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Abstract. System-level development has been dominated by program-
ming languages such as C/C++ for decades. These languages are inheren-
tly unsafe, error-prone, and a major reason for vulnerabilities. High-level
programming languages with a secure memory model and strong type
system are able to improve the quality of the system software. This paper
explores the programming language Rust for development of a scalable,
virtual execution environment and presents the integration of a Rust-
based IP stack into RustyHermit. RustyHermit is part of the standard
Rust toolchain and common Rust applications are able to build on top
of RustyHermit.

1 Introduction

The C programming language is still dominating system-level software develop-
ment as it was designed for this exact case and is known to provide high perfor-
mance. However, C is also known to be error-prone and difficult to use in large
scale projects as even senior developers can hardly avoid an incorrect usage of
C. Dangling pointers and missing boundary checks are other typical reasons for
issues within kernel code. This is not a new observation. As described in by Cut-
ler et al. [3], the Pilot kernel [29] and the Lisp machine [8] are early examples of
the usage of a high-level language (Mesa and Lisp, respectively) for Operating
System (OS) development. However, the approach has not gained acceptance
and is hardly used because memory safety of high-level languages often induces
runtime overhead (e.g., due to garbage collection).

Furthermore, the OS requirements changed fundamentally over the last years.
The basic infrastructure within OSs was established in the seventies when hard-
ware was expensive and resource sharing was the focus. The virtualization of
hardware resources has been established for a simplified resource sharing, e.g.,
sharing a processor in round-robin manner. However, in the era of cloud com-
puting, complete machines are virtualized supporting server consolidations. Vir-
tualization is implemented as another software abstraction layer in an already
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highly layered software stack. Typical modern OSs still include support for old
physical protocols (e.g., floppy disks), irrelevant optimizations (e.g., disk ele-
vator algorithms on SSDs) and backward-compatible interfaces (e.g., POSIX).
Anil Madhavapeddy et al. discuss these issues in [20,21] and present unikernels,
i.e., specialized library OSs, as a solution. Unikernels are built by compiling high-
level languages directly into specialized single-address-space machine images. In
doing so, unused code is removed by static code analysis and system calls are
replaced by common function calls promising a faster resource handling. Uniker-
nels are able to run directly on a hypervisor or bare metal on the hardware.
They provide a smaller footprint compared to traditional OS kernels and have
more prospect to optimize the applications, e.g., the application and the kernel
can be optimized by means of Link-time Optimization (LTO).

Current Unikernels relinquish backward compatibility, often rely on uncom-
mon programming interfaces, and barely support multi-processor systems. In
[16], we present a rewrite of HermitCore [14] in Rust called RustyHer-
mit and demonstrate that the performance of the Rust implementation is on
a par with the original C implementation. RustyHermit is integrated into
the standard runtime of Rust and its compiler infrastructure. It is trivial to
port pure Rust application to RustyHermit, as it just requires a configuration
change. Only applications, which bypass the Rust runtime and call directly a C
library, have to port also the C library to the new system. Furthermore, existing
C/C++ and Fortran applications can be linked with RustyHermit and generate
a bootable image. In this paper, we focus on the integration of a Rust-based IP
stack enabling the building and deployment of secure and efficient cloud appli-
cations.

The rest of this paper is structured as follows: We start with a discussion of
the related work in the area of unikernels and the usage of high-level program-
ming languages for kernel development. In Sect. 3, we give a short introduction
to Rust, followed by the Sect. 4 on kernel development using Rust and the inte-
gration of the IP stack. In the Sect. 5 we compare the performance of our kernel
with Linux. Finally, Sect. 6 summarizes the paper and give a short outlook.

2 Related Work

High-level programming languages provide type-safety and memory-safety as
well as convenient abstractions of concurrent programming reducing the sus-
ceptibility to errors. However, kernel developers are often skeptical to use new
languages because they expect them to introduce additional overhead compared
to C [37] and require a redevelopment of kernel components. Yet, many research
projects use high-level programming languages to benefit from new features such
as a safe memory handling. New system programming languages, e.g., D [4],
Nim [27], Go [7], and Rust [35], have emerged in the last decade. For nearly
every language there exists an OS project.

