
Ensembles of Networks Produced from
Neural Architecture Search

Emily J. Herron1,2 , Steven R. Young1,2(B) , and Thomas E. Potok2

1 Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN, USA
herronej@ornl.gov

2 Computational Data Analytics, Oak Ridge National Laboratory,
Oak Ridge, TN, USA
youngsr@ornl.gov

Abstract. Neural architecture search (NAS) is a popular topic at the
intersection of deep learning and high performance computing. NAS
focuses on optimizing the architecture of neural networks along with
their hyperparameters in order to produce networks with superior per-
formance. Much of the focus has been on how to produce a single best
network to solve a machine learning problem, but as NAS methods pro-
duce many networks that work very well, this affords the opportunity to
ensemble these networks to produce an improved result. Additionally, the
diversity of network structures produced by NAS drives a natural bias
towards diversity of predictions produced by the individual networks.
This results in an improved ensemble over simply creating an ensemble
that contains duplicates of the best network architecture retrained to
have unique weights.

Keywords: Neural architecture search · Ensembles · High
performance computing

1 Introduction

There has been much work in recent years in developing methods for automati-
cally designing neural networks for various challenges and datasets. This work in
neural architecture search (NAS) largely focuses on finding a single best network.
However, throughout this process many networks are created and evaluated.
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This provides the opportunity to find not just a single network that performs
well, but an ensemble of networks that perform well together on problems of
interest.

In this work, we will study the results of ensembling networks produced by
one such NAS method. The NAS method used is Multi-node Evolutionary Neural
Networks for Deep Learning (MENNDL). It produces a variety of deep learning
networks that perform well on the given dataset. However, the single network
that gives optimal performance may still be limited in its knowledge of the
distribution of the data or be over or under-fitted to the training data. Combining
the outputs of multiple deep neural network classifiers has been demonstrated as
an effective approach that offers significantly better prediction accuracies than
that of individual models [11]. Neural network ensembles do so by combining
outputs from a finite number of neural networks with different parameters that
have been trained on the same data. In this report, we create and evaluate the
performances of ensembles of the best performing networks produced by one or
more runs of MENNDL. We consider two approaches to creating ensembles from
this NAS approach and apply these approaches to two traditional image dataset
benchmarks. The key contribution of this work is a study detailing the effects of
ensembling networks from an NAS method including:

1. The effect of using ensembles created from multiple instantiations of the NAS
method.

2. The effect of the size of the ensemble on performance.
3. The resulting performance measured as accuracy on the problem and the

diversity in the ensemble.

2 Background and Related Work

Deep learning is a branch of machine learning based on the concept of learning
features from multiple layers of abstraction [14]. In recent years, deep learning
models have advanced the state of the art of tasks in fields like image recogni-
tion and generation in computer vision; language translation, text classification;
and sentiment analysis in natural language processing; and automatic speech
identification and generation in speech recognition [3]. Scientific research appli-
cations that involve analysis of large volumes of images produced with specialized
instruments in particular also rely on the use of these models.

2.1 Neural Architecture Search

The features of deep learning models are controlled by a set of hyperparameters,
which in the case of a deep convolutional neural network (CNN), include the
number of hidden layers as well as each layer’s number of nodes, activation func-
tion, and kernel size. The learning capacity of deep neural networks is dependent
upon these hyperparameters, which must be selected appropriately to suit a par-
ticular dataset. The process of tailoring a deep neural network architecture to a
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particular data set can be computationally expensive and time consuming even
with the guidance of experts. Furthermore, the features of scientific datasets
often differ from that of traditional datasets. Hence, models optimized for tra-
ditional datasets may not be well-suited to scientific datasets. Hyperparameters
have traditionally been selected either by manual trial and error or grid search.
Manual search often requires expert users and involves selecting a set of hyperpa-
rameters from a region thought to be best-suited to the data [14]. Grid search, in
contrast, finds an optimal solution after evaluating models assembled with each
possible combination of hyperparameters. This method is preferred to manual
search due to its ease of implementation and tendency to provide a better solu-
tion; however, it fails to be efficient in high dimensional feature spaces. If the
selection is carried out this way, it can be a time-intensive task owning both to
the expansive range of hyperparameters and the evaluation time of each possible
network [13,14]. To overcome the drawbacks of these methods, researchers have
suggested other approaches, including evolutionary algorithms.

