionality. The formal modelling revealed AODV’s malfunctioning regard-
ing finding the shortest path, discussed also in [14] (the AODV protocol does
not always find the shortest path). The PTA model of AODV composed of dif-
ferent processes interleaving with each other allows us to model the realistic
behaviour of wireless networks, in particular message delay, message loss, mes-
sage collision(s), etc. Our approach allows determining the correctness as well
as studying the reliability and performance under different conditions. In par-
ticular, we analysed AODV in the presence of random message loss and message
collision and showed how varying these parameters affects the protocol reliability
and performance. Future work includes applying parameter synthesis to AODV
analysis.

Acknowledgment. We thank Peter Höfner (ANU) for discussions on AODV, Arnd
Hartmanns (Twente) for assistance using mcsta and the reviewers for their helpful
comments.

Probabilistic Model Checking of AODV 71

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018)

2. Alsheikh, M.A., Hoang, D.T., Niyato, D., Tan, H.P., Lin, S.: Markov decision
processes with applications in wireless sensor networks: a survey. IEEE Commun.
Surv. Tutor. 17(3), 1239–1267 (2015)

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

4. Biswas, A., Saha, B., Guha, S.: Performance analysis of AODV and DSR routing
protocols for Ad-Hoc networks. In: Thilagam, P.S., Pais, A.R., Chandrasekaran, K.,
Balakrishnan, N. (eds.) ADCONS 2011. LNCS, vol. 7135, pp. 297–305. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29280-4 36

5. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.: MODEST: a com-
positional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006)

6. Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In:
POMC, pp. 38–43. ACM (2002)

7. Chakeres, I.D., Belding-Royer, E.M.: AODV routing protocol implementation
design. In: Proceedings of the 24th International Conference on Distributed Com-
puting Systems Workshops, 2004, pp. 698–703 (2004)

8. Chaudhary, K., Fehnker, A., Mehta, V.: Modelling, verification, and comparative
performance analysis of the B.A.T.M.A.N. protocol. In: MARS, EPTCS, vol. 244,
pp. 53–65 (2017)

9. Chavan, A., Kurule, D., Dere, P.: Performance analysis of AODV and DSDV rout-
ing protocol in MANET and modifications in AODV against black hole attack.
Procedia Comput. Sci. 79, 835–844 (2016)

10. Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Steffen, M.,
Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 306–321. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11494881 20

11. Dal Corso, A., Macedonio, D., Merro, M.: Statistical model checking of ad hoc
routing protocols in lossy grid networks. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 112–126. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9 9

12. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Tech. Trans. 17(4), 397–415 (2015)

13. Dombrowski, C., Junges, S., Katoen, J., Gross, J.: Model-checking assisted protocol
design for ultra-reliable low-latency wireless networks. In: IEEE 35th Symposium
on Reliable Distributed Systems (SRDS), pp. 307–316. IEEE (2016)

14. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 13

15. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC
protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73210-5 14

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-642-29280-4_36
https://doi.org/10.1007/11494881_20
https://doi.org/10.1007/978-3-319-17524-9_9
https://doi.org/10.1007/978-3-319-17524-9_9
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-540-73210-5_14
https://doi.org/10.1007/978-3-540-73210-5_14

72 M. Kamali and J.-P. Katoen

16. Garg, S., Verma, A.K.: Simulation and comparison of AODV variants under dif-
ferent mobility models in MANETs. In: Vishwakarma, H.R., Akashe, S. (eds.)
Computing and Network Sustainability. LNNS, vol. 12, pp. 333–342. Springer,
Singapore (2017). https://doi.org/10.1007/978-981-10-3935-5 34

17. van Glabbeek, R., Höfner, P., Portmann, M., Tan, W.L.: Modelling and verifying
the AODV routing protocol. Distrib. Comput. 29(4), 279–315 (2016). https://doi.
org/10.1007/s00446-015-0262-7

18. Groß, C., Hermanns, H., Pulungan, R.: Does clock precision influence Zigbee’s
energy consumptions? In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007.
LNCS, vol. 4878, pp. 174–188. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77096-1 13

19. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Design 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

20. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: QEST, pp. 187–196. IEEE (2009)

21. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

22. Hoebeke, J., Moerman, I., Dhoedt, B., Demeester, P.: An overview of mobile ad
hoc networks: applications and challenges. Commun. Netw. 3, 60–66 (2004)

23. Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing proto-
cols. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp.
322–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-
4 22

24. Höfner, P., Kamali, M.: Quantitative analysis of AODV and its variants on dynamic
topologies using statistical model checking. In: Braberman, V., Fribourg, L. (eds.)
FORMATS 2013. LNCS, vol. 8053, pp. 121–136. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40229-6 9

25. Kamali, M., Fehnker, A.: Adaptive formal framework for WMN routing protocols.
In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 175–195.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02146-7 9

26. Kamali, M., Höfner, P., Kamali, M., Petre, L.: Formal analysis of proactive, dis-
tributed routing. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276,
pp. 175–189. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-
0 13

27. Kamali, M., Merro, M., Dal Corso, A.: AODVv2: performance vs. loop freedom.
In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.)
SOFSEM 2018. LNCS, vol. 10706, pp. 337–350. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73117-9 24

28. Katoen, J.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM
(2016)

29. Kolipaka, S., Bhandari, B.N., Rajani, A.: Performance analysis of AODV with
multi-radio in hybrid wireless mesh network. In: Eleventh International Confer-
ence on Wireless and Optical Communications Networks (WOCN), pp. 1–5. IEEE
(2014)

30. Kwak, B.J., Song, N.O., Miller, L.E.: Performance analysis of exponential backoff.
IEEE/ACM Trans. Network. 13(2), 343–355 (2005)

https://doi.org/10.1007/978-981-10-3935-5_34
https://doi.org/10.1007/s00446-015-0262-7
https://doi.org/10.1007/s00446-015-0262-7
https://doi.org/10.1007/978-3-540-77096-1_13
https://doi.org/10.1007/978-3-540-77096-1_13
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-38088-4_22
https://doi.org/10.1007/978-3-642-38088-4_22
https://doi.org/10.1007/978-3-642-40229-6_9
https://doi.org/10.1007/978-3-030-02146-7_9
https://doi.org/10.1007/978-3-319-22969-0_13
https://doi.org/10.1007/978-3-319-22969-0_13
https://doi.org/10.1007/978-3-319-73117-9_24
https://doi.org/10.1007/978-3-319-73117-9_24

Probabilistic Model Checking of AODV 73

31. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002)

32. Misic, J., Shafi, S., Misic, V.B.: Performance of a beacon enabled IEEE 802.15.4
cluster with downlink and uplink traffic. IEEE Trans. Parallel Distrib. Syst. 17(4),
361–376 (2006)

33. Negra, R., Jemili, I., Belghith, A.: Wireless body area networks: applications and
technologies. Procedia Comput. Sci. 83, 1274–1281 (2016)

34. Neumann, A., Aichele, C., Lindner, M., Wunderlich, S.: Better approach to mobile
ad-hoc networking (BATMAN). Internet draft00 (2008). https://tools.ietf.org/
html/draft-wunderlich-openmesh-manet-routing-00

35. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Formal Methods Syst. Des. 43(2), 164–190 (2013). https://doi.org/10.
1007/s10703-012-0177-x

36. Obaidat, M.S., Green, D.B.: Simulation of wireless networks. In: Obaidat, M.S.,
Papadimitriou, G.I. (eds.) Applied System Simulation. Springer, Boston (2003).
https://doi.org/10.1007/978-1-4419-9218-5 6

37. Perkins, C., Stan, R., Dowdell, J., Steenbrink, L., Mercieca, V.: DynamicMANET
On-demand (AODVv2) Routing draft-ietf-manet-aodvv2. Internet Draft 2016
(2016)

38. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV)
routing. RFC 3561 (2003). https://www.ietf.org/rfc/rfc3561

39. Perkins, C., Stan, R., Dowdell, J.: Dynamic manet on-demand (AODVv2) routing
draft-ietf-manet-dymo. Internat draft26 (2013). https://tools.ietf.org/html/draft-
ietf-manet-dymo-26

40. Schemmel, D., Büning, J., Soria Dustmann, O., Noll, T., Wehrle, K.: Symbolic
liveness analysis of real-world software. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10982, pp. 447–466. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96142-2 27

41. Shao, C., Hui, D., Pazhyannur, R., Bari, F., Zhang, R., Matsushima, S.: IEEE
802.11 medium access control (MAC) profile for control and provisioning of wireless
access points (CAPWAP). RFC 7494 (2015). https://tools.ietf.org/html/rfc7494

42. Suriyachai, P., Roedig, U., Scott, A.: A survey of MAC protocols for mission-critical
applications in wireless sensor networks. IEEE Commun. Surv. Tutor. 14(2), 240–
264 (2012)

https://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
https://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1007/978-1-4419-9218-5_6
https://www.ietf.org/rfc/rfc3561
https://tools.ietf.org/html/draft-ietf-manet-dymo-26
https://tools.ietf.org/html/draft-ietf-manet-dymo-26
https://doi.org/10.1007/978-3-319-96142-2_27
https://doi.org/10.1007/978-3-319-96142-2_27
https://tools.ietf.org/html/rfc7494

Multi-player Equilibria Verification
for Concurrent Stochastic Games

Marta Kwiatkowska1 , Gethin Norman2(B) , David Parker3 ,
and Gabriel Santos1

1 Department of Computing Science, University of Oxford, Oxford, UK
2 School of Computing Science, University of Glasgow, Glasgow, UK

gethin.norman@glasgow.ac.uk
3 School of Computer Science, University of Birmingham, Birmingham, UK

Abstract. Concurrent stochastic games (CSGs) are an ideal formalism
for modelling probabilistic systems that feature multiple players or com-
ponents with distinct objectives making concurrent, rational decisions.
Examples include communication or security protocols and multi-robot
navigation. Verification methods for CSGs exist but are limited to sce-
narios where agents or players are grouped into two coalitions, with those
in the same coalition sharing an identical objective. In this paper, we pro-
pose multi-coalitional verification techniques for CSGs. We use subgame-
perfect social welfare (or social cost) optimal Nash equilibria, which are
strategies where there is no incentive for any coalition to unilaterally
change its strategy in any game state, and where the total combined
objectives are maximised (or minimised). We present an extension of the
temporal logic rPATL (probabilistic alternating-time temporal logic with
rewards) to specify equilibria-based properties for any number of distinct
coalitions, and a corresponding model checking algorithm for a variant
of stopping games. We implement our techniques in the PRISM-games
tool and apply them to several case studies, including a secret sharing
protocol and a public good game.

1 Introduction

Stochastic multi-player games are a modelling formalism that involves a num-
ber of players making sequences of rational decisions, each of which results in
a probabilistic change in state. They are well suited to modelling systems that
feature competitive or collaborative behaviour between multiple components or
agents, operating in uncertain or stochastic environments. Examples include
communication or security protocols, which may employ randomisation or send
messages over unreliable channels, and multi-robot or multi-vehicle navigation,
where sensors and actuators are subject to noise or prone to failure. A game-
theoretic approach to modelling also allows rewards, incentives or resource usage
to be incorporated. For example, mechanism design can be used to create proto-
cols reliant on incentive schemes to improve robustness against selfish behaviour
by participants, as utilised in network routing protocols [34] and auctions [14].
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 74–95, 2020.
https://doi.org/10.1007/978-3-030-59854-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_7&domain=pdf
http://orcid.org/0000-0001-9022-7599
http://orcid.org/0000-0001-9326-4344
http://orcid.org/0000-0003-4137-8862
http://orcid.org/0000-0002-6570-9737
https://doi.org/10.1007/978-3-030-59854-9_7

Multi-player Equilibria Verification for Concurrent Stochastic Games 75

Designing reliable systems that comprise multiple components with differing
objectives is a challenge. This is further complicated by the need to consider
stochastic behaviour. Formal verification techniques for stochastic multi-player
games can be a valuable tool for tackling this problem. The probabilistic model
checker PRISM-games [25] has been developed for modelling and analysis of
stochastic games: both the turn-based variant, where one player makes a deci-
sion in each state, and the concurrent variant, where players make decisions
concurrently and without knowledge of each other’s actions. PRISM-games also
supports strategy synthesis, which allows automated generation of strategies for
one or more players in the game, which are guaranteed to satisfy quantitative
correctness specifications written in temporal logic.

The temporal logics used in PRISM-games for stochastic games are based on
rPATL (probabilistic alternating-time temporal logic with rewards) [12], which
combines features of the game logic ATL [4] and probabilistic temporal logics.
For example, in a 3-player game, the formula 〈〈rbt1〉〉P�p[F g1] states “robot 1
has a strategy under which the probability of it successfully reaching its goal
is at least p, regardless of the strategies of robots 2 and 3”. Model checking
and strategy synthesis algorithms for rPATL exist for both turn-based [12] and
concurrent stochastic games [22].

rPATL uses ATL’s coalition operator 〈〈·〉〉 to formulate properties. In the
above example, there are two coalitions, one containing robot 1 and the other
robots 2 and 3. The coalitions have distinctly opposing (zero-sum) objectives,
aiming either to maximise or minimise the probability of robot 1 reaching its
goal. A recent extension [23] allows the two coalitions to have distinct objec-
tives, using Nash equilibria. More precisely, it uses subgame-perfect social wel-
fare optimal Nash equilibria, which are strategies for all players where there
is no incentive for either coalition to unilaterally change its strategy in any
state, and where the total combined objectives are maximised. For example,
〈〈rbt1:rbt2, rbt3〉〉max=?(P[F g1] + P[F (g2 ∧ g3)]) asks for such an equilibrium,
where the two coalitions’ objectives are to maximise the probability of reaching
their own (distinct) goals. Model checking rPATL for both the zero-sum [12,22]
and equilibria-based [23] properties has the advantage that it essentially reduces
to the analysis of 2-player stochastic games, for which various algorithms exist
(e.g. [2,3,10]). However, a clear limitation is the assumption that agents can, or
would be willing to, collaborate and form two distinct coalitions.

In this paper, we propose multi-coalitional verification techniques for con-
current stochastic games (CSGs). We extend the temporal logic rPATL to allow
reasoning about any number of distinct coalitions with different quantitative
objectives, expressed using a variety of temporal operators capturing either the
probability of an event occurring or a reward measure. We then give a model
checking algorithm for the logic against CSGs, restricting our attention to a vari-
ant of stopping games [13], which, with probability 1, eventually reach a point
where the outcome of each player’s objective does not change by continuing. Our
algorithm uses a combination of backward induction (for finite-horizon opera-
tors) and value iteration (for infinite-horizon operators). A key ingredient of the

76 M. Kwiatkowska et al.

computation is finding optimal Nash equilibria for n-player games, which we
perform using support enumeration [33] and a mixture of SMT and non-linear
optimisation solvers. We implement our techniques in the PRISM-games tool
and apply them to several case studies, including a secret sharing protocol and
a public good game. This allows us to verify multi-player scenarios that could
not be analysed with existing techniques [23].

Related Work. As summarised above, there are various algorithms to solve
CSGs, e.g., [2,3,10], and model checking techniques have been developed for
both zero-sum [22] and equilibria-based [23] versions of rPATL on CSGs, imple-
mented in PRISM-games [25]. However, all of this work assumes or reduces to the
2-player case. Equilibria for n-player CSGs are considered in [8], but only com-
plexity results, not algorithms, are presented. Other tools exist to reason about
equilibria, including PRALINE [7], EAGLE [37], EVE [18], MCMAS-SLK [9]
(via strategy logic) and Gambit [26], but these are all for non-stochastic games.

2 Preliminaries

We let Dist(X) denote the set of probability distributions over set X. For any
vector v we use v(i) to denote the ith entry of the vector.

Definition 1 (Normal form game). A (finite, n-person) normal form game
(NFG) is a tuple N = (N,A, u) where: N = {1, . . . , n} is a finite set of players;
A = A1× · · · ×An and Ai is a finite set of actions available to player i ∈ N ;
u = (u1, . . . , un) and ui : A → R is a utility function for player i ∈ N .

For an NFG N, the players choose actions at the same time, where the choice for
player i ∈ N is over the action set Ai. When each player i chooses ai, the utility
received by player j equals uj(a1, . . . , an). A (mixed) strategy σi for player i is
a distribution over its action set. Let ηai

denote the pure strategy that selects
action ai with probability 1 and Σi

N the set of strategies for player i. A strategy
profile σ = (σ1, . . . , σn) is a tuple of strategies for each player and under σ the
expected utility of player i equals:

ui(σ) def=
∑

(a1,...,an)∈A ui(a1, . . . , an) ·
(∏n

j=1 σj(aj)
)

.

For strategy σi of a player, the support of σi is the set of actions it chooses with
nonzero probability, i.e., {ai ∈ Ai | σi(ai) > 0}. Furthermore, the support of a
profile is the product of the supports of the individual strategies and a profile is
said to have full support if it includes all available action tuples.

We now fix an NFG N = (N,A, u) and introduce the notion of Nash equi-
librium and the variants we require. For profile σ = (σ1, . . . , σn) and player i

strategy σ′
i, we define the sequence σ−i

def= (σ1, . . . , σi−1, σi+1, . . . , σn) and pro-
file σ−i[σ′

i]
def= (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn).

Multi-player Equilibria Verification for Concurrent Stochastic Games 77

Definition 2 (Best and least response). For player i and strategy sequence
σ−i, a best response for player i to σ−i is a strategy σ�

i for player i such that
ui(σ−i[σ�

i]) � ui(σ−i[σi]) for all σi ∈ Σi
N and a least response for player i to σ−i

is a strategy σ�
i for player i such that ui(σ−i[σ�

i]) � ui(σ−i[σi]) for all σi ∈ Σi
N.

Definition 3 (Nash equilibrium). A strategy profile σ� is a Nash equilibrium
(NE) if σ�

i is a best response to σ�
−i for all i ∈ N .

Definition 4 (Social welfare NE). An NE σ� is a social welfare optimal
NE (SWNE) and 〈ui(σ�)〉i∈N are SWNE values if u1(σ�)+ · · · +un(σ�) �
u1(σ)+ · · · +un(σ) for all NE σ of N.

Definition 5 (Social cost NE). A profile σ� of N is a social cost optimal NE
(SCNE) and 〈ui(σ�)〉i∈N are SCNE values if σ� is an NE of N− = (N,A,−u)
and u1(σ�)+ · · ·+un(σ�) � u1(σ)+ · · ·+un(σ) for all NE σ of N−. Furthermore,
σ� is an SWNE of N− if and only if σ� is an SCNE of N.

The notion of SWNE is standard [29] and applies when utility values represent
profits or rewards. We use the dual notion of SCNE for utilities that represent
losses or costs. Example objectives in this category include minimising the prob-
ability of a fault or the expected time to complete a task. We have chosen to
represent SCNE directly since this is more natural than the alternative of simply
negating utilities, particularly in the case of probabilities.

Example 1. Consider the NFG representing a variant of a public good
game [20], in which three players each receive a fixed amount of capital (10e)
and can choose to invest none, half or all of it in a common stock (represented
by the actions in0

i , in
5
i and in10

i respectively). The total invested by the players
is multiplied by a factor f and distributed equally among the players, and the
aim of the players is to maximise their profit. The utility function of player i is
therefore given by:

ui(ink1
1 , ink2

2 , ink3
3) = (f/3)·(k1 + k2 + k3) − ki .

for ki ∈ {0, 5, 10} and 1 � i � 3. If f = 2, then the profile where each investor
chooses not to invest is an NE and each player’s utility equals 0. More precisely,
if a single player was to deviate from this profile by investing half or all of their
capital, then their utility would decrease to (2/3)·5 − 5 = −5/3 or (2/3)·10 −
10 = −10/3, respectively. Since this is the only NE it is also the only SWNE
and (0, 0, 0) are the only SWNE values. The profile where each player invests
all of their capital is not an NE as, under this profile, a player’s utility equals
(2/3)·30 − 10 = 10 and any player can increase their utility to (2/3)·25 − 5 =
35/3 by deviating and investing half of their capital.

On the other hand, if f = 3, then there are two NE: when all players invest
either none or invest all of their capital. The sum of utilities of the players under
these profiles are 0 + 0 + 0 = 0 and 20 + 20 + 20 = 60 respectively, and therefore
the second profile is the only SWNE.

78 M. Kwiatkowska et al.

Definition 6 (Concurrent stochastic game). A concurrent stochastic multi-
player game (CSG) is a tuple G = (N,S, S̄, A,Δ, δ,AP ,L) where:

– N = {1, . . . , n} is a finite set of players;
– S is a finite set of states and S̄ ⊆ S is a set of initial states;
– A = (A1 ∪{⊥})× · · · ×(An ∪{⊥}) where Ai is a finite set of actions available

to player i ∈ N and ⊥ is an idle action disjoint from the set ∪n
i=1Ai;

– Δ : S → 2∪n
i=1Ai is an action assignment function;

– δ : S × A → Dist(S) is a (partial) probabilistic transition function;
– AP is a set of atomic propositions and L : S → 2AP is a labelling function.

A CSG G starts in an initial state s̄ ∈ S̄ and, when in state s, each player
i ∈ N selects an action from its available actions Ai(s)

def= Δ(s) ∩ Ai if this
set is non-empty, and from {⊥} otherwise. For any state s and action tuple
a = (a1, . . . , an), the partial probabilistic transition function δ is defined for
(s, a) if and only if ai ∈ Ai(s) for all i ∈ N . We augment CSGs with reward
structures, which are tuples of the form r = (rA, rS) where rA : S × A → R and
rS : S → R are action and state reward functions, respectively.

A path is a sequence π = s0
α0−→ s1

α1−→ · · · such that si ∈ S, αi =
(ai

1, . . . , a
i
n) ∈ A, ai

j ∈ Aj(si) for j ∈ N and δ(si, αi)(si+1) > 0 for all i� 0.
Given a path π, we denote by π(i) the (i + 1)th state, π[i] the (i + 1)th action,
and if π is finite, last(π) the final state. The sets of finite and infinite paths
(starting in state s) of G are given by FPathsG and IPathsG (FPathsG,s and
IPathsG,s).

Strategies are used to resolve the choices of the players. Formally, a strategy
for player i is a function σi : FPathsG → Dist(Ai ∪{⊥}) such that, if σi(π)(ai) >
0, then ai ∈ Ai(last(π)). A strategy profile is a tuple σ = (σ1, . . . , σn) of strategies
for all players. The set of strategies for player i and set of profiles are denoted
Σi

G and ΣG. Given a profile σ and state s, let IPathsσ
G,s denote the infinite paths

with initial state s corresponding to σ. We can then define, using standard
techniques [21], a probability measure Probσ

G,s over IPathsσ
G,s and, for a random

variable X : IPathsG → R, the expected value E
σ
G,s(X) of X in s under σ.

In a CSG, a player’s utility or objective is represented by a random variable
Xi : IPathsG → R. Such variables can encode, for example, the probability of
reaching a target or the expected cumulative reward before reaching a target.
Given an objective for each player, social welfare and social cost NE can be
defined as for NFGs. As in [23], we consider subgame-perfect NE [32], which are
NE in every state of the CSG. In addition, for infinite-horizon objectives, the
existence of NE is an open problem [6] so, for such objectives, we use ε-NE,
which exist for any ε > 0. Formally, we have the following definition.

Definition 7 (Subgame-perfect ε-NE). For CSG G and ε > 0, a profile σ�

is a subgame-perfect ε-NE for the objectives 〈Xi〉i∈N if and only if: E
σ�

G,s(Xi) �
supσi∈Σi

E
σ�

−i[σi]

G,s (Xi) − ε for all i ∈ N and s ∈ S.

Example 2. We now extend Example 1 to allow the players to invest their
capital (and subsequent profits) over a number of months and assume that, at

Multi-player Equilibria Verification for Concurrent Stochastic Games 79

the end of each month, the parameter f can either increase or decrease by 0.2
with probability 0.1. This can be modelled as a CSG G whose states are tuples of
the form (m, f, c1, c2, c3), where m is the current month, f the parameter value
and ci is the current capital of player i (the initial capital plus or minus any
profits or losses made in previous months). If f has initial value 2 and the players
start with a capital of 10e, then the initial state of G equals (0, 2, 10, 10, 10). The
actions of player i are of the form inki

i , which corresponds to i investing ki in the
current month. The probabilistic transition function of the game is such that:

δ((m, f, c1, c2, c3), (ink1
1 , ink2

2 , ink3
3))(m′, f ′, c′

1, c
′
2, c

′
3)

=

⎧
⎪⎪⎨

⎪⎪⎩

0.8 ifm′ = m + 1, f ′ = f and c′
i = ci + pi

0.1 ifm′ = m + 1, f ′ = f + 0.2 and c′
i = ci + pi

0.1 ifm′ = m + 1, f ′ = f − 0.2 and c′
i = ci + pi

0 otherwise

where pi = (f/3)·(k1 + k2 + k3) − ki for ki ∈ {0, 5, 10} and 1 � i � 3.
If we are interested in the profits of the players after k months, then we can

consider a random variable for player i which would return, for a path with
(k + 1)th state (k, f, c1, c2, c3), the value ci − 10.

3 Extended rPATL with Nash Formulae

We now consider the logic rPATL with Nash formulae [23] and enhance it with
equilibria-based properties that can separate players into more than two coali-
tions.

Definition 8 (Extended rPATL syntax). The syntax of our extended ver-
sion of rPATL is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ] | 〈〈C〉〉Rr
∼x[ρ] | 〈〈C1: · · · :Cm〉〉opt∼x(θ)

θ := P[ψ] + · · · + P[ψ] | Rr[ρ] + · · · + Rr[ρ]
ψ := Xφ | φ U�k φ | φ U φ

ρ := I=k | C�k | F φ

where a is an atomic proposition, C and C1, . . . , Cm are coalitions of players such
that Ci ∩ Cj = ∅ for all 1 � i �= j � m and ∪m

i=1Ci = N , opt ∈ {min,max},
∼ ∈ {<,�,�, >}, q ∈ Q ∩ [0, 1], x ∈ Q, r is a reward structure and k ∈ N.

Our addition to the logic is Nash formulae of the form 〈〈C1:· · ·:Cm〉〉opt∼x(θ),
where the nonzero sum formulae θ comprises a sum of m probability or reward
objectives (for full details of the rest of the logic see [22,23]). The formula
〈〈C1:· · ·:Cm〉〉max∼x(P[ψ1]+· · ·+P[ψm]) holds in a state if, when the players form
the coalitions C1, . . . , Cm, there is a subgame-perfect SWNE for which the sum
of the values of the objectives P[ψ1], . . . , P[ψm] for the coalitions C1, . . . , Cm

satisfies ∼x. The case for reward objectives is similar and, for formulae of the
form 〈〈C1:· · ·:Cm〉〉min∼x(θ), we require the existence of an SCNE rather than an

80 M. Kwiatkowska et al.

SWNE. We also allow numerical queries of the form 〈〈C1:· · ·:Cm〉〉opt=?(θ), which
return the sum of the SWNE or SCNE values.

In a probabilistic nonzero-sum formula θ = P[ψ1]+ · · ·+P[ψm], each objec-
tive ψi can be a next (Xφ), bounded until (φ1 U�k φ2) or until (φ1 U φ2) for-
mula, with the usual equivalences, e.g., F φ ≡ true U φ. For the reward case
θ = Rr1 [ρ1] + · · · + Rrm [ρm], each ρi refers to a reward formula with respect to
reward structure ri and can be bounded instantaneous reward (I=k), bounded
accumulated reward (C�k) or reachability reward (F φ).

Example 3. Recall the public good CSG from Example 2. Examples of nonzero-
sum formulae in our logic include:

– 〈〈p1:p2:p3〉〉max�3(P[F c1 � 20] + P[F c2 � 20] + P[F c3 � 20]) states that
the three players can collaborate such that they each eventually double their
capital with probability 1;

– 〈〈p1:p2:p3〉〉max=?(Rcap1 [I=4] + Rcap2 [I=4] + Rcap3 [I=4]) asks for the sum of
the expected capital of the players at 4 months when they collaborate, where
the state reward function of capi returns the capital of player i.

– 〈〈p1:p2:p3〉〉max�50(Rpro1 [C�6] + Rpro2 [C�6] + Rpro3 [C�6]) states that the sum
of the expected cumulative profit of the players after 6 months when they
collaborate is at least 50, where the action reward function of proi returns
the expected profit of player i from a state for the given action tuple.

In order to give the semantics of the logic, we require an extension of the notion
of coalition games [22] which, given a CSG G and partition C of the players
into m coalitions, reduces G to an m-player coalition game, where each player
corresponds to one of the coalitions in C. Without loss of generality, we assume
C is of the form {{1, . . . , n1}, {n1 + 1, . . . n2}, . . . , {nm−1 + 1, . . . nm}} and let jC
denote player j’s position in its coalition.

Definition 9 (Coalition game). For CSG G = (N,S, s̄, A,Δ, δ,AP ,L) and
partition of the players into m coalitions C = {C1, . . . , Cm}, we define the coali-
tion game GC = (M,S, s̄, AC ,ΔC , δC ,AP ,L) as an m-player CSG where:

– M = {1, . . . ,m};
– AC = (AC

1 ∪ {⊥})× · · · ×(AC
m ∪ {⊥});

– AC
i = (

∏
j∈Ci

(Aj ∪ {⊥}) \ {(⊥, . . . ,⊥)})
for all i ∈ M ;

– for any s ∈ S and i ∈ M : aC
i ∈ ΔC(s) if and only if either Δ(s) ∩ Aj = ∅

and aC
i (jC) = ⊥ or aC

i (jC) ∈ Δ(s) for all j ∈ Ci;
– for any s ∈ S and (aC

1 , . . . , aC
m) ∈ AC : δC(s, (aC

1 , . . . , aC
m)) = δ(s, (a1, . . . , an))

where for i ∈ M and j ∈ Ci if aC
i = ⊥, then aj = ⊥ and otherwise aj =

aC
i (jC).

Furthermore, for a reward structure r = (rA, rS), by abuse of notation we use
r = (rC

A, rC
S) for the corresponding reward structure of GC where:

– for any s ∈ S, aC
i ∈ AC

i : rC
AC (s, (aC

1 , . . . , aC
m)) = rA(s, (a1, . . . , an)) where for

i ∈ M and j ∈ Ci, if aC
i = ⊥, then aj = ⊥ and otherwise aj = aC

i (jC);
– for any s ∈ S : rC

S(s) = rS(s).

Multi-player Equilibria Verification for Concurrent Stochastic Games 81

The logic includes infinite-horizon objectives (U, F), for which the existence of
SWNE and SCNE is open [6]. However, ε-SWNE and ε-SCNE do exist for any
ε > 0.

Definition 10 (Extended rPATL semantics). For a CSG G, ε > 0 and a
formula φ, the satisfaction relation |= is defined inductively over the structure
of φ. The propositional logic fragment (true, a, ¬, ∧) is defined in the usual way.
The zero-sum formulae 〈〈C〉〉P∼q[ψ] and 〈〈C〉〉Rr

∼x[ρ] are defined as in [22,23].
For a Nash formula and state s ∈ S in CSG G, we have:

s |= 〈〈C1: · · · :Cm〉〉opt∼x(θ) ⇔ ∃σ� ∈ ΣGC .
(
E

σ�

GC,s(X
θ
1) + · · · + E

σ�

GC,s(X
θ
m)

)
∼ x

and σ� = (σ�
1 , . . . , σ

�
m) is a subgame perfect ε-SWNE if opt = max, and a sub-

game perfect ε-SCNE if opt = min, for the objectives (Xθ
1 , . . . , Xθ

m) in GC where
C = {C1, . . . , Cm} and for 1 � i � m and π ∈ IPathsσ�

GC,s :

X
P[ψ1]+···+P[ψm]
i (π) = 1 if π |=ψi and 0 otherwise

X
Rr1 [ρ1]+···+Rrm [ρm]
i (π) = rew(ri, ρ

i)(π)
π |= Xφ ⇔ π(1) |= φ

π |=φ1 U�k φ2 ⇔ ∃i � k. (π(i) |= φ2 ∧ ∀j < i. π(j) |= φ1)
π |= φ1 U φ2 ⇔ ∃i ∈ N. (π(i) |= φ2 ∧ ∀j < i. π(j) |= φ1)

rew(r, I=k)(π) = rS(π(k))

rew(r, C�k)(π) =
k−1∑

i=0

(
rA(π(i), π[i]) + rS(π(i))

)

rew(r, F φ)(π) =
{ ∞ if ∀j ∈ N. π(j) �|= φ

∑kφ

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
otherwise

and kφ = min{k − 1 | π(k) |= φ}.

4 Model Checking CSGs Against Nash Formulae

rPATL is a branching-time logic and so the model checking algorithm works
by recursively computing the set Sat(φ) of states satisfying formula φ over the
structure of φ. Therefore, to extend the existing algorithm of [22,23], we need
only consider formulae of the form 〈〈C1:· · ·:Cm〉〉opt∼x(θ). From Definition 10,
this requires the computation of subgame-perfect SWNE or SCNE values of the
objectives (Xθ

1 , . . . , Xθ
m) and a comparison of their sum to the threshold x.

We first explain how we compute SWNE values in NFGs. Next we consider
CSGs, and show how to compute subgame-perfect SWNE and SCNE values for
finite-horizon objectives and approximate values for infinite-horizon objectives.
For the remainder of this section we fix an NFG N and CSG G.

82 M. Kwiatkowska et al.

As in [23], to check nonzero-sum properties on CSGs, we have to work with a
restricted class of games. This can be seen as a variant of stopping games [13], as
used for multi-objective turn-based stochastic games. Compared to [13], we use a
weaker, objective-dependent assumption, which ensures that, under all profiles,
with probability 1, eventually the outcome of each player’s objective does not
change by continuing. This can be checked using graph algorithms [1].

Assumption 1. For each subformula P[φi
1 U φi

2], set Sat(¬φi
1 ∨ φi

2) is reached
with probability 1 from all states under all profiles. For each subformula Rr[F φi],
the set Sat(φi) is reached with probability 1 from all states under all profiles.

Computing SWNE Values of NFGs. Computing NE values for an n-player
game is a complex task when n > 2, as it can no longer be reduced to a linear
programming problem. The algorithm for the two-player case presented in [23],
based on labelled polytopes, starts by considering all the regions of the strategy
profile space and then iteratively reduces the search space as positive probability
assignments are found and added as restrictions on this space. The efficiency of
this approach deteriorates when analysing games with large numbers of actions
and when one or more players are indifferent, as the possible assignments result-
ing from action permutations need to be exhausted.

Going in the opposite direction, support enumeration [33] is a method for
computing NE that exhaustively examines all sub-regions, i.e., supports, of the
strategy profile space, one at a time, checking whether that sub-region contains
equilibria. The number of supports is exponential in the number of actions and
equals

∏n
i=1(2

|Ai| − 1). Therefore computing SWNE values through support
enumeration will only be efficient for games with a small number of actions.

We now show how, for a given support, using the following lemma, the com-
putation of SWNE profiles can be encoded as a nonlinear programming problem.
The lemma states that a profile is an NE if and only if any player switching to
a single action in the support of the profile yields the same utility for the player
and switching to an action outside the support can only decrease its utility.

Lemma 1 ([33]). The strategy profile σ = (σ1, . . . , σn) of N is an NE if and
only if the following conditions are satisfied:

∀i ∈ N.∀ai ∈ Ai. σi(ai) > 0 → ui(σ−i[ηai
]) = ui(σ) (1)

∀i ∈ N.∀ai ∈ Ai. σi(ai) = 0 → ui(σ−i[ηai
]) � ui(σ) . (2)

Given the support B = B1× · · · ×Bn ⊆ A, to construct the problem, we first
choose pivot actions1 bp

i ∈ Bi for i ∈ N , then the problem is to minimise:

(∑
i∈N maxa∈A ui(a)

) − ∑
i∈N

(∑
b∈B ui(b) ·

(∏
j∈N pj,bj

))
(3)

1 For each i ∈ N this can be any action in Bi.

Multi-player Equilibria Verification for Concurrent Stochastic Games 83

subject to:
∑

c∈B−i(b
p
i)

ui(c) ·
(∏

j∈N−i
pj,cj

)
−

∑
c∈B−i(bi)

ui(c) ·
(∏

j∈N−i
pj,cj

)
= 0 (4)

∑
c∈B−i(b

p
i)

ui(c) ·
(∏

j∈N−i
pj,cj

)
−

∑
c∈B−i(ai)

ui(c) ·
(∏

j∈N−i
pj,cj

)
� 0 (5)

∑
bi∈Bi

pi,bi
= 1 and pi,bi

> 0 (6)

for all i ∈ N , bi ∈ Bi\{bp
i } and ai ∈ Ai\Bi where B−i(ci) =

B1× · · · ×Bi−1 × {ci} ×Bi+1× · · · ×Bn and N−i = N\{i}. The variables in the
above program represent the probabilities players choose different actions, i.e.
pi,bi

is the probability i selects bi. The constraints (6) ensure the probabilities of
each player sum to one and the support of the corresponding profile equals B.
The constraints (4) and (5) require that the solution corresponds to an NE as
these encode the constraints (1) and (2), respectively, of Lemma 1 when restrict-
ing to pivot actions. This restriction is sufficient as (1) requires all actions in the
support to yield the same utility. The first term in (3) corresponds to the maxi-
mum possible sum of utilities for the players, i.e. it sums the maximum utility of
each player, and the second sums the individual utilities of the players when they
play according to the profile corresponding to the solution. By minimising the
difference between these two terms, we require the solution to be social welfare
optimal.

SMT solvers with nonlinear modules can be used to solve such problems,
although they can be inefficient. Alternative approaches include barrier or
interior-point methods [30].

Table 1. Utilities for an instance of a three-player prisoner’s dilemma.

a u1 u2 u3

(c1, c2, c3) 7 7 7

(c1, c2, d3) 3 3 9

a u1 u2 u3

(c1, d2, c3) 3 9 3

(c1, d2, d3) 0 5 5

a u1 u2 u3

(d1, c2, c3) 9 3 3

(d1, c2, d3) 5 0 5

a u1 u2 u3

(d1, d2, c3) 5 5 0

(d1, d2, d3) 1 1 1

Example 4. Consider the instance of three prisoner’s dilemma with utilities
described in Table 1 where Ai = {ci, di} for 1 � i � 3. For the full support Bfs

the utility of player i equals:

ui(Bfs) = pi,ci
·ui(B

fs
−i(ci)) + pi,di

·ui(B
fs
−i(di))

where ui(B
fs
−i(ci)) and ui(B

fs
−i(di)) are the utilities of player i when switching to

choosing action ci and di with probability 1 and are given by:

ui(B
fs
−i(ci)) = 7·pj,cj

·pk,ck
+ 3·pj,cj

·pk,dk
+ 3·pj,dj

·pk,ck

ui(B
fs
−i(di)) = 9·pj,cj

·pk,ck
+ 5·pj,cj

·pk,dk
+ 5·pj,dj

·pk,ck
+ pj,dj

·pk,dk

for 1 � i �= j �= k � 3. Now, choosing ci as the pivot action for 1 � i � 3, we
obtain the nonlinear program of minimising:

27 − (u1(Bfs) + u2(Bfs) + u3(Bfs))

84 M. Kwiatkowska et al.

subject to: ui(B
fs
−i(ci))−ui(B

fs
−1(di)) = 0, pi,ci

+pi,di
= 1, pi,ci

> 0 and pi,di
> 0

for 1 � i � 3. When trying to solving this problem, we find that there is no NE
as the constraints reduce to p3,c3 ·(p2,d2 + 1) = −1, which cannot be satisfied.

For the partial support Bps = {(d1, d2, d3)}, di is the only choice of pivot
action for player i and, after a reduction, we obtain the program of minimising:

27 − (p2,d2p3,d3 + p1,d1p3,d3 + p1,d1p2,d2)

subject to: pi,di
·pj,dj

� 0, pi,di
= 1 and pi,di

> 0 for 1 � i �= j � 3. Solving
this problem we see it is satisfied, and therefore the profile where each player
i chooses di is an NE. This demonstrates that, as for the two-player prisoner’s
dilemma, defection dominates cooperation for all players, which leads to the only
NE.

Computing Values of Nash Formulae. We now show how to compute the
SWNE values of a Nash formula 〈〈C1:· · · : Cm〉〉opt∼x(θ). The case for SCNE
values can be computed similarly, where to compute SCNE values of a NFG N,
we use Definition 5, negate the utilities of N, find SWNE values of the resulting
NFG and return the negation of these values as SCNE values of N.

If all the objectives in the nonzero sum formula θ are finite-horizon, backward
induction [28,35] can be applied to compute (precise) subgame-perfect SWNE
values. On the other hand, when all the objectives are infinite-horizon, we extend
the techniques of [23] for two coalitions and use value iteration [11] to approx-
imate subgame-perfect SWNE values. In cases when there is a combination of
finite- and infinite-horizon objectives, we can extend the techniques of [23] and
make all objectives infinite-horizon by modifying the game in a standard manner.

Value computation for each type of objective is described below. The exten-
sion of the two-player case [23] is non-trivial: in that case, when one player
reaches their goal, we can apply MDP verification techniques by making the
players form a coalition to reach the remaining goal. However, in the n-player
case, if one player reaches their goal we cannot reduce the analysis to an (n−1)-
player game, as the choices of the player that has reached its goal can still
influence the outcomes of the remaining players, and making the player form a
coalition with one of the other players will give the other player an advantage.
Instead, we need to keep track of the set of players that have reached their goal
(denoted D) and can no longer reach their goal in the case of until formulae
(denoted E), and define the values at each iteration using these sets.

We use the notation VGC (s, θ) (VGC (s, θ, n)) for the vector of computed values
of the objectives (Xθ

1 ,Xθ
2 , . . . , Xθ

m) in state s of GC (at iteration n). We also
use 1m and 0m to denote a vector of size m whose entries all equal to 1 or 0,
respectively. For any set of states S′ and state s we let ηS′(s) equal 1 if s ∈ S′ and
0 otherwise. Furthermore, to simplify the presentation the step bounds appearing
in path and reward formulae can take negative values.

Bounded Probabilistic Until. If θ = P[φ1
1 U�k1 φ1

2] + · · · + P[φm
1 U�km φm

2], we
compute SWNE values of the objectives for the nonzero-sum formulae θn =
P[φ1

1 U�k1−n φ1
2]+ · · ·+P[φm

1 U�km−n φm
2] for 0 � n � k recursively, where k =

Multi-player Equilibria Verification for Concurrent Stochastic Games 85

max{k1, . . . , kl} and VGC (s, θ) = VGC (s, ∅, ∅, θ0). For any state s and 0 � n � k,
D,E ⊆ M such that D ∩ E = ∅:

VGC (s,D,E, θn) =

⎧
⎪⎪⎨

⎪⎪⎩

(ηD(1), . . . , ηD(m)) ifD ∪ E = M
VGC (s,D ∪ D′, E, θn) else if D′ �= ∅

VGC (s,D,E ∪ E′, θn) else if E′ �= ∅

val(N) otherwise

where D′ = {l ∈ M\(D ∪ E) | s ∈ Sat(φl
2)}, E′ = {l ∈ M\(D ∪ E) | s ∈

Sat(¬φl
1 ∧ ¬φl

2)} and val(N) equals SWNE values of the game N = (M,AC , u)
in which for any 1 � l � m and a ∈ AC :

ul(a) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if l ∈ D
0 else if l ∈ E
0 else if nl − n � 0

∑
s′∈S δC(s, a)(s′) · vs′,l

n−1 otherwise

and (vs′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC (s′,D,E, θn−1) for all s′ ∈ S.

Instantaneous Rewards. If θ = Rr1 [I=k1]+ · · ·+Rrm [I=km], we compute SWNE
values of the objectives for the nonzero-sum formulae θn = Rr1 [I=n1−n] +
· · · + Rrm [I=nl−n] for 0 � n � k recursively, where k = max{k1, . . . , kl} and
VGC (s, θ) = VGC (s, θ0). For any state s and 0 � n � k, VGC (s, θn) equals SWNE
values of the game N = (M,AC , u) in which for any 1 � l � m and a ∈ AC :

ul(a) =

⎧
⎨

⎩

0 if nl − n < 0∑
s′∈S δC(s, a)(s′) · rl

S(s′) else if nl − n = 0
∑

s′∈S δC(s, a)(s′) · vs′,l
n+1 otherwise

and (vs′,1
n+1, . . . , v

s′,m
n+1) = VGC (s′, θn+1) for all s′ ∈ S.

Bounded Cumulative Rewards. If θ = Rr1 [C�k1] + · · · + Rrm [C�km], we compute
SWNE values of the objectives for the nonzero-sum formulae θn = Rr1 [C�n1−n]+
· · · + Rrl [C�nm−n] for 0 � n � k recursively, where k = max{k1, . . . , kl} and
VGC (s, θ) = VGC (s, θ0). For any state s and 0 � n � k, VGC (s, θn) equals SWNE
values of the game N = (M,AC , u) in which for any 1 � l � m and a ∈ AC :

ul(a) =
{

0 if nl − n � 0
rl
S(s) + rl

A(s, a) +
∑

s′∈S δC(s, a)(s′) · vs′,l
n+1 otherwise

and (vs′,1
n+1, . . . , v

s′,m
n+1) = VGC (s′, θn+1) for all s′ ∈ S.

Probabilistic Until. If θ = P[φ1
1 U φ1

2] + · · · + P[φm
1 U φm

2], values can be com-
puted through value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where
VGC (s, θ, n) = VGC (s, ∅, ∅, θ, n) and for any D,E ⊆ M such that D ∩ E = ∅:

VGC (s,D,E, θ, n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ηD(1), . . . , ηD(m)) ifD ∪ E = M
(ηSat(φ1

2)
(s), . . . , ηSat(φm

2)(s)) else if n = 0
VGC (s,D ∪ D′, E, θ, n) else if D′ �= ∅

VGC (s,D,E ∪ E′, θ, n) else if E′ �= ∅

val(N) otherwise

86 M. Kwiatkowska et al.

where D′ = {l ∈ M\(D ∪ E) | s ∈ Sat(φl
2)}, E′ = {l ∈ M\(D ∪ E) | s ∈

Sat(¬φl
1 ∧ ¬φl

2)} and val(N) equals SWNE values of the game N = (M,AC , u)
in which for any 1 � l � m and a ∈ AC :

ul(a) =

⎧
⎨

⎩

1 if l ∈ D
0 else if l ∈ E

∑
s′∈S δC(s, a)(s′) · vs′,l

n−1 otherwise

and (vs′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC (s′,D,E, θ, n − 1) for all s′ ∈ S.

Expected Reachability. If θ = Rr1 [F φ1] + · · · + Rrm [F φm], values can be com-
puted through value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where
VGC (s, θ, n) = VGC (s, ∅, θ, n) and for any D ⊆ M :

VGC (s,D, θ, n) =

⎧
⎪⎪⎨

⎪⎪⎩

0m if D = M
0m else if n = 0

VGC (s,D ∪ D′, θ, n) else if D′ �= ∅

val(N) otherwise

(7)

D′ = {l ∈ M\D | s ∈ Sat(φl)} and val(N) equals SWNE values of the game
N = (M,AC , u) in which for any 1 � l � m and a ∈ AC :

ul(a) =
{

0 if l ∈ D

rl
S(s) + rl

A(s, a) +
∑

s′∈S δC(s, a)(s′) · vs′,l
n−1 otherwise

and (vs′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC (s′,D, θ, n − 1) for all s′ ∈ S.

Strategy Synthesis. When performing property verification, it is usually bene-
ficial to include strategy synthesis, that is, construct a witness to the satisfaction
of a property. When verifying a Nash formula 〈〈C1: · · · :Cm〉〉opt∼x(θ), we can
also return a subgame-perfect SWNE or SCNE for the objectives (Xθ

1 , . . . , Xθ
m).

This is achieved by keeping track of an SWNE for the NFG solved in each state.
The synthesised strategies require randomisation and memory. Randomisation
is needed for NE of NFGs. Memory is required for finite-horizon properties and
since choices change after a path formula becomes true or a target is reached.
For infinite-horizon properties, only approximate ε-NE profiles are synthesised.

Correctness and Complexity. The proof of correctness of the algorithm
can be found in an extended version of this paper [24]. In the case of finite-
horizon nonzero-sum formulae the correctness of the model checking algorithm
follows from the fact that we use backward induction [28,35]. For infinite-horizon
nonzero-sum formulae the proof is based on showing that the values of the play-
ers computed during value iteration correspond to subgame-perfect SWNE or
SCNE values of finite game trees, and the values of these game trees converge
uniformly to the actual values of GC . The complexity of the algorithm is linear
in the formula size, and finding subgame-perfect NE for reachability objectives
in n-player games is PSPACE [8]. Value iteration requires finding all NE for a
NFG in each state of the model, and computing NE of an NFG with three (or
more) players is PPAD-complete [15].

Multi-player Equilibria Verification for Concurrent Stochastic Games 87

5 Case Studies and Experimental Results

We have implemented our approach on top of PRISM-games 3.0 [25], extending
the implementation to support multi-coalitional equilibria-based properties. The
files for the case studies and results in this section are available from [41].

Table 2. Finding SWNE in NFGs (timeout of 20 ms for Z3).

Game Players Actions Supports Supports returned by Z3 Time (s)

unsat sat unknown Ipopt

Majority voting 3 3,3,3 343 330 12 1 0.309

3 4,4,4 3,375 3,236 110 29 18.89

3 5,5,5 29,791 26,250 155 3,386 336.5

4 2,2,2,2 81 59 22 0 0.184

4 3,3,3,3 2,401 2,212 87 102 6.847

4 4,4,4,4 50,625 41,146 518 8,961 1,158

5 2,2,2,2,2 243 181 62 0 0.591

5 3,3,3,3,3 16,807 14,950 266 1,591 253.3

Covariant game 3 3,3,3 343 304 6 33 7.645

3 4,4,4 3,375 2,488 16 871 203.8

3 5,5,5 29,791 14,271 8 15,512 5,801

4 2,2,2,2 81 76 3 2 0.106

4 3,3,3,3 2,401 1,831 0 570 183.0

5 2,2,2,2,2 243 221 8 14 4.128

5 3,3,3,3,3 16,807 6,600 7 10,200 5,002

Implementation. CSGs are specified using the PRISM-games 3.0 modelling
language, as described in [23,25]. Models are built and stored using the tool’s
Java-based ‘explicit’ engine, which employs sparse matrices. Finding SWNE of
NFGs, which can be reduced to solving a nonlinear programming problem (see
Sect. 4), is performed using a combination of the SMT solver Z3 [16] and the
nonlinear optimisation suite Ipopt [39]. Although SMT solvers are able to find
solutions to nonlinear problems, they are not guaranteed to do so and are only
efficient in certain cases. These cases include when there is a small number of
actions per player or finding support assignments for which an equilibrium is
not possible. To mitigate the inefficiencies of the SMT solver, we use Z3 for
filtering out unsatisfiable support assignments with a timeout: given a support
assignment, Z3 returns either unsat, sat or unknown (if the timeout is reached).
If either sat or unknown are returned, then the assignment is passed to Ipopt,
which checks for satisfiability (if required) and computes SWNE values using an
interior-point filter line-search algorithm [40]. To speed up the overall compu-
tation the support assignments are analysed in parallel. We also search for and
filter out dominated strategies as a precomputation step. The NFGs are built on
the fly, as well as the gradient of the objective function (3) and the Jacobian of
the constraints (4)–(6), which are required as an input to Ipopt.

88 M. Kwiatkowska et al.

Table 3. Statistics for a representative set of CSG verification instances.

Case study & property
Players

Param. CSG statistics Constr. Verif.

[parameters] values States Max. Act. Trans. time(s) time (s)

Secret Sharing

Rmax=?[F d∨r=rmax]

model/[α,rmax ,pfail]

3

raa/0.3,10, 4,279 2,1,1 5,676 0.057 0.565

rba/0.3,10,0.2 7,095 2,1,1 9,900 0.090 0.939

rra/0.3,10, 8,525 2,2,1 11,330 0.250 25.79

rrr/0.3,10, 17,017 2,2,2 22,638 0.250 96.07

Public Good

Rmax=?[I
=kmax]

[f, kmax]

3

2.9,2 758 3,3,3 1,486 0.098 7.782

2.9,3 16,337 3,3,3 36,019 0.799 110.1

2.9,4 279,182 3,3,3 703,918 6.295 1,459

4

2.9,1 83 3,3,3,3 163 0.046 0.370

2.9,2 6,644 3,3,3,3 13,204 0.496 7.111

2.9,3 399,980 3,3,3,3 931,420 11.66 99.86

5
2.9,1 245 3,3,3,3,3 487 0.081 2.427

2.9,2 59,294 3,3,3,3,3 118,342 2.572 2,291

Aloha (deadline)

Pmax=?[F si∧t�D]

[bmax, D]

3

1,8 3,519 2,2,2 5,839 0.168 11.23

2,8 14,230 2,2,2 28,895 0.430 14.05

3,8 72,566 2,2,2 181,438 1.466 18.41

4,8 413,035 2,2,2 1,389,128 7.505 43.23

4

1,8 23,251 2,2,2,2 42,931 0.708 75.59

2,8 159,892 2,2,2,2 388,133 3.439 131.7

3,8 1,472,612 2,2,2,2 4,777,924 28.69 819.2

5 1,8 176,777 2,2,2,2,2 355,209 3.683 466.3

Aloha
Rmin=?[F si]

[bmax]

3

1 1,034 2,2,2 1,777 0.096 40.76

2 5,111 2,2,2 10,100 0.210 29.36

3 22,812 2,2,2 56,693 0.635 51.22

4 107,799 2,2,2 355,734 2.197 150.1

Medium access

Rmax=?[C
�k]

[emax, k]

3

5,10 1,546 2,2,2 17,100 0.324 147.9

10,10 10,591 2,2,2 135,915 1.688 682.7

15,20 33,886 2,2,2 457,680 4.663 6,448

4 5,5 15,936 2,2,2,2 333,314 4.932 3,581

Table 2 presents experimental results for solving various NFGs (generated
with GAMUT [31]) using Z3 (with a timeout of 20 ms) and Ipopt. For each
NFG, the table lists the numbers of players, actions of each player and support
assignments. The table also includes the supports of each type returned by Z3
and the solution time of Ipopt. As can be seen, using Z3 significantly reduces
the assignments Ipopt needs to analyse, by orders of magnitude in some cases.
However, as the number of actions grows, the number of assignments that remain
for Ipopt to solve increases rapidly, and therefore so does the solution time.
Furthermore, increasing the number of players only magnifies this issue.

Multi-player Equilibria Verification for Concurrent Stochastic Games 89

The results show that solving NFGs can be computationally very expensive.
Note that just finding an NE is already a difficult problem, whereas we search for
SWNE, and hence need to find all NE. For example, in [33], using a backtracking
search algorithm or either of the Simplicial Subdivision [38] and the Govindan-
Wilson [17] algorithms for finding a sample NE, there are instances of NFGs
with 6 players and 5 actions that timeout after 30 min.

We also comment that care needs to be taken with numerical computations.
The value iteration part of the model checking algorithm is (as usual) imple-
mented using floating point arithmetic, and may therefore exhibit small round-
ing errors. However, the intermediate results are passed to solvers, which may
expect inputs in terms of rational numbers (Z3 in this case). It could be beneficial
to investigate the use of arbitrary precision arithmetic instead.

We now present case studies and experimental results to demonstrate the
applicability and performance of our approach and implementation.

Efficiency and Scalability. Table 3 presents a selection of results demonstrat-
ing the performance of the implementation. The models in the table are discussed
in more detail below. The results were carried out using a 2.10 GHz Intel Xeon
Gold with 16GB of JVM memory. The table includes statistics for the models:
number of players, states, (maximum) actions for each player in a state, transi-
tions and the times to both build and verify the models. All models have been
verified in under 2 h and in most cases much less than this. The largest model,
verified in under 15 min, has 4 players, almost 1.5 million states and 5 million
transitions. The majority of the time is spent solving NFG games and, as shown
in Table 2, this varies depending on the number of choices and players.

Secret Sharing. The first case study is the secret sharing protocol of [19], which
uses uncertainty to induce cooperation. The protocol is defined for 3 agents and
can be extended to more agents by partitioning the agents into three groups.
Since the 3 agents act independently, this protocol could not be analysed with
the two-coalitional variant of rPATL [23]. Each agent has an unfair coin with the
same bias (α). In the first step of the protocol, agents flip their coins, and if their
coins land on heads, they are supposed to send their share of the secret to the
other agents. In the second step, everyone reveals the value of their coin to the
other agents. The game ends if all agents obtain all shares and therefore can all
reconstruct the secret, or an agent cheats, i.e., fails to send their share to another
agent when they are supposed to. If neither of these conditions hold, new shares
are issued to the agents and a new round starts. The protocol assumes that each
agent prefers to learn the secret and that others do not learn. This is expressed
by the utilities u3, u2, u1 and u0 that an agent i gets if all the agents, two agents
(including i), only i and no agent is able to learn the secret, respectively.

A rational agent in this context is one that has the choice of cheating and
ignoring the coin toss in order to maximise their utility. An altruistic agent is one
who strictly follows the protocol and a byzantine agent has a probability (pfail)
of failing and subsequently sending or computing the wrong values. Figure 1
presents the expected utilities when there are two altruistic and one rational

90 M. Kwiatkowska et al.

agent and when there is one altruistic, one byzantine and one rational agent as
α varies. The results when there is one altruistic and two rational agents or three
rational agents yield the same graph as Fig. 1(a), where the one or two additional
rational agents utilities match those of the altruistic agents. According to the
theoretical results of [19], for a model with one rational and two altruistic agents,
the rational agent only has an incentive to cheat if:

(u1·α2 + u0·(1 − α)2)/(α2 + (1 − α)2) > u3. (8)

This result is validated by Fig. 1(a) for the given utility values; the rational
agent only cheats when α � 0.5 (for α < 0.5 all agents receive a utility of 1
corresponding to all agents getting the secret), which corresponds to when (8)
holds for our chosen utility values. Furthermore, Fig. 1 also shows that the closer
α is to one then the greater the expected utility of a rational agent. Figure 1(b)
also shows that, with a byzantine agent, the rational agent cheats when α � 0.4.

Figure 2 plots the expected utilities of the agents when the protocol stops
after a maximum number of rounds (rmax) when α = 0.3 and α = 0.8. The
utilities converge more slowly for α = 0.3, since, when α is small, there is a
higher chance that an agent flips tails in a round, meaning not all agents will
share their secret in this round and the protocol will move into another round.
Again we see that there are more incentives for a rational agent to cheat as
α gets closer to 1. However, when α = 0.3 and there are altruistic agents, the
incentive decreases and eventually disappears as the number of rounds increases.

Public Good Game. We consider a variant of the public good game presented
in Example 2, in which the parameter f is fixed, where each player receives an
initial amount of capital (einit) and, in each of k months, can invest none, half or
all of their current capital. A 2-player version of the game was modelled in [25].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

α

E
xp

ec
te
d

U
ti
li
ti
es

u3=1.0, u2=1.5, u1=2.0, u0=0.0

rational

altruistic

altruistic

(a) 2 altruistic and 1 rational

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

α

E
xp

ec
te
d

U
ti
li
ti
es

u3=1.0, u2=1.5, u1=2.0, u0=0.0

rational

byzantine

altruistic

(b) 1 altruistic, 1 byzantine and 1 rational

Fig. 1. 〈〈usr1:usr2:usr3〉〉max=?(R[F done] + R[F done] + R[F done]) (pfail = 0.2).

Multi-player Equilibria Verification for Concurrent Stochastic Games 91

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

rmax

E
xp

ec
te
d

U
ti
li
ti
es

(s
u
m
)

u3=1.0, u2=1.5, u1=2.0, u0=0

aaa
raa

rba
rra
rrr

(a) α=0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

rmax

E
xp

ec
te
d

U
ti
li
ti
es

(s
u
m
)

u3=1.0, u2=1.5, u1=2.0, u0=0

aaa
raa

rba
rra
rrr

(b) α=0.8

Fig. 2. Expected utilities over a bounded number of rounds (pfail = 0.2 for rba).

Figure 3 presents results for the 3-player public good game as f varies, plot-
ting the expected utilities when the players act in isolation and, for comparison,
when player 1 acts in isolation and players 2 and 3 form a coalition (indicated
by 〈〈〉〉), which would be required if the two-coalitional variant of rPATL [23] was
used. When the players act in isolation, if f � 2, then there is no incentive for
the players to invest. As f increases, the players start to invest some of their
capital in some of the months, and when f = 3 each player invests all their cap-
ital in each month. On the other hand, when players 2 and 3 act in a coalition,
there is incentive to invest capital for smaller values of f , as players 2 and 3
can coordinate their investments to ensure they both profit; however, player 1
also gains from these investments, and therefore has no incentive to invest in the
final month. As f increases, there is a greater incentive for player 1 to invest and
the final capital for all the players increases. The drop in the capital of player
1, as f increases, is caused by players 2 and 3 coordinating against player 1
and decreasing their investments. This forces player 1 to invest to increase its
investment which, as profits are shared, also increases the capital of players 2
and 3.

1.5 2 2.5 3
0

25
50
75

100
125
150
175
200
225
250
275

f

E
xp

ec
te
d

C
ap

it
al

〈〈p1〉〉
〈〈p2, p3〉〉

p1
p2
p3

(a) Individual rewards.

1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

f

E
xp

ec
te
d

C
ap

it
al

(s
u
m
) 〈〈p1〉〉 + 〈〈p2, p3〉〉

p1 + p2 + p3

(b) Sum of rewards.

Fig. 3. 〈〈p1:p2:p3〉〉max=?(R
c1 [I=rmax] + Rc2 [I=rmax] + Rc3 [I=rmax]) (einit = 5, k = 3).

92 M. Kwiatkowska et al.

Aloha. This case study concerns a number of users trying to send packets using
the slotted ALOHA protocol introduced in [23]. In a time slot, if a single user tries
to send a packet, there is a probability q that the packet is sent; if k users try and
send, then the probability decreases to q/k. If sending a packet fails, the number
of slots a user waits before resending is set according to an exponential backoff
scheme. The analysis of the model in [23] consisted of considering three users
with two acting in coalition. We extend the analysis by considering the case when
the three act in isolation and extend the model with a fourth user. The objec-
tives concern maximising the probability of sending a packet within a deadline,
e.g. 〈〈usr1: · · · :usrm〉〉max=?(P[F (s1 ∧ t � D)]+· · ·+P[F (sm ∧ t � D)]), and the
expected time to send a packet. By allowing the users to act independently we
find that the expected time required for all users to send their packets reduces
compared to when two of the players act as a coalition.

Medium Access Control. This case study is based on a deterministic con-
current game model of medium access control [7]. The model consists of two
users that have limited energy and share a wireless channel. The users repeat-
edly choose to transmit or wait and, if both transmit, the transmissions fail due
to interference. We previously extended the model to three users and added the
probability of transmissions failing (which is dependent on the number of users
transmitting) [23]. However, the analysis was restricted to the scenario where
two users were in coalition [23]. We can now remove this restriction and analyse
the case when each user tries to maximise the expected number of messages they
send over a bounded number of steps and extend this analysis to four users.

6 Conclusions

We have presented a logic and algorithm for model checking multi-coalitional
equilibria-based properties of CSGs, focusing on a variant of stopping games. We
have implemented the approach in PRISM-games and demonstrated its appli-
cability on a range of case studies and properties. The main limitation of the
approach is the time required for solving NFGs during value iteration as the
number of players increases. Efficiency improvements that could be employed
include filtering out conditionally dominated strategies [36]. Future work will
also include investigating correlated equilibria [5] and mechanism design [27].

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 834115) and the EPSRC Programme Grant on Mobile
Autonomy (EP/M019918/1).

Multi-player Equilibria Verification for Concurrent Stochastic Games 93

References

1. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University (1997)

2. de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. The-
oret. Comput. Sci. 386(3), 188–217 (2007)

3. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. J.
Comput. Syst. Sci. 68(2), 374–397 (2004)

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

5. Aumann, R.: Subjectivity and correlation in randomized strategies. J. Math. Econ.
1(1), 67–96 (1974)

6. Bouyer, P., Markey, N., Stan, D.: Mixed Nash equilibria in concurrent games. In:
Proceedings of FSTTCS 2014, LIPICS, vol. 29, pp. 351–363. Leibniz-Zentrum für
Informatik (2014)

7. Brenguier, R.: PRALINE: a tool for computing Nash equilibria in concurrent games.
In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 890–895.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 63

8. Brihaye, T., Bruyère, V., Goeminne, A., Raskin, J.F., van den Bogaard, M.: The
complexity of subgame perfect equilibria in quantitative reachability games. In:
Proceedings of CONCUR 2019, LIPICS, vol. 140, pp. 13:1–13:16. Leibniz-Zentrum
für Informatik (2019)

9. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 34

10. Chatterjee, K., de Alfaro, L., Henzinger, T.: Strategy improvement for concurrent
reachability and turn-based stochastic safety games. J. Comput. Syst. Sci. 79(5),
640–657 (2013)

11. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69850-0 7

12. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic ver-
ification of competitive stochastic systems. Formal Methods Syst. Design 43(1),
61–92 (2013)

13. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2 25

14. Cramton, P., Shoham, Y., Steinberg, R.: An overview of combinatorial auctions.
SIGecom Exchanges 7, 3–14 (2007)

15. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a
Nash equilibrium. Commun. ACM 52(2), 89–97 (2009)

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Govindan, S., Wilson, R.: A global newton method to compute Nash equilibria. J.
Econ. Theory 110(1), 65–86 (2003)

https://doi.org/10.1007/978-3-642-39799-8_63
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-540-78800-3_24

94 M. Kwiatkowska et al.

18. Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.: EVE: a tool for temporal
equilibrium analysis. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol.
11138, pp. 551–557. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01090-4 35

19. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation:
extended abstract. In: Proceedings of STOC 2004, pp. 623–632. ACM (2004)

20. Hauser, O., Hilbe, C., Chatterjee, K., Nowak, M.: Social dilemmas among unequals.
Nature 572, 524–527 (2019)

21. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer, New
York (1976). https://doi.org/10.1007/978-1-4684-9455-6

22. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Automated verification
of concurrent stochastic games. In: McIver, A., Horvath, A. (eds.) QEST 2018.
LNCS, vol. 11024, pp. 223–239. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99154-2 14

23. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Equilibria-based probabilis-
tic model checking for concurrent stochastic games. In: ter Beek, M.H., McIver,
A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 298–315. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 19

24. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Multi-player equilibria ver-
ification for concurrent stochastic games (2020). arXiv:2007.03365

25. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: stochas-
tic game verification with concurrency, equilibria and time. In: Proceedings of
CAV 2020, LNCS. Springer (2020, to appear). http://www.prismmodelchecker.
org/games

26. McKelvey, R., McLennan, A., Turocy, T.: Gambit: software tools for game theory,
version 16.0.1 (2016). http://www.gambit-project.org

27. Narahari, Y., Narayanam, R., Garg, D., Prakash, H.: Foundations of mechanism
design. In: Game Theoretic Problems in Network Economics and Mechanism
Design Solutions, Advanced Information and Knowledge Processing, pp. 1–131.
Springer, London (2009). https://doi.org/10.1007/978-1-84800-938-7 2

28. von Neumann, J., Morgenstern, O., Kuhn, H., Rubinstein, A.: Theory of Games
and Economic Behavior. Princeton University Press, Princeton (1944)

29. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory.
CUP, Cambridge (2007)

30. Nocedal, J., Wächter, A., Waltz, R.: Adaptive barrier update strategies for non-
linear interior methods. SIAM J. Optim. 19(4), 1674–1693 (2009)

31. Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the GAMUT: a
comprehensive approach to evaluating game-theoretic algorithms. In: Proceedings
of AAMAS 2004, pp. 880–887. ACM (2004). http://www.gamut.stanford.edu

32. Osborne, M., Rubinstein, A.: An Introduction to Game Theory. OUP, Oxford
(2004)

33. Porter, R., Nudelman, E., Shoham, Y.: Simple search methods for finding a Nash
equilibrium. In: Proceedings of AAAI 2004, pp. 664–669. AAAI Press (2004)

34. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49, 236–259
(2002)

35. Schwalbe, U., Walker, P.: Zermelo and the early history of game theory. Games
Econ. Behav. 34(1), 123–137 (2001)

36. Shimoji, M., Watson, J.: Conditional dominance, rationalizability, and game forms.
J. Econ. Theory 83, 161–195 (1998)

https://doi.org/10.1007/978-3-030-01090-4_35
https://doi.org/10.1007/978-3-030-01090-4_35
https://doi.org/10.1007/978-1-4684-9455-6
https://doi.org/10.1007/978-3-319-99154-2_14
https://doi.org/10.1007/978-3-319-99154-2_14
https://doi.org/10.1007/978-3-030-30942-8_19
http://arxiv.org/abs/2007.03365
http://www.prismmodelchecker.org/games
http://www.prismmodelchecker.org/games
http://www.gambit-project.org
https://doi.org/10.1007/978-1-84800-938-7_2
http://www.gamut.stanford.edu

Multi-player Equilibria Verification for Concurrent Stochastic Games 95

37. Toumi, A., Gutierrez, J., Wooldridge, M.: A tool for the automated verification of
Nash equilibria in concurrent games. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 583–594. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9 34

38. Van Der Laan, G., Talman, A., Van Der Heyden, L.: Simplicial variable dimension
algorithms for solving the nonlinear complementarity problem on a product of unit
simplices using a general labelling. Math. Oper. Res. 12(3), 377–397 (1987)

39. Wächter, A.: Short tutorial: getting started with IPOPT in 90 minutes. In: Combi-
natorial Scientific Computing, no. 09061 in Dagstuhl Seminar Proceedings. Leibniz-
Zentrum für Informatik (2009). http://www.github.com/coin-or/Ipopt

40. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106(1),
25–57 (2006)

41. Supporting material. http://www.prismmodelchecker.org/files/qest20

https://doi.org/10.1007/978-3-319-25150-9_34
https://doi.org/10.1007/978-3-319-25150-9_34
http://www.github.com/coin-or/Ipopt
http://www.prismmodelchecker.org/files/qest20

Loss-Size and Reliability Trade-Offs
Amongst Diverse Redundant Binary

Classifiers

Kizito Salako(B)

The Centre for Software Reliability, City, University of London, Northampton Sq.,
London EC1V 0HB, UK
k.o.salako@city.ac.uk

Abstract. Many applications involve the use of binary classifiers,
including applications where safety and security are critical. The
quantitative assessment of such classifiers typically involves receiver
operator characteristic (ROC) methods and the estimation of sen-
sitivity/specificity. But such techniques have their limitations. For
safety/security critical applications, more relevant measures of reliability
and risk should be estimated. Moreover, ROC techniques do not explic-
itly account for: 1) inherent uncertainties one faces during assessments, 2)
reliability evidence other than the observed failure behaviour of the clas-
sifier, and 3) how this observed failure behaviour alters one’s uncertainty
about classifier reliability. We address these limitations using conserva-
tive Bayesian inference (CBI) methods, producing statistically princi-
pled, conservative values for risk/reliability measures of interest. Our
analyses reveals trade-offs amongst all binary classifiers with the same
expected loss – the most reliable classifiers are those most likely to expe-
rience high impact failures. This trade-off is harnessed by using diverse
redundant binary classifiers.

