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Abstract. Using traditional computational fluid dynamics and aeroa-
coustics methods, the accurate simulation of aeroacoustic sources
requires high compute resources to resolve all necessary physical phe-
nomena. In contrast, once trained, artificial neural networks such as deep
encoder-decoder convolutional networks allow to predict aeroacoustics at
lower cost and, depending on the quality of the employed network, also
at high accuracy. The architecture for such a neural network is developed
to predict the sound pressure level in a 2D square domain. It is trained
by numerical results from up to 20,000 GPU-based lattice-Boltzmann
simulations that include randomly distributed rectangular and circu-
lar objects, and monopole sources. Types of boundary conditions, the
monopole locations, and cell distances for objects and monopoles serve
as input to the network. Parameters are studied to tune the predictions
and to increase their accuracy. The complexity of the setup is succes-
sively increased along three cases and the impact of the number of feature
maps, the type of loss function, and the number of training data on the
prediction accuracy is investigated. An optimal choice of the parameters
leads to network-predicted results that are in good agreement with the
simulated findings. This is corroborated by negligible differences of the
sound pressure level between the simulated and the network-predicted
results along characteristic lines and by small mean errors.

Keywords: Deep convolutional neural networks · Aeroacoustic
predictions · Lattice-boltzmann method

1 Introduction

State-of-the-art machine learning (ML), e.g., deep learning (DL) techniques that
require very large datasets for successful training, can greatly benefit from high-
performance computing (HPC) simulations. Such simulations can be used to
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generate lots of training data. They come with the flexibility to obtain datasets
corresponding to various task setting parameterizations, which can be used to
train ML models. In contrast, obtaining data from experiments can be costly,
less flexible, and sometimes even impossible. Trained ML models are capable of
performing different forms of predictions on variables of interest if novel input
is provided. Their knowledge is based on observations of phenomena acquired
from the training on simulated data. Such data-driven models are often used as
surrogate models to accelerate predictions compared to classical computationally
demanding simulators, given the accuracy provided is sufficient.

Especially in the field of computational fluid dynamics (CFD), DL models
trained on simulated data are capable of accelerating the prediction of flow fields.
Conventional flow solvers need time to reach solutions at which the impact of
initial conditions vanishes. Then, they can be used to compute, e.g., averaged
results of the flow. In this case, the period of averaging needs to be bridged
before the results can be analyzed. To overcome this issue, methods to accel-
erate the prediction of steady flow fields using convolutional neural networks
(CNNs) are studied [3,7]. In [7], the flow over simplified vehicle bodies is pre-
dicted with CNNs. The corresponding surrogate model is considerably faster
than traditional flow solvers. In [3], CNNs are successfully applied to predict
flow fields around airfoils with varying angles of attack and Reynolds num-
bers. Lee and You [16] predict the unsteady flow over a circular cylinder using
DL methods. They reveal large-scale vortex dynamics to be well predictable
by their models. In [17], CNNs to predict unsteady three-dimensional turbu-
lent flows are investigated. The CNNs correctly learn to transport and integrate
wave number information contained in feature maps. Additionally, a method
that can optimize the number of feature maps is proposed. Unsteady flow and
force coefficients are the main focus of the investigations in [22], in which a data-
driven method using a CNN for model reduction of the Navier-Stokes equations
is presented. In [27], a generative adversarial network (GAN) to forecast move-
ments of typhoons is used and satellite images along with velocity information
from numerical simulations are incorporated. This allows for 6-hour predictions
of typhoons with an averaged error <95.6 km. Unlike numerical predictions on
HPC systems, the GAN-based method takes only seconds. Bode et al. [4] pro-
pose a physics-informed GAN and successfully model flow on subgrid scales in
turbulent reactive flows.

To improve quality and robustness of DL models, training is frequently per-
formed on very large data sets obtained from simulations run on HPC sys-
tems. In aerodynamic problems, small-scale structures and/or fluid mechan-
ics based perturbations can strongly influence the acoustic field although they
might contain only a small amount of total energy. In many engineering applica-
tions, modeling flow-induced sound requires interdisciplinary knowledge about
fluid mechanics, acoustics, and applied mathematics. Furthermore, the numeri-
cal analysis demands high-resolution numerical simulations to accurately deter-
mine the various flow phenomena, e.g., turbulent shear layers [24], fluid-structure
interactions [6], and combustion processes [29], that determine the acoustic field.
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The sheer quantity and often high dimensionality of the parameters describing
such flow fields complicate post-processing of the simulated data. This poses a
challenge to derive new control models and to make progress in design opti-
mizations [13,33]. The turn-around time between prototyping and manufactur-
ing depends on the complexity of fundamental physical mechanisms. A recent
effort to enhance the efficiency of design development employs an ML framework
to predict acoustic fields of a variety of fan nozzle and jet configurations [21].
Although the concept has not yet been realized, this ML-based approach illus-
trates a prospective possibility to reduce design cycle times of new engine
configurations.

The main objective of the present study is the prediction of acoustic fields via
a robust ML model based on a deep encoder-decoder CNN. The CNN is trained
by acoustic fields containing noise sources surrounded by multiple objects. The
numerical results are obtained from simulations using a lattice-Boltzmann (LB)
method. They include the simulation of wave propagation, reflection, and scat-
tering due to the interaction with sound-hard surfaces.