We use an evolutionary optimization approach to NAS in this work known as
MENNDL [13]. MENNDL is a GPU-based high performance computing frame-
work that uses an asynchronous steady-state evolutionary algorithm to paral-
lelize the large-scale evaluation of networks on individual nodes, with selection,
mutation, and crossover procedures controlled by a master node. This allows
for a more efficient search of a high dimensional hyperparameter space than grid
search, and improves upon random search by considering previous results [13,14].
Networks produced by evolution-based optimization frameworks like MENNDL
have demonstrated increased accuracy and efficiency compared to those sug-
gested by domain experts [12].

2.2 Neural Network Ensembles

Neural network ensembles have been defined as a collection of neural networks
that have been trained on the same task before their results are combined to pro-
duce a model with better generalization ability than individual networks. They
have been applied to a variety of problems including handwritten digit recogni-
tion, scientific image analysis, face recognition, and OCR [15]. The idea behind
the use of neural network ensembles is that the success of a deep learning model
is predicated upon its ability to learn the distribution of a dataset. However,
a single model that performs optimally on a training dataset may be over-fit
to the training set and perform poorly on unseen data. Ensembles of networks
with different parameters and architectures can reduce this risk since different
networks may learn varying aspects of the training set before being combined to
produce the desired outputs. The networks are typically combined by taking an
average or weighted average of the outputs of each model in order to obtain the
final result [2].

Constructing ensembles of networks can be a challenging task. Traditionally,
ensemble techniques have relied on networks with randomly generated topolo-
gies, weights, or topologies that have learned random subsets of the training data.
The intuition behind this that the networks will be diverse in the sense that they
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differ in terms of their errors [7]. It has been shown that the generalization abil-
ity of an ensemble is directly dependent upon its average generalization ability
(e.g. accuracy) and average diversity of individual networks in the model. Pre-
vious work has found that the accuracy of an ensemble model can be improved
by constructing and weighting multiple base learners and that the diversity of
a model can be enhanced by selecting only learners that are less correlated in
terms of training error [2]. Other studies have concluded that the ideal ensem-
ble is one comprised of accurate networks that make errors on different parts
of the input space [7]. A range of solutions have aimed to address the prob-
lem of assembling neural network ensembles that balance fitness and diversity.
One work demonstrated that large ensembles of neural network models can be
summarized with a relatively small number of representative models selected via
clustering based on distances between model outputs. This method was demon-
strated to, in certain cases, yield better prediction accuracies [1]. Elsewhere, a
cluster-based selective algorithm was proposed for building a neural network
ensemble based on the idea that more effective ensembles are comprised of net-
works that are both accurate and diverse. Clustering was used to identify subsets
of similar networks before selecting the most accurate network from each clus-
ter to form an ensemble. Experiments showed that this approach out-performed
traditional ensemble approaches such as Boosting and Bagging [9]. In another
study, an ensemble-based model was implemented by using a genetic algorithm
to calculate the weights of individual networks to create a population with high
overall accuracy. K-means clustering was then used to select an optimal subset of
learners to improve the diversity of the model. This approach was compared to
other ensemble techniques including the traditional average, weighted average,
and kriging models and demonstrated to outperform each [2]. A different study
examined the relationship between the generalization abilities of neural network
ensembles and correlations between networks based on correctly and incorrectly
classified samples selected at random. It was discovered that, in some instances,
selecting a subset of networks was superior to ensembles of all of the individual
networks. The authors proposed an approach that uses a genetic algorithm to
select an optimal set of neural networks given a set of pre-trained networks to
serve as an ensemble. They demonstrated that this method worked well com-
pared to a popular ensemble approach and produced ensembles with high gener-
alizing ability with a relatively low computational cost [15]. Another publication
introduced a method known as Addemup, which leveraged a diverse population
of neural networks generated by a genetic algorithm in creating an ensemble of
neural networks. The genetic algorithm used for this purpose was designed to
meet an objective function that seeks to maximize the accuracy of the networks
while ensuring dissimilarity between members of the population. Ensembles were
evaluated during training following an approach that focuses on more difficult
examples in order to quickly produce good results. The authors demonstrated
that their algorithm yielded significantly better results than uses of the single
best network alone, the Bagging ensemble approach, and a similar algorithm
with an objective function that only considers validation accuracy [7].
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3 Methods

