
Heike Jagode
Hartwig Anzt
Guido Juckeland
Hatem Ltaief (Eds.)

LN
CS

 1
23

21

ISC High Performance 2020 International Workshops
Frankfurt, Germany, June 21–25, 2020
Revised Selected Papers

High Performance
Computing

Lecture Notes in Computer Science 12321

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Heike Jagode • Hartwig Anzt •

Guido Juckeland • Hatem Ltaief (Eds.)

High Performance
Computing
ISC High Performance 2020 International Workshops
Frankfurt, Germany, June 21–25, 2020
Revised Selected Papers

123

Editors
Heike Jagode
University of Tennessee at Knoxville
Knowville, TN, USA

Hartwig Anzt
Department of Mathematics
KIT für Technologie Karlsruhe
Karlsruhe, Baden-Württemberg, Germany

Guido Juckeland
Computational Science
Helmholtz-Zentrum Dresden Rossendorf
Dresden, Sachsen, Germany

Hatem Ltaief
Extreme Computing Research Center
King Abdullah University of Science
and Technology
Thuwal, Saudi Arabia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-59850-1 ISBN 978-3-030-59851-8 (eBook)
https://doi.org/10.1007/978-3-030-59851-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
Chapters 6, 19 and 24 are licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8173-9434
https://orcid.org/0000-0003-2177-952X
https://orcid.org/0000-0002-9935-4428
https://doi.org/10.1007/978-3-030-59851-8
http://creativecommons.org/licenses/by/4.0/

Preface

Without a doubt, 2020 has been a different kind of year for all of us, and so it was for
the 35th ISC High Performance conference, which became known as ISC 2020 Digital.
As the name suggests, the organizing team around David Keyes (KAUST, Saudi
Arabia) successfully adapted the conference to an all-digital format by providing a
significant portion of the program via web conferencing. While we should not forget
the importance of in-person interaction and socializing, the video streaming of the
accepted papers, focus sessions, and invited talks enabled unprecedented access and
dissemination of new research findings for the high-performance computing
community.

The ISC High Performance workshop series has been a complementary component
of the main conference since 2015, and – sustained by its continued success – a
renewed workshop program was presented at the ISC 2020 Digital event under the
leadership of workshops chair Heike Jagode (The University of Tennessee at
Knoxville, USA) and deputy chair Hartwig Anzt (Karlsruhe Institute of Technology,
Germany). Guido Juckeland (Helmholtz-Zentrum Dresden-Rossendorf, Germany) and
Hatem Ltaief (KAUST, Saudi Arabia) joined the team as proceedings chair and deputy
chair, respectively, and managed the organization of the workshops’ proceedings.

All workshops were selected with a peer-review process by an international com-
mittee of 21 experts in the field from all over Europe, the USA, and Asia. For the
digital version of the conference, we offered all of the accepted workshops the flexi-
bility to postpone their workshop to ISC 2021 and run a virtual workshop in the ISC
2020 edition. In the end, 10 of the 23 accepted workshops decided to organize a virtual
version of their event, which we greatly appreciate given the extra effort put forth by
everyone involved.

Like in the 2019 edition, the ISC workshops were composed of two types of
workshops: workshops with proceedings (early deadline) and workshops without
proceedings (later deadline). While we had 16 workshops with proceedings accepted,
only 7 out of those decided to offer a digital version this year. Given all of these
challenges, the quality of this year’s ISC workshops proceedings is impressive. In total,
we have 25 high-quality papers that all underwent thorough reviews. Each chapter
of the book contains the accepted and revised papers for one of the workshops. For
some workshops, an additional preface describes the review process and provides a
summary of the outcome.

With the hope that, perhaps next year, we will be able to once again host ISC High
Performance in person, we want to thank our Workshops Committee members, orga-
nizers of workshops, and all contributors. We are proud to present the latest findings on

topics related to research, development, and the application of large-scale,
high-performance systems.

August 2020 Heike Jagode
Hartwig Anzt

Guido Juckeland
Hatem Ltaief

vi Preface

Organization

Workshops Committee

Emmanuel Agullo Inria, France
Hartwig Anzt Karlsruhe Institute of Technology, Germany,

and The University of Tennessee, Knoxville, USA
Richard Barrett Sandia National Laboratories, USA
Roy Campbell Department of Defense, USA
Florina Ciorba University of Basel, Switzerland
Anthony Danalis The University of Tennessee, Knoxville, USA
Manuel F. Dolz Universitat Jaume I, Spain
Nick Forrington Arm, USA
Karl Fuerlinger Ludwig Maximilian University of Munich (LMU),

Germany
Judit Gimenez Lucas Barcelona Supercomputing Center, Spain
Thomas Gruber University of Erlangen-Nuremberg, Erlangen Regional

Computing Center, Germany
Joachim Hein Lund University, Sweden
David Henty The University of Edinburgh, UK
Marc-Andre Hermanns RWTH Aachen University, Germany
Kevin Huck University of Oregon, USA
Sascha Hunold TU Wien, Austria
Heike Jagode The University of Tennessee, Knoxville, USA
Eileen Kühn Karlsruhe Institute of Technology, Germany
Diana Moise Cray, HPE, Switzerland
Tapasya Patki Lawrence Livermore National Laboratory, USA
Jelena Pjesivac-Grbovic Verily Life Sciences LLC, Google LLC, USA
Philip Roth Oak Ridge National Laboratory, USA
Ana Lucia Varbanescu University of Amsterdam, The Netherlands

Proceedings Chairs

Guido Juckeland Helmholtz-Zentrum Dresden-Rossendorf (HZDR),
Germany

Hatem Ltaief KAUST, Saudi Arabia

Contents

First Workshop on Compiler-Assisted Correctness Checking
and Performance Optimization for HPC (C3PO’20)

Compiler-Assisted Type-Safe Checkpointing. 5
Jan-Patrick Lehr, Alexander Hück, Moritz Fischer,
and Christian Bischof

Static Analysis to Enhance Programmability and Performance in OmpSs-2. . . 19
Adrian Munera, Sara Royuela, Roger Ferrer, Raul Peñacoba,
and Eduardo Quiñones

Automatic Detection of MPI Assertions . 34
Tim Jammer, Christian Iwainsky, and Christian Bischof

Automatic Code Motion to Extend MPI Nonblocking Overlap Window. 43
Van Man Nguyen, Emmanuelle Saillard, Julien Jaeger, Denis Barthou,
and Patrick Carribault

First International Workshop on the Application of Machine
Learning Techniques to Computational Fluid Dynamics Simulations
and Analysis (CFDML)

Complete Deep Computer-Vision Methodology for Investigating
Hydrodynamic Instabilities . 61

Re’em Harel, Matan Rusanovsky, Yehonatan Fridman, Assaf Shimony,
and Gal Oren

Prediction of Acoustic Fields Using a Lattice-Boltzmann Method and Deep
Learning . 81

Mario Rüttgers, Seong-Ryong Koh, Jenia Jitsev, Wolfgang Schröder,
and Andreas Lintermann

Unsupervised Learning of Particle Image Velocimetry 102
Mingrui Zhang and Matthew D. Piggott

Reduced Order Modeling of Dynamical Systems Using Artificial
Neural Networks Applied to Water Circulation . 116

Alberto Costa Nogueira Jr., João Lucas de Sousa Almeida,
Guillaume Auger, and Campbell D. Watson

Parameter Identification of RANS Turbulence Model Using
Physics-Embedded Neural Network . 137

Shirui Luo, Madhu Vellakal, Seid Koric, Volodymyr Kindratenko,
and Jiahuan Cui

HPC I/O in the Data Center Workshop (HPC-IODC)

Investigating the Overhead of the REST Protocol When Using Cloud
Services for HPC Storage. 161

Frank Gadban, Julian Kunkel, and Thomas Ludwig

Characterizing I/O Optimization Effect Through Holistic Log Data Analysis
of Parallel File Systems and Interconnects . 177

Yuichi Tsujita, Yoshitaka Furutani, Hajime Hida, Keiji Yamamoto,
and Atsuya Uno

The Importance of Temporal Behavior When Classifying Job IO Patterns
Using Machine Learning Techniques . 191

Eugen Betke and Julian Kunkel

1st Workshop “Machine Learning on HPC Systems” (MLHPCS)

GOPHER, an HPC Framework for Large Scale Graph Exploration
and Inference . 211

Marc Josep-Fabregó, Xavier Teruel, Victor Gimenez-Abalos,
Davide Cirillo, Dario Garcia-Gasulla, Sergio Alvarez-Napagao,
Marta García-Gasulla, Eduard Ayguadé, and Alfonso Valencia

Ensembles of Networks Produced from Neural Architecture Search 223
Emily J. Herron, Steven R. Young, and Thomas E. Potok

SmartPred: Unsupervised Hard Disk Failure Detection. 235
Philipp Rombach and Janis Keuper

1st International Workshop on Monitoring and Data Analytics
(MODA20)

Application IO Analysis with Lustre Monitoring Using LASSi
for ARCHER . 255

Karthee Sivalingam and Harvey Richardson

AI-Driven Holistic Approach to Energy Efficient HPC 267
Robert Tracey, Lan Hoang, Felix Subelet, and Vadim Elisseev

Characterizing HPC Performance Variation with Monitoring
and Unsupervised Learning . 280

Gence Ozer, Alessio Netti, Daniele Tafani, and Martin Schulz

x Contents

15th Workshop on Virtualization in High-Performance Cloud
Computing (VHPC’20)

Service Function Chaining Based on Segment Routing Using P4
and SR-IOV (P4-SFC) . 297

Andreas Stockmayer, Stephan Hinselmann, Marco Häberle,
and Michael Menth

Seamlessly Managing HPC Workloads Through Kubernetes 310
Sergio López-Huguet, J. Damià Segrelles, Marek Kasztelnik,
Marian Bubak, and Ignacio Blanquer

Interference-Aware Orchestration in Kubernetes . 321
Achilleas Tzenetopoulos, Dimosthenis Masouros, Sotirios Xydis,
and Dimitrios Soudris

