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Abstract. As HPC systems grow larger and more complex, character-
izing the relationships between their different components and gaining
insight on their behavior becomes difficult. In turn, this puts a burden
on both system administrators and developers who aim at improving the
efficiency and reliability of systems, algorithms and applications. Auto-
mated approaches capable of extracting a system’s behavior, as well as
identifying anomalies and outliers, are necessary more than ever.

In this work we discuss our exploratory study of Bayesian Gaussian
mixture models, an unsupervised machine learning technique, to char-
acterize the performance of an HPC system’s components, as well as
to identify anomalies, based on sensor data. We propose an algorithmic
framework for this purpose, implement it within the DCDB monitoring
and operational data analytics system, and present several case studies
carried out using data from a production HPC system.

Keywords: HPC systems + Monitoring + Operational data analytics *
Clustering - Anomaly detection

1 Introduction

As the demand for more capable High-Performance Computing (HPC) systems
increases, supercomputing centers keep adding hardware and software resources
to build significantly more complex and heterogeneous platforms: on top of
their extreme power consumption [19], these systems also introduce new major
challenges regarding hardware reliability [6] and performance variability [13],
which in turn hinder the optimization of system operations. To address these
issues, monitoring frameworks can be used to capture fine-grained sensor data
(e.g., power or temperature) from all components in a production HPC system,
allowing users and administrators alike to understand and characterize the sys-
tem’s behavior, as well as identify potential anomalies: processes of this kind
are referred to as Operational Data Analytics (ODA) [4]. This knowledge subse-
quently can support tuning strategies to improve energy efficiency and system
reliability, among other aspects.
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The majority of HPC centers still relies on the domain knowledge and exper-
tise of system administrators, who manually analyze key monitoring metrics and
log streams, to steer operations and thus enact ODA [5]. As systems become more
complex, however, manual tuning becomes impractical and correlations between
metrics become both more critical and at the same time difficult to spot: this
can be addressed by partially automating the ODA processes, using data mining
algorithms to construct a global overview of the performance of a system and
to find outliers, allowing system administrators to focus on root cause analysis
and mitigation actions. In the context of this paper, we focus on performance
variation and anomaly detection: the first is a systematic approach to character-
ize the performance of an HPC system and extract behavioral patterns both in
time and across system components. The latter can be seen as an extreme case
of performance variation, where the behavior of a set of components severely
deviates from the others due to abnormal events, such as faults or failures [11].

Related Work. Many approaches to performance variation and anomaly detec-
tion have been proposed, relying on either text log streams or monitoring sensors
as sources of data. These approaches can be classified according to the techniques
they employ, starting from supervised machine learning: Tuncer et al. proposed
an approach to detect performance anomalies based on monitoring data, which
is processed and fed to classifiers [18]. Similarly, Baseman et al. proposed a
framework using density estimation and random forest classification to detect
anomalies [2]. Wang et al. combined instead independent component analysis
with Bayesian classifiers to spot anomalies in virtual machines [20].

In contrast, others employ unsupervised machine learning techniques: Dani
et al. performed classification using the K-means algorithm to find abnormal
log streams [8]. Similarly, Miinz et al. applied K-means to network traffic data
in order to detect anomalous activity [14]. Zhang et al. targeted the domain of
cloud computing and applied DBSCAN clustering to fine-grained, thread-level
resource usage metrics to detect performance anomalies [21]. Finally, Borgh-
esi et al. developed a semi-supervised approach based on auto-encoders, which
leverages the reconstruction error to detect anomalous states [3].

Less common is the use of traditional statistical analysis techniques: Gabel
et al. developed a fault detection model for cloud services using statistical tests
such as the Tukey test or the sign test [10]. Cohen et al. used tree-augmented
Bayesian networks to achieve anomaly detection based on performance data [7].
Guan et al. [12], instead, used a most relevant principal components method to
characterize faults based on the correlations between monitoring sensors. Among
commercial solutions, Datadog utilizes median absolute deviation algorithms to
identify anomalous states in the servers.! However, while there is an abundance
of anomaly detection techniques, there is to our knowledge a lack of techniques
combining the former with a systematic performance characterization of an HPC
system’s components. Moreover, the feasibility of current approaches in an online
context and their associated details are not clear, yet.