3.1 MENNDL

Multi-node Evolutionary Neural Networks for Deep Learning (MENNDL) is a
software framework that implements an evolutionary algorithm for optimizing
neural network topology and hyperparameters. More specifically, it can opti-
mize the number of layers, layer type for each layer, and the corresponding layer
hyperparameters. MENNDL utilizes an asynchronous approach to evaluate the
networks it generates in parallel in order to maximize utilization of available
computation resources. Evolutionary algorithms mimic the process of natural
selection, treating a population of neural networks as individuals, each with their
own ‘genes’ or set of architectural hyperparameters. The fitnesses of individuals
in each generation are evaluated before a selection protocol chooses a subset of
individuals in the population who will pass their features on to the next genera-
tion of networks, following crossover and mutation. Given proper initialization,
parameterization, and a sufficient number of generations, this framework pro-
duces high-performing networks by focusing on regions of the parameter space
containing individuals selected at each generation, while avoiding searches in the
neighborhoods of less-fit individuals [3,10]. Figure 1 illustrates the architectures
of the top networks produced by eight separate runs of MENNDL against the
CIFAR-10 image dataset. Note that the architectures of the best performing
networks produced by each run are diverse, yet each network performs compa-
rably on the validation sets. The specific details of the evolutionary algorithm
implemented by MENNDL are provided in [13].

3.2 Ensembles of MENNDL Generated Networks

We created ensembles of the top networks across one or more runs of MEN-
NDL against two different datasets: MNIST and CIFAR-10. For each dataset,
MENNDL was run 24 times on 8 nodes for 6 h each. For each of these runs, a
‘keep best’ flag was used in order to automatically select the individual with the
highest fitness at each generation. The validation accuracies and networks from
each run were saved. Following these runs, four categories of ensembles were
assembled from the networks with the highest validation accuracies. The first
three ensembles were of the top 2, 4, and 8 networks and the fourth was of 8
separately trained versions of the top network. The networks were selected from
each run as well as from pools of 2, 4, and 8 randomly selected runs for the same
dataset. Each of the chosen networks were evaluated on the test set, producing
softmax outputs that were averaged to obtain the final predictions. The ensem-
bles were repeated 24 times for each combination of ensemble type and selection
pool size. Each MENNDL run and ensemble experiment was carried out on the
Summit supercomputer at Oak Ridge National Laboratory. The system has a
total of 4608 nodes, each with two IBM POWER9 CPUs and six NVIDIA Volta
GPUs [8]. The diversity of each ensemble was measured by averaging the total
disagreement between the predicted outputs for each sample, following a method
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similar to the one described in [6]. Given two arrays of sample predictions for a
test set of length m, pi and pj , the average disagreement between the two sets
of predictions is calculated using the equation

d(pi, pj) =
1
m

m∑

k=1

ψ(pik, pjk) (1)

where the disagreement between two predictions for a sample at index k is
given by

ψ(pik, pjk) =

{
0, pik = pjk

1, otherwise
(2)

The average disagreements between the predictions of an ensemble of size n
are then averaged:

1
n2

n∑

i=1

n∑

j=1

d(pi, pj) (3)

The result is a value that measures the probability that two networks in the
ensemble will disagree with one another given a sample in the test set.

Fig. 1. Top network architectures produced by eight separate runs of MENNDL against
the CIFAR-10 training dataset. The validation accuracies are listed for each network.

3.3 Datasets and Experiments

A set of experiments were carried out to compare the accuracies of top individ-
ual networks to those of four different ensembles of top performing networks.
Three ensembles were created by selecting the top 2, 4, and 8 networks from a
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pool of runs. A fourth ensemble was constructed by combining the outputs of
8 separately trained versions of the top network architecture. The top networks
for each of the 24 MENNDL runs against the dataset were evaluated against
ensembles comprised of networks from 1, 2, 4 or 8 randomly selected MENNDL
runs. The top networks and ensembles were selected and evaluated 24 times for
per configuration.

