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Abstract. This paper describes an approach to integrate the jobs man-
agement of High Performance Computing (HPC) infrastructures in cloud
architectures by managing HPC workloads seamlessly from the cloud job
scheduler. The paper presents hpc-connector, an open source tool that
is designed for managing the full life cycle of jobs in the HPC infras-
tructure from the cloud job scheduler interacting with the workload
manager of the HPC system. The key point is that, thanks to running
hpc-connector in the cloud infrastructure, it is possible to reflect in the
cloud infrastructure, the execution of a job running in the HPC infras-
tructure managed by hpc-connector. If the user cancels the cloud-job,
as hpc-connector catches Operating System (OS) signals (for example,
SIGINT), it will cancel the job in the HPC infrastructure too. Further-
more, it can retrieve logs if requested. Therefore, by using hpc-connector,
the cloud job scheduler can manage the jobs in the HPC infrastructure
without requiring any special privilege, as it does not need changes on
the Job scheduler. Finally, we perform an experiment training a neural
network for automated segmentation of Neuroblastoma tumours in the
Prometheus supercomputer using hpc-connector as a batch job from a
Kubernetes infrastructure.
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1 Introduction

Most scientific workloads combine requirements that could be efficiently
addressed using a combination of High- Throughput Computing (HTC) and High-
Performance Computing (HPC) workloads [7,8,20]. Focusing on Medical Imag-
ing, HPC is extensively used for artificial intelligence model building and simula-
tion. HT'C is widely used in image post-processing and applying trained models
to new datasets. HTC workloads can be efficiently tackled on cloud computing
infrastructures, which fit to massive, coarsely coupled and embarrassingly par-
allel jobs. HPC workloads typically require infrastructures composed of a large
number of highly-coupled computing nodes. HPC infrastructures are typically
provided by singular data centers through specific interfaces.

Cloud computing platforms provide access to a large variety of computing
resources on demand and without needing on-premise resources. Therefore, cloud
services assist on reducing the cost contention and the ecological impact thanks
to the self-adaptive mechanisms that dynamically adjust the cloud infrastruc-
ture depending on different aspects. Furthermore, it is possible to build hybrid
cloud platforms depending on the institution necessities. Cloud infrastructures
are much more flexible than HPC systems. Contrary to Cloud infrastructures,
which can be adapted to the applications requirements, in HPC systems appli-
cations must be adapted to the execution environment. One important aspect
for final users relies on the job management.

On the other hand, an HPC' cluster delivers a huge amount of specialized
and already configured computation resources to the researchers. Clusters can
run free and commercial set of toolboxes which are already prepared to be used
efficiently in distributed environments. As a result, running an application in
this scenario can be easier than in a pure cloud model for the researcher (who
wants to perform calculations and does not want to focus on the hardware and
software installation and fine tuning).

The institutions can take benefit of employing a hybrid processing platform
composed of HPC and cloud infrastructures. The architecture platform can be
complex because there are a lot of aspects to consider: authentication, authoriza-
tion, data storage, software requirements, special hardware, etc. Furthermore,
the majority of the institutions that use HPC infrastructures, use infrastruc-
tures that are provided by third parties. Therefore, they must adapt their other
processing infrastructures (for example, a public or private cloud platform) to
use the different HPC infrastructures. This work presents hpc-connector!, an
open source tool that allows to seamlessly integrate the cloud architecture with
the access to the HPC cluster, without administrator privileges.

! https://gitlab.com/primageproject/hpc-connector.
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2 Scenario and Related Work

2.1 Architecture

Cloud application architectures typically comprise front-end services and back-
end nodes. Front-end services provide external access and manage back-end
resources through a job scheduler API or a graphical interface. In some cases,
front-end nodes use resource manager tools in order to scale in or out the
resources, depending on usage metrics to provide an agreed Quality of Service.
The back-end nodes are a set of heterogeneous resources that run the jobs sent
by the users through the job scheduler.