! https://docs.datadoghq.com /monitors /monitor_types/outlier//.
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Contributions. In this work we explore and evaluate the effectiveness of unsuper-
vised machine learning for characterizing performance variation in HPC systems.
In particular, we present an experimental approach using Bayesian Gaussian
mizture models applied to HPC monitoring data, which allows us to extract sta-
tistical descriptions of the behavior of components at any level in an HPC system
via Gaussian distributions. Based on this, we also propose an anomaly detection
method that employs the Mahalanobis distance. We conduct an exploratory anal-
ysis on available monitoring data from the CooLMUC-3 cluster operated by the
Leibniz Supercomputing Centre (LRZ), and present the insights on early expe-
riences with our approach. Monitoring is performed via the Data Center Data
Base (DCDB) framework [15], and the online implementation of our approach
is realized with its Wintermute ODA extension [16].

Organization. The paper is structured as follows. In Sect. 2 we present our
exploratory analysis of the CooLMUC-3 monitoring data. In Sect. 3 we then
describe our approach to performance variation characterization, and in Sect. 4
we present several case studies. Section 5 concludes the paper.

2 HPC Environment and Monitoring Data

First, we introduce the CooLMUC-3 system on which we conduct our exploratory
analysis and the associated monitoring metrics. In particular, we highlight the
relationships between metrics as well as variation across components.

2.1 HPC Environment

We employ the CooLMUC-3 HPC system hosted at LRZ:? it is composed of 148
compute nodes, each equipped with an Intel Xeon Phi 7210 CPU with 64 phys-
ical cores each having 4 threads. Each node has 96 GB of RAM, 16 GB of high-
bandwidth memory (HBM) and a dual-rail Intel OmniPath network interface.
In addition, CooLMUC-3 uses warm water cooling for all of its components: this
includes, for example, the network switches and allows all racks to be completely
isolated from the environment, reducing heat dispersion to ambient air. We lever-
age the Data Center Data Base (DCDB) framework developed at LRZ [15] to
perform monitoring on CooLMUC-3. DCDB operates continuously on this sys-
tem, collecting fine-granularity production sensor data from both compute nodes
and the system’s infrastructure. The data is collected by plugin-based daemons
called Pushers and is sent via the MQTT protocol to Collect Agents, which act
as data brokers. The data is finally stored in an Apache Cassandra database,
from which it can be queried.

Monitoring data is collected from a variety of sources: in compute nodes, we
collect CPU performance counters (e.g., number of instructions) via a Perfevents
plugin, paired with additional CPU activity information from the stat interface,

2 https://doku.lrz.de/display /PUBLIC/CoolMUC-3.
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Fig. 1. The correlation matrix associated to the sensors monitored in the CooLMUC-3
system, and an excerpt of the time series for the compute node power, CPU instructions
and temperature sensors.

as well as memory usage information from meminfo and vmstat with a ProcFS
plugin. Moreover, we collect network-related metrics and additional sensors (e.g.,
power consumption or temperature) via a SysFS plugin. We also collect out-of-
band data for rack-level power consumption via a REST plugin, as well as a
series of metrics related to the warm water cooling system (e.g., inlet water
temperature) with an SNMP plugin. All sensors follow a numerical time series
format and are sampled every 10s.

2.2 Analysis of Monitoring Data

In order to characterize the DCDB metrics and their behavior under a uni-
form workload, we execute a series of proxy applications from the Coral-2 suite?
on a set of 32 CooLMUC-3 nodes, with DCDB activated. Specifically, we use
LAMMPS, Kripke and Nekbone, which were configured to use one MPI rank
per node and 64 threads, as many as the physical CPU cores per node. In our
experience on this system, this type of configuration leads to good performance
and makes full use of available resources such as the HBM memory. As the appli-
cations have diverse performance profiles, we expect our analysis to be general,
with minimal resulting bias. The results are shown in Fig. 1: for space reasons,
we do not present the analysis in its full extent, but focus on the aspects that
are most relevant in the context of this work.

Figure la shows the correlation matrix for a subset of DCDB metrics that
exhibit interesting behaviors. Strong correlation patterns can be observed in
this subset, with most metrics related to computational intensity such as CPU

3 https://asc.llnl.gov/coral-2-benchmarks.
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instructions or idle time (col_idle) having a direct impact on power consumption
and temperature (knltemp). A similar behavior is observed for other CPU met-
rics, such as cache misses (misses), whereas OS-level metrics such as number of
context switches (ctxt) and size of the kernel stack (Kernelstack) have weaker
correlations. Due to their clear interactions, these metrics provide a robust base
for statistical analysis and anomaly detection.