In the following, the numerical methods to predict room aeroacoustics with
CNNs are described in Sect. 2. Subsequently, results from the sound fields pre-
dicted by CNNs are presented and juxtaposed to results of LB simulations in
Sect. 3. Finally, a summary is given, conclusions are drawn, and an outlook is
presented in Sect. 4.

2 Numerical Methods

To generate training data for the CNN, aeroacoustic simulations are run with an
LB method on two-dimensional rectangular meshes. The LB method is described
in Sect. 2.1, followed by a presentation of the geometrical setup, and the com-
putational meshes in Sect. 2.2. Section 2.3 explains the imposed boundary and
initial conditions. Section 2.4 describes how the acoustic fields are analyzed.
Finally, the network architecture for the prediction of aeroacoustic fields is pre-
sented in Sect. 2.5.

2.1 Lattice-Boltzmann Method

To compute the aeroacoustic pressure field, an LB method is employed. The
governing equation is the Boltzmann equation with the simplified right-hand
side (RHS) Bhatnagar-Gross-Krook (BGK) collision term [2]

∂f

∂t
+ ξk

∂f

∂xk
= −1

τ
(f − feq). (1)

The particle probability density functions (PPDFs) f = f(�x, �ξ, t) describe the
probability to find a particle of a fluid around a location �x with a particle velocity
�ξ at time t [1,8]. The left-hand side (LHS) of Eq. (1) describes the evolution
of fluid particles in space and time, while the RHS describes the collision of
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Table 1. Physical quantities of the setup and the non-dimensional viscosity ν.

Mesh Δx̃ [m] Δt̃ [s] ω̃ [Hz] ν̃ [m2/s] ν

Mc 0.2 3.4 · 10−4 58.8 1.551717 · 10−5 1.318959 · 10−7

Mf 0.1 1.7 · 10−4 117.6 1.551717 · 10−5 2.637920 · 10−7

particles. The collision process is governed by the relaxation parameter 1/τ with
relaxation time τ to reach the Maxwellian equilibrium state feq. The discretized
form of Eq. (1) yields the lattice-BGK equation

fk(�x + ξkΔt, t + Δt) = fk(�x, t) − 1
τ

(fk(�x, t) − feq
k (�x, t)). (2)

The quantity Δt is the time increment and τ is a function of the kinematic
viscosity ν and the speed of sound cs, i.e.,

τ =
ν + Δtc2s/2

c2s
. (3)

In the LB context, the spatial and temporal spacing are set to Δx = Δt = 1.0
such that cs = 1/

√
3. Table 1 exemplarily lists the LB viscosity for two meshes

Mc and Mf with different resolutions. Note that these values are derived in
Sect. 2.3. The LB viscosity is an artificial parameter simply influencing the time
step, i.e., how much physical time t̃ is covered by a single Δt in the simulation.
Using the viscosities listed in Table 1 would lead to extremely small time steps.
For this reason and in order to conduct numerically stable simulations, ν is set
to a feasible value according to [28]. The indices k in Eq. (2) depend on the
discretization scheme and represent the different directions of the PPDFs. In
this work, the two-dimensional discretization scheme with 9 PPDFS, i.e., the
D2Q9 model [25] is used. The discretized equilibrium PPDF is given by

feq
k = wkρ

(
1 +

ξk�u

c2s
+

(ξk�u)2

2c4s
− �u2

2c2s

)
, (4)

where the quantities wk are weighting factors for the D2Q9 scheme given by 4/9
for k ∈ {0}, 1/9 for k ∈ {1, . . . , 4}, and 1/36 for k ∈ {5, . . . , 8}, and �u is the
fluid velocity. The macroscopic variables can be obtained from the moments of
the PPDFs, i.e., the density ρ =

∑
k fk. The pressure can be computed using

the ideal gas law by p = c2sρ = (1/3)ρ.
The LB method has been chosen for several reasons [18]: (i) the computations

can be performed efficiently in parallel, (ii) it is straightforward to parallelize
the code, (iii) boundary conditions can easily be applied in contrast to, e.g.,
cut-cell methods, and (iv) there is no need to solve a pressure Poisson-equation
for quasi-incompressible flow as the pressure and hence the acoustic field is an
explicit result of the lattice-BGK algorithm. Furthermore, the LB method can
be applied for low to high Knudsen numbers Kn. In the continuum limit, i.e.
for small Kn, the Navier-Stokes and Euler equations can directly be derived
from the Boltzmann equation and the BGK model [8].
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Fig. 1. Computational domain.

2.2 Geometrical Setup and Computational Meshes

The computational domain has a square shape containing randomly distributed
objects. In physical space, denoted in the following by < ˜>, the domain has
an edge length of L̃ = 25.6 m. Throughout this study, the number of objects
varies depending on the complexity of a computation. The domain of the most
complex case is shown in Fig. 1. It has two rectangular objects R1 and R2 and two
circular objects C1 and C2. Their size is a function of the characteristic length
C̃ = L̃/16, i.e., R1 and R2 have edge lengths ẽ1(R1), ẽ2(R1), ẽ1(R2), ẽ2(R2) ∈
[C̃, 2C̃], and C1 and C2 have radii r̃(C1), r̃(C2) ∈ [C̃, 2C̃]. All objects have a
minimum distance of d̃ = C̃ from the domain boundaries and may overlap.