RustyHermit: A Scalable, Rust-Based Virtual Execution Environment 331
Stefan Lankes, Jonathan Klimt, Jens Breitbart, and Simon Pickartz

Rootless Containers with Podman for HPC. 343
Holger Gantikow, Steffen Walter, and Christoph Reich

Bioinformatics Application with Kubeflow for Batch Processing
in Clouds . 355

David Yu Yuan and Tony Wildish

Converging HPC, Big Data and Cloud Technologies for Precision
Agriculture Data Analytics on Supercomputers . 368

Yiannis Georgiou, Naweiluo Zhou, Li Zhong, Dennis Hoppe,
Marcin Pospieszny, Nikela Papadopoulou, Kostis Nikas,
Orestis Lagkas Nikolos, Pavlos Kranas, Sophia Karagiorgou,
Eric Pascolo, Michael Mercier, and Pedro Velho

Author Index . 381

Contents xi

First Workshop on Compiler-Assisted
Correctness Checking and Performance

Optimization for HPC (C3PO’20)

Preface to the First Workshop
on Compiler-assisted Correctness Checking

and Performance Optimization
for HPC (C3PO’20)

Peter Pirkelbauer1 and Emmanuelle Saillard2
1 Lawrence Livermore National Laboratory, Livermore, CA 94550

pirkelbauer2@llnl.gov
2 Inria Bordeaux Sud-Ouest, Talence, France
emmanuelle.saillard@inria.fr

Introduction

Changing HPC architecture and software stack create enormous challenges for HPC
application developers that need to write performance portable code and keep existing
applications up to speed. Purely manual solutions are cost prohibitive. Source-to-source
translators are poised to address these challenges automatically or with user input semi-
automatically. Practical compiler-enabled programming environments, applied analysis
methodologies, and end-to-end toolchains are crucial to performance portability in the
exascale era.

C3PO is a new workshop at the intersection of compilers/translators, HPC mid-
dleware, and HPC applications. The workshop brings together researchers with a
shared interest in applying compilation and source-to-source translation methodologies
to enhance parallel programming, including explicit programming models such as MPI,
OpenMP, and hybrid models.

Organization

Five papers were submitted, and after a double-blind review process, four papers were
accepted. The workshop was held virtually with live presentations on June 24, 2020.

Organizing Committee

Peter Pirkelbauer Lawrence Livermore National Laboratory
and University of Central Florida

Emmanuelle Saillard Inria Bordeaux Sud-Ouest
Anthony Skjellum University of Tennessee at Chattanooga
Martin Ruefenacht University of Edinburgh

Purushotham Bangalore University of Alabama at Birmingham
Julien Jaeger French Alternative Energies and Atomic Energy

Commission
Peter Thoman University of Innsbruck

Program Committee

Hadia Ahmed Lawrence Berkeley National Laboratory
Ritu Arora Texas Advanced Computing Center
Protonu Basu Facebook
Ira Baxter Semantic Design
Benson Muite Kichakato Kizito
Elisabeth Brunet Telecom Sud Paris
Patrick Carribault French Alternative Energies and Atomic Energy

Commission
Thomas Fahringer University of Innsbruck
Chunhua Liao Lawrence Livermore National Laboratory
Reed Milewicz Sandia National Laboratories
Christina Peterson University of Central Florida
Joachim Protze RWTH Aachen University
Sara Royuela Barcelona Supercomputing Center
Markus Schordan Lawrence Livermore National Laboratory
Prema Soundararajan University of Alabama at Birmingham
Aravind Sukumaran Rajam Washington State University
Amalee Wilson Stanford University

Program

The workshop content was built on two tracks: invited talk and research paper pre-
sentations. All presentations were performed live using zoom and the audience could
(and did) ask questions at any time via the zoom chat.

Invited Talk

Computational scientists face numerous challenges when trying to exploit powerful and
complex high-performance computing (HPC) platforms. These challenges arise in
multiple aspects including productivity, performance, correctness etc.

Chunhua Liao presented a source-to-source transformation-based approach to
address such challenges. His work is based on a unique compiler framework named

Preface to the First Workshop on Compiler-assisted 3

ROSE. Developed at the Lawrence Livermore National Laboratory, ROSE encapsu-
lates advanced compiler analysis and optimization technologies into easy-to-use library
APIs so developers can quickly build customized program analysis and transformation
tools for C/C++/Fortran and OpenMP programs. Chunhua Liao showed several tools,
including an AST inliner, an AST outliner, and a variable move tool. He briefly
mentioned ongoing work related to benchmarks, composable tools, and online training
for compiler/tool developers.

Research Papers

The research papers presentations were organized in two sessions with two talks each:
correctness and optimization.

The first speaker was Jan Patrick Lehr from TU Darmstadt. He presented TyCart, a
tool for type-safe checkpoint/restart that extends the memory allocation sanitizer tool
TypeART with type asserts. In TyCart, type asserts are used to implement a typesafe
interface for the existing checkpoint libraries FTI and VeloC.

In a next presentation, Tim Jammer from TU Darmstadt talked about an automatic
detection of MPI assertions. He showed a Clang/LLVM based static analysis to check
whether the four MPI assertions defined in the 2019 standard draft specification hold
for a given program.

Next, Van Man Nguyen from CEA described automatic code motion to extend MPI
nonblocking overlap window. His solution to reduce overheads caused by network
latencies or synchronizations between processes (i) transforms blocking MPI com-
munications into their nonblocking counterparts and (ii) performs extensive code
motion to increase the size of overlapping intervals between initialization and com-
pletion calls.

Finally, Adrian Munera Sanchez from BSC talked about a static analysis to enhance
programmability and performance in OmpSs-2. He introduced a new algorithm to
automatically and safely release OmpSs-2 task dependencies before a task has
completed.

The workshop program information, including links to the talks and presentation
slides is available under https://c3po-workshop.github.io/2020/program.

Acknowledgement. This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
(LLNL-MI-812627).

4 P. Pirkelbauer and E. Saillard

https://c3po-workshop.github.io/2020/program

Compiler-Assisted Type-Safe
Checkpointing

Jan-Patrick Lehr(B), Alexander Hück, Moritz Fischer, and Christian Bischof

Scientific Computing, Technische Universität Darmstadt, Darmstadt, Germany
{jan-patrick.lehr,alexander.hueck,
christian.bischof}@tu-darmstadt.de,

moritz_friedrich.fischer@stud.tu-darmstadt.de

Abstract. TyCart is a tool for type-safe checkpoint/restart and extends
the memory allocation sanitizer tool TypeART with type asserts. Type
asserts let the developer specify type requirements on memory regions,
and, in our example implementation, they are used to implement a type-
safe interface for the existing checkpoint libraries FTI and VeloC. We
evaluate our approach on a set of mini-apps, and an application from
astrophysics. The approach shows runtime and memory overhead below
5% in smaller benchmarks. In the astrophysics application, the runtime
overhead reaches 30% and the memory overhead 70%.

Keywords: Correctness · Checkpoint restart · Type mismatch ·
Sanitizer

1 Introduction

Application-level checkpointing is a technique to extend applications with the
ability to periodically store their data to persistent storage, and to continue
with that data in a later restart of the application. Two recent implementa-
tions are the Very-Low Overhead Checkpointing (VeloC) [17] library and the
Fault Tolerance Interface (FTI) [2]. Both libraries enable Message Passing Inter-
face (MPI)-parallel checkpoint/restart (CPR) mechanisms to provide distributed
checkpointing while also exploiting the storage hierarchy for faster checkpoints.

To enable compatibility across different languages and applications, many
libraries expose low-level C application programming interfaces (APIs) to the
user. Low-level interfaces can be problematic, however, as they treat data as raw
memory, leaving the particular specification to the user. This results in a variety
of potential usage errors. For example, specifying the wrong type size results in
a miscalculation of the memory region’s extent, which causes the CPR library
to illegally access memory outside the valid data allocation range. We use the
terms memory region and allocation interchangeably.

The problem is not limited to CPR libraries, but generally applies to low-
level, C -style, APIs that expose type-less pointer parameters (in C/C++ void*)

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 5–18, 2020.
https://doi.org/10.1007/978-3-030-59851-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_1

6 J.-P. Lehr et al.

together with meta information, e.g., type sizes, to pass in data. Another well-
known, and widely used, example for such an interface is the MPI library. To
help developers implement correct applications, a mechanism to assert type and
allocation-extent requirements at API boundaries is desirable.

1.1:

For the MPI library, the MUST [9] tool was extended with the compiler-based
tool TypeART [10]. TypeART instruments allocations and tracks the respective
types and extents at runtime. MUST compares the tracked type information to
the user-provided type information in MPI calls to check for correctness.

In this paper, we extend the approach of TypeART and propose the more
general concept of type asserts. Type asserts allow to state requirements about
allocated memory regions, i.e., pointers. Our tool TyCart provides general CPR-
related type asserts. We provide example implementations for the two existing
CPR libraries FTI and VeloC. The implementation guards calls to the CPR
library against type- and extent-related usage errors by adding type asserts.

The paper is structured as follows: Sect. 2 explains the considered CPR APIs
and potential usage errors. Sect. 3 introduces type asserts and explains how they
address such errors. In Sect. 4, we evaluate the approach on a set of benchmarks
before we discuss the results in Sect. 5. Related work is discussed in Sect. 6.
Lastly, we conclude and give further research directions in Sect. 7.

2 Checkpoint Restart

Checkpoint/restart is a technique that enables a target software to periodically
write out data, in order to continue the computation from the last stored data
point in a subsequent restart. This is particularly relevant in large systems, in
which the mean time between failure is relatively short, and applications have
to be able to deal with system failure [2,3], or for longer runs on systems with
schedulers that limit the time of a job. The mechanism can be implemented, e.g.,
as system-level or application-level CPR [6]. In this work, application-level CPR
is considered, which is integrated into the target application by the developer,
who, thus, can introduce usage errors.