Keywords: Reliability assessment · Binary classification · Diverse
redundancy · Conservative Bayesian inference

1 Introduction

Numerous applications that society relies upon involve binary classification
[21,22,26]. Examples include medical diagnosis, autonomous vehicle safety, crime
detection/forensic science and IT network protection. The failure of classifiers in
such applications can have a significant impact – affecting the well-being, safety
and security of those reliant on these technologies. Classifiers must be “good
enough” to be deployed. But, demonstrating this can be challenging. The pri-
mary challenge here is uncertainty: an assessor of such systems is uncertain about

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-59854-9 8) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 96–114, 2020.
https://doi.org/10.1007/978-3-030-59854-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_8
https://doi.org/10.1007/978-3-030-59854-9_8
https://doi.org/10.1007/978-3-030-59854-9_8

Loss-Size vs Reliability Trade-Offs 97

if/when the classifiers will fail during operation, the nature of failures should they
occur, and the resulting impact failures will have on the wider system. Conse-
quently, the statistical assessment of classifiers is necessary. And any serious
attempts at quantifying classifier reliability – say, the probability of a classifier’s
correct functioning on a sequence of classification tasks – must account for these
uncertainties. This is not easy to do, because the probability distributions that
characterise these uncertainties are often unknown or unknowable.

As an approach to assessing classifiers, receiver operator characteristic (ROC)
methods are well-suited for comparing certain statistical properties of classifiers
[8,11]. But, these methods do not account for all of the aforementioned forms of
uncertainty. In this paper, we offer a complementary approach to ROC methods,
and the following contributions to the assessment of binary classifiers:

1. We critique the sole use of ROC approaches in the statistical assessment of
binary classifiers, particularly for safety/security critical applications;

2. We formalise a statistical model of classifier failure and loss, in terms of
loss distributions. We argue, it is loss distributions that classifier assessments
should be concerned with – these subsume “point” measures such as sensi-
tivity or specificity.

3. We highlight the statistical challenge an assessor faces – i.e. infinitely many
loss distributions, all consistent with a classifier’s observed failure behaviour;

4. We show, for a given expected loss, that a trade-off exists between classifier
reliability and the size of losses when failures occur. This trade-off has not
been reported in the literature before;

5. Using this trade-off we prove the range of those loss distributions – from the
most reliable classifiers to the least reliable ones – that are consistent with
a given expected loss. Our results allow an assessor to reason conservatively
about a classifier’s reliability, given it’s observed failure behaviour;

6. We demonstrate that convex combinations of diverse classifiers can be used
to harness this trade-off. In this way, infinitely many hybrid classifiers may
be constructed from a few diverse ones. As a curious aside, we also show
how such classifier combinations share striking similarities with the optimal
allocation of assets in an investment portfolio – a famous problem in Finance;

7. “Optimal” ways of combining the outputs of diverse classifiers have been
argued for in the literature – optimal here means smallest expected loss.
These ignore the aforementioned trade-off, and we illustrate how such optimal
adjudication schemes do not necessarily produce the most reliable systems;

8. A Bayesian formalisation of an assessor’s uncertainty about a classifier’s loss
distribution. Furthermore, by way of mathematical proof, we show that our
Bayesian assessments are guaranteed to be conservative – no other similarly
constrained Bayesian prior gives more conservative conclusions than ours.

The outline of the rest of the paper is as follows. Critical context and related
work is given in Sect. 2. In Sect. 3, we introduce our statistical model of binary
classification. Section 4 then presents analyses of trade-offs between the size of
losses (due to classifier failures) and classifier reliability. The consequences of

98 K. Salako

such trade-offs, for optimally combining classifiers, are also explored in some
detail. This is followed in Sect. 5 by a novel application of CBI methods, to
explicitly account for uncertainties surrounding the assessment of classifiers. This
also takes into account the trade-offs in previous sections. The paper concludes
with final considerations in Sect. 6.

2 Critical Context and Related Work

During assessment, a classifier’s failure propensity and associated risks are esti-
mated by subjecting the classifier to a sequence of statistically representative
classification tasks (i.e. operational testing), and averaging over the classifier’s
observed failure behaviour. Popular statistics computed in this way, and com-
pared using receiver operator characteristic (ROC) methods, include estimates
of a classifier’s false-positive rate (FPR) and true-positive rate (TPR) [32,33].

A useful graphical tool for comparing classifier performance is ROC-space
[8,25], shown in Fig. 1. Each point in the unit-square represents all those dis-
crete classifiers with the specific FPR, TPR values at that point. All useful
discrete classifiers can be made to lie above the 45◦ diagonal [10]. The diago-
nal, itself, represents classifiers that make random or blanket classifications. The
best classifiers are located at (0, 1). Probabilistic classifiers can have their FPR,
TPR values altered by changing the threshold at which they distinguish posi-
tive classifications from negative ones. Continuously altering such a threshold
produces, in essence, a range of discrete classifiers – a unique ROC curve (e.g.
dashed curve) represents the set of discrete classifiers obtained in this way. Given
a suitable stochastic process that generates the classification tasks, and given the
losses when classifiers fail, an isocost line (e.g. line l1) represents classifiers with
the same expected loss. Any parallel line that is closer to the (0,1) point (e.g.
line l2) represents classifiers with smaller expected loss [24]. Consequently, under
appropriate invariance assumptions [9,34], regions A and B contain classifiers
that, respectively, are guaranteed to have expected loss no larger, or smaller,
than the expected loss for those classifiers at the point where A and B meet.
For a given ROC curve, the area under the curve (AUC) measures the”size” of
the set of all classifiers guaranteed to have expected loss at least as small as
some classifier on the curve (i.e. the “size” of the union of all B regions with
north-west corners on the curve). The AUC is also a measure of how likely it is
that a probabilistic classifier will rank a randomly chosen positive classification
task more highly than a randomly chosen negative task [15].

But, by themselves, these statistics and ROC methods do not explicitly
account for an assessor’s uncertainty about the accuracy of FPR and TPR esti-
mates, nor the uncertainty about the stochastic process generating the classifica-
tion tasks. And, they do not explicitly incorporate reliability evidence obtained
before the classifier is subjected to operational testing. Further still, they do not
provide a means of updating an assessor’s uncertainty (about classifier reliability,
future failures or losses) upon observing the classifier during operational testing.
Moreover, for those safety or security critical applications where any future fail-
ure is unacceptable, there are arguably more relevant quantitative measures of

Loss-Size vs Reliability Trade-Offs 99

l2 l1

A

B

1
T
ru
e-
po
si
ti
ve

R
at
e

1

0
False-positive Rate

Fig. 1. ROC-space

reliability to consider, other than FPR and TPR. For instance, the probability
that a classifier succeeds on the next n classification tasks, for very large n.

To complement ROC methods, we choose a Bayesian approach [4,13,14].
Classifiers either succeed or fail according to some unknown loss distribution –
only one of infinitely many plausible distributions that could characterise the
classifier’s failure behaviour. Which one of these is the true loss distribution
is an assessor’s best guess. In principle, based on evidence gathered prior to
operational testing, an assessor’s ignorance about a classifier’s loss distribution
is formalised as a prior distribution over the set L of all such loss distributions.
Assessment then proceeds by Bayesian inference, using the classifier’s observed
failure behaviour during testing to produce a so-called posterior distribution over
L. And this updated assessor ignorance – this posterior distribution – can be
used to compute informed estimates of classifier reliability and risk.

Bayesian inference would typically require the specification of a suitable prior
distribution over L – a daunting task. Perhaps a less daunting task would be to
specify the prior only partially – e.g. specify a prior probability that the clas-
sifier fails its next classification. Then, amongst all prior distributions over L
that share this value for the probability, one determines which of these priors
yields the worst-case value for a posterior reliability measure of interest. With
this worst-case value, an assessor gains insight into the range of plausible loss
distributions (and thus, classifiers) consistent with their prior evidence and the
observed failure behaviour of the classifier. By reasoning conservatively – i.e.
reasoning in terms of worst-case values for posterior measures of interest – an
assessor is actively avoiding dangerously optimistic assessments resulting from
using unjustified priors. In this spirit, conservative Bayesian inference (CBI)
methods have been used in a number of contexts [2,18,30,35–37]. We develop
and apply a new variant of these methods to the problem of producing conser-
vative assessments of binary classifiers. In particular, by performing constrained
optimisations over the set D of all prior distributions with sample space L, we
produce surprisingly simple expressions for conservative estimates of posterior
classifier reliability, and identify prior distributions that yield these posteriors.

100 K. Salako

3 A Statistical Model of Binary Classification

Consider the set Ω of all possible classification tasks, i.e. demands, that a classi-
fier can be presented with in a given application. When presented with a demand,
a classifier either raises an alarm or not. With ROC methods, one assumes clas-
sifiers always give a response – the same response – to a demand. So, imagine the
operational environment of a classifier as a black box, spewing forth demands
from Ω for the classifier to classify. The interplay – of a classifier’s determin-
istic behaviour and the uncertainty about which demand will be presented by
the environment next – induces uncertainty about whether a classifier will fail
on the next demand. And, uncertainty about whether the next failure will be
a false-positive (FP) error – the classifier raises an alarm when it should not
– or a false-negative (FN) error – it does not raise an alarm when it should.
These error-types have associated non-zero costs lfp and lfn when they occur.
Assume the cost associated with an error-type is always the same whenever the
error occurs1. Costs are determined by the economic impact of classifier failures;
typically, with lfp much smaller than lfn. Correct classification incurs no cost.

A classifier has an associated conditional probability qfn of making an FN
error (i.e. 1 − TPR), and conditional probability qfp of an FP error (i.e. FPR).
Estimates of (1− qfn) and (1− qfp) are referred to as sensitivity and specificity.

Define the following indicator function:

1fn :=
{

1; if the classifier commits an FN error
0; otherwise

and 1fp is similarly defined for FP errors. Then, the loss resulting from a classi-
fier’s failure is the random variable L := lfn1fn + lfp1fp . The loss distribution
for L is depicted in Fig. 2a, where γ := P (next demand should cause an alarm).

4 Loss-Size vs Reliability Trade-Off

Given the loss values lfp and lfn, and a best estimate of a classifier’s expected loss
E[L], what can be conservatively claimed about the classifier’s failure behaviour?
In theory, there exists a range of possible discrete, 3-point, loss distributions
(all with the same E[L]) that could characterise the occurrence of failures and
losses for this classifier. And, in practice, specifying which of these distributions
conservatively characterises the classifier must ultimately be a judgement call,
dependent on the specifics of the situation. There is a trade-off here – between
how reliable the classifier is, and how large the losses are when failures occur.

We can elucidate this trade-off. As proved in Appendix A, Fig. 2 shows the 3
extremes of the range of possible loss distributions, using a normalised scale for
the losses (i.e. the losses have been divided by the largest possible loss, typically
lfn). The smallest probability θ of correct classification is either θ = lfp−E[L]

lfp
,

1 View this as the conditional expected loss, given the occurrence of the relevant error.

Loss-Size vs Reliability Trade-Offs 101

(a)

θ = lfp−E[L]
lfp

qfp(1− γ) = E[L]
lfp

qfnγ = 0

E[L] lfp 10
Loss

(b)

θ = 0

qfp(1− γ) = 1−E[L]
1−lfp

qfnγ = E[L]−lfp

1−lfp

E[L]lfp 10
Loss

(c)

θ = 1− E[L]

qfp(1− γ) = 0

qfnγ = E[L]

lfp 10
Loss

(d)

Fig. 2. In (a) is the distribution of loss L for a classifier. Also shown, in (b) (c)
and (d), are the 3 extremes of the range of all loss distributions that share the same
expected loss E[L]. All of the extreme distributions are defined over normalised loss
values {0, lfp, 1}. In particular, the distributions in (b) and (c) give the smallest values
for the probability θ of correct detection, depending on whether lfp is larger or smaller
than E[L], respectively. These also give the smallest values for the probability q of an
FN error. The largest values for both θ and q are given by the distribution in (d).

when lfp > E[L] (see Fig. 2b), or it is θ = 0 otherwise (see Fig. 2c). Contrastingly,
the largest value of θ is θ = 1 − E[L], given by the loss distribution in Fig. 2d.

What do these extremes represent in practice? In Fig. 2b, the only failures
are FPs. While, in Fig. 2c, no correct detection ever occurs – only FPs and FNs.
In practice, it is fairly easy to determine that one is not in the extreme situation
of Fig. 2c, once the classifiers have been observed to correctly classify some
demands. In contrast, determining that Fig. 2b is not the situation one faces in
practice is more challenging, especially since FNs can be very difficult to identify
in certain applications (e.g. cybersecurity, medical diagnosis). Moreover, while
Fig. 2b is clearly more preferable than Fig. 2c, the choice between Fig. 2b and
Fig. 2d is less clear. Of course, lest one get too excited about the most reliable
classifier Fig. 2d, it is sobering that this possibility is also easily excluded in
practice, once FPs have been observed. But, the usefulness of thinking in terms of
these extremes is not that these are “achievable” in practice, but that classifiers
worryingly “close” to these are.

102 K. Salako

There is another way to view this trade-off. Consider when lfp = E[L]. Both
distributions in Figs. 2b and 2c collapse to the same deterministic function –
where only failures with associated losses of size lfp = E[L] occur with probability
1. That is, only demands that should cause no alarms occur, and the classifier
raises alarms on all of these. There is no uncertainty – only FP failures will
occur with accompanying losses of value E[L]. Unlike the distribution in Fig. 2d,
which has the largest amount of variation amongst all of these distributions.
In this sense, the trade-off between the extreme distributions can be viewed as
exchanging the certainty of small losses (i.e. losses due to FPs) for an increase in
the reliability of the classifiers, but at the added cost of an increased probability
of incurring much larger losses when failures occur (i.e. losses due to FNs).

So far, our discussion has focused on the extremes of a range of 3-point loss
distributions, while remarking that the distribution Fig. 2d – for the most reliable
classifier – possesses the maximum variation amongst all of these distributions.
But the following stronger claim is also true (see Appendix A). Amongst all loss
distributions over any (normalised) collection of loss values in the interval [0, 1]
(so, not only 3 loss values) – where the distributions all share E[L] – Fig. 2d is the
loss distribution for the most reliable classifiers, and this is also the distribution
with the largest possible variation. So, “increased variance” of a loss distribution
is the same as “increased reliability and increased losses when failures occur”.
The proof of this result shares some similarities with the proof of bounds on a
system’s probability of failure, in [31].2

4.1 Trade-Off Implications for Randomly Choosing Amongst
Diverse Classifiers During Operation

The trade-off becomes more complicated when considering classifiers with dif-
ferent expected losses and variances for their loss distributions. For example,
one classifier might have a loss distribution similar to Fig. 2b, while another
classifier has a distribution like Fig. 2d, but with a larger expected loss than the
first classifier. So, the first classifier has a smaller expected loss, while the second
one is noticeably more reliable but perhaps more prone to making FN errors.
Consequently, an assessor’s preferences for a classifier’s failure behaviour may lie
somewhere “inbetween” these two classifiers. An “inbetween” classifier can be
constructed by a suitable random combination of this pair during operation.

Reducing both expected loss and the probability of failures (i.e. increasing
variance) requires multi-objective optimisation techniques. Using expectations
and variances together in making multi-objective choices is not a new idea –
Markowitz and Sharpe applied this to the finance problem of selecting “efficient”
investment portfolios, for which they were awarded the 1990 Nobel prize in
Economics [19,20,29]. What is novel here is the application of these ideas to the
problem of choosing optimal configurations of binary classifiers.

2 In [31] their focus was uncertainty about the value of the probability of failure for a
system. Contrastingly, our result applies to the uncertainty about whether a given
classifier will fail on its next classification task, and the loss incurred if it does.

Loss-Size vs Reliability Trade-Offs 103

0 1 2 3 4 5 6 7

0
1

2
3

4

Standard Deviation of Returns vs Expected Return

Expected Return

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 R

et
ur

ns

randomized configuration
base configuration

(a)

0 2 4 6 8 10

0
1

2
3

4
5

Standard Deviation of Loss vs Expected Loss

Expected Loss

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 L

os
s:

 L
[fn

] =
 1

0
, L

[fp
] =

 3
.3

4

randomized configuration
maximum reliability
minimum reliability
base configuration

(b)

Fig. 3. (a) Given 4 distinct risky investments (i.e. “base configurations”), the shaded
region contains randomly constructed investment portfolios (i.e. randomised configu-
rations); each point is a convex combination of the investments. Plotted for each port-
folio is the standard deviation of returns vs the expected return. All portfolios that
lie lower in the region have benefited from diversity reducing uncertainty (i.e. “risk”
in this portfolio theory) in the portfolio returns. (b) Given 5 distinct classifiers (i.e.
“base configurations”), the shaded region contains randomly chosen hybrid classifiers
(i.e. randomised configurations). Each hybrid uses a unique distribution for randomly
choosing one of the base configurations to exclusively perform the next classification
task. Note, one base configuration lies in the bottom right corner of (b). Plotted for
each classifier is the standard deviation of losses vs the expected loss, with lfn = 10 and
lfp = 3.34. The classifiers on the boundary have the extreme distributions in Fig. 2,
with appropriately scaled losses. All hybrids that lie lower in the region have benefited
from diversity reducing the probability of large losses, but also impacting on reliability.

Markowitz’s modern portfolio theory shows how combinations of diverse risky
investments in a portfolio can lower some of the risk associated with the portfolio,
possibly leaving only so-called undiversifiable risk. So, with a fixed budget to
invest, a desirable portfolio is constructed out of varied investments in carefully
chosen proportions. Here, analogous constructions can be made out of classifiers
– a convex combination of classifiers defines a hybrid classifier with properties
not wholly possessed by any of the constituent classifiers. For other reasons,
the works of Scott et al. [28], Provost et al. [23,25] and Gaffney et al. [11,12]
have even argued for such convex combinations as a way of creating preferred
classifiers out of unsatisfactory ones – these approaches are related to the ROC
Convex-Hull theorem (ROCCH) for determining preferred classifiers [8,25].

We construct a convex combination of diverse classifiers as follows. Suppose
there are n functionally equivalent classifiers, each with their respective condi-
tional probabilities of FPs, q1fp, . . . , q

n
fp, and FNs, q1fn, . . . , qn

fn. When a demand

104 K. Salako

from Ω occurs, with probability pi it is classified by classifier i exclusively (where∑n
i=1 pi = 1). These define a hybrid configuration of n classifiers, with expected

loss and variance for the hybrid given as

E[L] =

n∑

i=1

pi(lfpq
i
fp(1 − γ) + lfnq

i
fnγ) (1)

V[L] =

n∑

i=1

pi(l
2
fpq

i
fp(1 − γ) + l

2
fnq

i
fnγ) −

(
n∑

i=1

pi(lfpq
i
fp(1 − γ) + lfnq

i
fnγ)

)2

(2)

where probability γ is defined in Sect. 3. Note, these formulae are fairly gen-
eral and do not, for instance, assume failures between classifiers are statistically
independent. The set of hybrids implied by (1) and (2) is, in a visually striking
sense, the “rotation” of the analogous set of portfolios, where both sets are con-
structed by convex combinations of classifiers/assets respectively. For instance,
see the characteristic “aardvark” (or “bullet”) silhouettes in Figs. 3a and 3b.

4.2 Trade-Off Implications for Optimal Adjudication Amongst
Diverse Classifiers

If trustworthy estimates of (conditional) expected loss can be obtained for diverse
classifiers, then there are ways of combining the classifier responses into responses
that minimise expected loss. A given rule for combining classifier responses into
single responses is a so-called adjudication function. Minimising expected loss by
using an “optimal” adjudication function is possible because: 1) the collective
responses of a group of classifiers partition Ω into disjoint subsets, and 2) on
each of these subsets, a response can be chosen that minimizes the conditional
expected loss for a subset when demands from this subset occur. In this section,
we investigate the relationship between the extreme distributions of Fig. 2 and
the loss distribution for a classifier that uses optimal adjudication.

Ω

should
cause
alarms

should cause
no alarms

+

Ω

[X2 = 1]

[X1 = 1]

=

Ω

R1,0

R1,1

R1,1

R0,1

R0,1

R0,0

Fig. 4. Two classifiers each give a binary response – alarm “1” or no alarm “0” – upon
receiving a demand. There are two ways for Ω to be partitioned into subsets: 1) The
demands divide Ω into two disjoint subsets; 2) The pair of responses (X1(ω), X2(ω))
that classifiers 1 and 2 give for each demand ω ∈ Ω also partitions Ω, into 4 disjoint
subsets labelled Ri,j := {ω ∈ Ω | (X1(ω), X2(ω)) = (i, j)where i, j = 0, 1}.

Loss-Size vs Reliability Trade-Offs 105

Optimal adjudication has long been advocated in various forms [3,7,11]. To
illustrate, consider only two classifiers. Their responses partition Ω into disjoint
subsets (see Fig. 4). Let X1 be classifier 1’s response. Then the two events,
“no alarm” [X1 = 0] and “alarm” [X1 = 1], divide Ω into two disjoint subsets.
Similarly, classifier 2’s responses split Ω into two disjoint subsets. Altogether,
(X1,X2) divides Ω into 4 regions – the subsets of Ω that trigger the responses
(1, 1), (1, 0), (0, 1) and (0, 0), labelled R1,1,R1,0,R0,1 and R0,0 respectively.

Table 1. The 16 adjudication functions for 2 binary classifiers.

R f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

(1, 1) 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

(1, 0) 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

(0, 1) 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

(0, 0) 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

On each “R” the classifiers’ responses can be combined into a single response
in one of two ways: either issue an alarm or no alarm. An adjudication function is
a choice of response on each “R”. There are 16 possible adjudication functions,
f1 . . . f16 (see Table 1). An “optimal” adjudication function minimises expected
loss. Define the expected loss Ef [L] from adjudication function f as

Ef [L] = lfp · P (f(X1,X2) = 1,FP error) + 1 · P (f(X1,X2) = 0,FN error)

To determine an optimal f , one computes two expectations over each “R” –
the expected loss due to an FP error, and that due to an FN error. In total,
over the 4 regions, 8 expectations are computed3. Using these expectations, the
optimal f is simply a choice of responses that give the smallest expected losses
for each region. The worst adjudication possible is given by choosing responses
which give the largest expected losses instead. This can be done using a table
such as Table 2. Two numerical examples of Table 2 are illustrated in Table 3. In
either example, lfp = 0.3, lfn = 1 are the normalised losses. These examples are
based on the two probability distributions in Table 4 for the various R regions
in Fig. 4. They show that f10 and f7 are the optimal and worst adjudications
for scenario 1, while f13 and f4 are the optimal and worst adjudications for
scenario 2. The R distributions were generated from a Dirichlet distribution
that randomly assigned probabilities to the regions.

In scenario 1 of Table 3, notice how the optimal response for region R11 sug-
gests that one should risk FN failures rather than FP ones. Since, from Table 4,
the chances of demands causing FN errors is very small (approx. 0.008) compared
to the chances of demands causing FP errors (approx. 0.112). However, for sce-
nario 2, the probabilities are roughly the same order of magnitude (approx. 0.07

3 From these, the expected loss for any of the adjudication functions may be computed.

106 K. Salako

Table 2. The 8 expected losses for the adjudication functions in Table 1.

R

(1,1) P (f(1,1) = 1 & demand should cause no alarm) · lfp

P (f(1,1) = 0 & demand should cause alarm)

(1,0) P (f(1,0) = 1 & demand should cause no alarm) · lfp

P (f(1,0) = 0 & demand should cause alarm)

(0,1) P (f(0,1) = 1 & demand should cause no alarm) · lfp

P (f(0,1) = 0 & demand should cause alarm)

(0,0) P (f(0,0) = 1 & demand should cause no alarm) · lfp

P (f(0,0) = 0 & demand should cause alarm)

Table 3. Two example scenarios of Table 2, with expected losses for each R subset of
Ω (see Fig. 4). In each scenario, for each subset, the adjudication response associated
with the smallest expected loss is the optimal response, while the response associated
with largest expected loss is the worst response.

R Scenario 1 Scenario 2

(1,1) 3.36e−2, worst response = 1 6.781e−2, optimal response = 1

8.018e−3, optimal response = 0 7.408e−2, worst response = 0

(1,0) 1.302e−2, optimal response = 1 2.081e−2, optimal response = 1

2.836e−1, worst response = 0 3.248e−2, worst response = 0

(0,1) 6.436e−2, worst response = 1 9.374e−2, worst response = 1

4.696e−2, optimal response = 0 8.729e−2, optimal response = 0

(0,0) 5.865e−2, optimal response = 1 1.553e−2, optimal response = 1

9.599e−2, worst response = 0 1.465e−2, worst response = 0

and 0.23 respectively). Hence, since lfp is much smaller than lfn in both scenar-
ios, one expects more loss from FN errors than FP errors for R11 in scenario 2.
This reversal illustrates how optimal adjudication depends on the likelihood of
the various regions in Fig. 4, and the relative sizes of lfp and lfn.

Are optimal configurations very reliable ones, or do they trade-off reliability
in favour of making FNs very unlikely? Figure 5 shows a randomly generated
example (i.e. a Dirichlet distributed assignment of the probabilities over the
regions in Fig. 4) where the worst adjudication is similar to the most reliable
classifier with the same expected loss, while optimal adjudication is similar to
the least reliable classifier. But how big can the difference be between an optimal
adjudicator and the most reliable classifier with the same expected loss? Fig. 6
depicts empirical distributions of the ratio between the accuracy of a randomly
chosen extreme adjudication function (over Ω in Fig. 4) and the accuracy for an
extreme loss distribution with the same expected loss. To generate these empir-
ical ratio distributions, 100,000 (Dirichlet distributed) distributions over the R

Loss-Size vs Reliability Trade-Offs 107

Table 4. Two probability distributions, used respectively to compute the expectations
in Table 3, for the regions in Fig. 4.

R Scenario 1 Scenario 2

(1,1) P (1,1, demand should cause no alarm) 0.112005 0.226038

P (1,1, demand should cause alarm) 0.008017 0.074076

(1,0) P (1,0, demand should cause no alarm) 0.043412 0.069367

P (1,0, demand should cause alarm) 0.283563 0.032477

(0,1) P (0,1, demand should cause no alarm) 0.214545 0.312464

P (0,1, demand should cause alarm) 0.046961 0.087287

(0,0) P (0,0, demand should cause no alarm) 0.195507 0.051752

P (0,0, demand should cause alarm) 0.095986 0.146535

regions in Fig. 4 were sampled. In particular, Fig. 6b shows that in applications
where FNs are very rare and lfp � lfn, the most reliable system can be over two
orders of magnitude more reliable than the optimal adjudication configuration
with the same expected loss.

(a) (b)

Fig. 5. A Dirichlet distributed assignment of probabilities over the R regions (in Fig.
4) produced loss distributions for the worst-case and optimal adjudication functions.
These are compared with the extreme loss distributions (in Fig. 2) that have the same
expected losses. In (a), with expected loss 0.46, the worst adjudication is identical to
the most reliable classifier with the same expected loss. While (b), with expected loss
0.16, shows the optimal adjudication distribution is identical to the distribution for the
least reliable classifier. In both plots, lfp = 0.3 and lfn = 1.

108 K. Salako

(a) (b)

Fig. 6. From 100,000 randomly chosen distributions over the R regions in Fig. 4,
with FNs unlikely and lfp � lfn, (a) a randomly chosen worst adjudicator (WC adj)
gives approximately the same accuracy as the most reliable classifier with the same
expected loss. But, (b) the most reliable classifier can have “orders of magnitude”
greater accuracy than the corresponding, randomly chosen, optimal adjudicator (opt
adj).

5 Conservative Bayesian Assessment

In this section, we explicitly account for an assessor’s ignorance when assessing
a classifier. Our proposed approach is Bayesian, and a novel extension of CBI
methods [2,18,30,35–37]. Rather than a completely specified prior distribution,
CBI requires only a partial specification of the prior, such as specifying the value
of the prior probability of the classifier passing n tests. There is a collection
of all prior distributions consistent with this probability value. And from this
collection, one determines a prior distribution that yields the most undesirable
value for a posterior reliability measure of interest (one example measure is the
posterior probability of correctly classifying the next n demands).

CBI encourages, but does not require, an assessor to be “minimalist” in
their application of Bayesian methods. By only providing partial specifications
of priors, the assessor can base their assessment only on those properties of a
prior they are confident in demonstrating. But, should an assessor completely
specify a prior, then CBI becomes identical to traditional Bayesian inference.

Our CBI variant differs from previous ones in two respects. First, it con-
cerns estimating the probability that a known-to-be-imperfect system will have
a “perfect run” on the next n demands. Many of the other CBI applications have
dealt with systems where any failure during testing is unacceptable (i.e. systems
with ultra-high reliability requirements). In contrast, classifiers are often known
to be imperfect, upon observing them commit FP/FN errors. We determine the
worst-case value for the posterior probability of a classifier correctly executing
n tasks, after observing the classifier fail “k” out of “k + r” tasks.

Secondly, we combine CBI analyses and the extremes implied by the loss-
size/reliability trade-off, to obtain conservative measures of reliability and risk
that account for this trade-off. Previous applications of CBI do not consider the
“impact” of failures explicitly – this new variant does.

Loss-Size vs Reliability Trade-Offs 109

More formally, consider estimating the unknown probability U that the clas-
sifier fails its next classification (i.e. u = qfp(1 − γ) + qfnγ). During operational
testing, suppose the classifier fails “k” out of “k + r” classification tasks. Fur-
thermore, suppose we have some estimate μ of the probability of seeing these
results (e.g. this probability takes the form E[Uk(1−U)r] for a sequence of clas-
sifications made by the classifier, where these classification tasks arise according
to some Bernoulli process with unknown parameter U). Assuming classification
tasks follow a Bernoulli process, what is the largest probability of the classifier
failing the next classification after operational testing?

Proposition 1. Consider the set D of all probability distributions over the unit
interval, each distribution representing a prior distribution of U , where U is the
unknown probability of a classification failure. For μ ∈ (0, 1) and k, r > 0,

maximise
F∈D

E[U | k failures & r successes]

subject to E[Uk(1 − U)r] = μ

Solution: Appendix B proves the existence of a “single point” prior F ∗ ∈D – it
assigns probability 1 to the unique u∗ ∈ [k

k+r , 1] that satisfies μ = (u∗)k(1−u∗)r.
Upon using F ∗ as a prior, E[U | k failures & r successes] attains its maximum
value, u∗. So, the conservative choice of loss distribution for the classifier would
be any distribution in L satisfying U = u∗. Note, F ∗ is unique “almost every-
where” [27] (i.e. up to Lebesgue measure zero subsets of (0, 1)). �

This result has a number of consequences. The following are limiting cases:

– before any observations (so k, r = 0), we must have μ = 1 (i.e. any value for
the unknown probability of failure U is possible). So, the conservative value
u∗ must also be 1 – the assessor should conservatively expect the classifier to
fail on its next task, in the absence of any evidence to the contrary;

– if no successes are observed (so r = 0) then u∗ = 1: the classifier must be
expected to fail its next task, in the absence of any evidence to the contrary;

– if no failures are observed (so k = 0) then u∗ = 1−μ
1/r. And, as r → ∞, u∗ →

0. That is, despite being conservative, with increasing failure free evidence the
assessor becomes more convinced that the classifier is “perfect”;

Note that the maximum likelihood estimate (MLE) for U is k
k+r . Since u∗ ∈

[k
k+r , 1], this reassures us that u∗ is worse than the corresponding MLE. Working

backwards, this also means that μ � (k
k+r)k(1− k

k+r)r necessarily – a requirement
that our assessor can easily use to check the feasibility of their initial μ estimate.

Using this conservative value u∗ in the distributions of Figs. 2b and 2d, we
can reason about the possible expected loss values this probability implies. The
largest expected loss implied by u∗ is u∗ (using Fig. 2d). The smallest expected
loss is u∗lfp (using Fig. 2b). The case in Fig. 2c applies only if u∗ = 1; i.e. the
classifier will fail, the only question is how big the losses will be. Conservatively,
one should expect the losses to be as large as possible, so E[L] = 1.

110 K. Salako

Interestingly, in those cases where we deduced expected losses from Figs. 2b
and 2d, the probability of the classifier being correct is 1 − u∗. This is the smallest
plausible value for classifier accuracy, given the assessor’s prior evidence μ.

Of course, an assessor might also look to more optimistic assessments. Never-
theless, CBI still offers a useful check against dangerously optimistic assessments.
CBI reliability estimates – when compared with estimates from alternative, sim-
ilarly constrained, approaches – reveal how optimistic these alternatives are. In
fact, Appendix C proves the following “most optimistic” posterior expected value
for U , in a Bernoulli process of classifications.

Proposition 2. Consider the set D of all probability distributions over [0, 1],
each distribution representing a potential prior distribution of U , where U is the
unknown probability of a classification failure. For μ ∈ (0, 1) and k, r > 0,

minimise
F∈D

E[U | k failures & r successes]

subject to E[Uk(1 − U)r] = μ

Solution: Appendix C proves the existence of a “single point” prior F∗ ∈D – it
assigns probability 1 to the unique u∗ ∈ [0, k

k+r] that satisfies μ = (u∗)k(1−u∗)r.
Upon using F∗ as a prior, E[U | k failures & r successes] attains its minimum
value, u∗. So, the optimistic choice of loss distribution for the classifier would be
any distribution in L satisfying U = u∗. Estimates of U that are close in value
to u∗ should be used with caution. Note, F∗ is unique “almost everywhere”. �

Finally, using u∗ and u∗, Appendix D proves the worst-case (i.e. smallest)
probability of a classifier correctly classifying the next n tasks, having already
observed the classifier correctly classify “r” out of “k + r” tasks. That is,

Corollary 1. Consider the previous propositions (proved in appendices B and
C) which give the largest and smallest values for E[U | k failures & r successes],
u∗ and u∗ respectively. Then,

(1 − u∗)n � E[(1 − U)n | k failures & r successes] � 1 − u∗

In particular, the lower bound is attained with the prior distribution F ∗ ∈ D.
So, any loss distribution in L with U = u∗ conservatively characterises the long-
run failure behaviour of the classifier. Note that 1 − u∗ is the smallest plausible
(i.e. consistent with the evidence) value for the classifier’s unknown accuracy, θ.
Consequently, as n → ∞, (1−u∗)n tends to zero faster than any other plausible
value for accuracy. Given the well-known unsuitability of accuracy as a measure
of classifier performance in imbalanced dataset settings [5,16,17], conservative
long-run success probabilities provide an increasingly stringent (as n increases)
alternative measure of classifier performance.

Loss-Size vs Reliability Trade-Offs 111

6 Conclusions

This work has two main focuses: 1) to explicitly account for various uncertain-
ties inherent in assessing binary classifiers, and 2) to highlight trade-offs between
classifier reliability and the size of losses when a classifier fails. These have conse-
quences for deciding which, amongst a collection of classifiers, is most desirable.

Assessment is fraught with uncertainty. And, while ROC techniques address
some of these, they do not go far enough. Classifiers fail and incur losses accord-
ing to some unknown loss distribution, and our work bounds the possible range
of such distributions. For example, for classifiers with the same expected loss,
the more reliable a classifier is, the larger the losses when it fails – a trade-off.

A consequence of such trade-offs is that hybrid classifiers – i.e. convex com-
binations of diverse classifiers – can have a reduced risk of a sequence of high-
impact failures, but at the expense of reliability. This is akin to how, in modern
portfolio theory, diverse risky assets can be combined into one investment port-
folio, to reduce investment risk. There are visually arresting parallels (Figs. 3a
and 3b) between the sets in these two scenarios. The trade-offs also have impli-
cations for “optimal adjudication” schemes that combine the outputs of diverse
classifiers to reduce expected loss. Such schemes can be significantly less reliable
than the most reliable classifier with the same “optimal” expected loss.

These trade-offs are a strong argument for using multi-objective optimisa-
tions during assessment – it is not enough to only consider the well-known
trade-off between sensitivity and specificity. In this sense, our approach fur-
thers the benefits of traditional ROC approaches. It also turns out that the loss
distributions for the most reliable classifiers (amongst classifiers with a common
expected loss) are those with the largest variation. This strongly suggests paral-
lels with mean-variance optimisation methods used in modern portfolio theory.
So, our work also complements techniques employed in modern portfolio theory.

Of course, there are significant differences between assets and classifiers that
limit the analogy. For example, assets can be leveraged against each other – bor-
rowing on the one hand to buy an investment on the other hand. Such leveraging
does not make sense when randomising amongst classifiers. Also, as of this writ-
ing, classifiers are typically “indivisible” and cannot be broken up into smaller
functionally equivalent artefacts, unlike many investment assets.

Unlike either ROC approaches or modern portfolio theory, with CBI it is fun-
damental that an assessor explicitly models their uncertainty, about the occur-
rence of classifier failures. This must be based on justifiable evidence gathered
prior to operational testing. Classifiers are then assessed by carrying out “worst-
case” inference, using prior distributions in conjunction with observed reliability.

A number of this paper’s results (e.g. Propositions 1 and 2) apply more widely
(e.g. to multiclass classifiers). But, outstanding challenges remain. For instance,
how best to quantify and gain sufficient confidence in prior estimates, such as the
prior probability E[Uk(1 − U)r] of observing classifier failures? Or, investigating
whether analogous trade-offs hold for metrics other than E[L] and reliability, such
as F-measures or surrogate estimates of loss [1,6]. Investigating settings where
classifications and likelihoods arise according to processes more general than

112 K. Salako

Bernoulli ones. And, explicitly accounting for how classifier performance can
evolve and change over time (e.g. due to “learning” or patching) – currently, the
techniques we have outlined apply inbetween changes in classifier performance.

7 Appendices and Supplementary Material

For all of the proofs, please see this paper’s appendices online, in Springer’s
Electronic Supplementary Materials (ESM) system.

Acknowledgment. This work was supported by the European Commission through
the H2020 programme under grant agreement 700692 (DiSIEM). My thanks to the
anonymous reviewers for their helpful suggestions for improving the presentation.

References

1. Bartlett, P., Jordan, M., McAuliffe, J.: Convexity, classification, and risk
bounds. J. Am. Stat. Assoc. 101, 138–156 (2006). https://doi.org/10.1198/
016214505000000907

2. Bishop, P., Bloomfield, R., Littlewood, B., Povyakalo, A., Wright, D.: Toward a for-
malism for conservative claims about the dependability of software-based systems.
IEEE Trans. Softw. Eng. 37(5), 708–717 (2011)

3. Blough, D.M., Sullivan, G.F.: A comparison of voting strategies for fault-tolerant
distributed systems. In: Proceedings Ninth Symposium on Reliable Distributed
Systems, pp. 136–145 (1990). https://doi.org/10.1109/RELDIS.1990.93959

4. Box, G.E., Tiao, G.C.: Nature of Bayesian Inference, chap. 1, pp. 1–75. Wiley
(2011). https://doi.org/10.1002/9781118033197.ch1

5. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbal-
ance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018).
https://doi.org/10.1016/j.neunet.2018.07.011

6. Dembczyński, K., Kot�lowski, W., Koyejo, O., Natarajan, N.: Consistency analy-
sis for binary classification revisited. In: Precup, D., Teh, Y.W. (eds.) Proceed-
ings of the 34th International Conference on Machine Learning. Proceedings of
Machine Learning Research, PMLR, International Convention Centre, Sydney,
Australia, vol. 70, pp. 961–969, 06–11 August 2017. http://proceedings.mlr.press/
v70/dembczynski17a.html

7. Di Giandomenico, F., Strigini, L.: Adjudicators for diverse-redundant components.
In: Proceedings Ninth Symposium on Reliable Distributed Systems, pp. 114–123,
October 1990. https://doi.org/10.1109/RELDIS.1990.93957

8. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–
874 (2006). http://dx.doi.org/10.1016/j.patrec.2005.10.010

9. Fawcett, T., Flach, P.A.: A response to Webb and Ting’s on the application of ROC
analysis to predict classification performance under varying class distributions.
Mach. Learn. 58(1), 33–38 (2005). https://doi.org/10.1007/s10994-005-5256-4

10. Flach, P., Shaomin, W.: Repairing concavities in ROC curves. In: Proceedings of
the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005),
IJCAI, pp. 702–707, August 2005

https://doi.org/10.1198/016214505000000907
https://doi.org/10.1198/016214505000000907
https://doi.org/10.1109/RELDIS.1990.93959
https://doi.org/10.1002/9781118033197.ch1
https://doi.org/10.1016/j.neunet.2018.07.011
http://proceedings.mlr.press/v70/dembczynski17a.html
http://proceedings.mlr.press/v70/dembczynski17a.html
https://doi.org/10.1109/RELDIS.1990.93957
http://dx.doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1007/s10994-005-5256-4

Loss-Size vs Reliability Trade-Offs 113

11. Gaffney, J.E., Ulvila, J.W.: Evaluation of intrusion detectors: a decision theory
approach. In: Proceedings of the 2001 IEEE Symposium on Security and Privacy,
pp. 50–61. IEEE (2001). http://dl.acm.org/citation.cfm?id=882495.884438

12. Gaffney, J.E., Ulvila, J.W.: Evaluation of intrusion detection systems. J. Res. Natl.
Inst. Stand. Technol. 108(6), 453–473 (2003)

13. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd
edn. Chapman and Hall/CRC (2004)

14. Gelman, A., Shalizi, C.R.: Philosophy and the practice of Bayesian statistics. Br.
J. Math. Stat. Psychol. 66(1), 8–38 (2013). https://doi.org/10.1111/j.2044-8317.
2011.02037.x

15. Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for
multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001). https://
doi.org/10.1023/A:1010920819831

16. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell.
Data Anal. 6(5), 429–449 (2002)

17. Koyejo, O.O., Natarajan, N., Ravikumar, P.K., Dhillon, I.S.: Consistent binary
classification with generalized performance metrics. In: Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 27, pp. 2744–2752. Curran Associates, Inc. (2014)

18. Littlewood, B., Salako, K., Strigini, L., Zhao, X.: On reliability assessment when
a software-based system is replaced by a thought-to-be-better one. Reliab. Eng.
Syst. Saf. 197, 106752 (2020). https://doi.org/10.1016/j.ress.2019.106752

19. Markowitz, H.M.: Portfolio selection. J. Finan. 7(1), 77–91 (1952)
20. Markowitz, H.M.: Portfolio Selection, Efficient Diversification of Investments.

Wiley, Hoboken (1959)
21. Nayak, J., Naik, B., Behera, D.H.: A comprehensive survey on support vector

machine in data mining tasks: applications and challenges. Int. J. Database Theory
Appl. 8, 169–186 (2015). https://doi.org/10.14257/ijdta.2015.8.1.18

22. Pouyanfar, S., et al.: A survey on deep learning: algorithms, techniques, and appli-
cations. ACM Comput. Surv. 51(5) (2018). https://doi.org/10.1145/3234150

23. Provost, F., Fawcett, T.: Robust classification systems for imprecise environments.
In: Proceedings of AAAI 1998, pp. 706–713. AAAI press (1998)

24. Provost, F., Fawcett, T.: Analysis and visualization of classifier performance: com-
parison under imprecise class and cost distributions. In: Proceedings of the Third
International Conference on Knowledge Discovery and Data Mining, KDD 1997,
pp. 43–48. AAAI Press (1997)

25. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Mach.
Learn. 42(3), 203–231 (2001). https://doi.org/10.1023/A:1007601015854

26. RavinderReddy, R., Kavya, B., Yellasiri, R.: A survey on SVM classifiers for intru-
sion detection. Int. J. Comput. Appl. 98, 34–44 (2014). https://doi.org/10.5120/
17294-7779

27. Schilling, R.: Measures, Integrals and Martingales, 2nd edn. Cambridge University
Press, Cambridge (2017)

28. Scott, M.J.J., Niranjan, M., Prager, R.W.: Realisable classifiers: improving operat-
ing performance on variable cost problems. In: Proceedings of the British Machine
Vision Conference, pp. 31.1–31.10. BMVA Press (1998). https://doi.org/10.5244/
C.12.31

29. Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions
of risk. J. Finan. 19(3), 425–442 (1964)

http://dl.acm.org/citation.cfm?id=882495.884438
https://doi.org/10.1111/j.2044-8317.2011.02037.x
https://doi.org/10.1111/j.2044-8317.2011.02037.x
https://doi.org/10.1023/A:1010920819831
https://doi.org/10.1023/A:1010920819831
https://doi.org/10.1016/j.ress.2019.106752
https://doi.org/10.14257/ijdta.2015.8.1.18
https://doi.org/10.1145/3234150
https://doi.org/10.1023/A:1007601015854
https://doi.org/10.5120/17294-7779
https://doi.org/10.5120/17294-7779
https://doi.org/10.5244/C.12.31
https://doi.org/10.5244/C.12.31

114 K. Salako

30. Strigini, L., Povyakalo, A.: Software fault-freeness and reliability predictions. In:
Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol.
8153, pp. 106–117. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40793-2 10

31. Strigini, L., Wright, D.: Bounds on survival probability given mean probability of
failure per demand; and the paradoxical advantages of uncertainty. Reliab. Eng.
Syst. Saf. 128, 66–83 (2014). https://doi.org/10.1016/j.ress.2014.02.004

32. Swets, J., Dawes, R., Monahan, J.: Better decisions through science. Sci. Am. 283,
82–87 (2000). https://doi.org/10.1038/scientificamerican1000-82

33. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240(4857),
1285–93 (1988)

34. Webb, G., Ting, K.: On the application of ROC analysis to predict classification
performance under varying class distributions. Mach. Learn. 58, 25–32 (2005).
https://doi.org/10.1007/s10994-005-4257-7

35. Zhao, X., Littlewood, B., Povyakalo, A., Strigini, L., Wright, D.: Modeling the
probability of failure on demand (pfd) of a 1-out-of-2 system in which one channel
is ‘quasi-perfect’. Reliab. Eng. Syst. Saf. 158, 230–245 (2017)

36. Zhao, X., Littlewood, B., Povyakalo, A., Strigini, L., Wright, D.: Conservative
claims for the probability of perfection of a software-based system using operational
experience of previous similar systems. Reliab. Eng. Syst. Saf. 175, 265–282 (2018).
https://doi.org/10.1016/j.ress.2018.03.032

37. Zhao, X., Robu, V., Flynn, D., Salako, K., Strigini, L.: Assessing the safety and
reliability of autonomous vehicles from road testing. In: The 30th International
Symposium on Software Reliability Engineering (ISSRE), Berlin, Germany. IEEE
(2019, in press)

https://doi.org/10.1007/978-3-642-40793-2_10
https://doi.org/10.1007/978-3-642-40793-2_10
https://doi.org/10.1016/j.ress.2014.02.004
https://doi.org/10.1038/scientificamerican1000-82
https://doi.org/10.1007/s10994-005-4257-7
https://doi.org/10.1016/j.ress.2018.03.032

Bayesian Inference by Symbolic Model
Checking

Bahare Salmani(B) and Joost-Pieter Katoen

RWTH Aachen University, Aachen, Germany
{salmani,katoen}@cs.rwth-aachen.de

Abstract. This paper applies probabilistic model checking techniques
for discrete Markov chains to inference in Bayesian networks. We present
a simple translation from Bayesian networks into tree-like Markov chains
such that inference can be reduced to computing reachability prob-
abilities. Using a prototypical implementation on top of the Storm
model checker, we show that symbolic data structures such as multi-
terminal BDDs (MTBDDs) are very effective to perform inference on
large Bayesian network benchmarks. We compare our result to inference
using probabilistic sentential decision diagrams and vtrees, a scalable
symbolic technique in AI inference tools.

1 Introduction

Bayesian Networks. Bayesian networks (BNs, for short) are one of the most
prominent class of probabilistic graphical models [32] in AI. They are used
in very different domains, both for knowledge representation and reasoning.
BNs represent conditional dependencies between random variables yielding – if
these dependencies are sparse – compact representations of their joint probabil-
ity distribution. Probabilistic inference is the prime evaluation metric on BNs.
It amounts to compute conditional probabilities. It is computationally hard:
PP-complete [13,14]. A vast amount of inference algorithms exists, both exact
ones (possibly tailored to specific graph structures such as bounded tree-width
graphs), as well as advanced approximate and simulation algorithms. State-of-
the-art symbolic exact inference use different forms of decision diagrams. In par-
ticular, sentential decision diagrams (SDDs for short [44]) and their probabilistic
extension (PSDDs [30]) belong to the prevailing techniques.

Probabilistic Model Checking. Model checking of Markov chains and non-
deterministic extensions thereof is a vibrant field of research since several
decades. The central problem is computing reachability probabilities, i.e., what
is the probability to reach a goal state from a given start state? Algorithms
for computing conditional probabilities have been considered in [5]. Efficient
model-checking algorithms have been developed and tools such as PRISM [33]

This work is funded by the ERC AdG Projekt FRAPPANT (Grant Nr. 787914).

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 115–133, 2020.
https://doi.org/10.1007/978-3-030-59854-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_9

116 B. Salmani and J.-P. Katoen

and storm [20] have been applied to case studies from several different applica-
tion areas. Like ordinary model checking, the state-space explosion problem is a
major practical obstacle. As for BNs, the use of decision diagrams has attracted
a lot of attention since its first usages in probabilistic model checking [2,4] and
improvements are still being developed, see e.g., [31]. As demonstrated in the
QComp 2019 competition, MTBDD-based model checking prevails on various
benchmarks [24].

Topic of This Paper. The aim of this work is to investigate to what extent
off-the-shelf techniques from probabilistic model checking can be used for exact
probabilistic inference in BNs. We are in particular interested to study the usage
of MTBDD-based symbolic model checking for inference, and to empirically
compare its performance to inference using state-of-the-art decision diagrams
in AI such as SDDs and their probabilistic extension. To that end, we define
a simple mapping from (discrete) BNs into discrete-time Markov chains (MCs)
and relate Bayesian inference to computing reachability probabilities. We report
on an experimental evaluation on BNs of the bnlearn repository varying in size
from small to huge (BN categorization) using a prototypical implementation
on top of the storm model checker. Our experiments show that inference using
MTBDD-based model checking is quite sensitive to the evidence in the inference
query, both in terms of size (i.e., the number of random variables) and depth
(i.e., the ordering). For BNs of small to large size, MTBDD-based symbolic
model checking is competitive to BN-specific symbolic techniques such as PSDDs
whereas for very large and huge BNs, PSDD techniques prevail.

Contributions. Our work aimed to reduce the gap between the area of proba-
bilistic model checking and probabilistic inference. Its main contributions are:

– A simple mapping from Bayesian networks to Markov chains.
– A prototypical tool chain to enable model-checking based inference.
– An experimental evaluation to compare off-the-shelf MTBDD-based inference

by model checking to tailored PSDD inference.

Related Work. There is a large body of related work on exploiting verification
and/or symbolic data structures to inference. We here concentrate on the most
relevant papers. Deininger et al. [21] is perhaps the closest related work. They
apply PCTL model checking on factored representations of dynamic BNs and
compare an MTBDD-based approach using partitioned representations of the
transition probability matrix to monolithic representations. Their experiments
show that quantitative model checking does not significantly benefit from par-
titioned representations. Langmead et al. [34,35] employ probabilistic model
checking algorithms to perform inference on Dynamic Bayesian Networks. They
emphasize on broadening the queries, using temporal logic as the query lan-
guage. Holtzen et al. [25] consider symbolic inference on discrete probabilistic
programs. They generalize efficient inference techniques for BNs that exploit the
BN structure to such programs. The key is to compile a program into a weighted
Boolean formula, and to exploit BDD-based techniques to carry out weighted

Bayesian Inference by Symbolic Model Checking 117

model counting on such formulas. The works by Darwiche et al. [11,15,16,19]
compile BNs into arithmetic circuits (via CNF) and perform inference by mainly
differentiating these circuits in linear time in terms of the circuit sizes. This
method is also applicable to relational BNs [12]. Minato et al. [36] propose an
approach for exact inference by compiling BNs directly into multiple linear for-
mulas using zero-suppressed BDDs. This differs from Darwiche’s approach as it
does not require the intermediate compilation into CNF. Shih et al. [43] propose
a symbolic approach to compile BNs into reduced ordered BDDs in order to
verify them against monotonicity and robustness. Sanner and McAllester [40]
propose an affine version of algebraic decision diagrams to compactly represent
context-specific, additive, and multiplicative structures. They proved that the
time and memory footprint of these affine ADDs for inference can be linear in
the number of variables in cases where ADDs are exponential. Batz et al. [6] use
deductive verification to analyse BNs. They show that BNs correspond to a sim-
ple form of probabilistic programs amenable to obtaining closed-form solutions
for exact inference. They exploited this principle to determine the expected time
to get one sample from the BN under rejection sampling. Approximate model
checking has been applied to verify dynamic BNs against finite-horizon prob-
abilistic linear temporal properties [37]. Finally, we mention the works [23,42]
that use exact symbolic inference methods, so-called PSI tools, on belief net-
works and probabilistic programs, basically through mapping program values to
symbolic expressions.

Outline. Section 2 introduces Bayesian networks and probabilistic inference.
Section 3 briefly recapitulates Markov chain model checking. Section 4 presents
the various symbolic data structures that are relevant to this work. Section 5
details how BNs are mapped onto Markov chains and how inference can be
reduced to computing reachability probabilities. Section 6 reports on the exper-
imental results, while Sect. 7 concludes the paper.

2 Bayesian Networks

A Bayesian network (BN for short) is a tuple B = (G,Θ) where G = (V,E) is
a directed acyclic graph with finite set of vertices V in which v ∈ V represents
a random variable taking values from the finite domain D and edge (v, w) ∈ E
represents the dependency of w on v. We let parents(v) = {w ∈ V | (w, v) ∈
E}. For each vertex v with k parents, the function Θv : Dk → Dist(D) is the
conditional probability table of (the random variable corresponding to) vertex v.
Dist(D) here denotes the set of probability distribution functions on D. Figure 1
indicates a small BN, in which all the variables are binary. The DAG indicates the
dependencies between the variables. For example, the grade a student gets for an
exam depends on whether the exam has been easy or difficult, and additionally
on whether she has been prepared for the exam. See Fig. 1.

The conditional probability table Θv (CPT for short) of vertex v defines
a probability distribution which determines the evaluation of v, given some

118 B. Salmani and J.-P. Katoen

evaluation of parents(v). For example, according to the CPT of Grade, the
probability of a low grade is 0.95 for an easy exam and non-prepared student.

Fig. 1. Simple example of Bayesain networks - Student Mood

The semantics of BN B = (V,E,Θ) is the joint probability function that it
defines. Let W ⊆ V be a downward-closed set of vertices where w ∈ W has value
w ∈ D. The unique joint probability function of BN B equals:

Pr(W = W) =
∏

w∈W

Pr(w = w | parents(w) = parents(w)) (1)

In this paper, we are interested in probabilistic inference. Let B be a BN with
set V of vertices, F ⊆ V be the evidence, and H ⊆ V be the hypothesis. The
evidence can be simply seen as what we already know and the hypothesis as what
we are interested in, given the evidence. The problem of (exact) probabilistic
inference is to determine the following conditional probability:

Pr(H = h | F = f) =
Pr(H = h ∧ F = f)

Pr(F = f)
(2)

In case Pr(F = f) = 0, the query is considered ill-conditioned. In the student
mood example, shown in Fig. 1, let assume that we are interested to know how
likely a student ends up with a bad mood after getting a bad grade for an easy
exam, given that she is well prepared. This is defined as:

Pr(D = 0, G = 0,M = 0 | P = 1) =
Pr(D = 0, G = 0,M = 0, P = 1)

Pr(P = 1)

=
0.6 · 0.5 · 0.9 · 0.3

0.3
=

0.081
0.3

= 0.27

The decision variant of probabilistic inference can be defined for a given proba-
bility p ∈ Q ∩ [0, 1) as follows:

Bayesian Inference by Symbolic Model Checking 119

Does Pr(H = h | F = f) > p?

This problem is PP-complete [17]. The average Markov blanket of a BN is an
indication of the practical complexity of performing inference. The Markov blan-
ket for a vertex v in a BN is the set ∂v composed of the parents, the children,
and the spouses of v [17], where the spouses of v are the nodes that have some
common children with v. It follows that Pr(v | ∂v ∧ w) = Pr(v | ∂v), for any
w ∈ V . The average Markov blanket of a BN, or AMB for short, then is the aver-

age size of the Markov blanket of all its vertices, that is,
1

|V |
∑

v∈V |∂v|. AMB

indicates the average degree of dependence between the random variables in the
BN.

3 Markov Chain Model Checking

Since in this work we are focused on discrete time BNs, we are interested in
discrete-time Markov chains. DTMCs or simply MCs for short, are simple prob-
abilistic models that equip each edge with a probability. An MC M is a tuple
(Σ, σI , P) where Σ is a countable non-empty set of states, σI is the initial state,
and P : S → Dist(Σ) is the transition probability function.

In this work we are interested in computing reachability probabilities in an
MC. The reachability probability for G ⊆ Σ is defined as the probability of finally
reaching G, starting from the initial state σI . This is denoted by PrM (♦G).
Computing PrM (♦G) can be reduced to computing the unique solution of a
linear equation system [29] whose size is linear in |Σ|. This can be done in a
symbolic manner using MTBDDs [4].

4 Symbolic Data Structures

The need to represent Boolean functions and probability distributions in a suc-
cinct manner has led to various compact representations [3,8,18,22,30]. Sym-
bolic model checking mainly relies on set-based and binary encoding of states
and transitions enabling the use of compact representations such as BDDs and
MTBDDs. In the following we briefly review the data structures related to this
work: BDDs, MTBDDs, vtrees, SDDs and PSDDs. The first two are popular in
symbolic model checking while the last three are state-of-the-art in probabilistic
inference.

4.1 Reduced Ordered Binary Decision Diagrams

ROBDDs or simply BDDs for short, are dominantly-used structures for repre-
senting switching functions. BDDs result from compacting binary decision trees
mainly by eliminating don’t care nodes and duplicated subtrees. Essential char-
acteristic of ROBDDs is that they are canonical for a given function and a given

120 B. Salmani and J.-P. Katoen

variable ordering [8]. Optimal variable orderings can yield very succinct ROB-
DDs. Although finding the optimal variable ordering is NP-hard [7], ROBDDs
can be very compact in practice [10].

Let ℘ = (z1, ..., zm) be a (total) variable ordering for V ar = {z1, ..., zm}
where z1 <℘ ... <℘ zm. An ℘-OBDD is a tuple B = (V, VI , VT , succ0,
succ1, var, val, v0) with the finite set V of nodes, partitioned into inner nodes
VI and terminal nodes VT . v0 ∈ VI is the unique distinguished root node.
succ0, succ1 : VI → V are the successor functions assigning a zero-successor
vr ∈ V and a one-successor vl ∈ V to each v ∈ V . The labelling functions
var : VI → V ar and val : VT → {0, 1} must satisfy the following equation for
v ∈ VI and w ∈ {succ0(v), succ1(v)}:

(var(v) = zi ∧ w ∈ VI) ⇒ var(w) = zj with zi <℘ zj . (3)

Every inner node v in an OBDD represents a variable from V ar. The terminal
nodes are mapped to 0 or 1. Based on the evaluation of var(v) either to 0 or
to 1, the transition from v to the next node is chosen from {succ0(v), succ1(v)}.
The semantics of an ℘-OBDD is the switching function fB where fB([z1 =
b1, ..., zm = bm]) is determined by the value of the resulting leaf obtained by
traversing the OBDD starting from the root v0 and branching according to the
evaluation [z1 = b1, ..., zm = bm].

For terminal v ∈ VT , fv represents the constant function fv with value val(v).
For v ∈ VI , fv is defined based on the Shannon expansion over v as fv =
(¬z ∧ fsucc0(v)) ∨ (z ∧ fsucc1(v)), where z = var(v). A ℘-OBDD B is reduced if
for every pair (v, w) of nodes in B, v 	= w implies fv 	= fw. An OBDD can be
reduced by recursively applying simple reduction rules: the elimination of don’t
care vertices, and the elimination of isomorphic subtrees.

4.2 Multi-terminal BDDs

While BDDs represent Boolean functions, the terminal values in MTBDDs can
acquire values from other domains such as real or rational numbers. This allows
rational or real functions to be succinctly represented, enabling representing
probability distribution functions. The formal definition of MTBDD is not very
different from the one for BDD. Let V ar and ℘ be as before. An MTBDD M is the
same structure as an OBDD except that (in our setting) the value function val
is refined to val : VT → [0, 1] assigning each terminal node v ∈ VT a probability
val(v). The semantics of MTBDD M is defined by fM : Eval(V ar) → [0, 1]
similarly to fB for BDD B.

4.3 Sentential Decision Diagrams

Sentential Decision Diagrams [18] represent propositional knowledge bases. They
are inspired by two concepts: structured decomposability [38] which is based
on vtrees, and the generalisation of Shannon decomposition which is strongly
deterministic decomposition [39].

Bayesian Inference by Symbolic Model Checking 121

vtree. A vtree [38] for a set of variables V is a full (but not necessarily complete),
rooted binary tree whose leaves represent the variables in V . The node v and
the subtree rooted at the node v are often called the same. Let var(v) indicate
the set of variables stored in the leaves of the subtree rooted at the node v. Let
vl and vr be respectively indicate the left and right children of v. A Boolean
function f in Decomposable Negation Normal Form (DNNF) is said to respect
a vtree T if for every conjunction α ∧ β in f , there is a node t in T such that
var(α) ⊆ var(tl) and var(β) ⊆ var(tr).

Strongly Deterministic Decomposition. Let f be a Boolean function with disjoint
sets of variables X and Y . If f can be written as (p1(X)∧s1(Y))∨ ...∨ (pn(X)∧
sn(Y)), then {(p1, s1), ..., (pn, sn)} is called an (X,Y)-decomposition of f in
terms of Boolean functions pi and si on X and Y respectively. Provided that
pi ∧ pj = false for i 	= j, the decomposition is called strongly deterministic
on X. Here, each pi is called a prime and each si a sub. Let S be a strongly
deterministic (X,Y)-decomposition of function f . S is called an X-partition of
f iff its primes make a partition. This means each prime is consistent (i.e., can
be true at some evaluation), every pair of distinct primes are mutually exclusive,
and the disjunction of all primes is valid (true).

SDD. An SDD can be seen as a recursive (X,Y)-strongly deterministic decom-
position of a switching function according to a particular vtree, starting from
the root node. The semantics of SDD S is defined by the switching function fS
with respect to the vtree v. S is an SDD respecting vtree v iff (1) S = ⊥ or
S = �, with the semantics f⊥ = false and f� = true, (2) S = X or S = ¬X
and v is a leaf with variable X with the semantics fX = X and f¬X = ¬X, (3)
S = {(p1, s1), ..., (pn, sn)}, v is internal, p1, ..., pn are SDDs that respect subtrees
of vl, and s1, ..., sn are SDDs that respect subtrees of vr, where fp1 , ..., fpn

makes

a partition. In this case, the semantics of SDD S is given by fS =
n∨

i=1

(pi ∧ si).

An SDD is compressed iff all its subs are distinct (si 	= sj for i 	= j). Moreover,
it is called trimmed if it does not contain any decomposition of the form {(�,S)}
or {(S,�), (¬S,⊥)}. These two properties characterise the canonicity of SDDs
as follows. Two SDDs that are compressed and trimmed and respect the same
vtree are semantically equivalent if and only if they are equal [18]. Thus, vtrees
for SDDs resemble the role of variable ordering for BDDs. In the same manner,
compression and trimming resemble reduction in BDDs.

Example 1. Figure 2 (right) indicates an SDD for the Student Mood example
(see Fig. 1). The underlying vtree is depicted in Fig. 2 (left). The two-parts boxes
in SDD visually indicate the prime-sub pairs. The circles indicate decision nodes.
Decision node (p1, s1), ..., (pk, sk) has k outgoing edges and edge i is connected
to (pi, si). The SDD respects the vtree in the sense that on each vtree node
the leaves in the left subtree determine the primes and the leaves in the right
subtree determine the subs. For instance, for node 3 in the vtree, P determines
the primes and G and M determine the subs. Since each decision node makes
an (X,Y)-partition, each variable evaluation holds on exactly one prime.

122 B. Salmani and J.-P. Katoen

Fig. 2. An SDD (right) and the corresponding vtree (left) for Student Mood example

4.4 Probabilistic SDDs

PSDDs [30] are recent representations in the domain of reasoning and learning.
Similarly to MTBDDs, which are BDDs to represent non-Boolean functions,
SDDs are extended to PSDDs in order to particularly represent probability dis-
tributions. A single SDD can be parameterized in infinitely many ways, each
yielding a probability distribution. This is similar to BNs in a sense that each
DAG can be extended to infinitely many Θs, (i.e., conditional probability tables)
where each Θ specifies a probability distribution. PSDDs are complete in the
sense that every distribution can be induced by a PSDD. PSDDs are canonical
in the sense that for a given vtree, there is a unique trimmed and compressed
PSDD. Interestingly, computing the probability of a term can be done in time
linear in the PSDD size [30].

Syntax. A PSDD parametrizes an SDD in the following manner: (1) Every deci-
sion node (pi, si), ..., (pk, sk) and every prime pi is equipped with a positive
parameter θi such that θ1 + ... + θk = 1 and θi = 0 iff si = ⊥. The PSDD deci-
sion node is indicated by (p1, s1, θ1), ..., (pk, sk, θk). (2) For each terminal node
�, a positive parameter θ is supplied such that 0 < θ < 1. Syntactically, the
terminal node � with parameter θ is indicated by x : θ, where x is the variable
of the vtree leaf node that � is normalized [18] for. Other terminal nodes (⊥, x,
and ¬x) have fixed pre-defined parameters.