In Rust, the compiler is able to determine when memory has to be freed
avoiding the need for according runtime checks. This results in far less runtime
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overhead compared to other high-level programming languages, but introduces
unique memory handling at the language level. Levy et al. [17,18] show that Rust
is attractive for kernel development because it promises memory-safety while pro-
viding good performance. In addition, Balasubramanian et al. [1] show that Rust
offers software fault isolation (SFI) with lower overhead and Narayanan et al.
in [24] steps to realize a Rust-based verified firmware. Currently, Microsoft [22]
is also analyzing Rust as a system programming language. Projects such as
Redox [31], Tock [36] or teaching kernels such as our eduOS-rs [6] show that
Rust is usable for OS development, but all these Rust kernels were not designed
for cloud environments.

Both HermitCore and RustyHermit belong to the class of unikernels or
library OSs. MirageOS [20], IncludeOS [2], rumprun kernels [9], and OSv [10] are
typical representatives. The fundamental drawback of unikernels is the porting
effort that is required to adapt existing applications to the underlying minimalis-
tic OS. This often requires both expert work and a considerable amount of time.
One objective of the Unikraft [38] project is to build unikernels targeted at spe-
cific applications, without requiring the time-consuming, expert work. Unikraft
is written in C, uses newlib [30] as the C library, and LwIP [5] as the network
stack.

Like Unikraft, HermitCore relies on LwIP as it is easy to combine to a
kernel and the list of requirements is small. However, LwIP was mainly designed
for embedded systems and it is a challenge to get the same performance as
provided by common operating systems (e.g., Linux). For instance, Kuenzer
et al. [12] can improve the performance by using a low-level API (instead of a
socket interface) and to integrate checksum offloading. Further improvements
can be achieved by supporting the Data Plane Development Kit (DPDK) [28].
However, this is not available for all devices.

The compatibility of unikernels to common OSs (e.g., Linux) is currently
still limited. HermiTux [26] has similar objectives and realizes compatibility to
Linux by rewriting system calls and using a modified C library. However, the
compatibility of HermiTux is limited as not all Linux system calls have been
re-implemented. RustyHermit is also not compatible to common OSs, but it
offers the possibility to write portable Rust applications. Changes to the source
code are not required to run the application on Linux or other OSs.

3 Introduction to Rust

Rust is a new programming language originally designed by Graydon Hoare as a
replacement for C/C++. Its goal is to provide the same level of performance, but
to allow for more comprehensive safety checks at compile time and by default
enabled runtime checks when the compile time checks are not sufficient (e.g.,
array access with indices not known at compile time). We discuss only the fea-
tures relevant to understand this paper, a detailed overview on Rust can be
found in [11].

Rust relies on ownership to provide safe memory handling without runtime
overhead. Each resource (e.g., memory) in Rust has a variable that is called its



334 S. Lankes et al.

owner. There is exactly one owner at a time and whenever this owner goes out
of scope, the resource will be dropped and the memory freed. Ownership can
be forwarded to another variable invalidating the original owner, or the owner
can borrow the resource to another variable. Read only access can be provided
to multiple variables at a time via immutable borrows, as long as no mutable
borrow is happening at the same time. In general, these rules prevent data races,
the dangling pointer problem, and pointer aliasing for mutable access. For most
tasks it is possible to develop code that these rules are satisfied at compile time,
however it is also possible to use std::cell::RefCell to bypass compile time
checks, but enforce runtime checks.

Similarly to these checks, Rust provides compile time checks as well ensuring
the correct execution of concurrent or parallel code. Data that is shared between
threads must implement the so-called sync trait (the rust term for an interface)
or must be wrapped into a mutex providing this trait. This rule prevents data
races, as long as the synchronization mechanism (e.g., the mutex) is implemented
correctly. Furthermore, the Rust compiler checks the lifetime of values shared by
threads and will not compile code in which a value is not guaranteed to outlive
the threads borrowing a value.