Two-dimensional uniformly refined meshes Mf and Mc with two distinct
resolutions are generated in Cartesian coordinates. In the fine mesh Mf each
cell has an edge length of Δx̃f = (1/16)C̃ = 0.1 m resulting in 256 × 256 cells.
The coarse mesh Mc has a cell length of Δx̃c = (1/8)C̃ = 0.2 m and a total of
128 × 128 cells.

2.3 Boundary and Initial Conditions

Two types of boundary conditions are imposed at the four domain boundaries
according to [11], i.e., non-reflecting (NRBCs) and wall boundary conditions
(WBCs) are prescribed. As shown for boundaries III and IV in Fig. 1, the NRBCs
have a buffer layer thickness of D̃ = C̃ to ensure a complete dissipation of
acoustic waves and to avoid reflective phenomena at the domain boundaries. In
the buffer layer, an absorption term [11]

Fad = −σ(feq
k (�x, t) − fa), (5)

with weighting factor fa and σ = σm(δ̃/D̃)2 is added to Eq. (2). The quantity δ̃
is the distance to the buffer layer and σm is a constant specified as 0.1.
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The WBCs are characterized by a no-slip behavior, where the PPDFs are
reflectively bounced back. They are imposed as a layer with thickness D̃ = C̃
as shown for boundaries I and II in Fig. 1, i.e., the computational domain is
reduced by this thickness. In computations with WBC, a maximum number of
three domain boundaries is specified as WBC in a random process. To prevent
strong overlaps of acoustic waves, which may cause numerical instabilities, at
least at one domain boundary an NRBC is imposed.

The acoustic fields, which are exploited to train the CNN model, are config-
ured by a simple source S defined by a sinusoidal function given by

S(t) = A · sin(2πωt), (6)

with a frequency ω = 0.02 · (1/Δt) and the amplitude A = 0.1 ·ρ∞ and ρ∞ = 1.0
in the LB context. A set of the training data is generated by the computational
domains with a noise source restricted by a geometry, i.e., the minimum distance
C̃ between the noise source and the sound-hard objects satisfies the condition
L < 2C̃ where L is a distance between monopoles and domain boundaries.
With ω = 1/T , this yields a non-dimensionalized harmonic period of T = 50Δt.
One wavelength λ is computed from λ = uw/ω, with uw = Δx/Δt being the
velocity with which information is transported in the LB context. This results
in λ = 50Δx for computations in this study, if not stated otherwise.

The relationship between ω in LB context and the frequency ω̃ in physical
space is obtained by inserting

Δt̃ = Δx̃
cs
c̃s

, (7)

with the physical speed of sound c̃s = 340 m/s at reference temperature T∞ =
298.15K into the equation for the frequency ω̃ = 0.02(1/Δt̃). The relationship
between ν in the LB context and the kinematic viscosity ν̃ in physical space is
given by

ν = ν̃ · Δt̃

(Δx̃)2
with ν̃ =

1
ρ̃∞

· K1 · T
3
2∞

T∞ + K2
. (8)

The latter equation is Sutherland’s law [32] with ρ̃∞ = 1.184 kg/m3, K1 =
1.458·10−6 kg/(ms ·K1/2), and K2 = 110.4K. Table 1 lists all necessary variables
in their dimensional and non-dimensional form for Mf and Mc.

2.4 Evaluation of Acoustic Fields

The acoustic fields are determined by a set of the computational domains which
include at least one noise source and randomized solid surfaces. For fluid cells
at location (i, j), i, j ∈ {1, . . . ,m}, the sound pressure level SPL is defined by

SPL(i, j) = 20 log10(p
′
rms(i, j)), (9)

where the maximum number of mesh points m is m = 128 for the coarse grid
and m = 256 for the fine grid configurations. The root-mean-square (rms) values
of pressure fluctuations p′ are calculated by
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p′
rms(i, j) =

√∑N
n=1(pn(i, j) − pavg(i, j))2

N
, (10)

where pavg(i, j) is the mean pressure averaged over the time period N , and
pn(i, j) is the instantaneous pressure resulting from the simulation at a time
step n within that period. Simulations are carried out for 3, 000 time steps. The
averaging period N = 2, 000 starts after 1, 000 time steps when the acoustic field
is fully developed.

2.5 Machine Learning Techniques

An encoder-decoder CNN is trained to predict the SPL in a supervised manner
using results of the aforementioned LB simulations. The CNN is fed with four
types of input data:

(i) types of boundary condition;
(ii) location of monopoles;
(iii) cell distances for objects;
(iv) cell distances for monopoles.