Semantics. Let n be a PSDD node respecting a vtree node v. Node n represents
the probability distribution Prn over the variables of vtree v defined by:

– If n is a terminal node and v consists of variable x, then
• for n = x : θ, Prn(x) = θ and Prn(¬x) = 1 − θ
• for n = ⊥, Prn(x) = 0 and Prn(¬x) = 0
• for n = x, Prn(x) = 1 and Prn(¬x) = 0
• for n = ¬x, Prn(x) = 0 and Prn(¬x) = 1.

Bayesian Inference by Symbolic Model Checking 123

– If n is a decision node (p1, s1, θ1), ..., (pk, sk, θk) and v, the corresponding
vtree node, has X as left variables and Y as right variables, Prn(X,Y) =
Prpi

(X) · Prsi
(Y) · θi for i that X |= pi. Here, X denotes the evaluation of

X’s variables. The condition X |= pi holds on exactly one of the primes, by
definition of (X,Y)-decomposition.

Example 2. Figure 3 (right) denotes the PSDD for the Student Mood example,
with the same underlying vtree as in Example 1. The visual representation of
PSDD extends SDD in two manners: (1) edge i directing from the decision
node (p1, s1, θ1), ..., (pk, sk, θk) to the pair (pi, si) is labeled with θi, (2) terminal
node � is replaced by x : θ, according to the PSDD syntax and semantics.
The PSDD in Fig. 3 (right) induces the same probability distribution function
induced by the Student Mood BN. For instance, Pr(¬D ∧ P ∧ ¬G ∧ ¬M) =
0.6 · 0.3 · (0.5 · (1 − 0.1)) = 0.081, by the PSDD semantics.

Fig. 3. A PSDD (right) and vtree (left) compiled from the Student Mood example

5 BN Analysis Using Probabilistic Model Checking

In this section, we are going to explain our approach in detail. First, let us explain
some notations. Let X be a set of variables. Let X denote the evaluation of X’s
variables. We use ∗ to denote a don’t care value. We use μ to denote a probability
distribution. Let

∏n
i=1 Xi = X1 × ... × Xn = {(x1, ..., xn)|x1 ∈ X1, ..., xn ∈ Xn}

be the Cartesian product over the sets Xi, ...,Xn.
The basic idea for the transformation is to map a Bayesian network B onto

the Markov chain MB such that the conditional reachability probabilities in MB

correspond to the conditional probabilistic inference queries in B. Colloquially
stated:

PrB(H = h | F = f) = PrMB
(♦(H = h) | ♦(F = f)). (4)

The definition of MC MB is as follows.

124 B. Salmani and J.-P. Katoen

Definition 1 (The Markov chain of a BN). Let B = (V,E,Θ) be a
BN with V = {v1, ..., vn} and dom(vi) = Di with elements di ∈ Di. For
 =
(v1, ..., vn) a topological order on the DAG (V,E), let MC MB = (Σ, σI , P) be
the Markov chain of B where:

– Σ =
n∏

i=1

{vi} × (Di ∪ {∗}) is the set of states,

– σI = V × {∗} is the initial state, and
– P : Σ × Σ → [0, 1] is the transition probability function defined by the fol-

lowing SOS rules:

Θv1 = μ, μ(d1) = p

σI
p−→ σ(v1,d1) = ((v1, d1), (v2, ∗), ..., (vn, ∗))

(5)

Θvi
(parents(vi)) = μ, μ(di) = p,

parents(vi) × parents(vi) ⊆ {(v1, d1), ..., (vi−1, di−1)}
σ = ((v1, d1), ..., (vi−1, di−1), (vi, ∗), ..., (vn, ∗))

p−→ σ′ = ((v1, d1), ..., (vi, di), (vi+1, ∗), ..., (vn, ∗))

(6)

σ = ((v1, d1), ..., (vn, dn)) 1−→ σ = ((v1, d1), ..., (vn, dn)). (7)

The states in MC MB are tuples of pairs in the form of (v, d) where v is
a variable of BN B and d ∈ dom(v) ∪ {∗} is the current value of v. The sym-
bol ∗ is used to denote the initial evaluation of a variable. The initial state is
((v1, ∗), ..., (vn, ∗)). The transition probability function specifies the probability
of evolving between states. These transition probabilities correspond to the val-
ues in the conditional probability tables of B’s variables. The rule (5) defines
the transitions from the initial state to its successors according to Θv1 . Since v1
is the first variable in the topological order, parents(v1) = ∅. If Θv1 = μ and
μ(d1) = p, there is a transition with probability p from the initial state σI to the
state σ in which all the variables are ∗ except for v1 which is mapped to d1. Let
states in which all the variables have taken values from their domain constitute
the final states, {(v, d) | v ∈ V, d 	= ∗}. According to the rule (7), the final states
are equipped with a 1-probability self-loop. The transitions from the states that
are neither initial nor final are formalized in the rule (6). Let parents(vi) be the
evaluation of all the variables in the set parents(vi). Let μ = Θ(parents(vi)).
If μ(di) = p, then from the state σ where all variables before vi based on the
ordering
 are evaluated to values other than ∗, the transition goes to the state
σ′ where all the variable evaluations remain the same, except for (vi, ∗) that
changes to (vi, di). The transition can take place only provided that all the
variables in parents(vi) are already evaluated at the state σ and their evalua-
tion is consistent with the values in parents(vi). This is ensured by the premise
parents(vi) × parents(vi) ⊆ {(v1, d1), ..., (vi−1, di−1)}.

Bayesian Inference by Symbolic Model Checking 125

Example 3. Reconsider the BN Student Mood shown in the Fig. 1. Figure 4
(left) indicates the MC MStudentMood resulting from the above definition. Here,
the don’t care evaluations are omitted from the states and the states related to
“Mood” variable are ignored. The probabilities on evolving edges are based on
their corresponding values in the conditional probability tables. For instance, for
the left most path in the MC this is 0.4, 0.3, and 0.95. The last number is set,
for example, according to the Grade’s CPT where the probability of Grade = 1
equals 0.95, for Dif = 1 and Prep = 1. The MTBDD corresponding to the
probability distribution over the leaves of MStudentMood is shown in Fig. 4 (right),
again abstracting from don’t care values and “Mood” variable. The nodes binary
evaluations are coded as the right and left edges in an MTBDD. For example,
the left most path indicates all the variables being evaluated to 1. The terminal
nodes denote the joint probability, which in this case equals 0.4·0.3·0.95 = 0.114.

Init

Dif = 1

Dif = 1
Pep = 1

Dif = 1
Prep = 0

Dif = 1
Prep = 1

Grade = 1

Dif = 1
Prep = 1

Grade = 0

Dif = 1
Prep = 0

Grade = 1

Dif = 1
Prep = 0

Grade = 0

Dif = 0
Prep = 0

Dif = 0
Prep = 0

Grade = 1

Dif = 0
Prep = 0

Grade = 0

Dif = 0
Prep = 1

Grade = 0

Dif = 0
Prep = 1

Grade = 1

Dif = 0
Prep = 1

Dif = 0

0.4 0.6

0.3 0.7 0.3 0.7

0.95 0.05 0.4 0.6 0.5 0.5 0.05 0.95

x0

x1

x2 x2 x2

x1

0.399 0.0210.090.112 0.1680.114 0.006

1

1

1 1 1 10 0 0

0

0

0

Grade

Prep

Dif

Fig. 4. The corresponding MC (left) and MTBDD (right) for Student Mood example

Proposition 1 (The size of MC MB). Let B be a BN with dom(vi) = Di

for each vi ∈ V and |MB | be the number of states in the Markov chain MB.
Then,

|MB | ≤ 1 +
n∑

i=1

i∏

k=1

|Dk|. (8)

In the special case where all random variables in B have domain D

|MB | ≤
n∑

i=0

|D|i, thus |MB | ≤ 1 − |D|n+1

1 − |D| .

Example 4. The number of states in Fig. 4 (right) is |MB | = 24 − 1 = 15.

We now consider the reachability probability as shown in the Eq. (4). By
definition of conditional probabilities we have:

PrMB
(♦(H = h) | ♦(F = f)) =

PrMB
(♦(H = h) ∧ ♦(F = f)))
PrMB

(♦(F = f))
(9)

126 B. Salmani and J.-P. Katoen

To determine the right-hand side we observe that given the tree structure of
MC MB it holds:

Proposition 2. For Markov Chain MB of BN B:

PrMB
(♦(H = h) ∧ ♦(F = f)) = PrMB

(♦(H = h ∧ F = f)).

From this, it is concluded that inference in BN B can be reduced to computing
reachability probabilities in MC MB .

6 Experimental Results

Experimental Setup. We implemented a prototypical software tool for performing
Bayesian inference as an extension of the probabilistic model checker Storm
[20]. Our tool takes as input a BN in the Bayesian network Interchange Format
[1] (BIF, for short). The BN is translated into a Markov chain as described
in Definition 1. The MC is specified using the Jani [9] modelling language, a
high-level modelling language in the domain of probabilistic model checking. We
evaluated our tool using various BN benchmarks from the Bayesian network
repository bnlearn [41] that contains several BNs categorized in small, medium,
large, very large, and huge networks. Table 1 indicates some statistics of the
evaluated BNs from the repository. The first column denotes whether all the
variables in the BN are binary. The other statistics are the number of vertices, the
number of edges, the maximum in-degree, the maximum domain size of variables,
the average Markov blanket, and the number of parameters. The number of
parameters is related to the total number of probabilities in all the conditional
probability tables. All our experiments were conducted on a 2.3 GHz Intel Core
i5 processor with 16 GB of RAM.

We focused our experimental validations on the following three questions:

1. What is the performance of MTBDD-based symbolic probabilistic model
checking on Bayesian inference?

2. What is the effect of the number of observations and their depth in the
topological ordering on the inference time in our approach?

3. How does inference using MTBDDs compares to PSDD techniques in terms
of compilation time and inference time?

Bayesian Inference Using MTBDD-Based Model Checking. In order to answer
the first question, we have fed the Jani descriptions of the MCs into storm’s
sparse engine, and storm’s bdd engine. The former fully builds a sparse matrix
of the Markov chain MB of BN B, while the latter generates an MTBDD repre-
sentation from the Jani file. The variable ordering of the MTBDD is determined
based on the topological order of the BN. Table 2 indicates the size of the result-
ing data structures and the compilation time. Here E19, for instance, denotes
1019 as the order of magnitude. The inference time on the sparse representation
is prohibitive, even for medium-sized BNs, while inference using MTBDDs is
mostly a matter of a few seconds or less. The large MC sizes are due to the

Bayesian Inference by Symbolic Model Checking 127

Table 1. Statistics on the evaluated Bayesian networks in bnlearn

Binary BN #Vertices #Edges InDegreeMax Dmax AMB #Parameters

YES

cancer 5 4 2 2 2.00 10

earthquake 5 4 2 2 2.00 10

asia 8 8 2 2 2.5 18

win95pts 76 112 7 2 5.92 574

andes 223 338 6 2 5.61 1157

NO

survey 6 6 2 3 2.67 21

sachs 11 17 3 3 3.09 178

child 20 25 2 6 3.00 230

alarm 37 46 4 4 3.51 509

insurance 27 52 3 5 5.19 984

hepar2 70 123 6 4 4.51 1453

hailfinder 56 66 4 11 3.54 2656

water 32 66 5 4 7.69 10083

pathfinder 135 200 5 63 3.81 72079

exponential growth of the state space in the domain of the BN’s variables, see
Proposition 1. The significant size reduction with MTBDDs is due to the sym-
metrical and repetitive structure of the MB . Those kind of symmetries and dupli-
cated subtrees are merged in the MTBDD representation. The type of MTBDD
shown in Fig. 4 (right) represents a discrete probability distribution. However,
the MTBDD generated by storm encodes the Markov chain, i.e. its terminal
nodes carry the transition probabilities of the Markov chain. This makes sharing
of the subgraphs much more likely.

Table 2. Analysis of BN benchmarks using storm symbolic engine compared to sparse

Binary BN Size Construction time

MC (#states) MTBDD (#nodes) Sparse engine Symbolic engine

YES

cancer 63 56 0.018 s 0.007 s

earthquake 63 55 0.023 s 0.006 s

asia 278 154 0.028 s 0.011 s

win95pts E19 446752 >1.5 h 11 s

andes E67 339485 >1.5 h 180 s

NO

survey 238 70 0.031 s 0.008 s

sachs 265720 165 0.469 s 0.072 s

child E9 731 >1.5 h 0.277 s

alarm E16 2361 >1.5 h 1 s

insurance E11 102903 >1.5 h 2 s

hepar2 E42 7675 >1.5 h 17 s

hailfinder E17 152201 >1.5 h 18 s

water E9 64744 >1.5 h 20 s

pathfinder E242 MO >1.5 h –

128 B. Salmani and J.-P. Katoen

The Influence of Observations. In order to answer the second question, we have
chosen different ways to pick the set of evidences. This is aimed to investigate
how the number of evidence nodes and their depth in the topological order
affect the verification time. For each BN, three different sets of observations
are considered; the evidence nodes at the beginning in the topological order, a
random selection, and the last nodes in the topological ordering. We also varied
the number of evidence nodes. Figure 5 (in log-log scale) demonstrates the results
for two large benchmarks, win95pts (left) and hepar2 (right). The x-axis denotes
the number of evidence nodes and the y-axis denotes the model checking time
in seconds. For the “first” setting, where i nodes are picked from the beginning
of the topological order, the time for performing model checking is relatively
small; less than 3.064 s in all the experiments for win95pts and less than 0.682 s
in all the experiments for hepar2. The results follow a similar pattern in almost
all the other BN benchmarks. The last nodes in the topological order are the
highest dependent ones on the other nodes. That explains why model checking
is significantly more time-consuming in the “last” setting. The verification time
becomes negligible if the number of evidences is large. That is mostly because
then the final result of the inference tends more likely to become zero when the
number of evidence nodes are high. In this case there are many restrictions to
be satisfied, and the zero probability can be computed very fast.

100 101 102

100

101

102

103

First
Random
Last

100 101 102
10-2

10-1

100

101

102

103

104

First
Random
Last

Fig. 5. Inference time (in s) for different size and depth of evidence for win95pts (left)
and hepar2 (right) - log log scale

Comparing MTBDD-Based Model Checking to Inference Using PSDDs. In order
to answer our last question, we have conducted a series of experiments to see how
our approach performs compared to the recent prominent inference tool based
on PSDD. PSDD1 is a scalable tool for reasoning and learning on belief networks
in the AI literature. We have compiled the BNs in the benchmark into MTBDD
with storm symbolic engine. To this end, we have converted the benchmark BNs
into PSDDs and vtrees using the PSDD-Nips package2. Our experiments covers
1 https://github.com/hahaXD/psdd.
2 https://github.com/hahaXD/psdd nips.

https://github.com/hahaXD/psdd
https://github.com/hahaXD/psdd_nips

Bayesian Inference by Symbolic Model Checking 129

Table 3. Empirical comparison with PSDD based inference regarding different vtree
methods - Binary cases

BN

#
E
v
id

e
n
c
e

MTBDD
PSDD

random vtree
PSDD

fixed vtree
PSDD

minfill vtree

C
o
m

p
il
a
ti
o
n

In
fe
re

n
c
e

C
o
m

p
il
a
ti
o
n

In
fe
re

n
c
e

C
o
m

p
il
a
ti
o
n

In
fe
re

n
c
e

C
o
m

p
il
a
ti
o
n

In
fe
re

n
c
e

cancer

1

0.022 s

0.001 s

0.016 s

0.002 s

0.016 s

0.003 s

0.005 s

0.003 s

2 0.001 s 0.003 s 0.003 s 0.003 s

3 0.001 s 0.003 s 0.003 s 0.003 s

4 0.001 s 0.003 s 0.002 s 0.003 s

5 0.001 s 0.003 s 0.003 s 0.003 s

earthquake

1

0.006 s

0.001 s

0.015 s

0.003 s

0.016 s

0.003 s

0.004 s

0.003 s

2 0.001 s 0.003 s 0.003 s 0.003 s

4 0.001 s 0.003 s 0.003 s 0.003 s

asia

1

0.018 s

0.001 s

0.026 s

0.004 s

0.023 s

0.003 s

0.005 s

0.003 s

2 0.001 s 0.003 s 0.003 s 0.003 s

4 0.001 s 0.004 s 0.004 s 0.003 s

8 0.002 s 0.003 s 0.003 s 0.003 s

win95pts

1

11.214 s

2.409 s

0.258 s

0.074 s

0.233 s

0.068 s

0.047 s

0.042 s

2 2.760 s 0.066 s 0.060 s 0.039 s

4 2.501 s 0.067 s 0.067 s 0.039 s

8 2.452 s 0.063 s 0.061 s 0.039 s

16 2.576 s 0.056 s 0.050 s 0.033 s

32 0.671 s 0.053 s 0.046 s 0.033 s

64 0.658 s 0.053 s 0.043 0.032 s

andes

1

180 s

1.165 s

12.617 s

5.479 s

13.046 s

12.893 s

4.724 s

4.863 s

2 0.989 s 5.824 s 12.832 s 4.818 s

4 0.992 s 5.423 s 13.312 s 4.823 s

8 1.144 s 5.620 s 12.874 s 4.838 s

16 1.247 s 5.612 s 9.921 s 4.122 s

32 1.385 s 5.457 s 10.362 s 4.120 s

64 2.538 s 5.552 s 8.996 s 3.442 s

128 3.488 s 3.656 s 8.096 s 3.141 s

the available vtree methods: random, fixed and minfill. The decisive difference
between these methods is the heuristics they employ to triangulate the DAG
underlying a BN [26]. Due to the fact that the PSDD packages are inherently
limited to perform inference only on BNs with binary variables, we categorize
our results into two parts: binary BNs and non-binary BNs. Table 3 indicates
the results for the binary benchmarks. The results include the compilation time
and inference time by different methods, taking the same sets of evidence nodes.
In each row the minimum inference time is highlighted in bold face. As inference
in our tool is applicable to non-binary BNs, we have built a prototypical script to
binarize non-binary networks such that they can be fed into the PSDD package.
Table 4 indicates the results for these non-binary benchmarks where #Nodes

130 B. Salmani and J.-P. Katoen

Table 4. Empirical comparison with PSDD based inference regarding different vtree
methods - Non-binary cases

BN

#
N
o
d
e
s

#
E
v
id

e
n
c
e

MTBDD
PSDD

random vtree
PSDD

fixed vtree
PSDD

minfill vtree

C
o
m

p
il
a
ti
o
n

In
fe
re

n
c
e

C
o
m

p
il
a
ti
o
n

In
fe
re

n
c
e

C
o
m

p
il
a
ti
o
n

In
fe
re

n
c
e

C
o
m

p
il
a
ti
o
n

In
fe
re

n
c
e

survey 14

1

0.018 s

0.002 s

0.114 s

0.004 s

0.129 s

0.004 s

0.019 s

0.004 s

2 0.002 s 0.004 s 0.003 s 0.004 s

4 0.004 s 0.003 s 0.003 s 0.003 s

sachs 33

1

0.076 s

0.002 s

0.208 s

0.008 s

0.212 s

0.008 s

0.096 s

0.010 s

2 0.002 s 0.008 s 0.008 s 0.008 s

4 0.004 s 0.009 s 0.009 s 0.009 s

8 0.004 s 0.008 s 0.007 s 0.008 s

child 60

1

0.273 s

0.014 s

0.304 s

0.014 s

0.293 s

0.012 s

0.191 s

0.021 s

2 0.004 s 0.013 s 0.010 s 0.018 s

4 0.005 s 0.013 s 0.010 s 0.018 s

8 0.006 s 0.010 s 0.010 s 0.013 s

16 0.008 s 0.011 s 0.010 s 0.016 s

alarm 104

1

1.538 s

0.010 s

0.703 s

0.014 s

0.685 s

0.012 s

0.345 s

0.013 s

2 0.011 s 0.012 s 0.013 s 0.012 s

4 0.013 s 0.013 s 0.013 s 0.012 s

8 0.014 s 0.013 s 0.013 s 0.013 s

16 0.019 s 0.010 s 0.011 s 0.010 s

32 0.031 s 0.013 s 0.013 s 0.012 s

insurance 88

1

2.258 s

0.432 s

0.695 s

0.011 s

0.672 s

0.013 s

0.342 s

0.012 s

2 0.462 s 0.012 s 0.012 s 0.012 s

4 0.461 s 0.012 s 0.013 s 0.012 s

8 0.478 s 0.013 s 0.013 s 0.012 s

16 0.174 s 0.012 s 0.011 s 0.010 s

hepar2 162

1

17 s

0.074 s

32.129 s

0.058 s

37.466 s

0.054 s

12.205 s

0.056 s

2 0.069 s 0.054 s 0.049 s 0.054 s

4 0.076 s 0.052 s 0.044 s 0.053 s

8 0.083 s 0.052 s 0.043 s 0.043 s

16 0.101 s 0.045 s 0.043 s 0.033 s

32 0.144 s 0.039 s 0.036 s 0.051 s

64 0.191 s 0.042 s 0.038 s 0.051 s

indicates the number of resulting binary variables. The pre-processing time for
conversion and binarization is not included. Due to the large number of param-
eters in the benchmarks “hailfinder”, “water”, and “pathfinder” (see Table 1),
these cases are computationally hard to binarize. Therefore, these cases are not
included in Table 4. The main conclusions of our experimental results are:

1. Inference using MTBDD-based symbolic model checking is competitive to
BN-specific symbolic techniques like PSDD for small to large BNs.

Bayesian Inference by Symbolic Model Checking 131

2. PSDD techniques outperform our MTBDD-based approach for very large and
huge BNs.

3. MTBDD-based inference is quite sensitive to the number and depth (in the
topological order) of evidences.

7 Conclusions

In this paper, we have investigated MTBDD-based symbolic probabilistic model
checking to perform exact inference on Bayesian networks. We have translated
Bayesian networks into Markov chains, and have reduced inference to comput-
ing reachability probabilities. Our prototypical tool chain built on top of storm
[20] is evaluated on BNs from the bnlearn repository. We investigated several
hypotheses to see which factors are affecting the inference time.

Future work consists of optimizing our implementation and approach, and to
consider other metrics on BNs, such as maximum a posteriori (MAP) and the
most probable explanation (MPE). We also like to generalize our approach to
recursive BNs [27] or dynamic BNs [28], which bring respectively the notion of
recursion and time on the table. Moreover, we believe that this work provides
a good basis for performing probabilistic model checking on a broader set of
graphical models such as Markov networks, which are, unlike Bayesian networks,
undirected in nature.

Acknowledgement. The authors would like to thank Yujia Shen (UCLA) for his
kind support with running the PSDD tools.

References

1. Bayesian network Interchange Format. http://www.cs.washington.edu/dm/vfml/
appendixes/bif.htm. Accessed 2019

2. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDs and the Kronecker rep-
resentation. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 395–410. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-
0 27

3. Bahar, R.I., et al.: Algebraic decision diagrams and their applications. Formal
Methods Syst. Des. 10(2/3), 171–206 (1997)

4. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.:
Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri,
R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63165-8 199

5. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabil-
ities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 43

6. Batz, K., Kaminski, B.L., Katoen, J.-P., Matheja, C.: How long, O Bayesian net-
work, will I sample thee? In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp.
186–213. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1 7

http://www.cs.washington.edu/dm/vfml/appendixes/bif.htm
http://www.cs.washington.edu/dm/vfml/appendixes/bif.htm
https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/3-540-63165-8_199
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-319-89884-1_7

132 B. Salmani and J.-P. Katoen

7. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput. 45(9), 993–1002 (1996)

8. Bryant, R.E.: Binary decision diagrams. Handbook of Model Checking, pp. 191–
217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 7

9. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

10. Chaki, S., Gurfinkel, A.: BDD-based symbolic model checking. Handbook of Model
Checking, pp. 219–245. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 8

11. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure. In:
IJCAI, pp. 1306–1312. Professional Book Center (2005)

12. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks for
exact inference. Int. J. Approx. Reason. 42(1–2), 4–20 (2006)

13. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artif. Intell. 42(2–3), 393–405 (1990)

14. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief
networks is NP-Hard. Artif. Intell. 60(1), 141–153 (1993)

15. Darwiche, A.: A logical approach to factoring belief networks. In: KR, pp. 409–420.
Morgan Kaufmann (2002)

16. Darwiche, A.: New advances in compiling CNF into Decomposable Negation Nor-
mal Form. In: ECAI, pp. 328–332. IOS Press (2004)

17. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press, Cambridge (2009)

18. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: IJCAI, pp. 819–826. IJCAI/AAAI (2011)

19. Darwiche, A.: A differential approach to inference in Bayesian networks. CoRR
abs/1301.3847 (2013)

20. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A STORM is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

21. Deininger, D., Dimitrova, R., Majumdar, R.: Symbolic model checking for factored
probabilistic models. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 444–460. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3 28

22. Fujita, M., McGeer, P.C., Yang, J.C.: Multi-terminal binary decision diagrams:
an efficient data structure for matrix representation. Formal Methods Syst. Des.
10(2/3), 149–169 (1997)

23. Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic
programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
62–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 4

24. Hahn, E.M., et al.: The 2019 comparison of tools for the analysis of quantitative
formal models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS
2019. LNCS, vol. 11429, pp. 69–92. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17502-3 5

25. Holtzen, S., Millstein, T.D., Van den Broeck, G.: Symbolic exact inference for
discrete probabilistic programs. CoRR abs/1904.02079 (2019)

https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-46520-3_28
https://doi.org/10.1007/978-3-319-46520-3_28
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5

Bayesian Inference by Symbolic Model Checking 133

26. Hopkins, M., Darwiche, A.: A practical relaxation of constant-factor treewidth
approximation algorithms. In: Proceedings of the First European Workshop on
Probabilistic Graphical Models. PGM, pp. 71–80. Citeseer (2002)

27. Jaeger, M.: Complex probabilistic modeling with recursive relational Bayesian net-
works. Ann. Math. Artif. Intell. 32(1–4), 179–220 (2001)

28. Jensen, F.V.: Bayesian Networks and Decision Graphs. Statistics for Engineering
and Information Science. Springer, New York (2001). https://doi.org/10.1007/978-
1-4757-3502-4

29. Katoen, J.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM
(2016)

30. Kisa, D., Van den Broeck, G., Choi, A., Darwiche, A.: Probabilistic sentential
decision diagrams. In: KR. AAAI Press (2014)

31. Klein, J., et al.: Advances in symbolic probabilistic model checking with PRISM.
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 349–366.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 20

32. Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Tech-
niques. MIT Press, Cambridge (2009)

33. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

34. Langmead, C., Jha, S., Clarke, E.: Temporal logics as query languages for dynamic
Bayesian networks: application to d. melanogaster embryo development. Technical
report, Carnegie Mellon University (2006)

35. Langmead, C.J.: Towards inference and learning in dynamic Bayesian networks
using generalized evidence. Technical report, Carnegie Mellon University (2008)

36. Minato, S., Satoh, K., Sato, T.: Compiling Bayesian networks by symbolic proba-
bility calculation based on zero-suppressed BDDs. In: IJCAI, pp. 2550–2555 (2007)

37. Palaniappan, S.K., Thiagarajan, P.S.: Dynamic Bayesian networks: a factored
model of probabilistic dynamics. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 17–25. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33386-6 2

38. Pipatsrisawat, K., Darwiche, A.: New compilation languages based on structured
decomposability. In: AAAI, pp. 517–522. AAAI Press (2008)

39. Pipatsrisawat, T., Darwiche, A.: A lower bound on the size of decomposable nega-
tion normal form. In: AAAI. AAAI Press (2010)

40. Sanner, S., McAllester, D.A.: Affine algebraic decision diagrams (AADDs) and
their application to structured probabilistic inference. In: IJCAI, pp. 1384–1390.
Professional Book Center (2005)

41. Scutari, M.: Bayesian network repository. https://www.bnlearn.com. Accessed
2019

42. Shachter, R.D., D’Ambrosio, B., Favero, B.D.: Symbolic probabilistic inference in
belief networks. In: AAAI, pp. 126–131. AAAI Press/The MIT Press (1990)

43. Shih, A., Choi, A., Darwiche, A.: Formal verification of Bayesian network classifiers.
In: Proceedings of Machine Learning Research. PGM, vol. 72, pp. 427–438. PMLR
(2018)

44. Xue, Y., Choi, A., Darwiche, A.: Basing decisions on sentences in decision diagrams.
In: AAAI. AAAI Press (2012)

https://doi.org/10.1007/978-1-4757-3502-4
https://doi.org/10.1007/978-1-4757-3502-4
https://doi.org/10.1007/978-3-662-49674-9_20
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-33386-6_2
https://doi.org/10.1007/978-3-642-33386-6_2
https://www.bnlearn.com

Queuing Networks

CogQN: A Queueing Model that Captures
Human Learning of the User Interfaces

of Session-Based Systems

Olivia Das1(&) and Arindam Das2

1 Electrical and Computer Engineering, Ryerson University, Toronto, Canada
odas@ee.ryerson.ca

2 School of Engineering Technology & Applied Science,
Centennial College, Toronto, Canada

Abstract. A session-based system provides various services to its end users
through user interfaces. A novice user of a service’s user interface takes more
think time—the time to comprehend the content, and the layout of graphical
elements, on the interface—in comparison to expert users. The think time
gradually decreases, as she repeatedly comprehends the same interface, over
time. This decrease in think time is the user learning phenomenon. Owing to this
learning behavior, the proportion of users—at various learning levels for dif-
ferent services—changes dynamically leading to a difference in the workload.
Traditionally though, workload specifications (required for system performance
evaluation) never accounted for user learning behavior. They generally assumed
a global mean think time, instead. In this work, we propose a novel queueing
network (QN) model called CogQN that accounts for user learning. It is a multi-
class QN model where each service and its learning level constitute a class of
users for the service. The model predicts overall mean response times across
different learning modes within 10% error in comparison to empirical data.

Keywords: Queueing network � Think time � User learning � Response time

1 Introduction

Often, a user interface (UI) is associated with a service. A typical user of a UI takes a
finite amount of time to comprehend its content, and the layout of its graphical ele-
ments. This time is termed as think time. As the user repeatedly uses a service, her
think time for the service gradually decreases—this is user learning phenomenon. The
existing works on workload generation [1–3, 5] have not considered user learning. In
contrast we posit that user learning, together with different proportions of users
arriving at the system with various learning levels for different services, is likely to
impact the system’s performance.

To this end, we propose a predictive performance model, CogQN. Our model is a
multi-class queueing network augmented with two novel parameters related to user
learning—the Think Time Matrix and the Arrival Probability Matrix. We define them
later in the paper. The CogQN model introduces the concept of a class to represent a
service invoked by the users who are at a certain learning level for that service.

© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 137–143, 2020.
https://doi.org/10.1007/978-3-030-59854-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_10

It further introduces the concept of learning level-dependent class-switching proba-
bilities to model the dynamic transition of learning levels of users for different services.
For our convenience, we refer to the traditional queueing network (QN) as QN-no-
learning to distinguish it from our CogQN model.

We modify a TPC-W system [4, 7] in terms of user learning included (we call this
yes-learning or YL mode), versus not included (we call this no-learning or NL mode).
We then run the modified system and collect measured data out of it. Next, we realize
two discrete-event simulation models of the TPC-W system: First, a CogQN model
capturing various YL modes. Second, a QN-no-learning model—a traditional QN
model capturing the NL mode. We realize this QN model as a special case of the
CogQN model. Finally, using the models, we predict the overall mean response times
across different YL modes, and the NL mode. We validate the predictions against
measured data within 10% error. The empirical result indicates that one should not
likely avoid end-user learning if accurate performance predictions are desired.

2 System Description

When a user submits a service request successfully through a user interface-based
client, a response results in form of a user interface (e.g., a web page) corresponding to
that service request. To initiate a user session, the user first submits a request for the
entry service e (e.g., Home) through the client. Once the user interface corresponding to
service e is obtained as a response, the user has the option of ending the session or
submitting another request through the responded interface. The cycle—request sub-
mission; response generation; time for response comprehension (think time); next
request submission—continues until the session is ended. Studies in user interfaces
have observed that the think time of a user decreases for a service with its repeated
usage [6, 8–10, 12]. In our context, this happens because the user gets more and more
familiar with the content on the user interface obtained as a response to the service
request. The work in [8] surveys that the learning curves, resulting from change in
think time over repeated usages, can have different shapes—it may be flat showing
small change in think time across consecutive usages; or it may be steep showing sharp
fall in think time in the early stage of usages (number of usages being plotted in x-axis,
think time being plotted in y-axis). The shape of the curve depends on the usability of
the interface in terms of the complexity of its content and the layout of its graphical
elements.

3 The CogQN Model

3.1 Notations

To develop our CogQN model, we first introduce the notations as follows:

• N is the number of nodes (representing devices).
• R denotes the number of services provided by an application.
• L denotes the number of learning levels a user can be at for a service (Note: At any

given time-point, the user can be at only one learning level for a given service).

138 O. Das and A. Das

Once a user reaches the last learning level for a service, her learning level does not
increase any further even if she continues to submit requests for that service.

• U denotes the number of users in the system. Some of the users may be in the
thinking phase and some of them may be in the waiting phase (Users in waiting
phase are those who have submitted the request and waiting for system to respond).

• k is the arrival rate of users. A user session begins by requesting for entry service e.
• Think Time Matrix, T ¼ tij

� �
R�L. An element tij denotes the mean think time of

the users who are at learning level j for service i. Each row i in this matrix represents
the learning curve for service i.

• Arrival Probability Matrix, A ¼ aij
� �

R�L. A user is at different learning levels for
different services. An element aij denotes the probability that an arriving user is at
learning level j for service i. Given any service i,

PL
j¼1 aij ¼ 1.

• Service Transition Probability Matrix, P ¼ prs½ �R�R. An element prs is the
probability that a user will send a request for service s after finishing with a request
for service r. For our modeling purpose, we assume that whenever the service s is
the entry service e, the user session ends, and the user leaves the network.

• A class rl (where r = 1, 2,…, R; l = 1, 2,…, L) represents a set of users who are in
one of the two states:
• a user has submitted a rl request for service r at learning level l.
• a user has got back the response of her rl request and is comprehending the

response for the duration of the relevant think time.

The classes rl and rl0 (representing the same service, different learning levels) differ
in their think times, but always need the same service demands from a node.

• C ¼ crl½ �R�L. crl denotes the number of users in class rl.
PR

r¼1

PL
l¼1 crl ¼ U.

• K ¼ kij
� �

R�L. kij in this matrix denotes the number of users in the system who are at
learning level j for service i. The row i shows the distribution of U users who are at
various learning levels for the service i. kij includes cij (the number of users who are
in class ij) plus the number of users who are in other classes but who have the
learning level j for service i. So, kij � cij. Thus, for each row i,

PL
j¼1 kij ¼ U.

• Learning Level-dependent Class Switching Probability Matrix, S ¼
srl;r0 l0
h i

R:L�R:L
. An element srl;r0 l0 is the probability that a user will switch from the

class rl to the class r0l0. The element srl;r0 l0 is computed using C, K and P.
• Service Demand Matrix, D ¼ drn½ �R�N . An element drn is the service demand to

process a request for service r on node n. For a fixed r, all rl requests (where l = 1,
2,…, L) will have the same service demand drn on node n (where n = 1, 2,…, N).

• RT is the overall mean response time of a request regardless of its class.

3.2 Model Description

Figure 1 shows our CogQN model. The parameters of this model are Think Time
Matrix T, Arrival Probability Matrix A, Service Transition Probability Matrix P, Ser-
vice Demand Matrix D and the Arrival rate k. T and A are related to user learning.

CogQN: A Queueing Model that Captures Human Learning 139

Our model has R� L classes of users. The box in Fig. 1 represents a network of
queueing stations i.e. nodes, where a node represents a resource in the real system.
Users arrive to the system with an average rate k. All the arriving users enter the system
by requesting entry service e. Once a user arrives at the system, it joins a class el with
probability ael. A user then submits an rl request (r is e for a newly arrived user) and
waits for the response. Once the response is obtained, the user takes trl amount of time
to comprehend the response. The user then either leaves the network with probability
pre or switches its class from rl to r0l0 with learning level-dependent class switching
probability srl;r0l0 .

3.3 Model Solution

In our model, the system maintains a state on the number of users using a service at a
given learning level, and the number of users at each learning level for each service.
The former is maintained by the matrix C and the latter is maintained by the matrix
K. We solve our CogQN model using discrete-event simulation. In our simulation, the
probability of switching of a user from one class to another class is computed using
these two matrices, and the matrix P.

Similar to any queueing model simulation, we first generate the users at an inter-
arrival time sampled from an exponential distribution with rate k. Once a user joins a
class rl, it traverses different queueing nodes in the network to obtain service r with
service demand drn on node n. The service demands are sampled from an exponential
distribution. The user then visits the pure delay server representing the think time. The
think time is sampled from an exponential distribution with rate 1/trl depending on the
user’s class.

Next, we describe how we maintain the matrices C and K as well as how we
compute the class switching probability (where relevant) for the three cases—i) when a
user arrives; ii) when a user leaves; iii) when a user switches its class.

Case i):
When a user arrives, the matrices C and K are updated as follows:

• The user joins a class el with probability ael. Consequently, with probability ael, the
cel element of matrix C as well as the kel element of K are increased by 1.

• For every service i other than e, only one kij element of row i of matrix K is
incremented by 1 depending on the probability aij where

PL
j¼1 aij ¼ 1.

An arriving user
joins class el
with probability
ael

user sends rl
request

user switches from class
to class with probabil-
ity Network of

Queueing
Stations

Fig. 1. A Cog-QN model for a session-based application system.

140 O. Das and A. Das

Case ii):
When a user leaves, matrices C and K are updated as follows:

• The user leaves the class rl with probability pre. Consequently, with probability pre,
the crl element of matrixC as well as the krl element of matrixK are decremented by 1.

• For every service i other than r, only one kij element of row i of matrix K is
decremented by 1 depending on the following probability:

kij � cij
PL

j¼1 kij � cij
� �

where kij � cij is the number of users who are at learning level j for service i but who
belong to a class m�ð Þ where m 6¼ i; � implies any learning level.

Case iii):
The switching probability of a user srl;r0l0 from class rl to r0l0 is determined in two steps
given below:

Step-1. First, the user goes to class (r0�) depending on the probability prr0 . The �
implies any learning level.
Step-2. Second, the user specifically enters the class r0l0 with a certain probability as
follows:
• when r0 ¼ r and l\L, the probability is 1 if l0 ¼ lþ 1; 0 otherwise.
• when r0 ¼ r and l ¼ L, the probability is 1 if l0 ¼ l; 0 otherwise.
• when r0 6¼ r, the probability is:

kr0l0 � cr0l0
PL

j¼1 kr0j � cr0j
� �

Once Step-2 is finished, the two matrices C and K are updated as follows:

• crl element of matrix C is decreased by 1, and its cr0l0 element is increased by 1.
• If l\ L, then krl of K is decreased by 1, and its kr lþ 1ð Þ element is increased by 1.

4 Model Validation

We build the CogQN model and the QN-no-learning model of the modified TPC-W
system. We develop the CogQN model (Fig. 1) with appropriate queueing stations for
the CPU and the disk being guided by the hardware resource information of the
computer where we carried out the measurements. The CogQN model takes as input
the service demands incurred by each service request on the CPU and the disk. In a
preliminary assessment, we found that the no-load response time of a service is not the
same when invoked standalone versus when invoked in a mix with other services.
Thus, determining the demands on the resources for each service becomes a chal-
lenging task. As an approximation, we estimate the demands based on the assumption

CogQN: A Queueing Model that Captures Human Learning 141

that the ratio of the disk demand to the CPU demand for a service stays the same
regardless of invoking the service standalone or in a mix with other services. The mix
we consider is the ordering-mix of TPC-W [4]. To capture the navigation pattern within
a session, we use the Service Transition Probability Matrix of the ordering-mix. This
matrix comes with the TPC-W system [7] that we have modified. The arrival rate for
the model is set at k = 10 users/sec. We feed the model with four YL modes made from
two Think Time Matrices and two Arrival Probability Matrices. The four modes are
shown in Table 1. One Think Time Matrix is replete with the learning curve LC1 =
[70 s, 13 s, 7 s] for every service; the other is replete with LC2 = [50 s, 30 s, 10 s] for
every service. Similarly, one Arrival Probability Matrix is replete with the arrival
probability set AP1 = [0.3, 0.3, 0.4] for every service; the other is replete with
AP2 = [0, 1, 0] for every service. We take a similar approach to parameterize the QN-
no-learning model, except that it is the case of NL mode where the think time at all
learning levels for a given service is the same (30 s—the average of the entries in either
LC1 or LC2), and the arrival probabilities are irrelevant.

We implement our models using SimPy 2.3 [11]. We accomplish 5 simulation runs
at every mode (NL and four YL). For each run, we set the ramp-up time to 300 s,
measurement interval to 300 s, and ramp-down time to 100 s (like empirical settings).
We obtain the average of all the runs in a given mode. A model takes a maximum of
6.22 s per run. We validate model predictions against measured data. We have
empirically observed an YL mode to be statistically significantly different than the NL
mode (Mode #3 versus #1; Mode #5 versus #1 of Table 1). We have also observed
statistically significant difference in a pair of YL modes themselves (Mode #2 versus
#3; Mode #4 versus #5 of Table 1). Table 1 shows the percentage error between a
model prediction of the overall mean response time and the corresponding measured
data. The error values in the table are absolute values. The errors are within 10%.

5 Conclusions

This work introduces a QN model with user learning. It models the dynamic transition
of learning levels of users for different services using class-switching probabilities. It
indicates that user learning behavior is indeed likely to impact the performance of
session-based systems. The model predicts overall mean response times across different
learning modes. The predictions are within 10% error in comparison to measured data.

Table 1. % errors in model predictions for overall mean response time RT

Mode # NL and YL modes (Arrival rate k = 10 users/sec) Error %

1 NL: Think Time 30 s 2.8
2 YL: LC1 = [70 s, 13 s, 7 s], AP1 = [0.3, 0.3, 0.4] 2.1
3 YL: LC1 = [70 s, 13 s, 7 s], AP2 = [0, 1, 0] 9.3
4 YL: LC2 = [50 s, 30 s, 10 s], AP1 = [0.3, 0.3, 0.4] 4.2
5 YL: LC2 = [50 s, 30 s, 10 s], AP2 = [0, 1, 0] 4.6

142 O. Das and A. Das

References

1. Menasce, D.A., et al.: A methodology for workload characterization of e-commerce sites. In:
Proceedings of the 1st Conference on Electronic Commerce (EC), pp. 119–128. ACM
(1999)

2. Mi, N., Casale, G., Cherkasova, L., Smirni, E.: Sizing multi-tier systems with temporal
dependence: benchmarks and analytic models. Springer J. Internet Services and App. 1(2),
117–134 (2010). https://doi.org/10.1007/s13174-010-0012-9

3. Vögele, C., van Hoorn, A., Schulz, E., Hasselbring, W., Krcmar, H.: WESSBAS: extraction
of probabilistic workload specifications for load testing and performance prediction—a
model-driven approach for session-based application systems. Softw. Syst. Model. 17(2),
443–477 (2018). https://doi.org/10.1007/s10270-016-0566-5

4. Menasce, D.A.: TPC-W: a benchmark for e-commerce. IEEE Internet Comput. 6(3), 83–87
(2002)

5. Casale, G., et al.: Dealing with burstiness in multi-tier applications: models and their
parameterization. IEEE Trans. Software Eng. 38(5), 1040–1053 (2012)

6. Ritter, F.E., Schooler, L.J.: The learning curve. In: International Encyclopedia of the Social
and Behavioral Sciences, vol. 13, pp. 8602–8605 (2001)

7. Zhang, L., Down, Douglas G.: SMVA: a stable mean value analysis algorithm for closed
systems with load-dependent queues. In: Puliafito, A., Trivedi, Kishor S. (eds.) Systems
Modeling: Methodologies and Tools. EICC, pp. 11–28. Springer, Cham (2019). https://doi.
org/10.1007/978-3-319-92378-9_2

8. Ritter, F.E., et al.: Learning and Retention. The Oxford Handbook of Cognitive Engineering.
Oxford Press, New York (2013)

9. Cockburn, A., Gutwin, C., Greenberg, S.: A predictive model of menu performance. In:
ACM CHI, pp. 627–636 (2007)

10. Ahlstrom, D., et al.: Why it’s quick to be square: modelling new and existing hierarchical
menu designs. In: ACM CHI, pp. 1371–1380 (2010)

11. SimPy discrete-event simulation framework, version 2.3. https://simpyclassic.readthedocs.
io/en/latest/Manuals/Manual.html

12. Das, A., Stuerzlinger, W.: Unified modeling of proactive interference and memorization
effort: a new mathematical perspective within act-r theory. In: Proceedings of the Annual
Meeting of the Cognitive Science Society (CogSci), pp. 358–363 (2013)

CogQN: A Queueing Model that Captures Human Learning 143

https://doi.org/10.1007/s13174-010-0012-9
https://doi.org/10.1007/s10270-016-0566-5
https://doi.org/10.1007/978-3-319-92378-9_2
https://doi.org/10.1007/978-3-319-92378-9_2
https://simpyclassic.readthedocs.io/en/latest/Manuals/Manual.html
https://simpyclassic.readthedocs.io/en/latest/Manuals/Manual.html

A Matlab Toolkit for the Analysis
of Two-Level Processor Sharing Queues

Andrea Marin(B), Sabina Rossi, and Carlo Zen

Università Ca’ Foscari Venezia, Venice, Italy
{marin,sabina.rossi}@unive.it, 864429@stud.unive.it

Abstract. This paper presents a Matlab toolkit for the numerical anal-
ysis of the two-level processor sharing queue (2LPS). The job sizes are
expressed in terms of acyclic phase type distributions which can approx-
imate any distribution arbitrary well while arrivals occur according to a
homogeneous Poisson process. The toolkit provides a simple yet efficient
way to find the optimal parametrization of the 2LPS queueing disciplines
given the job size distributions and the intensity of the workload. In prac-
tice, the tool can be used to configure the 2LPS scheduler for TCP flows.
The time complexity of the solution depends on the cube of the number
of phases of the distribution describing the flow sizes.

1 Introduction

Two-level processor sharing queues (2LPS) have been widely studied in queue-
ing theory and since the first results due to Kleinrock [4], many other papers
appeared and showed when the benefits of this scheduling discipline are promi-
nent with respect to the processor sharing (PS) queue (see, e.g., [1]). From the
networking prospective, the introduction of the Least Attained Service (LAS)
discipline lead to a new approach in the scheduling of TCP flows thanks to its
optimality properties [6]. LAS uses a PS discipline among the jobs that have
received the least amount of service. However, the difficulties in practical imple-
mentation of LAS shifted the attention to the multi-level PS (MLPS) queues as
practical approximations easier to implement. In MLPS, there are several levels
of attained service and the jobs belonging to a certain level are served according
to PS discipline only if there are no jobs which belong to levels corresponding to
a lower amount of attained service. In contrast with LAS, multi-level PS queues
require a parametrisation, i.e., the setting of the attained service thresholds. A
wrong parametrization may reduce the benefits of this approach and even worsen
the performance of the system with respect to the simpler PS scheduling.

In this paper, we provide a set of Matlab tools1 that, given the distribution of
the job sizes expressed by a canonical phase type distribution, allows the analysis
of the 2LPS queue and hence the determination of its optimal parametrization for
different intensities of the arrival process. Several solution approaches have been

1 http://www.dais.unive.it/∼marin/2lpstoolkit.zip.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 144–147, 2020.
https://doi.org/10.1007/978-3-030-59854-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_11&domain=pdf
http://www.dais.unive.it/~marin/2lpstoolkit.zip
https://doi.org/10.1007/978-3-030-59854-9_11

A Matlab Toolkit for the Analysis of Two-Level Processor Sharing Queues 145

Fitting Converter Solver

Dataset

Expected response time

Threshold
Load factor

APH GH

Fig. 1. Phases of use of the Matlab Toolkit for the two-level PS queues.

developed by the scientific literature and they follow the lines of the solution
proposed in [4] that is however complete only for a specific class of job size
distributions. The solution is complicated since it requires the analysis of two
queueing systems, one of which is a PS queue with batch arrivals and for this
class of queues it is known that the insensitivity property does not hold [2].
Thus, we believe that this Toolkit will be useful in practice for those interested
in the configuration of 2LPS schedulers. The algorithms which are implemented
are described in [5].

For networking purposes, i.e., scheduling TCP flows, we can safely focus
on systems consisting only of two levels (and one threshold) for several rea-
sons. First, it has been shown (see, e.g., [5] and the references therein) that the
difference in the expected response time between the 2LPS with optimal con-
figuration and the LAS is small at least for TCP flow distributions taken from
real datasets. Second, the increase of the number of levels in a MLPS makes
its practical implementation more and more difficult since each level requires a
priority queue. Third, the case of two levels introduces only a single parameter
to optimize and this makes the computations rather fast and may be done while
the scheduler is running on a real system to self-configure its optimal threshold.

2 Description of the Analysis Procedure
and of the Toolkit

The toolkit has been developed baring in mind the procedure shown in Fig. 1.
Algorithms for fitting dataset into phase type distributions have been largely
studied. Any acyclic phase-type distribution can be expressed in a certain canon-
ical form and cyclic distributions can be approximated arbitrary well by acyclic
ones. Tools like PhFit [3] returns the description of the canonical phase type
distribution fitting the dataset in terms of their generating matrices. In general,
to fit heavy-tailed distribution without using too many phases, the fitting of
the body and the tail of the distributions are kept separate. Thus, we have an
acyclic phase type (APH) with n phases for the body and m for the tail. The
Matlab Toolkit transforms this APH into a generalized hyperexponential distri-
bution (GH) using the algorithm described in [5]. GH distributions do not have
the Markovian interpretation of APH but they are merely an algebraic instru-
ment whose expression of their Laplace-Stieltjes transform allows for efficient

146 A. Marin et al.

computations of the steady-state performance measures of the queueing system.
The transformation is performed by function:

function [p,u] = convertPhfit(a, B, n, m)

where a is the vector of the initial probabilities, B is the sub-infinitesimal gen-
erator (i.e., the infinitesimal generator without the column associated with the
absorbing state) and n, m are the number of phases of the body and tail of the
distribution, respectively. The function returns the (non-Markovian) description
of the GH distribution. The other key-function of the tool is

function resp = averageR(u, p, l, a)

which takes as input the description of the GH distribution thanks to parameters
u and p, the intensity of the arrival process l and the threshold a. averageR
returns the expected response time of the 2LPS with those parameters.

Finally, the optimization of the parametrization can be performed with

function [th,resp] = optimalThreshold(a, B, body, tail, thmin,
thmax, rho, tol)

that takes as input the description a, B of the APH describing the job size
distribution, where body and tail indicate the number of phases used for the
body and the tail of the distribution. thmin and thmax are parameters used
to specify the range within the search of the optimum is done. rho is the load
factor of the queue and finally tol is the tolerance of the numerical search of
the minimum. The function implements a golden section search. It returns the
optimal threshold th and the corresponding expected response time resp.

3 Example

In this example, we have fitted the distribution of the TCP flow sizes collected
at the data center of the University Ca’ Foscari of Venice in November 2019.
The vector of initial probabilities A and the sub-infinitesimal generator B are
shown in the file main.m of the downloadable toolkit. The TCP flows have an
average size of 88.63 packets. The main file performs several experiments with a
load factor of 0.9, 0.7 and 0.5. Figure 2 shows the Matlab plot of the expected
response time as function of the chosen threshold. The optimal thresholds found
by the optimizer are 1029, 853 and 769 for the workload intensities 0.9, 0.8, 0.7,
respectively and correspond with those shown by the plot.

4 Final Remarks

2LPS scheduling plays an important role especially in networking applica-
tions because it can heavily reduce the expected response time of the system
with respect to a PS scheduler while being blind with respect to the prior
knowledge of the flow sizes. While 2LPS has slightly lower performance than
LAS, its implementation is less resource demanding and complex than LAS.

A Matlab Toolkit for the Analysis of Two-Level Processor Sharing Queues 147

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
200

300

400

500

600

700

800

900

Fig. 2. Example of output.

However, 2LPS requires a parametrization that, if wrongly done, could even
worsen the performance with respect to a standard PS scheduling. The Matlab
toolkit that we have presented solves this optimization problem without the need
for the practitioner to choose one of the available (and usually quite complicated)
solution methods and reimplement it. Moreover, the toolkit is compatible with
PhFit, a popular tool for fitting datasets into phase type distributions and this
may turn to be an important feature for its practical use. Future works include
a comparison with the performance of the scheduling proposed in [7].

References

1. Aalto, S., Ayesta, U.: Mean delay analysis of multi level processor sharing disciplines.
In: Proceedings of the IEEE of the 25th Annual Joint Conference of the IEEE
Computer and Communications Society (INFOCOM) (2006)

2. Bansal, N.: Analysis of the M/G/1 processor-sharing queue with bulk arrivals. Oper.
Res. Lett. 31(3), 401–405 (2003)

3. Horváth, A., Telek, M.: PhFit: a general phase-type fitting tool. In: Field, T., Harri-
son, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46029-2 5

4. Kleinrock, L.: Queueing Systems, volume II: Computer Applications. Wiley, Hobo-
ken (1976)

5. Marin, A., Rossi, S., Sottana, M., Zen, C.: Theoretical and experimental evalu-
ation of the two-level processor sharing discipline for TCP flows. In: 27th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS 2019, pp. 94–106 (2019)

6. Righter, R., Shanthikumar, J.: Scheduling multiclass single server queueing systems
to stochastically maximize the number of successful departures. Probab. Eng. Inf.
Sci. 3, 323–333 (1989)

7. Van Houdt, B., Van Velthoven, J., Blondia, C.: QBD Markov chains on binomial-
like trees and its application to multilevel feedback queues. Ann. Oper. Res. 160(1),
3–18 (2008). https://doi.org/10.1007/s10479-007-0288-8

https://doi.org/10.1007/3-540-46029-2_5
https://doi.org/10.1007/s10479-007-0288-8

M/M/1 Vacation Queue with Multiple
Thresholds: A Fluid Analysis

Mehmet Akif Yazici1(B) and Tuan Phung-Duc2

1 Informatics Institute, Istanbul Technical University, Istanbul, Turkey
yazicima@itu.edu.tr

2 Faculty of Engineering, Information and Systems, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

tuan@sk.tsukuba.ac.jp

Abstract. We propose an analytical method for an M/M/1 vacation
queue with workload dependent service rates. We obtain the distribution
of the workload in the system, and consider a power-saving and perfor-
mance trade-off problem. Numerical experiments reveal that square root
service rate function has lower cost than that of linear and quadratic
service functions under certain scenarios.

Keywords: Data center · Variable service rate · Power-saving · Fluid
model · Vacation queue

1 Introduction

Cloud computing is supported by data centers with a large number of servers and
a huge amount of energy consumption. This calls for energy saving mechanisms in
data centers while keeping service level high. A natural approach to this problem
is to adjust the processing rate of data centers according to the workload level in
the system so as to balance the energy consumption and performance. This can
be realized by turning the servers on and off (ON-OFF policy) in data centers [3],
frequency scaling or dynamic voltage and frequency scaling (DVFS) [5].

In this paper, we model power-saving in data centers by a single server queue-
ing system with vacation and workload-dependent service rate. We are able to
obtain the probability distribution and relevant statistics of the workload in the
system. This allows us to consider the energy-performance trade-off problem and
to investigate optimal service rate function as well as vacation policy.

As related work, Yajima and Phung-Duc [5] consider an M/M/1 system where
the service rate is proportional to the number of jobs in the system and analyze
the response time distribution. Marin et al. [2] consider an M/M/1 system with
SRPT scheduling policy and K speeds. In these papers, the service rate depends
on the number of jobs in the system. In contrast, in our present paper, we
consider the workload in the system instead of the number of jobs. As a closely
related work, Sakuma et al. [4] consider the same model and analyzed it using

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 148–152, 2020.
https://doi.org/10.1007/978-3-030-59854-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_12&domain=pdf
http://orcid.org/0000-0002-9965-2329
http://orcid.org/0000-0002-5002-4946
https://doi.org/10.1007/978-3-030-59854-9_12

M/M/1 Vacation Queue with Multiple Thresholds: A Fluid Analysis 149

Arrival Vacation Arrival

Service Vacation

r = +1 r = +1

Bi−1 < x < Bi : r = ri r = 0

λ

μ
if

x
<

B
V

μ
if

x
≥ BV

λ

1 at x = 0

μ

Fig. 1. The modulating CTMC of the fluid model, and the corresponding drift rates.

renewal theory and level-crossing approach. Yazici and Akar [6] analyzed the
MAP/PH/1 queue with workload-dependent behavior.

In this paper, we approach the problem using fluid queues. We numerically
solve the exact distribution of the workload, and analytically compute relevant
statistics. One of the advantages of our approach is that it could easily be
extended to analyze models with MAP arrivals and PH-type service times, which
is the main difference between our work and [4]. The remainder of the paper is
organized as follows. In Sect. 2, we describe our model in detail. Section 3 shows
some numerical results while concluding remarks are presented in Sect. 4.

2 System Model

We consider an infinite-capacity vacation queue with Poisson arrivals, whose
intensity is λ, and exponentially distributed job sizes with mean 1/μ. The ser-
vice rate depends on the instantaneous workload, x, through a piecewise-constant
function, i.e. the rate is ri when Bi−1 < x <= Bi where B0 = 0, BK = ∞
and i ∈ {1, . . . , K}. The server enters vacation when the workload hits 0, and
returns from vacation when the workload reaches BV . Without loss of generality,
we assume BV ∈ {B1, . . . , BK−1}. We model the workload as a fluid and thus,
the system can be described as a multi-regime feedback fluid queue [1] due to
the piecewise dependence of the service rate to the workload. The modulating
continuous-time Markov chain (CTMC) is given in Fig. 1, along with the asso-
ciated drift rates for each state. Notice that transition rates also depend on the
workload, hence producing a multi-regime fluid model.

To obtain the numerical results, we employed the methodology described
in [1]. One important detail worth mentioning is that the drift rate in the vaca-
tion regime is 0, and this needs special treatment. In general, the pdf of the
regimes with 0 drifts can be expressed as a linear combination of the pdf’s of
the remaining states; see equations (20)–(22) in [1] and the explanations therein.
Furthermore, Vacation state does not exist beyond x > BV .

After the distribution of the fluid in each state is obtained, the Arrival and
Vacation Arrival states are censored out, as the linear increases in these two
states represent the abrupt increases in the workload due to job arrivals and in
reality, the system does not spend any time in either of these states.

150 M. A. Yazici and T. Phung-Duc

To study the effect of the rate function and the vacation threshold, BV , we
consider a cost function as follows [2]:

C =

(
K∑
i=1

pir
2
i

)
+ p0c0 + chE[V] + csλV (0), (1)

where pi is the probability that the server works at speed ri, p0 is the probability
that the server is on vacation, c0 is the power consumption when the server is
on vacation, ch is the weight placed on the mean workload, i.e., performance,
E[V] is the mean workload, cs is the switching cost, and V (0) is the probability
that the workload is 0. Here, the product λV (0) is equal to the reciprocal of the
mean cycle time from the beginning of one vacation to the next [4], and hence
represents switching frequency of the server from OFF to ON.

Following the definitions in [1], the pdf of the workload is of the form

f (i)(x) = a
(i)
0 L

(i)
0 +a

(i)
− exp (A(i)

− (x − Bi−1))L
(i)
− +a

(i)
+ exp (−A

(i)
+ (Bi − x))L(i)

+ ,

Bi−1 < x < Bi, i ∈ {1, . . . ,K}, (2)

where A
(i)
− and A

(i)
+ are blocks of a matrix obtained through a similarity trans-

form on A(i) = Q(i)(R(i))−1, Q(i) and R(i) being the infinitesimal generator
of the CTMC and the diagonal drift matrix, respectively, for each regime, L

(i)
0 ,

L
(i)
− , and L

(i)
+ are blocks of the inverse of the aforementioned similarity transform

matrix, and
[
a
(i)
0 , a

(i)
− , a

(i)
+

]
are coefficients obtained through a set of boundary

conditions [1]. Hence, the required statistics can be obtained as

pi =
∫ Bi

Bi−1

f
(i)
S (x) dx, and E[V] =

K∑
i=1

∫ Bi

Bi−1

x f
(i)
S (x) dx, (3)

where fS(x) is the pdf of the workload in Service state after Arrival and Vaca-
tion Arrival states are censored out. Considering that the pdf expression in (2)
contain matrix exponentials only, it is clear that the integrals in (3) can be
evaluated analytically (We omit the exact expressions due to space limitation.).

3 Numerical Results

We obtained numerical results with λ = 1, μ = 1, Bi = (i/4), i ∈ {1, . . . , 40} via
implementation in Matlab. The parameters c0, ch, cs, and BV are varied. The
service rate functions we experimented with are rsri =

√
Bi−1+1, rlini = Bi−1+

1, rsqi = (Bi−1)2 + 1, representing square root, linear, and square dependence,
respectively, on the threshold values. We first give pdf plots of the workload
in Fig. 2 for BV ∈ {2, 4, 6} and ri = rlini . This illustrates the dynamics of the
workload and the effect of the selection of vacation threshold, BV .

Next, we compare the mentioned rate functions under various operating sce-
narios with respect to c0, ch, cs, and BV . We plot in Fig. 3 normalized service

M/M/1 Vacation Queue with Multiple Thresholds: A Fluid Analysis 151

Fig. 2. Workload pdf with BV ∈ {2, 4, 6},
and ri = rlini .

0 2 4 6 8 10
0

0.5

1

service cost
p

0
mean workload E[V]

 V(0)

Fig. 3. Cost components against BV .
Service cost and E[V] are normalized,
with maximum values of 5.8137 and
4.0301, respectively.

cost (C values for c0 = ch = cs = 0), p0, normalized E[V], and λV (0), with
ri = rlini . As BV is increased, all but λV (0) increase monotonically. Hence, we
conclude that cs is the critical component of the cost against other coefficients.
In Fig. 4, we plot the cost for cs ∈ {10, 30, 50} with ri = rlini . We observe that
the cost function turns out to be convex in this scenario, and there exist opti-
mum BV values for each cs value, which are marked with asterisks on the plots.
Finally, we compare the rate functions with c0 = ch = 1, cs = 30 in Fig. 5.
Again, we observe a similar dynamic with respect to BV .

0 2 4 6 8 10
0

5

10

15

20

C
os

t

c
s
=10

c
s
=30

c
s
=50

Fig. 4. Costs for different values of cs
with ri = rlini , c0 = ch = 1.

0 2 4 6 8 10
0

10

20

30

40

C
os

t

square root
linear
square

Fig. 5. Costs for different rate func-
tions, c0 = ch = 1, cs = 30.

4 Conclusion

In this study, we model the M/M/1 vacation queue for the purpose of perfor-
mance analysis and optimization of cloud data centers. The main mathematical
tool we use for our model is multi-regime fluid queues. We observe that the cost
is sensitive to the selection of several parameters, as well as the rate function.
We quantitatively demonstrate the behavior of the cost function with respect to
vacation threshold. It is clear that further analysis is necessary to determine real-
istic values for the cost coefficients. Hence, future studies will comprise extensive
experimentation with regards to the cost parameters, and improvement of the
model by considering finite buffer systems and more complicated inter-arrival
time and job size distributions.

152 M. A. Yazici and T. Phung-Duc

References

1. Kankaya, H.E., Akar, N.: Solving multi-regime feedback fluid queues. Stochast. Mod-
els 24(3), 425–450 (2008)

2. Marin, A., Mitrani, I., Elahi, M., Williamson, C.: Control and optimization of the
SRPT service policy by frequency scaling. In: McIver, A., Horvath, A. (eds.) QEST
2018. LNCS, vol. 11024, pp. 257–272. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99154-2 16

3. Phung-Duc, T.: Exact solutions for M/M/c/Setup queues. Telecommun. Syst. 64(2),
309–324 (2016). https://doi.org/10.1007/s11235-016-0177-z

4. Sakuma, Y., Boxma, O., Phung-Duc, T.: A single server queue with workload-
dependent service speed and vacations. In: Phung-Duc, T., Kasahara, S., Wittevron-
gel, S. (eds.) QTNA 2019. LNCS, vol. 11688, pp. 112–127. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-27181-7 8

5. Yajima, M., Phung-Duc, T.: Batch arrival single-server queue with variable service
speed and setup time. Queueing Syst. 86(3–4), 241–260 (2017)

6. Yazici, M.A., Akar, N.: The workload-dependent MAP/PH/1 queue with infi-
nite/finite workload capacity. Perform. Eval. 70(12), 1047–1058 (2013)

https://doi.org/10.1007/978-3-319-99154-2_16
https://doi.org/10.1007/978-3-319-99154-2_16
https://doi.org/10.1007/s11235-016-0177-z
https://doi.org/10.1007/978-3-030-27181-7_8

Markov Processes

Bounding Mean First Passage Times
in Population Continuous-Time

Markov Chains

Michael Backenköhler1,2(B), Luca Bortolussi1,3, and Verena Wolf1

1 Saarland University, Saarbrücken, Germany
michael.backenkoehler@uni-saarland.de

2 Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany
3 University of Trieste, Trieste, Italy

Abstract. We consider the problem of bounding mean first pas-
sage times and reachability probabilities for the class of population
continuous-time Markov chains, which capture stochastic interactions
between groups of identical agents. The quantitative analysis of such
models is notoriously difficult since typically neither state-based numer-
ical approaches nor methods based on stochastic sampling give efficient
and accurate results. Here, we propose a novel approach that leverages
techniques from martingale theory and stochastic processes to gener-
ate constraints on the statistical moments of first passage time distri-
butions. These constraints induce a semi-definite program that can be
used to compute exact bounds on reachability probabilities and mean
first passage times without numerically solving the transient probability
distribution of the process or sampling from it. We showcase the method
on some test examples and tailor it to models exhibiting multimodality,
a class of particularly challenging scenarios from biology.

Keywords: Population continuous-time Markov chains · Semi-definite
programming · Exit time distribution · Reachability probability ·
Markov population models

1 Introduction

Population Continuous-Time Markov Chains (PCTMCs) provide a widely used
framework to capture stochastic interactions between groups of identical agents.
This subclass of Continuous-Time Markov Chains (CTMCs) is used to describe
the stochastic dynamics of systems in various domains. Prominent applications
are chemical reaction networks in quantitative biology [55], epidemic spread-
ing [46], performance analysis of technical and information systems [11,22] as
well as the behavior of collective adaptive systems [9].

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-59854-9 13) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 155–174, 2020.
https://doi.org/10.1007/978-3-030-59854-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_13
https://doi.org/10.1007/978-3-030-59854-9_13
https://doi.org/10.1007/978-3-030-59854-9_13

156 M. Backenköhler et al.

For the quantitative analysis of CTMCs, many approaches have been devel-
oped, where properties of interest are often expressed in terms of temporal logics
such as CSL [2,5,6], MTL [14], and timed-automata specifications [15,41]. In
addition, there exist efficient software tools [17,31,38] that can be used to ana-
lyze and verify system properties. The computation of reachability probabilities
is a central problem in this context.

Popular exact methods for CMTCs rely on numerical approaches that explic-
itly consider each system state individually. A major problem is that these meth-
ods cannot scale in the context of population models with large copy numbers of
agents. A popular alternative to tackle this problem is statistical model check-
ing, which is based on stochastic simulation [16]. For PCTMCs arising in the
context of chemical reaction networks, trajectories of the process are usually
generated using the Stochastic Simulation Algorithm (SSA) [25]. However, since
the number of possible interactions grows with the number of agents, stochas-
tic simulations of PCTMCs are time-consuming. Moreover, they are subject to
inherent statistical uncertainty and give only statistically estimated bounds.

As an alternative, recent work concentrates on numerical methods that
approximate the statistical moments of the system without the need to com-
pute the probability of each state. For groups of identically behaving agents,
it is possible to derive systems of differential equations for the evolution of the
statistical population moments [10,12,21,22,50,51]. However, as the system of
exact moment equations is infinite-dimensional, approximation schemes typi-
cally rely on certain assumptions about the underlying probability distribution
to truncate it. For example, one might employ a “low dispersion closure” which
assumes that higher-order moments are the same as those of a normal distribu-
tion [30]. Such approximations are, by nature, ad-hoc and do not come with any
guarantees.