The CIFAR-10 [4] and MNIST [5] image datasets were used in these experi-
ments. The CIFAR-10 dataset consists of 60,000 32 by 32 multicolor images, each
belonging to one of 10 classes. It is divided into a training set of size 50,000 and
test set of size 10,000. The MNIST dataset consists of training and test sets of
60,000 and 10,000 28 by 28 grayscale images of handwritten digits ranging from
0 to 9. Upon initializing each run of MENNDL, the CIFAR-10 samples were nor-
malized with the mean and standard deviation transforms ( 0.4914 0.4822 0.4465 )
and ( 0.2023 0.1994 0.2010 ) and MNIST with (0.1307) and (0.3081). 10% of the sam-
ples in each training set were selected at random and held out as a validation
set. Individual networks were trained with a batch size of 64 on the remain-
ing training samples. Afterward, the networks were evaluated on the validation
set to obtain the fitnesses for selection. The CIFAR-10 and MNIST test sets
were used to obtain the accuracies of each ensemble. No data augmentation or
transformation beyond the simple normalization given above was used in this
work.

4 Results

The means of the total networks, generations, and maximum fitnesses across 24
runs of MENNDL against each dataset are listed in Table 1. We note that the
datasets’ mean total networks and generations per run were similiar. However,
the average maximum fitness was significantly higher with MNIST than with
CIFAR-10. The standard deviation of this statistic was also much lower with
the MNIST than CIFAR-10.

The mean test set accuracies for each ensemble and pool size configuration
are listed in Tables 2 and 3 and plotted in Fig. 2. The ensemble accuracies were
generally higher when ensembles were composed of more of the top networks.
This trend was consistent in the case of both when going from the top individual
network to the ensemble of the top 8 networks. Creating an ensemble of only
the top two networks offered accuracy improvements over that of individual
networks of as much as 3.0900 ± 0.3698% on CIFAR-10 and 0.1821 ± 0.0432% on
MNIST. This finding is consistent with our expectations and demonstrates that
creating ensembles of the top two or more MENNDL runs is an effective means of
improving upon the generalizability of the single best-performing network across
one or more runs.
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The CIFAR-10 ensembles also tended to achieve higher overall test set accu-
racies when larger pools of runs were used. However, this trend was not the case
with the MNIST ensembles. This is likely because the average best individual
network fitnesses of the MENNDL runs against the MNIST dataset had consid-
erably lower standard deviations than that of the runs against the CIFAR-10
dataset. In other words, the top network accuracies from the CIFAR-10 dataset
varied more than those from MNIST. Hence, selecting the top overall networks
from larger pools of MENNDL runs against this dataset would more likely result
in top networks with higher generalization ability than top networks chosen from
a smaller pool or single run. Additionally, as the misclassification rate was much
smaller for the best MNIST networks, there is little room to add functionally
diverse networks to the ensemble while still maintaining high classification rates.

The mean accuracies and diversities of ensembles of the top 8 networks and
the top network trained 8 separate times are listed in Tables 4 and 5. These
results reveal that ensembles of the top 8 networks yielded diversities that were
consistently higher than the ensembles of 8 separately trained versions of the top
network. The ensemble diversities’ tendency to decrease as larger pools of runs
were used was likely an artifact of the larger pools of runs’ increased likelihood of
having access to top networks with better generalizability, resulting in outputs
that were less likely to differ from one another.

Table 1. CIFAR-10 and MNIST mean total networks, generations, and fitness of best
network across 24 runs of MENNDL.

Statistic Dataset

CIFAR-10 MNIST

Total networks 607.63± 86.35 589.63± 73.71

Generations 13.54± 1.76 13.08± 1.61

Best network fitness 78.47± 1.26 99.33± 0.10

Table 2. MNIST mean top network and ensemble test set accuracies for run pool sizes
of 1, 2, 4, and 8. Note that the ensembles of the top 8 networks from run pool sizes of
2 and 4 achieved the highest mean accuracies out of all configurations.