The use of application-level CPR capability in a target application typically
requires three steps, see Listing 1.1; excluding initialization and finalization.

Compiler-Assisted Type-Safe Checkpointing 7

Note that, the registration of allocations and the actual checkpoints can be placed
at different locations in the target program. While the initial placement may have
been obvious and known to all developers, checkpoint placement may be sub-
ject to tuning efforts and change over time. Splitting the interface into separate
functions for registration, actual checkpoint, and deregistration is important for
fine-grain control about which data is checkpointed at what point of the appli-
cation. The placement of the calls to the actual checkpoint function is important
for both checkpoint consistency and application performance. While this paper
is not concerned with the challenge to generate a consistent checkpoint, many
algorithms for general checkpoint consistency exist, for an overview see [8]. Iden-
tifying potential to minimize the performance impact on the target application
has received considerable attention in high-performance computing [13,19], and
more specifically in, e.g., adjoint algorithmic differentiation [3,14].

1.2:

2.1 Error Types

Both VeloC and FTI provide a C -API for compatibility across different lan-
guages. The allocation is provided as a type-less void*, together with arguments
that specify the size of the allocation’s extent. Such interfaces allow for a vari-
ety of usage errors, yet only limited correctness checking can be provided. We
distinguish three types of error that can occur.

(a) Element Count Error The developer calculates the allocation’s total
extent using a wrong number of elements. Unfortunately, the library has
a raw view of the memory, hence, no error checking can be performed. In
the example in Listing 1.2, the memory region is allocated with size M *
sizeof(int) bytes. However, when registering the allocation, the developer
erroneously specifies X as the number of elements for it. This can lead to
subtle bugs, i.e., if (1) X < N, a restart only partially restores the content
of pi, leaving the remaining memory in an uninitialized state, and, (2) X >
N, a checkpoint erroneously reads the memory out-of-bounds and a restart
erroneously writes it out-of-bounds.

(b) Data Type Error The developer uses a wrong type to calculate the
allocation’s total extent, i.e., passes the wrong type to the sizeof operator.
In VeloC the data-type size in bytes is provided as size_t (see Listing 1.2
line 5), whereas in FTI, an FTI-type handle is created and used instead.

8 J.-P. Lehr et al.

(c) Change Allocation Before Checkpoint The developer changes an
already registered allocation, e.g., its extent, between its registration and
the checkpoint. This is hard to catch, as the individual calls to the CPR
library seem correct. With the outdated information from the time of reg-
istration, the CPR library copies the wrong number of elements.

All error types result in a miscalculation of the allocation’s extent, and are not
particular to the CPR use-case, but relevant for all C -style APIs.

3 Type Asserts for Checkpoint-Restart

To detect the illustrated errors, meta information for allocations registered for
checkpointing is needed. The relevant information consists of the underlying data
type and the number of elements allocated, i.e., the extent. Type asserts let the
developer specify the expected type and extent for an allocation when registering
it for checkpointing, hence, detect errors w.r.t. the usage of the CPR library.

To that end, we use the type and memory allocation tracking sanitizer tool
TypeART, see Fig. 1, which we briefly introduce in the next section. It is based
on the LLVM framework and uses instrumentation and static analysis to pro-
vide, at runtime, the required allocation information. For a thorough discussion
of TypeART, see [10]. To handle the particular semantics of the CPR libraries,
we develop a specialized library called TyCart. It provides type asserts, imple-
mented as marker functions that are handled by TypeART’s LLVM passes, and,
in addition, type safe API calls to the checkpoint libraries using the type infor-
mation provided by TypeART. Marker functions are used to indicate that a
particular variable should be tracked and checked at runtime. We distinguish
regions marked (or registered) for tracking and those actually tracked at run-
time.

3.1 TypeART

Analysis and Transformation Pass. The passes work on the LLVM inter-
mediate representation1 (IR) generated by the compiler. The analysis pass (1)
finds all memory allocation instructions (i.e., stack, heap and globals), and, (2)
filters stack and global variables that are not passed to marker functions. The
transformation pass subsequently instruments each such allocation. The hook
passes, (1) the memory address, (2) the extent, and, (3) a type id for the allo-
cated type (see next paragraph). In Listing 1.3, an example of a heap allocation
instrumentation is shown. Stack allocations are instrumented individually with
the respective type information when entering their scope. They are freed as
bulk operation, using a counter-based approach, when leaving the scope [10].

1 https://llvm.org/docs/LangRef.html.

https://llvm.org/docs/LangRef.html

Compiler-Assisted Type-Safe Checkpointing 9

Runtime. The runtime library keeps track of the memory allocations during
program execution based on the instrumentation callbacks. It associates the
address with (1) a type id, identifying the type, and (2) the count of allocated
elements, e.g., for an array. Its current implementation is not thread safe.

Fig. 1. TypeART framework, adapted from [10]. (1) The LLVM compiler is invoked
with additional analysis and instrumentation passes to collect type information and
instrument the relevant allocations. (2) The type information is serialized and later used
by the runtime library. (3) The runtime library is linked with the target application. (4)
During execution, the memory allocations are traced and combined with the previously
extracted type information.

1.3:

Type Representation. A type id is added by the transformation pass to
each instrumentation hook of the memory allocations. The runtime library uses
the id for type-related bookkeeping. Built-in types have predetermined ids and
layouts. For user-defined types, (1) a unique type id is generated, and (2) the type
layout is serialized. When executing, the runtime library parses the serialized
type information. Together with dynamically calculated extents, provided by the
instrumentation, the runtime library is able to provide exact type information
for any relevant allocation.

3.2 TyCart

TyCart implements type asserts, i.e., assert statements about the type and extent
of an allocation. Since the tool specifically targets CPR libraries, it provides an

10 J.-P. Lehr et al.

interface similar to the targeted libraries VeloC and FTI. It reuses TypeART’s
analysis pass to find all relevant allocations, and to filter irrelevant allocations
from instrumentation. It extends TypeART with a specialized transformation
pass to process the TyCart interface functions and insert calls to its runtime
library. The runtime library keeps track of registered memory regions, to re-
assert their validity before a checkpoint and uses TypeART as a service to obtain
the needed type information, see Fig. 2.

Fig. 2. Instead of direct calls to a CPR library, the equivalent type-safe API of TyCart
is used. For each invocation, the type information of the memory pointer, provided by
TypeART, is compared to the user-specified one of the type assert. A successful check
passes the call to the respective CPR backend.

1.4:

Type Asserts. Type asserts allow specifying requirements about the data type
and the extent of allocations. As outlined in Sect. 2, all introduced errors are the
consequence of an inability to introspect allocations, given a type-less pointer.
Using the proposed type asserts, TYPE_ASSERT(p, 100, double) introspects if
the allocation p indeed points to 100 elements of type double. Hence, developers
can explicitly state and check requirements on memory regions. However, two
main limitations of this approach exist w.r.t. type-safe checkpointing. First, a
single type assert only checks the allocation when it is executed, not with every
checkpoint. Second, type asserts are decoupled from the CPR API and need to
be maintained separately, introducing another source for error.

TyCart CPR Asserts. To address the drawbacks of single type asserts and
better fit the CPR use-case, TyCart provides an interface that encapsulates both

Compiler-Assisted Type-Safe Checkpointing 11

the type assert and the call to the CPR API. Different macros are provided
to register a memory region, execute a checkpoint and deregister a memory
region. Using FTI, a macro to register a type to FTI is also provided. Listing
1.4 reimplements the initial example (see Listing 1.1) using TyCart-provided
macros.

The registration macro TY_protect expands to a TyCart marker function
in the source code, which is subsequently handled by the LLVM transformation
pass. The pass replaces the marker function with a call to the TyCart runtime
library, and inserts the compiler-generated type id into the call. The type id is
generated by TypeART during compilation, hence, cannot be substituted by the
macro. TyCart’s runtime library (1) executes the assert with the user-provided
type and size, (2) inserts the assert into TyCart’s assert-registration, and, (3)
calls the CPR backend’s registration function. The immediate check guards the
CPR library against the error types element count error and data type error.

The TY_checkpoint macro iterates TyCart’s assert-registration to re-assert
all registered memory regions. Thereafter, the CPR backend’s checkpoint func-
tion is called and performs the checkpoint. The re-assert guards against the
change allocation before checkpoint error.

User-Defined Types. So far, only built-in types were discussed. In more com-
plex codes, however, user-defined types are ubiquitous. Consider the example
in Listing 1.5. In C/C++, the start address of a particular struct is identical
to the address of its first member, here size. The TypeART runtime library,
however, stores the most-outer type for a given address, i.e., struct Vec in
the example. Thus, the address passed as argument to the type assert in line
three is type ambiguous. In such cases, the TyCart runtime library recursively
resolves user-defined types when passed a type-ambiguous address. It uses the
static type-information to traverse the type layout, and check for a type match.
If no matching type is encountered until further resolution is impossible, the
assert fails. For cases in which it is desirable to only allow the specific type at
an address, TyCart implements a strict check-mode, which does not recursively
resolve types. The implementation of the strict mode is currently limited to the
most-outer type.

Two interesting cases for user-defined types are sub-classes in C++ and unions
in both C and C++. TypeART tracks the addresses and the type of a memory
object, hence, the runtime library can determine the actual type of an object
at a given address, independent of the type of the pointer that is used in the
type assert. A union is tracked as a user-defined type by TypeART, and its size
corresponds to the size of its largest possible type. TyCart, thus, can correctly
determine the size of an allocation of a union, however, it leaves the correct
determination of the current active type of the union to the user.