Moment-based methods often scale well in terms of population sizes. How-
ever, it is not possible to control the effects of the introduced approximations,
which in some cases can lead to large errors [50]. This issue reverberates on the
application of these methods to compute reachability probabilities and mean
first passage times [12,13,28]. Moreover, they can suffer from numerical insta-
bilities, in particular, when the maximum order of the considered moments has
to be increased to more appropriately describe the underlying distribution.

Here, we put forward a method based solely on moments that gives exact
bounds for Mean First Passage Times (MFPTs) and reachability probabilities in
PCTMCs. For a set of states, the MFPT within a fixed time-horizon T directly
characterizes the probability of reaching that set within T time units. Thus, safe
upper and lower bounds on MFPTs can constitute a core component for the veri-
fication of properties in PCTMCs. Our approach extends recent work on moment
bounds [20,47] and it is based on a martingale formulation of the stopped process
that we derive from the exact moment equations. From this formalization, we
deduce a set of linear moment constraints from which we derive upper and lower
moment bounds using semi-definite programming (SDP). Monotone sequences
of both upper and lower bounds can be obtained by increasing the order of the
relaxation. Crucially, no closure approximations are introduced. Therefore the
bounds are exact up to the numerical accuracy of the SDP solver.

Bounding Mean First Passage Times in PCTMCs 157

To experimentally validate our method in terms of accuracy and feasibility,
we run some tests on examples from biology, leveraging an existing SDP solver
and obtaining encouraging results. Comparing with other moment-based meth-
ods, our approach is not based on approximations due to closure schemes, thus
providing guarantees on the bounds up to the numerical accuracy of the compu-
tations. However, similarly to other moment-based methods, we also found the
insurgence of numerical instabilities because moments of higher order tend to
span over many orders of magnitude. We ameliorate this problem by considering
scaling strategies that reduce such variability. We also extend our approach to
deal with PCTMCs exhibiting strong multimodal behavior, due to the presence
of populations having low copy numbers. This extension exploits some ideas from
hybrid moment closures [34].
In summary, this paper presents the following novel contributions:

– the derivation of moment constraints, based on a martingale formulation, for
bounding first passage times and reachability probabilities using a convex
programming scheme;

– the extension of this scheme using hybrid moment conditions to systems
exhibiting multimodal behavior;

The paper is structured as follows: Sect. 2 covers work related to the analysis
of first passage times in PCTMCs and recent work on moment bounds. Section 3
introduces the PCTMC framework and its semantics. In Sect. 4 we derive a
martingale from the moment dynamics of a PCTMC. Based on this process, in
Sect. 5 we formulate linear and semi-definite constraints to state a semi-definite
program to compute bounds on the MFPT and reachability probabilities. In
Sect. 6, we discuss the practical considerations of the SDP implementation and
provide results on a set of case studies. Finally, in Sect. 7 we provide concluding
remarks and directions of future work.

2 Related Work

Considerable effort has been directed at the analysis of first passage time dis-
tributions in PCTMCs. Most works can either focus on an explicit state-space
analysis [7,36,37,43] or employ approximation techniques for which, in general,
no error bounds can be given [13,28,49]. For some model classes such as kinetic
proofreading, analytic solutions are possible [8,32,43].

Barzel and Biham [7] propose a recursive scheme that consists of one equation
for each state, expressing the average time the system needs to transition from
that state to the target state. Kuntz et al. [36] propose to employ moment bounds
in a linear programming approach to compute exit time distribution using state-
space truncation schemes. In Ref. [37] the authors propose a finite state-space
projection scheme to bound first passage time distributions.

Hayden et al. [28] use moment closure approximations and Chebychev’s
inequality to gain an understanding of first passage time dynamics. Schnoerr et
al. [49] also employ a moment closure approximation and further approximate

158 M. Backenköhler et al.

threshold functions to derive an approximate first passage time distribution.
Bortolussi and Lanciani [13] use a mean-field approximation which is required
to reach the target region.

Recently, several groups independently suggested the use of semi-definite
optimization for the computation of moment bounds for the limiting distribu-
tion [19,23,35,47]. In this approach, the differential equations describing the
moment dynamics are set to zero and form linear constraints [3]. Alongside,
semi-definite constraints can be placed on the moment matrices. These give a
semi-definite program that can be solved efficiently.

This approach has been extended to the transient case [20,48]. The approach
is similar in both works and is a cornerstone of the MFPT analysis presented
here. They differ mainly by the fact that Sakurai and Hori apply a polynomial
time-weighting [48], while Dowdy and Barton use an exponential one [20]. We
adopt the former approach because it can be naturally adapted to the description
of densities over time. The resulting forms can also be adapted to statistical
estimation problems [4].

Semi-definite programming has been applied to a wide range of problems,
including stochastic processes in the context of financial mathematics [33,40].
For good introductions and overviews of application areas, we refer the reader
to Parrilo [45] and, more recently, Lasserre [39].

Particularly relevant for this work is the application of convex optimization
to first passage times. Helmes et al. [29] formulated a linear program using the
Hausdorff moment conditions to bound moments of the first passage time distri-
bution in Markovian processes. Semi-definite optimization has been successfully
applied in financial mathematics by Kashima and Kawai [33], as well as Lasserre
et al. [40] to bound prices of exotic options.

3 Preliminaries

A Population Continuous-Time Markov Chain (PCTMC) describes the interac-
tions among a set of agents of nS types S1, . . . , SnS

in a well-stirred reactor.
In the sequel, we will also use other letters than Si as agent types. Since we
assume that all agents are equally distributed in space, we only keep track of
the overall copy number of agents for each type. Therefore the state-space is
S ⊆ N

nS . The interactions are expressed as reactions with a certain gain and
loss of agents, given by the non-negative integer vectors v−

j and v+
j for some

reaction j, respectively. Such a reaction is denoted as
nS∑

i=1

v−
jiSi

aj−→
nS∑

i=1

v+
jiSi. (1)

The reaction rate constant aj > 0 determines the propensity function αj of the
reaction. If just a constant is given, mass-action propensities are assumed, where
for x ∈ S we define

αj(x) := aj

nS∏

i=1

(
xi

v−
ji

)
. (2)

Bounding Mean First Passage Times in PCTMCs 159

This choice of propensity function is natural, since it is proportional to the num-
ber of reactant combinations. The system’s behavior is described by a stochastic
process {Xt}t≥0. We denote the abundance of a given agent type Si in Xt

by X
(Si)
t . The propensity αj(x) gives the infinitesimal probability of a reaction

occurring, given a state x. That is, for vj = v+
j − v−

j and a small time step
Δt > 0,

Pr(Xt+Δt = x + vj | Xt = x) = αj(x)Δt + o(Δt). (3)

Therefore, given a system of nR reactions, the semantics of Xt is given by
a continuous-time Markov chain (CTMC) on S Accordingly, given an initial
distribution on S, the time-evolution of the process’ distribution is given by the
Kolmogorov forward equation. For a single state, in the context of quantitative
biology, it is commonly referred to as the chemical master equation (CME)

dπ

dt
(x, t) =

nR∑

j=1

(αj(x − vj)π(x − vj , t) − αj(x)π(x, t)) , (4)

where π(x, t) = Pr(Xt = x) and Pr(X0 = x) = π(x, 0).
Consider the following simple PCTMC with non-linear propensities as an
example.

Model 1 (Dimerization). We first examine a simple dimerization model on
an unbounded state-space with reactions

∅
λ−→ M, 2M

δ−→ D

and initial condition X
(M)
0 = X

(D)
0 = 0. The semantics is given by a CTMC

Xt = (X(M)
t ,X

(D)
t)�, where (S1, S2) = (M,D). The reaction propensities

according to (2) are α1(x) = λ and α2(x) = δ x(M)(x(M)−1)/2. The change vec-
tors v−

1 = (0, 0)�, v+
1 = (1, 0)�, v−

2 = (2, 0)�, and v+
2 = (0, 1)�. Consequently,

v1 = (1, 0)� and v2 = (−2, 1)�.

This explicit representation of state probabilities is often not possible, because
there are infinitely many states. Usually the state-space is truncated to contain
all relevant states [1] or one switches to an approximation such as the mean-
field [11].

In this work, we are interested in first passage times of such processes. That
is the time, the process first enters a set of target states B ⊆ S. Naturally, the
analysis of first passage times is equivalent to the analysis of times at which the
process exits the complement S \ B. More formally, the first passage time τ for
some target set B is defined as the random variable

τ = inf{t ≥ 0 | Xt ∈ B}. (5)

In this example, we are interested in the time at which the number of type M
agents exceed some threshold H. With the framework presented in the sequel,
one can bound the expected value of this time using semi-definite programming.

160 M. Backenköhler et al.

Further, it is possible to impose a time-horizon T , and find bounds on the prob-
ability of X

(M)
t ≥ H for some 0 ≤ t ≤ T . The employed framework is centered

around semi-definite relaxations of the generalized moment problem [39]. These
require linear constraints on the moments of measures. In the following section,
we derive such constraints.

4 Martingale Formulation

Next, we will discuss the ordinary differential equations for the evolution of the
statistical moments of the process. The moments over the state-space are then
used to derive temporal moments, i.e. moments of measures over both the state-
space and the time. This extended description results in a process with the mar-
tingale property. This property can be used to formulate linear constraints on the
temporal moments and, as a special case, the mean first-passage time. In combi-
nation with semi-definite properties of moment matrices, we can formulate math-
ematical programs that yield upper and lower bounds on mean first passage times.

We start with the description of the raw moments dynamics. In particular,
a raw moment is E (Xm) = E (

∏nS

i=1 Xmi
i), m ∈ N

nS with respect to some
probability measure. The order of a moment E (Xm) is given by the sum of its
exponents, i.e.

∑
i mi. Note that the notion of expected value can be generalized

to any measure μ on a Borel-measurable space (E,B(E)), where the m-th raw
moment is

∫
E
xm dμ(x). Throughout we assume that moments of arbitrary order

remain finite over time, i.e. E (|Xm
t |) < ∞, t ≥ 0. In Ref. [26] the authors propose

a framework to verify this property for a given model.
Let f be a polynomial function, t ≥ 0. Using the CME (4), we can derive ordi-

nary differential equations (ODEs) describing the dynamics of E (f(Xt)) [21].
Specifically,

d

dt
E (f(Xt)) =

nR∑

j=1

E ((f(Xt + vj) − f(Xt)) αj(Xt)) . (6)

Let us consider Model 1 as an example and agent type M . Further, let Xt =
X

(M)
t for ease of exposition. When choosing f(Xt) = Xm

t , m = 1 and m = 2 we
obtain two differential equations describing the change of the first two moments
of species M , E (Xt) and E

(
X2

t

)
, respectively.

d

dt
E (Xt) = λE

(
X0

t

) − 2δ
(
E

(
X2

t

) − E (Xt)
)

(7)

d

dt
E

(
X2

t

)
= λ(2E (Xt) + 1) − 4δ

(
E

(
X3

t

) − 2E
(
X2

t

)
+ E (Xt)

)
. (8)

Fixing initial moments, the ODE system describes the moments over time
exactly. However, these ODEs cannot be integrated because the system is not
closed. The right-hand side for moment E (Xm

t) always contains E
(
Xm+1

t

)
. To

solve the initial value problem, one typically resorts to ad-hoc approximations
of the highest order moments to close the system. Here we do not need such

Bounding Mean First Passage Times in PCTMCs 161

approximations because we do not numerically integrate the moment equations.
Instead we adopt an approach [20,48] that extends the description of state-space
moments to a temporal one.

This is achieved by the introduction of a time-dependent polynomial w(t)
that is multiplied to (6). An integration by parts on [0, T] yields [20,48]

w(T) E (f(XT)) − w(0) E (f(X0)) −
∫ T

0

dw(t)
dt

E (f(Xt)) dt

=
nR∑

j=1

∫ T

0

w(t) E ((f(Xt + vj) − f(Xt)) αj(Xt)) dt .

(9)

Starting from this equation, it is possible to derive a martingale process, i.e.
a process that has an expected value of 0, regardless of time. In Appendix A we
describe give its derivation in detail. When choosing w(t) = tk with k ∈ N and
f(X) = Xm this process takes the form

Z
(m ,k)
T = T kXm

T − 0kXm
0 +

∑

i

ci

∫ T

0

tkiXm i
t dt (10)

where (mi)i, (ki)i, and (ci)i are finite sequences resulting from the substitution
of f and w. This choice allows to naturally characterize the behavior in time
and state-space as moments, because the expected value of (10) then becomes
a linear form of moments. We will use these as constraints in the semi-definite
program used to bound MFPTs.

If we apply this to our previous example (7), letting m = 1 and k = 1 we
obtain the following process for Model 1.

Z
(1,1)
T = TXT −

∫ T

0

Xt dt − λ

∫ T

0

t dt − 2δ

∫ T

0

tXt dt + 2δ

∫ T

0

tX2
t dt,

where the sequences above are (mi)i = (1, 0, 1, 2), (ki)i = (0, 1, 1, 1), and (ci)i =
(−1,−λ,−2δ, 2δ).

5 Bounds for Mean First Passage Times

We now turn to the analysis of first passage times within some time-bound T > 0.
Given some subset of the state-space B ⊆ S the first passage time is given by
the continuous random variable

τ = inf{t ≥ 0 | Xt ∈ B} ∧ T

where a ∧ b := min{a, b}. For this work, we only look at threshold hitting times,
i.e. we set a threshold H for species S and thus B = {x | x(S) ≥ H}. Note,
that this framework allows for a more general class of target sets, which are
discussed in Appendix C. In the sequel, we will use τ as a stopping time in
our martingale formulation and consider Z

(m ,k)
τ instead of Z

(m ,k)
T . Since (10)

defines a martingale, Z
(m ,k)
τ remains a martingale by Doob’s optional sampling

theorem [24]. In particular, this implies that E(Z(m ,k)
τ) = 0 for all moment orders

m and degrees k in the weighting function w(t).

162 M. Backenköhler et al.

5.1 Linear Moment Constraints

To simplify our presentation, we fix an initial state x0, i.e. P (X0 = x0) = 1.
Using E(Z(m ,k)

τ) = 0 and the form (10) for Z
(m ,k)
τ yields the following linear

constraint on expected values.

0 = E
(
τkXm

τ

) − 0kxm
0 +

∑

i

ciE

(∫ τ

0

tkiXm i
t dt

)
, (11)

where 00 = 1. Hence, we have established a relationship between the process
dynamics up to the hitting time via expected values of the time-integrals and
the final process state at the hitting time via E

(
τkXm

τ

)
.

For the ease of exposition, we now turn to the analysis of first passage times
in one-dimensional processes w.r.t. an upper threshold H. In particular, we will
consider moments Xm of a one-dimensional process for m = 0, 1, 2 The
approach proposed in the sequel, however, can be extended to multi-dimensional
processes and more complex target sets B.

Consider again Model 1 and assume that we are interested in the time at
which species M exceeds threshold H while fixing the considered time-horizon
to T = 4. That is, we are interested in the stopping time τ = inf{t ≥ 0 |
Xt ≥ 10} ∧ 4. Since the abundance of D does not influence M , we can ignore
species D and treat the process as one-dimensional. Figure 1 shows three example
trajectories: Two reach an upper threshold H = 10, while one reaches the final
time-horizon T = 4 The figure also illustrates another aspect present in (11).
It gives a connection between the terminal distribution, i.e. the distribution of
Xτ , and the dynamic behavior up to τ . The statistics at τ are described by a
distribution whose moments are represented by the E

(
τkXτ

m
)

term in (11).
This distribution corresponding two moments encompasses both cases of how τ
can be reached. In the first case threshold H is reached and the second case the
process reaches the time-horizon T . In the following we will define the interplay
between these measures more formally.

Therefore we can view (11) as the description of a relationship between two
measures [39, Chapter 9.2]:

– Expected Occupation Measure ξ supported on [0,H] × [0, T]:

ξ(A × C) := E

(∫

[0,τ]∩C

1∈A(Xt) dt

)
, (12)

– Exit Location Probability supported on ({H} × [0, T]) ∪ ([0,H] × {T}):

ν(A × C) := Pr((Xτ , τ) ∈ A × C), (13)

where A×C is a measurable set, i.e. A and C are elements of the Borel σ-algebras
on [0,H] and [0, T], respectively.

Using Fig. 1, one can gain an intuition for these two measures. The expected
occupation measure is shaded in blue. As the name implies ξ(A×C) tells us how

Bounding Mean First Passage Times in PCTMCs 163

Fig. 1. The relationship between the occupation measure ξ and the exit location prob-
ability measures ν1 and ν2. The shaded area indicates the structure of the occupation
measure. Three example trajectories are additionally plotted with their exit location
highlighted. The plots are based on 10,000 sample trajectories.

much time the process spends in A up to τ restricting to the time instants belong-
ing to C. In particular, ξ([0,H] × [0, T]) = E (τ). The exit location probability
ν, while being a two-dimensional distribution, can be viewed as a composition
of a density describing the time at which the process reaches H (if it does) and
a probability mass function on the states of the process if the time-horizon is
reached without exceeding H. We partition the measure ν into ν1 and ν2 by
conditioning on τ = T . Thus,

ν1(C) := Pr(τ ∈ C, τ < T) and ν2(A) := Pr(XT ∈ A, τ = T)

and hence ν(A×C) = ν1(C)+ν2(A). To refer to the moments of these measures,
we define partial moments

E (g(X); f(Y) = y) := E (g(X) | f(Y) = y) Pr(f(Y) = y),

for some polynomial g and some indicator function f . Then

E
(
τkXm

τ

)
= T k

E (Xm
τ ; τ = T) + Hm

E
(
τk; τ < T,Xτ = H

)
.

Therefore the linear moment constraints have the form

0 =T k
E (Xm

τ ; τ = T) + Hm
E

(
τk; τ < T,Xτ = H

)

− 0kxm
0 +

∑

i

ciE

(∫ τ

0

tkiXmi
t dt

)
.

(14)

Next, we consider infinite sequences of partial moments y1 = (y1k)k∈N, y2 =
(y2m)m∈N, and z = (zmk)(m,k)�∈N2 of ν1, ν2, and ξ, respectively.

y1k := E
(
τk; τ < T

)
, y2m := E (Xm

τ ; τ = T) , zkm := E

(∫ τ

0

tkXm
t dt

)

164 M. Backenköhler et al.

5.2 Objective

Given the above measures and their corresponding moments, we can now identify
the moments we are particularly interested in. We formulate an optimization
problem with variables corresponding to the moments defined above. The MFPT
is exactly the zeroth moment of ξ,

z00 = E

(∫ τ

0

1≤H(Xt) dt

)
= E (τ) .

Therefore z00 corresponds to the objective of the optimization problem that gives
bounds for the MFPT. Furthermore, we can easily change the objective to the
zeroth moment of ν1, y10 = E

(
τ0; τ < T

)
= Pr(τ < T). This moment is the

probability of reaching threshold H before reaching time-horizon T . Since the
target set can be more complex, this formulation can be used to perform model
checking on a wide variety of properties.

Moreover, it is possible to formulate objectives not directly corresponding to
a raw moment such as the variance [19,48].

5.3 Semi-definite Constraints

The linear constraints alone are not sufficient to identify moment bounds. We
further leverage the fact that a necessary condition for a positive measure that
the moment matrices are positive semi-definite. A matrix M ∈ R

n×n is positive
semi-definite, denoted by M
 0 if and only if

vT Mv ≥ 0 ∀v ∈ R
n.

As an example, let us consider a one-dimensional random variable Z with
moment sequence z. For moment order r, the entries of the (r + 1) × (r + 1)
moment matrix Mr(x) are given by the raw moments. In particular,

(Mr(z))ij = zi+j−2 = E
(
Zi+j−2

)

for i, j ∈ Nr where Nr = {0, 1, . . . , r} and the maximum order in the matrix is
2r. For instance,

M1(x) =
[
x0 x1

x1 x2

]
(15)

needs to be positive semi-definite. By Sylvester’s criterion this means det M1 ≥ 0
and x0 ≥ 0. We can easily see that in this case this entails

det M1 = x0x2 − x2
1 = E

(
X2

) − E (X)2 = Var(X) ≥ 0.

This restriction is natural since the variance is always non-negative. This gives
us the following restrictions on the moment matrices.

Mr(z)
 0, Mr(y1)
 0, and Mr(y2)
 0 (16)

for arbitrary orders r, providing a first tranche of moment constraints.

Bounding Mean First Passage Times in PCTMCs 165

Furthermore, we need to enforce the restriction of the measures ξ, ν1, and
ν2 to their supports. This can be done, by defining non-negative polynomials on
the intended support of the measure. For example, ν2 has support [0,H]. We
can now define

uH(t, x) = Hx − x2, x ∈ R

as a polynomial that is non-negative on [0,H]. Using such polynomials, we can
construct localizing matrices, which have to be positive semi-definite [39]. Apply-
ing uH to the moment matrix of measure ν2, i.e. M1(y2)

M1(uH ,y2) =
[
Hy21 − y22 Hy22 − y23
Hy22 − y23 Hy23 − y24

]

with the constraint M1(uH ,y2)
 0, where the application of a polynomial such
as uH to a moment matrix is formally defined for the multidimensional case in
Appendix C. Similarly, let uT (t, x) = Tt−t2 to restrict ν1 to [0, T). The expected
occupation measure ξ is constrained similarly to its domain [0,H] × [0, T]. This
gives us the following restrictions on the moment matrices.

Mr(uT ,z)
 0, Mr(uH ,z)
 0, Mr(uT ,y1)
 0, Mr(uH ,y2)
 0. (17)

5.4 A Semi-definite Program to Bound MFPTs

With the linear constraints given in (11) and the semi-definite constraints (16)
and (17) discussed in the previous sections, we can now formulate a semi-definite
program (SDP) for any relaxation order 0 < r < ∞. With each moment sequence
x we associate a sequence proxy variables x′ used in the optimization problem.

min /max z′
00

such that Mr(z′)
 0,Mr(uT ,z′)
 0,Mr(uH ,z′)
 0
Mr(y′

1)
 0,Mr(uT ,y′
1)
 0

Mr(y′
2)
 0,Mr(uH ,y′

2)
 0

0 = y′
1kHm − y′

2mT k − 0kxm
0 +

∑

i

ciz
′
kimi

, ∀m, k

(18)

This SDP can be compiled to the canonical form (see Appendix (B.1)). To this
end, the moment matrices can be arranged in a block-diagonal form and the
localizing constraints (17) can be encoded by the introduction of new variables
and appropriate equality constraints. This transformation can be done auto-
matically using modeling frameworks such as CVXPY [18]. We therefore only
give the SDP in the more intuitive format. This problem can be solved using
off-the-shelf SDP solvers such as MOSEK [42], CVXOPT [56], or SCS [44].

In principle, we can choose an arbitrarily large order r for the moment
matrices and their corresponding constraints, because there are infinitely many
moments. In practice, however, the order is bounded by practical issues such
as the program size (number of constraints and variables) and numerical issues.
These issues are discussed in Sect. 6 in more detail. Choosing a finite r is a
relaxation of the problem since it removes constraints regarding higher-order
moments.

166 M. Backenköhler et al.

6 Implementation and Evaluation

The implementation of the SDP (18) is straightforward using modeling frame-
works and off-the-shelf solvers. However, as noted in previous work [19,20,47,48]
on moment-based SDPs the direct implementation of the problem may lead
to difficulties for the solver. A source of these is that moments of various
orders by nature may differ by many orders of magnitude. A re-scaling of the
moments [19,48] such that moments only vary by few orders of magnitude may
alleviate this problem. In other scenarios such as the bounding of general tran-
sient or steady-state moments, the scaling can be particularly difficult, because
the magnitude of moments is generally not known a priori. In the context of
MFPTs with a finite time-horizon moments are trivially bounded. The resulting
scaling scheme is outlined in Appendix D.

6.1 Case Studies

We implemented and solved the SDP programs described above using optimiza-
tion suite MOSEK [42] (version 9.1.2) via the CVXPY interface [18] (version
1.0.24).

Dimerization. As a first case study, we use Model 1 with parameters λ = 100
and δ = 0.2. In this model, we are interested in the time at which the number
of agents of type M surpasses a threshold of 25 before some time-horizon T ,
i.e. τ = inf{t ≥ 0 | Xt ≥ 25} ∧ T . First, we set no finite time-horizon T , i.e.
T = ∞. This is achieved by dropping the moments y2 of measure ν2 in the
linear constraints (18). This can be done because the threshold on M makes
the state-space finite and therefore the first passage time distribution is a phase-
type distribution which possesses finite moments [54, Chapter 7.6]. The empirical
FPT distribution based on 100,000 SSA simulations is given in Fig. 2a and the
bounds, given different moment orders, are given in Fig. 2b. As we can see in
Fig. 2b, the bounds capture the MFPT precisely for orders 5, 6. The difference
between upper and lower bound decreases roughly exponentially with increasing
relaxation order r. We found that this trend was consistent among the case
studies presented here (cf. Fig. 4).

Next, we look at first passage times within a finite time-horizon T . In Fig. 3a
we summarize the bounds obtained for the MFPT over T . While low-order relax-
ations (light) give rather loose bounds, the bounds are already fairly tight when
using r = 4. In many cases, hitting probabilities, that is, the probability of
reaching the threshold before time T , are of particular interest. This is done
by switching the optimization objective in (18) from the mass of the expected
occupation measure ξ to the mass of ν1. In terms of moments, the objective
changes from z00 to y10. The need for such a scenario often arises in the context
of model checking, where one might be interested in the probability of a popu-
lation exceeding a critical threshold. By varying the time-horizon, we are able
to recover bounds on the cumulative density F (t) = Pr(Xs = H | s < t) of the
first passage time (Fig. 3b).

Bounding Mean First Passage Times in PCTMCs 167

(a) (b)

Fig. 2. First passage times for Model 1 with τ = inf{t ≥ 0 | Xt ≥ 10}∧∞. The dashed
red line denotes the sampled MFPT. (a) The distribution of τ estimated based on
100,000 SSA samples. (b) The bounds based on the SDP in (18) with different moment
orders.

(a) (b)

Fig. 3. First passage times for the dimerization model with τ = inf{t ≥ 0 | Xt ≥
25} ∧ T . The results for SDP relaxations of orders 1 (light) to 6 (dark) are shown. (a)
The bounds on the MFPT for differing time-horizons T . (b) Bounds on the probability
to reach the threshold before time T .

Finally, we look at turn to the dimer species D that is synthesized by the
combination of two monomers M . Here, we look at the time until the agents
of type D exceed a threshold of five with a time-horizon T = 1. Note that
we do not limit the number of M agents. Therefore the analyzed state-space
is countably infinite. As in the previous two examples, we observe a roughly
exponential decrease in interval size with increasing relaxation order r (cf. Fig. 4
and Table 1).

Parallel Dimerizations. As a second study, we consider a 2-dimensional model
by combining two independent dimerizations.

Model 2 (Parallel independent dimerizations).

∅
104−−→ M1, 2M1

0.1−−→ D1, ∅
104−−→ M2, 2M2

0.1−−→ D2

168 M. Backenköhler et al.

As a FPT we consider the time at which either M1 or M2 surpasses a threshold
of 200 or a time-horizon of T = 10 is reached, i.e.

τ = inf{t ≥ 0 | X
(M1)
t ≥ 200} ∧ inf{t ≥ 0 | X

(M2)
t ≥ 200} ∧ 10.

As before, we ignore the product species D1 and D2 since they do not influence
τ . The SSA (using n = 10,000 runs) gives the estimate E (τ) ≈ 0.028378 which
is captured tightly by the SDP bounds (cf. Table 1). For higher relaxation orders
r ≥ 5 numerical issues prevented the solution of the corresponding SDPs.

6.2 Hybrid Models and Multi-modal Behavior

The analysis of switching times is a particularly interesting case of FPTs that
arises in many contexts. Often mode switching in such systems can be described
a modulating Markov process whose switching rates may depend on the system
state (e.g. the population sizes). In biological applications, mode switching often
describes a change of the DNA state [27,53] and the analysis of switching time
distribution is of particular interest [7,52]. In the context of PCTMCs, typically
the state-space S = N

ñS × {0, 1}n̂S . This state is modeled by n̂S population
variables with binary domains. Therefore, at each time point, the state of these
modulator variables is given by a set of Bernoulli random variables. When con-
sidering the moments of such a variable X, clearly E (Xm) = E (X) = Pr(X = 1)
for all m ≥ 1.

We apply a split of variables Xt into the high count part X̃t and the binary
part X̂t to the expectations in (6). Similarly, we split vj and with a case dis-
tinction over the mode variable, we arrive at a similar result as in [27]:

d

dt
E

(
X̃

m

t 1=y (X̂t)
)

=
nR∑

j=1

E

((
X̃t + ṽj

)m

αj(X̃t,y − v̂j)1=y−v̂j
(X̂t)

)

−
nR∑

j=1

E

(
X̃

m

t αj(X̃t,y)1=y (X̂t)
)

.

(19)

Similarly to the general moment case, we can derive a constraint, by multiplying
with a time-weighting factor and integrating.

For simplicity, here we assume ñS = n̂S = 1. Fixing appropriate sequences
(ci)i, (mi)i, (ki)i, and (yi)i the constraint has the following form.

∑

y∈{0,1}
Hm

E

(
τk; X̂τ = y, τ < T

)
+ T k

E

(
X̃m

T ; X̂T = y, τ = T
)

= 0kx̃m
0 1=y(x̂0) +

∑

i

ciE

(∫ τ

0

tkiX̃mi
t dt; X̂t = yi

) (20)

This way we can decompose the moment matrices such that for each mode y ∈
{0, 1}, we have moment matrices composed of the respective partial moments.

Bounding Mean First Passage Times in PCTMCs 169

Table 1. MFPT bounds on Models 1, 2, and 3

Model Relaxation order r

1 2 3 4 5

Dimerization (Model 1) Lower 0.0909 0.2661 0.2845 0.2867 0.2871

X
(D)
t ≥ 5, T = 1 Upper 1.0000 0.3068 0.2932 0.2886 0.2875

Double dim. (Model 2) Lower 0.0010 0.0250 0.0275 0.0280 0.0280

Upper 10.0000 0.0575 0.0323 0.0299 0.0290

Gene expression (Model 3) Lower 4.0000 6.0028 6.2207 6.3377 6.3772

Upper 10.7179 6.4619 6.4079 6.4004 6.3835

To this end, let z
(y)
m be the partial moment w.r.t. X̂ = y. The moment constraint

over the partial moments has a linear structure:

0 = y1kHm − y2mT k − 0kxm
0 +

∑

i

ciz
(yi)
kimi

. (21)

Gene Expression with Negative Feedback. As an instance of a multi-
modal system, we consider a simple gene expression with self-regulating negative
feedback which is a common pattern in many genetic circuits [53].

Model 3 (Negative self-regulated gene expression). This model consists
of a gene state that is either on or off, i.e. XDon

t + X
Doff

t = 1, ∀t ≥ 0. Therefore
the system has two modes.

Don
τ0−→ Doff, Doff

τ1−→ Don, Don
ρ−→ Don + P,

P
δ−→ ∅, P + Don

γ−→ Doff

The model parameters are (τ0, τ1, ρ, δ, γ) = (10, 10, 2, 0.1, 0.1) and X
(Doff)
0 = 1,

X
(P)
0 = 0 a.s.

As a first passage time we consider

τ = inf{t ≥ 0 | X
(P)
t ≥ 5} ∧ 20.

The results are summarized in Table 1. The estimated MFPT based on
100,000 SSA samples is E (τ) ≈ 6.37795 ± 0.02847 at 99% confidence level. Note
that our SDP solution for r = 5 yields tighter moment bounds than the statistical
estimation.

In Fig. 4 we summarize our results about the decrease of the interval widths
for increasing relaxation order r by plotting them on a log-scale. We see an
approximately exponential decrease with increasing r. The semi-definite pro-
grams above were all solved within at most a few seconds.

170 M. Backenköhler et al.

1 2 3 4 5 6
relaxation order r

10 3

10 2

10 1

100

101

in
te
rv
al

w
id
th Model 1, X(M)

t 25, T=1

Model 1, X(M)
t 25, T=

Model 1, X(D)
t 5, T=1

Model 2
Model 3

Fig. 4. The interval width, i.e. the difference between upper and lower bound, for
different case studies and targeted first passage times against the order r of the SDP
relaxation.

7 Conclusion

Numerical methods to compute reachability probabilities and first passage times
for continuous-time Markov chains that are based on an exhaustive exploration
of the state-space are exact up to numerical precision. Such methods, however,
do not scale and cannot be efficiently applied to models with large or infinite
state-spaces, an issue exacerbated in population models. Moment-based methods
offer an alternative analysis approach for PCTMCs, which scales with the num-
ber of different populations in the system but are approximations with little or
no control of the error. In this paper, we bridge this gap by proposing a rigorous
approach to derive bounds on first passage times and reachability probabili-
ties, leveraging a semi-definite programming formulation based on appropriate
moment constraints.

The method we propose is shown to be accurate in several examples. It does,
however, suffer, like all moment-based methods, from numerical instabilities in
the SDP solver, caused by the fact that moments typically span several orders of
magnitude. We proposed a scaling of moments to mitigate this effect. However,
the scaling only addresses the moment matrices but not the linear constraints
which still contain values with varying orders of magnitudes. Therefore, we plan
as future work to investigate an appropriate scaling for the linear constraints
or to redefine the moment constraints (e.g. using an exponential time weight-
ing [20]). Based on this investigation, we expect to make this approach applica-
ble to more problems including, for example, the computation of bounds of rare
event probabilities. We also expect that the development of more sophisticated
scaling techniques will improve approximate moment-based methods.

Furthermore, moment-based analysis approaches have shown to be successful
in a wide range of applications such as optimal control problems or the estimation
of densities [39]. We expect that our proposed ideas can be adapted to a wider
range of stochastic models such as stochastic hybrid systems, exhibiting partly
deterministic dynamics.

Bounding Mean First Passage Times in PCTMCs 171

Acknowledgements. We would like to thank Andreas Karrenbauer for helpful com-
ments on the usage of SDP solvers and Gerrit Großmann for the valuable comments
on this manuscript. This work is supported by the DFG project “MULTIMODE”, and
partially supported by the italian PRIN project “SEDUCE” n. 2017TWRCNB.

References

1. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for
Markov models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22110-1 8

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 75

3. Backenköhler, M., Bortolussi, L., Wolf, V.: Moment-based parameter estimation
for stochastic reaction networks in equilibrium. IEEE/ACM Trans. Comput. Biol.
Bioinform. 15(4), 1180–1192 (2017)

4. Backenköhler, M., Bortolussi, L., Wolf, V.: Control variates for stochastic sim-
ulation of chemical reaction networks. In: Bortolussi, L., Sanguinetti, G. (eds.)
CMSB 2019. LNCS, vol. 11773, pp. 42–59. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31304-3 3

5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

6. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model checking continuous-
time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.)
CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722167 28

7. Barzel, B., Biham, O.: Calculation of switching times in the genetic toggle switch
and other bistable systems. Phys. Rev. E 78(4), 041919 (2008)

8. Bel, G., Munsky, B., Nemenman, I.: The simplicity of completion time distributions
for common complex biochemical processes. Phys. Biol. 7(1), 016003 (2009)

9. Bernardo, M., De Nicola, R., Hillston, J. (eds.): Formal Methods for the Quantita-
tive Evaluation of Collective Adaptive Systems. LNCS, vol. 9700. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-34096-8

10. Bogomolov, S., Henzinger, T.A., Podelski, A., Ruess, J., Schilling, C.: Adaptive
moment closure for parameter inference of biochemical reaction networks. In: Roux,
O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 77–89. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23401-4 8

11. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

12. Bortolussi, L., Lanciani, R.: Model checking Markov population models by central
limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40196-1 9

13. Bortolussi, L., Lanciani, R.: Stochastic approximation of global reachability prob-
abilities of Markov population models. In: Horváth, A., Wolter, K. (eds.) EPEW
2014. LNCS, vol. 8721, pp. 224–239. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10885-8 16

https://doi.org/10.1007/978-3-642-22110-1_8
https://doi.org/10.1007/978-3-642-22110-1_8
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/978-3-030-31304-3_3
https://doi.org/10.1007/978-3-030-31304-3_3
https://doi.org/10.1007/10722167_28
https://doi.org/10.1007/10722167_28
https://doi.org/10.1007/978-3-319-34096-8
https://doi.org/10.1007/978-3-319-23401-4_8
https://doi.org/10.1007/978-3-642-40196-1_9
https://doi.org/10.1007/978-3-642-40196-1_9
https://doi.org/10.1007/978-3-319-10885-8_16
https://doi.org/10.1007/978-3-319-10885-8_16

172 M. Backenköhler et al.

14. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-bounded verification
of CTMCs against real-time specifications. In: Fahrenberg, U., Tripakis, S. (eds.)
FORMATS 2011. LNCS, vol. 6919, pp. 26–42. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-24310-3 4

15. Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Quantitative model checking of
continuous-time Markov chains against timed automata specifications. In: 2009
24th Annual IEEE Symposium on Logic In Computer Science, pp. 309–318. IEEE
(2009)

16. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards, S.:
Statistical model checking for biological systems. Int. J. Softw. Tools Technol.
Transf. 17(3), 351–367 (2015)

17. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A STORM is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

18. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex
optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

19. Dowdy, G.R., Barton, P.I.: Bounds on stochastic chemical kinetic systems at steady
state. J. Chem. Phys. 148(8), 084106 (2018)

20. Dowdy, G.R., Barton, P.I.: Dynamic bounds on stochastic chemical kinetic systems
using semidefinite programming. J. Chem. Phys. 149(7), 074103 (2018)

21. Engblom, S.: Computing the moments of high dimensional solutions of the master
equation. Appl. Math. Comput. 180(2), 498–515 (2006)

22. Gast, N., Bortolussi, L., Tribastone, M.: Size expansions of mean field approx-
imation: transient and steady-state analysis. Perform. Eval. 129, 60–80 (2019).
https://doi.org/10.1016/j.peva.2018.09.005

23. Ghusinga, K.R., Vargas-Garcia, C.A., Lamperski, A., Singh, A.: Exact lower and
upper bounds on stationary moments in stochastic biochemical systems. Phys.
Biol. 14(4), 04LT01 (2017)

24. Gihman, I., Skorohod, A.: The Theory of Stochastic Processes II. Springer, Hei-
delberg (1975)

25. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

26. Gupta, A., Briat, C., Khammash, M.: A scalable computational framework for
establishing long-term behavior of stochastic reaction networks. PLoS Comput.
Biol. 10(6), e1003669 (2014)

27. Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.J.: Method of conditional
moments (MCM) for the chemical master equation. J. Math. Biol. 69(3), 687–
735 (2014)

28. Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time dis-
tributions in large Markov models. Theor. Comput. Sci. 413(1), 106–141 (2012)

29. Helmes, K., Röhl, S., Stockbridge, R.H.: Computing moments of the exit time
distribution for Markov processes by linear programming. Oper. Res. 49(4), 516–
530 (2001)

30. Hespanha, J.: Moment closure for biochemical networks. In: 2008 3rd Interna-
tional Symposium on Communications, Control and Signal Processing, pp. 142–
147. IEEE (2008)

31. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006). https://doi.org/
10.1007/11691372 29

https://doi.org/10.1007/978-3-642-24310-3_4
https://doi.org/10.1007/978-3-642-24310-3_4
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1016/j.peva.2018.09.005
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29

Bounding Mean First Passage Times in PCTMCs 173

32. Iyer-Biswas, S., Zilman, A.: First-passage processes in cellular biology. Adv. Chem.
Phys. 160, 261–306 (2016)

33. Kashima, K., Kawai, R.: Polynomial programming approach to weak approxima-
tion of lévy-driven stochastic differential equations with application to option pric-
ing. In: 2009 ICCAS-SICE, pp. 3902–3907. IEEE (2009)

34. Kazeroonian, A., Theis, F.J., Hasenauer, J.: Modeling of stochastic biological pro-
cesses with non-polynomial propensities using non-central conditional moment
equation. IFAC Proc. Vol. 47(3), 1729–1735 (2014)

35. Kuntz, J., Thomas, P., Stan, G.B., Barahona, M.: Rigorous bounds on the station-
ary distributions of the chemical master equation via mathematical programming.
arXiv preprint arXiv:1702.05468 (2017)

36. Kuntz, J., Thomas, P., Stan, G.B., Barahona, M.: Approximation schemes
for countably-infinite linear programs with moment bounds. arXiv preprint
arXiv:1810.03658 (2018)

37. Kuntz, J., Thomas, P., Stan, G.B., Barahona, M.: The exit time finite state projec-
tion scheme: bounding exit distributions and occupation measures of continuous-
time Markov chains. SIAM J. Sci. Comput. 41(2), A748–A769 (2019)

38. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

39. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications, vol. 1.
World Scientific, Singapore (2010)

40. Lasserre, J.B., Prieto-Rumeau, T., Zervos, M.: Pricing a class of exotic options via
moments and sdp relaxations. Math. Finance 16(3), 469–494 (2006)

41. Mikeev, L., Neuhäußer, M.R., Spieler, D., Wolf, V.: On-the-fly verification and
optimization of DTA-properties for large Markov chains. Form. Methods Syst.
Des. 43(2), 313–337 (2013)

42. MOSEK ApS: MOSEK Optimizer API for C 8.1.0.67 (2018). https://docs.mosek.
com/8.1/capi/index.html

43. Munsky, B., Nemenman, I., Bel, G.: Specificity and completion time distributions
of biochemical processes. J. Chem. Phys. 131(23), 12B616 (2009)

44. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: SCS: splitting conic solver, version
2.1.0, November 2017. https://github.com/cvxgrp/scs

45. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems.
Math. Program. 96(2), 293–320 (2003)

46. Porter, M.A., Gleeson, J.P.: Dynamical Systems on Networks. FADSRT, vol. 4.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26641-1

47. Sakurai, Y., Hori, Y.: A convex approach to steady state moment analysis for
stochastic chemical reactions. In: 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pp. 1206–1211. IEEE (2017)

48. Sakurai, Y., Hori, Y.: Bounding transient moments of stochastic chemical reactions.
IEEE Control. Syst. Lett. 3(2), 290–295 (2019)

49. Schnoerr, D., Cseke, B., Grima, R., Sanguinetti, G.: Efficient low-order approxi-
mation of first-passage time distributions. Phys. Rev. Lett. 119, 210601 (2017).
https://doi.org/10.1103/PhysRevLett.119.210601

50. Schnoerr, D., Sanguinetti, G., Grima, R.: Comparison of different moment-closure
approximations for stochastic chemical kinetics. J. Chem. Phys. 143(18), 185101
(2015). https://doi.org/10.1063/1.4934990

http://arxiv.org/abs/1702.05468
http://arxiv.org/abs/1810.03658
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://docs.mosek.com/8.1/capi/index.html
https://docs.mosek.com/8.1/capi/index.html
https://github.com/cvxgrp/scs
https://doi.org/10.1007/978-3-319-26641-1
https://doi.org/10.1103/PhysRevLett.119.210601
https://doi.org/10.1063/1.4934990

174 M. Backenköhler et al.

51. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods
for stochastic biochemical Kinetics’a tutorial review. J. Phys. Math. Theor. 50(9),
093001 (2017). https://doi.org/10.1088/1751-8121/aa54d9

52. Spieler, D., Hahn, E.M., Zhang, L.: Model checking CSL for Markov population
models. arXiv preprint arXiv:1111.4385 (2011)

53. Stekel, D.J., Jenkins, D.J.: Strong negative self regulation of prokaryotic transcrip-
tion factors increases the intrinsic noise of protein expression. BMC Syst. Biol. 2(1),
6 (2008)

54. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: the Math-
ematical Basis of Performance Modeling. Princeton University Press, Princeton
(2009)

55. Ullah, M., Wolkenhauer, O.: Stochastic approaches for systems biology. Wiley
Interdiscip. Rev. Syst. Biol. Med. 2, 385–97 (2009). https://doi.org/10.1002/wsbm.
78

56. Vandenberghe, L.: The CVXOPT linear and quadratic cone program solvers
(2010). http://cvxopt.org/documentation/coneprog.pdf

https://doi.org/10.1088/1751-8121/aa54d9
http://arxiv.org/abs/1111.4385
https://doi.org/10.1002/wsbm.78
https://doi.org/10.1002/wsbm.78
http://cvxopt.org/documentation/coneprog.pdf

Markovian Arrival Processes
in Multi-dimensions

Andreas Blume, Peter Buchholz(B), and Clara Scherbaum

Informatik IV, Technical University of Dortmund,
44221 Dortmund, Germany

{andreas.blume,peter.buchholz,clara.scherbaum}@cs.tu-dortmund.de

Abstract. Phase Type Distributions (PHDs) and Markovian Arrival
Processes (MAPs) are established models in computational probability to
describe random processes in stochastic models. In this paper we extend
MAPs to Multi-Dimensional MAPs (MDMAPs) which are a model for
random vectors that may be correlated in different dimensions. The com-
putation of different quantities like joint moments or conditional densities
is introduced and a first approach to compute parameters with respect
to measured data is presented.

Keywords: Input modeling · Markovian arrival process ·
High-dimensional data · Stochastic processes

1 Introduction

In many application areas like computer networks [15], supply chains [26] or
dependable systems [18], high dimensional data plays an important role in under-
standing, analyzing and improving the behavior of contemporary systems. Cur-
rently available data is mainly analyzed offline to monitor or predict the behavior
of complex systems. However, it is known that model-based approaches are often
necessary to understand and analyze large systems. In simulation models [23]
and also in models based on Markov chains [12], multi-dimensional data is usu-
ally described by independent data streams, where at most the elements in one
stream are correlated. In practice, multi-dimensional data is correlated in sev-
eral dimensions and this correlation cannot be neglected in realistic models. The
necessary models to describe such a behavior are denoted as multivariate input
models.

In multivariate input models one usually distinguishes between random vec-
tors which describe K-dimensional vectors of random variables that are cor-
related. Subsequent vectors are assumed to be independent. Random variables

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-59854-9 14) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 175–192, 2020.
https://doi.org/10.1007/978-3-030-59854-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_14
https://doi.org/10.1007/978-3-030-59854-9_14
https://doi.org/10.1007/978-3-030-59854-9_14

176 A. Blume et al.

that are correlated over time are described by stochastic processes. The com-
bination of both results in multivariate time series. Multivariate input models
are mainly considered in simulation, for an overview of available approaches
see [5]. Although different approaches for multivariate stochastic processes exist
their practical applicability is limited mainly due to very specific structures that
capture only parts of the observed behavior, complex methods for parameter
fitting, complex methods to generate random variates and the limiting possibil-
ities to perform numerical or analytical analysis of the models. Most promising
approaches seem to be VARTA processes [6] and copula-based models [3]. Both
approaches are restricted to specific marginal distributions, like normal distri-
butions or distributions of the Johnson-type. The VARTA approach has been
extended to phase type distributions in [20].

In computational probability [28,30,33] input models based on Markov pro-
cesses like phase type distributions (PHDs) or Markovian arrival processes
(MAPs) are very popular because they allow one to model a wide variety of
behaviors and they can also be analyzed by numerical techniques and not only
by simulation. MAPs are a model to describe correlated univariate processes and
are therefore an alternative to time series but they cannot be applied to describe
multivariate processes. In this paper we extend Markov models like PHDs and
MAPs to the multivariate case. This results in a new stochastic model which is
an alternative to VARTA processes and similar models. Some older approaches
to extend phase type distributions to multivariate phase type distributions exist
[1,22]. However, the models defined in these papers differ from our model in
that they describe an absorbing Markov process with a multi-dimensional reward
structure to generate random vectors. Here, we consider parallel running absorb-
ing Markov processes which are coupled by the initial distributions. This model
allows us to generate random vectors with correlated components and correlation
between subsequent realizations.

The structure of the paper is as follows. In the following section we intro-
duce the notation and Markov input models. Afterwards, in Sect. 3, we define
the multi-dimensional stochastic model and define afterwards multi-dimensional
Markovian arrival processes (MDMAPs). In Sect. 4, the analysis of MDMAPs is
presented, followed by a first approach to fit the parameters according to some
quantities like joint moments or values of the conditional probability distribution
function. In Sect. 6 first examples are presented and then the paper is concluded.
Proofs of the theorems and major equations can be found in an online appendix.

2 Background

We first introduce some notation and define afterwards the basic models used in
this paper.

2.1 Basic Notation

Matrices and vectors are denoted by bold face small and capital letters. I1 is a
column vector of 1s, all other vectors are row vectors. 0 is a matrix or vector

Markovian Arrival Processes in Multi-dimensions 177

containing only 0 elements, I is the identity matrix, ei is the ith unit row vector.
aT describes the transposed of vector a and diag(a) denotes a diagonal matrix
with elements a(i) on the main diagonal. R

n×n is the set of n × n matrices.
Q(i•) and Q(•i) describe the ith row and column of matrix Q. A generator is a
matrix Q ∈ R

N×N with row sum zero (i.e., Q I1 = 0) and Q(i, j) ≥ 0 for i �= j.
Q is a sub-generator if Q I1 ≤ 0 and some i ∈ {0, . . . , n − 1}1 exists such that
Q(i•) I1 < 0. In the sequel we assume that all sub-generators we consider in this
paper are non-singular which means that the inverse exists and is non-positive.
Q is irreducible if between every pair of states i, j a path i = i0, i1, . . . , ik = j
exists such that Q(ih−1, ih) > 0 for h = 1, . . . , k.

2.2 Markov Input Models

In stochastic modeling input modeling describes the generation of appropriate,
usually stochastic, models to represent the input parameters based on measured
data from some real process [23]. In simulation, traditionally standard distribu-
tions or stochastic processes have been used for this purpose. More recently input
models based on Markov processes like phase type distributions and Markovian
arrival processes gained much attention. These models are flexible and can be
used in simulation as well as in combination with numerical analysis techniques.
We use the following traditional definitions [12,28].

Definition 1. A Phase Type Distribution (PHD) is defined by (π,D) where
π is the initial distribution and D is a sub-generator of an absorbing Markov
chain.

A PHD is characterized by the time to absorption of the absorbing Markov
chain described by (π,D). A Markovian Arrival Process [25,27] is an extension
of a PHD.

Definition 2. A Markovian Arrival Process (MAP) is described by two matrices
(D,C)2 where D is a sub-generator, C ≥ 0 and Q = D + C is an irreducible
generator.

The interpretation of the behavior of a MAP is as follows. The process
performs transitions as described by the matrices D and C and whenever a
transition from C occurs, an event is triggered. Let d = C I1 = −D I1 and
P = (−D)−1

C be the transition matrix of the embedded process at event times.
Since Q is irreducible, it has a unique stationary vector observing φQ = 0 and
φ I1 = 1. Then π = φC/ (φC I1), πP = π and π describes the stationary vector

1 In an n-dimensional space elements are always numbered from 0 through n − 1
because this numbering is more appropriate for mapping multi-dimensional spaces
into a single space.

2 We use the names D and C rather than D0 and D1 for the matrices of a MAP
because the numbers in the postfix are later used to denote matrices of different
MAPs or PHDs.

178 A. Blume et al.

of the MAP immediately after an event. (π,D) is the embedded PHD of the
MAP. We define the following two sets

inp (π,D) = inp (π) = {i|π(i) > 0} , outp (π,D) = outp (D) = {i|d(i) > 0}
(1)

of input and output states. nc = |inp (π,D) | and nr = |outp (π,D) | are the
cardinalities of the sets. A PHD is input flexible if nc > 1 and it is output
flexible if nr > 1. If we assume that each input and output state describes an
individual stochastic behavior, then an input flexible PHD allows one to choose a
specific behavior by selecting the input state, an output flexible PHD allows one
to interpret the previous behavior by considering the output state. To expand a
PHD to a MAP (see [12,19] for details), the PHD has to be input and output
flexible to specify correlation. A MAP (D,C) can also be represented as (D,G)
where C = diag(d)G and G is a matrix with G(i•) I1 = 1 for i ∈ outp(D) and 0
otherwise.

PHDs and MAPs can be easily analyzed according to several quantities
including moments, probability density and, in case of MAPs, joint moments
or joint densities. For details we refer to the literature [12]. Parameter fitting for
a stochastic model describes the process of finding good or optimal parameters
such that the stochastic model mimics the behavior of a real process for which
data is available. Parameter fitting for PHDs or MAPs is more complex than for
many other stochastic models because both models have a highly redundant rep-
resentation [31]. In principle two approaches can be applied. First, some derived
measures can be computed, like moments or joint moments and a least squares
approach is used to fit the parameters in such a way that the quantities of the
measured data are approximated by the PHD or MAP. Alternatively, maximum
likelihood estimators for the parameters can be used which are usually based on
the EM algorithm. For details about the corresponding algorithms we refer to
the literature [12].

3 Multi-dimensional Data and Stochastic Models

We first introduce the basic setting for multivariate distributions and random
vectors. Afterwards we present a Markov model to describe those quantities.

3.1 Multi-dimensional Data

Let X = (X1, . . . , XK) be a random vector where each Xk is a random vari-
able. We assume that all random variables are non-negative and the underlying
distribution functions have an infinite support. We denote by K the number
of dimensions or components of the random vector. If the random variables are
mutually independent, each Xk can be modeled by a MAP, if subsequent realiza-
tions of Xk are also independent, a PHD is sufficient. Here we consider the case
that various dependencies exist between the random variables and subsequent
realizations. Thus, X(t) is the vector observed at time t (= 1, 2, . . .) and X(t+h)

Markovian Arrival Processes in Multi-dimensions 179

is the vector h steps later. In general X
(t)
k and X

(t)
l as well as X

(t)
k and X

(t+h)
l

may be correlated.
We assume that the stochastic structure of X is unknown but we can observe

realizations of X. Let x(i) =
(
x
(i)
1 , . . . , x

(i)
K

)
be the ith realization of X and

x
(i)
k is the ith realization of Xk. From a sequence of observations x(1), . . . ,x(L)

various quantities can be estimated.

X̂j
k =

1
L

L∑
i=1

(
x
(i)
k

)j

and σ̂2
k =

1
L − 1

L∑
i=1

(
x
(i)
k − X̂1

k

)2

(2)

are estimates for the jth moments and the variance of the random variables Xk.
We denote by R̂h the correlation matrix of elements h steps apart which contains
the correlation coefficients. Elements of the correlation matrix are estimated by

R̂h(k, l) =
1

(L − h − 1)σ̂kσ̂l

L−h∑
i=1

(
x
(i)
k − X̂1

k

) (
x
(i+h)
l − X̂1

l

)
. (3)

The definition can be extended to higher order joint moments as follows.

Ĵm,n
h (k, l) =

1
(L − h)

L−h∑
i=1

(
x
(i)
k

)m (
x
(i+h)
l

)n

(4)

where k, l ∈ {1, . . . , K} and n,m ≥ 1. Similarly, the distribution function for
one or some dimensions of the random vector can be estimated. All presented
estimators are consistent. Like for joint moments in (4) we consider especially
dependencies between two components k and l which are described in the fol-
lowing joint dependencies.

F̂ y,z
h (k, l) =

1
L − h

L−h∑
i=1

δ
(
x
(i)
k ≤ y

)
δ
(
x
(i+h)
l ≤ z

)
(5)

3.2 Multi-dimensional Markov Models

The available Markov models are not able to describe multi-dimensional data.
Therefore we propose an extended model which consists of K absorbing Markov
chains that run in parallel, the absorption time of the kth chain determines
the value of the kth random variable. After absorption of all chains, they are
restarted according to a joint probability distribution which depends on the
states immediately before absorption. The later concept is a direct extension of
the idea that is used in MAPs to describe correlation. The following definition
formalizes the model.

Definition 3. A Multi-Dimensional Markovian Arrival Process (MDMAP) is
defined by K sub-generators Dk of order nk (k = 1, . . . , K) and a coupling
matrix G.

180 A. Blume et al.

K is the dimension of the MDMAP. Matrix G is an n1:K × n1:K matrix
(n1:K =

∏K
k=1 nk) matrix where state vector (i1, . . . , iK) (ik ∈ {0, . . . , nk −1}) is

mapped onto index i1:K =
∑K

k=1 ik ·nk+1:K (where nl:k =
∏k

i=l nk for k ≥ l and 1
for l > k). G ≥ 0, G(i1:K•) = 0 if ik /∈ outp(Dk) for some k and G(i1:K•) I1 = 1
otherwise. G(i1:K , j1:K) > 0 implies ik ∈ outp(Dk) and jk ∈ inp(πk) for all
k = 1, . . . , K which is denoted as i1:K ∈ outp1:K and j1:K ∈ inp1:K , respectively.
The notations may be restricted to subsets of indices k : l for k ≤ l or subset
K ⊆ {1, . . . , K}. For the cardinalities of the sets we use the following notations
nr

K = |outpK| and nc
K = |inpK|. Let I1inp

n1:K
be a vector of length n1:K where

I1inp
n1:K

= 1 if i ∈ inp1:K and 0 otherwise. Similarly I1outp
n1:K

is defined. Then G I1n1:K =
G I1inp

n1:K
= I1outp

n1:K
.

The behavior of an MDMAP is as follows. Each of the K absorbing Markov
chains generates a non-negative value, the exit states ik are kept and finally row
G(i1:K•) defines a probability distribution over the input states of each chain.
Dependencies between successive events of one chain and between chains are
realized by the relation between input and output states.

Let π be a vector of length n1:K which contains the distribution immediately
before the next event starts. Let dk = −Dk I1 and the stochastic matrix Hk =
(−Dk)−1 diag(dk). Observe that Hk(ik, jk) > 0 implies jk ∈ outpk. Vector π
can be computed from the following set of linear equations.

π

((
K⊗

k=1

Hk

)
G

)
= π and π I1 = 1, (6)

if the matrix in brackets contains a single irreducible subset of states which will
be assumed for the moment. For some vector π ∈ R

n1:K we define the mapping
onto the kth dimension as vector πk ∈ R

nk with

πk(ik) =
n1−1∑
i1=0

. . .

nk−1−1∑
ik−1=0

nk+1−1∑
ik+1=0

. . .

nK−1∑
iK=0

π(i1:K) (7)

This mapping can be computed by right multiplication of π with the following
matrix.

πk = πVk where Vk =
K⊗

l=1

idl and idl =
{

I1nl
if l �= k,

Ink
if k = l

(8)

where ⊗ is the Kronecker product. Obviously Vk = I1n1:k−1 ⊗ Ink
⊗ I1nk+1:K . The

mapping can be extended to subsets of components. Let K ⊆ {1, . . . , K} and

VK =
K⊗

l=1

idl where idl =
{

I1nl
if l /∈ K,

Inl
if l ∈ K.

(9)

πK = πVK is the embedded initial vector mapped onto the subset K. For nota-
tional convenience we write Vkl for V{k,l}.

Markovian Arrival Processes in Multi-dimensions 181

For an initial vector π, the exit vector ψ is given by

ψ = π

(
K⊗

k=1

Hk

)
and ψk = πkHk. (10)

ψ and ψk contain the probabilities of absorption from state i1:k and ik, respec-
tively. Obviously, ψk(ik) = 0 for ik /∈ outpk. We assume that ψk(ik) > 0 for
ik ∈ outpk otherwise the corresponding state would not be reachable from an
initial state and can therefore removed from the PHD.

The mapping of matrix G on the state space of some components is defined
according to some exit vector ψ using the following matrix

WK[ψ] = diag (ψVK)+ V T
K diag(ψ) and GK[ψ] = WK[ψ]GVK (11)

where A+ is the pseudo-inverse of matrix A which can be computed for the
diagonal matrix diag (ψVK) by substituting non-zero diagonal elements by the
inverse and leaving zero diagonal elements unchanged. This is the usual way of
aggregation in multi-dimensional Markov models (see e.g. [13] for details).

Theorem 1. For some MDMAP with K components, coupling matrix G, initial
vector π and any subset K ⊆ {1, . . . , K}, the initial vector πK of the MDMAP
restricted to the components from K is the solution of

πK

((⊗
k∈K

Hk

)
GK[ψ]

)
= πK and πK I1 = 1

where ψ = π ⊗K
k=1 Hk.

The number of parameters to represent all matrices Dk only linearly with
K and quadratic with nk. This does not hold for the number of entries in G
which may grow with nc

1:Knr
1:K . Therefore we consider MDMAPs of rank R with

product form, that can be represented as follows

G =
R∑

r=1

λ(r)
K⊗

k=1

G
(r)
k (12)

where λ(r) > 0,
∑R

r=1 λ(r) = 1, G
(r)
k ≥ 0 and G

(r)
k I1nk

= I1outp
nk

.

Theorem 2. For an MDMAP of rank R with product form and some set K ⊆
{1, . . . , K} vector πK = πVK is the solution of

πK

(⊗
k∈K

Hk

) (
R∑

r=1

λ(r)
⊗
k∈K

G
(r)
k

)
= πK and πK I1nK = 1.

Theorem 2 holds in particular for sets K = {k}. This implies that in a product
form MDMAP each component behaves locally like a MAP(Dk,

∑R
r=1 λ(r)G

(r)
k).

182 A. Blume et al.

4 Analysis of MDMAPs

Analysis of MDMAPs can be performed according to one dimension of the ran-
dom vector or according to the joint distribution.

4.1 Analysis of a Single Vector Component

An MDMAP can be easily mapped on a MAP (Dk,Gk) for one vector com-
ponent k that neglects all other dimensions. If the MDMAP is of rank R and
product form, then Gk =

∑R
r=1 λ(h)G

(r)
k , otherwise Gk = Wk[ψ]GVk. The

resulting MAP can then be analyzed with the available methods (see e.g. [12,
Sect. 4]).

4.2 Analysis of Joint Measures

In the following we consider mainly dependencies between two dimensions k and
l. In the equations we assume k < l, k > l requires a different ordering of the
matrices in the equations, but does, of course, not change the general structure.
The case k = l describes a single component and is mentioned above. Equations
are formulated for MDMAPs of rank R with product form, matrices G for the
general case are written underneath the rank R representation. Let Jm,n

1 (k, l) =

E
[(

X
(t)
k

)m

,
(
X

(t+1)
l

)n]
, the joint moment of order m,n for dimension k and

dimension l, h steps apart. For Jm,n
0 (k, l) we obtain

Jm,n
0 (k, l) = m!n!πkl ((Mk)m ⊗ (Ml)

n) I1nknl
(13)

where Mk = (−Dk)−1. The joint moment for h = 1 and MDMAPs for rank R
with product form is given by

Jm,n
1 (k, l) = m!n!πk,l ((Mk)m ⊗ Hl)

R∑
r=1

λ(r)
(

I1nk
⊗ G

(r)
l

)

︸ ︷︷ ︸
Gkl(I1nl

⊗Inl)

(Ml)
n I1nl

(14)

For two components k and l the joint distribution is given by

F x,y
0 (k, l) = πkl

⎛
⎝

x∫

0

eτDkdkdτ ⊗
y∫

0

eτD ldldτ

⎞
⎠ (15)

For successive observations. F x,y
1 (k, l) denotes the conditional probability that

we observe values ≤ x for k and for the next observation zl of dimension l zl ≤ y
holds. The function can be computed using the following equation.

F x,y
1 (k, l) = πkl

⎛
⎝

x∫

0

eτDk diag (dk) dτ ⊗ Hl

⎞
⎠

R∑
r=1

λ(r) I1outp
nk

⊗ G
(r)
l

︸ ︷︷ ︸
Gkl(I1nl

⊗Inl)

y∫

0

eτD ldldτ

(16)

Markovian Arrival Processes in Multi-dimensions 183

Observe that (13) and (15) as well as (14) and (16) are of an identical struc-
ture. Therefore we define a common notation which allows us to handle joint
moments and values of the distributions functions in a common framework. We
denote these measures as zero or first order quantities, respectively. For zero
order joint moments and distribution functions we have

Θα,β
0 (k, l) = πkl

(
φα

k ⊗ φβ
l

)
(17)

where φα
l equals α!Mα

l I1nl
or

∫ α

0
eτD0dldτ and Θα,β

0 (k, l) equals Jα,β
0 (k, l) or

F x,y
0 (k, l), α, β ∈ N for joint moments and α, β ∈ R>0 for joint densities.

Θ̂α,β
0 (k, l) is then the estimated value for Θα,β

0 (k, l). Similarly we can define
a common description of first order joint moments or values of the distribution
function.

Θα,β
1 (k, l) = πkl (Ξα

k ⊗ Hl) Gk,l

(
I1nl

⊗ φβ
l

)
(18)

where Θα,β
0 (k, l) equals Jα,β

1 (k, l) or F x,y
1 (k, l), Θ̂α,β

1 (k, l) is the corresponding
estimate and Ξk equals α!Mα

k Hk or
∫ α

0
eτDk diag(dk)dτ .

5 Moment-Based Parameter Fitting

We consider different approaches to determine the parameters of an MDMAP
based on moments, joint moments and joint values of the probability densities.
For the methods we distinguish between general MDMAPs and MDMAPs of
rank R with product form. The approaches are based on algorithms that have
been proposed for MAPs and MMAPs [9,12,19]. In all cases we start with the
computation of a PHD (πk,Dk) from the observations x

(l)
k (l = 1, . . . , L). For

this purpose any algorithm for parameter fitting of PHDs can be applied, the
resulting PHD can be further transformed to increase the number of input and
output states using equivalence transformations [8]. The corresponding approach
is denoted as two-phase fitting approach [19] and sometimes becomes a three-
phase approach in this paper. The computation in different phases allows one
to formulate the resulting optimization problems as non-negative least squares
problem with linear constraints that can be solved efficiently. Furthermore, it is
a common approach used for the parameter fitting of multivariate distributions
in general [5]. Most fitting methods for multivariate distributions use Ĵ1,1

0 (k, l)
and Ĵ1,1

1 (k, l) as measures to be matched by the multivariate distribution which
is often a multivariate normal distribution. This is sometimes criticized [3,4] and
other measures like the joint tail behavior of two components are considered. In
the following approaches measures such as Ĵm,n

0 (k, l), F̂ x,y
0 (k, l) (i.e., Θ̂α,β

0 (k, l))
and Ĵm,n

1 (k, l), F̂ x,y
1 (k, l) (i.e., Θ̂α,β

1 (k, l)) are incorporated in the fitting process.
We do not consider dependencies of lags larger than 1 like Ĵ1,1

p (k, l) (p > 1) which
are used in VARTA processes [6,20].

184 A. Blume et al.

5.1 Dependencies in a Single Component

For a single component the zero and first order quantities are given by

Θα
0 (k, k) = πkφα

k and Θα,β
1 (k, k) = ξα

k Gkφβ
k (19)

where ξα
k = πkΞα

k . Observe that Θα
0 (k, k) has only a single parameter α and is

completely determined by the PHD (πk,Dk). To describe Θα,β
1 (k, k) we expand

the PHD into a MAP (Dk,Gk) (see [12,19]). Now assume that we have Hk

estimates Θ̂αi,βi

1 (k, k) which should be approximated by (Dk,Gk). Computation
of matrix Gk results then in the following Non-Negative Least Squares Problem
with Linear Constraints (NNLSPLC) [24].

min
Gk≥0

(
Hk∑
i=1

μi

(
Θ̂αi,βi

1 (k, k) − ξαi

k Gkφβi

k

)2
)

subject to Gk I1inp
nk

= I1outp
nk

,ψkGk = πk

(20)

where μi are non-negative weights for the different joint moments/densities. The
problem has nc

knr
k variables and nr

k + nc
k constraints. The number of non-zero

elements in Gk is at most nr
knc

k but often the optimal solution describes a corner
case with less non-zero elements. In some situations, it is better to have some
more non-zero elements to allow more flexibility for following optimization steps.
This can be achieved by adding a penalty term λ‖Gk‖2 to the objective function.
In this case a matrix with more and smaller non-zero elements results in a smaller
two norm. This step can be applied in all NNSPLCs we present in the following
paragraphs.

5.2 Joint Moment Fitting for General MDMAPs

For general MDMAPs we put no restriction on matrix G which means that
nc
1:Knr

1:K variables are available. However, some constraints exist. First, for the
row sums G(i1:K•) I1 = 1 for i1:K ∈ out1:K and 0 otherwise has to hold. Further-
more, G determines π because (6) has to hold for given matrices Hk. Addition-
ally, the availability of the distributions (πk,Dk) implies that πVk = πk has to
hold.