All checks named before can be circumvented by using the unsafe keyword.
Unsafe Rust code provides the same level of control as C, e.g., it provides raw
pointers enabling direct, unchecked memory accesses and even supports the
usage of inline assembly. Code in unsafe regions should be reviewed more care-
fully than code that is checked by the compiler and as a result it is typically
frown upon by the Rust community. Currently, it is not possible to write a ker-
nel without unsafe code. For instance, inline assembly is important to restore
the context of the FPU. However, the RustyHermit only requires 1170 lines
of unsafe code corresponding to only 1.71% of total code size.

The Rust standard library is divided into an OS-independent and an OS-
dependent part. The library known as core library is the major part of the OS-
independent library and already implements basic error/panic handling, string
operations, and atomic operations. Furthermore, Rust offers the possibility to
redefine the global memory allocator. This allocator is used by all other Rust
codes unless explicitly circumvented. In contrast, the part known as std con-
denses the OS-dependent libraries and extends them with various data struc-
tures, console output, and thread handling. It is easily possible to create a project
that does not use std by adding #![no_std] to the main file.

4 A Unikernel Written in Rust

RustyHermit is a rewrite of our 64 bit unikernel HermitCore [14,15] which
was written in C. RustyHermit is completely written in Rust, supports the
Intel 64 Architecture and comes with support for SSE4, AVX2, and AVX512.
It has multi-core and single-core multiprocessing support by the means of mul-
tithreading and multiprocessing. The Kernel supports the execution of more
threads than available cores. This is an important feature for dealing with con-
current applications or to integrate performance monitoring tools. Currently, the
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scheduler does not support load balancing as explicit thread placement is favored
over automatic strategies. Scheduling overhead is reduced to a minimum by the
employment of a dynamic timer, i.e., the kernel does not interrupt computa-
tion threads which run exclusively on certain cores and do not use any timer.
To improve the security behavior, RustyHermit provides a stack guard and is
completely position-independent. Consequently, the loader is able to randomize
the memory layout.

4.1 Integration of RustyHermit into libstd

One major goal of RustyHermit was a complete integration into the Rust
toolchain to simplify the application development. Any common Rust applica-
tion should be buildable with RustyHermit. To achieve this goal, the kernel
provides the required interfaces to the Standard Library (libstd) whilst being
based only on the core library. The operating system abstraction layer of the
Rust toolchain is relative small, so only around 26 files within a total of ˜3000
lines of code are required to integrate RustyHermit into the standard library
of Rust.

Most operating systems are written in C and use a common C library as
interface to the kernel. These functions are typically provided by a helper crate1

in Rust realizing an interface to the C functions. For instance, the C interface
for Rust is published in the crate libc2, however C functions are by definition
unsafe.

In case of RustyHermit, the complete kernel is written in Rust and theo-
retically, it could be directly integrated into the Rust standard library. However,
the kernel uses a set of external crates to detect processor features, programming
of the interrupt controller, or log messages. As the Rust community wants to
reduce the dependencies of the basic runtime libraries to external crates, we can-
not integrate RustyHermit into libstd directly. Instead, we create two helper
crates hermit-abi3 and hermit-sys4. The former describes only the interface to
the library operating system for linkage and is included in libstds dependencies,
just like the libc crate does for the Linux interface of the Standard Library. The
latter is a helper crate, with the main purpose of building the kernel as static
library from source and linking it to the application.

Separating the kernel and libstd into separate compilation units also allows
the use of different compiler settings for each of them. Hereby, we are able to
compile the kernel without FPU and AVX/SSE support and to enable it for the
rest of the application. This is necessary because AVX and SSE is not longer
limited to floating-point operations and the compiler would use these instructions
to optimize the kernel code. The usage of AVX and SSE within the kernel would
trigger interrupts to save the FPU context.
1 Crate is a tree of modules that produces a library or executables. Much like a package

in other programming languages.
2 https://crates.io/crates/libc.
3 https://crates.io/crates/hermit-abi.
4 https://crates.io/crates/hermit-sys.

https://crates.io/crates/libc
https://crates.io/crates/hermit-abi
https://crates.io/crates/hermit-sys
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Listing 1.1. Extension of Cargo.toml to integrate RustyHermit

[target.’cfg(target_os = "hermit ")’. dependencies]

hermit -sys = "0.1.*"

A Rust based RustyHermit application can be build by adding the hermit-
sys crate to the application dependencies as shown in Listing 1.1 and declare
it as an external crate in the applications source. Rust’s package manager
Cargo [34] will then download the kernel’s sources, compile it, and link it to the
application.