12 J.-P. Lehr et al.

1.5:

4 Evaluation

We apply TyCart to a set of benchmarks, i.e., serial C++ implementations
of Conway’s game of life [12] and a driven cavity problem ported from the
MINPACK-2 collection [1] as well as the MPI-parallel applications LULESH [11],
and a heat distribution code from the FTI repository [7]. Finally, we use TyCart
to capture all relevant data to restart the compute kernel from a sequential ver-
sion of the astrophysics simulation eos-mbpt [5] with ≈8.5M LoC. We also imple-
mented both FTI and VeloC backend-specific versions for the targets. For the
sequential applications, their vanilla baseline is run without MPI. All other appli-
cations are run using two MPI processes, and eight for LULESH, because FTI
requires at least two MPI processes for its fault-tolerance scheme, and LULESH
requires at least eight processes when executed MPI-parallel. TyCart’s runtime
checks are performed process-local and do not involve any communication, hence,
neither runtime nor memory overhead scale with the number of processes. As a
result, we only present benchmark results for these small process counts.

We collect compile-time statistics for (1) distinct instrumented heap alloca-
tion statements, and (2) filtering of global and stack variables. These statistics
show the effectiveness of the employed translation-unit local filtering. However,
the compile-time statistics are no indicator for the number of actual calls to
instrumentation functions at runtime. Therefore, we collect runtime statistics
for (1) number of regions registered for checkpointing, (2) size of an individual
checkpoint, (3) maximum number of allocations tracked simultaneously, and, (4)
total calls to instrumentation hooks at runtime. Finally, wall time and maximum
memory usage of process 0 are also collected. In eos-mbpt, due to the use-case,
one checkpoint is written, in the other benchmarks, ten are written. All check-
points are written in synchronous mode to node-local disks, to exclude parallel
file-system jitter from the measurements. The experiments are conducted on
compute nodes of the Lichtenberg high-performance computer, each with two
Intel Xeon 2680v3 processors, 64GB of main memory, and HyperThreading and
frequency scaling disabled. Results denote the median of ten consecutive runs
on the same node and processor. The standard deviation for our measurements
is 3%, except for the FTI & TyCart version of driven cavity (6%). We use the
runtime of the vanilla version of the code as baseline. Of particular interest is
the overhead TyCart introduces in addition to the CPR library.

Compiler-Assisted Type-Safe Checkpointing 13

Instrumentation and Registration. Table 1 lists the number of instrumented
heap, global, and stack allocations and the corresponding percentage of variables
excluded from the instrumentation. The table also lists the number of mem-
ory regions registered for checkpointing. Global variables, in contrast to stack
allocations, are filtered effectively. In TypeART, no heap allocation filtering is
performed to guarantee a consistent tracking of allocations and deallocations.
In particular, the limited filtering in eos-mbpt results in many (unnecessarily)
tracked allocations at runtime, see Table 2. The large number of individually
registered regions in the case of driven cavity is due to registering the computed
Jacobian matrix. It is not allocated as a contiguous block of memory, but, each
individual line of the matrix is registered separately. However, only very few
additional allocations are tracked at all at runtime, see Table 2.

Table 1. Compile-time: number of instrumented heap allocations and frees; global and
stack variables (percentage filtered). Checkpoint: allocations registered for checkpoint-
ing; file size per checkpoint per MPI process.

Benchmark Compile time Checkpoint
Heap Globals (%) Stack (%) Regions Size (MB)

driven cavity 15/32 1 (93) 17 (6) 10,003 764.0
eos-mbpt 482/160 203 (68) 549 (21) 7,845 6.7
game of life 12/28 1 (94) 7 (46) 4 48.0
heatdis 14/30 2 (89) 18 (0) 5 129.0
LULESH 14/30 6 (91) 39 (38) 57 7.0

Fig. 3. Runtime overhead w.r.t. vanilla. Vanilla runtime: (1) game of life: 34.08 s,
(2) driven cavity: 88.61 s, (3) heatdis: 206.30 s, (4) LULESH 2.0: 70.69 s, (5) eos-
mbpt: 1,462.3 s.

Runtime and Memory Overhead. The naive introduction of a CPR library
can substantially affect the runtime, see Fig. 3. Independent of TyCart, we see

14 J.-P. Lehr et al.

that FTI and VeloC have a noticeable impact on the runtime of the target,
reported as (FTI/VeloC). Both libraries introduce significant overhead in the
driven cavity (5.20x/3.30x) and the game of life (1.96x/1.78x) code, but only
small overheads in heatdis (1.16x/1.01x) and LULESH (1.17x/1.00x). TyCart
introduces an additional runtime overhead of approximately 1.01x over the CPR
versions for all applications, except eos-mbpt (1.30x). The small runtime over-
head is the result of compile-time filtering irrelevant allocations from instrumen-
tation, thus, reducing the total number of instrumentation calls at runtime.

Fig. 4. Memory overhead w.r.t. vanilla. Vanilla RSS: (1) game of life: 52MB, (2)
driven cavity: 764MB, (3) heatdis: 315MB, (4) LULESH 2.0: 80MB, (5) eos-
mbpt: 1,827MB.

Table 2. Total executed instrumentation calls for heap and stack allocations;
information-tracking memory consumption as computed by the TypeART runtime;
maximum number of allocations tracked simultaneously.

Benchmark TyCart runtime
Tot. heap Tot. stack Mem. (KiB) Max. heap Max. stack

driven cavity 10,003 23 782.4 10,003 23
eos-mbpt 32,508,427 48,751,262 1,270,170.4 16,257,906 250
game of life 2 6 0.6 2 6
heatdis 3 30,012 0.8 3 15
LULESH 406,261 44,714 6.9 77 23

Comparing the CPR version to its TyCart version, the memory overhead is
within 1.02x for all applications, and 1.67x for eos-mbpt, Fig. 4. Noticeable is the
large memory overhead of the CPR version for game of life. In this application,
almost its entire data is checkpointed. Using buffered I/O this is equivalent
to doubling the memory footprint. For most of the applications, the typically
modest number of concurrently tracked allocations, cf. Table 2, is a result of the

Compiler-Assisted Type-Safe Checkpointing 15

application’s small size, e.g., little call depth, in combination with the compile-
time filtering.

On the other hand, the eos-mbpt code allocates most of its arrays on the heap,
including function-local temporaries. All these allocations are instrumented,
thus, many heap allocations are tracked, see Table 2. This is the primary rea-
son for the comparably high runtime overhead. The peak memory overhead
computed in the TypeART runtime library is a close estimate of the overhead
observed in our benchmarks. In eos-mbpt, it can be accounted to (1) type infor-
mation payload (≈40%), (2) checkpoint registry (≈1%), (3) GNU STL data
structure bookkeeping (≈59%). Also note the different characteristics that these
codes exhibit w.r.t. their checkpointing behavior.

5 Discussion

Integrating TyCart into the project-specific version of eos-mbpt revealed unini-
tialized memory that was registered for checkpointing when running small data
sets. The first level of indirection, int*, in an array of int** was initialized
correctly, but only a subset of these pointers was initialized to point to correct
values. To assure no invalid pointer dereferences in the target code, previously
uninitialized pointers are set to NULL, and only valid pointers are registered.
Also, the use of heap allocations for function-local temporary arrays has been
addressed by the developers. The higher runtime overhead in eos-mbpt is a result
of the large number of allocations tracked at runtime.

Type ambiguity, as seen in Sect. 3.2 (User-Defined Types), occurs in the C++
game of life implementation and is solved using the default check-mode for type
resolution. This is sufficient in the presented CPR use case, but introducing a
resolution level, i.e., specifying the number of sub-type resolutions, for the strict
mode may be desirable. As an alternative, allowing sets of types being specified
would cover type ambiguity in a more controlled way.

The approach can be used with projects spanning across multiple translation
units, however, four (current) limitations are inherited from TypeART. (1) The
current implementation of compile-time filtering only considers the case when
all uses of a variable are visible in a single translation unit. As a result, pass-
ing a mutable variable to a function from another translation unit, or a func-
tion pointer with undetermined call target, prevents TypeART from filtering.
Employing more sophisticated program analysis techniques, e.g., whole-program
value tracking, could help mitigate the limitation. (2) The LLVM IR does not
distinguish signed and unsigned integer types, hence, type asserts do not work
correctly in these instances. However, TyCart can still detect erroneously speci-
fied memory region sizes in all cases. (3) TyCart records an erroneous allocation
type when the pointer-type cast is not in the same function as the initial alloca-
tion, e.g., the call to malloc. TypeART records these allocations to be of type
void*, thus, type asserts with the actual type fail. (4) The current implementa-
tion of the runtime library is not thread safe, thus, no thread-parallel programs
can be considered.

16 J.-P. Lehr et al.

Incremental checkpointing is currently unsupported, as TyCart asserts the
registered number of elements for the checkpoint always to match the allocated
number of elements. This prevents partial memory initialization at application
restart, when TyCart is used for both checkpoint and restart. Also, restarting the
application is not handled specifically, because data is restored into registered
memory regions only. Thus, if the TyCart asserts succeed, it is assumed that the
checkpoint data matches.

6 Related Work

In [15], the authors propose a directive-based approach to use FTI. Since the
compiler introduces the calls to the FTI library, data type size computation is
presumably correct. However, specifying the size of dynamically allocated data
regions is left to the user and no mechanism is included to guard against element
count errors. The source-level tool RTC [16] addresses memory-related bugs,
such as type violations. The tool acts as a general memory sanitizer, whereas
TyCart guards specific API functions to minimize overhead. This lightweight and
API-specific design is also the reason for the comparably low overhead TyCart
introduces. As a general, industry-grade tool to formulate and check require-
ments, Frama-C [4] with its specification language is well-known. The approach,
as opposed to ours, works statically, thus inheriting all benefits and drawbacks
of static analysis tools.

7 Conclusion and Future Work

This paper proposed the compiler-assisted type-safe checkpoint/restart tool
TyCart. It uses the sanitizer tool TypeART to implement type asserts, a mech-
anism to specify type and extent requirements on memory regions. Using type
asserts, TyCart provides a CPR-specific memory sanitizer tool that detects type-
related usage errors of CPR libraries; our example implementation uses FTI and
VeloC. The tool is based on the LLVM framework and applies a combination of
static and dynamic analysis to implement allocation tracking and type checking.