The parameter fitting is done in two steps. First, vector π is determined to
approximate quantities Θ̂αi,βi

0 (ki, li) (i = 1, . . . , I0). Then an appropriate matrix
G is determined to approximate additional values Θ̂αi,βi

1 (ki, li) (i = 1, . . . , I1).
We begin with the computation of π from the zero order quantities. Let

u(i) = Vkl

(
φαi

ki
⊗ φβi

li

)
. E.g., if all first joint moments J1,1

0 (k, l) are considered,

then (K −1)K/2 vectors Vkl

(
m1

k ⊗ m1
l

)
(k < l) are used. Then Θαi,βi

0 = πu(i).
With these notations we can set up the following NNLSPLC.

min
π≥0

(
I0∑

i=1

μi

(
Θ̂αi,βi

0 (ki, li) − πu(i)
)2

)

subject to π I1 = 1,π ≥ 0 and πVk = πk for all k = 1, . . . , K
(21)

Markovian Arrival Processes in Multi-dimensions 185

Again μi are appropriate non-negative weights. If the minimum of the objective
function becomes 0, then all joint moments and conditional values of the distri-
bution function are matched exactly. The result is a set of PHDs coupled via
initial vector π that generate random vectors. Vector π contains n1:K elements
of which are at most nr

1:K are non-zero.
To match estimated values Θ̂αi,βi

1 (ki, li) (i = 1, . . . , I1), we assume that the
vector π is available (e.g. from (21)). This implies that ψ = π ⊗K

k=1 Hk is
also available. The optimization problem for general matrices G results in the
following NNLSPLC.

min
G≥0

(
I1∑

i=1

μi

(
Θ̂αi,βi

1 (ki, li) − w(i)Gv(i)
)2

)

subject to G I1inp
n1:k

= I1outp
n1:K

and ψG = π

(22)

where

w(i) = π
(
In1:ki−1 ⊗ Ξαi

ki
⊗ Inki+1:K

) K∏
j=1,j �=ki

(
In1:j−1 ⊗ Hj ⊗ Inj+1:K

)

v(i) = I1n1:li−1 ⊗ φβi

li
⊗ I1nli+1:K

The problem contains nc
1:Knr

1:K non-zero variables, after removing zero elements
from G, but has relatively simple equality constraints.

5.3 Joint Moment Fitting for MDMAPs of Rank R with Product
Form

We begin with the generation of product form MDMAPs of rank R. As long as
we consider the approximation of quantities Θ̂α,β

0 (k, l) Theorem 2 applies and
allows us to compute the distribution πkl from the matrices for components
k and l, independently of the remaining components. Unfortunately, the joint
computation of the matrices G

(r)
k and G

(r)
l results in a non-linear optimization

problem which is hard to solve. To keep the optimization manageable, we use
Alternating Least Squares (ALS) [21] which is a common approach applied in
many areas including the solution of partial differential equations [16,17] or
performance models [10]. The basic idea of the approach is fairly simple. It is
assumed that matrices G

(r)
l (l ∈ {1, . . . , K}\{k}, r = 1, . . . , R) are known when

matrices G
(r)
k are computed. Then new matrices are computed for k = 1, . . . , K

and the iteration is repeated until convergence is observed. Some results about
local convergence of the approach exist [29] and also hold in our setting, but will
not be further analyzed.

To start with the computation we assume that initial matrices G
(r)
k are avail-

able. Matrices Gk result from the solution of (20) or are initialized as I1outp
nk

πk.
Then a random distribution (λ(1), . . . , λ(R)) with 0 < λ(r) < 1 and

∑R
r=1 λ(r) = 1

is generated. The result is an MDMAP of rank R with product form but different
components are uncorrelated.

186 A. Blume et al.

To introduce correlation between two components k and l, we consider quan-
tities Θ̂αi,βi

0 (k, l) (i = 1, . . . , Ikl
0) which results in the following NNLSPLC.

min
πkl≥0

(
Ikl
0∑

i=1

μi

(
Θ̂αi,βi

0 (k, l) − πkl

(
φαi

k ⊗ φβi

l

))2
)

subject to πkl I1 = 1,πkl (I1nk
⊗ Inl

) = πl and πkl (Ink
⊗ I1nk

) = πl

(23)

Up to K(K − 1)/2 NNLSPLCs of the above type have to be solved. From the
resulting vectors πkl the vectors ψkl = πkl (Hk ⊗ Hl) can be computed.

In the next step matrices G
(r)
k have to be found such that the vectors com-

puted in (23) are the embedded stationary vectors of the two components. Due
to the product form it is sufficient to consider only the relation between two com-
ponents if we restrict dependencies to joint moments or densities between two
components. Let Ḡ

(r)
k = λ(r)G

(r)
k . If we consider the local optimization problem,

where matrices Ḡ
(r)
k are unknown and matrices G

(r)
l (l �= k) are known, we have

to find matrices such that

ψkl

(
R∑

r=1

Ḡ
(r)
k ⊗ G

(r)
l

)
= πkl (k < l) and ψlk

(
R∑

r=1

G
(r)
l ⊗ Ḡ

(r)
k

)
= πkl (k > l)

(24)
This can be describes in the following NNLSPLC.

min
Ḡ

(1)
k ,...,Ḡ

(R)
k ,λ(1),...,λ(R)≥0

(
k−1∑
l=1

∥∥∥∥πlk − ψlk

R∑
r=1

(
G

(r)
l ⊗ Ḡ

(r)
k

)∥∥∥∥
2

2

+
K∑

l=k+1

∥∥∥∥πkl − ψkl

R∑
r=1

(
Ḡ

(r)
k ⊗ G

(r)
l

)∥∥∥∥
2

2

+
∑

(h,l),h<l,h,l �=k

∥∥∥∥πhl − ψhl

R∑
r=1

λ(r)
(
G

(r)
h ⊗ G

(r)
l

)∥∥∥∥
2

2

)

subject to
R∑

r=1
Ḡ

(r)
k I1 = I1,ψk

R∑
r=1

Ḡ
(r)
k = πk, for all i : Ḡ

(r)
k (i•) I1 = λ(r)

(25)
If matrices Gk are available from (20), then the second set of constraints can
be substituted by

∑R
r=1 G

(r)
k = Gk. In this case, a solution assures that val-

ues Jm,n
1 (k, k) are kept by the resulting MDMAP. The optimization problem is

solved for k = 1, . . . , K and this process is iterated until the objective function
becomes 0 for all components or no progress is made any more. Observe that a
solution of (25) cannot increase the overall error defined as

K∑
k=1

K∑
l=k+1

∥∥∥∥∥πkl − ψkl

(
R∑

r=1

λ(r)
(
G

(r)
k ⊗ G

(r)
l

))∥∥∥∥∥
2

2

. (26)

If the global error cannot be reduced to 0, then vectors πkl have to be computed
for the resulting MDMAP from which the joint moments and joint densities can
be recomputed.

Markovian Arrival Processes in Multi-dimensions 187

6 Examples

In the following we consider different examples for MDMAPs. First, random
vectors where the components of one vector are correlated and subsequent vec-
tors are independent are considered, then random vectors which with correlation
between components of one vector and of subsequent vectors are analyzed.

6.1 Independent Random Vectors

We begin with random vectors with correlated components. A first simple exam-
ple are two correlated exponential distributions. We consider exponential distri-
butions with rate 1 and correlation coefficient R1(1, 2) = R1(2, 1) = 0.5. To
build correlated exponential distributions, the following representation as PHD
with n phases is used [7].

π =
(
n−1, . . . , n−1

)
D =

⎛
⎜⎜⎜⎝

−1 1
−2 2

.
−n

⎞
⎟⎟⎟⎠ (27)

To obtain a coefficient of correlation of 0.5 at least 5 phases are needed. Observe
that in the representation (27) the expected time to absorption is decreasing
when entering the distribution at a state with larger index. To obtain a posi-
tive correlation if two distributions are coupled, both distributions have to start
with a higher probability in the same state. In an MDMAP with two exponen-
tial PHDs of order 5, the joint initial vector has 25 entries. Let π(i, j) be the
probability that the MDMAP starts in phase i of the first and phase j of the
second MDMAP. For independent PHDs the probability is n−2 for each state,
the coefficient of correlation is 0 in this case. By solving (21) we obtain an ini-
tial vector with only 7 non-zero entries, namely π(1, 1) = π(5, 5) = 0.1902,
π(2, 2) = π(3, 3) = π(4, 4) = 0.2 and π(1, 5) = π(5, 1) = 0.00998. The result-
ing MDMAP describes two exponential distribution with rates 1 and correlation
coefficient 0.5.

In exactly the same way random vectors with several correlated exponen-
tially distributed components can be generated. It should be mentioned that
even in simulation the generation of high dimensional random vectors of corre-
lated exponential distributions is non-trivial. We applied the method from [6,14]
which transforms correlated standard normal distributed random vectors into
exponential distributions. We consider the case of three correlated exponential
distributions all with mean 1 and the following two correlation matrices.

R0 =

⎛
⎝

1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

⎞
⎠ and R′

0 =

⎛
⎝

1 0.5 0.1
0.5 1 0.3
0.1 0.3 1

⎞
⎠

Again we use the above representation with 5 states for the exponential distri-
bution. Thus, the joint state space contains 125 states. For the first correlation

188 A. Blume et al.

matrix the algorithm generates an initial vector with 64 non-zero entries that
exactly matches the correlation structure. For the second correlation matrix the
function lsqlin of octave or matlab generates an MDMAP with the following
correlation matrix.

R̂0 =

⎛
⎝

1.00000 0.4965 0.1011
0.4965 1.00000 0.2987
0.1011 0.2987 1.00000

⎞
⎠

This is very near to the required correlation but not exactly the same. Interest-
ingly in the resulting initial vector only 14 of the 125 entries are non-zero (if we
set values smaller than 1.0e–8 to zero).

If we use a product form approximation, then a rank of 4 is required to
approximate matrix R0 with a relative error of less than 1%. The correlation
described by R′

0 could not be approximated with a small approximation error
using a product form representation.

Fig. 1. Densities of the log-normal and the fitted Hyper-Erlang distributions.

As a second example we consider log-normal distribution with means and stan-
dard deviation 1. In a first step 10, 000 samples are drawn from the distribution
and are used to fit a Hype-Erlang distribution using the software gfit [32]. Figure 1
show the empirical density of the trace and the densities of hyper-Erlang distribu-
tions with 5 and 9 states. It can be noticed that both Hyper-Erlang distributions
provide a good matching of the empirical density. The 5 state Hype-Erlang dis-
tribution consists of 3 Erlang branches, one with 1 phase and the other two with
2 phases. The 9 state Hyper-Erlang distribution contains 4 branches, one with 1
phase, 1 with 2 phases and 1 with 3 phases. Combining two Hyper-Erlang distribu-
tions with 5 phases allows us to express a correlation coefficient up to 0.3 whereas
9 phases allow one to model correlation coefficients up to 0.4. If we combine the
Hyper-Erlang distribution with 9 phases, modeling the log-normal distribution
and the PHD with 5 states representing the exponential distribution, coefficients

Markovian Arrival Processes in Multi-dimensions 189

of correlation between −0.29 and 0.34 can be achieved. To obtain larger coefficient
of correlation additional phases have to be added.

If we consider product from representations for the MDMAP with two 9-state
hyper-Erlang distributions, then for R1,1

0 (1, 2) = 0.1 and 0.2 rank 5 represen-
tations are computed, whereas for R1,1

0 (1, 2) = 0.3 a rank 3 representation is
generated.

6.2 Random Processes

We consider again correlated exponential distributions. With the representation
of (27) it is not possible to model correlations between subsequent realization
because the representation has only a single output state. If we enlarge the num-
ber of phases by using a Hyper-Erlang representation where each path starting
in phase i (= 1, . . . , n) and ending in phase n is modeled by a single Erlang
branch, we obtain a distribution with n(n + 1)/2 phases, n input and n output
states. We analyze an MDMAP with 2 distributions with n = 5. The correlation
coefficient reachable by these distribution ranges between −0.46 and 0.54.

Table 1. Maximal and minimal reachable correlation coefficients.

R0(1, 2) max(R1(1, 1)
max(R1(1, 2))

min(R1(1, 1))
min(R1(1, 2))

max(R1(1, 1))
min(R1(1, 2))

min(R1(1, 1))
max(R1(1, 2))

R1(1, 1) R1(1, 2) R1(1, 1) R1(1, 2) R1(1, 1) R1(1, 2) R1(1, 1) R1(1, 2)

−0.40 0.17 0.17 −0.17 −0.17 0.53 −0.44 −0.44 0.53

−0.30 0.23 0.23 −0.24 −0.24 0.50 −0.40 −0.40 0.50

−0.20 0.28 0.28 −0.28 −0.28 0.46 −0.38 −0.38 0.46

−0.10 0.32 0.32 −0.31 −0.31 0.43 −0.34 −0.34 0.43

0.00 0.36 0.36 −0.34 −0.34 0.40 −0.30 −0.30 0.40

0.10 0.40 0.40 −0.36 −0.36 0.36 −0.26 −0.26 0.36

0.20 0.43 0.43 −0.38 −0.38 0.32 −0.22 −0.22 0.32

0.30 0.47 0.47 −0.40 −0.40 0.27 −0.17 −0.17 0.27

0.40 0.49 0.49 −0.42 −0.42 0.21 −0.11 −0.11 0.21

0.54 0.54 0.54 −0.46 −0.46 0.05 0.04 0.04 0.05

To analyze the flexibility of the representation, we first select some value
for R0(1, 2) and compute the corresponding vector π by solving (21). Then we
try to maximize/minimize R1(1, 1) and R1(1, 2). If we maximize/minimize only
one of the two values, then independently of R0(1, 2) the values for R1(1, 1) and
R1(1, 2) can range between −0.45 and 0.54, the maximum range reachable by
this distribution. If we try to jointly maximize/minimize R1(1, 1) and R1(1, 2),
then the range shrinks and depends on R0(1, 2). Results are shown in Table 1
and indicate that there is still a lot flexibility in the representation. The solution
of the NNLSPLC problems for this examples requires with matlab on a standard
PC less than a second.

190 A. Blume et al.

Finally we consider an MDMAP with three PHDs of the mentioned type. The
joint state space of this process contains 153 states, 125 input and 125 output
states. We define the following two matrices for the correlation of lag 0 and 1

R0 =

⎛
⎝

1 0.5 0.1
0.5 1 0.3
0.1 0.3 1

⎞
⎠ and R1 =

⎛
⎝

0.3 0.2 0.1
0.2 0.3 0.2
0.1 0.2 0.3

⎞
⎠

In a first step the initial vector is computed and then matrix G is determined
resulting in an MDMAP with the following matrices R̂0 (which is already shown
above) and R̂1.

R̂0 =

⎛
⎝

1.00000 0.4965 0.1011
0.4965 1.00000 0.2987
0.1011 0.2987 1.00000

⎞
⎠ and R̂1 =

⎛
⎝

0.2636 0.2341 0.0912
0.2341 0.2692 0.2072
0.0912 0.2072 0.2987

⎞
⎠

It can be seen that the correlation structure is approximated with small approx-
imation errors. The computation of the initial vector requires negligible time,
whereas the solution of the second NNLSPLC problem to determine matrix G
requires about an hour of CPU time.

7 Conclusion

In this paper we present MDMAPs, a Markov model for random vectors that
may be correlated in different dimensions and extends Phase Type Distributions
and Markovian Arrival Processes to the multi-dimensional case. It is shown
how MDMAPs can be analyzed and algorithms are presented to fit the parame-
ters of MDMAPs according to joint moments or some values of the conditional
distribution function. The proposed model can be applied in input modeling
for simulation models where it is an alternative for models that are based on
transformed correlated normal distributions. These models usually only use the
correlation coefficient to describe dependencies whereas MDMAPs can also use
higher order joint moments or values of the conditional distribution function
which introduces additional flexibility when real data has to be represented by
a stochastic model. Since MDMAPs are Markov models they can be analyzed
numerically and can also be used as a stochastic model for correlated failures
in dependability models or to represent correlated arrivals and service times in
queues with PHD arrivals and services as in [11].

We currently have a first prototype matlab implementation of the algorithms
proposed in the paper. This representation will be further improved and then
made publically available in the tool ProFiDo [2]. Apart from parameter fitting
with respect to moments and joint moments also an EM algorithm for MDMAPs
will be considered in future research.

References

1. Assaf, D., Langberg, N.A., Savits, T.H., Shaked, M.: Multivariate phase-type dis-
tributions. Oper. Res. 32(3), 688–702 (1984). https://doi.org/10.1287/opre.32.3.
688

https://doi.org/10.1287/opre.32.3.688
https://doi.org/10.1287/opre.32.3.688

Markovian Arrival Processes in Multi-dimensions 191

2. Bause, F., Buchholz, P., Kriege, J.: ProFiDo - the processes fitting toolkit dort-
mund. In: QEST 2010, Seventh International Conference on the Quantitative Eval-
uation of Systems, Williamsburg, Virginia, USA, 15–18 September 2010, pp. 87–96.
IEEE Computer Society (2010). https://doi.org/10.1109/QEST.2010.20

3. Biller, B.: Copula-based multivariate input models for stochastic simulation. Oper.
Res. 57(4), 878–892 (2009). https://doi.org/10.1287/opre.1080.0669

4. Biller, B.: Copula-based multivariate input modeling. Surv. Oper. Res. Manag. Sci.
17, 69–84 (2012)

5. Biller, B., Ghosh, S.: Multivariate input processes. In: Henderson, S.G., Nelson,
B.L. (eds.) Handbook of OR & MS, vol. 13, pp. 123–152. Elsevier, Amsterdam
(2006)

6. Biller, B., Nelson, B.L.: Modeling and generating multivariate time-series input
processes using a vector autoregressive technique. ACM Trans. Model. Comput.
Simul. 13(3), 211–237 (2003). https://doi.org/10.1145/937332.937333

7. Bladt, M., Nielsen, B.F.: On the construction of bivariate exponential distributions
with an arbitrary correlation coefficient. Stoch. Model. 26(3), 295–308 (2010)

8. Buchholz, P., Felko, I., Kriege, J.: Transformation of acyclic phase type distribu-
tions for correlation fitting. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS,
vol. 7984, pp. 96–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39408-9 8

9. Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and
their parameter fitting. Perform. Eval. 67(11), 1092–1106 (2010)

10. Buchholz, P., Kriege, J.: Approximate aggregation of Markovian models using alter-
nating least squares. Perform. Eval. 73, 73–90 (2014). https://doi.org/10.1016/j.
peva.2013.09.001

11. Buchholz, P., Kriege, J.: Fitting correlated arrival and service times and related
queueing performance. Queueing Syst. 85(3–4), 337–359 (2017). https://doi.org/
10.1007/s11134-017-9514-5

12. Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions
and Markov Models - Theory and Applications. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-06674-5

13. Buchholz, P., Telek, M.: Rational processes related to communicating Markov
processes. J. Appl. Probab. 49(1), 40–59 (2012). https://doi.org/10.1017/
S0021900200008858

14. Cario, M.C., Nelson, B.L.: Numerical methods for fitting and simulating
autoregressive-to-anything processes. INFORMS J. Comput. 10(1), 72–81 (1998).
https://doi.org/10.1287/ijoc.10.1.72

15. D’Alconzo, A., Drago, I., Morichetta, A., Mellia, M., Casas, P.: A survey on big
data for network traffic monitoring and analysis. IEEE Trans. Netw. Serv. Manag.
16(3), 800–813 (2019). https://doi.org/10.1109/TNSM.2019.2933358

16. Dolgov, S., Savostyanov, D.V.: Alternating minimal energy methods for linear sys-
tems in higher dimensions. SIAM J. Sci. Comput. 36(5) (2014). https://doi.org/
10.1137/140953289

17. Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for ten-
sor optimization in the tensor train format. SIAM J. Sci. Comput. 34(2) (2012).
https://doi.org/10.1137/100818893

18. Hong, Y., Zhang, M., Meeker, W.Q.: Big data and reliability applications: the
complexity dimension. J. Qual. Technol. 50(2), 135–149 (2018)

19. Horváth, G., Telek, M., Buchholz, P.: A MAP fitting approach with independent
approximation of the inter-arrival time distribution and the lag-correlation. In:
QEST, pp. 124–133. IEEE CS Press (2005)

https://doi.org/10.1109/QEST.2010.20
https://doi.org/10.1287/opre.1080.0669
https://doi.org/10.1145/937332.937333
https://doi.org/10.1007/978-3-642-39408-9_8
https://doi.org/10.1007/978-3-642-39408-9_8
https://doi.org/10.1016/j.peva.2013.09.001
https://doi.org/10.1016/j.peva.2013.09.001
https://doi.org/10.1007/s11134-017-9514-5
https://doi.org/10.1007/s11134-017-9514-5
https://doi.org/10.1007/978-3-319-06674-5
https://doi.org/10.1007/978-3-319-06674-5
https://doi.org/10.1017/S0021900200008858
https://doi.org/10.1017/S0021900200008858
https://doi.org/10.1287/ijoc.10.1.72
https://doi.org/10.1109/TNSM.2019.2933358
https://doi.org/10.1137/140953289
https://doi.org/10.1137/140953289
https://doi.org/10.1137/100818893

192 A. Blume et al.

20. Kriege, J., Buchholz, P.: Traffic modeling with phase-type distributions and
VARMA processes. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol.
9826, pp. 295–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43425-4 20

21. Kroonenberg, P.M., Leeuw, J.D.: Principal component analysis of three-mode data
by means of alternating least squares algorithms. Psychometrika 45, 69–97 (1980).
https://doi.org/10.1007/BF02293599

22. Kulkarni, V.G.: A new class of multivariate phase type distributions. Oper. Res.
37(1), 151–158 (1989). https://doi.org/10.1287/opre.37.1.151

23. Law, A.M.: Simulation Modeling and Analysis, 5th edn. Mc Graw Hill, New York
(2013)

24. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Classics in Applied
Mathematics. SIAM (1995)

25. Lucantoni, D.M.: New results on the single server queue with a batch Markovian
arrival process. Stoch. Model. 7(1), 1–46 (1991)

26. Mishra, D., Gunasekaran, A., Papadopoulos, T., Childe, S.J.: Big data and supply
chain management: a review and bibliometric analysis. Ann. OR 270(1–2), 313–
336 (2018). https://doi.org/10.1007/s10479-016-2236-y

27. Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16, 764–779
(1979)

28. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models - An Algorithmic
Approach. Johns Hopkins University Press, Baltimore (1981)

29. Rohwedder, T., Uschmajew, A.: On local convergence of alternating schemes for
optimization of convex problems in the tensor train format. SIAM J. Numer. Anal.
51(2), 1134–1162 (2013). https://doi.org/10.1137/110857520

30. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Math-
ematical Basis of Performance Modeling. Princeton University Press, Princeton
(2009)

31. Telek, M., Horváth, G.: A minimal representation of Markov arrival processes and
a moments matching method. Perform. Eval. 64(9–12), 1153–1168 (2007)

32. Thümmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting
with the EM algorithm. IEEE Trans. Dependable Secur. Comput. 3(3), 245–258
(2006)

33. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer
Science Applications, 2 edn. Wiley (2016). https://doi.org/10.1002/9781119285441

https://doi.org/10.1007/978-3-319-43425-4_20
https://doi.org/10.1007/978-3-319-43425-4_20
https://doi.org/10.1007/BF02293599
https://doi.org/10.1287/opre.37.1.151
https://doi.org/10.1007/s10479-016-2236-y
https://doi.org/10.1137/110857520
https://doi.org/10.1002/9781119285441

Automatic Pre- and Postconditions
for Partial Differential Equations

Michele Boreale(B)

Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) “G. Parenti”,
Università di Firenze, Viale Morgagni 65, 50124 Florence, Italy

michele.boreale@unifi.it

https://local.disia.unifi.it/boreale/

Abstract. Based on a simple automata-theoretic and algebraic frame-
work, we study equational reasoning for Initial Value Problems (IVPs) of
polynomial Partial Differential Equations (PDEs). In order to represent
IVPs in their full generality, we introduce stratified systems, where func-
tion definitions can be decomposed into distinct subsystems, focusing
on different subsets of independent variables. Under a certain coherence
condition, for such stratified systems we prove existence and uniqueness
of formal power series solutions, which conservatively extend the classical
analytic ones. We then give a—in a precise sense, complete—algorithm
to compute weakest preconditions and strongest postconditions for such
systems. To some extent, this result reduces equational reasoning on
PDE initial value (and boundary) problems to algebraic reasoning. We
illustrate some experiments conducted with a proof-of-concept imple-
mentation of the method.

1 Introduction

Techniques for reasoning on ordinary differential equations (ODEs) are at the
heart of current formal methods and tools for continuous and hybrid systems,
which form an active research area, see e.g. [1–7] and references therein. Although
examples of hybrid systems whose continuous dynamics is described by partial
differential equations (PDEs) abound, formal techniques for reasoning on PDEs
have comparably received much less attention. Existing proposals mostly focus
on specific types of equations, such as the Hamilton-Jacobi equations [8,9]. The
present paper, building on [10], is meant as a contribution to developing formal
methods for reasoning on PDEs. Our approach is formal, in the sense of being
entirely based on simple coalgebra (automata theory) and algebra (polynomials),
rather than on calculus like most of the previous proposals. Nevertheless, the
resulting notion of PDE solution can be used to reason on the classical analytic
one, in a sense made precise below.

In [10] we have shown that, subject to a certain coherence condition, a system
Σ of polynomial PDEs, given an arbitrary initial data specification, admits a
unique solution in the set of commutative formal power series (CFPSs; Sect. 2).

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 193–210, 2020.
https://doi.org/10.1007/978-3-030-59854-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_15

194 M. Boreale

Most important, this solution can be expressed operationally, in terms of the
transition function of a suitable automaton. This lays the basis for mechanical
checking of equations: that is, check that a given (polynomial) expression involv-
ing the PDE variables becomes identically 0 when the solution is plugged into
it. The corresponding procedure is similar in spirit to an on-the-fly bisimulation
checking algorithm. Pragmatically, these CFPS solutions conservatively extend
classical ones: if an analytic solution of Σ in the classical sense exists, then its
Taylor expansion from 0, seen as a formal power series, coincides with the unique
CFPS solution.

In the present paper, we make two substantial steps forward. First, we intro-
duce stratified systems, by which one can represent fairly complicated initial
value problems—and, through changes of coordinates, also boundary problems.
Second and most crucial, we give a (relatively) complete algorithm to automat-
ically compute pre- and postconditions of a given system. In particular, this
allows one to automatically compute all valid polynomial equations that fit a
user-specified format (e.g., all conservation laws up to a given degree), rather
than just checking the validity of given ones.

More in detail, in a stratified system we have distinct sets of equations (sub-
systems): in each of them, a distinct subset of the independent variables is fixed
to zero. This way, in a system with, say, two independent variables x and y,
the solution, f(x, y), can be made dependent on constraints involving not only
f(x, y) and its derivatives, but also f(x, 0) and its x-derivatives, and f(0, y)
and its y-derivatives. This is how initial value problems are formulated in their
generality. Under a syntactic acyclicity condition among subsystems, we prove
existence and uniqueness of solutions for stratified systems and an automata-
theoretic representation of the corresponding Taylor coefficients (Sect. 3).

This result lays the basis of an algorithm to automatically compute both
weakest preconditions (= sets of initial data specifications) and strongest post-
conditions (= valid polynomial equations). The method is complete, subject to
certain assumptions (Sect. 4). This way one can, for example, automatically dis-
cover all polynomial equations up to a given degree, valid under a given set
of initial data specifications. Or vice-versa, compute the largest set of initial
data specifications for given equations to be valid. The original IVP is therefore
reduced to a purely algebraic system, which can be used for equational reasoning
and, in some cases, to find explicit solutions. Concepts from algebraic geometry
are used to prove the termination and correctness of this algorithm. Using a
proof-of-concept implementation (Sect. 5), we illustrate this algorithm on well-
known examples drawn from mathematical physics. Relations with other works,
in particular on ODEs [11,12], is discussed in the concluding section (Sect. 6).
Proofs and additional technical material omitted here are available in a full
version available online [13].

2 Background

We review some notation and terminology from the theory of formal power series
and from the formal theory of PDEs, including the main result of [10].

Automatic Pre- and Postconditions for Partial Differential Equations 195

Commutative Formal Power Series and Polynomials. Assume a finite set X =
{x1, ..., xn} of independent variables is given. The set X, ranged over by t, x, ...,
will be kept fixed for the rest of the paper. Let X⊗, ranged over by τ, ξ, ..., be the
set of monomials1 that can be formed from the elements of X, in other words,
the commutative monoid freely generated by X. Let us fix any total order x =
(x1, ..., xn) of the variables in X. Given a vector α = (α1, ..., αn) of nonnegative
integers (a multi-index), we let xα denote the monomial xα1

1 · · · xαn
n . For ξ = xα

and τ = xβ , we let ξ ≤ τ if for each i = 1, ..., n, αi ≤ βi. A commutative formal
power series (CFPS) with indeterminates in X and coefficients in IR is a total
function f : X⊗ → IR. The set of such CFPSs will be denoted by IR[[X]]. We
will sometimes use the suggestive notation

∑
α∈Nn f(xα) ·xα to denote a CFPS

f . By slight abuse of notation, for each μ ∈ IR, we will denote the CFPS that
maps ε to μ and anything else to 0 simply as μ; while xi will denote the i-th
identity, the CFPS that maps xi to 1 and anything else to 0. The definitions
the sum f + g, (convolution) product f · g, inverse f−1 (if f(ε) �= 0) and partial
derivative ∂f

∂x operations on CFPS are standard, and enjoy the usual algebraic
properties (we also review these operations in [13, App. A]). In particular sum
and product make IR[[X]] a ring with 0 and 1 as identities.

If the support of f , supp(f)
�
= {τ : f(τ) �= 0}, is finite, we will call f

a polynomial. The set of polynomials, denoted by IR[X], is closed under the
above defined operations of sum, product (which make it a ring) and partial
derivative, but in general not inverse. It is important to note that, when confining
to polynomials, sum, product and partial derivative are well defined even in case
the cardinality of the set of indeterminates X is infinite.

Partial Differential Equations. The definitions in this paragraph are standard,
or slight variations of the standard ones as found in the formal theory of PDEs,
cf. [10,14,15] and references therein. A finite, nonempty set U of dependent

variables, disjoint from X and ranged over by u, v, ..., is given. We let D �
=

{uτ : u ∈ U, τ ∈ X⊗} be the set of the derivatives. Informally, a symbol
u ∈ U represents a function, and uτ its partial derivative ∂u

∂τ ; here uε will be

identified with u. We let P �
= IR[X ∪ D], ranged over by E,F, ..., denote the

set of (differential) polynomials with coefficients in IR and indeterminates in
X ∪ D. Considered as formal objects, differential polynomials are just finite-
support CFPSs, as per previous paragraph. As such, they inherit the operations
of sum, product and partial derivative, along with the corresponding properties.
Syntactically, we shall write polynomials as expressions of the form

∑
γ∈M λγ ·γ,

for 0 �= λγ ∈ IR and M ⊆fin (X ∪D)⊗. Note that this notation is consistent with
the sum and product operations defined on polynomials. For example, E =
vzuxy + v2

y + u + 5x is a polynomial2. For an independent variable x ∈ X, the

1 In general, we shall adopt for monomials the same notation we use for strings, as
the context is sufficient to disambiguate. In particular, we overload the symbol ε to

denote both the empty string and the unit monomial. When X = ∅, X⊗ �
= {ε}.

2 Real arithmetic expressions will be used as a meta-notation for polynomials: e.g.
(u + ux + 1) · (x + uy) denotes the polynomial xu + uuy + xux + uxuy + x + uy.

196 M. Boreale

total derivative of E ∈ P w.r.t. x is just the derivative of E w.r.t x, taking into
account that ∂uτ

∂x = uxτ and the chain rule. Formally, the operator Dx : P → P
is defined by (note

∑
below has only finitely many nonzero terms)

DxE
�
=

∂E

∂x
+

∑

u,τ

uxτ · ∂E

∂uτ

where ∂E
∂a denotes the partial derivative of polynomial E along a ∈ X ∪D. Dx(·)

inherits differentiation rules for sum and product that are the analog of those for
partial derivatives ∂(·)/∂x. As an example, for the polynomial E above, we have
DxE = vxzuxy+vzuxxy+2vyvxy+ux+5. In particular, Dxuτ = uxτ and Dxxk =
kxk−1. Just as partial derivatives, total derivatives commute with each other,
that is DxDyF = DyDxF . This suggests to extend the notation to monomials:
for any monomial τ = x1 · · · xm, we let DτF be Dx1 · · · Dxm

F , where the order
of the derivatives is irrelevant. We formally introduce systems of PDEs below,
along with the key notions of parametric and principal derivatives. Informally,
parametric derivatives play a role similar to the lower order derivatives in ODEs
initial value problems: just like in ODEs, once we fix their values at the origin,
the solution of the system should be uniquely determined. On the other hand,
equations for principal derivatives depend on the parametric ones, just like higher
order derivatives in ODEs depend on the lower order ones.

Definition 1 (system of PDEs). A system of PDEs is a nonempty set Σ of
equations (pairs) of the form uτ = E, with E ∈ P. The set of derivatives uτ that
appear as left-hand sides of equations in Σ is denoted by dom(Σ). Based on Σ,
the set D is partitioned into the sets of principal and parametric derivatives,
defined as follows.

Pr(Σ)
�
={uτξ : uτ ∈ dom(Σ) and ξ ∈ X⊗} Pa(Σ)

�
= D \ Pr(Σ) .

We let P0(Σ)
�
= IR[X ∪ Pa(Σ)] be the set of Σ-normal forms.

Example 1 (Heat equation). The Heat equation in one spatial dimension,
ut(t, x) = uxx(t, x), corresponds to X = {t, x}, U = {u} and Σ = {ut = uxx}.
Here we have Pr(Σ) = {utτ : τ ∈ X⊗} and Pa(Σ) = {uxj : j ≥ 0}. See Fig. 1,
left.

Note that we do not insist that each derivative occurs at most once as left-
hand side in Σ. The infinite prolongation of a system Σ, denoted Σ∞, is the
system of PDEs of the form uξτ = DξF , where uτ = F is in Σ and ξ ∈ X⊗. Of
course, Σ∞ ⊇ Σ. Moreover, Σ and Σ∞ induce the same sets of principal and
parametric derivatives.

We can now introduce the concept of solution of PDEs, which is based on
a PDE’s analog of initial value problems (IVPs). We say a function ψ : P →
IR[[X]] is a homomorphism if it is a ring homomorphism—preserves sum, product
and their identities as expected—and additionally: preserves derivatives, that is

Automatic Pre- and Postconditions for Partial Differential Equations 197

ψ(DxE) = ∂
∂xψ(E), and maps each xi ∈ X to the i-th identity CFPS. For any

function ψ : U → IR[[X]], its homomorphic extension P → IR[[X]] is defined as
expected and, by slight abuse of notation, still denoted by “ψ”. In the definition
below, it is useful to bear in mind that, informally, for any f ∈ IR[[X]], f(ε) is the
formal counterpart of f(0), and that for each parametric derivative uτ ∈ Pa(Σ),
the initial data value ρ(uτ) is the formal counterpart of ∂u

∂τ (0).

Definition 2 (initial value problem). Let Σ be a system of PDEs. An initial
data specification is a mapping ρ : Pa(Σ) → IR. An initial value problem (IVP)
is a pair iP = (Σ, ρ).

A solution of iP is a homomorphism ψ : P → IR[[X]] such that: (a) the initial
value conditions are satisfied, that is ψ(uτ)(ε) = ρ(uτ) for each uτ ∈ Pa(Σ); and
(b) all equations are satisfied, that is ψ(uτ) = ψ(F) for each uτ = F in Σ∞.

For Σ to have a solution, a few syntactic conditions must be imposed, whose
purpose is to avoid inconsistencies in the equational theory generated by Σ. A
ranking is a total order ≺ of D such that: (a) uτ ≺ uxτ , and (b) uτ ≺ vξ implies
uxτ ≺ vxξ, for each x ∈ X, τ, ξ ∈ X⊗ and u, v ∈ U . Dickson’s lemma [16]
implies that D with ≺ is a well-order, and in particular that there is no infinite
descending chain in it. The system Σ is ≺-normal if, for each equation uτ = E
in Σ, uτ � vξ, for each vξ appearing in E. An easy but important consequence
of condition (b) above is that if Σ is normal then also its prolongation Σ∞ is
normal.

Now, consider the equational theory over P induced by the equations in
Σ∞. More precisely, write E →Σ F if F is the polynomial that is obtained
from E by replacing one occurrence of uτ with G, for some equation uτ =
G ∈ Σ∞. Note, in particular, that E ∈ P cannot be rewritten if and only if
E ∈ P0(Σ). We let =Σ denote the reflexive, symmetric and transitive closure
of →Σ . The following definition formalizes the key concepts of consistency and
coherence of Σ. Basically, as shown in [10], under the natural requirement of
normality, consistency is a necessary and sufficient condition for Σ to admit a
unique solution under arbitrary initial conditions.

Definition 3 (coherence). Let Σ be a system of PDEs.

– Σ is consistent if for each E ∈ P there is a unique F ∈ P0(Σ) such that
E =Σ F .

– Let ≺ be a ranking. A system Σ is ≺-coherent if it is ≺-normal and consistent.

As an example, the Heat equation in Example 1 is obviously consistent, as it
features just one equation. Moreover, it is ≺-coherent w.r.t. the ranking uτ ≺ uξ

iff τ ≺lex ξ, where ≺lex is the lexicographic monomial order induced by t > x.
For any consistent system, we can define a normal form function

SΣ : P → P0(Σ)

by letting SΣE
�
= F , for the unique F ∈ P0(Σ) such that E →∗

Σ F . The term
SΣE will be often abbreviated as SE, if Σ is understood from the context.

198 M. Boreale

Deciding if a (finite) system Σ is coherent, for a suitable ranking ≺, is of course
a nontrivial problem. Since ≺ is a well-order, there are no infinite sequences of
rewrites E1 →Σ E2 →Σ E3 →Σ · · · : therefore it is possible to rewrite any E
into some F ∈ P0(Σ) in a finite number of steps. Proving coherence reduces
then to proving →Σ confluent. For our purposes, it is enough to know that
completing a given system of equations to make it coherent, or deciding that
this is impossible, can be achieved by one of many existing computer algebra
algorithms, like those in [14,15]; see the discussion and the references in [10]. In
many cases arising from applications, say mathematical physics, transforming
the system into a coherent form for an appropriate ranking can be accomplished
manually, without much difficulty: see the examples in Sect. 5.

We can now characterize explicitly the solutions of a coherent Σ. Informally,
for any fixed ρ, the CFPS associated with E ∈ P takes each monomial τ ∈ X⊗ to
the real obtained by evaluating the τ -derivative of E under ρ, once this derivative
is written in normal form. Formally, the characterization is based on a transition
function, δΣ : P × X → P0(Σ), defined as

δΣ(E, x)
�
= SΣDxE. (1)

It can be shown (see [10]) that δΣ satisfies the following commutation prop-
erty: δΣ(δΣ(E, x), y) = δΣ(δΣ(E, y), x) for all x, y ∈ X. This justifies the

notation δΣ(E, τ) for τ ∈ X⊗, with δΣ(E, ε)
�
= SΣE. Next, an initial data

specification ρ : Pa(Σ) → IR can be extended homomorphically to a function
P0(Σ) → IR, interpreting + and · as the usual sum and product over IR, and

letting ρ(x)
�
= 0 for each independent variable x ∈ X. The following theorem of

existence and uniqueness of solutions is the main result of [10]. (for the sake of
completeness, the proof is also reproduced in [13, App. A]). Below, recall that
for α = (α1, ..., αn) ∈ N

n, α! = α1! · · · αn!.

Theorem 1 (existence and uniqueness of solution, [10]). Let Σ be finite
and coherent. For any initial data specification ρ, there is a unique solution
φiP : P → IR[[X]] of the IVP iP = (Σ, ρ). Moreover, φiP satisfies the following
formula, for each E ∈ P and τ = xα ∈ X⊗.

φiP(E)(τ) =
ρ(δΣ(E, τ))

α!
. (2)

We remark that our concept of solution of a PDE IVP conservatively extends
the classical solution concept, in the following sense: if a classical solution exists
that is analytic around the origin, then its Taylor expansion, seen as a formal
power series, coincides with the CFPS solution [13, App. A].

3 Stratified Systems

Consider the Heat equation of Example 1. Suppose we want to specify that
the temperature at time t = 0 varies along the x-line according to, say,

Automatic Pre- and Postconditions for Partial Differential Equations 199

u(0, x) = exp(−x) =
∑

j≥0
(−1)j

j! xj . With the pure PDE formalism introduced
so far, the only way to specify u(0, x) is by explicitly giving the values of all
its derivatives at the origin, via the initial data ρ. That is, by specifying the
parametric derivatives of u: ρ(uxj) = (∂j

∂xj u(0, x))|x=0
�
= (−1)j , for each j ≥ 0.

Such a ρ is an infinite object which does not obviously lend itself to equational
and algorithmic manipulations. It would be more natural, instead, to specify
u(0, x) simply via a subsystem Σ0 = {ux = −u} (plus the single initial con-
dition ρ(u) = 1), somehow prescribing that this equation applies when fixing
t = 0, so that the resulting function only depends on x. More generally, a pure
PDE system Σ alone cannot express general IVPs, where one wants to specify
constraints on the functions obtained by keeping the value of certain indepen-
dent variables fixed. This limitation is overcome by stratified systems, introduced
below.

We first introduce subsystems. Let us fix once and for all a nonempty set of
dependent variables U , and a finite set of independent variables X. For Y ⊆ X,
a Y -subsystem defines, informally, functions where variables outside Y have
been zeroed. In particular, derivatives can be taken only along variables in Y .
We need now some standard notation on partial orders. For a partial order �
defined over some universe set A and for B ⊆ A, we will let ↑	 (B)

�
= {a ∈

A : a � b for some b ∈ B} denote the upward closure of B w.r.t �; similarly,
we will let ↓	 (B) denote the downward closure of B. Moreover, we will let

min	(B)
�
= {b ∈ B : whenever b′ ∈ B and b′ � b then b′ = b} denote the set of

�-minimal element of B. Additionally, we define the following partial order ≤Y

on the set of derivatives D, depending on Y ⊆ X: uτ ≤Y uτ ′ if and only if τ ′ = τξ
for some ξ ∈ Y ⊗. In the definition of subsystem given below, the intuition is that
the ≤Y -minimal derivatives, the set UΓ , act as the dependent variables of a new
system of PDEs with independent variables in Y and derivatives in DΓ .

Definition 4 (subsystem). Let Σ a set of equations and Y ⊆ X. For Γ =
(Σ,Y), we define the following subsets of D.

UΓ
�
= min≤Y

(↓≤Y
{uτ : uτ occurs in Σ}) DΓ

�
= ↑≤Y

(UΓ)

Pr(Γ)
�
= ↑≤Y

(dom(Σ)) Pa(Γ)
�
= DΓ \ Pr(Γ) .

We let PΓ
�
= IR[Y ∪ DΓ]. We say Γ = (Σ,Y) is a Y -subsystem if UΓ is finite,

and for each polynomial E appearing in Σ, E ∈ PΓ . We call Γ a main subsystem
if Y = X and UΓ = U . Finally, Γ∞ �

= {uτξ = DξG : uτ = G ∈ Σ and ξ ∈ Y ⊗}.
Stratified systems can encode initial value problems in their general form. A

precedence relation among subsystems, Γi ≺ Γj , formalizes that equations in Γj

depends on parametric variables that are defined (are principal) in Γi.

200 M. Boreale

1
2

3
4

0 x
1
2
3
4

t
1

2
3

4

0 x
1
2
3
4

t

Fig. 1. u-derivatives arranged according to the partial order: uτ ≤ uξ iff τ ≤ ξ. In the
Hasse diagrams, derivatives corresponds to line intersections, with elements in some
dom(Σ) marked by a black dot. Left: system Σ of Example 1, where dark-shaded
region = Pr(Σ), white region = Pa(Σ). Right: stratified system H = {Γ1, Γ2} of
Example 2, where dark-shaded region = Pr(Γ1), light-shaded region = Pr(Γ2), white
region = Pa(H).

Definition 5 (stratified system). A stratified system is a finite set of sub-
systems H = {Γ1, ..., Γm} (m ≥ 1, Γi = (Σi,Xi), Σi �= ∅, Xi ⊆ X) such that:

(a) for some 1 ≤ j ≤ m, Γj is a main subsystem; we will conventionally take
j = 1;

(b) for any i �= j, Pr(Γi) ∩ Pr(Γj) = ∅;
(c) the binary relation over {1, ...,m} defined as i ≺ j iff Pr(Γi) ∩ Pa(Γj) �= ∅,

is acyclic.

The parametric derivatives and normal forms of H are Pa(H)
�
= D \

(∪m
i=1Pr(Γi)) and P0(H)

�
= IR[Pa(H)], respectively. H is coherent if all of its

subsystems are coherent w.r.t. one and the same ranking on D.

Note that each H features a unique main subsystem.

Example 2 (Heat equation with initial temperature). Consider the Heat equation
of Example 1, with an initial temperature exponentially decaying from the origin,
ux(0, x) = −u(0, x). The corresponding stratified system is H = {Γ1, Γ2} =
{(Σ1,X1), (Σ2,X2)} with Σ1 = {ut = uxx}, X1 = X = {t, x} and Σ2 = {ux =
−u}, X2 = {x}. We have (see Fig. 1, right):

UΓ1={u} DΓ1={uτ : τ ∈ X⊗} Pr(Γ1)={utτ : τ ∈ X⊗} Pa(Γ1)={uxj : j ≥ 0}
UΓ2={u} DΓ2={uxj : j ≥ 0} Pr(Γ2)={uxj : j ≥ 1} Pa(Γ2)={u}.

Note that DΓ1 = D, so Γ1 is the main subsystem, and that Pa(H) = {u}. Clearly,
2 ≺ 1, as Pr(Γ2) ∩ Pa(Γ1) �= ∅; on the other hand, 1 �≺ 2, as Pr(Γ1) ∩ Pa(Γ2) = ∅;
so the relation ≺ is acyclic. Finally, fixing the lexicographic order induced by
t > x, H is trivially seen to be coherent.

In order to define solutions of stratified systems, let us introduce some addi-
tional notation about CFPSs. For a CFPS f ∈ IR[[X]] and Y ⊆ X, we can
consider the CFPS f|Y ⊗ ∈ IR[[Y]]. For an intuitive explanation of this concept,

Automatic Pre- and Postconditions for Partial Differential Equations 201

assume e.g. f represents f(x1, x2) and Y = {x2}: recalling that we take the origin
as the expansion point, f|Y ⊗ represents f(0, x2), that is, f where the variables
not in Y have been replaced by 0. Formally, for ψ : P → IR[[X]] and a subsystem

Γ = (Σ,Y), we let ψΓ : PΓ → IR[[Y]] be defined as: ψΓ (E)
�
= ψ(E)|Y ⊗ for each

E ∈ PΓ .

Definition 6 (solutions of H). Let H be a stratified system.

1. A solution of H is a homomorphism ψ : P → IR[[X]] such that for each
Γi ∈ H, ψΓi

: PΓi
→ IR[[Xi]] respects all the equations in Γ∞

i .

2. Let ρ : Pa(H) → IR be an initial data specification and Γ0 = (Σ0,X0)
�
=

({uτ = ρ(uτ) : uτ ∈ Pa(H)} , ∅). A solution of the initial value problem
iP = (H, ρ) is solution of the stratified system H ∪ {Γ0}.
We can linearly order the subsystems of H according to a total order com-

patible with ≺ and then lift inductively existence and uniqueness (Theorem 1)
to H.

Theorem 2 (existence and uniqueness for H). Let H be a coherent strati-
fied system. For any initial data specification ρ for H, there is a unique solution
of iP = (H, ρ).

We illustrate the idea behind the proof of Theorem 2 on the Heat equation
of Example 2.

Example 3 (Example 2, cont.). Let us fix any initial data specification ρ(u) =
u0 ∈ IR for H. As prescribed by Definition 6(2), we consider the extended system

H
�
= H ∪{Γ0}, where Γ0 = ({u = u0} , ∅). Note that UΓ0 = DΓ0 = Pr(Γ0) = {u}

and Pa(Γ0) = ∅. Now we build a sequence of IVPs iPi, and corresponding
solutions ψi : PΓi

→ IR[[Xi]], for the subsystems Γi’s in H. The construction
proceeds inductively on a linear order compatible with ≺, that is: 0 ≺ 2 ≺ 1. The
definition of each initial data specification ρi : Pa(Γi) → IR relies on the solutions
ψj for j ≺ i. The existence of such solutions is guaranteed by Theorem 1. In
particular:

– iP0 = ({u = u0} , ρ0), with ρ0(u)
�
= ∅ (empty function), has solution3 ψ0 :

PΓ0(= IR[u]) → IR[[∅]];

– iP2 = ({ux = −u} , ρ2), with ρ2(u)
�
= ψ0(u)(ε), has solution ψ2 : PΓ2(=

IR[x, u]) → IR[[x]];

– iP1 = ({ut = uxx} , ρ1), with ρ1(uxk)
�
= ψ2(uxk)(ε) (k ≥ 0), has solution

ψ1 : PΓ1(= P) → IR[[t, x]].

It can be shown—and this is the nontrivial part of Theorem 2—that the solution
of the main subsystem, ψ1, is a solution of H (Definition 6(1)), and in particular:
(ψ1)Γi

= ψi for each i. Hence ψ1 is the (unique) solution of (H, ρ).

3 Specifically, ψ0(E)(ε) = E(u0) for each E ∈ IR[u].

202 M. Boreale

In view of the subsequent algorithmic developments, the next step is to obtain
a formula for the Taylor coefficients of the solutions of H, in analogy with the
formula (2) for pure systems. This formula will be based on the transition func-
tion of the main subsystem, δΣ1 . However, a pivotal role will now be also played
by a reduction function SH : P → P0(H), introduced below: it will allow one to
rewrite any E ∈ P to a normal form in P0(H), where it can be evaluated for
any given initial data specification ρ for H. Below, →Σi

(resp. →X) denotes the
rewrite relation over P induced by the equations in Γ∞

i (resp. {x = 0 : x ∈ X}).

Definition 7 (reduction SH). Let H = {Γ1, ..., Γm} be a coherent stratified

system. Let →H⊆ P × P be →H
�
=→Σ1 ∪ · · · ∪ →Σm

∪ →X . For each E ∈ P,
we let SHE denote an arbitrarily fixed F ∈ P0(H) such that E →∗

H F .

Note that SHE is well defined due to normality4 of H. Let φ be a solution of an
IVP (H, ρ). We remark that in general it is not true that φ(E) = φ(SHE) (triv-
ially, SHx = 0, but φ(x) �= 0). It is true, however, that φ(E)(ε) = φ(SHE)(ε);
moreover φ(SHE)(ε) = ρ(SHE). This fact is quite intuitive, recalling the infor-
mal interpretation of f(ε) as f(0) for a CFPS f . For instance, in the Heat equa-
tion system of Example 2, one would have ut(0, 0) = uxx(0, 0) = u(0, 0)(= ρ(u)),
where the first and second equality follow from applying Σ1 and Σ2 (twice),
respectively. Formally, we have the following formula, giving the Taylor coeffi-
cients of φ(E). This is also key to the algorithm in the next section.

Corollary 1 (Taylor coefficients). Let H be a coherent stratified system.
Denote by δΣ1 the transition function of the main subsystem of H. For any
initial data specification ρ for H, the unique solution φ of (H, ρ) enjoys the
following, for every E ∈ P and τ = xα ∈ X⊗.

φ(E)(τ) =
ρ(SH(δΣ1(E, τ)))

α!
. (3)

Example 4 (Example 2, cont.). Consider any initial data specification ρ(u) =
u0 ∈ IR for H, let ψ be the solution of (H, ρ) and f = ψ(u). We compute the
first few coefficients of f by applying (3) with E = u. Let us first compute a few
SH(δΣ1(u, τ)) s. Recall that the definition of =Σi

is based on Γ∞
i (i = 1, 2).

SH(δΣ1(u, ε)) = SHu = u SH(δΣ1(u, t)) = SHuxx = SH(−ux) = u

SH(δΣ1(u, x)) = SHux = −u SH(δΣ1(u, tt)) = SHux4 = u

SH(δΣ1(u, tx)) = SHux3 = −u SH(δΣ1(u, xx)) = SHuxx = u .

In general, one can check that for τ = (t, x)α , α = (α1, α2) ∈ N
2,

SH(δΣ1(u, τ)) = (−1)α2u. Hence, by (3), we have the CFPS: f = u0 + u0t −
u0x + (u0/2)t2 − u0tx + (u0/2)x2 · · · =

∑
τ=xα (−1)α2(u0/α!)τ .

4 In fact, more is true: →H is terminating and confluent, so there is a unique H-normal
form F s.t. E →∗

H F . See [13, App. A]. Therefore the arbitrariness in Definition 7 is
only apparent.

Automatic Pre- and Postconditions for Partial Differential Equations 203

4 Algorithms for Pre- and Postconditions

We will first recall some terminology and some basic facts from algebraic geom-
etry, then introduce pre- and postconditions and finally the Post algorithm to
compute them.

Preliminaries. From now on, we will restrict our attention to the following sub-
class of systems.

Definition 8 (FP systems). A stratified system H is finite-parameter (fp) if
Pa(H) is finite.

For instance, in Example 2 the system H is fp, while H ′ �
= {Γ1} is not. In

concrete applications, one would expect that most systems are fp. Let us now
recall some additional notation and terminology about polynomials. According
to (3), the calculation of the Taylor coefficients of a solution of a fp IVP iP =

(H, ρ) involves evaluating expressions in P0(H) = IR[Pa(H)]. As k
�
= |Pa(H)| <

+∞, elements of P0(H) can be treated as usual multivariate polynomials in
a finite number of indeterminates. In particular, we can identify initial data
specifications ρ for H with points in IRk. Accordingly, for polynomials E ∈ P0(H)
and initial data specification ρ ∈ IRk, it is notationally convenient to write ρ(E)
as E(ρ), that is the value in IR obtained by evaluating the polynomial E at the
point ρ ∈ IRk.

In what follows, we shall rely on a few basic notions from algebraic geometry,
which we quickly review below (a more detailed review can be found in [13, App.
A]). See [16, Ch. 2–4] for a comprehensive treatment. An ideal J ⊆ P0(H) is
a nonempty set of polynomials closed under addition, and under multiplication
by polynomials in P0(H). For P ⊆ P0(H),

〈
P

〉 �
= {∑m

i=1 Fi · Ei : m ≥ 0, Fi ∈
P0(H), Ei ∈ P} denotes the smallest ideal which includes P , and V(P) ⊆ IRk

the (affine) variety induced by P : V(P)
�
= {ρ ∈ IRk : E(ρ) = 0 for each E ∈

P} ⊆ IRk. For W ⊆ IRk, I(W)
�
= {E ∈ P0(H) : E(ρ) = 0 for each ρ ∈ V } is

the ideal induced by W . We will use a few basic facts about ideals and varieties:
(a) both I(·) and V(·) are inclusion reversing: P1 ⊆ P2 implies V(P1) ⊇ V(P2)
and W1 ⊆ W2 implies I(W1) ⊇ I(W2); (b) any ascending chain of ideals I0 ⊆
I1 ⊆ · · · ⊆ P0(H) stabilizes in a finite number of steps (Hilbert’s basis theorem);
(c) for finite P ⊆ P0(H), the problem of deciding if E ∈ 〈

P
〉

is decidable, by
computing a Gröbner basis (a set of generators with special properties) of

〈
P

〉
.

Preconditions and Postconditions. Let H be a coherent, fp system and let k
�
=

|Pa(H)|. Informally, computing the preconditions of a given set Q ⊆ P means
finding all the initial data specifications ρ ∈ IRk under which all the polynomials
in Q represent valid equations for the system H—that is, they become identically
zero when one plugs the solution of (H, ρ) into them. Dually, computing the
postconditions of a given set of initial data specifications W ⊆ IRk means finding
the set Q ⊆ P of all polynomial equations that are valid under all initial data

204 M. Boreale

ρ ∈ W . Here, we shall confine ourselves to algebraic sets W , that is W = V(P)
for some P ⊆ P0(H)—think of P as a set of constraints on the initial data.
Formally, we have the following definition. Recall that for any ρ ∈ IRk, we let
φ(H,ρ) : P → IR[[X]] denote the unique solution of the IVP (H, ρ).

Definition 9 (pre- and postconditions). Let H be coherent and fp. Let P
and Q be sets of polynomials such that P ⊆ P0(H) and Q ⊆ P. We define the
sets of weakest preconditions wpH(Q) ⊆ IRk and of the strongest postconditions
spH(P) ⊆ P as follows.

wpH(Q)
�
={ρ ∈ IRk : φ(H,ρ)(E) = 0 for each E ∈ Q}

spH(P)
�
={E ∈ P : φ(H,ρ)(E) = 0 for each ρ ∈ V(P)} .

Any subset of wpH(Q) will be called an (algebraic) precondition for Q, and
any subset of spH(P) a postcondition for V(P). We focus here on comput-
ing strongest postconditions, which, as we shall see, can be used to compute
preconditions as well. Actually, it is computationally convenient to introduce a
relativized version of this problem.

Problem 1 (relativized strongest postcondition). Let H be coherent, fp.
Given user-specified sets P ⊆fin P0(H) and R ⊆ P, find a finite characterization
of spH(P) ∩ R.

By ‘finding a finite characterization’, we mean effectively computing a finite
set of generators, of an appropriate algebraic type, for the set in question (see
next paragraph). Following a well-established tradition in the field of continu-
ous and hybrid system, the set R will be represented by means of a polynomial
template.

The Post Algorithm. We first introduce polynomial templates [1], that is, poly-
nomials in Lin(a)[X ∪ D], where Lin(a) are (formal) linear combinations of the
parameters in a = (a1, ..., as) (for fixed s ≥ 1) with real coefficients. For instance,
� = 5a1 + 42a2 − 3a3 is one such expression5. In other words, a polynomial tem-
plate has the form π =

∑
i �iγi for distinct monomials γi ∈ (X ∪ D)⊗, and �i

linear expressions in the parameters ai s. For example, the following is a template:
π = (5a1 + (3/4)a3)uxv2xy2 + (7a1 + (1/5)a2)uvxy + (a2 + 42a3). A parameter
evaluation is a vector v = (v1, ..., vs) ∈ IRs; we denote by π[v] ∈ P the polyno-
mial obtained from π by replacing each occurrence of ai with vi in the linear
expressions of π and evaluating them. For V ⊆ IRs, π[V]

�
= {π[v] : v ∈ V } ⊆ P.

For a user specified template π with s parametes, our goal is to solve Problem
1 with R = π[IRs]. In other words, for a given P ⊆ P0(H) that describes an
algebraic variety of initial data specifications, we want to compute

spH(P) ∩ π[IRs] . (4)

5 Linear expressions with a constant term, such as 2+5a1+42a2−3a3 are not allowed.

Automatic Pre- and Postconditions for Partial Differential Equations 205

Informally, we will achieve this by building a sequence of vector spaces IRs ⊇
V0 ⊇ V1 ⊇ · · · , such that π[Vi] contains polynomials whose derivatives up to
order i vanish on all points in V(P). This sequence converges to a vector space,
say Vm, such that π[Vm] contain polynomials whose derivatives of every order
vanish on V(P). On account of Corollary 1, Eq. (3), such polynomials belong to
spH(P). A nontrivial point in this scheme is being able to detect convergence of
the sequence of vector spaces Vi.

Formally, we first extend δΣ1 and SH to templates as expected: for π =
∑

i �iγi, δΣ1(π, x)
�
=

∑
i �iδΣ1(γi, x) and SHπ

�
=

∑
i �iSHγi, seen as a polyno-

mials in Lin(a)[X ∪ D] and Lin(a)[Pa(H)], respectively. We shall make use of
the following substitution properties of templates, which hold true in coherent
systems (see [13, App. A].). For each x ∈ X and v ∈ IRs:

δΣ1(π[v], x) =δΣ1(π, x)[v] SH(π[v]) =(SHπ)[v]. (5)

We are now set to introduce the Post algorithm. Given P ⊆ P0(H) and a

template π, fix P0 s.t. I0
�
=

〈
P0

〉 ⊆ I(V(P)) (P0 = P is a possible choice). The
algorithm consists in generating two sequences of sets, Vi ⊆ IRs and Ji ⊆ P0(H),
for i ≥ 0. The idea is that, at step i, Vi collects those v ∈ IRs such that SH(π[v]),
and its derivatives up to order i, vanish on V(P), that is belong to I(V(P)). As
I(V(P)) may be hard to compute, it is convenient to permit replacing it with
some

〈
P0

〉 ⊆ I(V(P)). The Ji’s are used to detect stabilization. We use πτ as
an abbreviation of δΣ1(π, τ).

Vi
�
=

⋂

τ : |τ |≤i

{v ∈ IRs : (SHπτ)[v] ∈ I0} (6)

Ji
�
=

〈 ⋃

τ : |τ |≤i

(SHπτ)[Vi]
〉
. (7)

Consider the least m such that both Vm = Vm+1 and Jm = Jm+1: we let

PostH(P0, π)
�
= (Vm, Jm). Note that m is well defined. Indeed, V0 ⊇ V1 ⊇ · · ·

forms a descending chain of finite-dimensional vector spaces in IRs, which must
stabilize at some m′; then Jm′ ⊆ Jm′+1 ⊆ · · · forms an ascending chain of ideals
in P0(H), which must stabilize at some m ≥ m′. We remark that neither of the
two conditions Vm+1 = Vm or Jm = Jm+1 taken alone does imply stabilization,
in general. The next theorem states correctness and relative completeness of
Post. Part (a) says that the set of polynomials π[Vm] is a postcondition of P
and, in case

〈
P0

〉
= I(V(P)), coincides with the strongest postcondition rela-

tive to π, that is (4). Part (b) says that Jm represents the weakest precondition
of π[Vm]: this can be useful to look for preconditions in general, but will not be
discussed here.

Theorem 3 (relative completeness of Post). Let H be coherent and fp.

Let P ⊆ P0(H) and π be a template. Fix P0 s.t. I0
�
=

〈
P0

〉 ⊆ I(V(P)). Let
PostH(P0, π) = (Vm, Jm).

206 M. Boreale

(a) π[Vm] ⊆ spH(P) ∩ π[IRs], with equality if I0 = I(V(P));
(b) V(Jm) = wpH(π[Vm]).

Proof. In the proof we shall make use of the following stabilization property of
the sequence of the (Vi, Ji)s ([13, Lemma A.16]).

PostH(P0, π) = (Vm, Jm) implies that for each j ≥ 1, Vm = Vm+j and Jm = Jm+j . (8)

Let us consider part (a) of the theorem. Fix any v ∈ Vm, we must prove that
π[v] ∈ spH(P), that is φ(H,ρ)(π[v]) = 0 for each ρ ∈ V(P). By Corollary 1, our
task reduces to showing that, for each τ , (SH(π[v]τ))(ρ) = (SHπτ)[v](ρ) = 0 (here
we have used (5)), for each ρ ∈ V(P). That is, for each τ , (SHπτ)[v] ∈ I(V(P)).
The latter is implied by (SHπτ)[v] ∈ I0 ⊆ I(V(P)). By definition (6), this holds
for each τ such that v ∈ V|τ |. Hence for each τ , as v ∈ V0 ⊇ · · · ⊇ Vm = Vm+1 =
· · · (by (8)). Assume now that I0 = I(V(P)) and consider v ∈ IRs such that
π[v] ∈ spH(P): we show that v ∈ Vm. Our task is showing that for each τ with
|τ | ≤ m, (SHπτ)[v] ∈ I(V(P)). The latter means precisely that (SHπτ)[v](ρ) = 0
for each ρ ∈ V(P). But this holds by definition of π[v] ∈ spH(P) and Corollary 1:
indeed, for each τ , (SH(π[v]τ))(ρ) = (SHπτ)[v](ρ) = 0 (here we have used (5)),
for each ρ ∈ V(P).

Let us consider part (b). First, consider any ρ ∈ wpH(π[Vm]). By definition
and Corollary 1 (and using (5)), this is equivalent to (SHπτ)[v](ρ) = 0 for each
v ∈ Vm and τ . By definition of ideal Jm, this implies F (ρ) = 0 for each F ∈ Jm,
that is ρ ∈ V(Jm). On the other hand, consider any ρ ∈ V(Jm) and any v ∈ Vm.
Clearly ρ ∈ IRk. Then proving that ρ ∈ wpH(π[Vm]), that is φ(H,ρ)(π[v]) = 0, is
equivalent, via Corollary 1 (and again (5)), to showing that (SHπτ)[v](ρ) = 0,
for each τ . Consider any such τ : for k ≥ m large enough, by definition of Jk and
the fact that Vm = Vk, we have Jk ⊇ (SHπτ)[Vm], hence Jm = Jk ⊇ (SHπτ)[Vm]
(by (8)), therefore (SHπτ)[v](ρ) = 0, as required.

The vector spaces Vi s in (6) can be effectively represented by the successive
linear constraints imposed by (6) on the template parameters a = (a1, ..., as).
In turn, this permits computing finite sets of generators for the ideals Ji s in
(7). This is illustrated with an example below. For a set of linear expressions

L ⊆ Lin(a), we let span(L)
�
= {v ∈ IRs : �[v] = 0 for each � ∈ L} ⊆ IRs be the

vector space of parameter evaluations that annihilate all expressions in L.

Example 5 (Example 2, cont.). Fix P = P0 = ∅, hence V(P) = IR (here k =
|{u}| = 1 and we impose no constraints on the initial data) and I0 = I(V(P)) =
{0}. We seek for linear relations between u and ux, considering the template

π
�
= a1u + a2ux. We compute PostH(P0, π) = (Vm, Jm) as follows. Below we

reuse the equalities for SH(δΣ1(u, τ)) computed in Example 4.

– (i = 0). SHπ = (a1−a2)u. Therefore V0 = span({a1−a2}) = {(λ, λ) : λ ∈ IR}
and J0 = {0}.

– (i = 1). SHπx = SH(a1ux + a2uxx) = (a2 − a1)u and SHπt = SH(a1uxx +
a2ux3) = (a1 − a2)u. Therefore V1 = span({a2 − a1, a1 − a2}) = V0 and
similarly J1 = J0.

Automatic Pre- and Postconditions for Partial Differential Equations 207

Hence the algorithm stabilizes already at m = 0, returning V0 = {(λ, λ) : λ ∈ IR}
and J0 = {0}. This means that the valid instances of π are of the form λ(u+ux),
for all λ ∈ IR. Or, equivalently, that ux = −u is a valid equation, under any initial
data specification.

Suppose PostH(P0, π) = (Vm, Jm). Given a parameter evaluation v ∈ IRs,
checking if π[v] ∈ π[Vm] is equivalent to checking if v ∈ Vm: this can be effectively
done knowing a basis Bm of the vector space Vm. In practice, it is more conve-
nient to succinctly represent the whole set π[Vm] returned by PostH in terms of
a new result template π′ with s′ ≤ s parameters, such that π′[IRs′

] = π[Vm]. In
the example above, π′ = a1(u + ux). The result template π′ can in fact be com-
puted directly from π, by propagating, via substitutions, the linear constraints
on a arising from (6) as they are generated (further details in [13, App.A]).

5 Example: Burgers’ Equation

We have put a proof-of-concept implementation of the Post algorithm of Sect. 4
at work on some IVPs drawn from mathematical physics. We illustrate one case
below6.

We consider the inviscid case of the Burgers’ equation [17,18], with a linear
initial condition at t = 0 (for b, c arbitrary real constants).

ut = −u · ux u(0, x) = bx + c .

We fix X = {t, x} and U = {u, b, c}. The above IVP is encoded by the stratified
system H = {Γ1, Γ2}, where

Γ1 = ({ut = −uux} ∪ Σaux1, {t, x}) Γ2 = ({ux = b} ∪ Σaux2, {x}).