4.2 Network Support

The library operating system only provides basic features such as interrupt
handling, device drivers, memory management, and scheduling. One possible
solution to integrate network support, is the use of real hardware drivers. The
hypervisor emulates these devices by trapping every request to the device and
emulating the behavior of the real hardware (trap and emulate). This approach
comes with an important overhead.

Another solution is to use para-virtualization where the hypervisor provides
a simpler and faster interface for the I/O devices to the guest, who is aware of
running on a hypervisor. Today, virtio is the standard abstraction layer [25] for
these para-virtualized I/O devices on KVM-accelerated hypervisors. The driver
is split into two parts: the frontend and the backend. The former is provided
by the guest kernel while the backend is provided by the host. This abstraction
layer can be used for para-virtualization of any I/O device. In case of a network
interface, there exist at least two buffers. One buffer is handling all incoming
packets, while the second buffer is handling all outgoing packets. The original
version of virtio [32] was developed by Rusty Russell for the support of his own
virtualization solution. RustyHermit provides a frontend driver in the kernel
that is used to access the file system with virtio-fs [39] and network support.

As shown in Fig. 1, RustyHermit uses smoltcp [19] as a dual IPv4/IPv6
stack and is provided by hermit-sys to the Rust runtime.smoltcp is an event-
driven TCP/IP stack written in Rust and designed for bare-metal, real-time
systems. In principle, hermit-sys creates a thread, which handles all incoming
packets including ARP and ICMP packets with the help of smoltcp. The IP
stack is added to hermit-sys and not to the kernel, so it can use the default
memory allocator of the Rust runtime and to enable hardware dependent opti-
mizations (e.g., AVX support) as explained before Sect. 4.1. We implemented a
direct interface between smoltcp and Rust’s standard library to forward TCP
streams to all common Rust applications. All outgoing messages are directly
passed through the IP stack to the virtio interface. Incoming messages triggers
an interrupt, where the interrupt handler wakes the IP thread of hermit-sys.
Acknowledgments and retransmission of lost messages are directly handled by
this thread. If the incoming message is intended for a specific thread, which is
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Fig. 1. Architecture overview of RustyHermit.

blocked on a socket, the IP thread wakes the thread and afterwards the thread
consumes the data.

This approach works well for communication pattern in which the delay
between requesting data and receiving data is high enough to hide the overhead
of both the interrupts and the context switches between the threads. To get peak
performance for communication pattern with a short delay, the driver switch to
a polling mode. In this case, interrupts from the virtio device will be disabled.
The complete communication is then realized by the application threads, which
are waiting for incoming messages. If the IP stack is not used for 20 ms, the
driver switch back to the non-polling mode.

We implemented this behavior with Futures [33], which are Rust way of
expressing asynchronous computation. This interface provides a polling method
to check if the data is available. The usage of this standard mechanism offers
the possibilities to easily check several futures asynchronously.

5 Evaluation

All benchmarks were performed on a NUMA system possessing two sockets each
with 12 physical cores, exposing 24 cores in total. The CPUs are Intel Skylake
CPUs (Xeon Gold 6128) clocked at 3.4 GHz, equipped with 256 GiB DDR4 RAM
and 19.25 MiB L3 cache. We used a 4.18.0 Linux kernel with CentOS 8. All
benchmarks are compiled with optimization level 3 and LTO.

As said before, unikernels are designed to run within a hypervisor. For the
evaluation, qemu-kvm 2.12.0 is used and accelerated by KVM.All benchmarks
run within virtual machines with the same setup. The network interface and
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the storage is integrated by virtio to reduce the overhead. The only difference is
that for Linux guests the virtual machine is configured to provide 4 GB of main
memory, while RustyHermit is configured with 512 MByte main memory.