Our evaluation on a set of benchmarks and a real-world application showed
that TyCart’s average runtime overhead is within 30%. The memory overhead is
typically less than 5%, except for one application, where 67% memory overhead
was measured. While we consider the tool already applicable for correctness
checking, further improvements to reduce memory consumption seem beneficial.

The possibility for incremental checkpointing, as well as, the use of static
analysis, e.g., symbolic execution, to detect (potentially) missing CPR calls is
left as future work. Enabling the proposed approach to validate checkpoint meta-
data during application restart is of interest, however, this depends on the avail-
able metadata in the specific CPR library. Also, extending the proposed type
asserts towards more expressiveness, e.g., no-alias requirements, or expose more
introspection possibilities to developers [18], seem interesting research directions.

Compiler-Assisted Type-Safe Checkpointing 17

Acknowledgments. We thank Christian Drischler for providing the eos-mbpt appli-
cation and appreciated discussion. This work was funded by the Hessian LOEWE
initiative within the Software-Factory 4.0 project. Calculations for this research were
conducted on the Lichtenberg high-performance computer of the TU Darmstadt.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – Project-ID 265191195 – SFB 1194.

References

1. Averick, B., Carter, R., Xue, G.L., More, J.: The MINPACK-2 test problem col-
lection (1992). https://doi.org/10.2172/79972

2. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Mat-
suoka, S.: FTI: high performance fault tolerance interface for hybrid systems. In:
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2011. ACM (2011). https://doi.org/10.1145/
2063384.2063427

3. Bockhorn, A., Narayanan, S.H.K., Walther, A.: Checkpointing approaches for the
computation of adjoints covering resilience issues. In: 2020 Proceedings of the
SIAM Workshop on Combinatorial Scientific Computing, pp. 22–31. SIAM (2020).
https://doi.org/10.1137/1.9781611976229.3

4. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7_16

5. Drischler, C., Hebeler, K., Schwenk, A.: Chiral interactions up to next-to-next-to-
next-to-leading order and nuclear saturation. Phys. Rev. Lett. 122, 042501 (2019).
https://doi.org/10.1103/PhysRevLett.122.042501

6. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S.: A survey of fault tolerance mech-
anisms and checkpoint/restart implementations for high performance comput-
ing systems. J. Supercomput. 65(3), 1302–1326 (2013). https://doi.org/10.1007/
s11227-013-0884-0

7. FTI: FTI public GitHub examples (2017). https://github.com/leobago/fti/tree/
master/examples. Accessed Mar 2020

8. Cao, G., Singhal, M.: On coordinated checkpointing in distributed systems. IEEE
Trans. Parallel Distrib. Syst. 9(12), 1213–1225 (1998). https://doi.org/10.1109/71.
737697

9. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: MPI runtime
error detection with MUST: advances in deadlock detection. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC 2012, pp. 1–10, November 2012. https://doi.org/10.1109/SC.
2012.79

10. Hück, A., et al.: Compiler-aided type tracking for correctness checking of MPI
applications. In: 2018 IEEE/ACM 2nd International Workshop on Software Cor-
rectness for HPC Applications (Correctness), pp. 51–58, November 2018. https://
doi.org/10.1109/Correctness.2018.00011

11. Karlin, I., Keasler, J., Neely, R.: LULESH 2.0 updates and changes. Technical
report LLNL-TR-641973, August 2013

12. Lehr, J.P.: Conway’s game of life (2016). https://github.com/jplehr/GameOfLife/
tree/master/serial_template. Accessed Mar 2020

https://doi.org/10.2172/79972
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1137/1.9781611976229.3
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1103/PhysRevLett.122.042501
https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1007/s11227-013-0884-0
https://github.com/leobago/fti/tree/master/examples
https://github.com/leobago/fti/tree/master/examples
https://doi.org/10.1109/71.737697
https://doi.org/10.1109/71.737697
https://doi.org/10.1109/SC.2012.79
https://doi.org/10.1109/SC.2012.79
https://doi.org/10.1109/Correctness.2018.00011
https://doi.org/10.1109/Correctness.2018.00011
https://github.com/jplehr/GameOfLife/tree/master/serial_template
https://github.com/jplehr/GameOfLife/tree/master/serial_template

18 J.-P. Lehr et al.

13. Liu, Y., Nassar, R., Leangsuksun, C., Naksinehaboon, N., Paun, M., Scott, S.: A
reliability-aware approach for an optimal checkpoint/restart model in HPC envi-
ronments. In: 2007 IEEE International Conference on Cluster Computing, pp. 452–
457 (2007). https://doi.org/10.1109/CLUSTR.2007.4629264

14. Lotz, J., Naumann, U., Mitra, S.: Mixed integer programming for call tree reversal.
In: 2016 Proceedings of the SIAM Workshop on Combinatorial Scientific Comput-
ing, pp. 83–91. SIAM (2016). https://doi.org/10.1137/1.9781611974690.ch9

15. Maroñas, M., Mateo, S., Beltran, V., Ayguadé, E.: A directive-based approach to
perform persistent checkpoint/restart. In: 2017 International Conference on High
Performance Computing Simulation (HPCS), pp. 442–451 (2017). https://doi.org/
10.1109/HPCS.2017.72

16. Milewicz, R., Vanka, R., Tuck, J., Quinlan, D., Pirkelbauer, P.: Runtime checking
C programs. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC 2015, 2107–2114. ACM (2015). https://doi.org/10.1145/2695664.
2695906

17. Nicolae, B., Moody, A., Gonsiorowski, E., Mohror, K., Cappello, F.: VeloC:
Towards high performance adaptive asynchronous checkpointing at large scale. In:
2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 911–920, May 2019. https://doi.org/10.1109/IPDPS.2019.00099

18. Rigger, M., Mayrhofer, R., Schatz, R., Grimmer, M., Mössenböck, H.: Introspection
for C and its applications to library robustness. Art Sci. Eng. Program. 2(2), 1–31
(2018). https://doi.org/10.22152/programming-journal.org/2018/2/4

19. Subasi, O., Kestor, G., Krishnamoorthy, S.: Toward a general theory of optimal
checkpoint placement. In: 2017 IEEE International Conference on Cluster Comput-
ing (CLUSTER), pp. 464–474 (2017). https://doi.org/10.1109/CLUSTER.2017.
127

https://doi.org/10.1109/CLUSTR.2007.4629264
https://doi.org/10.1137/1.9781611974690.ch9
https://doi.org/10.1109/HPCS.2017.72
https://doi.org/10.1109/HPCS.2017.72
https://doi.org/10.1145/2695664.2695906
https://doi.org/10.1145/2695664.2695906
https://doi.org/10.1109/IPDPS.2019.00099
https://doi.org/10.22152/programming-journal.org/2018/2/4
https://doi.org/10.1109/CLUSTER.2017.127
https://doi.org/10.1109/CLUSTER.2017.127

Static Analysis to Enhance
Programmability and Performance

in OmpSs-2

Adrian Munera(B), Sara Royuela, Roger Ferrer, Raul Peñacoba,
and Eduardo Quiñones

Barcelona Supercomputing Center, Barcelona, Spain
{adrian.munera,sara.royuela,roger.ferrer,raul.penacoba,

eduardo.quinones}@bsc.es

Abstract. Task-based parallel programming models based on compiler
directives have proved their effectiveness at describing parallelism in
High-Performance Computing (HPC) applications. Recent studies show
that cutting-edge Real-Time applications, such as those for unmanned
vehicles, can successfully exploit these models. In this scenario, OpenMP
is a de facto standard for HPC, and is being studied for Real-Time
systems due to its time-predictability and delimited functional safety.
However, changes in OpenMP take time to be standardized because it
sweeps along a large community. OmpSs, instead, is a task-based model
for fast-prototyping that has been a forerunner of OpenMP since its
inception. OmpSs-2, its successor, aims at the same goal, and defines sev-
eral features that can be introduced in future versions of OpenMP. This
work targets compiler-based optimizations to enhance the programma-
bility and performance of OmpSs-2. Regarding the former, we present
an algorithm to determine the data-sharing attributes of OmpSs-2 tasks.
Regarding the latter, we introduce a new algorithm to automatically
release OmpSs-2 task dependencies before a task has completed. This
work evaluates both algorithms in a set of well-known benchmarks, and
discusses their applicability to the current and future specifications of
OpenMP.

Keywords: Programmability · Performance · Static analysis ·
OmpSs-2

1 Introduction

The growing demands of society regarding mobility, health, and industry, among
others, have motivated the convergence of computer systems towards complex
ecosystems. This affects dissimilar domains such as High-Performance Comput-
ing (HPC) and Real-Time systems, e.g., supercomputers combining shared mem-
ory computational nodes in a distributed memory environment targeting HPC,
and Multi-Processing Systems-on-Chip (MPSoC), containing multiple and het-
erogeneous processing elements, targeting Real-Time applications.
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 19–33, 2020.
https://doi.org/10.1007/978-3-030-59851-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_2

20 A. Munera et al.

The need to exploit complex architectures effectively and efficiently has pro-
moted the use of parallel programming models. As a result, several abstractions
focusing on the productivity of parallel systems coexist [24]. A possible classifi-
cation divides them in two groups: (1) thread-based models, which exploit data
parallelism (i.e., distributing data), and (2) task-based models, which exploit task
parallelism (i.e., distributing units of work, or tasks). The former force program-
mers to manage low-level details of the computation, such as data distribution
and synchronization, while the latter typically offer a higher-level abstraction
that simplifies these complexities. Task-based models also offer greater flexibility,
making them more suitable for the parallelization of dynamic and unstructured
applications. For these reasons, these have gained a broad acceptance.

Some representative task-based models are Intel Threading Building Blocks
[27], CUDA graphs [23], OpenMP [13] and OmpSs [7]. The two former are
hardware-centric models that expose the architectural features in the language,
requiring programmers a considerable level of expertise to achieve productiv-
ity, while also preventing portability. The two latter are parallelism-centric
approaches offering high-level APIs based on compiler directives that hide the
complexities of the architecture, and focus on providing mechanisms to describe
parallel units and the synchronizations among them. The simplicity of the latter,
together with their productivity, makes them very appealing for programmers.