Σaux1 = {bt = 0, ct = 0, cx = 0} and Σaux2 = {bx = 0} just encode that b, c
are constants. As Pa(H) = {u, b, c}, the system is fp. Moreover, H, with the
lexicographic order induced by u > b > c and t > x, is coherent. We fix the set of
possible initial data specifications to V(P) where P = {u − c}: this just ensures
that u(0, 0) = c. In order to discover interesting postconditions of P , we consider

a complete polynomial template of total degree 3 over the indeterminates Z
�
=

{t, x} ∪ Pa(H), π =
∑

γi∈Z⊗,|γi|≤3 aiγi, which consists of s = 56 terms. Letting
P0 = P , we run PostH(P, π), which halts at the iteration m = 5, returning
(V5, J5). This took about 6s in our experiment. The algorithm returns V5 in the
form of a 1-parameter result template π′, such that π′[IR] = π[V5]: the set of
all instances of π′ forms a valid postcondition of P . In this case Theorem 3(a)

6 Additional examples, concerning conservation laws and boundary problems,
are reported in [13]. Code and examples are available at https://github.com/
micheleatunifi/PDEPY/blob/master/PDE.py. Execution times reported here are for
a Python Anaconda distribution running under Windows 10 on a Surface Pro laptop.

https://github.com/micheleatunifi/PDEPY/blob/master/PDE.py
https://github.com/micheleatunifi/PDEPY/blob/master/PDE.py

208 M. Boreale

implies that π′[IR] = spH(P) ∩ π[IRs]. Specifically, we find, for a1 a template
parameter:

π′ = a1 · (ctu + u − b − cx).

In other words, up to the multiplicative constant a1, ctu + u = b + cx is the
only equation of degree ≤ 3 satisfied by the solutions of H, for initial data
specifications ρ ∈ V(P). This equation can be easily solved algebraically for
u—note that we are actually manipulating CFPSs—and yields the unique solu-
tion of the IVP:

u =
cx + b

ct + 1
.

6 Related Work

The present paper is broadly related to recent and ongoing work in the field of
formal tools for ODEs, such us the theory of differential equivalences by Cardelli
et al., see [7] and references therein. More specifically, our development here
conceptually parallels and extends our previous work on polynomial ODEs, in
particular [11,12]. The Post algorithm has a similar structure to the algorithm
by the same name in [12]. Technically, though, the case of PDEs is remarkably
more challenging, for the following reasons. (a) In PDEs, both the existence
of solutions and the transition structure itself depend on coherence. In ODEs,
(analytic) solutions always exist in the polynomial case, coherence is trivial and
the resulting transition structure is quite simple. (b) In PDE IVPs and the
related stratified systems, a prominent role is played by the acyclicity of their
structure, which is again trivial in ODEs. (c) In PDEs, differential polynomials
live in the infinite-indeterminates space P, which requires reduction to P0(H)
via SH , and, for the Post algorithm, a finiteness assumption on parametric
derivatives; in ODEs, P = P0(Σ) has always finitely many indeterminates.

Our work is related to the field of Differential Algebra (DA), see [14,15,19–21]
and references therein. In particular, Boulier et al.’s RosenfeldGröbner algorithm
[19], computes the ideal of the differential and polynomial consequences of a
system Σ. This ideal, for pure systems and no constraints on the initial data,
is related to our strongest postcondition; however, how to encode general IVPs,
pre- and postconditions in their format is far from trivial, if possible at all. More
generally, while DA techniques can be used to reduce systems to a coherent form,
which is required by our approach, they do not seem to be concerned with IVPs
or boundary problems as such. The only exceptions we are aware of are [22,23],
which focus on linear ODEs.

References

1. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using Gröbner bases. In: POPL 2004. ACM (2004)

Automatic Pre- and Postconditions for Partial Differential Equations 209

2. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: HSCC 2010, pp. 221–230. ACM (2010)

3. Platzer, A.: Logics of dynamical systems. In: LICS 2012, pp. 13–24. IEEE (2012)
4. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential

radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54862-8 19. http://reports-archive.adm.cs
cmu.edu/anon/2013/CMU-CS-13-129.pdf

5. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.: Safety verification
of nonlinear hybrid systems based on invariant clusters. In: HSCC 2017, pp. 163–
172. ACM (2017)

6. Boreale, M.: Algorithms for exact and approximate linear abstractions of polyno-
mial continuous systems. In: HSCC 2018, pp. 207–216. ACM (2018)

7. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. Theor. Comput. Sci. 777, 132–154 (2019)

8. Claudel, C.G., Bayen, A.M.: Solutions to switched Hamilton-Jacobi equations and
conservation laws using hybrid components. In: Egerstedt, M., Mishra, B. (eds.)
HSCC 2008. LNCS, vol. 4981, pp. 101–115. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78929-1 8

9. Platzer, A.: Differential hybrid games. ACM Trans. Comput. Log 18(3), 19–44
(2017)

10. Boreale, M.: On the coalgebra of partial differential equations. In: MFCS 2019,
LIPIcs, vol. 138, pp. 24:1–24:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://drops.dagstuhl.de/opus/volltexte/2019/10968/pdf/LIPIcs-MFCS-
2019-24.pdf

11. Boreale, M.: Algebra, coalgebra, and minimization in polynomial differential equa-
tions. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp.
71–87. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 5.
arXiv.org:1710.08350. Full version in Logical Methods in Computer Science 15(1)

12. Boreale, M.: Complete algorithms for algebraic strongest postconditions and weak-
est preconditions in polynomial ODE’S. In: Tjoa, A.M., Bellatreche, L., Biffl, S.,
van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp.
442–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9 31.
Full version in Sci. Comput. Program. 193

13. Boreale, M.: Automatic pre- and postconditions for partial differential
equations (2020). https://github.com/micheleatunifi/PDEPY/blob/master/
FullPDEprepost.pdf. Full version of the present paper

14. Reid, G., Wittkopf, A., Boulton, A.: Reduction of systems of nonlinear partial
differential equations to simplified involutive forms. Eur. J. Appl. Math. 7(6),
635–666 (1996)

15. Marvan, M.: Sufficient set of integrability conditions of an orthonomic system.
Found. Comput. Math. 6(9), 651–674 (2009)

16. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms An Introduction
to Computational Algebraic Geometry and Commutative Algebra. UTM. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

17. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather. Rev.
43(4), 163–170 (1915)

18. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. In:
Advances in Applied Mechanics, vol. 1, pp. 171–199. Elsevier (1948)

19. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for rad-
icals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput.
20(1), 73–121 (2009)

https://doi.org/10.1007/978-3-642-54862-8_19
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf
https://doi.org/10.1007/978-3-540-78929-1_8
https://doi.org/10.1007/978-3-540-78929-1_8
https://drops.dagstuhl.de/opus/volltexte/2019/10968/pdf/LIPIcs-MFCS-2019-24.pdf
https://drops.dagstuhl.de/opus/volltexte/2019/10968/pdf/LIPIcs-MFCS-2019-24.pdf
https://doi.org/10.1007/978-3-662-54458-7_5
http://arxiv.org/abs/org:1710.08350
https://doi.org/10.1007/978-3-319-73117-9_31
https://github.com/micheleatunifi/PDEPY/blob/master/FullPDEprepost.pdf
https://github.com/micheleatunifi/PDEPY/blob/master/FullPDEprepost.pdf
https://doi.org/10.1007/978-3-319-16721-3

210 M. Boreale

20. Robertz, D.: Formal Algorithmic Elimination for PDEs. LNM, vol. 2121. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11445-3

21. Rust, C.J., Reid, G.J., Wittkopf, A.D.: Existence and uniqueness theorems for
formal power series solutions of analytic differential systems. In: ISSAC, vol. 1999,
pp. 105–112 (1999)

22. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for
linear ordinary differential equations in differential algebras. J. Symb. Comput.
43(8), 515–544 (2008)

23. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis for
boundary problems: from rewriting to parametrized Gröbner bases (2012). coRR
abs/1210.2950

https://doi.org/10.1007/978-3-319-11445-3

Importance of Interaction Structure
and Stochasticity for Epidemic Spreading:

A COVID-19 Case Study

Gerrit Großmann(B), Michael Backenköhler, and Verena Wolf

Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
{gerrit.grossmann,michael.backenkoehler,verena.wolf}@uni-saarland.de

Abstract. In the recent COVID-19 pandemic, computer simulations
are used to predict the evolution of the virus propagation and to evalu-
ate the prospective effectiveness of non-pharmaceutical interventions. As
such, the corresponding mathematical models and their simulations are
central tools to guide political decision-making. Typically, ODE-based
models are considered, in which fractions of infected and healthy indi-
viduals change deterministically and continuously over time.

In this work, we translate an ODE-based COVID-19 spreading model
from literature to a stochastic multi-agent system and use a contact net-
work to mimic complex interaction structures. We observe a large depen-
dency of the epidemic’s dynamics on the structure of the underlying con-
tact graph, which is not adequately captured by existing ODE-models.
For instance, existence of super-spreaders leads to a higher infection peak
but a lower death toll compared to interaction structures without super-
spreaders. Overall, we observe that the interaction structure has a cru-
cial impact on the spreading dynamics, which exceeds the effects of other
parameters such as the basic reproduction number R0.

We conclude that deterministic models fitted to COVID-19 outbreak
data have limited predictive power or may even lead to wrong conclu-
sions while stochastic models taking interaction structure into account
offer different and probably more realistic epidemiological insights.

Keywords: COVID-19 · Epidemic stochastic simulation · SEIR
model · SARS-CoV-2 · 2019–2020 coronavirus pandemic

1 Introduction

On March 11th, 2020, the World Health Organization (WHO) officially declared
the outbreak of the coronavirus disease 2019 (COVID-19) to be a pandemic. By
this date at the latest, curbing the spread of the virus became a major worldwide
concern. Given the lack of a vaccine, the international community relied on
non-pharmaceutical interventions (NPIs) such as social distancing, mandatory
quarantines, or border closures. Such intervention strategies, however, inflict high
costs on society. Hence, for political decision-making it is crucial to forecast the
spreading dynamics and to estimate the effectiveness of different interventions.
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 211–229, 2020.
https://doi.org/10.1007/978-3-030-59854-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_16

212 G. Großmann et al.

Mathematical and computational modeling of epidemics is a long-established
research field with the goal of predicting and controlling epidemics. It has devel-
oped epidemic spreading models of many different types: data-driven and mech-
anistic as well as deterministic and stochastic approaches, ranging over many
different temporal and spatial scales (see [15,50] for an overview).

Computational models have been calibrated to predict the spreading dynam-
ics of the COVID-19 pandemic and influenced public discourse. Most models and
in particular those with high impact are based on ordinary differential equations
(ODEs). In these equations, the fractions of individuals in certain compartments
(e.g., infected and healthy) change continuously and deterministically over time,
and interventions can be modeled by adjusting parameters.

In this paper, we compare the results of COVID-19 spreading models that are
based on ODEs to results obtained from a different class of models: stochastic
spreading processes on contact networks. We argue that virus spreading models
taking into account the interaction structure of individuals and reflecting the
stochasticity of the spreading process yield a more realistic view on the epi-
demic’s dynamics.

If an underlying interaction structure is considered, not all individuals of
a population meet equally likely as assumed for ODE-based models. A well-
established way to model such structures is to simulate the spreading on a net-
work structure that represents the individuals of a population and their social
contacts. Effects of the network structure are largely related to the epidemic
threshold which describes the minimal infection rate needed for a pathogen to
be able to spread over a network [38]. In the network-free paradigm the basic
reproduction number (R0), which describes the (mean) number of susceptible
individuals infected by patient zero, determines the evolution of the spreading
process. The value R0 depends on both, the connectivity of the society and the
infectiousness of the pathogen. In contrast, in the network-based paradigm the
interaction structure (given by the network) and the infectiousness (given by the
infection rate) are decoupled.

Here, we focus on contact networks as they provide a universal way of encod-
ing real-world interaction characteristics like super-spreaders, grouping of differ-
ent parts of the population (e.g. senior citizens or children with different contact
patterns), as well as restrictions due to spatial conditions and mobility, and
household structures. Moreover, models based on contact networks can be used
to predict the efficiency of interventions [5,35,39].

Here, we analyze in detail a network-based stochastic model for the spreading
of COVID-19 with respect to its differences from existing ODE-based models and
the sensitivity of the spreading dynamics on particular network features. We
calibrate both, ODE-models and stochastic models with interaction structure
to the same basic reproduction number R0 or to the same infection peak and
compare the corresponding results. In particular, we analyze the changes in the
effective reproduction number over time. For instance, early exposure of super-
spreaders leads to a sharp increase of the reproduction number, which results
in a strong increase of infected individuals. We compare the times at which the

Importance of Interaction Structure and Stochasticity for COVID-19 213

number of infected individuals is maximal for different network structures as well
as the death toll. Our results show that the interaction structure has a major
impact on the spreading dynamics and, in particular, important characteristic
values deviate strongly from those of the ODE model.

2 Related Work

In the last decade, research focused largely on epidemic spreading, where inter-
actions were constrained by contact networks, i.e., a graph representing the indi-
viduals (as nodes) and their connectivity (as edges). Many generalizations, e.g.
to weighted, adaptive, temporal, and multi-layer networks exist [32,45]. Here,
we focus on simple contact networks without such extensions.

Spreading characteristics on various contact networks based on the well-
known Susceptible-Infected-Susceptible (SIS) or Susceptible-Infected-Recovered
(SIR) compartment model have been investigated intensively. In such models,
each individual (node) successively passes through the individual stages (com-
partments). For an overview, we refer the reader to [36]. Qualitative and quan-
titative differences between network structures and network-free models have
been investigated in [2,23]. In contrast, this work considers a specific COVID-19
spreading model and focuses on those characteristics that are most relevant for
COVID-19 and which have, to the best of our knowledge, not been analyzed in
previous work.

SIS-type models require knowledge of the spreading parameters (infection
strength, recovery rate, etc.) and the contact network, which can partially be
inferred from real-world observations. Currently, inferred data for COVID-19
seems to be of very poor quality [25]. However, while the spreading parame-
ters are subject to a broad scientific discussion. Publicly available data, which
could be used for inferring a realistic contact network, practically does not exist.
Therefore real-world data on contact networks is rare [24,31,33,44,46] and not
available for large-scale populations. A reasonable approach is to generate the
data synthetically, for instance by using mobility and population data based on
geographical diffusion [3,18,37,47]. For instance, this has been applied to the
influenza virus [34]. Due to the major challenge of inferring a realistic contact
network, most of these works, however, focus on how specific network features
shape the spreading dynamics.

2.1 COVID-19 Spreading Models

Literature abounds with proposed models of the COVID-19 spreading dynamics.
Very influential is the work of Neil Ferguson and his research group that regularly
publishes reports on the outbreak (e.g. [11]). They study the effects of different
interventions on the outbreak dynamics. The computational modeling is based
on a model of influenza outbreaks [12,20]. They present a very high-resolution
spatial analysis based on movement-data, air-traffic networks etc. and perform
sensitivity analysis on the spreading parameters, but to the best of our knowledge

214 G. Großmann et al.

not on the interaction data. Interaction data were also inferred locally at the
beginning of the outbreak in Wuhan [4] or in Singapore [41] and Chicago [13].
Models based on community structures, however, consider isolated (parts of)
cities and are of limited significance for large-scale model-based analysis of the
outbreak dynamic.

Another work focusing on interaction structure is the modeling of outbreak
dynamics in Germany and Poland done by Bock et al. [6]. The interaction struc-
ture within households is modeled based on census data. Inter-household inter-
actions are expressed as a single variable and are inferred from data. They then
generated “representative households” by re-sampling but remain vague on many
details of the method.

A more rigorous model of stochastic propagation of the virus is proposed
by Arenas et al. [1]. They take the interaction structure and heterogeneity of
the population into account by using demographic and mobility data. They
analyze the model by deriving a mean-field equation. Mean-field equations are
more suitable to express the mean of a stochastic process than other ODE-based
methods but tend to be inaccurate for complex interaction structures. Moreover,
the relationship between networked-constrained interactions and mobility data
remains unclear to us.

Other notable approaches use SIR-type methods, but cluster individuals into
age-groups [29,40], which increases the model’s accuracy. Rader et al. [42] com-
bined spatial-, urbanization-, and census-data and observed that the crowding
structure of densely populated cities strongly shaped the epidemics intensity and
duration. In a similar way, a meta-population model for a more realistic inter-
action structure has been developed [8] without considering an explicit network
structure.

The majority of research, however, is based on deterministic, network-free
SIR-based ODE-models. For instance, the work of José Lourenço et al. [30] infers
epidemiological parameters based on a standard SIR model. Similarly, Dehning
et al. [9] use an SIR-based ODE-model, where the infection rate may change
over time. They use their model to predict a suitable time point to loosen NPIs
in Germany. Khailaie et al. analyze how changes in the reproduction number
(“mimicking NPIs”) affect the epidemic dynamics [26], where a variant of the
deterministic, network-free SIR-model is used and modified to include states
(compartments) for hospitalized, deceased, and asymptomatic patients. Other-
wise, the method is conceptually very similar to [9,30] and the authors argue
against a relaxation of NPIs in Germany. Another popular work is the online
simulator covidsim1. The underlying method is also based on a network-free SIR-
approach [51,52]. However, the role of an interaction structure is not discussed
and the authors explicitly state that they believe that the stochastic effects are
only relevant in the early stages of the outbreak. A very similar method has been
developed at the German Robert-Koch-Institut (RKI) [7]. Jianxi Luo et al. pro-
posed an ODE-based SIR-model to predict the end of the COVID-19 pandemic2,

1 Available at covidsim.eu.
2 Available at ddi.sutd.edu.sg.

https://covidsim.eu
https://ddi.sutd.edu.sg

Importance of Interaction Structure and Stochasticity for COVID-19 215

S I R
λ · #Neigh(I) β

a) Networked SIR
model

I

I

I

II

I I

I I

I

2λ
λ β β

b) CTMC semantics

Fig. 1. Networked SIR model. (a) Compartments with instantaneous transition rates.
Each node successively passes through the three compartments/states: susceptible (S),
infected (I), and recovered/removed (R). (b) Four possible transitions on a 4-node
contact network based on the CTMC semantics.

which is regressed with daily updated data. ODE-models have also been used
to project the epidemic dynamics into the “postpandemic” future by Kissler et
al. [28]. Some groups also resort to branching processes, which are inherently
stochastic but not based on a complex interaction structure [22,43].

3 Translating SIR-Type Models for Epidemic Spreading

A very popular class of epidemic models is based on the assumption that dur-
ing an epidemic individuals are either susceptible (S), infected (I), or recov-
ered/removed (R). The mean number of individuals in each compartment evolves
according to the following system of ordinary differential equations

d

dt
s(t) = −λODE

N
s(t)i(t)

d

dt
i(t) =

λODE

N
s(t)i(t) − βi(t)

d

dt
r(t) = βi(t),

(1)

where N denotes the total population size, λODE and β are the infection and
recovery rates. Typically, one assumes that N = 1 in which case the equation
refers to fractions of the population, leading to the invariance s(t)+i(t)+r(t) = 1
for all t. It is trivial to extend the compartments and transitions.

3.1 Network-Based Spreading Model

A stochastic network-based spreading model is a continuous-time stochastic pro-
cess on a discrete state space. The underlying structure is given by a graph,
where each node represents one individual (or any other entity of interest). At
each point in time, each node occupies a compartment, for instance: S, I, or R.
Moreover, nodes can only receive or transmit infections from neighboring nodes
(according to the edges of the graph). For the general case with m possible com-
partments, this yields a state space of size mn, where n is the number of nodes.

216 G. Großmann et al.

The jump times until events happen are typically assumed to follow an exponen-
tial distribution. Note that in the ODE model, residual residence times in the
compartments are not tracked, which naturally corresponds to the exponential
distribution in the network model. Hence, the underlying stochastic process is a
continuous-time Markov Chain (CTMC) [27]. The extension to non-Markovian
semantics is trivial. We illustrate the three-compartment case in Fig. 1. The tran-
sition rates of the CTMC are such that an infected node transmits infections at
rate λ. Hence, the rate at which a susceptible node is infected is λ·#Neigh(I),
where #Neigh(I) is the number of its infected direct neighbors. Spontaneous
recovery of a node occurs at rate β. The size of the state space renders a full
solution of the model infeasible and approximations of the mean-field [14] or
Monte-Carlo simulations are common ways to analyze the process.

General Differences to the ODE Model. The aforementioned formalism
yields some fundamental differences from network-free ODE-based approaches.
The most distinct difference is the decoupling of infectiousness and interaction
structure. The infectiousness λ (i.e., the infection rate) is assumed to be a param-
eter expressing how contagious a pathogen inherently is. It encodes the prob-
ability of a virus transmission if two people meet. That is, it is independent
from the social interactions of individuals (it might however depend on hygiene,
masks, etc.). The influence of social contacts is expressed in the (potentially
time-varying) connectivity of the graph. Loosely speaking, it encodes the possi-
bility that two individuals meet. In the ODE-approach both are combined in the
basic reproduction number. Note that, throughout this manuscript, we use λ to
denote the infectiousness of COVID-19 (as an instantaneous transmission rate).

Another important difference is that ODE-models consider fractions of indi-
viduals in each compartment. In the network-based paradigm, we model abso-
lute numbers of entities in each compartment and extinction of the epidemic
may happen with positive probability. While ODE-models are agnostic to the
actual population size, in network-based models, increasing the population by
adding more nodes inevitably changes the dynamics.

A key link between the two paradigms is that if the network topology is a
complete graph (resp. clique) then the ODE-model gives an accurate approxima-
tion of the expected fractions of the network-based model. In systems biology
this assumption is often referred to as well-stirredness. In the limit of an infinite
graph size, the approximation approaches the true mean.

3.2 From ODE-Models to Networks

To transform an ODE-model to a network-based model, one can simply keep
rates relating to spontaneous transitions between compartments as these tran-
sitions do not depend on interactions (e.g., recovery at rate β). Translating the
infection rate is more complicated. In ODE-models, one typically has given an
infection rate and assumes that each infected individual can infect all suscepti-
ble ones. To make the model invariant to the actual number of individuals, one

Importance of Interaction Structure and Stochasticity for COVID-19 217

typically divides the rate by the population size (or assumes the population size
is one and the ODEs express fractions). Naturally, in a contact network, we do
not work with fractions but each node relates to one entity.

Here, we propose to choose an infection rate such that the network-based
model yields the same basic reproduction number R0 as the ODE-model. The
basic reproduction number describes the (expected) number of individuals that
an infected person infects in a completely susceptible population. We calibrate
our model to this starting point of the spreading process, where there is a single
infected node (patient zero). We assume that R0 is either explicitly given or can
implicitly be derived from an ODE-based model specification. Hence, when we
pick a random node as patient zero, we want it to infect on average R0 susceptible
neighbors (all neighbors are susceptible at that point in time) before it recovers
or dies.

Let us assume that, like in the aforementioned SIR-model, infectious node
infect their susceptible neighbors with rate λ and that an infectious node loses its
infectiousness (by dying, recovering, or quarantining) with rate β. According to
the underlying CTMC semantics of the network model, each susceptible neighbor
gets infected with probability λ

β+λ [27]. Note that we only take direct infections
from patient zero into account and, for simplicity, assume all neighbors are only
infected by patient zero. Hence, when patient zero has k neighbors, the expected
number of neighbors it infects is k λ

β+λ . Since the mean degree of the network is
kmean, the expected number of nodes infected by patient zero is

R0 = kmean
λ

β + λ
. (2)

Now we can calibrate λ to relate to any desired R0. That is

λ =
βR0

kmean − R0
. (3)

Note that R0 will always be smaller than kmean which follows from Eq. (2),
considering that kmean ≥ 1 (by construction of the network) and β > 0. In
contrast, in the deterministic paradigm this relationship is given by the equation
(cf. [9,30]):

λODE = R0β. (4)

Note that the recovery rate β is identical in the ODE- and network-model. We
can translate the infection rate of an ODE-model to a corresponding network-
based stochastic model with the equation

λ =
λODE

kmean − R0
, (5)

while keeping R0 fixed. In the limit of an infinite complete network, this yields
limn→∞ λ = λODE

n , which is equivalent to the effective infection rate in the ODE-
model λODE

N for population size N (cf. Eq. (1)).

218 G. Großmann et al.

Example. Consider a network where each node has exactly 5 neighbors (a 5-
regular graph) and let R0 = 2. We also assume that the recovery rate is β = 1,
which then yields λODE = 2. The probability that a random neighbor of patient
zero becomes infected is 2

5 = λ
(β+λ) , which gives λ = 2

3 .

Extensions of SIR. It is trivial to extent the compartments and transitions,
for instance by including an exposed compartment for the time-period where an
individual is infected but not yet infectious. The derivation of R0 remains the
same. The only requirement is the existence of a distinct infection and recovery
rate, respectively. In the next section, we discuss a more complex case.

4 A Network-Based COVID-19 Spreading Model

We consider a network-based model that is strongly inspired by the ODE-model
used in [26] and document it in Fig. 2. We use the same compartments and
transition-types but simplify the notation compared to [26] to make the intuitive
meaning of the variables clearer3.

We denote the compartments by C = {S, E, C, I, H, U, R, D}, where each node
can be susceptible (S), exposed (E), a carrier (C), infected (I), hospitalized (H), in
the intensive care unit (U), dead (D), or recovered (R). Exposed agents are already
infected but symptom-free and not infectious. Carriers are also symptom-free but
already infectious. Infected nodes show symptoms and are infectious. Therefore,
we assume that their infectiousness is reduced by a factor of γ (γ ≤ 1, sick
people will reduce their social activity). Individuals that are hospitalized (or in
the ICU) are assumed to be properly quarantined and cannot infect others.

Accurate spreading parameters are very difficult to infer in general and the
high number of undetected cases complicates the problem further in the current
pandemic. Here, we choose values that are within the ranges listed in [26], where
the ranges are rigorously discussed and justified. We document them in Table 1.
We remark that there is a high amount of uncertainty in the spreading param-
eters. However, our goal is not a rigorous fit to data but rather a comparison
of network-free ODE-models to stochastic models with an underlying network
structure.

Note that the mean number of days in a compartment is the inverse of the
cumulative instantaneous rate to leave that compartment. For instance, the mean
residence time in compartment H is 1

(1−rh)μh+rhμh
= 1

μh
. As a consequence of the

race condition of the exponential distribution [48], rh modulates the probability
of entering the successor compartment. That is, with probability rh, the successor
compartment will be R and not U.

Inferring the infection rate λ for a fixed R0 is somewhat more complex than
in the previous section because this model admits two compartments for infec-
tious agents. We first consider the expected number of nodes that a randomly
3 At the time of finalizing this manuscript, the model of Khailaie et al. seems

to be updated in a similar way. However, it also became more complex (see
gitlab.com/simm/covid19/secir/-/wikis/Report).

https://gitlab.com/simm/covid19/secir/-/wikis/Report

Importance of Interaction Structure and Stochasticity for COVID-19 219

chosen patient zero infects, while being in state C. We denote the corresponding
basic reproduction number by ̂R0. We calibrate the only unknown parameter
λ accordingly (the relationships from the previous section remain valid). We
explain the relation to R0 when taking C and I into account in the Appendix
(available in [16]). Substituting β by μc gives

λ =
λODE

kmean − ̂R0

=
λODE

kmean − λODE
μc

. (6)

4.1 Human-to-Human Contact Networks

Naturally, it is extremely challenging to reconstruct large-scale contact-networks
based on data. Here, we test different types of contact networks with different
features, which are likely to resemble important real-world characteristics. The
contact networks are specific realizations (i.e., variates) of random graph models.
Different graph models highlight different (potential) features of the real-world
interaction structure. The number of nodes ranges from 100 to 105. We only
use strongly connected networks (where each node is reachable from all other
nodes). We refer to [10] or the NetworkX [19] documentation for further informa-
tion about the network models discussed in the sequel. We provide a schematic
visualization in Fig. 3.

We consider Erdős–Rényi (ER) random graphs as a baseline, where each
pair of nodes is connected with a certain (fixed) probability. We also compute
results for Watts–Strogatz (WS) random networks. They are based on a ring
topology with random re-wiring. The re-wiring yields to a small-world prop-
erty of the network. Colloquially, this means that one can reach each node from
each other node with a small number of steps (even when the number of nodes
increases). We further consider Geometric Random Networks (GN), where
nodes are randomly sampled in an Euclidean space and randomly connected
such that nodes closer to each other have a higher connection probability. We
also consider Barabási–Albert (BA) random graphs, that are generated using
a preferential attachment mechanism among nodes, as well as graphs gener-
ated using the Configuration Model (CM-PL) which are—except from being
constrained on having power-law degree distribution—completely random. The
latter two models contain a very small number of nodes with very high degree,
which act as super-spreaders. We also test a synthetically generated Household
(HH) network that was loosely inspired by [2]. Each household is a clique, the
edges between households represent connections stemming from work, educa-
tion, shopping, leisure, etc. We use a configuration model to generate the global
inter-household structure that follows a power-law distribution. We also use a
complete graph (CG) as a sanity check. It allows the extinction of the epi-
demic, but otherwise similar results to those of the ODE are expected.

220 G. Großmann et al.

λ · #Neigh(C) + λγ · #Neigh(I)

S E C I H U D

R

μe (1− rc)μc

rcμc

(1− ri)μi

riμi

(1− rh)μh

rhμh

(1− ru)μu

ruμu

Fig. 2. Multi-agent compartment model for COVID-19 with instantaneous transition
rates. The infection rate is λ. Exposed (E) nodes are newly infected. Carriers (C) are
already infectious but still symptomless, infected nodes (I) develop symptoms and
reduce their social activity (modulated by γ). Nodes that are hospitalized (H) and in
the ICU (U) are properly quarantined. Recovered (R) nodes remain recovered.

Table 1. Model parameters

Parameter Value Meaning

λ − Infection rate, set w.r.t. Eq. (6) (using ̂R0)

γ 0.2 How much social contact is maintained when sick

#Neigh(x) ∈ Z≥0 Current number of neighbors in compartment x

λODE 0.29 Infection rate in ODE-model (denoted by R1 in [26])
̂R0 1.8 R0 assuming γ = 0

R0 ≈ 2.05 R0, when assuming γ = 0.2 (cf. Appendix in [16])

x(t) − Number of (expected) nodes in x ∈ C at time t

Itotal(t) − e(t) + c(t) + i(t) + h(t) + u(t)

rx ∈ [0, 1] Recovery probability when node is in compartment x

μx > 0 Instantaneous rate of leaving x

μe
1
5.2

Rate of transitioning from E to C

rc 0.08 Recovery probability when node is a carrier

μc
1
5.2

Rate of leaving C

ri 0.8 Recovery probability when node is infected

μi
1
5

Rate of leaving I

rh 0.74 Recovery probability when node is hospitalized

μh
1
10

Rate of leaving H

ru 0.46 Recovery probability when node is in the ICU

μu
1
8

Rate of leaving U

Importance of Interaction Structure and Stochasticity for COVID-19 221

a) ER b) BA c) CM-PL

d) HH e) GN f) WS

Fig. 3. Schematic visualizations of the random graph models with 80 nodes.

4.2 Parameter Calibration

We are interested in the relationship between the contact network structure, R0,
the height and time point of the infection-peak, and the number of individuals
ultimately affected by the epidemic. Therefore, we run different network models
with different ̂R0. For one series of experiments, we fix ̂R0 = 1.8 and derive the
corresponding infection rate λ and the value for λODE in the ODE model. In the
second experiments, calibrate λ and λODE such that all infection peaks lie on
the same level.

4.3 Interventions

In the sequel, we do not explicitly model NPIs. However, we note that the
network-based paradigm makes it intuitive to distinguish between NPIs related
to the probability that people meet (by changing the contact network) and NPIs
related to the probability of a transmission happening when two people meet (by
changing the infection rate λ). Political decision-making is faced with the chal-
lenge of transforming a network structure which inherently supports COVID-19
spreading to one which tends to suppress it. Here, we investigate how changes
in λ affect the dynamics of the epidemic in Sect. 5 (Experiment 3).

5 Numerical Results

We compare the solution of the ODE model (using numerical integration) with
the solution of the corresponding stochastic network-based model (using Monte-
Carlo simulations). Code will be made available4. We investigate the evolution
4 github.com/gerritgr/StochasticNetworkedCovid19.

https://github.com/gerritgr/StochasticNetworkedCovid19

222 G. Großmann et al.

of mean fractions in each compartment over time, the evolution of the so-called
effective reproduction number, and the influence of the infectiousness λ.

Setup. We used contact networks with n = 1000 nodes (except for the complete
graph where we used 100 nodes). To generate samples of the stochastic spreading
process, we used event-driven simulation (similar to the rejection-free version
in [17]). Specifically, we utilized a simulation scheme, where all future events
(i.e., transitions of nodes) were sorted in a priority queue (according to their
application time). In each simulation step, the next event is drawn from the
queue, the event is applied to the network, and the time is updated accordingly.
Depending on the type of transition (a) new event(s) is (are) generated and
pushed to the queue. Some events already in the queue might become irrelevant
and are removed. The event queue is initialized by generating one event for each
node.

The simulation started with three random seed nodes in compartment C (and
with an initial fraction of 3/1000 for the ODE model). One thousand simulation
runs were performed on a fixed variate of a random graph. We remark that
results for other variates were very similar. Hence, for better comparability, we
refrained from taking an average over the random graphs. The parameters to
generate a graph are: ER: kmean = 6, WS: k = 4 (numbers of neighbors), p = 0.2
(re-wire probability), GN: r = 0.1 (radius), BA: m = 2 (number of nodes for
attachment), CM-PL: γ = 2.0 (power-law parameter), kmin = 2, HH: household
size is 4, global network is CM-PL with γ = 2.0, kmin = 3. The CPU time for
a single simulation on a standard desktop computer was in the range of a few
hours.

Experiment 1: Results with Homogeneous ̂R0. In our first experiment, we
compare the epidemic’s evolution (cf. Fig. 4) while λ is calibrated such that all
networks admit an ̂R0 of 1.8. and λ is set (w.r.t. the mean degree) according
to Eq. (6). Thereby, we analyze how well certain network structures generally
support the spread of COVID-19. The evolution of the mean fraction of nodes
in each compartment is illustrated in Fig. 4 and Fig. 5.

Based on the Monte-Carlo simulations, we analyzed how Rt, the effective
reproduction number, changes over time. The number Rt denotes the average
number of neighbors that an infectious node (who got exposed at day t) infects
over time (cf. Fig. 6). For t = 0, the estimated effective reproduction number
always starts around the same value and matched the theoretical prediction.
Independent of the network, ̂R0 = 1.8 yields R0 ≈ 2.05 (cf. Appendix [16]).

In Fig. 6 we see that the evolution of Rt differs tremendously for different
contact networks. Unsurprisingly, Rt decreases on the complete graph (CG), as
nodes, that become infectious later, will not infect more of their neighbors. This
also happens for GN- and WS-networks, but they cause a much slower decline
of Rt which is around 1 in most parts (the sharp decrease in the end stems from
the end of the simulation being reached). This indicates that the epidemic slowly
“burns” through the network.

Importance of Interaction Structure and Stochasticity for COVID-19 223

a) ODE b) CG c) ER d) BA

e) CM-PL f) HH g) GN h) WS

Fig. 4. Exp. 1: Evolution of the mean fractions in each compartment over time with
95% confidence intervals (barely visible).

In contrast, in networks that admit super-spreaders (CM-PL, HH, and also
BA), it is principally possible for Rt to increase. For the CM-PL network, we
have a very early and intense peak of the infection while the number of individ-
uals ultimately affected by the virus (and consequently the death toll5) remains
comparably small (when we remove the super-spreaders from the network while
keeping the same R0, the death toll and the time point of the peak increase, plot
not shown). Note that the high value of Rt in Fig. 6c in the first days results
from the fact that super-spreaders become exposed, which later infect a large
number of individuals. As there are very few super-spreaders, they are unlikely
to be part of the seeds. However, due to their high centrality, they are likely to
be one of the first exposed nodes, leading to an “explosion” of the epidemic. In
HH-networks this effect is way more subtle but follows the same principle.

Experiment 2: Calibrating ̂R0 to a Fixed Peak. Next, we calibrate λ such
that each network admits an infection peak (regarding Itotal) of the same height
(0.2). Results are shown in Fig. 7. They emphasize that there is no direct rela-
tionship between the number of individuals affected by the epidemic and the
height of the infection peak, which is particularly relevant in the light of lim-
ited ICU capacities. It also shows that vastly different infection rates and basic
reproduction numbers are acceptable when aiming at keeping the peak below a
certain threshold.

5 The number of fatalities in the figures is difficult to see, but it is (in the time limit)
proportional to the number of recovered nodes.

224 G. Großmann et al.

a) Height of the Infection
Curve b) Fraction of Susceptible Individuals

Fig. 5. Exp. 1: Same data as in Fig. 4 but only the evolution Itotal and S are shown
to highlight differences between networks.

a) CG b) HH c) CM-PL d) GN e) WS

Fig. 6. Exp. 1, Effective Reproduction Number: Evolution of the (mean) effective
reproduction number, Rt, over time, empirically evaluated. x-axis: Day at which a node
becomes exposed, y-axis: (mean) number of neighbors this node infects while being a
carrier or infected. Note that at later time points results are more noisy as the number
of samples decreases. The first data-point is the simulation-based estimation of R0 and
is shown as a blue square.

Experiment 3: Sensitivity Regarding λ. Assume we have an estimate of the
infectiousness, λ, of COVID-19. How do changes of λ (e.g., by better hygiene)
influence epidemic’s properties and what is the impact of uncertainty about the
value? Here, we investigate how the height of the infection-peak and ̂R0 scale
with λ for different topologies. Our results are illustrated in Fig. 8.

Noticeably, the relationship is concave for most network models but almost
linear for the ODE model. This indicates that the networks models are more
sensitive to small changes of λ (and R0). This suggests that the use of ODE
models might lead to a misleading sense of confidence because, roughly speaking,
it will tend to yield similar results when adding some noise to λ. That makes them
seemingly robust to uncertainty in the parameters, while in reality the process is
much less robust. Assuming that BA-networks resemble some important features
of real social networks, the non-linear relationship between infection peak and
infectiousness indicates that small changes of λ (which could be achieved through
proper hand-washing, wearing masks, keeping distance, etc.) can significantly
“flatten the curve”.

Importance of Interaction Structure and Stochasticity for COVID-19 225

a) ODE b) ER c) HH CM-PL e) WS

Fig. 7. Exp. 2: Evolution of mean-fractions in each compartment over time with infec-
tiousness calibrated such that the peak has the same height.

a) ODE b) BA c) WS d) GN

Fig. 8. Exp. 3: ̂R0 and maximal expected height of Itotal (expected refers to samples,
maximal refers to time) w.r.t. λ. For the network-models, R0 (cf. Eq. (7) in [16]) is
drawn as a scatter plot. Note the different scales on x- and y-axis

5.1 Discussion

In the series of experiments, we tested how various network types influence an
epidemic’s dynamics. The network types highlight different potential features
of real-world social networks. Most results do not contradict with real-world
observations. For instance, we found that better hygiene and the truncation of
super-spreaders will likely reduce the peak of an epidemic by a large amount. We
also observed that, even when R0 is fixed, the evolution of Rt largely depends
on the network structure. For certain networks, in particular those admitting
super-spreaders, it can even increase. An increasing reproduction number can
be seen in many countries, for instance in Germany [21]. How much of this
can be attributed to super-spreaders is still being researched. Note that super-
spreaders do not necessarily have to correspond to certain individuals. It can
also, on a more abstract level, refer to a type of events. We also observed that
CM-PL networks have a very early and very intense infection peak. However, the
number of people ultimately affected (and therefore also the death toll) remain
comparably small. This is somewhat surprising and requires further research.
We speculate that the fragmentation in the network makes it difficult for the
virus to “reach every corner” of the graph while it “burns out” relatively quickly
in region of the more central high-degree nodes.

226 G. Großmann et al.

6 Conclusions and Future Work

We presented results for a COVID-19 case study that is based on the translation
of an ODE model to a stochastic network-based setting. We compared several
interaction structures using contact graphs where one was (a finite version of)
the implicit underlying structure of the ODE model, the complete graph. We
found that inhomogeneity in the interaction structure significantly shapes the
epidemic’s dynamic. This indicates that fitting deterministic ODE models to
real-world data might lead to qualitatively and quantitatively wrong results. The
interaction structure should be included into computational models and should
undergo the same rigorous scientific discussion as other model parameters.

Contact graphs have the advantage of encoding various types of interaction
structures (spatial, social, etc.) and they decouple the infectiousness from the
connectivity. We found that the choice of the network structure has a significant
and counterintuitive impact and it is very likely that this is also the case for
the inhomogeneous interaction structure among humans. Specifically, networks
containing super-spreaders consistently lead to the emergence of an earlier and
higher peak of the infection. Moreover, the almost linear relationship between
R0, λODE, and the peak intensity in ODE-models might also lead to misplaced
confidence in the results. Regarding the network structure in general, we find
that super-spreaders can lead to a very early “explosion” of the epidemic. Small-
worldness, by itself, does not admit this property. Generally, it seems that—
unsurprisingly—a geometric network is best at containing a pandemic. This is
an indication for the effectiveness of corresponding mobility restrictions. Sur-
prisingly, we found a trade-off between the height of the infection peak and the
fraction of individuals affected by the epidemic in total.

For future work, it would be interesting to investigate the influence of non-
Markovian dynamics. ODE-models naturally correspond to an exponentially dis-
tributed residence times in each compartment [17,49]. Moreover, it would be
interesting to reconstruct more realistic contact networks. They would allow
to investigate the effect of NPIs in the network-based paradigm and to have a
well-founded scientific discussion about their efficiency. From a risk-assessment
perspective, it would also be interesting to focus more explicitly on worst-case
trajectories (taking the model’s inherent stochasticity into account). This is espe-
cially relevant because the costs to society do not scale linearly with the char-
acteristic values of an epidemic. For instance, when ICU capacities are reached,
a small additional number of severe cases might lead to dramatic consequences.

Acknowledgements. We thank Luca Bortolussi and Thilo Krüger for helpful com-
ments regarding the manuscript. This work was partially funded by the DFG project
MULTIMODE.

References

1. Arenas, A., et al.: Derivation of the effective reproduction number R for COVID-19
in relation to mobility restrictions and confinement. medRxiv (2020)

Importance of Interaction Structure and Stochasticity for COVID-19 227

2. Ball, F., Sirl, D., Trapman, P.: Analysis of a stochastic sir epidemic on a random
network incorporating household structure. Math. Biosci. 224(2), 53–73 (2010)

3. Barrett, C.L., et al.: Generation and analysis of large synthetic social contact
networks. In: Proceedings of the 2009 Winter Simulation Conference (WSC), pp.
1003–1014. IEEE (2009)

4. Bi, Q., et al.: Epidemiology and transmission of COVID-19 in Shenzhen China:
analysis of 391 cases and 1,286 of their close contacts. MedRxiv (2020)

5. Bistritz, I., Bambos, N., Kahana, D., Ben-Gal, I., Yamin, D.: Controlling contact
network topology to prevent measles outbreaks. In: 2019 IEEE Global Communi-
cations Conference (GLOBECOM), pp. 1–6. IEEE (2019)

6. Bock, W., et al.: Mitigation and herd immunity strategy for COVID-19 is likely to
fail. medRxiv (2020)

7. Buchholz, U., et al.: Modellierung von beispielszenarien der sars-cov-2-ausbreitung
und schwere in deutschland (2020). (only available in German)

8. Chinazzi, M., et al.: The effect of travel restrictions on the spread of the 2019 novel
coronavirus (COVID-19) outbreak. Science 368, 395–400 (2020)

9. Dehning, J., et al.: Inferring COVID-19 spreading rates and potential change points
for case number forecasts. arXiv preprint arXiv:2004.01105 (2020)

10. Estrada, E., Knight, P.A.: A First Course in Network Theory. Oxford University
Press, Oxford (2015)

11. Ferguson, N., et al.: Report 9: impact of non-pharmaceutical interventions (NPIs)
to reduce COVID19 mortality and healthcare demand (2020)

12. Ferguson, N.M., Cummings, D.A., Fraser, C., Cajka, J.C., Cooley, P.C., Burke,
D.S.: Strategies for mitigating an influenza pandemic. Nature 442(7101), 448–452
(2006)

13. Ghinai, I., et al.: Community transmission of SARS-CoV-2 at two family
gatherings-Chicago, Illinois, February–March 2020 (2020)

14. Gleeson, J.P.: Binary-state dynamics on complex networks: pair approximation
and beyond. Phys. Rev. X 3(2), 021004 (2013)

15. Grassly, N.C., Fraser, C.: Mathematical models of infectious disease transmission.
Nat. Rev. Microbiol. 6(6), 477–487 (2008)

16. Grossmann, G., Backenkoehler, M., Wolf, V.: Importance of interaction structure
and stochasticity for epidemic spreading: a COVID-19 case study. ResearchGate
(2020). https://www.researchgate.net/publication/341119247 Importance of
Interaction Structure and Stochasticity for Epidemic Spreading A COVID-19
Case Study

17. Großmann, G., Bortolussi, L., Wolf, V.: Rejection-based simulation of non-
Markovian agents on complex networks. In: Cherifi, H., Gaito, S., Mendes, J.F.,
Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019. SCI, vol. 881, pp.
349–361. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36687-2 29

18. Hackl, J., Dubernet, T.: Epidemic spreading in urban areas using agent-based
transportation models. Future Internet 11(4), 92 (2019)

19. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics,
and function using NetworkX. Technical report, Los Alamos National Laboratory
(LANL), Los Alamos, NM (United States) (2008)

20. Halloran, M.E., et al.: Modeling targeted layered containment of an influenza pan-
demic in the United States. Proc. Nat. Acad. Sci. 105(12), 4639–4644 (2008)

21. Hamouda, O., et al.: Schätzung der aktuellen entwicklung der sars-cov-2-epidemie
in deutschland-nowcasting (2020)

22. Hellewell, J., et al.: Feasibility of controlling COVID-19 outbreaks by isolation of
cases and contacts. Lancet Glob. Health 8, 488–496 (2020)

http://arxiv.org/abs/2004.01105
https://www.researchgate.net/publication/341119247_Importance_of_Interaction_Structure_and_Stochasticity_for_Epidemic_Spreading_A_COVID-19_Case_Study
https://www.researchgate.net/publication/341119247_Importance_of_Interaction_Structure_and_Stochasticity_for_Epidemic_Spreading_A_COVID-19_Case_Study
https://www.researchgate.net/publication/341119247_Importance_of_Interaction_Structure_and_Stochasticity_for_Epidemic_Spreading_A_COVID-19_Case_Study
https://doi.org/10.1007/978-3-030-36687-2_29

228 G. Großmann et al.

23. Holme, P.: Representations of human contact patterns and outbreak diversity in
sir epidemics. IFAC-PapersOnLine 48(18), 127–131 (2015)

24. Huang, C., et al.: Insights into the transmission of respiratory infectious diseases
through empirical human contact networks. Sci. Rep. 6, 31484 (2016)

25. Ioannidis, J.P.: Coronavirus disease 2019: the harms of exaggerated information
and non-evidence-based measures. Eur. J. Clin. Invest. 50(4), e13222 (2020)

26. Khailaie, S., et al.: Estimate of the development of the epidemic reproduction
number RT from coronavirus SARS-CoV-2 case data and implications for political
measures based on prognostics. medRxiv (2020)

27. Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks. IAM,
vol. 46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50806-1

28. Kissler, S., Tedijanto, C., Goldstein, E., Grad, Y., Lipsitch, M.: Projecting the
transmission dynamics of SARS-CoV-2 through the post-pandemic period (2020)

29. Klepac, P., et al.: Contacts in context: large-scale setting-specific social mixing
matrices from the BBC pandemic project. medRxiv (2020). https://doi.org/10.
1101/2020.02.16.20023754, https://www.medrxiv.org/content/early/2020/03/05/
2020.02.16.20023754

30. Lourenço, J., et al.: Fundamental principles of epidemic spread highlight the imme-
diate need for large-scale serological surveys to assess the stage of the SARS-CoV-2
epidemic. medRxiv (2020)

31. Machens, A., Gesualdo, F., Rizzo, C., Tozzi, A.E., Barrat, A., Cattuto, C.: An
infectious disease model on empirical networks of human contact: bridging the gap
between dynamic network data and contact matrices. BMC Infect. Dis. 13(1), 185
(2013). https://doi.org/10.1186/1471-2334-13-185

32. Masuda, N., Holme, P. (eds.): Temporal Network Epidemiology. TB. Springer,
Singapore (2017). https://doi.org/10.1007/978-981-10-5287-3

33. McCaw, J.M., et al.: Comparison of three methods for ascertainment of contact
information relevant to respiratory pathogen transmission in encounter networks.
BMC Infect. Dis. 10(1), 166 (2010)

34. Milne, G.J., Kelso, J.K., Kelly, H.A., Huband, S.T., McVernon, J.: A small commu-
nity model for the transmission of infectious diseases: comparison of school closure
as an intervention in individual-based models of an influenza pandemic. PloS One
3(12), e4005 (2008)

35. Nowzari, C., Preciado, V.M., Pappas, G.J.: Analysis and control of epidemics:
a survey of spreading processes on complex networks. IEEE Control Syst. Mag.
36(1), 26–46 (2016)

36. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic
processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

37. Perez, L., Dragicevic, S.: An agent-based approach for modeling dynamics of con-
tagious disease spread. Int. J. Health Geogr. 8(1), 50 (2009). https://doi.org/10.
1186/1476-072X-8-50

38. Prakash, B.A., Chakrabarti, D., Valler, N.C., Faloutsos, M., Faloutsos, C.: Thresh-
old conditions for arbitrary cascade models on arbitrary networks. Knowl. Inf. Syst.
33(3), 549–575 (2012). https://doi.org/10.1007/s10115-012-0520-y

39. Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.: Optimal
vaccine allocation to control epidemic outbreaks in arbitrary networks. In: 52nd
IEEE Conference on Decision and Control, pp. 7486–7491. IEEE (2013)

40. Prem, K., et al.: The effect of control strategies to reduce social mixing on outcomes
of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Publ.
Health 5, e261–e270 (2020)

https://doi.org/10.1007/978-3-319-50806-1
https://doi.org/10.1101/2020.02.16.20023754
https://doi.org/10.1101/2020.02.16.20023754
https://www.medrxiv.org/content/early/2020/03/05/2020.02.16.20023754
https://www.medrxiv.org/content/early/2020/03/05/2020.02.16.20023754
https://doi.org/10.1186/1471-2334-13-185
https://doi.org/10.1007/978-981-10-5287-3
https://doi.org/10.1186/1476-072X-8-50
https://doi.org/10.1186/1476-072X-8-50
https://doi.org/10.1007/s10115-012-0520-y

Importance of Interaction Structure and Stochasticity for COVID-19 229

41. Pung, R., et al.: Investigation of three clusters of COVID-19 in Singapore: impli-
cations for surveillance and response measures. Lancet 395, 1039–1046 (2020)

42. Rader, B., et al.: Crowding and the epidemic intensity of COVID-19 trans-
mission. medRxiv (2020). https://doi.org/10.1101/2020.04.15.20064980, https://
www.medrxiv.org/content/early/2020/04/20/2020.04.15.20064980

43. Riou, J., Althaus, C.L.: Pattern of early human-to-human transmission of
wuhan2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro-
surveillance 25(4), 2000058 (2020)

44. Salathé, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W., Jones, J.H.: A
high-resolution human contact network for infectious disease transmission. Proc.
Nat. Acad. Sci. 107(51), 22020–22025 (2010)

45. Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., Montesi, D.: Spread-
ing processes in multilayer networks. IEEE Trans. Netw. Sci. Eng. 2(2), 65–83
(2015)

46. Sapiezynski, P., Stopczynski, A., Lassen, D.D., Lehmann, S.: Interaction data from
the Copenhagen Networks Study. Sci. Data 6(1), 1–10 (2019)

47. Soriano-Panos, D., Ghoshal, G., Arenas, A., Gómez-Gardenes, J.: Impact of tem-
poral scales and recurrent mobility patterns on the unfolding of epidemics. J. Stat.
Mech. Theory Exp. 2020(2), 024006 (2020)

48. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Math-
ematical Basis of Performance Modeling. Princeton university Press, Princeton
(2009)

49. Van Mieghem, P., Van de Bovenkamp, R.: Non-Markovian infection spread dramat-
ically alters the susceptible-infected-susceptible epidemic threshold in networks.
Phys. Rev. Lett. 110(10), 108701 (2013)

50. Vynnycky, E., White, R.: An Introduction to Infectious Disease Modelling. OUP
Oxford, Oxford (2010)

51. Wilson, N., Barnard, L.T., Kvalsig, A., Verrall, A., Baker, M.G., Schwehm, M.:
Modelling the potential health impact of the COVID-19 pandemic on a hypothet-
ical European country. medRxiv (2020)

52. Wilson, N., Barnard, L.T., Kvalsvig, A., Baker, M.: Potential health impacts from
the COVID-19 pandemic for New Zealand if eradication fails: report to the NZ
ministry of health (2020)

https://doi.org/10.1101/2020.04.15.20064980
https://www.medrxiv.org/content/early/2020/04/20/2020.04.15.20064980
https://www.medrxiv.org/content/early/2020/04/20/2020.04.15.20064980

Applications

The Dynamic Fault Tree Rare
Event Simulator

Carlos E. Budde1(B) , Enno Ruijters2 , and Mariëlle Stoelinga1,3

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{c.e.budde,m.i.a.stoelinga}@utwente.nl

2 BetterBe, Enschede, The Netherlands
mail@ennoruijters.nl

3 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. The dynamic-fault-tree rare event simulator, DFTRES, is
a statistical model checker for dynamic fault trees (DFTs), supporting
the analysis of highly dependable systems, e.g. with unavailability or
unreliability under 10−30. To efficiently estimate such low probabilities,
we apply the Path-ZVA algorithm to implement Importance Sampling
with minimal user input. Calculation speed is further improved by selec-
tive automata composition and bisimulation reduction. DFTRES reads
DFTs in the Galileo or JANI textual formats. The tool is written in Java
11 with multi-platform support, and it is released under the GPLv3. In
this paper we describe the architecture, setup, and input language of
DFTRES, and showcase its accurate estimation of dependability metrics
of (resilient) repairable DFTs from the FFORT benchmark suite.

1 Introduction

Our modern societies depend heavily on complex electro-mechanical systems,
making it essential to ensure that such systems are reliable. An industry-standard
technique to assess reliability is fault tree analysis. However, an unavoidable bot-
tleneck of this technique is that exact analysis becomes too memory-intensive for
complex dynamic fault trees (dfts [6]). Alternatively, Monte Carlo simulation
can be used to statistically estimate the likelihood of undesired events such as
system failure. Although constant in memory usage, this approach takes unac-
ceptably long times to converge when a system failure is rare, i.e. highly unlikely.
An effective solution then is to use rare event simulation (res [15]).

This paper presents 1: a statistical analysis tool for dfts that applies
Importance Sampling (IS [10]). IS is one of the most efficient approaches to per-
form res analyses, and allows to drastically speed up accurate estima-
tions of rare failures in repairable dfts. Whereas most res techniques rely on
expert input, allows a fully automatic application of IS [18].

1 Available at https://github.com/utwente-fmt/DFTRES.

This work was partially funded by NWO project 15474 (SEQUOIA).

The original version of this chapter was revised: Reference 5 has been corrected. The
correction to this chapter is available at https://doi.org/10.1007/978-3-030-59854-9 21

c© Springer Nature Switzerland AG 2020, corrected publication 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 233–238, 2020.
https://doi.org/10.1007/978-3-030-59854-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_17&domain=pdf
http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-5855-5282
http://orcid.org/0000-0001-6793-8165
https://github.com/utwente-fmt/DFTRES
https://doi.org/10.1007/978-3-030-59854-9_21
https://doi.org/10.1007/978-3-030-59854-9_17

234 C. E. Budde et al.

Related Work. Various tools exist to analyse dfts, see [19]. The model checker
Storm [11] offers a dft front-end. Storm produces exact results through model
checking, requiring the full state-space, and does not support repairs. Other
tools for rare event simulation of automata include Plasma Lab [12], where the
user must manually parameterise the model, and [2] and modes [3], which
implement a res method other than IS, less suited to analyse dfts.

Previous versions of were experimentally evaluated in [18] and [9],
where it was called “FTRES.” In Sect. 3 we mention new features that have been
implemented ever since, most prominently weak-bisimulation reduction during
initial automata composition, and so-called forcing for time-bounded properties.

Organization of the Paper. After some background in Sect. 2, we explain the
operation and structure of in Sect. 3, and show its performance in Sect. 4.

2 Rare Event Simulation for Fault Trees

Fig. 1. A repairable DFT

Fault trees are an industry-standard graphical formal-
ism for reliability analysis [19]. A (dynamic) fault tree
models possible failures of a system by decomposing
it into basic events, denoted by circles and represent-
ing elemental failure causes of components, and gates,
denoted by various symbols and representing how fail-
ures interact and which combinations of smaller fail-
ures lead to system failure. Figure 1 shows an exam-
ple: the top AND-gate (G1) means that both G2 and
A must fail for the system to fail. G2 is a SPARE -gate, meaning that B and its
spares S1 and S2 must fail; but the spares cannot not fail before they are used.
Insp denotes a periodic simultaneous inspection and repair of all basic events.

When basic events are decorated with failure probabilities or rates, it is
possible to compute numerical resilience metrics of the system. These include
reliability, the probability that the system remains functional until some given

Fig. 2. The overall structure of

DFTRES 235

“mission time,” and also (for systems with repairable components) availability,
the average fraction of time that the system is functional.

For large fault trees, particularly with complex dynamic gates describing
time-dependent failure effects or with complex repair policies, exact numerical
analysis becomes infeasible due to time and memory exhaustion. Such systems
may still be analyzed using Monte Carlo simulation, at the expense of requiring
many simulation runs for high accuracy, particularly when the event of interest
(system failure) is highly unlikely.

addresses this problem using Importance Sampling with the Path-
ZVA algorithm [14]. This IS scheme effectively adjusts the failure rates to make
system failures more likely, performs simulation runs, then corrects for the
adjusted failure rates to estimate the original failure probability. This allows
for high-accuracy estimations in relatively few simulation samples [18].

3 DFTRES

Fig. 3. (Extended) Galileo for Fig. 1

The architecture of is de-
picted in Fig. 2: a fault tree in
the widely-used Galileo format
[9,11,17,20] (e.g. Fig. 3) is trans-
lated into a network of automata
by DFTCalc [1], and input into

. Alternatively, a network
of automata in jani format [4]
can be input directly. then performs several optimizations to reduce the
state-space, generates (a part of) the composed state-space, and performs (IS)
simulations to estimate numeric metrics such as system reliability. The automata
and composed system can also be output for analysis by other tools.

begins its analysis with an optimization stage (new since [9]): tran-
sitions of the automata that cannot synchronize are removed and all automata
are reduced modulo weak bisimulation. Further, so-called don’t care optimization
is performed by collapsing and discarding groups of states without observable
behavior. Pairs of automata with a small composed state-space (by default at
most 256 states) are composed and reduced again, and this process is repeated
until no more compositions can be made.

Finally, to compute relevant metrics, simulation is performed using IS,
namely the Path-ZVA algorithm [14] and, (new since [9]) for time-bounded
properties, forcing [13]. Supported metrics are reliability (time-bounded or
-unbounded reachability) and availability (steady-state probability). Mean time
to failure (expected reward) can also be estimated, but not using IS. Simulation
runs are sampled, in parallel on multi-core systems, until a specified time bound
or simulation number is reached, or a desired relative or absolute estimated error
is reached. Results are presented as (by default) 95% confidence intervals (cis)2.
2 While every effort is made to provide accurate confidence intervals, their coverage can

fall considerably below 95% due to the extreme probability distributions involved [8].

236 C. E. Budde et al.

is released under the GPLv3, and is cross-platform due to its imple-
mentation in Java, without run-time dependencies. It requires only a Java com-
piler and Make [7] to build. Galileo input is provided by DFTCalc, which is sup-
ported on Linux and Mac. is designed to be easily extensible to additional
input formats and IS schemes. ’s command-line interface provides many
options, but typically requires only the model file, property, and desired accu-
racy. For instance, “java -jar DFTRES.jar -a --relErr 0.05 model.dft”
estimates availability (-a) to a relative error of 0.05. More examples can be
found in an artifact prepared for experimental reproduction [5].

4 Experimental Evaluation

We estimated the (un)reliability and (un)availability of four repairable
dfts from the FFORT benchmark [17]: Cabinets-2-2, FTPP-2-2-repair,
HECS-2-2-repair, and RBC. All experiments ran in an 8-core Intel® i7-6700
with 24 GB RAM. The results are shown in Fig. 4.

Fig. 4. Experimental results

We estimated the system unreliability (i.e. the probability that the system
fails before) mission times 1.0, 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001. We built
95% cis for 5% relative error: Fig. 4b shows how the unreliability decreases
exponentially—from right to left—as a function of the mission time. Figure 4a
plots the runtime needed for ci with 5% accuracy. Unlike traditional simulation,
runtime is almost independent of the value being estimated. Instead, the model
structure and complexity is the primary factor affecting analysis time, mainly
governed by the length of the shortest path(s) to a rare event.

Figure 4c shows unavailability analyses. We let estimations run for 0.5, 1, 2,
5, and 10 min, and measured the relative width of the resulting ci. With longer
runtime builds more accurate, narrower intervals: the precision improves

https://dftbenchmarks.utwente.nl/other/fault_trees/cabinets/cabinets.2-2.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/ftpp/ftpp.2-2-repair.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/hecs/hecs_2_2_2_4.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/rbc/rbc.dft

DFTRES 237

approximately as the square root of time, which can be explained by observing
that the standard error of the mean decreases as the square root of the number
of samples.

In [5] we provide an artifact to easily reproduce our experiments. It runs
in Debian-based Linux distributions, such as the virtual machine available at
https://figshare.com/articles/tacas20ae ova/9699839.

References

1. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a
tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.)
SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40793-2 27

2. Budde, C.E.: FIG: the finite improbability generator. TACAS 2020. LNCS, vol.
12078, pp. 483–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45190-5 27

3. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol.
Transf. 1–22 (2020). https://doi.org/10.1007/s10009-020-00563-2

4. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

5. Budde, C.E., Ruijters, E., Stoelinga, M.: The dynamic fault tree rare event
simulator: experimental replication package (2020). https://figshare.com/articles/
software/The Dynamic Fault Tree Rare Event Simulator/12235889, https://doi.
org/10.6084/m9.figshare.12235889.v2

6. Dugan, J., Boyd, S.B.M.: Fault trees and sequence dependencies. In: Annual
Proceedings on Reliability and Maintainability Symposium, pp. 286–293 (1990).
https://doi.org/10.1109/ARMS.1990.67971

7. Feldman, S.I.: Make - a program for maintaining computer programs. Softw. Pract.
Exp. 9(4), 255–265 (1979). https://doi.org/10.1002/spe.4380090402

8. Glynn, P.W., Rubino, G., Tuffin, B.: Robustness properties and confidence interval
reliability issues. In: Rubino and Tuffin [16], pp. 63–84. https://doi.org/10.1002/
9780470745403.ch4

9. Hartmanns, A., et al.: The 2019 comparison of tools for the analysis of quantitative
formal models. In: TACAS. LNCS, vol. 11429, pp. 69-92. Springer (2019). https://
doi.org/10.1007/978-3-030-17502-3 5

10. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models.
ACM Trans. Model. Comput. Simul. 5(1), 43–85 (1995). https://doi.org/10.1145/
203091.203094

11. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. arXiv e-prints arXiv:2002.07080 (2020). https://arxiv.org/
abs/2002.07080

12. Jégourel, C., Legay, A., Sedwards, S.: Command-based importance sampling for
statistical model checking. Theor. Comput. Sci. 649, 1–24 (2016). https://doi.org/
10.1016/j.tcs.2016.08.009

https://figshare.com/articles/tacas20ae_ova/9699839
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/s10009-020-00563-2
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://figshare.com/articles/software/The_Dynamic_Fault_Tree_Rare_Event_Simulator/12235889
https://figshare.com/articles/software/The_Dynamic_Fault_Tree_Rare_Event_Simulator/12235889
https://doi.org/10.6084/m9.figshare.12235889.v2
https://doi.org/10.6084/m9.figshare.12235889.v2
https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1002/spe.4380090402
https://doi.org/10.1002/9780470745403.ch4
https://doi.org/10.1002/9780470745403.ch4
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1145/203091.203094
https://doi.org/10.1145/203091.203094
http://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://doi.org/10.1016/j.tcs.2016.08.009
https://doi.org/10.1016/j.tcs.2016.08.009

238 C. E. Budde et al.

13. Nicola, V.F., Shahabuddin, P., Nakayama, M.: Techniques for fast simulation of
models of highly dependable systems. IEEE Trans. Reliab. 50(3), 246–264 (2001).
https://doi.org/10.1109/24.974122

14. Reijsbergen, D., de Boer, P.T., Scheinhardt, W., Juneja, S.: Path-ZVA: general,
efficient and automated importance sampling for highly reliable Markovian sys-
tems. ACM TOMACS 28(3), 22:1–22:25 (2018). https://doi.org/10.1145/3161569

15. Rubino, G., Tuffin, B.: Introduction to rare event simulation. In: Rubino and Tuffin
[16], pp. 1–13. https://doi.org/10.1002/9780470745403.ch1

16. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods.
Wiley, Hoboken (2009). https://doi.org/10.1002/9780470745403

17. Ruijters, E., et al.: FFORT: a benchmark suite for fault tree analysis. In: ESREL,
pp. 878–885 (2019). https://doi.org/10.3850/978-981-11-2724-3 0641-cd

18. Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.: Rare event simulation
for dynamic fault trees. Reliab. Eng. Syst. Safety 186, 220–231 (2019). https://
doi.org/10.1016/j.ress.2019.02.004

19. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015). https://doi.
org/10.1016/j.cosrev.2015.03.001

20. Sullivan, K.J., Dugan, J.B.: Galileo user’s manual & design overview, v2.1-alpha
(1998). www.cse.msu.edu/∼cse870/Materials/FaultTolerant/manual-galileo.htm

https://doi.org/10.1109/24.974122
https://doi.org/10.1145/3161569
https://doi.org/10.1002/9780470745403.ch1
https://doi.org/10.1002/9780470745403
https://doi.org/10.3850/978-981-11-2724-3_0641-cd
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm

Entropy Measurement of Concurrent
Disorder

Victor Cook , Christina Peterson(B) , Zachary Painter ,
and Damian Dechev

University of Central Florida, Orlando, FL, USA
{victor.cook,clp8199,zacharypainter}@knights.ucf.edu, dechev@cs.ucf.edu

Abstract. There is an imminent demand to understand the relationship
between correctness and performance to deliver highly scalable multipro-
cessor programs. The motivation for this relationship is that relaxed cor-
rectness conditions provide performance benefits by reducing contention
on data structure hot spots. Previous approaches propose metrics for
characterizing relaxed correctness conditions that measure the number
of method calls or state transitions to be shifted to arrive at a legal
sequential history. The reason the existing metrics cannot measure the
performance effects of a correctness condition is that they ignore delays
in method calls since delayed responses from method calls yield correct
behavior in even the strictest correctness conditions. We observe that
method call delays can be captured by measuring the disorder in method
call ordering using a metric from information theory known as entropy.
We propose entropy as the first metric for multiprocessor programs that
evaluates the trade-offs between correctness and performance. We mea-
sure entropy for a variety of concurrent stacks, queues, and sets from the
Synchrobench micro-benchmark suite and correlate entropy, correctness,
and performance. Our main insight is that lower entropy corresponds to
better performance for strict correctness conditions and higher entropy
corresponds to better performance for relaxed correctness conditions.

Keywords: Concurrency · Scalability · Entropy

1 Introduction

Highly scalable multiprocessor programs are essential to fully utilize the pro-
cessing power available in multicore architectures. Strict correctness guarantees
expected for multiprocessor programs can limit scalability since concurrent pro-
cesses must be synchronized to provide the illusion of a sequential execution.
A correctness condition is a definition of correct behavior for a multiprocessor
program. For example, linearizability [22] is a correctness condition such that
a concurrent history of method calls is equivalent to a sequential history, and
each method call appears to take effect at some instant between its invocation
and response. If the effects of a method call occur between its invocation and

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 239–257, 2020.
https://doi.org/10.1007/978-3-030-59854-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_18&domain=pdf
http://orcid.org/0000-0002-9852-2581
http://orcid.org/0000-0002-8070-7633
http://orcid.org/0000-0001-8334-8237
http://orcid.org/0000-0002-0569-3403
https://doi.org/10.1007/978-3-030-59854-9_18

240 V. Cook et al.

response, the method call takes effect in real-time order. A correctness condi-
tion that allows method calls to deviate from real-time order is referred to as a
relaxed correctness condition. A data structure designed for a relaxed correctness
condition implies non-linearizability.