In Fig. 1b we show instead an excerpt of the time series for the power, CPU
instructions and temperature sensors respectively, for each of the 32 nodes, while
running LAMMPS and then Nekbone. The two runs are separated by a vertical
line: on top of the applications’ behavior, we observe a large variance in the
metrics across nodes. While instructions show only light variance, mostly under
Nekbone, power consumption exhibits a spread of up to 30W, and temperature
of up to 3°. If expressed in a concise, clear manner, this information could be
leveraged by runtime tuning frameworks, for example, to distribute power bud-
gets across a set of nodes [9], proving that characterizing the performance of
components in an HPC system in a systematic way is indeed necessary.

3 The Variation Detection Framework

Based on our experience described in Sect. 2, we propose an approach for cap-
turing HPC performance variation in a generic fashion. Our variation detection
framework is based on unsupervised machine learning applied to monitoring
sensor data and, as shown in Fig. 2, comprises three steps: data preparation,
clustering and outlier detection. The framework is designed to operate in online
and offline scenarios, and can be easily integrated in any monitoring system.

Data Preparation. First, the sensor data collected by the underlying monitoring
system must be prepared for the clustering stage. We fill in missing values in
the time series of each sensor by means of linear interpolation, and we transform
all monotonic sensors that come in the form of accumulators (e.g., instructions
or energy) into their first-order derivative, by applying the delta operation to
consecutive readings. This way, we are able to count the number of occurrences of
a certain event in each time range rather than the total number of events since
boot time. Finally, the data is smoothed over specified aggregation windows,
depending on the desired type and granularity of the analysis, supplying the
input that will be used for the clustering process.

Clustering with Lookback. After the data transformation operations are com-
plete, clustering can be performed in IV dimensions in order to characterize per-
formance variation. The selected subset of sensors out of the full dataset deter-
mines the number of dimensions in the clustering space as well as the scope of
the analysis: an analysis focused on CPU performance variation will use metrics
such as the per-CPU instructions or cache misses, whereas an energy efficiency-
oriented analysis will consider metrics such as the compute node-level power
consumption. Each HPC component involved in the analysis (e.g., CPU cores,
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Fig. 2. Overview of the proposed variation detection framework.

HPC components

compute nodes or racks) will represent a point in the clustering space whose coor-
dinates are identified by the values of its selected metrics. In general, however,
due to the limitations of most clustering algorithms, we expect our approach to
be effective only when using a low number N (i.e., less than 10) of dimensions.

We use Gaussian Mizture Models (GMM) as a clustering approach: they try
to explain the data by fitting multiple Gaussian distributions over it, typically
using the Ezpectation-Mazimization (EM) algorithm. Once the parameters of
the individual distributions have been identified, each individual point in the
data can be assigned to one of them, thus creating a series of clusters. This
method generalizes well to different datasets, provides good results with mini-
mal parameter tuning and produces compact statistical descriptions of the data
clusters. Among existing GMM algorithms, we use Bayesian Gaussian Mizture
Models (BGMM) [17]: compared to ordinary GMM algorithms, these are able to
identify the optimal number of Gaussian distributions to use in the fitting pro-
cess autonomously, further reducing model tuning and proving useful in online,
continuous scenarios, where HPC systems exhibit highly diverse states. The max-
imum number of Gaussian distributions that are potentially generated by the
BGMM algorithm can be specified as a parameter. We also experimented with
algorithms such as DBSCAN, but we were not able to produce good results
without tuning of parameters on a per-dataset basis.

We apply BGMM clustering to the points in the clustering space using a
configurable lookback approach, considering not only the points corresponding
to the most recent aggregation window for each HPC component, but also those
corresponding to past ones. This approach has several benefits: it allows us to
compare the characteristics of components over time, making in turn the cluster-
ing process more stable due to the increased number of points. Upon completion,
the BGMM algorithm provides the mean vector and covariance matrix of each
Gaussian distribution and assigns each point to one of them.

Outlier Detection. Since the BGMM algorithm does not label outliers auto-
matically, we introduce a two-step outlier detection approach. First, due to the
BGMM optimization process, small clusters grouping multiple outlier points can
potentially be formed. As such, we label as outliers all points belonging to clus-
ters that have a number of points lower than a configurable threshold. Second,
some points might be assigned to certain clusters even though the associated
probabilities are extremely low. To identify these points, we calculate their dis-
tance from the respective distributions using the Mahalanobis distance, which
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is a scale-invariant metric that scales to multiple dimensions and that considers
correlations in the data. Its equation is the following:

Dy(@) = \Je—mTs "z p) M)

In Eq. 1, p and S respectively represent the mean vector and covariance
matrix of the Gaussian distribution to which the point = is assigned by the
BGMM algorithm. If the resulting distance is higher than a configurable thresh-
old, the point is classified as an outlier. Since the Mahalanobis distance is pro-
portional to the number of standard deviations that separate a point from a
distribution’s mean, this threshold is generic and does not need to be tuned
ad-hoc for each experiment, but only in extreme scenarios.