Among all parallel abstractions, OpenMP has become the de facto stan-
dard for shared-memory HPC [6] by virtue of its productivity [10,28], while it
also supports heterogeneous computation through the acceleration model [2,12].
Moreover, it has an increasing interest in embedded computing [20,22] because
of its delimited functional safety [18] and its proven time-predictability [21].

Introducing changes in OpenMP is a long-distance race that requires consen-
sus of a large community, and prototype implementations of the involved vendors
(e.g., Intel, IBM, and NVIDIA). Interestingly, OmpSs is a programming model,
implemented on top of the Mercurium compiler [3] and the Nanos++ runtime [4].
The main goal of OmpSs has been fast-prototyping tasking features to include
them in the OpenMP standard. Some of them, like task dependencies, task pri-
orities, task loops, task reductions, taskwait dependencies, multi-dependencies
and data affinity, are already included in OpenMP.

OmpSs-2 [5] is the second generation of OmpSs. It extends its predecessor
with features covering dependencies across different task nesting levels and early
release of dependencies, among others (see details in Sect. 3). The reason-to-be of
OmpSs-2 is, as in OmpSs, to extend OpenMP with new features. For this reason,
the novelties that OmpSs-2 introduces to tasking models, and the proved success
of OmpSs to influence the OpenMP standard, motivates the interest of this work,
which contributions are: (1) an algorithm to detect the correct data-sharing of
OmpSs-2 tasks, targeting programmability and correctness, (2) an algorithm for
the automatic release of task dependencies, targeting performance, and (3) an
evaluation of both algorithms with LLVM in a set of benchmarks.

The remainder of the paper is organized as follows: Sect. 3 introduces OmpSs-
2; Sect. 2 exposes the related work; Sect. 4 describes the proposed algorithms

Static Analysis to Enhance Programmability and Performance in OmpSs-2 21

targeting performance, correctness and programmability in OmpSs-2 programs;
Sect. 5 details of the implementation done in LLVM, and shows the evaluation
of the proposed techniques; and Sect. 6 discusses the benefits of this work for
OpenMP.

2 Related Work

Programmability is an important aspect of high-level programming models, as
it is crucial for their adoption. Focusing on OpenMP, the scope of variables is a
cumbersome and error-prone process that jeopardizes not only programmability,
but also correctness. As a consequence, several works tackle the automatic scope
of variables in OpenMP. Lin et al. [11] proposed the use of the default(AUTO)
clause for such a purpose, and defined a set of rules to accomplish auto-scope
in parallel regions. They showed that automatic and user-defined clauses can
obtain the same performance. Voss et al. [25] evaluated the impact of the same
clause for auto-parallelization purposes, concluding that several regions cannot
be automatically parallelized because of the limitations of the technique: it only
works for the OpenMP thread model, it offers limited inter-procedural analysis
for arrays, and it lacks support for API functions calls. Later, Royuela et al.
[17] proposed an algorithm to automatically scope variables in OpenMP 3.1
task regions. This work evaluates the algorithm using, among others, the BOTS
benchmarks [8] and compares its results with those of the Oracle Solaris Studio
12.3 compiler mechanism with the same goal [15]. They exhibit an accuracy close
to 85% compared to that of Solaris, close to 78%. Wang et al. [26] approached
the same problem from a simplicity point of view, proposing an algorithm that
uses taskwait directives to avoid the need for analyzing concurrency among
tasks. Although this work presents better accuracy, it has an important negative
impact on the performance of the resulting parallel code.

3 The OmpSs-2 Programming Model

OmpSs-2 [5] is a task-based parallel programming model built on top of a set of
C/C++ and Fortran language directives and a runtime API. OmpSs-2 is similar
to OpenMP [13] in which a sequential program is incrementally parallelized
using annotations in the source code. In contrast, it is purely task-based, so the
fundamental unit of concurrency, to exploit parallel execution, is the so-called
task. Listing 1.1 shows the syntax of an OmpSs-2 task directive in C/C++.

When a thread of the program encounters a task construct, it creates a
task. The execution of the structured block (in C/C++, this is the compound
statement that follows the #pragma) of the task, is deferred until the task itself
is executed. A task that has been created but not yet executed is called to be
ready. A task is complete when it has finished its execution.

22 A. Munera et al.

1 int x = 3, y = 4;
2 #pragma oss task \
3 shared(x) \
4 firstprivate(y) \
5 label(T)
6 {
7 x++;
8 y++;
9 }

10 #pragma oss taskwait
11 assert(x == 4);
12 assert(y == 4);

Listing 1.1. Basic task syntax.

1 #pragma oss task label(A)
2 {
3 #pragma oss task label(A1)
4 {}
5 }
6 #pragma oss task label(B)
7 {
8 #pragma oss task label(B1)
9 {}

10 #pragma oss taskwait
11 // B1 is complete
12 // A and A1 may not be complete
13 }
14 #pragma oss taskwait
15 // A, A1, B, and B1 are complete

Listing 1.2. Synchronization and nesting.

3.1 Data-Sharings

Variables used in the structured block that are declared inside the task region are
local to the task, while those declared outside have an associated data-sharing. A
shared data-sharing means that the task will capture the address of the variable,
i.e. it will access the original variable. A firstprivate data-sharing means that the
task will capture the value of the variable, i.e. it will access a copy of the variable.
Shared variables are prone to data-races between the thread that executes the
task and other threads, including the one that created the task.

3.2 Task Synchronization and Nesting

Tasks can be nestes in OmpSs-2: the execution of the enclosing task construct
leads to the creation of the inner tasks, whose execution is also deferred. Parent
tasks do not execute a taskwait at the end of their associated construct, so the
enclosing task construct may complete before the nested tasks constructs do.

Synchronization is achieved using the taskwait directive, which waits for
all tasks created in the current task context and those created in nested task
contexts to complete, as shown in Listing 1.2. A wait clause attached to a task
directive behaves as if a taskwait is inserted at the end of the task construct.

Applications may expose concurrency difficult to exploit due its dynamic
nature. For these cases OmpSs-2 provides dependency clauses, like in, out or
inout. When a thread of the program encounters a task construct, the runtime
annotates the expressions denoting the memory referenced in those clauses. A
task becomes ready when executing it would not violate its data dependencies
respect to data dependencies of previous tasks created and not completed yet.

OmpSs-2 provides two more dependency clauses, concurrent and commu-
tative, that are useful when several tasks participate in a reduction operation.
The former is like inout, but allows parallelism across tasks with a concurrent
dependency of the same object. The latter also acts as inout, but allows any
ordering between tasks with the same commutative dependency. Unlike com-
mutative, which is mutually exclusive, concurrent dependencies require explicit

Static Analysis to Enhance Programmability and Performance in OmpSs-2 23

synchronization (e.g. locks) to avoid data races. Furthermore, dependency
clauses can also be used in a taskwait directive, acting as a task with an empty
construct.

Code in Listing 1.3 shows a program that creates 4 tasks. Tasks T1 and T2
can be executed concurrently. Task T3 will be ready once T1 completes. Task T4
will be ready once T1 and T2 complete. Task T5.1 will be completed after the
taskwait with dependencies, W1. That taskwait would not wait for task T5.2.

1 int x, y, z1, z2;
2 #pragma oss task out(x) label(T1)
3 { x = 1; }
4 #pragma oss task out(y) label(T2)
5 { y = 1; }
6 #pragma oss task inout(x) label(T3)
7 {
8 assert(x == 1);
9 x++;

10 }
11 #pragma oss task in(x) in(y) label(T4)
12 {
13 assert(x == 2);
14 assert(y == 1);
15 }
16 #pragma oss taskwait
17 assert(x == 2);
18 assert(y == 1);
19 #pragma oss task out(z1) label(T5.1)
20 { z1 = 3; }
21 #pragma oss task out(z2) label(T5.2)
22 { z2 = 4; }
23 #pragma oss taskwait in(z1) // (W1)
24 assert(z1 == 3);

Listing 1.3. Tasks and dependencies.

1 int x = 1;
2 #pragma oss task weakinout(x) \
3 label(A)
4 {
5 #pragma oss task inout(x) \
6 label(A1)
7 {
8 assert(x == 1);
9 x++;

10 }
11 }
12 #pragma oss task weakinout(x) \
13 label(B)
14 {
15 #pragma oss task inout(x) label(B1)
16 {
17 assert(x == 2);
18 x++;
19 }
20 }
21 #pragma oss taskwait
22 assert(x == 3);

Listing 1.4. Nested tasks and depen-
dencies.

OmpSs-2 considers a unique domain for all the tasks of a program: tasks
define the data they use as the regular dependency clauses, and the data used
in nested tasks as a weaker form of dependency designated by the weakin,
weakout and weakinout clauses. This links the dependency domains at all
nesting levels while avoids unnecessary synchronizations between tasks.

Listing 1.4 shows an example of dependency between nested tasks A1 and
B1 without synchronizing tasks A and B. Had the code used a regular inout
dependency in tasks A and B, then task B would only be ready once A completes.

A created task becomes ready when all its dependencies have been released by
its task predecessor set. Tasks release all their dependencies when they complete.
OmpSs-2 allows executing tasks to early release their dependencies using the
release directive. This provides fine-grained control for tasks that describe a
large set of data-dependencies that are processed in chunks.

Listing 1.5 shows an example in which a task, T1, processes data in chunks.
Such process is fast, so it may not be beneficial to create a task per chunk. Then,
a slower process creates one task T2 per chunk. Without the release of depen-
dencies, all T2 tasks would have to wait to the completion of T1. Because T1
releases dependencies earlier, T2 tasks may be ready even before T1 completes.