To correctly predict aeroacoustic fields, the CNN needs to learn the impact of
the various boundary conditions and the location of monopoles on the acoustic
field. Therefore, considering inputs (i) and (ii), cells at location (i, j) are assigned
segmentation values

Υ (i, j) =

⎧⎪⎨
⎪⎩

0, empty or NRBC cell
1
2 , WBC or object cell
1, monopole cell

. (11)

A sensitivity analysis of the input data has been performed before the train-
ing. This analysis revealed that solely using boundary parameters leads to poor
predictions of the network, i.e., it is not effective for CNNs learning from flow
simulations. This is in line with findings in [7]. Since acoustic signals propagate
with a certain wavelength and amplitude at a certain sound speed, distances are
also important parameters for learning. For this purpose, inputs (iii) and (iv)
are provided to the CNN in the form of distance functions Φo for objects and Φm

for monopoles. Such an approach has previously been used for CNNs to predict
steady-state flow fields [3,7]. The distance functions are defined by

Φo(x) =

{
d(x, ∂Ω) x /∈ Ω

0 x ∈ {∂Ω,Ω} and Φm(x) = d(x,M), (12)
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i.e., for each cell x with location (i, j) in a domain the minimal distances d(x, ∂Ω)
and d(x,M) to the boundary ∂Ω of an object Ω and to a monopole M are deter-
mined. Obviously, it is Φo(x) = Φm(x) = 0 on the boundary and exactly at the
monopole source. For Φo, an assignment of negative distances for cells inside of
an object, as it is usually used by signed-distance functions, turned out to have
a negative impact on predictions, which is why ∀(x ∈ Ω : Φo = 0). The dis-
tances are computed by the fast marching method [30] and are normalized by L̃.
Learning from distances like inputs (iii) and (iv) alone results in mispredictions
near domain boundaries. A combination of all presented types of inputs has been
found to favorably affect predictions.

In the following, the CNN used for predicting the SPL fields is referred to
as acoustics field predictor (AFP). The corresponding network architecture is
shown in Fig. 2 for a case that uses arrays with the size of Mf as inputs. Inputs
(i) and (ii) are combined to one array. Together with fields (iii) and (iv) they are
stacked to form channels of the input. It should be noted that physical quantities
such as the pressure distribution are a solution of the acoustic fields computation
and constitute the ground truth. They are not known a priori and hence cannot
be used for training.

i,ii

iii

iv
256x256x3

Conv-Block
KS: 7x7

FM: Y (256x256)

Conv-Block
KS: 5x5

FM: 2Y (128x128)

Conv-Block
KS: 5x5

FM: 4Y (64x64)

Conv-Block
KS: 3x3

FM: 8Y (32x32)

Conv-Block
KS: 3x3

FM: 16Y (16x16)

32x32x8Y

DeConv

32x32x8Y

DeConv, 64x64x4Y

64x64x4Y

Conv-Block
KS: 3x3

FM: 8Y (32x32)

Conv-Block
KS: 5x5

FM: 4Y (64x64)

128x128x2Y
Conv-Block

KS: 5x5
FM: 2Y (128x128)

DeConv, 128x128x2Y

256x256xY
Conv-Block

KS: 5x5
FM: Y (256x256)

DeConv, 256x256xY

Long skip connection

SPL

Convolution layer

Batch Normalization

ReLU activation

Convolution layer

Batch Normalization

ReLU activation

Conv-Block:

MP

MP

MP

MP,DO

DO

Linear
activation

256x256

S
hort skip

connection

Long skip connection

Long skip connection

Long skip connection

Fig. 2. Network architecture of the AFP including size and number of feature maps
(FMs) as a multiple of Y , kernel size (KS), 2 × 2 maximum pooling layers (MP),
dropout layers (DO), convolutional blocks, and deconvolutional layers.
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The architecture is inspired by distinct architectures that employ long skip
connections between encoder and decoder layers [19,26,34], like for instance
U-net architectures, which have been successfully used for medical image seg-
mentation [26]. Skip connections between encoding and decoding paths allow
the re-use and fusion of features on different scales. To preserve information
from features on all scales, the activity of each encoder layer is directly fed to
the corresponding decoder layer via long skip connections. These connections
are chosen to have residual form, adding the activity of encoder layers to the
output of decoder layers. This setup is similar to [19], however, different from
the original U-net architecture, where long skip connections have dense form and
concatenate layers on the same scale. As depicted in Fig. 2, the residual long skip
connections perform identity mapping by adding source encoder layer outputs
to target decoder layer outputs [9,19]. This kind of connectivity allows for direct
gradient flow from higher to lower layers across all hierarchy stages during the
backward pass, which prevents common issues with vanishing gradients in deep
architectures. In contrast to dense long skip connections, residual skip connec-
tions lead to smaller numbers of activations to be handled in the decoding path
during the forward and backward passes. As a consequence, they decreased mem-
ory consumption and are more efficient and faster in training without sacrificing
prediction accuracy. Short skip residual connections are also used in so called
convolutional residual blocks (Conv-Blocks). Here, convolutional layers, batch
normalization (BN), and rectified linear unit (ReLU) activation functions are
employed. BN acts as a regularizer, shifting activity of the layers to zero mean,
unit variance. This leads to faster and more reliable network convergence [10].
The number of feature maps (FMs) is a multiple of a given factor Y . The output
of the first convolutional layer is added to the input of the last ReLU activa-
tion, see Fig. 2, which defines residual short skip connections in Conv-Blocks. A
combination of long and short skip connections leads to faster convergence and
stronger loss reduction [5]. In the encoder path, downscaling is performed by
2 × 2 maximum pooling layers (MP). To further avoid overfitting, yet another
regularization method, dropout (DO) [31] is used during training, with a DO
probability of P = 0.5. The final layer is fully connected with a linear activation
function, which is frequently used for regression outputs [15]. Weights and biases
are initialized from a truncated normal distribution centered around the origin
with a standard deviation of σstd =