There are examples of cloud platforms in the literature that use the previ-
ous architecture scheme. In [14], the authors present an architecture to process
Internet of Things (IoT) data collected from smart agriculture. In our previous
works, we presented a cloud architecture for data analysis [19] and for processing
medical imaging [18].

However, there are no examples of hybrid cloud and HPC infrastructures that
could provide a seamless interface for both types of workloads. The PRIMAGE
project [21] is an ongoing research project that uses artificial intelligence tech-
niques for the processing of medical imaging in paediatric cancer. In this project,
the platform architecture combines an HPC infrastructure (the Prometheus
supercomputer [10]) and an on-premise cloud platform. The tool presented in
this work was designed to solve the problem of combining the execution of some
applications in several infrastructures with no administrator privileges.

Job schedulers (or workload managers) manage the remote execution of the
applications on the available resources. The most popular job schedulers designed
for containers technologies are Docker Swarm, Kubernetes?, some frameworks of
Apache Mesos® and Nomad?. Regarding workload managers in the HPC environ-
ment, there are a lot that are widely used: SLURM [22], Torque® or HTCondor®.
It should be pointed out that hpc-connector was designed to integrate any cloud
architecture (provided with any job scheduler) with an HPC infrastructure (also
provided with any workload manager). In this work, we will use Kubernetes as
the cloud job scheduler, and SLURM for the HPC infrastructure.

Application portability and delivery are key issues not only in cloud com-
puting environments but also in HPC. Containers probably are now the most
popular technology for application delivery, thanks to the reproducibility, trace-
ability, provenance, isolation, and portability. Docker” has reached the maximum
popularity as container technology on cloud infrastructures, thanks to its rich
ecosystem of tools and great versatility. However, Docker containers run under
the root user space and do not provide easily multi-tenancy (it is necessary to

2 https://kubernetes.io.

3 http://mesos.apache.org/.

4 https://www.nomadproject.io/.

® https://adaptivecomputing.com/cherry-services,/torque-resource-manager,.
5 https://research.cs.wisc.edu/htcondor/.

" https://www.docker.com/.
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create previously the users during the container building stage). Singularity con-
tainers [17] are widely used in the HPC environments because they run under
user space, support multi-tenancy and provide mechanisms to use Message Pass-
ing Interface (MPI). There are other container technologies and runtimes, such
as Podman®, Charliecloud®, Shifter'®, etc., but we will use Docker and Singu-
larity as container technologies for cloud and HPC infrastructures, respectively.
It should be noted that the common used HPC workload managers (such as
SLURM) can run unprivileged containers without requiring changes or installing
a plugin (as containers are processes that are executed in the user space).

2.2 Objectives and Requirements

The goal of this work is to provide a tool that permits the combination of a job
scheduler that runs applications embedded in Docker containers (for example,
Kubernetes) on the cloud environment, with the HPC workload managers that
run applications bare metal or in unprivileged containers. Considering the sce-
nario described in the previous section, the identified requirements and assump-
tions needed to fulfill are:

(R1) Users must use the same method to submit or cancel jobs to the HPC
workload manager, as the job scheduler on the cloud environment does.

(R2) The job scheduler used on the cloud environment must manage the full
life cycle of a job in the HPC infrastructure. For example, the job

scheduler should be able to submit, cancel, get execution state, get the
logs, etc.

(R3) The data required to run the job must be accessible in the HPC infrastruct-
ure. There are several options: users upload it in advance, the job down-
loads it before starting, or there is a shared storage between the HPC
infrastructure and any other environments that could use the data.

(R4) Any user authorised to access the cloud and the HPC resources must be
able to execute jobs without requiring special privileges in neither the
HPC nor the cloud infrastructures.

(R5) The solution should be extensible to deal with different job schedulers and
workload managers.