MENNDL

runs

Ensemble method

Top network Top 2 networks Top 4 networks Top 8 networks Top network 8x

1 99.4067± 0.1225 99.2471± 0.1225 99.4929± 0.0658 99.4929± 0.0624 99.4092± 0.1226

2 99.2554± 0.1129 99.4375± 0.0697 99.4742± 0.0815 99.5487± 0.0550 99.4471± 0.0897

4 99.2858± 0.0953 99.3954± 0.0816 99.5029± 0.0443 99.5125± 0.0673 99.4629± 0.0666

8 99.2629± 0.1154 99.4117± 0.0860 99.4646± 0.0587 99.5229± 0.0501 99.4038± 0.0933
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Table 3. CIFAR-10 mean top network and ensemble test set accuracies for run pool
sizes of 1, 2, 4, and 8. Note that the ensemble of the top 8 networks from a run pool
size of 8 achieved the highest mean accuracy out of all configurations.

MENNDL

runs

Ensemble method

Top network Top 2 networks Top 4 networks Top 8 networks Top network 8x

1 77.9025± 1.5848 80.9925± 1.2150 82.5629± 1.1345 83.0067± 0.9954 82.7583± 1.5473

2 78.3483± 1.1599 80.8808± 1.6867 83.0500± 0.8213 83.5075± 0.7859 83.4538± 1.2226

4 79.9271± 1.5532 81.6767± 1.2697 83.5146± 0.8869 83.9796± 0.6361 83.1325± 1.0810

8 79.7904± 1.3920 81.7825± 1.7717 83.6996± 0.7334 84.3708± 0.6521 84.0350± 1.0589

Table 4. MNIST mean diversities and accuracies for ensembles of top 8 and of top
network trained 8 separate times selected from run pools of size 1, 2, 4, and 8.

MENNDL runs Ensemble method

Top 8 networks Top network 8x

Diversity Accuracy Diversity Accuracy

1 0.0077± 0.0007 99.4929± 0.0624 0.0058± 0.0016 99.4092± 0.1226

2 0.0071± 0.0005 99.5487± 0.0550 0.0052± 0.0013 99.4471± 0.0897

4 0.0068± 0.0008 99.5125± 0.0673 0.0057± 0.0014 99.4629± 0.0666

8 0.0065± 0.0007 99.5229± 0.0496 0.0061± 0.0009 99.4038± 0.0933

Table 5. CIFAR-10 mean diversities and accuracies for ensembles of top 8 and of top
network trained 8 separate times selected from run pools of size 1, 2, 4, and 8.

MENNDL runs Ensemble method

Top 8 networks Top network 8x

Diversity Accuracy Diversity Accuracy

1 0.2118± 0.0199 83.0067± 0.9954 0.1798± 0.0200 82.7583± 1.5473

2 0.1984± 0.0146 83.5075± 0.7859 0.1801± 0.0148 83.4538± 1.2226

4 0.1943± 0.0110 83.9796± 0.6361 0.1676± 0.0135 83.1325± 1.0810

8 0.1794± 0.0131 84.3708± 0.6521 0.1594± 0.0118 84.0350± 1.0589



232 E. J. Herron et al.

Fig. 2. MNIST and CIFAR-10 MENNDL run pool size vs. mean accuracy for the top
network, ensembles of the top 2, 4, and 8 networks, and an ensemble of 8 separately
trained versions of the top network.

5 Conclusion and Future Work

We have presented a study demonstrating that creating ensembles of multiple
different networks from a NAS method produces a better result than simply
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using the best network produced by the NAS, even if we use multiple copies of
that best network retrained several times. This demonstrates that the increased
diversity of network structure in the ensemble produces increased diversity in
predictions of the networks leading to improved ensemble performance. These
results open the door to several promising directions of future work. As we have
demonstrated the diversity of network structures improves performance, we will
look to explicitly leverage this by evolving ensembles of networks within a NAS
approach instead of simply creating an ensemble as a post-process, thus allowing
the NAS to explicitly identify networks that complement each other.
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