√
2/f , where f is the number of connections

at a layer [9]. They are updated by an adaptive moments (ADAM) optimizer [12].
The ADAM optimizer adjusts the learning rate (LR) by considering an expo-
nentially decaying average of gradients computed in previous update steps. The
initial learning rate is set to LR = 0.001. The batch size BS represents the
number of training data passed to the network in a single training iteration. In
Sect. 3 it will be shown that in this context a batch size of BS = 5 achieves the
best results. Therefore, it is used throughout this study, if not stated otherwise.
The ground truth GT distribution SPLGT is obtained from

SPLGT =
SPL − SPLmean

SPLstd
, (13)
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where SPLmean and SPLstd are the mean and the standard deviation of the
complete training dataset of the a priori simulations. The predictions need to be
denormalized before the SPL can be analyzed.

Data augmentation is used to increase training data diversity and to encour-
age learning of useful invariances. Therefore, the coordinate axes i and j are
transposed randomly. Furthermore, for inputs (i) and (ii), the segmentation val-
ues Υ (i, j) are changed to augmented inputs Υaugm(i, j) according to

Υaugm(i, j) =

{
Υ (i, j) i = j

Υ (j, i) i �= j.
(14)

The total loss Ltot between simulated (superscript “sim”) and predicted (super-
script “pred”) SPL values is defined by

Ltot = LMSE + 2 · (
LI
GDL + LII

GDL + LIII
GDL + LIV

GDL

)
︸ ︷︷ ︸

LGDL

, (15)

which is a combination of the mean squared error MSE

LMSE =
1

m2

m∑
i=1

m∑
j=1

(
SPL(i, j)sim − SPL(i, j)pred

)2
(16)

with 1 ≤ i, j ≤ m and a gradient difference loss LGDL. Gradient losses GDL in
i- and j-directions are considered by LGDLI

and LGDLII
, and diagonal gradients

by LGDLIII
and LGDLIV

.
Three types of gradient losses are addressed in this work. The four directions

indicated by roman numbers I–IV in Eq. (15) are defined by introducing integer
variables k and l, i.e., the four directions are denoted by I : (k = 1, l = 1),
II : (k = 2, l = 2), III : (k = 1, l = 2), and IV : (k = 2, l = 1). In the first type,
LGDLA

, the difference between two neighboring cells is considered, inspired by
the gradient loss in the work of Mathieu et al. [20]

LGDLA
=

1
(m − 1)(m − mod(p, 2))

·
∑
i

∑
j

[
SPLsim

i+s,j+t − SPLsim
i,j − SPLpred

i+s,j+t + SPLpred
i,j

]2
. (17)

In Eq. (17) the gradient losses of four neighboring points are defined by the
notations p = mod(k, 2) + mod(l, 2), s = 1 − mod(k + 1, 2) · mod(l + 1, 2), and
t = (−1)k+1 · mod(p, 2) + 1 − s. The gradient loss terms of the first type have
a 1st-order accuracy in terms of a forward difference (FD) formulation [23]. To
integrate radial propagation of a point source into the loss function, central
difference (CD) schemes are added. The gradient loss LGDLB

uses a 2nd-order
accurate CD formulation that incorporates two neighboring cells. The 2nd-order
accurate gradient loss terms in a two-dimensional domain read
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LGDLB
=

1
4 mod(k + l + 1, 2) + 8 mod(k + l, 2)(m − 2)(m − 2 · mod(p, 2))

·
∑
i

∑
j

[
SPLsim

i+s,j+t − SPLsim
i−s,j−t − SPLpred

i+s,j+t + SPLpred
i−s,j−t

]2 (18)

The third type of gradient loss, LGDLC
, is formulated with a 4th-order accurate

CD scheme and includes four neighboring cells, i.e., two cells in each direction

LGDLC
=

1
144 mod(k + l + 1, 2) + 32 mod(k + l, 2)(m − 4)(m − 4 · mod(p, 2))

·
∑
i

∑
j

[ − SPLsim
i+2s,j+2t + 8SPLsim

i+s,j+t − 8SPLsim
i−s,j−t + SPLsim

i−2s,j−2t

+ SPLpred
i+2s,j+2t − 8SPLpred

i+s,j+t + 8SPLpred
i−s,j−t − SPLpred

i−2s,j−2t

]2
.

(19)

The cell-wise prediction accuracy is evaluated by the absolute error

Ξ(i, j) =

∣∣SPLpred(i, j) − SPLsim(i, j)
∣∣

|SPLsim
max − SPLsim

min| . (20)

between SPLpred and SPLsim with SPLsim
max = max(SPLsim) and SPLsim

min =
min(SPLsim). From the Ξ distribution of each simulation a mean absolute error

Γ =
1

m2

m∑
i=1

m∑
j=1

Ξ(i, j) (21)

is calculated to evaluate the prediction quality.