Implementation. We implemented our approach for both offline and online oper-
ation: the first offline implementation was made in Python, using the popular
scikit-learn library. This implementation is suitable for experiments focusing on
large historical datasets and requiring extensive data manipulation. Conversely,
the second implementation is tailored for lightweight online operation in pro-
duction HPC systems. This was carried out using the DCDB monitoring frame-
work for HPC systems [15] and its Wintermute extension for online operational
data analytics [16]. The resulting plugin is written in C++ and is based on the
OpenCV GMM implementation: due to the lack of implementations in C++,
we use a simple GMM model in the plugin in place of the more sophisticated
BGMM one, relying on our offline implementation for hints on the ideal number
of clusters to use in a certain scenario.

4 Case Studies

Here we present several case studies carried out using cluster-wide CooLMUC-3
data from Summer 2019: we target different aspects of the HPC system, starting
from application phases at the CPU core level, up to power consumption and
temperature at the compute node level and finally up to the rack level, analyzing
the cooling system’s efficiency. This way we evaluate the effectiveness of our
framework with different granularities and data sources. For convenience, the
experiments were carried out offline using archived data, but can be reproduced
online using the DCDB Wintermute framework.

4.1 CPU Core-Level Analysis

We start with a short-term analysis of application behavior at the CPU core
level. To this end, we execute the Kripke and LAMMPS proxy applications on
4 compute nodes of CooLMUC-3 and analyze the 1-min averages of the CPU
instructions and cache misses (misses) metrics. Specifically, each point in the
2-D clustering space is a CPU core from a single node we selected out of the 4
available. We use the lookback feature to consider all data in the past 5 min and
highlight the applications’ behavior over time.
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Fig. 3. Results of clustering applied at the CPU core level to perform application phase
detection in Kripke (a) and LAMMPS (b). Each point is a CPU core in a CooLMUC-3
compute node with its 1-min averages of the instructions and cache misses metrics.

The results are shown in the scatter plots in Fig. 3 for the Kripke and
LAMMPS proxy applications respectively. In the scatter plots we show the out-
lier points as not belonging to any distribution, since this information is not
reliable due to the very low probabilities involved. In Fig. 3a, Kripke exhibits a
clear separation between its different phases on both axes, which are captured by
3 distinct Gaussian distributions. No outliers were identified, as variance across
CPU cores appears to be limited. This is especially true for Clusters 1 and 2,
which likely correspond to the compute-intensive phases of Kripke due to their
higher instructions count. Cluster 0, on the other hand, may be associated with
the application’s initialization phase, due to its low instructions and high cache
misses counts, and shows higher variance across CPU cores.

The behavior associated to LAMMPS, in Fig. 3b, is similar to what we
observed with Kripke: Cluster 2 captures the initialization phase of the applica-
tion, on the top left corner, while the other 3 clusters capture more compute-
intensive phases. Interestingly, it can be observed that, while the point clouds
associated to Clusters 1 and 3 were separated into two low-variance Gaussian
distributions, Cluster 0 captures several distinct point clouds, resulting in a
single distribution with higher variance. We attribute this behavior to the opti-
mization process behind the EM algorithm. In general, it can be noted that
LAMMPS exhibits both higher cache misses and lower instructions counts than
Kripke, indicating stronger memory activity for this specific configuration. Since
we only aim to characterize performance patterns, our approach’s effectiveness
at distinguishing the applications themselves is not clear: for this purpose, super-
vised learning models relying on a wide pool of metrics have been shown to be
effective [1].
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Fig. 4. Results of clustering applied at the compute node level. Each point represents a
compute node in CooLMUC-3 with its 2-week average power consumption, temperature
and CPU idle time (a) or network interface temperature (b).

4.2 Compute Node-Level Analysis

Here we perform a long-term compute node-level analysis, using data between
September 27? and 15" from CooLMUC-3. In particular, for each of its 148
compute nodes we use the 2-week averages of their power consumption, tem-
perature (knitemp) and CPU idle time (col_idle), and the resulting points are
clustered in a 3-D space with a maximum of 4 Gaussian distributions. The last
of the three metrics is replaced by the network interface temperature (hfi0temp)
in a second experiment. Although we have no knowledge of the running jobs in
this time frame we expect the 2-week averages, given the maximum allowed job
execution time of 48 h, to mitigate the bias of single applications and extract
real node performance. We do not use lookback.