24 A. Munera et al.

1 #pragma oss task out(data[0; size]) label(T1)
2 { // Task with an out dependency to all data[k], where 0 <= k < size
3 for (int i = 0; i < size; i += chunk_size) {
4 for (int j = i; j < chunk_size; j++)
5 fast_process(&data[j]);
6 #pragma oss release inout(data[i; chunk_size])
7 // The current task releases the inout dependency on all data[k],
8 // where i <= k < i + chunk_size
9 }

10 }
11 for (int i = 0; i < size; i += chunk_size) {
12 #pragma oss task in(data[i; chunk_size]) label(T2)
13 { // Task with an input dependency to all data[k],
14 // where i <= k < i + chunk_size
15 slow_process(&data[i], chunk_size);
16 }
17 }

Listing 1.5. Early release of dependencies.

4 Compiler Analysis Techniques for OmpSs-2

This section introduces two compiler analysis aiming at enhancing the pro-
grammability and performance of OmpSs-2 programs: (1) the automatic scope
of variables in task constructs, and (2) the automatic release of task dependen-
cies. Both techniques assume the input code is correct (e.g., dependencies are
defined correctly), and that it keeps the sequential consistency property.

4.1 Automatic Definition of Task Data-Sharing Clauses, Auto-sope

The mechanism for automatically scoping variables in OmpSs-2 tasks we propose
draws from a previous algorithm proposed for the same purpose in OpenMP 3.1
tasks [17]. That algorithm proceeds, for each task t, in two steps: (1) define
the regions of code that can be concurrent with t, and (2) scope the variables
based on their usage within t and its concurrent regions, and the liveness of the
variables after the last point at which the task can be synchronized.

We have adapted the previously mentioned algorithm to the singulari-
ties of OmpSs-2, including (1) nested tasks and weak dependencies, (2) the
concurrent and commutative dependency clauses, and (3) taskwait direc-
tives with dependency clauses. These features, missing in OpenMP 3.1 (some of
them are included in OpenMP v5.0, as discussed in Sect. 6), have an impact in
the first step of the algorithm, i.e., computing the regions of code concurrent
with a task. These parts can be (a) other tasks, (b) portions of the parent task,
and (c) different instances of the same task. Next we describe the first step of
the auto-scope algorithm to adapt it to OmpSs-2:

1. Compute the points of the code delimiting the regions code that can be con-
current with a task t, which are:

– TSP(t), the task scheduling point (TSP) of the creation of t.
– Pre-sync(t), the last synchronization(s) before TSP(t), which can be (a)
taskwait directives, (b) the end of other task constructs with matching

Static Analysis to Enhance Programmability and Performance in OmpSs-2 25

dependencies, and (c) the beginning of the function enclosing t or the task
scheduling point of the creation of the parent task.

– Post-sync(t), the first synchronization(s) encountered after TSP where
the task can be synchronized, which can be (a) taskwait directives, (b)
the beginning of other task constructs with matching dependencies, and
(c) the end of the function enclosing t or the end of the parent task.
The pseudo-code that computes the Pre-sync(t) points is shown in Algo-
rithm1. The algorithm for computing the Post-sync(t) points is analogous
to the one for the Pre-sync(t) points, but it traverses the paths starting
from the successors of t, instead of searching in the predecessors.

2. Compute the regions of code that can be concurrent with t, which are:
– Other tasks found between Pre-sync, and Post-sync, that are not syn-

chronized yet by means of dependency clauses.
– Different instances of t, if the task is within a loop, and Post-sync happens

after the end of the loop.

Algorithm 1: Computation of the Pre-sync(t) set of a task t.
Data: Node containing task t
Result: Pre-sync(t): list of last synchronization points
foreach path(p): possible path from t to the creation of its parent task, t′, or the
beginning of the enclosing function, f , whatever comes first do

list deps(p); /* dependencies found in p */
node n = path deps(p).leaf; /* node being traversed */
while n != NULL do

if n represents a taskwait directive without dependencies then
Pre-sync(t).insert(n);
if n dominates t then

return Pre-sync(t)
else

break; /* stop searching this path */

else if (n represents a task construct
‖ n represents a taskwait directive with dependencies)

&& n synchronizes t then
Pre-sync(t).insert(n);
deps(p).insert(deps(n));
if deps(p) == deps(t) then

break; /* stop searching this path */

n = parent(n); /* keep traversing ancestors */

26 A. Munera et al.

– Code from the parent task found:
– Between TSP and Post-sync.
– Between the beginning of the loop and TSP, if t is enclosed within a

loop and Post-sync occurs after the loop has ended.1

Figure 1 illustrates the points delimiting the concurrent regions of a task.
There, Fig. 1a shows an OmpSs-2 sample code where a task T1: (1) creates task
T2, which sets the value of y; (2) creates task T3, which updates the value of y;
(3) updates the value of y; and (4) waits for the completion of tasks producing
y. Additionally, Fig. 1b depicts a flow graph of the code, including the code in
all tasks, the task scheduling points corresponding to the creation of the tasks
(TxC), and the taskwait, as well as the TSP, Pre-sync and Post-sync points
of task T3, represented with different symbols.

The rules that define the data-sharing attributes of a task remain the same
as those defined in the original algorithm for OpenMP [17].

The adequate determination of the data-sharing attributes enhances the pro-
grammability of the model by freeing the programmer from the burden of man-
ually defining these values. It also impacts correctness, for the algorithm can
be used to check user-defined data-sharing attributes. Finally, it can also affect
performance if variables unnecessarily privatized can be scoped as shared [19].

1 int x = 1;
2 #pragma oss task weakin(x) \
3 out(y) label(T1)
4 {
5 #pragma oss task out(y) label(T2)
6 { y = 1; }
7 #pragma oss task inout(y) in(x) \
8 label(T3)
9 { // here, y might be 1 or 2

10 assert(x == 1);
11 y += x;
12 }
13 y ++;
14 #pragma oss taskwait in(y)
15 assert(y > 1);
16 }

(a) Code sample.

x = 1

y = 1

assert (y == 1)
y += x

y ++

assert (y > 1)

TW

T2C

T3C

TxC Task x crea on Pre-sync TSP Task crea on
TW taskwait Post-sync Flow Synchroniza on

T1C match(y)

match(x)

(b) Concurrent regions’ limits for T3.

Fig. 1. Example of concurrent regions in the OmpSs-2 auto-scope algorithm.

4.2 Automatic Release of Task Dependencies, Auto-release

OmpSs-2 allows releasing the dependencies of a task before the task has fin-
ished (see Sect. 3 for details). This feature may positively impact the perfor-
mance of the application when a task uses certain data only at the beginning,
1 A task t2 synchronizes [19] a task t1 if t2 is created after t1, and either (a) t1

designates an out object that t2 designates as in or out, or (b) t1 designates an in
object that t2 designates as out, or (c) t1 and t2 designate the same commutative
object.

Static Analysis to Enhance Programmability and Performance in OmpSs-2 27

and then performs other lengthy operations that delay the release of this data
dependencies.

In order to enhance the performance of OmpSs-2 programs while reducing
the work needed by the programmer, we present next a compiler analysis that
automatically introduces release directives within tasks. The algorithm works,
for each task t in the program with a set of variables included in dependency
clauses, dep vars(t), as follows:

1. Compute liveness analysis [16] within t.
2. Traverse the statements of t in post-order and, for each statement s:

(a) Gather the set of variables that are not live, dead vars(s).
(b) Compute the set of variables to be released, vars to release(s), as the

intersection of dead vars(s) and dep vars(t).
(c) If vars to release(s) is not empty, introduce a release directive after s,

including the variables in vars to release(s) as dependencies, as they were
in the dependency clauses of t.

3. To reduce overhead, simplify the release directives as follows:
(a) Remove the release directives if they are the last statement of the task,

because the dependencies are going to be released at that point anyway.
(b) Move release clauses outside loops to join the contiguous memory accesses

of arrays and structures.

Figure 2 is an illustration of the liveness analysis. There, Fig. 2a shows the
portion of the code in Listing 1.5 corresponding to task T1, and Fig. 2b shows
a control-flow graph representation of that task with some nodes tagged with
the information of liveness analysis. Overall, the analysis computes live out(n),
where n is a node of the control-flow graph, as the set of variables that can
be used in any path reachable after n, taking into account the data-sharing
attributes of nested tasks (i.e., if a variable is private in a nested task, then
the original variable is not used at this point.) For example, after the call to
fast process, the value of data[j] will never be used again, so this variable is

1 #pragma oss task out(data[0; size])
2 for (int i = 0; i < size;
3 i += chunk_size) {
4 for (int j = i;
5 j < chunk_size; j++) {
6 // in the first iteration
7 // data[i;chunk_size] is used
8 fast_process(&data[j]);
9 // data[j] is never used again

10 // i and j are used in the
11 // respective loop increments
12 }
13 }

(a) Snippet of code in Listing 1.5.

i = 0

i < size

j = i

j < chunck_size

fast_process(…)

j++

i += chunck_size

dead_out(data[j])
live_out(j, i)

live_out(i,
data[0; size])

live_out(i, j,
data[i; chunk_size])

(b) Control flow and liveness analysis.

Fig. 2. Example of liveness analysis.

28 A. Munera et al.

dead. On the contrary, at the same point, the values of i and j are still live
because the are used to update the next value of the same variables, respectively.

5 Evaluation

The algorithms described in Sect. 4 have been implemented in the LLVM com-
piler. Next subsections introduce some relevant details of the implementation,
and show the evaluation of the two algorithms considering programmability (in
the case of auto-scope) and performance (in the case of the auto-release).

5.1 LLVM Implementation

We have built the proposed techniques in LLVM, using a preliminary implemen-
tation of the OmpSs-2 model in Clang2. LLVM offers a stable and extensive tool-
chain that includes several analysis, which simplifies the implementation task,
while boosts the accuracy of the results. Particularly, we benefit from the fol-
lowing analysis already implemented: dominator tree (the LLVM DominatorTree
class), used for detecting variable uses inside tasks and concurrent regions; alias
analysis (the AAResults class), used to decide when different pointers and array
accesses (may) point to the same memory location; and scalar evolution and
other loop analyses (the ScalarEvolution, LoopInfo and IVUsers classes), used
to recognize loops, analyze induction variables and recognize access patterns
to arrays. Furthermore, we use two transformations required for the previous
analysis to work: loop-rotate, which converts loops into do/while style loops,
and mem2reg, which removes unnecessary alloca instructions. Finally, we take
advantage of the llvm-link tool, which allows for linking several LLVM IR files
into one, enhancing the possibilities for inter-procedural analysis, and hence the
accuracy of our results.