3 Results

In the following, findings of a grid convergence study are discussed in Sect. 3.1.
Results of network-predicted acoustic fields are presented for three cases 1–3 in
Sects. 3.2, 3.3, and 3.4. The complexity of the cases is continuously increased.

The acoustic simulations are conducted on multiple graphics processing units
(GPUs). At average, a solution on Mf is obtained in ≈120 s on a single GPU. Up
to ten GPUs are employed to accelerate the process. Once trained, the network
predictions take only a fraction of a second on a single modern GPU and only
a few seconds on any low end computer such as a laptop. For all computations
the GPU partition of the JURECA system [14], Forschungszentrum Jülich, is
employed. Each GPU node is equipped with two NVIDIA K80 GPUs.

3.1 Grid Convergence Study

A grid convergence study is conducted in a free-field domain containing only a
single monopole at the center and no walls. The impact of doubling the number
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Fig. 3. a) D = (SPL − SPLmax)/SPLmax at a distance from up to 4λ in radial
direction from a monopole placed in the center of a free field. Three resolutions for one
wavelength are juxtaposed: D(λ = 100Δx) · · ·, D(λ = 50Δx) - - -, D(λ = 25Δx) —.
b) Error E between D(λ = 50Δx) and D(λ = 100Δx).

of cells used to resolve one wavelength λ on the SPL accuracy is investigated.
Therefore, the wavelength resolutions at a distance of up to 4 wavelengths in
radial direction from the source, which corresponds to the maximum appearing
distance considered in the subsequently discussed cases 1–3, is analyzed. In order
to obtain results in a farfield from the center for λ = 100Δx, the domain is
extended to 1, 024 × 1, 024 cells. Figure 3a) shows the divergence D = (SPL −
SPLmax)/SPLmax from the maximum SPL value SPLmax, which appears at
a distance of one wavelength from the monopole location, for λ = 25Δx, 50Δx,
and 100Δx. From this figure, it is evident, that the divergence increases with
increasing distance from the monopole. Furthermore, Fig. 3b) shows the error
for λ = 50Δx compared to λ = 100Δx, i.e., E = D(λ = 50Δx)−D(λ = 100Δx).
Throughout this work a wavelength of λ = 50Δx is used, which covers distances
up to 2λ in cases 1–2, and up to 4λ in case 3. At distances 2λ and 4λ, errors
of E = 0.0239 and E = 0.0657 are obtained. It should be noted that using
λ = 100Δx would massively increase the computational effort and hence, as the
corresponding error is acceptable, meshes with λ = 50Δx are employed in all
cases.

3.2 Case 1: Simple Setup and Parameter Study

The domain in case 1 contains one monopole M1 at the center (8C, 8C) and one
randomly positioned circular object C1. Each computational domain consists of
128×128 cells in the two dimensions. The acoustic solutions of 3, 000 simulations
are split into 2, 600 training data, 200 validation data, and 200 test data. Three
sub-cases 1A, 1B, and 1C listed in Table 2 are configured by one noise source
and one solid object. In case 1A, the number of FMs is investigated by varying
the factor Y as shown in Fig. 2. Variations of Y = 8, Y = 16 and Y = 32
lead to 517, 867, 2, 066, 001 and 8, 253, 089 trainable parameters. It is evident
from comparing Figs. 4b), 4c), and 4d) with the simulation results in Fig. 4a)
that Y = 32 qualitatively reproduces the simulation best. For Y = 8, the AFP
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Table 2. Simulation configurations defined by objects, the number of noise sources (no.
noise) and simulations (no. sim) generated by randomized distributions of objects. The
number of feature maps (FMs) is defined by Y . The gradient losses GDL are calculated
by FD, 2nd-order-accurate, and 4th-order-accurate CD schemes. The quantities BS and
Γ are the batch size and the mean acoustic error.

Case Object(s) No. noise No. sim Y GDL method BS Γ

1A C1 1 3,000 8 FD 5 0.17506

C1 1 3,000 16 FD 5 0.03312

C1 1 3,000 32 FD 5 0.00887

1B C1 1 3,000 32 FD 5 0.00887

C1 1 3,000 32 2nd order CD 5 0.00671

C1 1 3,000 32 4th order CD 5 0.00222

1C C1 1 3,000 32 2nd order CD 5 0.00671

C1 1 3,000 32 2nd order CD 10 0.00626

C1 1 3,000 32 2nd order CD 20 0.00413

2 R1, C1 1 3,000 32 2nd order CD 5 0.00359

R1, C1 1 6,000 32 2nd order CD 5 0.00280

3 R1, R2, C1, C2 2 6,000 32 2nd order CD 5 0.02581

R1, R2, C1, C2 2 10,000 32 2nd order CD 5 0.02268

R1, R2, C1, C2 2 20,000 32 2nd order CD 5 0.01937

Fig. 4. Example of SPL fields of case 1A: a) simulation result, b) network prediction
with Y = 8, c) Y = 16, and d) Y = 32; e) SPL distribution at j = 64 along LP1:
simulation result · · ·, network prediction with Y = 8 - - -, Y = 16 —, and Y = 32 - · -.
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completely fails to generate a physically meaningful SPL field. In case of Y = 16,
acoustic waves distant from the object are reproduced well, but superpositions
of acoustic waves in the vicinity of the object are too strong, see Fig. 4c). The
SPL distribution shown in Fig. 4e) along the characteristic line LP1, see Fig. 4a),
substantiates these findings. The valley between M1 and C1, and the decrease
of the SPL value in the shadow of C1 are only captured well for Y = 32.
Furthermore, the CNN has problems capturing fluctuations at the center of M1