5.1 OS Micro-benchmarks

In this section we present benchmarks regarding system call overhead and
scheduling. The getpid system call is the one with the smallest runtime and
closely represents the overhead of a system call. The function yield_now of the
Rust runtime triggers the scheduler to check if another task is ready and switches
to them. In our case, the system is idle and consequently the function returns
directly after the check of the ready queues. For benchmarking the system call
performance, we call getpid and yield_now 1 000 000 times and measure the num-
ber of cycles the call took. Table 1 summarizes the results as average number
of CPU cycles for Linux and RustyHermit. The overhead of RustyHermit
is smaller as system calls are just function calls in library OSs and the runtime
system is smaller compared to the Linux software stack.

Table 1. Comparison of basic system services by Linux and RustyHermit.

System activity Linux RustyHermit

Time to boot ≤15 s ≤1.0 s

Reserved memory 748 MByte 58 MByte

Boot image size 1.8 GByte 1.55 MByte

yield_now() 1439 cycles 68 cycles

getpid() 1147 cycles 43 cycles

Table 1 also shows memory consumption of a minimal CentOS 8 configura-
tion, where only a secure shell server is running and compares it with the memory
consumption of the smallest possible RustyHermit application. To determine
these numbers, the memory consumption of the hypervisor on the host system
is evaluated. The numbers show the physically allocated memory. The reserved
memory in the logical address space is clearly larger because the virtual machines
are configured to use up to 4 GByte memory for the Linux guest and 500 MByte
for RustyHermit as guest. Both virtual machines are not fully utilized. The
low memory consumption and the small image size for RustyHermit promise
a better resource utilization in data centers.

To evaluate the boot time, the time between the start of the virtual machine
and the first response of a ICMP-based ping request is measure. To avoid side
effects from the storage device, the boot image is stored in tmpfs. The last step
before entering the main function of the Rust application in RustyHermit is
the initialization of the network stack. Therefore, the results show the minimal
time to start the unikernel application within a hypervisor. While it is possible
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Fig. 2. Comparsion of the network throughput between RustyHermit and Linux

to start applications in Linux before the network services have started, this is
a rather unlikely scenario and it is more likely that other services are started
between the network service start and the application start. As expected for
a unikernel, RustyHermit is clearly faster in comparison to Linux which is
beneficial for services requiring low latencies.

5.2 Network Performance

To determine the network performance, a benchmark is used transferring data
with Rust’s standard TCP stream interface. Both the server and the client are
running on the same node. The sender is running in all test scenarios within a
VM, while the receiver is running natively on the host system. In case of the
senders, the checksums of the IP packets are built within the guest machine. All
interfaces use an MTU of 1500 Bytes and the Nagle algorithm [23] is disabled.

Figure 2 compares the performance between RustyHermit and Linux. Up
to a message size of the MTU, RustyHermit provides a clearly higher bandwidth
in comparsion to Linux. For messages with the size of 512 bytes, RustyHermit
is twice as fast. Linux is more efficient at splitting messages larger than the
MTU size and as a result Linux currently provides higher performance for large
messages. This is something that needs to be worked on in smoltcp and is not
directly part of RustyHermit.
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6 Conclusion

In this paper, we present RustyHermit a unikernel completely written in Rust.
We integrate a Rust-based IP stack not depending on C/C++. RustyHermit
is published on GitHub [13] and is completely integrated into Rust’s toolchain.
Consequently, common Rust applications, which do not bypass the Rust runtime
and directly use OS services are able to run on RustyHermit without modifi-
cations.

We show that RustyHermit provides excellent performance in micro bench-
marks and has a small memory footprint compared to a minimal CentOS 8
virtual machine image. The IP stack smoltcp and its integration into Rust’s
standard library provide a higher bandwidth in comparison to Linux for message
smaller than the MTU size. In combination with the low memory footprint is
RustyHermit suitable for the development of scalable micro services.
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