Results are shown in the scatter plots in Fig. 4a, which uses the CPU idle
time as third metric, and Fig. 4b, which uses the network interface temperature.
In both cases, a strong linear correlation can be observed among the metrics: as
expected, a compute node with low CPU idle time consumes more power and
has higher temperatures, due to the workload and communication of HPC appli-
cations. Despite the 2-week aggregation, a large spread in node behavior can still
be observed: in Fig. 4a, compute nodes in Cluster 0 have higher CPU idle times
with lower power and temperature values. Conversely, nodes in Cluster 2 exhibit
heavier load, with up to 200W of average power consumption; this behavior is
likely the symptom of a job scheduling policy that does not account for inter-
node workload balance. Furthermore, a few nodes were classified as outliers: one
of them shows a peculiar behavior, consuming 20% more power than other nodes
with similar CPU idle time. We are currently monitoring this anomaly, in order
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Fig. 5. Results of clustering applied at the rack level. Each point represents a rack
in CooLMUC-3 with its hourly averages of the cooling system’s warm water inlet
temperature, return temperature and heat removed, at different points in time.

to identify its root cause. The same considerations apply for Fig. 4b: in this
case, nodes belonging to Cluster 1 show higher network interface temperatures,
which are likely caused by cooling inefficiency or manufacturing variability. A
single node is classified as an outlier, with a higher network interface temperature
than other nodes under similar load.

4.3 Rack-Level Analysis

For this last case study, we analyze several infrastructure metrics related to the
3 racks composing CooLMUC-3. Each rack contains roughly 50 nodes, as well as
sensors for its section of the warm water cooling system. We consider two weeks of
data, from June 28" to July 11*", for three sensors: the water’s inlet temperature
in the racks (cool-prilnletTemp), its return temperature (cool-priReturnTemp)
and finally the amount of heat removed from the racks (cool-power) quantified
in Watts. We compute hourly averages for each metric, obtaining the 3-D points
on which clustering is performed, with a maximum of 4 Gaussian distributions.
Finally, we use the lookback feature to extend the number of points, so as to
cover the entire 2 week range of available data.

The results are shown in the scatter plots in Fig. 5a, with the points labeled
according to their Gaussian distributions, and in Fig. 5b according to the rack
they belong to. Unlike in Sect. 4.2, only the return temperature and the heat
removed metrics appear to be strongly correlated: this is expected, as the greater
is the temperature difference between the inlet and return water, the greater
is the amount of heat removed from the system. As the inlet temperature is
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enforced externally, this metric does not show any correlation with the others
and shows little variance across racks. Furthermore, it can be seen how the label-
ing between the two figures matches perfectly, with every rack separated and
modeled by a distinct Gaussian distribution: the implication of this is that our
approach can supply a statistical description of each rack’s cooling performance,
which simplifies performance characterization of the system, as well as anomaly
detection. It can also be seen that Cluster 1 (i.e., Rack 2) shows a consistently
higher return temperature, and that some outliers are present: three points in
particular, which show deviation with respect to the inlet water temperature,
come from the same time frame. This hints at the presence of an anomaly in
the cooling system at that time, likely caused by environmental factors. These
examples demonstrate the effectiveness of our framework in identifying the per-
formance variation of HPC components: while most of these effects could be
identified by human operators, the clear-cut statistical indicators we use sim-
plify both data visualization at scale and proactive control by ODA algorithms.

5 Conclusions

In this paper we have presented a framework to characterize performance varia-
tion in the components of HPC systems: we employ Bayesian Gaussian mixture
models applied to sensor monitoring data, so as to extract the behavioral groups
associated to the components and their statistical description. Based on this, we
proposed an anomaly identification mechanism that uses the Mahalanobis dis-
tance of the single clustering points to the fitted Gaussian distributions and also
provided the online implementation of our approach in the DCDB Wintermute
framework. We then presented the early findings of an exploratory analysis using
our approach on production monitoring data from the CooLMUC-3 HPC system
at LRZ, discussing several case studies carried out at different granularity levels
effectively: our approach can capture different behaviors both in time and across
different components, as well as flag suspicious behaviors as anomalies.

As future work, we plan to validate our approach in a quantitative way,
identifying use cases with clear accuracy metrics. Moreover, we plan to further
test our approach in combination with dimensionality reduction techniques, in
order to enrich the information encoded within the clustering space, as well as
devise techniques to identify relevant metrics for clustering automatically.
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