as non-physical SPL values are found at isolated locations close to the object.
The mean error Γ listed in Table 2 shows Y = 32 to have the lowest deviation
among the three computations. The training time to reach a convergence of the
loss function increased from approximately one hour for Y = 8 up to two and
four hours for Y = 16 and Y = 32.

To overcome inaccurate predictions close to monopoles, the nature of a noise
source is incorporated into the loss function of the AFP. A simple FD gradient
loss does not consider that monopoles are point sources spreading waves into all
directions. In case 1B, two variations of losses are investigated that are based
on the CD formulations provided in Sect. 2.5. From Fig. 5 it is obvious that
thereby non-physical SPL values vanish near objects. Furthermore, Fig. 5(c)
shows an improvement of the SPL distribution at the center and surroundings
of M1 predicted by a 2nd-order accurate CD gradient loss. In contrast, using a

Fig. 5. Example of SPL fields of case 1B: a) simulation result, b) network prediction
with FD, c) a 2nd-order accurate CD , and d) a 4th-order accurate CD gradient loss;
e) SPL at j = 64 along LP2: simulation result · · ·, network prediction with FD - - -,
2nd-order accurate CD —, and 4th-order accurate CD gradient losses - · -.
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4th-order accurate CD formulation lowers the accuracy of the predictions near
M1, see Fig. 5(d). It is, however, evident from Table 2 that a slightly lower Γ is
achieved than using a 2nd-order formulation. This is due to the 4th-order accu-
rate CD gradient loss computations reproducing simulations slightly better at
locations distant from monopoles and objects, see Fig. 5(e). SPL fluctuations at
the center of M1 are by far closer to the ground truth using the 2nd-order accu-
rate formulation. Since this study focuses on the prediction of complex acoustic
fields with multiple noise sources, the advantages of the 2nd-order accurate for-
mulation are considered more valuable, i.e., in the following this type of loss is
employed.

The impact of BS is investigated in Fig. 6. Figure 6e) plots the SPL dis-
tribution along line LP3, see Fig. 6a). Although predictions with BS = 10 and
BS = 20 show a slight decrease of Γ , see Table 2, several shortcomings are rec-
ognizable in predicted SPL fields. Figures 6c) and e) show that with BS = 10
non-physical fluctuations near the objects are introduced. These fluctuations are
also present for BS = 20 and are superimposed by inaccuracies appearing in the
vicinity of M1 and at the domain boundaries, i.e., BS = 5 delivers the best
results.

Fig. 6. Example for SPL fields of case 1C: a) simulation result, b) network prediction
with BS = 5, c) BS = 10, and d) BS = 20; e) SPL distribution at j = 64 along line
LP3: simulation result · · ·, network prediction with BS = 5 - - -, BS = 10 —, and
BS = 20 - · -.
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3.3 Case 2: Influence of the Number of Training Data

In case 2, the number of training, validation, and test data is analyzed. Compared
to case 1, the complexity is increased by adding a rectangular object R1 to the
domain. The training, validation, and test data are composed of 2, 600, 200 and
200 simulations for a total of 3, 000, and of 5, 200, 400, and 400 for a total of
6, 000 simulations. The setups for these cases are summarized in Table 2.

Figure 7 compares the results of an LB simulation qualitatively and quanti-
tatively along line LP4, see Fig. 7a), with predictions generated by using 3, 000
and 6, 000 simulations for learning. When the amount of data is increased, non-
physical fluctuations disappear in regions, where sound waves propagate towards
the surface of R1. Furthermore, the predictions of the acoustic field in the vicinity
of C1 improve from 3, 000 to 6, 000 training datasets.

Fig. 7. Example of SPL fields of case 2: a) simulation result, b) network prediction with
3, 000, and c) 6, 000 simulations; SPL distribution at j = 30 along LP4: simulation
result · · ·, network prediction with 3, 000 - - -, and 6, 000 simulations —.