2.3 State of the Art

The combination of the potential of High Performance Computing for simulation
and Big Data and cloud computing for massive data processing has become a
driving forces for complex disciplines such as Brain science [9]. The relevance
of High Performance and Cloud Computing for addressing challenges related to
medical imaging has boosted with the take off of the application of Artificial
Intelligence [4,5]. A revision study [11] highlights 83 articles applying some kind

8 https://podman.io/.
9 https://hpc.github.io/charliecloud/.
10 https://www.nersc.gov /research-and-development /user-defined-images, .
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of HPC techniques in Medical Imaging [2], many of them also suitable of being
addressed using cloud computing.

Although there are authors that propose hardware specific configurations
based on FPGAs and GPUs [12,16], current tendencies propose the use of cloud
computing platforms, especially public offerings [13] with special examples on
solutions provided directly by main industry players in cloud [1]. However, in
most of the cases, the use of clouds is limited to the storage and access of medical
imaging data with low processing capabilities [2,15]. Recently, solutions propos-
ing the combination of container-based platform with computing accelerators
have arisen [3].

3 The Proposed Solution: HPC-Connector

Institutions that manage HPC and cloud environments can integrate job sched-
ulers by developing the appropriate plug-ins and extending the current job types
to make them compatible between both environments. Large HPC consortia and
institutions may follow this approach. However, in most cases users face a situa-
tion in which they can acquire both types of resources from different providers.

Another approach is to adapt the job scheduler on the cloud platform to
be able to communicate with the workload manager, as cloud infrastructures
are widely accessible and much more flexible than an HPC infrastructure for
a regular user. This option could be complex and cumbersome, as it would
require continuous work as new updates to the job scheduler arise. If the job
scheduler is released under open-source licenses, the institution must extend it
with the desired functionality following the rules from the project developers. It
should be pointed out that, if the institution wants to use more than one HPC
infrastructure with different configurations (for example, in one case you only
can interact using a REST API but, in the other case, you can only interact
using ssh commands), the software extension could be even more complex.

Adapting the job scheduler to the workload managers could be complex and,
besides, it forces to keep using the adapted job scheduler in the future for making
the adaption effort profitable. For this reason, we propose a solution by creating
an external tool (hpc-connector) that manages the jobs in the HPC infrastructure
from the cloud infrastructure, as any other job without special privileges.

The key point of the proposed solution is the following: once a user submits
a job to the job scheduler that wants to be executed in the HPC infrastructure
(fulfilling R1), a special job is executed in the cloud infrastructure. The special
mirror job is a an instance of hpc-connector, which will manage the job in the
HPC infrastructure (R2). Thus, the mirror job updates the job scheduler as the
execution of the HPC job progresses in the HPC infrastructure. As hpc-connector
does not need any special privilege (like mounting a directory or accessing special
kernel directives), the special mirror job can run in the user space (fulfilling R4).
After submitting the job, hpc-connector will monitor it (R2) until the end or its
cancellation by the HPC workload manager. Once the job ends, hpc-connector
can retrieve, if the HPC infrastructure allows it, the job output (R2). Further-
more, hpc-connector is able to catch the SIGINT signal that the job scheduler
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can send to the job before killing it. Therefore, if an appropriate cloud job config-
uration is performed (the cloud job receives a SIGINT signal and it has a grace
period before killing it after the signal is received) and the job still running,
hpc-connector will cancel the job in the HPC infrastructure (R2).