A fundamental metric of concurrent data structures is throughput – the num-
ber of method calls completed per time unit. Other hardware metrics such as
instructions executed, cache-misses, or branch mispredictions influence through-
put. We use the term performance to cover all such metrics that affect data struc-
ture throughput. Many concurrent data structures exploit relaxed correctness
conditions to achieve significant performance improvements [1,8,14,24,36,38].
These data structures employ contention reducing techniques to achieve perfor-
mance gains such as allowing method calls to be performed in parallel in differ-
ent segments of the data structure by relaxing the real-time ordering require-
ment [1,8,24] or relaxing the semantics of inherently sequential operations such
as the DeleteMin of a priority queue [36,38]. Understanding the relationship
between correctness and performance is paramount in the development of mul-
tiprocessor programs at scale.

Previous works on relaxed correctness conditions [1,20] have proposed a met-
ric for the number of method calls or state transitions to be shifted such that
the history of method calls is in real-time order. However, these metrics do not
characterize the effects of the applied correctness condition on performance. The
reason that the existing metrics are not capable of measuring the performance
effects of a correctness condition is that they neglect the delays in method calls
since delayed method calls are considered correct behavior in all correctness con-
ditions. Delays in method calls are caused by events such as process scheduling,
hardware interrupts, software interrupts, or contention on frequently accessed
memory locations.

Consider N processes where each process enqueues an element into a lineariz-
able First-In-First-Out (FIFO) queue. The queue must endure a large volume of
contention as processes battle to update the tail of the queue to point to their
element using a read-modify-write synchronization primitive such as Compare-
And-Swap (CAS)1. The method call order is the order in which the method calls
take effect. Since the ordering between overlapping method calls is indistinguish-
able until the outcome is observed, there are N ! ways in which these elements
may be ordered in the queue. We account for method call delays in the observed
method call order by measuring the deviations in the order that the method calls
are invoked, referred to as the invocation order. Method call order that deviates
from invocation order is referred to as disorder.

In information systems, Shannon entropy [33] measures the disorder in a
probability distribution [12]. A sequential program whose outcome is determin-
istic is predictable because there is only one possible ordering of method calls,

1 CAS accepts a memory location, expected value, and new value as parameters. If
the dereferenced value of the memory location is equivalent to the expected value,
then the memory location value is updated to the new value and true is returned.
Otherwise, no change is made and false is returned.

Entropy Measurement of Concurrent Disorder 241

yielding zero entropy. When non-determinism is introduced by executing multi-
ple processes, the ordering of method calls is unpredictable due to the N ! possible
orderings for N overlapping methods, yielding increased entropy.

When entropy is normalized such that the range of entropy falls between
zero and one, it represents the efficiency of the communication channels [39].
For a concurrent data structure, a communication channel is a unique memory
location that a method call touches to access the concurrent data structure,
referred to as an entry point. The number of entry points that are permitted
in the data structure is affected by the correctness condition. For example, if
elements in a queue are allowed to be enqueued out of order up to a distance
of k, the queue can be divided into segments of length k to reduce contention
on the head and tail while maintaining the k-FIFO property [24]. The number
of entry points utilized, which is computed from normalized entropy, determines
the number of method calls that can be performed in parallel. Our main result is
a theoretical analysis that expresses the relationship between normalized entropy
and speedup of a concurrent program over a sequential program.

In this paper, we propose entropy as the first metric for multiprocessor pro-
grams that characterizes the relationship between correctness and performance.
Entropy brings new insights into the relationship between correctness and per-
formance by providing a measurement for the efficiency of the concurrent data
structure entry points. We apply this knowledge in the optimization of con-
current data structures by finding opportunities for performance gains through
relaxed correctness conditions. A key observation in our work is that when ana-
lyzing linearizable data structures, lower entropy implies better performance.
We attribute this observation to increased predictability in method call ordering
due to a design strategy that minimizes failed CAS attempts or delayed lock
acquisitions during periods of high contention. We also show that the larger the
unpredictability of the outcome of a multiprocessor program (higher entropy),
the larger the opportunity for improved scalability by relaxing the correctness
condition to reduce contention on the entry points of the data structure.

Entropy has broad applicability to domains in which the reordering of instruc-
tions/operations can achieve performance gains. For example, entropy can be
applied to the C++ memory model [4] to gain insights on how unpredictability
of instruction ordering due to relaxed semantics affects performance. We use the
term correlate to describe the identification of a relationship between two or
more properties of concurrent programs.

The contributions of this work include:

– We propose entropy as the first metric for multiprocessor programs that cor-
relates correctness with performance.

– We propose a model that characterizes the relationship between entropy, cor-
rectness, and speedup that determines how the correctness condition affects
scalability.

– We measure entropy for the Treiber stack [35], Elimination Backoff Stack [19],
QStack [8], Michael–Scott queue [28], CC-queue [9], LCR-queue [29], and four
set structures from the Synchrobench micro-benchmark suite [13].

242 V. Cook et al.

– We provide a case study that uses the entropy metric to obtain perfor-
mance gains by relaxing the correctness condition and evaluate the trade-offs
between correctness and performance.

2 Related Work

Several works acknowledge the trade-off between scalability and correctness and
have presented formal models for relaxed behaviors of concurrent data struc-
tures. Afek et al. [1] present quasi-linearizability, a correctness condition that
allows a concurrent history to deviate from a legal sequential history by some
bounded distance k, referred to as the quasi-linearization factor. Henzinger et
al. [20] propose a framework for formally describing and quantifying relaxed
semantics of concurrent data structures. A sequential specification of an object
is a set of sequential histories for the object [22]. A sequential specification S is
described using a particular labeled transition system whose states are sets of
sequences in S and the transitions are labeled by method calls. A local transi-
tion cost function assigns a penalty to each wrong transition and a global path
cost function accumulates the local costs to compute the overall distance of a
sequence, referred to as the sequence distance.

The quasi-linearization factor [1] and sequence distance [20] measure how out
of order a concurrent execution is with respect to real-time order. Since the frame
of reference is a sequential specification for linearizable objects, these metrics do
not suffice for the measurement of the disorder/unpredictability in executions
where 1) the designed correctness condition is not linearizability, or 2) the his-
tory of method calls is correct but admits unpredictability (i.e., if two threads
concurrently push a unique element onto a stack, it is unpredictable which push
occurs first until the result is observed by a pop). Shannon entropy [33] is a
suitable metric for quantifying the disorder/unpredictability in multiprocessor
programs because it accounts for unpredictability due to non-determinism in
concurrent executions that is applicable to any correctness condition.

Relaxed memory models [4] provide memory operations with weaker seman-
tics than sequential consistency [27] with the benefit of improved performance
through compiler optimizations. The weak semantics of relaxed memory mod-
els allow atomic operations to be reordered based on the specification. The
memory order consume specification does not allow reads or writes in the cur-
rent thread dependent on the value currently loaded to be reordered before this
load. The memory order acquire specification does not allow reads or writes in
the current thread to be reordered before this load. The memory order release
specification does not allow reads or writes in the current thread to be reordered
after this store. The memory order relaxed specification does not place any
ordering constraint between other reads and writes.

A correctness model [30] is proposed that requires justified behaviors to be
defined that express the portion of the concurrent history that justifies the non-
deterministic behavior observed by the method calls that use relaxed semantics.
To prevent undesirable non-deterministic behavior, Bender et al. [2] present a

Entropy Measurement of Concurrent Disorder 243

declarative fence insertion approach for specifying the expected orders of memory
operations. Since justified behaviors and declarative fence insertion are focused
on acceptable method call behavior resulting from a reordering of low-level
atomic operations rather than a reordering of the high-level method calls, these
formalisms are unsuitable for the measurement of disorder/unpredictability of
the method calls in a multiprocessor program.

Entropy, having wide applicability due to its prevalence in information the-
ory, is used as a metric for software engineering. Bianchi [3] measures entropy as
the degree of disorder in a software system traceability to assess its degradation.
Hassan et al. [16] propose entropy to evaluate the complexity of software devel-
opment, which is measured according to source code change history. Hassan [15]
extends the work of Hassan et al. [16] to predict the incidence of faults in a
software system. Confora et al. [5] empirically investigates the relationship of
entropy with factors such as changes occurring to software systems, design pat-
terns in the source code, and the number of contributors that modified the source
code files. Singh et al. [34] propose an entropy-based bug prediction approach
using kernel based support vector regression.

Entropy is also adopted as a metric for software testing. The cross entropy
method [31] solves both continuous multiextremal and discrete optimization
problems by solving a sequence of simple auxiliary smooth optimization prob-
lems based on importance sampling, Markov chain, Boltzmann distribution,
and Kullback–Leibler cross-entropy [23]. Rubinstein et al. [32] adapt the cross-
entropy method for rare event simulation. Chockler et al. [6] present a soft-
ware testing approach based on the cross-entropy methods that defines a per-
formance function that is higher for the error or pattern of interest. Chockler et
al. [7] develop an approach for replay in concurrent programs based on the cross-
entropy method. The approach by Chockler et al. [6] is adapted for approximate
replay by defining a performance function that reaches its global maximum on
executions that are as close to the recorded execution as possible.

Our proposed entropy metric for multiprocessor programs differs from the
use of entropy in software engineering because the disorder/unpredictability is
measured for a concurrent execution rather than source code complexity. More
similarities exist between our use of entropy and the usage of entropy in soft-
ware testing. The main difference between our approach and the cross-entropy
method [6,7] for software testing in concurrent programs is that software testing
is concerned with bug-finding, while our approach is concerned with measuring
disorder/unpredictability for concurrent executions to assess the relationship
between correctness and performance.

3 Shannon Entropy Applied to Concurrent Data
Structures

Information theory accounts for the idea that the occurrence of a low proba-
bility event conveys more information content than the occurrence of a high
probability event because it reveals information regarding an unexpected event.

244 V. Cook et al.

The information content, referred to as the surprisal, is presented in Eq. 1 for
an event e with probability p(e).

I(e) = −log p(e) (1)

Shannon entropy [33] quantifies the average surprisal of a probability distri-
bution. Equation 2 presents the Shannon entropy for a discrete random variable
X with possible values {x1, · · · , xn} and probability mass function P (X).

H(X) = −
n∑

i=1

P (xi)logP (xi) (2)

The computation of the probability mass function P (X) varies for each of the
abstract data types for concurrent data structures. We now present our proposed
technique for measuring entropy in concurrent data structures.

3.1 Queues and Stacks

A queue incorporates a FIFO ordering for its elements, while a stack incorporates
a Last-In-First-Out (LIFO) ordering for its elements. An unpredictable outcome
occurs when the elements of a queue or stack are ordered in a way that deviates
from FIFO (queue) or LIFO (stack) semantics. The element order in a queue
or stack represents the method call order. The expected order of method calls
is determined according to invocation order. The deviations in the expected
ordering of method calls is measured by counting the observed inversions. Given
a queue or stack, let each term aj in list a1, a2, ..., an represent the invocation
order of element j in the queue or stack. For example, if the elements of the
data structure follow FIFO semantics, a1 = 1, a2 = 2, ..., an = n. The inversion
count x(j) for queues is defined for each list term aj in Eq. 3 [25], where each
position of x(j) is initialized to zero. The value of x(j) represents the number of
swaps required to sort element j into its expected order in the data structure.
for (j = 1; j <= n; j++)

for (i = 1; i < j; i++)
i f (ai > aj)

x(j) = x(j) + 1

(3)
for (j = 1; j <= n; j++)

for (i = 1; i < j; i++)
i f (ai < aj)

x(j) = x(j) + 1

(4)
for (i = 0; i < n; i++)

for (j = 1; j <= n; j++)
i f (x(j) == i)

ki = ki + 1

(5)

If the elements of a data structure follow LIFO semantics, a1 = n, a2 = n−1,
..., an = 1. The inversion count x(j) for stacks is defined for each list term aj in
Eq. 4 [25], where each position of x(j) is initialized to zero.

For a queue or stack with n elements, the inversion count for an element is
between 0 to n − 1. The discrete random variable X for an element of a queue
or stack is the inversion count. To compute the probability mass function, we
measure the probability that the discrete random variable is equal to some value
in an execution. The possible values for discrete random variable X (i.e. number
of inversions) are {0, · · · , n − 1}. Let ki be a count of the number of elements in
the queue or stack that observe inversion count i. The value of ki is computed
by Eq. 5, where ki is initialized to zero for each i.

Entropy Measurement of Concurrent Disorder 245

The probability mass function for inversion count i is given by Eq. 6. The
Shannon entropy for queues and stacks is presented in Eq. 7, derived by replac-
ing the probability mass function in Eq. 2 with the probability mass function
presented in Eq. 6.

P (i) = ki/n (6) H(X) = −
n−1∑

i=0

ki

n
log

ki

n
(7)

3.2 Sets and Maps

Sets and maps represent a collection of elements. A set labels each of its elements
with a unique key. A map extends the set abstract data type to also include a
value for each key. An element’s order in the data structure implementing the
set or map is referred to as concrete order. Since the concrete order does not
reflect the order that the method calls take effect, we use the invocation order of
the set/map method calls rather than the concrete order. The deviations in the
expected ordering of method calls is measured by counting the shortest distance,
i.e. number of method call swaps, with respect to the invocation order to produce
a legal sequential history. Given a set or map, let list m1,m2, ...,mn be a list of
method calls where each term mj is the method call with invocation order j in
the set or map. Each field mj .op is the operation insert (ins) or remove (rem).
Each field mj .key is the key of the operation. The distance x(j) for sets and
maps is defined in Eq. 8, where each position of x(j) is initialized to zero. The
SkipSet prevents double counting the required swaps. For a set or map with n
method calls, the possible values for discrete random variable X (i.e. distance)
are {0, · · · , n−1}. Let ki be the the number of method calls that observe distance
i. The value of ki is computed by Eq. 5, where ki is initialized to zero for each i.
The probability mass function is computed using Eq. 6 and Shannon entropy is
computed using Eq. 7.

for (j = 1; j <= n; j++) {
i f (mj .op == ins && mj �∈ SkipSet)
i f (mj .key �∈ S) S = S ∪ mj .key
else {

x(j) = dist(mi) such that i > j ,
mi.op = rem,mi.key = mj .key

SkipSet = SkipSet ∪ mi

}

else i f (mj .op == rem && mj �∈ SkipSet)
i f (mj .key ∈ S) S = S \ mj .key
else {
x(j) = dist(mi) such that i > j ,
mi.op = ins,mi.key = mj .key

SkipSet = SkipSet ∪ mi

}
} end for − loop

(8)

4 Theoretical Analysis of the Correlation Between
Entropy, Correctness, and Speedup

We now derive an equation that correlates entropy, correctness, and speedup.
Our theoretical analysis is based on the notion of an entry point which denotes a
unique memory location that a method call must touch to access the concurrent
data structure. For example, a queue has two entry points – the head and the
tail The correctness condition affects the number of entry points that can be

246 V. Cook et al.

supported by the data structure such that any history of method calls invoked
on the data structure is correct.

Entropy is computed from the probability of the inversion events for a data
structure. If the probability distribution for the inversion events is uniform,
then entropy approaches its maximum value. If the probability distribution for
the inversion events is non-uniform, then entropy decreases. If any particular
inversion event has a 100% chance of occurrence, then entropy is 0 because there
is no uncertainty and therefore no new information is conveyed. When all entry
points of a data structure are equally utilized the probability of an inversion
event exhibits a uniform distribution. The effective use of the communication
channels (i.e. the entry points of a data structure) is quantified by efficiency,
which is directly related to entropy [39]. Let n be the maximum inversion count
observed for a data structure. Efficiency is computed by Eq. 9, also referred to
as normalized entropy [26].

η(X) = −
n−1∑

i=0

P (xi)log P (xi)
log n

=
H(X)
log n

(9)

We now deduce the relationship between normalized entropy and the number
of entry points utilized, then use this relationship to provide a theoretical analysis
of the correlation between normalized entropy and theoretical speedup. For the
purposes of computing the theoretical speedup, we assume that the theoretical
maximum number of entry points is equal to the maximum inversion count.
However, due to the design constraints of the data structure, only a fraction
of the available entry points will be utilized. We assume that the entry points
utilized, denoted by u, are accessed with a uniform distribution. The probability
of accessing one of the utilized entry points is P (xi) = n/u

n = 1
u . Since P (xi) = 1

u
for u entry points and P (xi) = 0 for all other entry points, normalized entropy
in terms of entry points utilized is expressed by Eq. 10.

η(X) = −u · 1
u · log 1

u

log n
=

log 1
u

log n
= − (log 1 − log u)

log n
=

log u

log n
(10)

We now solve Eq. 10 for the number of entry points utilized, expressed by
Eq. 11 where b is the log base.

u = bη(X)·log n = blog nη(X)
= nη(X) (11)

The general equation for speedup of a multiprocessor program is provided in
Eq. 12.

speedup =
sequential execution time

concurrent execution time
(12)

Let m be the execution time of a method call. Let op be the total number
of method calls to be invoked on the concurrent data structure. Let p be the
number of processes. The sequential execution time is op · m. Assume that the
number of utilized entry points is less than or equal to the number of processes.
Since method calls that access different entry points run in parallel in the optimal

Entropy Measurement of Concurrent Disorder 247

scenario, the minimum achievable concurrent execution time is 1
u · op · m. The

theoretical speedup is expressed by Eq. 13.

theoretical speedup =
op · m

1
u · op · m

= u (u ≤ p) (13)

The term u in Eq. 13 is replaced by Eq. 11 to quantify the theoretical speedup
in relation to normalized entropy when the number of entry points is less than
or equal to the number of processes, expressed by Eq. 14.

theoretical speedup = nη(X) (n ≤ p) (14)

If normalized entropy is 1, then the theoretical speedup equals the theoretical
maximum number of entry points, which is the maximum inversion count. If
normalized entropy is 0, then the theoretical speedup equals 1. The theoretical
speedup is often not achieved in practice due to the overhead of concurrency
synchronization and interactions of caches and pipelines, which we demonstrate
in Sect. 6. However, computing theoretical speedup is still useful for choosing
a correctness condition in the design and optimization of a concurrent data
structure.

Now let’s assume that the number of entry points exceeds that number of
processes. Since the total number of entry points will be accessed p

n fraction
of the time, the maximum number of entry points utilized is n · p

n = p. The
theoretical speedup in relation to normalized entropy when the number of entry
points exceeds the number of processes is expressed by Eq. 15.

theoretical speedup = pη(X) (n > p) (15)

The correlations between entropy, correctness, and observed performance as
derived from our empirical analysis is provided in Sect. 5.5.

5 Experimental Evaluation

We measure the entropy for concurrent stacks, queues, and sets presented in
literature and correlate the entropy metric with correctness and performance.
Experiments were run on an AMD R© EPYC R© server of 2 GHz clock speed and
128 GB memory, with 32 cores delivering a maximum of 64 simultaneous multi-
threads. The operating system is Ubuntu 18.04 LTS and code is compiled with
gcc 7.3.0 using -O3 optimizations.

5.1 Experiment Design

Memory is pre-allocated to separate execution overhead from the entropy mea-
surement. The thread counts vary from 1 to 32. The experiments comprise var-
ious configurations of producer/consumer interleavings. Each testing configura-
tion includes 1000 iterations of 100 producer invocations followed by 100 con-
sumer invocations. We do not use a global barrier to guarantee that all threads
have completed their producer invocations prior to starting their consumer invo-
cations. This would have the potential for creating cache misses and would intro-
duce thread idle time into the experiment.

248 V. Cook et al.

0
32

64
96

12
8

16
0

19
2

22
4

25
6

0 10 20 30 40 50 60 70 80
Item index (thousands)

Kn
ut

h
in

ve
rs

io
n

va
lu

e
X(

ite
m

)

(a) Raw inversion data at 31 threads

0
0.

02
5

0.
05

0.
07

5
0.

1
0.

12
5

32 64 96 128 160 192 224 256
Knuth inversion value X(item)

Pr
ob

ab
ilit

y
P(

x)
 o

f i
nv

er
si

on
 v

al
ue

Inversions
(count)

79985

79995

79963

Entropy
(base 2048)

0.734

0.7161

0.5175

Algorithm
(Stack)

AMD_QStackDesc_31t_1000i_100

AMD_Treiber_31t_1000i_100

AMD_EBS_31t_1000i_100

(b) Distribution P(X) at 31 threads

●●

●
● ●

●
●

●
●

● ● ● ● ● ● ●
●

●
● ● ● ● ●

● ●
● ● ● ●

● ●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10 20 30
Threads

N
or

m
al

iz
ed

 E
nt

ro
py

Algorithm

●

Qstack
Treiber
EBS

(c) Stack entropy versus threads

0
5

10
15

20
25

10 20 30
Threads

M
et

ho
d

ca
lls

 /
 µ

 −
se

c Algorithm
EBS
QStack
Treiber

(d) Stack performance versus threads

Fig. 1. Stack results, 1000 iterations of 100 pushes followed by 100 pops.

5.2 Stack Results

The stacks evaluated in the experiment include the Treiber stack [35], Elimi-
nation Backoff Stack (EBS) [19], and QStack [8]. The raw inversion data at 31
threads for the stacks is shown in Fig. 1a. The probability distribution of the
inversion events at 31 threads with 1000 iterations of 100 pushes, 100 pops is
shown in Fig. 1b. The EBS and Treiber stack are linearizable, while the QStack
is designed for the quantifiability correctness condition [8]. Quantifiability allows
method calls to be out of order with respect to real-time order.

Despite the allowable reordering of method calls permitted by quantifiability,
the Treiber stack and EBS observe approximately the same number of inversion
totals as the QStack. The inversion total for the Treiber stack is attributed
to high contention on the stack top. The inversion total for EBS is due to the
collision array that allows pairs of pushes and pops to meet in a separate location
and eliminate each other’s effects to reduce contention on the top of the stack.
Method calls may wait in the collision array for some period of time prior to being
eliminated which leads to inversion events due to deviations from invocation
order. Since the inversion totals for the EBS are due to contention avoidance

Entropy Measurement of Concurrent Disorder 249

rather than unpredictable CAS failures, the observed inversion events for EBS
are concentrated between 48 and 96. As a result, the EBS has the lowest entropy
measurement of 0.5175 since the inversion events are more predictable than
the QStack and Treiber stack. The QStack has the most uniform probability
distribution, yielding the highest entropy measurement of 0.734. The Treiber
stack has a probability distribution similar to the QStack, yielding the second
highest entropy measurement of 0.7161.

The entropy measured for thread counts varying from 1 to 32 at 1000 iter-
ations of 100 pushes, 100 pops is shown in Fig. 1c. As expected, the entropy
increases as the thread count increases since larger thread counts introduce more
unpredictability in the method call ordering. The general trend over all thread
counts is that the QStack has the highest entropy, the Treiber stack has the
second highest entropy, and the EBS has the lowest entropy.

The performance of the stack data structures is shown in Fig. 1d. The
EBS outperforms the Treiber stack at all thread counts. The QStack has lin-
ear speedup with respect to the thread count. The QStack surpasses the Treiber
stack at 3 threads and surpasses the EBS at 10 threads. Since the EBS entropy
is lower than the Treiber entropy, it is clear that lower entropy indicates bet-
ter performance for linearizable data structures due to lower contention causing
fewer operation delays. However, the QStack has the highest entropy and also
the best performance. This is caused by the QStack creating new branches for
the top of the stack when contention is experienced. The QStack is leveraging
the unpredictability in method call ordering due to high contention by diverting
threads to other data structure access points.

5.3 Queue Results

The queues evaluated in the experiment include the Michael–Scott queue [28],
CC-queue [9], and LCR-queue [29]. Entropy instrumentations are built on top of
an ACM verified open source queue benchmark [37]. The probability distribution
of the inversion events at 31 threads with 1000 iterations of 100 enqueues, 100
dequeues is shown in Figure 2b and the raw inversion in Figure 2a. The Michael–
Scott queue, CC-queue, and LCR-queue are linearizable.

The LCR-queue has the highest throughput and also maintains an entropy
comparable to the CC-queue. The inversion total for the CC-queue is less than
the inversion total for the Michael–Scott queue because the CC-queue uses a
flat combining technique [18] that enables the thread that acquires a lock to
perform all pending requests that require access to this lock. Since the requests
are performed in the same order in which the requests were atomically swapped
into the request list, the majority of the observed inversions events are 5 or less.
The Michael–Scott queue has a uniform probability distribution over inversion
events of 0 to 32 due to unpredictable method call ordering caused by high
contention at the head and tail.

The entropy measured for thread counts varying from 1 to 32 at 1000 iter-
ations of 100 enqueues, 100 dequeues is shown in Fig. 2c. The CC-queue expe-
riences the fewest inversions and the inversion values are predictable due to the

250 V. Cook et al.

0
8

16
24

32
40

48
56

64

0 10 20 30 40 50 60 70 80
Item index (thousands)

Kn
ut

h
in

ve
rs

io
n

va
lu

e
X(

ite
m

)

(a) Raw inversion data at 31 threads

0
0.

05
0.

1
0.

15
0.

2
0.

25

8 16 24 32 40 48 56 64
Knuth inversion value X(item)

Pr
ob

ab
ilit

y
P(

x)
 o

f i
nv

er
si

on
 v

al
ue

Inversions
(count)

78333

47051

37406

Entropy
(base 2048)

0.4547

0.223

0.1778

Algorithm
(Queue)

msqueue_31t_1000i_100

lcrq_31t_1000i_100

ccqueue_31t_1000i_100

(b) Distribution P(X) at 31 threads

●● ● ●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10 20 30
Threads

N
or

m
al

iz
ed

 E
nt

ro
py

Algorithm
● ccqueue

lcrq
msqueue

(c) Queue entropy versus threads

0
5

10
15

20
25

10 20 30
Threads

M
et

ho
d

ca
lls

 /
 µ

 −
se

c Algorithm
ccqueue
lcrq
msqueue

(d) Queue performance versus threads

Fig. 2. Queue results, 1000 iterations of 100 pushes followed by 100 pops.

flat combining technique. As a result, the entropy for the CC-queue is the lowest
of the three studied here. Figure 2d shows the throughtput versus thread count
for the queues. The CC-queue outperforms the Michael–Scott queue, and the
LCR-queue outperforms both the CC-queue and Michael–Scott queue. This cor-
responds with our observation that lower entropy can yield higher performance
for linearizable data structures.

5.4 Set Results

The set evaluated in the experiment include the Fraser skiplist [11], hand-over-
hand list (hoh-list) [21], a lock-free list [10], and a lazy list [17]. Since set opera-
tions on different keys are commutative, the total number of inversions observed
for sets is much lower than the total number of inversions observed for stacks or
queues. The probability for the 0 inversion event is not shown in the plots for
the set data because it diminishes the visibility of the trends of the probabilities
for the remaining inversion events.

Figure 3a shows the probability distribution of the inversion events at 32 keys,
80% read operations, and various thread counts for the hoh-list. The normalized
entropy is the lowest for the 8 thread configuration at 0.0491. The normalized

Entropy Measurement of Concurrent Disorder 251

0
0.

00
5

0.
01

0.
01

5
0.

02
0.

02
5

128 256 384 512 640 768 896 1024

Knuth inversion value X(item)

Pr
ob

ab
ilit

y
P(

x)
 o

f i
nv

er
si

on
 v

al
ue Inversions

(count)

10228

10308

6307

3604

Entropy
(base 2048)

0.1288

0.1287

0.0825

0.0491

HOH−List
(Synchrobench)

32k_80r_64t_1

32k_80r_32t_1

32k_80r_16t_1

32k_80r_8t_1

(a) Distribution P(X) with 32 keys, 80%
read operations, various thread counts

0
0.

00
5

0.
01

0.
01

5
0.

02
0.

02
5

128 256 384 512 640 768 896 1024

Knuth inversion value X(item)

Pr
ob

ab
ilit

y
P(

x)
 o

f i
nv

er
si

on
 v

al
ue Inversions

(count)

10308

12172

12604

12447

Entropy
(base 2048)

0.1287

0.1397

0.1381

0.1322

HOH−List
(Synchrobench)

32k_80r_32t_1

32k_60r_32t_1

32k_40r_32t_1

32k_20r_32t_1

(b) Distribution P(X) with 32 keys, 32
threads, various read percentages

●
●

●

●
●

●
● ●

● ●
●

● ● ● ● ● ●
●

● ● ● ● ● ●
● ●

● ● ●
● ● ●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

10 20 30 40 50 60
Threads

N
or

m
al

iz
ed

 E
nt

ro
py

Algorithm
● lazy−list

hoh−list
lockfree−list
fraser−skiplist

(c) Entropy 32 keys, 80% reads

0
5

10
15

20

10 20 30 40 50 60
Threads

M
et

ho
d

ca
lls

 /
 µ

 −
se

c Algorithm
lazy−list
hoh−list
lockfree−list
fraser−skiplist

(d) Performance 32 keys, 80% reads

Fig. 3. Synchrobench set data structure results.

entropy is the highest for the 64 thread configuration at 0.1288. The majority of
the inversion events for all thread configurations is 0 inversions. The 80% read
configuration causes very little synchronization overhead, resulting in very few
inversions. Figure 3b shows the probability distribution of the inversion events
at 32 keys, 32 threads, and various read percentages for the hoh-list. The 80%
read configuration obtains the lowest entropy at 0.1287 since a larger percentages
of reads leads to very few inversions. The 60% read configuration obtains the
highest entropy at 0.1397.

Figure 3c shows the entropy versus thread count at 32 keys, 80% reads for the
lazy list, hoh-list, lock-free list, and Fraser skiplist. The Fraser skiplist has the
lowest entropy since operations quickly traverse the list through shortcuts, min-
imizing method call delays. The lock-free list entropy is higher than the Fraser
skiplist because the backlink traversal varies between each operation depend-
ing on the number of nodes to be traversed to arrive at a node not flagged for
deletion. The hoh-list entropy is slightly higher than the lock-free list because

252 V. Cook et al.

the hoh-list locks both the predecessor and current node, eliminating the need
to retraverse the list. The lazy list has the highest entropy because it optimisti-
cally traverses the list without acquiring locks and if a conflict exists with lock
acquisition it will retraverse the list, leading to long method call delays.

Figure 3d shows the throughput versus thread count at 32 keys, 80% reads
for the lazy list, hoh-list, lock-free skiplist, and Fraser skiplist. The lock-free list
has the best performance because the backlinks enable quick recovery on a failed
CAS. Although the lazy list has the highest entropy, it performs better than the
hoh-list because the hoh-list incurs high overhead due to locking the predecessor
and current node for each traversed node. Since all method calls endure this
overhead, the hoh-list method call order is closer to the invocation order than
the lazy list.

5.5 Correlations Between Entropy, Correctness, and Performance

The entropy metric provides different insights for different correctness condi-
tions. For linearizable data structures, lower entropy corresponds to better per-
formance. This occurs because high contention causes unpredictable method call
ordering which yields high entropy. High inversion totals do not necessarily cor-
respond to unpredictable method call ordering. For example, the EBS has a
collision array that provides multiple entry points to reduce contention on the
stack top when contention is high. The EBS has high inversion totals but low
entropy because the collision array buffers pending operations during periods of
high contention, making the inversion events predictable. Although low inver-
sion totals are an indication of low contention in linearizable data structures,
low inversion totals also imply that method calls are being filtered through a
sequential bottleneck to achieve method call orderings that are close to invoca-
tion order. However, a method call ordering that is close to the invocation order
can be an indication of efficient resource management (e.g. the LCR queue) since
method calls that wait to acquire resources will cause deviations from invocation
order.

For non-linearizable data structures, high entropy to corresponds to better
performance. Since correctness conditions that allow methods to be called out of
order with respect to real-time order can support multiple entry points into the
data structure to reduce contention, unpredictable method call ordering is an
indication of full utilization of the entry points. Data structure performance can
be maximized by adding additional entry points as permitted by the constraints
of the correctness condition.

6 Case Study: k-FIFO Queue

Our case study demonstrates how to use the entropy metric to reveal insights on
the relationship between correctness and performance at various values of k for
the unbounded k-FIFO queue [24]. The unbounded k-FIFO queue maintains an

Entropy Measurement of Concurrent Disorder 253

0
0.

05
0.

1
0.

15
0.

2

0 4 8 12 16 20 24 28 32
Knuth inversion value X(item)

Pr
ob

ab
ilit

y
P(

x)
 o

f i
nv

er
si

on
 v

al
u

AMD_KFifoQueue_1k_32t

AMD_KFifoQueue_1k_24t

AMD_KFifoQueue_1k_16t

AMD_KFifoQueue_1k_12t

AMD_KFifoQueue_1k_8t

AMD_KFifoQueue_1k_4t

AMD_KFifoQueue_1k_2t

AMD_KFifoQueue_1k_1t

91061
88039
81381
75492
66674
47146
25485

0

0.4706
0.4339
0.3744
0.3268
0.2653
0.1902
0.1134

0

(a) Distributions P(X) for k = 1

0
0.

05
0.

1
0.

15
0.

2

0 4 8 12 16 20 24 28 32
Knuth inversion value X(item)

Pr
ob

ab
ilit

y
P(

x)
 o

f i
nv

er
si

on
 v

al
u

AMD_KFifoQueue_32k_32t

AMD_KFifoQueue_24k_32t

AMD_KFifoQueue_16k_32t

AMD_KFifoQueue_12k_32t

AMD_KFifoQueue_8k_32t

AMD_KFifoQueue_4k_32t

AMD_KFifoQueue_2k_32t

AMD_KFifoQueue_1k_32t

91040
89549
88194
86088
84962
85593
84597
91061

0.4839
0.4675
0.4488
0.4465
0.4355
0.4436
0.4448
0.4706

(b) Distributions P(X) at 32 threads

Fig. 4. Distributions P(X) and entropies for kFIFO queue.

unbounded list of segments of size k, allowing up to k concurrent enqueue and
k dequeue operations.

Figure 4a shows the probability distribution of the inversion events at the
k = 1 configuration, which is equivalent to a linearizable FIFO queue, with 1000
iterations of 100 enqueues, 100 dequeues. The k = 1 configuration at 1 thread
is equivalent to a sequential queue, so the entropy is 0. The entropy increases
as the number of threads increases due to high contention on the head and
tail. The 32 thread configuration obtain the highest entropy at 0.4706. Applying
Eq. 14 with two entry points (the head and the tail), the theoretical speedup is
20.4706 = 1.39. Regardless of the number of threads operating on the queue at
k = 1, the maximum theoretical speedup is capped at 2. This indicates that a
relaxed correctness condition is required to achieve a higher speedup.

Figure 4b shows the probability distribution of the inversion events at 32
threads with 1000 iterations of 100 enqueues, 100 dequeues. When the number
of threads is increased to 32, the entropy is approximately equivalent for all
configurations of k. This occurs because the contention at the head and tail
causes the inversions to be nearly as high as 32 for all values of k due to the
possibility for 32 overlapping method calls. Figure 5a maps the entropy over
the full range of K and N . Consistent with the probability distributions in
Fig. 4a and Fig. 4b, the entropy is high where either K or N approach the
upper limit of 32. The case study shows how entropy is a useful metric for multi-
core programmers and system architects. Equation 15 for theoretical speedup
is applicable to the k-FIFO because the number of entry points is greater than
the number of threads. However, Fig. 5b shows that the actual speedup is much
lower than the theoretical speedup. Selecting the optimal thread count N and
relaxation of semantics K is a trade-off between the desired speedup and required
correctness guarantees.

254 V. Cook et al.

The methodology we propose is to use entropy and performance data together
with application specific requirements to find the optimal performance entropy
mix, which we define as the data structure efficacy.

Threads N

R
el

ax
at

io
n

K

1 4 8 12 16 20 24 28 32

1
4

8
12

16
20

24
28

32

0.0 0.1 0.2 0.3 0.4

Entropy (normalized)

(a) Normalized entropy

Threads N

R
el

ax
at

io
n

K

1 4 8 12 16 20 24 28 32

1
4

8
12

16
20

24
28

32

1.0 1.5 2.0 2.5 3.0

Method calls / µ −sec

(b) Throughput

Threads N

R
el

ax
at

io
n

K

1 4 8 12 16 20 24 28 32

1
4

8
12

16
20

24
28

32

0.0 0.1 0.2 0.3 0.4

Efficacy

(c) Efficacy

Fig. 5. Heatmaps over K, N for kFIFO queue case study.

For example, application “A” may require a FIFO queue with low entropy,
say less than 0.25. Searching the performance map where entropy is less than
0.25, we find the highest value (1.85 ops per µs) is found at N = 4,K = 6. For
application “A” the k-FIFO queue should use these parameters.

Application “B” might be more flexible and seek the highest performance
while being able to tolerate relaxed semantics that result in high entropy. The
formula used in Fig. 5c is Efficacy = Throughput ·(1−Entropy0.5), representing
a trade-off between maximum throughput and minimum entropy. The efficacy
map shows a “sweet spot” at K = 20, N = 10 with the optimal efficacy of 1.2
yielding 3.12 ops per µs. These parameters acheive significant speedup with an
acceptable level of disorder, given the requirements for application “B”.

7 Conclusion

We have presented entropy as the first metric for multiprocessor programs that
correlates correctness and performance. Entropy brings new insights into the
analysis of concurrent data structures by providing a measurement for the effi-
ciency of the data structure entry points. To assist designers with determin-
ing the trade-offs between correctness and performance, we derive an equation
that characterizes the relationship between entropy, correctness, and theoreti-
cal speedup. This equation enables a quantitative approach for comparing the
theoretical speedup for different correctness conditions.

We show experimental results measuring entropy for concurrent stacks,
queues, and sets and show that there is a relationship between entropy, cor-
rectness, and performance. Our observation is that lower entropy corresponds to

Entropy Measurement of Concurrent Disorder 255

better performance for strict correctness conditions because method calls that
efficiently access a data structure experience few delays and observe a method
call ordering close to invocation order. Higher entropy corresponds to better per-
formance for relaxed correctness conditions because the allowable out of order
method call execution enables the processes to uniformly distribute their work
among the memory location access points of the data structure.

Our case study demonstrates how to use the entropy metric to select the
optimal thread count and k value for the k-FIFO queue by plotting efficacy,
which finds a balance between maximum throughput and minimum entropy.
The experimental evaluation and case study motivate the adoption of relaxed
correctness conditions that are demonstrated to be scalable using entropy.

References

1. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for
improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010.
LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17653-1 29

2. Bender, J., Lesani, M., Palsberg, J.: Declarative fence insertion. In: Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pp. 367–385. ACM (2015)

3. Bianchi, A., Caivano, D., Lanubile, F., Visaggio, G.: Evaluating software degra-
dation through entropy. In: Proceedings Seventh International Software Metrics
Symposium, pp. 210–219. IEEE (2001)

4. Boehm, H.J., Adve, S.V.: Foundations of the c++ concurrency memory model. In:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 68–78. ACM (2008)

5. Canfora, G., Cerulo, L., Di Penta, M., Pacilio, F.: An exploratory study of fac-
tors influencing change entropy. In: 2010 IEEE 18th International Conference on
Program Comprehension, pp. 134–143. IEEE (2010)

6. Chockler, H., Farchi, E., Godlin, B., Novikov, S.: Cross-entropy based testing. In:
Formal Methods in Computer Aided Design (FMCAD 2007), pp. 101–108. IEEE
(2007)

7. Chockler, H., Farchi, E., Godlin, B., Novikov, S.: Cross-entropy-based replay of
concurrent programs. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 201–215. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00593-0 14

8. Cook, V., Peterson, C., Painter, Z., Dechev, D.: Quantifiability: concurrent cor-
rectness from first principles. arXiv preprint arXiv:1905.06421 (2019)

9. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization tech-
nique. In: Proceedings of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 257–266. ACM (2012)

10. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Proceedings
of the Twenty-Third Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 50–59 (2004)

11. Fraser, K.: Practical lock-freedom. Technical report, University of Cambridge,
Computer Laboratory (2004)

12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1007/978-3-642-00593-0_14
https://doi.org/10.1007/978-3-642-00593-0_14
http://arxiv.org/abs/1905.06421
http://www.deeplearningbook.org

256 V. Cook et al.

13. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP 2015), pp. 1–10. ACM (2015)

14. Haas, A., et al.: Distributed queues in shared memory: multicore performance and
scalability through quantitative relaxation. In: Proceedings of the ACM Interna-
tional Conference on Computing Frontiers, pp. 1–9 (2013)

15. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Proceed-
ings of the 31st International Conference on Software Engineering, pp. 78–88. IEEE
Computer Society (2009)

16. Hassan, A.E., Holt, R.C.: The chaos of software development. In: Sixth Interna-
tional Workshop on Principles of Software Evolution, 2003. Proceedings, pp. 84–94.
IEEE (2003)

17. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A lazy
concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer,
R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006).
https://doi.org/10.1007/11795490 3

18. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of the Twenty-Second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 355–364.
ACM (2010)

19. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp. 206–215. ACM (2004)

20. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative
relaxation of concurrent data structures. In: Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of programming languages (POPL
2013), pp. 317–328. ACM (2013)

21. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, Burlington (2012)

22. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

23. Kapur, J.N., Kesavan, H.K.: Entropy optimization principles and their applica-
tions. In: Singh, V.P., Fiorentino, M. (eds.) Entropy and Energy Dissipation in
Water Resources. Water Science and Technology Library, vol. 9, pp. 3–20. Springer,
Dordrecht (1992). https://doi.org/10.1007/978-94-011-2430-0 1

24. Kirsch, Christoph M., Lippautz, Michael, Payer, Hannes: Fast and scalable, lock-
free k-FIFO queues. In: Malyshkin, Victor (ed.) PaCT 2013. LNCS, vol. 7979, pp.
208–223. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39958-
9 18

25. Knuth, D.E.: The Art of Computer Programming: Volume 3: Sorting and Search-
ing. Addison-Wesley Professional, Boston (1998)

26. Kumar, U., Kumar, V., Kapur, J.N.: Normalized measures of entropy. Int. J. Gener.
Syst. 12(1), 55–69 (1986)

27. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess program. IEEE Trans. Comput. 28(9), 690–691 (1979)

28. Michael, M.M., Scott, M.L.: Simple, fast, and practical Non-Blocking and blocking
concurrent queue algorithms. Tech. Rep. 600, 267–275 (1995)

29. Morrison, A., Afek, Y.: Fast concurrent queues for x86 processors. ACM SIGPLAN
Not. 48(8), 103–112 (2013). https://doi.org/10.1145/2517327.2442527

https://doi.org/10.1007/11795490_3
https://doi.org/10.1007/978-94-011-2430-0_1
https://doi.org/10.1007/978-3-642-39958-9_18
https://doi.org/10.1007/978-3-642-39958-9_18
https://doi.org/10.1145/2517327.2442527

Entropy Measurement of Concurrent Disorder 257

30. Ou, P., Demsky, B.: Checking concurrent data structures under the c/c++11 mem-
ory model. In: Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2017), January 2017

31. Rubinstein, R.Y.: Optimization of computer simulation models with rare events.
Eur. J. Oper. Res. 99(1), 89–112 (1997)

32. Rubinstein, R.Y., Kroese, D.P.: The Cross-entropy Method: A Unified Approach
to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning.
Springer, Heidelberg (2013)

33. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

34. Singh, V., Chaturvedi, K.: Entropy based bug prediction using support vector
regression. In: 2012 12th International Conference on Intelligent Systems Design
and Applications (ISDA), pp. 746–751. IEEE (2012)

35. Treiber, R.K.: Systems programming: coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center, April 1986. San Jose, CA (1986)

36. Wimmer, M., Gruber, J., Träff, J.L., Tsigas, P.: The lock-free k-LSM relaxed pri-
ority queue. In: Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2015), vol. 50, no. 8, pp. 277–278
(2015)

37. Yang, C., Mellor-Crummey, J.: A wait-free queue as fast as fetch-and-add. In:
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming - PPoPP 2016, pp. 1–13. ACM Press, New York (2016)

38. Zhang, D., Dechev, D.: A lock-free priority queue design based on multi-
dimensional linked lists. IEEE Trans. Parallel Distrib. Syst. 27(3), 613–626 (2015)

39. Zunino, L., Zanin, M., Tabak, B.M., Pérez, D.G., Rosso, O.A.: Forbidden patterns,
permutation entropy and stock market inefficiency. Physica A 388(14), 2854–2864
(2009)

Hardening Critical Infrastructure
Networks Against Attacker

Reconnaissance

Kartik Palani(B) and David M. Nicol

Information Trust Institute, University of Illinois at Urbana-Champaign,
Urbana, IL, USA

{palani2,dmnicol}@illinois.edu

Abstract. The knowledge an attacker gathers about the critical infras-
tructure network they infiltrate allows them to customize the payload
and remain undetected while causing maximum impact. This knowledge
is a consequence of internal reconnaissance in the cyber network by lat-
eral movement and is enabled by exploiting discovered vulnerabilities.
This stage of the attack is also the longest, thereby giving a defender the
biggest opportunity to detect and react to the attacker.

This paper helps a defender minimize the information an attacker
might gain once in the network. This can be done by curbing lateral
movement, misdirecting the attacker or inhibiting reachability to a crit-
ical device. We use a linear threshold models of attack propagation to
analyze potential attack loss and use this to find actions that a defender
might invest in while staying within their budgetary constraints. We
show that while finding the best solution subject to these constraints
is computationally intractable, the objective function is supermodular,
allowing for a tractable technique with a known approximation bound.

1 Introduction

An attack on a critical infrastructure is most effective when the attacker under-
stands the cyber network as well as the physical process under control. The
attacker primarily gains this knowledge in the reconnaissance stage. The goal
during this phase is to learn more about the environment by lateral movement
which is enabled by exploiting vulnerabilities in devices and thereby increasing
network penetration. This stage is also the longest phase of the attack, thereby
giving the best opportunity to discover and possibly respond to the presence of
an attacker.

This paper provides the defender with a tool to minimize the information an
attacker might gain during the reconnaissance stage. The defender response can
be some combination of curbing lateral movement, misdirecting the attacker or
inhibiting reachability to a critical device. We model the propagation of attack
through the network, and use this to find actions that a defender might invest
in while staying within their budgetary constraints.
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 258–275, 2020.
https://doi.org/10.1007/978-3-030-59854-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_19

Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 259

Attack graphs have been used to map possible paths an attacker might take
within a network to reach their goal. Given the scale of the network and the
possible states it can be in, the size of an attack graph can be in the order
of thousands of nodes. And, while there has been work in the past that looks
at generating such graphs and verifying them [23,24], very little work has been
done on using such a graph to harden the network [8]. We argue that at the scale
of current attack graphs, it is very hard for an analyst to make useful decisions
without exploiting properties of the graph and the metric in question.

We pose the question of network hardening in terms of modifying the attack
graph (deleting edges) and show that despite the problem being computationally
complex, there exist properties that can be exploited to get guarantees on the
analysis.

Our Contributions
In this paper we formally define the network hardening problem against a model
of attacker reconnaissance. The paper makes the following contributions:

1. We describe the attack propagation model under an attacker whose goal is
to maximize knowledge of the network.

2. We show that the network hardening problem is NP-hard.
3. Using special properties of the defender metric, we show that a greedy algo-

rithm performs with a provable approximation bound of 1 − 1
e .

4. We improve the complexity of the greedy algorithm from quadratic to linear.

We will first present some background on the cyber kill chain in critical infras-
tructures, diffusion processes and supermodularity as it relates to the network
hardening problem (Sect. 2). We then proceed to formally define the network
hardening under reconnaissance problem by describing models of attack propa-
gation through attack graphs and of defender actions (Sect. 3). We then use the
notion of live-edge graphs to inform our proofs of supermodularity and mono-
tonicity of the objective function under defender actions (Sect. 4). Finally, we
present the algorithm for efficiently solving the supermodular optimization prob-
lem we describe (Sect. 5) before presenting a discussion (Sect. 7) and concluding.

2 Background

2.1 Critical Infrastructure Attacks

Our analysis of recent attacks, including the power outage in Ukraine in 2015
and 2016 [16] as well as the 2017 attack on a Saudi Arabian oil and gas facility
[15], shows that in order to remain inconspicuous, attackers avoid using malware
and techniques that can be associated with adversarial behavior. This type of
attack is known as living off the land. The success of these attacks comes from
the ability of the attacker to move in the network by building a knowledge base
in and about the network. It is important to note that while most defensive
counter measures dwell on monitoring and protecting against the final impact of

260 K. Palani and D. M. Nicol

an intrusion, the biggest opportunity lies in the steps that lead up to the final
step. To this end, the Industrial Control System (ICS) Cyber Kill Chain which
was developed to help the defender characterize an attack, can be used as a tool
to understand the stages of an intrusion leading up to an attack. A detailed
description of the kill chain can be found at [16], but our focus will be on the
internal reconnaissance stage.

Internal reconnaissance is the phase where the attacker attempts to find
potentially interesting targets, as well as tries to acquire passwords or other cre-
dentials in order to attain an increased access to the system. Using these acquired
credentials, attackers move laterally and repeat while maintaining stealthy pres-
ence. The goal is to be able to understand the network and the process being
controlled well enough to be able to develop and deliver an attack that has the
intended impact. An example of this can be observed in the second attack on
Ukraine’s power grid where the attacker understood the ability of the safety con-
trol system to thwart their intended impact and used this knowledge to develop
a device specific DoS attack for the safety controls. Gaining this information
and formulating usable knowledge from it takes attackers a long time, in certain
cases up to a year (Ukraine 2015). Thus, while the delivery of the final attack
might be instantaneous thereby requiring detection to be high precision and
to act in real-time, a greater opportunity for detecting/preventing attack is to
monitor/block the reconnaissance activity of an attacker.

Implementing a defense-in-depth strategy improves security by raising the
cost of an intrusion for an adversary while simultaneously improving the proba-
bility of detection by the defender. The end goal is to reduce the opportunities
for an adversary to take advantage of the ability to move laterally through a
critical infrastructure network. The use of multiple layers not only helps prevent
direct attacks against critical systems but also greatly increases the difficulty of
reconnaissance activities on ICS networks. Our goal in this paper is to develop
a systematic methodology for implementing such hardening techniques.

2.2 Diffusion Networks

Diffusion networks are used to model the spreading behavior of disease, influence
or information through large networks. In its basic form a diffusion network
is a set of nodes with directed edges that indicate the potential transmission
of information, disease etc. A transmission matrix is used to indicate pairwise
transmission rates between the nodes. Various diffusion models [7,10] proposed
in the literature mostly differ in the how the transmission of infection is modeled.

Linear Threshold Model. A commonly used diffusion process (and of special
interest to us) that models influence spread is the linear threshold model [9]. At
its core, it is a weighted directed graph G = (V,E,w) called the influence graph,
where V is the set of nodes, E is a set of directed edges and w : V × V → [0, 1]
is the weighting function on the edges. For any edge (u, v) /∈ E, w(u, v) is not
defined. Further, for every node v ∈ V , it is required that

∑
u:(u,v)∈E w(u, v) ≤ 1

Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 261

i.e. the sum of weights from all incoming neighbors is at most 1. Given such
an influence graph and a source node S0 = {a}, the cascade diffusion process
proceeds in discrete time steps t = 0, 1, 2, ... as follows:

1. at the initial time step t = 0, every node v ∈ V independently selects a
threshold θv ∈ [0, 1] uniformly at random. This captures our uncertainty in
nodes’ true thresholds against influence;

2. in every subsequent step (t + 1), an inactive node, v, becomes active if the
sum of incoming influence exceeds the threshold

∑

u:u∈St,(u,v)∈E

w(u, v) ≥ θv

where St is the set of nodes activated until the previous timestep t;
3. the process terminates when no more nodes can be activated.

2.3 Supermodular Set Functions

In this work we will reduce the question of finding defensive interventions into
an optimization problem which minimizes the knowledge gained by an adversary
subject to budgetary constraints. We will see that while the objective function
will turn out to be NP-hard to optimize, it possesses the special property of
supermodularity.

A set function f : 2S → R defined over the power set 2S of a set S is called
supermodular iff ∀A ⊆ B ⊂ S, ∀s ∈ S \ B:

f(A ∪ {s}) − f(A) ≤ f(B ∪ {s}) − f(B)

The property essentially states that for a non-decreasing supermodular set
function f , the marginal utility obtained by adding a new element to a larger
set is greater than the utility of adding the element to any subset of the
larger set. This property is referred to as the increasing differences property, as
opposed to the more commonly seen diminishing returns property of submodular
functions [12].

Most optimization literature focuses on submodular objective functions,
which we will use to inform our analysis of our supermodular objective. It has
been shown that submodular maximization is NP-hard [4] as can be intuited by
the combinatorial explosion of possible subsets. However, a proof by Nemhauser
et al. [21] shows that a greedy algorithm for maximizing a monotone submodular
function (or in our case minimizing a monotone supermodular function) while
subject to cardinality constraints can provide a constant factor approximation
of 1 − 1

e ≈ 63%.

3 Problem Statement

In order to find a set of actions that the defender can implement to harden
the network, we need a model of the services in the network (knowledge about

262 K. Palani and D. M. Nicol

these services is what the attacker is after), a model for how the attacker gains
this knowledge through internal reconnaissance, and a measure of how good the
defender strategy is, thereby allowing us to quantitatively harden the system. In
this section, we describe each of these requirements and formalize the network
hardening problem. At a high level, we need to find a hardening policy π that
minimizes knowledge an attacker gains Q(π) while making sure that the cost
of the policy stays within a given security budget B. We explore each of the
elements of the following optimization later in the paper.

minimize
π

Q(π) subject to cost(π) ≤ B

3.1 Attack Graph

An attack graph is a graphical model that represents the defenders’ knowledge
about network components, services, their vulnerabilities and their interactions,
showing the different paths an attacker can follow to reach a given goal by
exploiting a set of vulnerabilities. Along each attack path, vulnerabilities are
exploited in sequence, so that each successful exploit gives the attacker more
knowledge thereby leading to an increased foothold in the network.

Uncertain attack graphs [22], extend the notion of an attack graph by allow-
ing for uncertainty in edge existence. Formally, an uncertain attack graph
A = (V,E, p) is a directed graph, where the nodes in V represent states of
an attack and a directed edge in E represents the transition between states.
Each edge (i, j) ∈ E is associated with a transition probability pij i.e. the like-
lihood that an attacker can compromise state j given the knowledge from the
current compromised state i.

A state in the model represents an atomic unit of knowledge, gaining which
allows the attacker to make better decisions about the subsequent stages of
reconnaissance. Think of the attacker starting blind (or with partial visibility)
and each node that they get a foothold on adds to their visibility into the system
and its processes. One simple way of depicting a state is as a tuple of host iden-
tity, service and privilege level on the service. Thus the knowledge gained from
a state is the knowledge available on that host service when attacker achieves
the privilege level needed. A transition corresponds to an atomic attacker action
that leads to an increased gain in knowledge. Examples of transition include pass-
word guessing to escalate privilege, vulnerability exploitation to gain foothold
on previously uncompromised host and active scans to detect new services.

A successful reconnaissance campaign is a sequence of transitions or paths in
the graph that leads to knowledge states from where an attacker can affect the
process being controlled in the critical infrastructure. One metric to measure
success of attacker reconnaissance is to count the number of nodes that are
infected at the end of the attack propagation phase, but we will dive deeper on
these issues in the upcoming sections.

Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 263

3.2 Attack Propagation Model

We define the attack propagation model as follows, based on the linear threshold
diffusion model in [9].

1. The attacker starts with an initial knowledge S0, where S0 ∈ V is a subset of
nodes in the uncertain attack graph.

2. Each node v has a threshold θv ∈ [0, 1]. This represents the weighted fraction
of neighbors that must be compromised in order for v to be compromised.
The value for the threshold is drawn at random. This threshold is the reason
why the attack propagation process is stochastic.

Let us explore the threshold θv a little more. By definition, it can be inter-
preted as the likelihood that a node is compromised given that it’s neighbors
have been compromised. In the case of complete knowledge, about the services
running on a node or attacker capabilities, the threshold is no longer a ran-
dom variable. However, we more commonly encounter situations of uncertainty
regarding θv. One scenario being the lack of detailed knowledge of services, their
versions and the vulnerabilities in the network. Note that sometimes, despite per-
fect knowledge of the network, uncertainties arise from unknown unknowns such
as zero-day vulnerabilities. Another scenario is limited understanding of attacker
capabilities, for example an adversary may possess information that is gained
external to the reconnaissance activity, thereby allowing them to compromise a
node without having to compromise all its neighbors.

Given this uncertainty in the node threshold θv, the subsequent question is
how to model it. Traditionally in the Linear Threshold model, it is assumed that
θv is sampled from a standard uniform distribution (U [0, 1]). However, this does
not capture any knowledge that the defender might possess. We suggest using
a Beta distribution to sample the node threshold. The parameters α andβ of
a Beta(α, β) allow the defender to capture their prior knowledge. In the base
case of α = β = 1, we end up with a U [0, 1] which captures complete lack of
knowledge.

Thus, given the initial knowledge of the attacker (an initial compromised
set) and the thresholds of all the uncompromised nodes, the attack propagation
process unfolds in discrete time steps: at time t all nodes that were compro-
mised in timestep t − 1 remain compromised and any uncompromised node v is
activated as: ∑

w:(v,w)∈E

pvw ≥ θv

3.3 Modeling Prior Knowledge of Attacker

Attackers can often gain auxiliary knowledge about the control system devices
and processes from sources external to the network. They might know device
manufacturer names and model numbers from reading public documents such
as public presentations and requests for tender (similar to the attack on the
Kudankulam Nuclear Power Plant [1]). This has in the past, allowed attackers to

264 K. Palani and D. M. Nicol

successfully conduct watering hole attacks by adding malware to vendor websites
[20]. Adversaries can also acquire attacks for known vulnerabilities on the dark
web, thereby making the lateral movement process faster. They might acquire
stolen passwords for system operators of one system from an attack that was
not targeted for it, like in the case of the Ukraine attack where some passwords
were gained as a consequence of the ransomware notPetya (that did not target
ICS specifically) [16]. Thus, an attacker starts in the network with some prior
knowledge. We model this by designating a subset of the nodes as compromised
at the start of the attack propagation process. S0 ⊆ V is the knowledge an
attacker possesses at time t0. In order to simplify computation we add a dummy
node s to the set of nodes V with edges to the nodes S0 each with probability
1. This allows us to designate s as the source node for attacks while allowing us
to maintain S0 as the initial foothold of the attacker.

3.4 Defender Actions

Knowledge reduction is equivalent to reducing the coverage of nodes in the uncer-
tain attack graph. We define two actions a defender can perform to harden the
network.
1. Add a security rule. We consider scenarios where a firewall or intrusion pre-

vention system is present in the network and the defender adds a fixed rule or
signature that the security appliance must match against to decide if a flow
is permitted or not. Adding a rule is equivalent to reducing the edge traversal
probability of an edge in the attack graph. If the defender believes that a rule
prevents the attacker from reaching the next knowledge state then the edge
is deleted i.e. edge traversal probability goes to zero. In this work we only
consider the latter scenario where an edge is completely removed from the
attack graph. We discuss the limitation of this in Sect. 7.

2. Add a security appliance or apply a patch. When a new security appliance
is added to the network with the correct configuration or when a known
vulnerability is patched, multiple edge traversal probabilities are modified by
a single action. However, such an action has a higher cost associated with
it. In the case of a new security appliance this might be the capital cost of
the technology and its deployment as well as the operational cost of hiring
analysts to dig through false positives. In the case of patching the cost is
mostly that of testing the patch in an identical environment before deeming
it fit to be reproduced in the operational network.

The set of actions that a defender undertakes is known as the policy π. Each
policy π is a set of deleted edges corresponding to defender actions. We denote
the implementation of a policy as a modification to the uncertain attack graph A:

Aπ = A(V,E \ π, p)

A policy is feasible if the total cost of actions taken is no greater than a given
budget limit B. For a given uncertain attack graph A with an initial infection S0,
the network hardening problem is to select the optimal policy among all feasible
policies, such that the information gained by the attacker is minimized.

Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 265

3.5 Objective Function

We define two metrics of interest in the network hardening problem: penetrability
and expected risk.

Definition 1. Penetrability of an uncertain attack graph A is defined as the
expected number of compromised nodes at the end of an attack propagation pro-
cess that starts at an initial foothold, S0.

P(A) = E[S∞] (1)

where S∞ is the number of nodes that are compromised at the end of attack
propagation.

Penetrability is analogous to reachability in stochastic reliability graphs. In a
deterministic attack graph, penetrability is defined as the number of nodes that
can be reached from a source set S0.

We recall that the uncertain attack graph A is a probabilistic graph. A prob-
abilistic graph can be a generator for 2|E|-many deterministic graphs, based on
the presence or absence of an edge. In the case of uncertain attack graph A,
each deterministic graph it generates is called an attack scenario. Each attack
scenario is a possible set of nodes that an attacker has visited using the set of
compromised edges. Note that not all of the 2|E|-many attack scenarios may be
plausible, and thus can be excluded from the search space.

Definition 2. Risk Consider an attack scenario A ∈ ΩA, where ΩA is the
space of attack scenarios that can be generated from uncertain attack graph A.
Also, a loss function, L : A → R+, for attack scenario A, L(A). The risk for a
network modeled by the uncertain attack graph A is defined as the expected loss
across all possible attack scenarios:

R(A) =
∑

A∈ΩA

Pr[A]L(A) (2)

The goal of the loss function is to quantify the direct (monetary loss due to
equipment damage and repair) and indirect losses (loss of intellectual property)
a critical infrastructure network faces under attack. The loss function is generally
monotone non-decreasing: the more nodes an attacker compromises the greater
the loss. While, there is more discussion on loss functions in Sect. 7, in this work
we only look at monotone loss functions defined as follows:

Definition 3. Given an attack scenario A ∈ ΩA, the loss under such an attack
can be computed as:

L(A) =
∑

i∈P (A)

ci (3)

where ci is the dollar cost of losing the knowledge stored in node i to the attacker
and P (A) is the set of compromised nodes in A.

266 K. Palani and D. M. Nicol

We understand that there is uncertainty associated with deriving the value
ci. One source of uncertainty is from attributing the loss as either a loss of
confidentiality or one of availability. A loss in confidentiality is characterized by
the loss of industrial secrets and proprietary technology present on a node. A
loss in availability is due to denial of service which can range from monetary loss
due to a blackout for few hours to equipment damage. Thus this loss is more
of a distribution rather than a number. While understanding this, we defer this
to future work and allow for a treatment of ci as a number which the user can
either define as worst case or average monetary loss based on their analysis.

In any network, some nodes (say an authentication server or the data histo-
rian) are more valuable than others. The risk metric intrinsically captures the
case where nodes are valued differently. Also, note that the risk metric can be
used to define Penetrability. If L(v) = 1 for every node v ∈ A and L(v) = 0
for every other node, the expected loss is the expected number of nodes reached
at the end of attack propagation. While the risk metric is a general solution,
it requires more information from the defender, thereby making penetrability a
viable alternative. Under this alternate definition, penetrability can be formal-
ized as:

P(A) =
∑

A∈ΩA

Pr[A]r(A) (4)

where r(A) is the {0, 1} loss function describing the number of nodes that can
be reached in an attack scenario A.

3.6 Constraints

There is a cost associated with each defender action and the security budget
must be split such that the defender actions that restrict attacker movement
most should be preferred over the rest. In a simple case where all defender
actions cost the same, a cardinality constraint can be used (total number of
deleted edges is less than or equal to the budget). In most cases however, the
cost is more of a knapsack constraint i.e. the sum of costs of each action must
be below the budget.

Considering the objective function and the constraints we defined in this
section, the network hardening problem can be translated into the following
optimization problem:

argmin
π⊆E

Q(A \ π) subject to
∑

i∈π

ki ≤ B (5)

Where, the function Q(A) can be substituted for either P(A) or R(A) depending
on the analysis.

Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 267

4 Analyzing the Objective Function

In this section we analyze some interesting properties of the objective function.
Specifically, we show that the objective function is monotonically decreasing and
supermodular in the policy π.

4.1 Live Edge Paths

Influence maximization literature shows that an alternate method to compute
the influence function under the linear threshold process is using live-edge paths
in the influence graph. The claim (as proved in [9]) is that given an initial set
of nodes, S, the distribution over active nodes obtained by running the linear
threshold process to completion is the same as the distribution of nodes reachable
from S via live-edge paths, where the live-edge paths are selected as described
below:

Each node v ∈ V picks at most one of its incoming edges at random with
probability puv and selects no edge with probability 1 − ∑

u:(u,v)∈E puv.
Note that the set of nodes in the generated live-edge graph X is equal to V

and the set of live edges, EX is a subset of E, i.e., EX ⊆ E. Also note that these
sampled edges are unweighted and each vertex has at most one incoming edge.

We will use this live-edge graph to inform our proofs of monotonicity and
supermodularity. Before we get to the proofs, we make some useful observations.
The probability of a node v ∈ V having the edge configuration as seen in attack
scenario A is given by:

p(v,A,A) =

{
puv if ∃u : (u, v) ∈ EA

1 − ∑
u:(u,v)∈E puv otherwise

(6)

where EA is the set of edges in A. Using this, we can get the probability of
a scenario graph A as:

Pr[A] =
∏

v∈V

p(v,A,A) (7)

Note that the loss (L(A)) term is deterministic given an instance of the
scenario graph A. The likelihood term is computed as shown in Eq. 7.

4.2 Monotonicity

In this section, we prove that the objective function is monotonically decreasing.

Lemma 1. The reachability function r(A \ π) is a monotonically decreasing
function of the policy π.

Proof. Given a scenario graph A ∈ ΩA, we need to show that for any policy
π ⊆ E and an edge e = (u, v) ∈ E \ π

r(A \ π) − r(A \ {π ∪ e}) ≥ 0

268 K. Palani and D. M. Nicol

Since, A is a live-edge graph such that each vertex v ∈ V has at most one
incoming edge it can be seen that removing an edge e = (u, v) to v will make it
unreachable from the source s. In fact, if v is not a leaf node, then all its children
are rendered unreachable by the removal of edge e. Thus, the number of nodes
reachable in A \ π is higher than that in A \ {π ∪ e} �

Lemma 2. The loss function L(A \ π) is a monotonically decreasing function
of the policy π.

Proof. Similar to Lemma 1 we must show that

L(A \ π) − L(A \ {π ∪ e}) ≥ 0

By definition, the loss function is a linear combination of non-negative costs
based on the reachability of nodes. Thus, since the reachability in A\π is higher
than that in A \ {π ∪ e} by at least 1 (due to v), the loss is also higher by at
least cv, which is non-negative �

Theorem 1. R(A \ π) is a monotonically decreasing function of the policy π.

Proof. We defer the proof to the appendix for better readability.

Theorem 2. P(A \ π) is a monotonically decreasing function of the policy π.

Proof. This proof follows the same structure as above and uses Lemma 1 in the
final step �

4.3 Supermodularity

s u

u’

v

v’ w

ge

e’

t

Fig. 1. Proof of supermodularity.

Lemma 3. The reachability function r(A\π) is a supermodular function of the
policy π.

Proof. In order to prove supermodularity, we must show for an attack graph
A = (V,E, p), a subset of edges to be deleted π ⊂ E and two edges e, g ∈ E \ π)
that

r(A \ π) − r(A \ π ∪ {e}) ≥ r(A \ π ∪ {g}) − r(A \ π ∪ {e, g})

Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 269

Figure 1 illustrates our proof. Note that in the live edge graph model, each
node has at most one incoming edge as shown in the figure. Consider the scenario
shown in the figure to be the A \ π. The difference we are computing is the
reduction in reachability when an edge is deleted from this graph. We consider
two cases: (1) deleting an edge e′ that does not fall in the same path as edge g
and (2) deleting an edge e in the same path as edge g. In case 1, deleting edge
e′ from A \ π leads to the same reduction as in A \ π ∪ {g}. This is due to the
fact that the deletion causes the same set of nodes to become unreachable. Thus,
case 1 leads to equality. In case 2, deletion of the edge e from A \ π disconnects
additional nodes which had edge g in their path from the source. Thus in case 2,
the reduction in reachable nodes is greater when e is deleted from A \ π instead
of A \ π ∪ {g} �

Lemma 4. The loss function L(A\π) is a supermodular function of the policy π.