3.4 Case 3: Complex Setup and Impact of Increasing Training Data

Case 3 ties on to the findings from the previous cases to predict SPL fields in a
domain containing objects C1, C2, R1, and R2, see Fig. 1, on Mf . From Mc to
Mf the number of trainable parameters increases from 8, 253, 089 to 8, 256, 225.
NRBC and WBC boundary conditions are imposed randomly at the domain
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Fig. 8. Example of SPL fields of case 3: a) simulation result, b) network prediction
with 6, 000, c) 10, 000, and d) 20, 000 simulations; SPL distribution at j = 80 along
LP5: simulation result · · ·, network prediction with 6, 000 - - -, 10, 000 —, and 20, 000
simulations - · -.

boundaries. Two monopoles M1 and M2 are placed inside of the domain. M1 is
located at (5C, 5C) and M2 is positioned randomly. For the training, validation,
and testing of the AFP, a total number of 20, 000 simulations is used. Results of
computations with different simulation inputs are compared to the ground truth
in Fig. 8. Note that the WBC is imposed at domain boundary IV, however, the
complete thickness D̃ is not visualized in the figure. The first case uses 6, 000
simulations with a distribution of 5, 200, 400, and 400 for training, validation,
and testing. The second case employs 10, 000 simulations with a distribution of
8, 800, 600, and 600 for training, validation, and testing. The last case employs all
20, 000 simulations with a distribution of 18, 000, 1, 000, and 1, 000 for training,
validation, and testing. For reference, the different setups and the corresponding
results are listed in Table 2. Obviously, the error Γ decreases when the number
of training data is increased. From Figs. 8(c) and (e) it is evident that the
AFP trained with 8, 800 datasets overpredicts the SPL near M1. In general, it
can be stated that with an increasing complexity the SPL is more difficult to
predict compared to cases 1 and 2. To be more specific, from case 1 to case 3
the error Γ increases by one order of magnitude, i.e., it is at Γ = 0.01937 in
case 3. However, complex acoustic fields are reproduced. For a number of 18,000
simulation, training took 96 hours to reach a convergence of the loss function.
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4 Summary, Conclusions, and Outlook

A deep learning method has been developed to predict the sound pressure
level distribution in two-dimensional aeroacoustic setups including multiple ran-
domly distributed rectangular and circular objects as hard reflective surfaces and
monopoles as sound sources. The deep learning method is based on an encoder-
decoder convolutional neural network, which has been trained with numerical
simulations based on a lattice-Boltzmann method. To analyze the accuracy of
the network predictions, various learning parameters have been tuned by succes-
sively increasing the complexity of the prediction cases and by analyzing different
loss functions. A network containing 8, 256, 225 trainable parameters, a combina-
tion of the mean-squared error loss and gradient loss formulated by a 2nd-order
accurate central difference scheme, and a batch size of five positively influenced
the predictions. A number of 18, 000 datasets has been used to train the deep
neural network. A mean absolute error of less than 2% shows the neural network
being capable of accurately predicting the acoustic fields. The study has been
complemented with a grid convergence study, which revealed that a resolution
of 50 cells for a single wavelength is sufficient to yield accurate results.

At present, the method is spatially limited to two-dimensional cases. How-
ever, most engineering applications, e.g., design processes to find optimal layouts
for low-noise turbojet engines, feature three-dimensional phenomena. Extending
the presented deep learning method to learn from three-dimensional simulations
will lead to accelerated predictions of three-dimensional aeroacoustic problems.
Furthermore, realistic acoustic fields are frequently characterized by interactions
of multiple noise sources with various frequencies and amplitudes. Therefore, it
is necessary to extend the current setup to monopoles with multiple frequen-
cies and amplitudes. Apart from increasing the domain’s complexity, the level
of generalization will be increased. The presented acoustic field predictor has
been trained and tested on similar situations. Its capabilities to generalize will
be enhanced by testing on situations that have not been part of the training
process, e.g., training with four objects and testing with five. Instead of strictly
separating different gradient losses, the impact of combining them in a single loss
and employing individual weights will be analyzed. In addition, physics-informed
losses that allow the network to comply with physical laws of aeroacoustics will
be integrated. Furthermore, adversarial training will be investigated by adding
a discriminator with an adversarial loss to the current architecture. Such GAN
type architectures have the potential to help finding a suitable loss from the
training data. It is also worth mentioning that the method presented in this
study has the potential to support solving noise control problems. It remains to
investigate if a dedicated acoustic field predictor that can quickly give feedback
on the arrangement of multiple monopoles is capable of finding optimal acoustic
setups. Therefore, the presented acoustic field predictor will be integrated into
a reinforcement learning loop.
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through the Jülich Aachen Research Alliance (JARA) on the supercomputer



Prediction of Acoustic Fields Using an LB Method and DL 99
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thank Forschungszentrum Jülich GmbH, RWTH Aachen University, and the JARA
Center for Simulation and Data Science (JARA-CSD) for research funding. This work
was performed as part of the Helmholtz School for Data Science in Life, Earth and
Energy (HDS-LEE).

References

1. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and
applications. Phys. Rep. 222(3), 145–197 (1992). https://doi.org/10.1016/0370-
1573(92)90090-M

2. Bhatnagar, P.L., Gross, E.P., Krook, M.: A Model for collision processes in gases.
I. Small amplitude processes in charged and neutral one-component systems. Phys.
Rev. 94(3), 511–525 (1954). https://doi.org/10.1103/PhysRev.94.511

3. Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.: Prediction of aero-
dynamic flow fields using convolutional neural networks. Comput. Mech. 64(2),
525–545 (2019). https://doi.org/10.1007/s00466-019-01740-0

4. Bode, M., et al.: Using Physics-Informed Super-Resolution Generative Adversarial
Networks for Subgrid Modeling in Turbulent Reactive Flows (2019)

5. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance
of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.)
LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46976-8 19
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