The tool presented is designed to be running in any environment (even in
a local machine) because it is implemented in Python, so it can be running
embedded in a any type of container or bare metal. Regarding the support of
HPC infrastructures, as each HPC backend has its own methods for managing
the jobs and the data, it is necessary to implement some specific functionality
for each backend in hApc-connector to interect with the job submission, informa-
tion retrieval about the job execution, canceling, or deleting jobs. Furthermore,
if the institution wants to retrieve the logs, it is required to implement how to
operate with files (like upload, download, or remove) and operations with direc-
tories (list, create, or delete). The tool uses the super-class Backend so, for each
new HPC infrastructure, a new subclass from the Backend class must be cre-
ated with the name of the HPC infrastructure. For example, let’s consider two
different HPC infrastructures: cluster! and cluster2. The infrastructure clusterl
uses SLURM as workload manager with a REST API. On the other hand, clus-
ter2 also uses SLURM but only provides a REST API to manage the files, so
the users must interact with SLURM via ssh. Thus, cluster2 implementation is
different from cluster! because, although both use SLURM, the job operations
must be performed using ssh for cluster2. Therefore, clusterl and cluster2
sub classes from Backend class must be implemented. Thus, hpc-connector ful-
fils R5 because it is designed to be running in any environment and it can be
extended for new HPC infrastructures.

4 Use Case: Segmentation of Neuroblastoma Tumours

To validate the usefulness of the hpc-connector, we performed a test case. The
scenario uses a private cloud platform and the Prometheus HPC infrastructure.
The cluster deployed on the private cloud infrastructure is composed of 3 virtual
nodes with 4 vCPUs, 32 GB of memory RAM, 80 GB of Solid State Disk and 1
NVIDIA Tesla V100 each. The job scheduler used is Kubernetes (version v1.15.9)
and the container technology is Docker (version 18.06.2-ce).

The HPC infrastructure is the Prometheus supercomputer [10], which is
located in the 289" position of the TOP500 list (June 2020). Prometheus cluster
provides REST API to interact with SLURM (version 19.05.5) called Rimrock
(Robust Remote Process Controller)!! and PLGData service'? to interact with
the file system.

The selected use case is a training of a neural network using Tensorflow for
performing an automated segmentation of neuroblastoma tumours. Neuroblas-
toma is the most frequent solid cancer of the early childhood [6]. This use case
belongs to the PRIMAGE project [21].

" https://submit.plgrid.pl/.
12 https://data.plgrid.pl/?locale=en.
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First, we define two ConfigMap objects, which store non-confidential data
in key-value pairs). The Fig. 1 shows the definition (in YAML!? format) of the
ConfigMap that contains the information required by hpc-connector to use the
backend Prometheus. This ConfigMap will be used for all jobs that want to
connect with Prometheus. If we were using another HPC infrastructure, the
configuration value would maybe contain other dictionary keys.

apiVersion: vl
kind: ConfigMap
metadata:
name: hpc-prometheus
namespace: serlohu-at-upv-dot-es
data:
name: Prometheus
configuration: |
{
"ENDPOINT": "https://submit.plgrid.pl",
"PROXY": "XXXXXX"

Fig. 1. ConfigMap definition to specify the Prometheus configuration required by hpc-
connector.

Once the ConfigMap for accessing properly to the HPC infrastructure is
defined, the users must define the job configuration. As we are using Rimrock ser-
vice from Prometheus cluster, the required parameters are at least, the host and
the SLURM script in plain text. In this script, we specify the amount of resources,
the special hardware (GPUs), and the batch queue (plgrid-gpu). Then, we imple-
ment the tasks: show the hostname, load modules and run the Singularity image
(available at the directory $SCRATCH/singularity/neuroblastoma.sandbox).

apiVersion: v1
kind: ConfigMap
metadata:
name: hpc-job-gibi23@-segmentation
namespace: serlohu-at-upv-dot-es
data:
job: |

: “"prometheus.cyfronet.pl”,

: "#1/bin/bash \n#SBATCH -J gibi23@ \n#SBATCH -N 1 \n#SBATCH --ntasks-per-node=24
\n#SBATCH --time=72:00:00 \n#SBATCH --mem=40gb \n#SBATCH -A primagelgpu \n#SBATCH -p plgrid-gpu
\n#SBATCH --gres=gpu \n#SBATCH --output=\"gibi230_segmentation.out\" \n#SBATCH
--error=\"gibi230_segmentation.err\" \ncd $SLURM_SUBMIT_DIR \nsrun /bin/hostname \nmodule load
plgrid/tools/singularity \nsingularity run --bind $SCRATCH/gibi23@_segmentation/Input:/training
--bind $SCRATCH/gibi230_segmentation/Output:/output --bind $SCRATCH/gibi230_segmentation/
user_application/:/user_application $SCRATCH/singularity/neuroblastoma.sandbox python /
user_application/batch.py /training /output"

}

monitoring_period: "1800"

Fig. 2. Job definition to specify the job configuration required by hpc-connector to
launch the job using, in this HPC backend, Rimrock.