Proof. Similar to Lemma 3, we must show

L(A \ π) − L(A \ π ∪ {e}) ≥ L(A \ π ∪ {g}) − L(A \ π ∪ {e, g})

Note that in the reachability function, the marginal value after the difference
represents the number of nodes that are rendered unreachable after the edge e
is deleted. Since the loss function is a linear function of reachability it can be
seen that the marginal loss is in fact the sum of costs of nodes that are rendered
unreachable by deleting e. Thus, it can be seen that for non-negative costs, the
marginal loss is greater when e is deleted from A \ π instead of A \ π ∪ {g} �

Lemma 5. If f(S) is a supermodular function then its expectation E[f(S)] is
a supermodular function of S.

Proof. This is a simple extension of the fact that supermodular functions are
closed under linear combinations and the expectation function is essentially a
non-negative weighted sum of the supermodular function.

Theorem 3. Penetrability is supermodular in the policy π.

Proof. We note that by the live edge definition in Eq. 4, penetrability is essen-
tially the expected reachability in an attack graph. Hence, by Lemma 3 and
Lemma 5 it can be seen that P(A \ π) is supermodular in the policy π �

Theorem 4. Risk is supermodular in the policy π.

Proof. Risk is by definition (Eq. 2) expected loss. Hence, by Lemma 4 and
Lemma 5 it can be seen that R(A \ π) is supermodular in the policy π �

5 Algorithm

In the previous section we showed our hardening objective functions to be mono-
tone and supermodular under the linear threshold model of attack propagation.

270 K. Palani and D. M. Nicol

Our optimization problem is one of minimizing a monotone supermodular func-
tion under a knapsack constraint. In the case where every defender action has
the same cost and we can perform k defender actions, the total possible policies
are

(|E|
k

)
. It is combinatorially hard to search this large space for an optimal pol-

icy. In fact, the problem of maximizing a monotone submodular function (and
in our case a monotone supermodular function) under a cardinality constraint
has been shown to be NP-hard [12]. The proof is a reduction of the vertex cover
problem [9].

5.1 The Greedy Algorithm

A naive approach is to find approximate solutions using the greedy algorithm.
The algorithm starts with an empty policy π = ∅ and proceeds in an iterative
fashion. There are a total of k iterations (cardinality constraint: |π| ≤ k). In the
j-th iteration we pick an edge e such that e = argmaxe∈E\πΔ(e), where Δ(e) is
the marginal loss defined as R(A\π)−R(A\ (π ∪{e})). Note that similar steps
apply to the Penetrability objective.

A fundamental result by Nemhauser et al. [21] shows that under the cardi-
nality constraint, this greedy algorithm produces a near optimal solution. The
greedy algorithm will choose a policy π such that R(A \ π) ≥ 1 − 1

e R(A \ π∗),
where π∗ is the optimal policy for hardening the network.

Drawbacks of Naive Greedy. While the greedy algorithm gives a near opti-
mal solution, it needs some tweaks in the practical setting. Note that the R(A\π)
function is evaluated every time we need to find the edge that maximizes Δ(e).
Also, computing this function accurately is #-P hard as shown in [3]. Thus, we
need a way to approximate the expected risk in sub-linear time.

5.2 Monte Carlo Estimation

In order to find an approximation of risk, we use Monte Carlo estimation. To
estimate the risk, the Monte Carlo estimator first draws N possible attack sce-
narios denoted by A0, A1, ..., AN from the attack graph A using the live-edge
sampling rule stated in Eq. 6. Then, for each possible attack scenario Ai, the
algorithm evaluates the loss function L(Ai). Finally, the risk estimate (denoted
by R̂) is obtained by:

R̂(A) =
1
N

∑

i∈N

L(Ai) (8)

Note that due to the linear combination property of supermodular functions,
this estimated expected risk is also monotone and supermodular in the policy π.
Given this estimate, the marginal loss Δ(e) is given by:

1
N

∑

i∈N

L(Ai \ π) − L(Ai \ π ∪ {e}) (9)

Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 271

5.3 Knapsack Budget Constraint

When the defender actions have different costs, the simple greedy algorithm can
perform arbitrarily badly. However, an algorithm that defines a loss-cost ratio
Δ(e)/ke and uses partial enumeration along with the greedy step of picking the
edge e ∈ E that maximizes the loss-cost ratio at every iteration has been shown
to achieve an approximation guarantee of 1 − 1

e [26] [13].

5.4 Complexity of the Greedy Algorithm

Note, that in a given iteration we need to compute the marginal loss for every
edge e ∈ E \ π and every scenario Ai. This involves a breadth first search
(O(|V | + |E|)) to compute reachability which is then used to compute loss.
Note that in the live edge graphs, we have at most |V | edges since each node
can have only one incoming edge. Thus, the complexity of each iteration is
O(|V |2 + |V ||E|). However, we can use the following lemma to improve the time
complexity from quadratic to linear.

Lemma 6. The marginal reduction in reachability when an edge e = (u, v) is
added to the policy is the same as the size of the sub-tree which is induced by the
node v.

Proof. We recall that the marginal reduction in reachability, denoted by r(A \
π) − r(A \ π ∪ {e}) is the same as the number of nodes rendered unreachable
when edge e is deleted from the graph A \π. Referring to Fig. 1 we see that this
is essentially the size of the sub-tree rooted at v.

Thus, we can create a tree data structure, which stores at each node the size
of the sub-tree it would generate if the incoming edge to it is deleted. Given
the data structure, the marginal loss can be computed in a single breadth first
search traversal. Also since the number of edges is at most V , this takes O(|V |).
The total time of the modified greedy algorithm is O(kN |V |) which is linear in
the size of the attack graph.

6 Related Work

A closely related area is that of influence diffusion through social networks. The
question of influence maximization is one of finding the initial set of nodes to
infect in order to maximize spread of information over the network [9]. This has
been applied to study influence of users on their followers in a social network
[2], to examine cascade of news through the web [18] and the propagation of
recommendations [17]. There has also been work on inferring the structures of
such networks [5,6]. Our work differs from this line of research since our focus
is not on empirical analysis of diffusion but rather on modifying a network to
minimize the diffusion through it. A similar problem has been addressed in [11]
in a different application context, with a slightly different objective function and
constraints.

272 K. Palani and D. M. Nicol

A closer line of inquiry is that of placing sensors to detect changes in the
environment. [14,19] use submodular maximization to maximize the information
gained by a sensor placement. There are also actuator placement problems [25]
that look to choose a set of actuators to maximize controllability of a control
network. Our work differs from this line of inquiry since our study of attack
graphs requires analysis of graph modification. Also, the metrics of interest are
very different.

7 Conclusion and Limitations

Critical infrastructures have complex networks which control unique processes.
In order to perform a successful attack on such a network, the adversary must
understand the network components they can leverage and the processes they
can affect. This requires a long and detailed reconnaissance phase. Thus, the
best opportunity for a defender is to harden against such recon activities. This
paper provides the defender with a systematic approach to making decisions
while limiting the cost of defense. We show that despite imperfect knowledge of
the attacker and their actions the defender can still improve their risk posture.
While the hardening problem is NP-hard we provide a linear time algorithm
with a provable approximation bound of 1 − 1

e .
While this paper provides analysts with an algorithm for hardening their

network, there are a few limitations we wish to discuss. First, the loss distribution
is often not available to the analysts and while a metric like penetrability can
give some insights into the hardening process, in the future we hope to explore
other metrics that can capture the loss. Another assumption is the loss function
being monotone, however, with the growth of reactive security techniques like
honeypots, we will have to look into non-monotone loss in the future. Second, we
note that all properties studied in the paper hold only for the linear threshold
model and while this is a strong model for reconnaissance we might have to find
other models to capture other stages of the attack kill-chain.

A Proof of Theorem 1

Given an attack graph A = (V,E, p) we need to show that for any set π ⊆ E
and an edge e = (u, v) ∈ E \ π

R(A \ π) − R(A \ (π ∪ {e})) ≥ 0

This proof is very similar to the proof in [11] and only differs in our function
of interest (attack loss function).

The space of attack scenarios ΩA\π, can be divided into three disjoint par-
titions based on the edge selected for node v. Ωe

A\π (edge e = (u, v) is chosen),

Ωe
A\π (a different edge e = (u

′
, v) is chosen) and Ω∅

A\π (no incoming edge is
selected).

Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 273

Now for, the space ΩA\(π∪{e}) we note that the space is a subset of ΩA\π

since any scenario graph in the former can be generated in the latter. Also, the
only scenarios not present in the former are ones where the edge e is involved.
Thus, ΩA\(π∪{e}) can be defined based on two partitions as: Ωe

A\π ∪ Ω∅
A\π.

Using these disjoint partitions, we can write the difference as:

R(A \ π) − R(A \ (π ∪ {e}))

=
∑

A∈Ωe
A\π

Pr[A|A \ π]L(A)

+
∑

A∈Ωe
A\π

(Pr[A|A \ π] − Pr[A|A \ (π ∪ e)])L(A)

+
∑

A∈Ω∅
A\π

(Pr[A|A \ π] − Pr[A|A \ (π ∪ e)])L(A)

For the space Ωe
A\π we have Pr[A|A \ π] − Pr[A|A \ (π ∪ e)] = 0 since from

Eq. 6 we have, p(v,A,A \ π) = p(v,A,A \ (π ∪ {e})) = p(e). This is due to the
fact that in this space, under both cases, edge e is chosen for node v.

For the space Ω∅
A\π we have:

Pr[A|A \ π] − Pr[A|A \ (π ∪ e)] = −pe

∏

v′
=v

p(v′, A,A \ π)

This stems from the fact that we can rewrite the above difference in terms of
the node v and all other nodes v′ = v as Pr[A|A \ π] − Pr[A|A \ (π ∪ e)] =∏

v′
=v p(v′, A,A \ π) × [p(v,A,A \ π) − p(v,A,A \ (π ∪ {e}))].
As for the difference in probabilities when node v has no incoming edge we

see that it goes to −pe due to the fact that p(v,A,A \ π) = 1 − ∑
x∈E\π px =

1 − ∑
x∈E\(π∪{e}) px − pe = p(v,A,A \ (π ∪ {e})) − pe.

Now consider the following two facts:

– Every graph A′ ∈ Ωe
A\π has a corresponding graph A ∈ Ω∅

A\π and vice versa
where A′ = A ∪ {e} i.e. they differ only in the edge e.

– A graph A′ ∈ Ωe
A\π has probability Pr[A′|A \ π] = pe

∏
v′
=v p(v′, A′,A \ π).

Note that this is essentially Eq. 7 rewritten in terms of e.

Hence:

R(A \ π) − R(A \ (π ∪ {e})) =
∑

A∈Ω∅
A\π

Pr[A′|A \ π][L(A′) − L(A)]

Since this is a non-negative sum and by Lemma 2 we know that L(A′) −
L(A) ≥ 0 we can see that the risk function is monotone decreasing in the policy π

�

274 K. Palani and D. M. Nicol

References

1. Anantharaman, P., Palani, K.: What happened when the Kudankulam nuclear
plant was hacked - and what real danger did it pose? Scroll.in, 20 November 2019

2. Bakshy, E., Hofman, J.M., Mason, W.A.,Watts, D.J.: Everyone’s an influencer:
quantifying influence on Twitter. In: Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining, pages 65–74 (2011)

3. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1029–1038 (2010)

4. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

5. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and
influence. ACM Trans. Knowl. Discov. Data (TKDD) 5(4), 1–37 (2012)

6. Gomez Rodriguez, M., Leskovec, J., Schölkopf, B.: Structure and dynamics of infor-
mation pathways in online media. In: Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, pp. 23–32 (2013)

7. Granovetter, M., Soong, R.: Threshold models of diffusion and collective behavior.
J. Math. Sociol. 9(3), 165–179 (1983)

8. Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Proceed-
ings 15th IEEE Computer Security Foundations Workshop, CSFW-15, pp. 49–63.
IEEE (2002)

9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

10. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory
of epidemics. In: Proceedings of the royal society of London. Series A, Contain-
ing Papers of a Mathematical and Physical Character, vol. 115(772), pp. 700–721
(1927)

11. Khalil, E., Dilkina, B., Song, L.: CuttingEdge: influence minimization in networks.
In: Proceedings of Workshop on Frontiers of Network Analysis: Methods, Models,
and Applications at NIPS (2013)

12. Krause, A., Golovin, D.: Submodular function maximization. In: Tractability: Prac-
tical Approaches to Hard Problems, pp. 71–104. Cambridge University Press (2014)

13. Krause, A., Guestrin, C.: A Note on the Budgeted Maximization of Submodu-
lar Functions. Carnegie Mellon University, Center for Automated Learning and
Discovery (2005)

14. Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., Faloutsos, C.: Efficient sen-
sor placement optimization for securing large water distribution networks. J. Water
Resour. Plann. Manage. 134(6), 516–526 (2008)

15. Lee, R.: TRISIS malware: analysis of safety system targeted malware. Dragos Inc.
(2017)

16. Lee, R., Assante, M., Conway, T.: Analysis of the cyber attack on the Ukrainian
power grid. EISAC Technical report (2016)

17. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing.
ACM Trans. Web (TWEB) 1(1), 5es (2007)

18. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the
news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 497–506 (2009)

Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 275

19. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
420–429 (2007)

20. Ellen, N.: Russian military was behind NotPetya cyberattack in Ukraine, CIA
concludes. The Washington Post, 12 Jan (2018)

21. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions–I. Math. Program. 14(1), 265–294 (1978)

22. Nguyen, H.H., Palani, K., Nicol, D.M.: An approach to incorporating uncertainty in
network security analysis. In: Proceedings of the Hot Topics in Science of Security:
Symposium and Bootcamp, pp. 74–84 (2017)

23. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 336–345 (2006)

24. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on Security
and Privacy, pp. 273–284. IEEE (2002)

25. Summers, T.H., Cortesi, F.L., Lygeros, J.: On submodularity and controllability
in complex dynamical networks. IEEE Trans. Control Netw. Syst. 3(1), 91–101
(2015)

26. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

Sensitivity Analysis and Uncertainty
Quantification of State-Based

Discrete-Event Simulation Models
Through a Stacked Ensemble

of Metamodels

Michael Rausch1(B) and William H. Sanders2

1 University of Illinois at Urbana-Champaign, Urbana, IL, USA
mjrausc2@illinois.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
sanders@cmu.edu

Abstract. Realistic state-based discrete-event simulation models are
often quite complex. The complexity frequently manifests in models that
(a) contain a large number of input variables whose values are difficult
to determine precisely, and (b) take a relatively long time to solve.

Traditionally, models that have a large number of input variables
whose values are not well-known are understood through the use of sen-
sitivity analysis (SA) and uncertainty quantification (UQ). However, it
can be prohibitively time consuming to perform SA and UQ.

In this work, we present a novel approach we developed for performing
fast and thorough SA and UQ on a metamodel composed of a stacked
ensemble of regressors that emulates the behavior of the base model. We
demonstrate the approach using a previously published botnet model
as a test case, showing that the metamodel approach is several orders
of magnitude faster than the base model, more accurate than existing
approaches, and amenable to SA and UQ.

Keywords: Metamodels · Surrogate models · Emulators · Security
models · Reliability models · Sensitivity analysis · Uncertainty
quantification · Optimization

1 Introduction

Many state-based discrete-event simulation models of real-world systems are
complex, large, and contain uncertain input parameters. It is challenging to
make realistic quantitative models smaller and simpler (and thus faster to exe-
cute) because the world is large and complex. It is also very difficult to remove
uncertainty in the model input values. Obtaining precise, certain input values
in many domains may be prohibitively expensive or even impossible. Special
approaches must be developed and used to make effective use of such models,
given the issues of long run times and uncertain input values.
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 276–293, 2020.
https://doi.org/10.1007/978-3-030-59854-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_20

SA and UQ of Simulation Models Through Stacked Metamodels 277

The traditional way of handling uncertain input parameter values is to per-
form (a) sensitivity analysis (SA) to determine the most sensitive inputs, and
(b) uncertainty quantification (UQ) to determine how the uncertainty in the
inputs propagates to uncertainty in the model output. Both SA and UQ typi-
cally require that models be solved many times, with the input variable values
being varied each time. If the calculation of the model’s metrics could be done
quickly, comprehensive SA and UQ could be accomplished with a reasonable
computation and time budget. If the model input values were known with cer-
tainty, it would be unnecessary to execute the model multiple times to perform
SA and UQ, so the time and computation required to obtain a single model
solution would be less of a concern. However, the twin issues of long solution
times and uncertain model input values in complex state-based models present
a significant challenge to modelers.

We propose the use of metamodels (also known as emulators or surrogate
models) to address the two issues. Metamodels are models of the original base
model that attempt to approximate the relationship between the base model’s
inputs and outputs, and can generally be executed much more quickly than the
base model. With an acceptably accurate metamodel, fast and comprehensive
sensitivity analysis and uncertainty quantification can be performed on the meta-
model in place of the original base model. While metamodels can be constructed
by hand, normally they are automatically constructed using machine learning
techniques (e.g. Gaussian process regressors, multilayer perceptrons, and random
forests).

A chief concern with metamodeling is the choice of an appropriate machine
learning technique, as each has its own strengths and weaknesses. While most
related work arbitrarily chooses a particular machine learning technique, or eval-
uates a small handful of different techniques and chooses the strongest, in this
work we use an ensemble of heterogeneous regressors in an effort to benefit from
the strengths of each approach while mitigating the weaknesses. We structure
the ensemble using a custom stacking approach. Stacking is a cutting-edge tech-
nique used by the winners of some recent machine learning competitions [15],
but we adapt it for use on state-based discrete-event simulation models. We use
a sophisticated botnet model [16] as a test case and have performed sensitivity
analysis and uncertainty quantification on the model, using the metamodeling
approach.

To the best of our knowledge, we are the first to propose and demonstrate a
metamodeling-based approach to the analysis of complex quantitative security
models, and the first to use a stacking-based approach to perform SA and UQ
on real-world quantitative models. We show that our stacked metamodels are
several orders of magnitude faster than the original models, are more accurate
than traditional metamodels, and are amenable to SA and UQ that could not be
performed on the original base model within a reasonable time budget. We have
demonstrated the approach with the aid of a pre-existing published peer-to-peer
botnet security model [16], which we use as a test case.

The rest of this paper is organized as follows. In Sect. 2, we explain the
process by which we use stacking to construct an accurate metamodel. In Sect. 3,

278 M. Rausch and W. H. Sanders

we describe the sensitivity analysis and uncertainty quantification techniques we
employ to analyze the metamodel. In Sect. 4, we briefly explain the botnet model
we used as a test case to demonstrate and evaluate the approach. We show the
results of our analysis of the botnet model in Sect. 5. We discuss limitations, use
cases, and future directions for the approach in Sect. 6, review related work in
Sect. 7, and conclude in Sect. 8.

2 Approach

In our context, a metamodel, also known as a model surrogate or emulator, is
a model of a model (which we will refer to in this work as the base model)
that attempts, given a particular vector of input variables (which we shall call
an input), to produce an output that matches as closely as possible the output
that the base model would produce given the same input, for all inputs. In this
work we consider quantitative outputs (metrics), though the approach could be
extended to consider qualitative outputs (i.e., by using classifiers rather than
regressors). Metamodels can rarely achieve perfect accuracy in emulating the
base model, but they often run much faster than the base models. The long
time needed to run the base model, together with the need to run the base
model many times to conduct sensitivity analysis, uncertainty quantification,
and optimization, provides the motivation to find fast metamodels that can
emulate the base model with acceptable accuracy.

While high-quality metamodels can be constructed manually by an expert
familiar with the base model, it is often easier and faster to build the metamodel
automatically. At a high level, the metamodeling process is conducted in three
stages:

1. Data for training and testing are acquired by generating a number of different
model inputs and running the base model with those inputs to observe the
resulting outputs.

2. The training data are used by a machine learning algorithm to train a meta-
model.

3. The test data are used to assess the quality of the trained metamodel.

To begin, in the first stage, data for training and testing must be acquired.
Time and computation constraints restrict the maximum number of inputs that
can be run on the base model. We can imagine that an n-dimensional input
vector describes a point in the n-dimensional input space. The metamodel will
benefit from high-quality training data that gives the most complete view of the
input space possible, given the limited number of samples. For example, if all
the training inputs are clustered closely together in the input space, the trained
metamodel may be accurate only in that limited region of the input space. The
input space should be explored as efficiently as possible. The most important
decision at this first stage is the choice of strategy for input selection. We consider
three input selection strategies in this paper: random sampling, Latin hypercube
sampling, and Sobol sequence sampling.

SA and UQ of Simulation Models Through Stacked Metamodels 279

In the second stage, the training data gathered in the previous stage are used
to train a metamodel: a model of the original base model that attempts to pro-
duce the same output the base model would produce if it were given the same
input. As mentioned previously, we consider only quantitative model output in
this work, so the metamodels will be regressors. One can choose from a variety
of machine learning regressors, including, e.g., kriging (Gaussian process regres-
sors), random forest regressors, support vector machine regressors, and k-nearest
neighbors (KNN) regressors. The most important decision at this stage is the
selection of the machine learning technique that will be able to produce the most
accurate metamodel given the training data collected in the first stage. Instead
of selecting one regressor, we use the predictions from multiple heterogeneous
regressors through stacking.

In the third stage, the test data are used to evaluate the accuracy of the
trained metamodel. Given each input in the test data, the metamodel will pro-
duce an output, and the metamodel’s output is compared to the base model’s
output. The absolute value of the difference between the two outputs quantifies
the error of the metamodel. If test inputs are generated randomly and indepen-
dently, one can use the standard statistical methods to determine the average
error and associated confidence interval.

The remainder of this section will be devoted to explaining the procedures
for obtaining the training data and constructing the metamodel.

2.1 Sampling

Acquiring appropriate data for training and testing is vitally important for con-
structing metamodels and evaluating how well they emulate the base model.
The general idea is to choose an input (in other words, a vector that contains a
specific value for each input variable), execute the base model with that input,
observe the resulting model output or metric, and then record the input and out-
put by adding them to the list of previously observed input-output pairs. This
process is repeated multiple times until some stopping criterion is reached, such
as the exhaustion of the allocated time budgeted for acquiring training data.
The choice of input at each iterative stage is very important. If all the inputs in
the training data are “close” to one another in the input space, the metamodel
trained on that data may not be able to accurately emulate the base model in
other regions. In this paper, we consider three ways of exploring the input space:
random sampling, Latin hypercube sampling, and Sobol sequences. The differ-
ences between the three methods are illustrated in the two-dimensional case in
Figs. 1, 2, and 3.

Random Sampling. Random sampling is the simplest sampling strategy that
we consider. Random sampling is conducted by selecting a value for each input
variable from the range of possible values at random, independently of any prior
sample. Random sampling has a chance of exploring any region in the input
space, unlike deterministic sampling, but random sampling can have the unfor-
tunate side effect that samples may cluster in regions of the input space that have

280 M. Rausch and W. H. Sanders

Fig. 1. 55 Random sam-
ples.

Fig. 2. 55 Latin hypercube
samples.

Fig. 3. 55 Sobol samples
drawn from a uniform dis-
tribution.

already been well explored while ignoring regions that have not been explored
at all. The clustering effect can easily be observed in the two dimensional case
shown in Fig. 1.

Latin Hypercube. The Latin hypercube sampling (LHS) [5,8] strategy
attempts to explore the space more evenly than random sampling. It is inspired
by the Latin square puzzle, which consists of an n by n array of n unique symbols
such that a particular symbol will appear exactly once in every row and every
column.1 In the two-dimensional case, Latin hypercube sampling generates N
samples by dividing the range in the x and y dimensions into N equally likely
intervals, forming a grid of N rows and N columns, and choosing a sample such
that each row and each column is sampled exactly once.2 Similarly, in the case
of a finite number of inputs, LHS generates N samples by dividing each input
variable into N equally probable intervals and choosing exactly one sample from
each interval. LHS provides stronger guarantees of coverage than random sam-
pling, because each interval is sampled once, while a particular interval may
not be sampled at all with random sampling. However, LHS may not evenly
cover the space very well. Indeed, there exist pathological cases in which Latin
hypercube sampling leaves large regions of the input space totally unexplored.3

An illustration of 55 samples chosen via Latin Hypercube sampling is shown in
Fig. 2. Notice that the sampling approach produces some pairs that are close to
one another in the input space.

Sobol Sequences. The Sobol method, in contrast to random sampling
and LHS, generates low-discrepancy sequences. Informally, a low-discrepancy
sequence will sample the input region relatively evenly. For a formal definition
of discrepancy and technical descriptions of the Sobol generation procedure,
please see [17]. An illustration in the 2-dimensional case can be seen in Fig. 3.

1 A solved Sudoku puzzle is an example of a Latin square.
2 This is similar to the classic “8 rooks” problem in chess.
3 For example, taking a sample at every cell along the diagonal is a valid Latin hyper-

cube sample sequence in two dimensions.

SA and UQ of Simulation Models Through Stacked Metamodels 281

Notice how evenly the Sobol method samples the region of interest compared to
the random sampling method and LHS.

2.2 Metamodeling

A machine learning model can be trained to emulate the base model, producing
outputs that are as close as possible to the base model outputs, given the same
input. If the base model output is qualitative, a machine learning classifier can
be trained as the metamodel. If, on the other hand, the base model output
is a quantitative metric, the metamodel will be a machine learning regressor.
In this work, we only consider base models that produce quantitative metrics,
but the techniques we utilize could be naturally extended to study base models
that produce qualitative results. A wide variety of regressors exist, each with its
own strengths. Unfortunately, in general, it is not possible to know a priori which
particular machine learning technique will produce the most accurate metamodel
for a given black box base model.

We consider a number of regressors in our analysis. Each regressor has its
own strengths, weaknesses, and assumptions about the underlying data. We con-
sider seven major types of regressors: random forest (RF) regressors, multilayer
perceptrons (MLP), gradient-boosting machines (GBM), the RidgeCV regressor,
k-nearest neighbors (KNN) regressors, Gaussian process (kriging) regressors, and
stochastic gradient descent (SGD) regressors. Many of the regressors have hyper-
parameters that change their behavior. For example, the number of neighbors
used in the k-nearest neighbors regressor can be any positive integer; different
solvers and activation functions can be used by the multilayer perceptron; and
the loss function used by the gradient-boosting machine can be changed. In this
work we consider twenty-five different regressors of the seven types mentioned
above: one random forest, seven different multilayer perceptrons, four different
gradient-boosting machines, one Ridge regressor, ten different k-nearest neighbor
regressors, one Gaussian process regressor, and one stochastic gradient descent
regressor.

One could simply choose a particular regressor to serve as the metamodel
(based on intuition or subject matter expertise), or one could train several dif-
ferent candidate regressors, compare their levels of accuracy, and select the one
with the best performance to serve as the metamodel. However, the best regres-
sor alone may not perform as well as several regressors working together. The
simplest way to use multiple regressors together is to establish a voting com-
mittee of regressors, where the regressor predictions are averaged to produce a
combined prediction. A drawback of that approach is that poorly performing,
inaccurate regressors have the same vote as the most accurate regressor. It would
be beneficial to weight the votes, such that the more accurate regressors have
more say in the final prediction than the less accurate regressors. Stacking is one
way to accomplish such weighting.

Stacking is a machine learning technique that accomplishes the weighting by
training another regressor (or committee of regressors) on the original training
data plus the predictions that the original regressors made [21]. We shall refer to

282 M. Rausch and W. H. Sanders

the regressors trained solely on the training data as layer-1 regressors, and the
regressors that were trained on the training data combined with the predictions
from the layer-1 regressors as layer-2 regressors. We do not know a priori which
regressor will perform the best in the second layer, so we train all twenty-five
regressors as layer-2 regressors. We then take the average prediction of the layer-2
regressors as the final metamodel prediction.

In practice, we find that some of the layer-1 regressors produce predictions
that are so inaccurate that they significantly degrade the performance of some
of the layer-2 regressors. Therefore, we filter the layer-2 training data so they
include only the predictions from the most accurate, best-performing layer-1
regressors. Similarly, some of the layer-2 regressors are so inaccurate that their
predictions would significantly affect the quality of the final vote, so we filter
the predictions of those layer-2 regressors as well. The filtering threshold is set
to remove the predictions of any regressor whose average prediction error is
more than 25% worse than that of the most accurate regressor at that layer.
We found that this filtering strategy was effective in the evaluation of our case
study model, but the threshold may have to be adjusted for other models, or a
completely different strategy could be used (e.g., using the best k regressors out
of the set of n, where k < n). We plan to evaluate other filtering strategies in
future work.

An illustration of the approach can be found in Fig. 4. Once trained, the
stacked ensemble of regressors can form an accurate metamodel of the base
model. Input analysis (such as sensitivity analysis and uncertainty quantifica-
tion) techniques can then be applied to the metamodel in place of the base
model.

3 Analysis Techniques

Uncertainty quantification and sensitivity analysis can help a modeler gain a
deeper understanding of the model’s input variables. Uncertainty quantification
determines the likelihood of different outcomes given the uncertainty in the val-
ues of the input variables, and can be conducted in a straightforward manner
using a Monte Carlo method [2]. Unfortunately, sensitivity analysis techniques
are more complicated, and the different techniques may give differing answers.
Sensitivity analysis attempts to determine the degree to which an input variable
influences the output. A number of different techniques can be used to perform
sensitivity analysis. We briefly describe three that we use in this work: Sobol
sensitivity analysis, the Morris method, and the feature importance method.
Sensitivity analysis can be used in a variety of ways. For example, a modeler
may be able to dedicate only a limited amount of time and resources to reducing
the uncertainty in particular model inputs (e.g., by performing experiments or
seeking the opinions of experts). If that is the case, the modeler would like to
know the input variables whose values have the greatest effect on the model
output, so the uncertainty-reduction efforts can be focused on those variables.

SA and UQ of Simulation Models Through Stacked Metamodels 283

Fig. 4. Overview of the metamodel construction approach.

Sobol Sensitivity Analysis: Sobol sensitivity analysis [18] is a method for
performing global sensitivity analysis. The method calculates the total order
index for each value, which measures its total contribution to the variance in the
output. The indices can be used to rank the input variables to determine the
most and least sensitive inputs.

Morris Method: The Morris method is used to perform global sensitivity anal-
ysis; for details, consult [1,9]. The method varies one input variable at a time.
First, it selects a point in the input space and runs the model with that input to
determine the resulting output, which is used as a baseline. Next, each one of the
input variables is assigned a new value, one at a time, while the others are held
at the original baseline value, and the model is run to determine the magnitude
of the difference between the resulting output and the baseline output. Once
every input variable has been modified in turn, a completely new input is chosen
(i.e., all the values for the input variables are changed at once), and the process
repeats several times. The Morris method can use the collected data to perform
a global sensitivity analysis, calculating a value µ∗ for each input variable that
quantifies its impact on the model output. By comparing the µ∗ values, one can
order the input variables based on their impact on the model output.

Feature Importance Method: The feature importance method [6,14] can
be used as a way to rank the influence each input has on the model output.
We shall describe the method at a high level. First, a metamodel is trained on
the training data, and its baseline accuracy is recorded. Then, all the values of
one input variable in the training data are perturbed through addition of noise.
The metamodel is retrained with the modified training data, and the model’s
accuracy is compared with the accuracy of the baseline metamodel. If the input

284 M. Rausch and W. H. Sanders

value has a large impact on the output value, we would expect a relatively large
decrease in the accuracy of the new metamodel. If the input value has no impact
on the output value, we would expect no appreciable drop in accuracy. The values
of each input variable are perturbed in turn in the same way. The technique can
be used to rank the input variables from most impactful to least impactful.

4 Test Case

Our test case considers a stochastic model of the growth of botnets in different
conditions. A full description of the model may be found in [16]. A botnet is a
collection of computers that have been compromised and hijacked by a malicious
actor. A botnet can grow or shrink in size. The model gives an estimate of the size
of the botnet at the end of one week, given a number of assumptions, including
the rate at which bots are removed from the botnet by defenders. We imagine
that defenders may have a choice among several different methods for removing
the bots from the botnet. Methods that remove the bots faster may cost more
or have deleterious side effects on the system’s performance. In this imagined
scenario, the defender would like to know the slowest rate at which the bots may
be removed while ensuring that the botnet does not grow above a certain fixed
size. The defenders must take into account their lack of knowledge of the precise
values of all the input variables. In addition, the defenders would like to know
which input variables have the largest effects on the model output, so that they
may obtain the most accurate value estimates possible for the sensitive input
variables.

We will give a brief overview of the pertinent details. The eleven input vari-
ables used in the model are listed in Table 1. In [16], all the input variables
were assigned baseline values based on suggestions from subject matter experts.
In our analysis, we assume that all the inputs are uncertain, and the uncer-
tainty range is ±50% of the baseline values given in the original paper, with
the following exceptions: ProbConnectToPeers and Prob2ndInjctnSuccessful
are probabilities and thus may not be greater than 1, so we assign [0.25, 1] as
a reasonable range of uncertainty; and we increased the range of uncertainty
for RateConnectBotToPeers, RateOfAttack, and RateSecondaryInjection so
that the rates fell between once every 10 s to once every hour, which we believed
to be realistic assumptions.

5 Evaluation

We used Python to write our sampling, metamodeling, and analysis scripts.
The construction of metamodels was accomplished with the aid of the scikit-
learn Python package [10], and the SALib package was used to perform Sobol
and Morris method sensitivity analysis [4]. All the experiments were run on a
machine with an Intel i7-5829K processor and 32 GB of RAM.

SA and UQ of Simulation Models Through Stacked Metamodels 285

Table 1. List of inputs used in the botnet test case.

Variable name Domain

ProbConnectToPeers [0.25, 1]

ProbPropagationBot [0.05, 0.15]

ProbInstallInitialInfection [0.05, 0.15]

Prob2ndInjctnSuccessful [0.25, 1]

RateConnectBotToPeers [0.0166, 6]

RateOfAttack [0.0166, 6]

RateSecondaryInjection [0.0166, 6]

RateBotSleeps [0.05, 0.15]

RateBotWakens [0.0005, 0.0015]

RateActiveBotRemoved [0.05, 0.15]

RateInactiveBotRemoved [0.00005, 0.00015]

5.1 Speed Comparison

All reported times were rounded to the nearest tenth of a second. The base model
was run one thousand times with random inputs, and it took 7,246.1 s (over 2 h)
to obtain the corresponding one thousand model outputs. That works out to just
over 7 s per input, with a standard deviation of 24.8 s. The longest and shortest
times it took to calculate an individual output were 510.6 and 0.8 s, respectively.
The metamodel was also run one thousand times with random inputs, and it
took a total of 1.9 s to obtain the corresponding one thousand model outputs. It
follows that the metamodel can run several thousand times faster than the base
model.

We found that the time needed to train the metamodel was correlated with
the size of the dataset. Training of the stacked metamodel took 5 min and 19.1 s
with the dataset that contained 4,000 random inputs, 1 min 36.0 s with the
dataset that contained 1,000 random inputs, and 32.0 s with the dataset that
contained 250 random inputs. The time it takes to collect the training data is
significantly greater than the time needed to train the metamodel. Recall that
in our approach, only a limited number of samples can be collected and used to
train the metamodel, because it takes such a long time to execute the base model.
The training datasets will therefore be relatively small, leading to relatively fast
training times.

5.2 Metamodel Accuracy

Having established the speed with which the metamodel can be executed, we
turn to an evaluation of the metamodel’s accuracy. Recall that the metamodel
attempts to produce an estimate of the final size of the botnet after one week. The
estimation error is the absolute value of the difference between the metamodel’s

286 M. Rausch and W. H. Sanders

estimate and the base model’s estimate, given a particular input. The errors
reported are the average absolute difference between the metamodel’s predictions
and the corresponding base model’s outputs across all the data in the test set.
2,500 randomly generated inputs (and associated base model outputs) comprised
the test set. The minimum and maximum botnet sizes recorded in the test set
were 0 and 37,143, respectively.

First, we consider the accuracy of the metamodel given the three differ-
ent input sampling strategies and three different training dataset sizes. The
results can be seen in Fig. 5. Unsurprisingly, we found that the metamodel error
decreased when the training set contained more data. We also found that the
Sobol sequence was the best-performing sampling strategy as the number of
samples grew: as the number of samples grows, the effect of the low-discrepancy
attribute of the Sobol sampling sequence becomes more obvious. Encouragingly,
it appears that the metamodel can perform well even with a relatively low num-
ber of training samples: the metamodel trained with 250 random samples, the
least accurate of the nine shown in Fig. 5, had an average estimation error that
was less than 1% of the range found in the test data.

Next, we show that using our stacking approach is better than simply using
the predictions from the best-performing of the twenty-five regressors we con-
sider (which we call the Best of Many metamodel), and that the predictions of
both methods perform better than a naive metamodel. Our naive metamodel
calculates the average value of the outputs in the training dataset, and gives
that average as its prediction regardless of the model input. Therefore, any well-
performing regressor should produce more accurate predictions than the naive
metamodel. We compare the errors of the naive metamodel, the most accurate
single regressor (the Best of Many metamodel), and the stacked metamodel,
given different training data. The results can be seen in Table 2. We see that the
Best of Many metamodel has about half the average prediction error as the naive
metamodel. In the worst case, the metamodel composed of stacked regressors has
a 10% average error reduction compared to the best single regressor, and in the
best case, it achieves a 32% average error reduction. This analysis shows that
regressor stacking can lead to a significantly more accurate metamodel for our
cybersecurity model compared to simply using a single regressor that is the best
among many candidate regressors.

5.3 Uncertainty Quantification: Determination of Optimal Removal
Rate

Assume that a defender has the ability to remove nodes from the botnet at
a specific rate, but a faster rate costs the defender more than a slower rate.
That may be the case when the defender can implement more effective but more
expensive countermeasures to respond to the attack. The defender may wish to
know how quickly the botnet can be expected to grow given different removal
rates, and uncertainty in the other input parameters.

We conducted an experiment in which we used our stacked metamodel
trained on the dataset consisting of four thousand Sobol samples. For each

SA and UQ of Simulation Models Through Stacked Metamodels 287

Table 2. Average metamodel prediction error (lower is better).

Training
data

Naive
metamodel
error

Best of many
metamodel
error

Stacked
metamodel
error

Error reduction
stacked vs. best
of many

Random250 691 338 281 17%

Random1000 589 285 230 20%

Random4000 973 245 192 22%

LHS250 646 330 260 21%

LHS1000 696 296 222 25%

LHS4000 848 243 219 10%

Sobol250 761 371 282 24%

Sobol1000 825 321 230 28%

Sobol4000 704 234 161 32%

Fig. 5. Comparison of regressors trained on data obtained from random sampling,
Latin hypercube sampling, and Sobol sequence sampling, respectively.

experiment, we fixed the value of the RateActiveBotRemoved variable. We then
generated ten thousand Sobol samples for the other input variables in the ranges
given by Table 1, and ran the regressor with those inputs to observe the pre-
dicted botnet size given the conditions described by the input variables. For each
value of RateActiveBotRemoved we tested, we found the average botnet size,
the 95th percentile, the 99th percentile, and the largest recorded botnet. That
information can help a defender determine the slowest permissible removal rate
given uncertainty in the input parameters. The results of our analysis can be
found in Table 3.

288 M. Rausch and W. H. Sanders

Table 3. Estimated botnet size given removal rate.

Removal rate Average 95% 99% Largest

0.05 170 614 2436 9277

0.04 264 984 3861 11568

0.03 493 1970 6330 30004

0.02 1000 4229 10033 31364

0.01 1661 7206 27029 35593

0.001 2163 8594 27573 48152

0.0001 2207 8650 27965 48152

5.4 Sensitivity Analysis

We performed a sensitivity analysis to determine the degree to which model
inputs impact the value of the output. As discussed in Sect. 2, traditional SA
techniques often cannot be applied directly to the base model because of the long
model run times. To overcome that issue, we used several different SA techniques
and compared the results to determine the highly sensitive and highly insensitive
model inputs. We conducted sensitivity analysis through the Morris method, the
feature importance method, and the Sobol method.

The results of the analysis can be found in Table 4. Each of the three meth-
ods has two columns; the left column gives the score calculated by the method
(M∗

µ for the Morris method, increase in metamodel error rate for the feature
importance method, and the total order indices for the Sobol method).4 Finally,
in the rightmost two columns, we show the average ranking across the three
methods for each input variable and the standard deviation. We will comment
on the results of each SA method in turn, and then discuss how they may be
interpreted when taken together.

First, the Morris method returns a µ∗ value for each parameter, and since
higher values indicate higher sensitivities, we can rank the input parameters
relative to one another by using this value. The Morris method indicates that
the model output is most sensitive to the RateOfAttack input variable, and
least sensitive to the RateBotSleeps variable.

Second, the feature importance method determines how much the average
error of the regressor’s prediction increases (or conversely, how much its accuracy
decreases) when a particular input variable’s value is distorted with noise. The
regressor is least accurate when the RateOfAttack input variable’s value is cor-
rupted with noise, indicating that variable’s importance. The negative error cal-
culated for the RateSecondaryInjection and RateConnectBotToPeers input
variables indicates that the regressor does not make much use of these values
when performing the regression.

4 The µ∗ values and the feature importance errors were rounded to the nearest integer,
and all other values in the table were rounded to the nearest hundredth.

SA and UQ of Simulation Models Through Stacked Metamodels 289

Table 4. Inputs variables ranked from most to least sensitive by taking the average of
the rankings provided by the Morris, feature importance, and Sobol methods.

Input name Morris F. I. Sobol Combined

µ∗ Rank Error Rank Total ord. ind. Rank Avg. rank Std. dev.

ROfAttack 3620 1 355 1 3.54 1 1 0

RActiveBRemoved 2648 3 303 3 3.53 2 2.67 0.58

PPropagationB 2492 4 307 2 1.25 5 3.67 1.53

PInstall1stInfection 2675 2 74 7 1.20 6 5 2.65

RBWakens 1311 8 120 4 1.69 4 5.33 2.31

PConnectToPeers 2041 6 13 9 1.83 3 6 3

RInactiveBRemoved 2373 5 77 6 1.09 10 7 2.65

RBSleeps 0 11 103 5 1.13 7 7.67 3.06

PSecondaryInjection 1979 7 74 8 1.09 9 8 1

RSecondaryInjection 1113 9 −20 11 1.13 8 9.33 1.53

RConnectBToPeers 1073 10 −19 10 1.06 11 10.33 0.58

Third, the Sobol method calculates total-order indices for the input variables,
with higher values indicating more sensitivity. We can see that the Sobol method
is in agreement with the other two methods in finding that the model output
is most sensitive to the value of the RateOfAttack variable. The output is also
quite sensitive to the RateActiveBotRemoved variable.

Finally, when they are taken together, it can be seen that there is broad
agreement among the three methods in their ranking of the inputs. In Table 4,
we show the combined average rank for each input, which we calculated by
summing the input variable’s sensitivity ranks as determined by the three SA
methods and dividing by the number of SA methods. We also calculated the
standard deviation of the three rankings; a low standard deviation shows that
the methods are in agreement about the sensitivity rank of an input variable,
while a high standard deviation shows disagreement. For example, each method
ranked the RateOfAttack variable as the most sensitive, so it is given an average
rank of (1 + 1 + 1)/3 = 1 and a standard deviation of 0, which shows perfect
agreement. On the other hand, the three methods disagreed the most on the
relative sensitivity ranking of the RateBotSleeps variable. The Morris method
ranked it as the least sensitive, while the feature importance method ranked it
as the fifth most sensitive, and the Sobol method ranked it as the seventh most
sensitive, for a combined average rank of (11 + 5 + 7)/3 = 7.67, and a standard
deviation of 3.06. In the absence of ground truth from the base model, it is
encouraging to find that multiple SA methods largely agree on the rankings.

6 Discussion

Limitations. We believe that the metamodeling approach outlined in this work
can aid in the evaluation and validation of realistic, complex, long-running com-
puter security models. However, there are limitations to the approach. First, the

290 M. Rausch and W. H. Sanders

approach generally sacrifices some accuracy for speed, since usually the meta-
model cannot perfectly emulate the behavior of the base model. If the base
model can be run very quickly, or if the modeler can afford to wait for the
base model to run, the speedup achieved through the approach described in this
work may not justify the decrease in accuracy. In practice, we believe that there
are many realistic models that cannot be solved quickly, and that it would be
prohibitively expensive to obtain enough computational resources to sufficiently
decrease model execution times. On the other hand, the model may run so slowly
that it is infeasible to obtain enough training samples to train a sufficiently accu-
rate metamodel. If enough training samples cannot be obtained, we recommend
modifying the base model so it runs more quickly, or building a metamodel by
hand. A further limitation is that the metamodels may be accurate for most
inputs, but inaccurate in a region that the modeler considers particularly inter-
esting. In that case, we recommend that the modeler use adaptive sampling to
drive the sampling towards the interesting region [7]. Finally, changing the base
model invalidates the training data and the metamodel constructed using the
training data, so the process would need to be repeated for every change to the
base model.

Use Cases. We believe that our approach can help architects design better,
more secure systems by helping them understand how a system might perform
given different conditions and assumptions. The approach can be applied (1) to
simulation and analytical models, as this paper demonstrates; (2) to long-running
emulation experiments, e.g., experiments that use virtual machines and virtual
switches to emulate a real network with real hosts cheaply and realistically, and
(3) to prototypes of a system.

In the cybersecurity context, many realistic security models run too slowly to
be used in an online fashion, so they can be used only at design time. However,
a metamodel may be able to give helpful, near real-time guidance to human
defenders responding to an ongoing cyber attack. An advanced intrusion pre-
vention system (IPS) may also be able to use information from the metamodel
in an online fashion (along with normal monitoring data, such as alerts from
intrusion detection systems (IDS)), to thwart attacks more effectively.

Future Work. We are in the process of applying the metamodeling-based anal-
ysis approach to other published security models, particularly, to an advanced
metering infrastructure (AMI) cybersecurity model [11,13] and a password
cybersecurity model [12], to see whether the results generalize. We intend to
explore whether more accurate metamodels can be constructed if adaptive sam-
pling is used to obtain the training data [7]. We also intend to further explore
different ways to structure the ensemble stack, for example, by using more than
two layers.

7 Related Work

To the best of our knowledge, no prior work exists that uses metamodels in
place of complex cybersecurity models. In addition, we know of no published

SA and UQ of Simulation Models Through Stacked Metamodels 291

work on the application of model stacking to state-based discrete-event simu-
lation models. For a thorough introduction to the topic of metamodeling, see
the excellent survey papers on the topic [7,20]. Xiao, Zuo, and Zhou propose an
adaptive sampling approach that can be used to construct metamodels for relia-
bility analysis, and demonstrate its use on four small reliability model problems
[22]. Eisenhower et al. demonstrated a methodology that uses a support vector
machine with a Gaussian kernel as a metamodel to perform an optimization
for a building energy model with over 1,000 parameters [3]. Tenne proposes an
approach that uses multiple metamodels and optimizers [19], but in a one-at-a-
time fashion; the metamodel predictions are never fused or combined, whereas
in our work the predictions of multiple regressors are taken together to form
a better overall prediction. Zhou et al. like us, propose to use an ensemble of
metamodels together, rather than train several metamodels and pick the one
that performs best [23]. However, their work uses a recursive arithmetic aver-
age method to combine the predictions from multiple regressors, while we use
stacking. Many papers have been published on sensitivity analysis in general.
An overview of methods for global sensitivity analysis (including metamodeling-
based approaches) can be found in [6].

8 Conclusion

In this work, we introduced a metamodeling-based approach for performing sen-
sitivity analysis and uncertainty quantification on complex real world models.
We demonstrated the approach on a published cybersecurity model. Our stacked
metamodel is orders of magnitude faster than the base model, and more accurate
than common existing approaches to metamodeling. The metamodeling-based
approach outlined in this paper can be used by system architects to evaluate and
validate realistic long-running models with a number of input variables whose
values are not known with certainty.

Acknowledgements. The authors would like to thank Jenny Applequist, Lowell
Rausch, and the reviewers for their feedback on the paper. This material is based upon
work supported by the Maryland Procurement Office under Contract No. H98230-18-
D-0007. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
Maryland Procurement Office.

References

1. Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensi-
tivity analysis of large models. Environ. Model. Softw. 22(10), 1509–1518 (2007)

2. Cunha, A., Nasser, R., Sampaio, R., Lopes, H., Breitman, K.: Uncertainty quan-
tification through the Monte Carlo method in a cloud computing setting. Comput.
Phys. Commun. 185(5), 1355–1363 (2014)

3. Eisenhower, B., O’Neill, Z., Narayanan, S., Fonoberov, V.A., Mezić, I.: A method-
ology for meta-model based optimization in building energy models. Energy Build.
47, 292–301 (2012)

292 M. Rausch and W. H. Sanders

4. Herman, J., Usher, W.: SALib: an open-source Python library for sensitivity anal-
ysis. J. Open Source Softw. 2(9) (2017). https://doi.org/10.21105/joss.00097

5. Iman, R.L., Helton, J.C., Campbell, J.E.: An approach to sensitivity analysis of
computer models: Part I - introduction, input variable selection and preliminary
variable assessment. J. Qual. Technol. 13(3), 174–183 (1981)

6. Iooss, B., Lemâıtre, P.: A review on global sensitivity analysis methods. In: Dellino,
G., Meloni, C. (eds.) Uncertainty Management in Simulation-Optimization of Com-
plex Systems: Algorithms and Applications, pp. 101–122. Springer, Boston (2015).
https://doi.org/10.1007/978-1-4899-7547-8 5

7. Liu, H., Ong, Y.-S., Cai, J.: A survey of adaptive sampling for global metamodeling
in support of simulation-based complex engineering design. Struct. Multi. Optim.
57(1), 393–416 (2017). https://doi.org/10.1007/s00158-017-1739-8

8. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2), 239–245 (1979)

9. Morris, M.D.: Factorial sampling plans for preliminary computational experiments.
Technometrics 33(2), 161–174 (1991)

10. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

11. Rausch, M.: Determining cost-effective intrusion detection approaches for an
advanced metering infrastructure deployment using ADVISE. Master’s thesis, Uni-
versity of Illinois at Urbana-Champaign (2016)

12. Rausch, M., Fawaz, A., Keefe, K., Sanders, W.H.: Modeling humans: a general
agent model for the evaluation of security. In: McIver, A., Horvath, A. (eds.) Quan-
titative Evaluation of Systems. Proceedings of International Conference on Quan-
titative Evaluation of Systems, pp. 373–388. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 23

13. Rausch, M., Feddersen, B., Keefe, K., Sanders, W.H.: A comparison of different
intrusion detection approaches in an advanced metering infrastructure network
using ADVISE. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826,
pp. 279–294. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-
4 19

14. Razmjoo, A., Xanthopoulos, P., Zheng, Q.P.: Online feature importance ranking
based on sensitivity analysis. Expert Syst. Appl. 85, 397–406 (2017)

15. Risdal, M.: Stacking made easy: an introduction to StackNet by competitions
grandmaster Marios Michailidis (KazAnova). http://blog.kaggle.com/2017/06/15/
stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-
marios-michailidis-kazanova/. Accessed 13 Dec 2019

16. Ruitenbeek, E.V., Sanders, W.H.: Modeling peer-to-peer botnets. In: Proceedings
of 2008 Fifth International Conference on Quantitative Evaluation of Systems, pp.
307–316, September 2008

17. Sobol, I.: On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967)

18. Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Math. Comput. Simul. 55(1), 271–280 (2001)

19. Tenne, Y.: An optimization algorithm employing multiple metamodels and opti-
mizers. Int. J. Autom. Comput. 10(3), 227–241 (2013)

20. Viana, F., Gogu, C., Haftka, R.: Making the most out of surrogate models: tricks of
the trade. In: Proceedings of the ASME Design Engineering Technical Conference,
vol. 1, pp. 587–598 (2010)

https://doi.org/10.21105/joss.00097
https://doi.org/10.1007/978-1-4899-7547-8_5
https://doi.org/10.1007/s00158-017-1739-8
https://doi.org/10.1007/978-3-319-99154-2_23
https://doi.org/10.1007/978-3-319-99154-2_23
https://doi.org/10.1007/978-3-319-43425-4_19
https://doi.org/10.1007/978-3-319-43425-4_19
http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/
http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/
http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/

SA and UQ of Simulation Models Through Stacked Metamodels 293

21. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)
22. Xiao, N.C., Zuo, M.J., Zhou, C.: A new adaptive sequential sampling method to

construct surrogate models for efficient reliability analysis. Reliab. Eng. Syst. Saf.
169, 330–338 (2018)

23. Zhou, X.J., Ma, Y.Z., Li, X.F.: Ensemble of surrogates with recursive arithmetic
average. Struct. Mult. Optim. 44(5), 651–671 (2011)

Correction to: The Dynamic Fault Tree Rare
Event Simulator

Carlos E. Budde , Enno Ruijters , and Mariëlle Stoelinga

Correction to:
Chapter “The Dynamic Fault Tree Rare Event Simulator”
in: M. Gribaudo et al. (Eds.): Quantitative Evaluation
of Systems, LNCS 12289,
https://doi.org/10.1007/978-3-030-59854-9_17

In the original version of this chapter Reference 5 was published incorrectly. Reference
5 has now been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-59854-9_17

© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, p. C1, 2020.
https://doi.org/10.1007/978-3-030-59854-9_21

http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-5855-5282
http://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-030-59854-9_17
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-59854-9_17
https://doi.org/10.1007/978-3-030-59854-9_21

Tutorials

Flexible Nets

Jorge Júlvez(B)

Department of Computer Science and Systems Engineering,
University of Zaragoza, Zaragoza, Spain

julvez@unizar.es

This tutorial introduces Flexible Nets, a novel modelling formalism for dynamic
systems that can account for a number of parameter uncertainties and that
facilitates the performance evaluation, optimization and control of the modelled
systems [1]. A Flexible Net is composed of two nets, an event net that captures
how the processes of the system produce changes in its state, and an intensity
net that models how the state induces speeds in the processes. These nets have
three types of vertices: places (that model the state), transitions (that model
processes), and handlers (that model the relationships between the state and
the processes). Handlers can be equipped with inequalities in order to model
system uncertainties, and optionally with piecewise linear functions to account
for nonlinear dynamics [3]. After introducing the main features of Flexible Nets,
several net examples, including a resource allocation system, a partially observed
system, and a biological system [2], will be presented together with some of the
analysis, optimization and control possibilities that can be used [4]. The last
part of the tutorial will introduce the open-source Python tool fnyzer (https://
fnyzer.readthedocs.io/) for the analysis of Flexible Nets.

Acknowledgments. This work was supported by the Spanish Ministry of Science,
Innovation and Universities [ref. Medrese-RTI2018-098543-B-I00].

References

1. Júlvez, J., Oliver, S.G.: Flexible nets: a modeling formalism for dynamic sys-
tems with uncertain parameters. Discrete Event Dyn. Syst. 29(3), 367–392 (2019).
https://doi.org/10.1007/s10626-019-00287-9

2. Júlvez, J., Dikicioglu, D., Oliver, S.G.: Handling variability and incompleteness of
biological data by flexible nets: a case study for Wilson disease. Syst. Biol. Appl.
4(1), 7 (2018). https://doi.org/10.1038/s41540-017-0044-x

3. Júlvez, J., Oliver, S.G.: Modeling, analyzing and controlling hybrid systems by
guarded flexible nets. Nonlinear Anal. Hybrid Syst. 32, 131–146 (2019). https://
doi.org/10.1016/j.nahs.2018.11.004

4. Júlvez, J., Oliver, S.G.: Steady state analysis of flexible nets. IEEE Trans. Autom.
Control 65(6), 2510–2525 (2020). https://doi.org/10.1109/TAC.2019.2931836

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, p. 297, 2020.
https://doi.org/10.1007/978-3-030-59854-9

http://orcid.org/0000-0002-7093-228X
https://fnyzer.readthedocs.io/
https://fnyzer.readthedocs.io/
https://doi.org/10.1007/s10626-019-00287-9
https://doi.org/10.1038/s41540-017-0044-x
https://doi.org/10.1016/j.nahs.2018.11.004
https://doi.org/10.1016/j.nahs.2018.11.004
https://doi.org/10.1109/TAC.2019.2931836
https://doi.org/10.1007/978-3-030-59854-9

Verifying Probabilistic Programs

Benjamin Kaminski1, Joost-Pieter Katoen2(B), and Christoph Matheja3

1 University College London, London, UK
b.kaminski@ucl.ac.uk

2 RWTH Aachen University, Aachen, Germany
katoen@cs.rwth-aachen.de

3 ETH Zürich, Zürich, Switzerland
contact@cmath.eu

Probabilistic programs enrich computation with randomization by allowing ordi-
nary programs to (a) sample from probability distributions and (b) condition
such distributions on some observed evidence. They are finite representations of
potentially infinite-state Markov chains.

Randomization in computation has been around at least since Rabin intro-
duced probabilistic automata in the early 1960s. Its importance has been ever-
growing since then. Randomization is an important tool for the design and anal-
ysis of efficient algorithms, serves as a tie-breaker in distributed protocols, and is
ubiquitous in cybersecurity. At the moment, probabilistic programs are receiving
fast-growing attention in artificial intelligence, where they serve as a powerful
modeling formalism that is both more expressive and more accessible than clas-
sical graphical models.

In light of the increasing deployment of probabilistic systems, their correct-
ness is paramount. Establishing the correctness of probabilistic systems, however,
is notoriously difficult. Even the notion of correctness itself becomes blurred: A
program that produces correct results with high probability may be perfectly
adequate.

In this tutorial, we will give an in-depth introduction to the foundations of
quantitative verification of probabilistic programs:

(a) We present deductive techniques for verifying quantitative properties, such as
both correctness and termination probabilities or expected runtimes. These
techniques work directly on source-code level without explicitly constructing
any Markov chain.

(b) We discuss invariant-style reasoning for (potentially unbounded) probabilistic
loops – the main cause of infinite state spaces.

(c) We apply our techniques to automatically analyze expected simulation times
of Bayesian networks – a popular graphical model in artificial intelligence.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, p. 298, 2020.
https://doi.org/10.1007/978-3-030-59854-9

https://doi.org/10.1007/978-3-030-59854-9

Author Index

Abate, Alessandro 18

Backenköhler, Michael 155, 211
Bernardo, Marco 35
Blume, Andreas 175
Boreale, Michele 193
Bortolussi, Luca 155
Buchholz, Peter 175
Budde, Carlos E. 233

Cook, Victor 239

Das, Arindam 137
Das, Olivia 137
Dechev, Damian 239

Gros, Timo P. 11
Großmann, Gerrit 211

Hoffmann, Jörg 11
Höller, Daniel 11

Júlvez, Jorge 297

Kamali, Mojgan 54
Kaminski, Benjamin 298
Katoen, Joost-Pieter 54, 115, 298
Kwiatkowska, Marta 74

Matheja, Christoph 298
Marin, Andrea 144

Nicol, David M. 258
Norman, Gethin 74

Painter, Zachary 239
Palani, Kartik 258
Parker, David 74
Peterson, Christina 239
Petrov, Tatjana 27
Phung, Nhat-Huy 27
Phung-Duc, Tuan 148
Polymenakos, Kyriakos 18

Rausch, Michael 276
Repin, Denis 27
Roberts, Stephen 18
Rontsis, Nikitas 18
Rossi, Sabina 144
Ruijters, Enno 233

Salako, Kizito 96
Salmani, Bahare 115
Sanders, William H. 276
Santos, Gabriel 74
Scherbaum, Clara 175
Smirni, Evgenia 3
Stoelinga, Mariëlle 233

Wolf, Verena 11, 155, 211

Yazici, Mehmet Akif 148

Zen, Carlo 144

	Preface
	Organization
	Contents
	Invited Paper
	Machine Learning for Reliability Analysis of Large Scale Systems
	1 Overview
	2 GPGPU Error Prediction
	3 The Life and Death of HDDs and SSDs
	References

	Predictive Performance and Machine Learning
	Tracking the Race Between Deep Reinforcement Learning and Imitation Learning
	1 Introduction
	2 Racetrack
	3 Learning
	3.1 Imitation Learning
	3.2 Deep Reinforcement Learning

	4 Results
	4.1 Success Rate
	4.2 Quality of Action Sequences
	4.3 Quality of Single Action Choices
	4.4 Discussion

	5 Conclusion
	References

	SafePILCO: A Software Tool for Safe and Data-Efficient Policy Synthesis
	1 Introduction
	2 Description of the Software Tool
	3 Case Studies
	3.1 Plain PILCO
	3.2 SafePILCO
	3.3 Results

	References

	StochNetV2: A Tool for Automated Deep Abstractions for Stochastic Reaction Networks
	1 Introduction
	2 Tool Architecture and Functionality
	2.1 CRN Models
	2.2 Dataset
	2.3 StochNet (Static)
	2.4 Training (Static)
	2.5 NASStochNet (Dynamic)
	2.6 Training (Architecture Search)
	2.7 Grid Runner
	2.8 Luigi Workflow Manager

	3 Implementation
	4 Evaluation and Applications
	5 Related Tools
	References

	Model Checking and Verification
	Alternative Characterizations of Probabilistic Trace Equivalences on Coherent Resolutions of Nondeterminism
	1 Introduction
	2 Nondeterministic and Probabilistic Models
	3 Probabilistic Trace Equivalences and Their Anomalies
	4 Properties of Coherency
	5 Alternative Characterization of PTrpost, c
	6 Alternative Characterization of PTrpre, c
	7 Conclusions
	References

	Probabilistic Model Checking of AODV
	1 Introduction
	2 Ad-Hoc On-Demand Distance Vector Protocol
	3 Formal Modelling
	4 A PTA Model of AODV
	4.1 Packet Injector Model
	4.2 Node Model
	4.3 Medium Access Control (MAC) Model

	5 Analysis Results
	5.1 Evaluation Metrics
	5.2 Verified Properties
	5.3 Formal Verification Results
	5.4 Verification Statistics

	6 Related Work
	7 Conclusions
	References

	Multi-player Equilibria Verification for Concurrent Stochastic Games
	1 Introduction
	2 Preliminaries
	3 Extended rPATL with Nash Formulae
	4 Model Checking CSGs Against Nash Formulae
	5 Case Studies and Experimental Results
	6 Conclusions
	References

	Loss-Size and Reliability Trade-Offs Amongst Diverse Redundant Binary Classifiers
	1 Introduction
	2 Critical Context and Related Work
	3 A Statistical Model of Binary Classification
	4 Loss-Size vs Reliability Trade-Off
	4.1 Trade-Off Implications for Randomly Choosing Amongst Diverse Classifiers During Operation
	4.2 Trade-Off Implications for Optimal Adjudication Amongst Diverse Classifiers

	5 Conservative Bayesian Assessment
	6 Conclusions
	7 Appendices and Supplementary Material
	References

	Bayesian Inference by Symbolic Model Checking
	1 Introduction
	2 Bayesian Networks
	3 Markov Chain Model Checking
	4 Symbolic Data Structures
	4.1 Reduced Ordered Binary Decision Diagrams
	4.2 Multi-terminal BDDs
	4.3 Sentential Decision Diagrams
	4.4 Probabilistic SDDs

	5 BN Analysis Using Probabilistic Model Checking
	6 Experimental Results
	7 Conclusions
	References

	Queuing Networks
	CogQN: A Queueing Model that Captures Human Learning of the User Interfaces of Session-Based Systems
	Abstract
	1 Introduction
	2 System Description
	3 The CogQN Model
	3.1 Notations
	3.2 Model Description
	3.3 Model Solution

	4 Model Validation
	5 Conclusions
	References

	A Matlab Toolkit for the Analysis of Two-Level Processor Sharing Queues
	1 Introduction
	2 Description of the Analysis Procedure and of the Toolkit
	3 Example
	4 Final Remarks
	References

	M/M/1 Vacation Queue with Multiple Thresholds: A Fluid Analysis
	1 Introduction
	2 System Model
	3 Numerical Results
	4 Conclusion
	References

	Markov Processes
	Bounding Mean First Passage Times in Population Continuous-Time Markov Chains
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Martingale Formulation
	5 Bounds for Mean First Passage Times
	5.1 Linear Moment Constraints
	5.2 Objective
	5.3 Semi-definite Constraints
	5.4 A Semi-definite Program to Bound MFPTs

	6 Implementation and Evaluation
	6.1 Case Studies
	6.2 Hybrid Models and Multi-modal Behavior

	7 Conclusion
	References

	Markovian Arrival Processes in Multi-dimensions
	1 Introduction
	2 Background
	2.1 Basic Notation
	2.2 Markov Input Models

	3 Multi-dimensional Data and Stochastic Models
	3.1 Multi-dimensional Data
	3.2 Multi-dimensional Markov Models

	4 Analysis of MDMAPs
	4.1 Analysis of a Single Vector Component
	4.2 Analysis of Joint Measures

	5 Moment-Based Parameter Fitting
	5.1 Dependencies in a Single Component
	5.2 Joint Moment Fitting for General MDMAPs
	5.3 Joint Moment Fitting for MDMAPs of Rank R with Product Form

	6 Examples
	6.1 Independent Random Vectors
	6.2 Random Processes

	7 Conclusion
	References

	Automatic Pre- and Postconditions for Partial Differential Equations
	1 Introduction
	2 Background
	3 Stratified Systems
	4 Algorithms for Pre- and Postconditions
	5 Example: Burgers' Equation
	6 Related Work
	References

	Importance of Interaction Structure and Stochasticity for Epidemic Spreading: A COVID-19 Case Study
	1 Introduction
	2 Related Work
	2.1 COVID-19 Spreading Models

	3 Translating SIR-Type Models for Epidemic Spreading
	3.1 Network-Based Spreading Model
	3.2 From ODE-Models to Networks

	4 A Network-Based COVID-19 Spreading Model
	4.1 Human-to-Human Contact Networks
	4.2 Parameter Calibration
	4.3 Interventions

	5 Numerical Results
	5.1 Discussion

	6 Conclusions and Future Work
	References

	Applications
	The Dynamic Fault Tree Rare Event Simulator
	1 Introduction
	2 Rare Event Simulation for Fault Trees
	3 DFTRES
	4 Experimental Evaluation
	References

	Entropy Measurement of Concurrent Disorder
	1 Introduction
	2 Related Work
	3 Shannon Entropy Applied to Concurrent Data Structures
	3.1 Queues and Stacks
	3.2 Sets and Maps

	4 Theoretical Analysis of the Correlation Between Entropy, Correctness, and Speedup
	5 Experimental Evaluation
	5.1 Experiment Design
	5.2 Stack Results
	5.3 Queue Results
	5.4 Set Results
	5.5 Correlations Between Entropy, Correctness, and Performance

	6 Case Study: k-FIFO Queue
	7 Conclusion
	References

	Hardening Critical Infrastructure Networks Against Attacker Reconnaissance
	1 Introduction
	2 Background
	2.1 Critical Infrastructure Attacks
	2.2 Diffusion Networks
	2.3 Supermodular Set Functions

	3 Problem Statement
	3.1 Attack Graph
	3.2 Attack Propagation Model
	3.3 Modeling Prior Knowledge of Attacker
	3.4 Defender Actions
	3.5 Objective Function
	3.6 Constraints

	4 Analyzing the Objective Function
	4.1 Live Edge Paths
	4.2 Monotonicity
	4.3 Supermodularity

	5 Algorithm
	5.1 The Greedy Algorithm
	5.2 Monte Carlo Estimation
	5.3 Knapsack Budget Constraint
	5.4 Complexity of the Greedy Algorithm

	6 Related Work
	7 Conclusion and Limitations
	A Proof of Theorem 1
	References

	Sensitivity Analysis and Uncertainty Quantification of State-Based Discrete-Event Simulation Models Through a Stacked Ensemble of Metamodels
	1 Introduction
	2 Approach
	2.1 Sampling
	2.2 Metamodeling

	3 Analysis Techniques
	4 Test Case
	5 Evaluation
	5.1 Speed Comparison
	5.2 Metamodel Accuracy
	5.3 Uncertainty Quantification: Determination of Optimal Removal Rate
	5.4 Sensitivity Analysis

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Correction to: The Dynamic Fault Tree Rare Event Simulator
	Correction to: Chapter “The Dynamic Fault Tree Rare Event Simulator” in: M. Gribaudo et al. (Eds.): Quantitative Evaluation of Systems, LNCS 12289, https://doi.org/10.1007/978-3-030-59854-9_17

	Tutorials
	Flexible Nets
	References

	Verifying Probabilistic Programs
	Author Index