13 https://yaml.org/.
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Figure2 shows the ConfigMap definition for the job configuration. This new
ConfigMap is specific for each job in Prometheus cluster.

Figure 3 shows the Kubernetes batch job definition. As it is described in
Sect. 3, the job executed in the cloud infrastructure consists of running hpc-
connector to managing the job in Prometheus cluster. It should be noted that
his job is configured with a termination grace period and, if the users cancel this
Kubernetes job, it has 30s to execute the command kill -SIGINT 1. If this
occurs, hpc-connector will catch the signal and immediately cancel the job in
the HPC infrastructure. Once the job is submitted to Kubernetes, it is possible
to check (in real time) the progress of the execution consulting the logs of hpc-
connector. Figure 4 is a screenshot of the Kubernetes dashboard showing the logs
of the created job.

apiVersion: batch/vl
kind: Job
metadata:
name: hpc-job-gibi230-segmentation
namespace: serlohu-at-upv-dot-es
spec:
template:
spec:
restartPolicy: "Never"
terminationGracePeriodSeconds: 30
containers:
- name: hpc-job-gibi230-segmentation
image: registry.gitlab.com/primageproject/hpc-connector:0.0.1
imagePullPolicy: Always
lifecycle:
preStop:
exec:
command: ["kill","-SIGINT","1"] # send SIGINT to hpc-connector in order to cancell the job
args: [ "--backend", "$(BACKEND_NAME)", "--backend-conf", "$(BACKEND_CONF)", "simulate",
"--job-config", "$(JOB_CONF)", "--monitoring-period”, "$(MONITORING_PERIOD)", "--print-logs"]
env:
- name: BACKEND_NAME
valueFrom:
configMapKeyRef:
name: hpc-prometheus
key: name
- name: BACKEND_CONF
valueFrom:
configMapKeyRef:
name: hpc-prometheus
key: configuration
- name: JOB_CONF
valueFrom:
configMapKeyRef
name: hpc-job-gibi230-segmentation
key: job
name: MONITORING_PERIOD
valueFrom:

configMapKeyRef
name: hpc-job-gibi230-segmentation
key: monitoring_period

Fig. 3. hpc-connector job definition.
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Fig. 4. Consulting the logs of hpc-connector using the Kubernetes dashboard.

5 Conclusions

This paper has presented hpc-connector, which is an open source tool for seam-
lessly integrating HPC workloads in cloud infrastructures without requiring
administrator privileges or changes on the workload manager, providing the
users with the same user interface even across different HPC infrastructures.
The tool implemented fulfils the requirements identified in Sect. 2.2: running in
the user space, and agnosticism of the workload manager (it is implemented as a
Python tool easy extendable to other HPC infrastructures) to manage the jobs
in an HPC infrastructure.

The experiment performed in Sect.4 demonstrated that this approach can
address a wider range of complex problems in a convenient way. In this exper-
iment, we successfully trained a neural network using GPUs in an HPC super-
computer (Prometheus) using hpc-connector from a Kubernetes job hosted in a
private cloud infrastructure.

Future work includes improving the functionality of hpc-connector: upload
the data (from a repository or from a directory in the Docker container) before
submitting the job (if necessary) or consider retrieving the results and storing
them in an external repository or in the Docker container itself (for example, if
the container has mounted a shared filesystem). Another possible enhancement
could be the ability to refresh the HPC credentials when they expire.
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