Besides our algorithms, we have implemented liveness analysis in LLVM.
This analysis uses the Value class, which gives information about the uses of
a variable, while traverses the control-flow graph to search the paths that are
reachable from a given node.

The implementation of the auto-release algorithm lacks its very last step,
corresponding to the promotion of releases outside a loop when the individual
releases inside the loop access contiguous memory. This remains as future work.

5.2 Benefits in OmpSs-2 Programmability: Auto-scope

To evaluate the enhancement in programmability of the auto-scope algorithm,
we compute the number of variables automatically scoped for a series of bench-
marks adapted to OmpSs-2 from the Barcelona OpenMP Task Suite [8], and
2 The artifact with the LLVM tool-chain with the proposed algorithms, the Nanos

runtime library, and the test-suit used for the evaluation is publicly available in
https://gitlab.bsc.es/ppc-bsc/research/c3po-artifact/-/tags/v1.0. A stable version
of Clang for OmpSs-2 and Nanos will be released in the next months.

https://gitlab.bsc.es/ppc-bsc/research/c3po-artifact/-/tags/v1.0

Static Analysis to Enhance Programmability and Performance in OmpSs-2 29

other OmpSs-2 benchmarks (See Footnote 2). Table 1 shows the results. There,
each row refers to a benchmark; the first block of columns describe relevant
aspects of the benchmarks; and the second block shows the number of variables
automatically scoped for each attribute; and the success ratio as the number of
variables automatically scoped out of the number of variables used in the tasks
of the program.

Table 1. Results of the auto-scope algorithm for OmpSs-2, implemented in LLVM,
using different benchmarks.

Description LLVM results

#tasks nested tasks method shared private firstprivate undefined (%)success

Alignment 1 no iter 2 4 14 0 100%

FFT 41 no rec 102 0 140 0 100%

Fib 2 no rec 2 0 2 0 100%

Health 2 yes iter&rec 1 1 2 0 100%

Floorplan 1 no iter&rec 3 1 9 2 86.66%

NQueens 1 no iter&rec 2 0 4 0 100%

Sort 9 yes rec 27 0 10 0 100%

SparseLU 4 yes iter 4 3 11 0 100%

UTS 2 no iter&rec 2 1 3 0 100%

Cholesky 4 no iter 4 0 12 0 100%

Saxpy 2 yes iter 4 0 3 0 100%

Matmul 2 yes iter 3 0 8 0 100%

TOTAL 98.88%

The results reveal the strengths of the algorithm combined with the capa-
bilities of LLVM. For eleven out of twelve benchmarks we have been able to
automatically scope all variables. Only for floorplan, there are two variables that
have not been automatically scoped. This is because these variables are only used
in functions which code is not reachable (i.e. memcpy), and hence their usage
cannot be determined (although many benchmarks use functions from standard
C libraries, if the variables are also written within the function, then what hap-
pens within those calls can be omitted; this is not the case when the variables
are only read). Also composed variables (i.e. arrays) can be undefined if the alias
analysis can not ensure there is no data race in any of the elements of the array,
and it is used after the Post-sync points of the task.

The available mechanisms for the auto-scope of variables are not directly
comparable with our technique because they target OpenMP, and do not support
OmpSs-2 features. Nonetheless, a similar set of benchmarks was used to evaluate
the algorithm we draw from [17], and we have improved the accuracy of the
algorithm by virtue of the LLVM capabilities: the former offered an accuracy
around the 85%, while our implementation is close to 100%. This, without losing
performance, since we use the same rules for deciding the scope. Compared to
other approaches [26] more conservative, we can advance that our approach
will always perform equally or better because we do not use full-barriers (e.g.,
taskwait directives) to ease the algorithm, as they do.

30 A. Munera et al.

5.3 Benefits in OmpSs-2 Performance: Auto-release

To evaluate the benefits in performance obtained with the auto-release algo-
rithm, we have used two different configurations of the code shown in List-
ing 1.5: (1) the first one, called Super fast process, where chunk size is set to
10000, size is set to 200000, and the call to fast process takes 100µs; and (2)
the second one, called Fast process, where chunk size is set to 1000, size is set
to 20000, and the call to fast process takes 1000µs. For both configurations,
the call to slow process takes 5 s. For this evaluation, we have indeed removed
the release directive from the original benchmark. Furthermore, we have eval-
uated the overhead of introducing a release call, which is around 200 ns.

Table 2 shows the execution time of the two configurations mentioned before,
on an 8-core x86 2.60 GHz Intel processor, for three different versions: (1) original
user’s code without releasing any dependency; (2) user’s code with the auto-
release algorithm introducing individual releases inside the loop; and (3) user’s
code with manual release of a full array section. The numbers show that, when
the execution time of the code where the release is introduced is fast enough, i.e.,
Super fast process, the benefits of automatically adding the release directive
are not as good as they could be. This is due to the overhead of the release call,
together with the need for modifying the regions a task depends on very often
(i.e., runtime overhead). Nonetheless, there is still a significant benefit compared
to not releasing any dependencies. On the other hand, when the execution time
of the code where the release directive is not that short, i.e., Fast process,
then there is not a significant difference between inserting individual releases or
joining contiguous releases in a unique release directive.

Table 2. Results of the auto-release algorithm for OmpSs-2, implemented in LLVM,
using different configurations of code in Listing 1.5.

Execution time (us)
Super fast process Fast process

No release 46747405 36233344

Release within loop 40607605 26570543

Release outside loop 35894357 26533354

Although the evaluation shows that the auto-release of dependencies does
not achieve better performance than the manual version, it reveals two impor-
tant aspects: (1) the algorithm enhances the programmability of OmpSs-2 by
relieving the user from the need to release data dependencies manually; and (2)
the performance gain obtained with the automatic pass is obvious compared to
not using our technique. The fact that we do not obtain the same results as
perfectly releasing dependencies manually is because the implementation lacks
the last step: promoting release directives outside loops. However, the use of
this algorithm allows for existing kernels to benefit from the mechanism without
needing any modification in the source code.

Static Analysis to Enhance Programmability and Performance in OmpSs-2 31

6 Discussion

The algorithms presented in this work target the OmpSs-2 parallel program-
ming model. Nonetheless, some features introduced in OmpSs-2 already exist in
the OpenMP 5.0 specification. On the contrary, OpenMP 5.0 and the research
lines being conducted for future specifications also include some features to be
considered in these algorithms. Next we discuss all these features:

– The commutative clause in OmpSs-2 has been introduced in the OpenMP
5.0 specification as mutexinoutset. Both clauses has the same behavior.
This feature affects the proposed auto-scope algorithm when determining the
tasks that can be concurrent with a given task.

– The concurrent clause in OmpSs-2 has not yet been introduced in
OpenMP. However, the first preview for the future OpenMP specification 5.1
[14] includes the inoutset clause, which has the same behavior. This clause
affects the computation of concurrent tasks in the auto-scope algorithm.

– The release directive does not exist in OpenMP, so its behavior can not
yet be applied. However, there are other models, such as DepSpawn [9], that
also include this feature and could benefit from our analysis.

– OmpSs-2 forces parent tasks to cover the dependencies of children tasks with
either regular dependencies or weak dependencies to fulfill compliance. This
boosts the safety of OmpSs-2. For this reason, this restriction could be applied
to OpenMP if this model is to be used in critical real-time systems.

Overall, this paper introduces a series of compiler analysis for OmpSs-2 that
enhance its performance while improving its programmability. Furthermore, we
have shown how other programming models, specially OpenMP, could benefit
from this analysis. This work tackles the automatic scope of variables in task
constructs and the automatic release of task dependencies once these variables
are already computed. There are however other features that remain as a future
work, including the automatic definition of task, taskwait and taskloop depen-
dencies, and the analysis of detached tasks, i.e., tasks that detach the finalization
of task from the completion of the code included in the task, while attach it to the
occurrence of a given event. This feature, accomplished by means of the detach
clause in OpenMP, exists also in other models like StarPU [1] (by means of the
starpu task end dep release call), but is not included in OmpSs-2.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put. Pract. Exp. 23(2), 187–198 (2011)

2. Ayguadé, E., et al.: Extending OpenMP to survive the heterogeneous multi-core
era. Int. J. Parallel Program. 38(5–6), 440–459 (2010)

3. Barcelona Supercomputing Center: Mercurium. https://pm.bsc.es/mcxx
4. Barcelona Supercomputing Center: Nanos++. https://pm.bsc.es/nanox
5. Barcelona Supercomputing Center: Ompss-2. https://pm.bsc.es/ompss-2

https://pm.bsc.es/mcxx
https://pm.bsc.es/nanox
https://pm.bsc.es/ompss-2

32 A. Munera et al.

6. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

7. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett. 21(02), 173–193 (2011)

8. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: International Conference on Parallel Processing, pp. 124–131 (2009)

9. González, C.H., Fraguela, B.B.: A framework for argument-based task synchroniza-
tion with automatic detection of dependencies. Parallel Comput. 39(9), 475–489
(2013)

10. Kegel, P., Schellmann, M., Gorlatch, S.: Using OpenMP vs. threading building
blocks for medical imaging on multi-cores. In: Europar, pp. 654–665 (2009)

11. Lin, Y., Terboven, C., Mey, D., Copty, N.: Automatic scoping of variables in parallel
regions of an OpenMP program. In: Chapman, B.M. (ed.) WOMPAT 2004. LNCS,
vol. 3349, pp. 83–97. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31832-3 8

12. Martineau, M., McIntosh-Smith, S., Gaudin, W.: Evaluating OpenMP 4.0’s effec-
tiveness as a heterogeneous parallel programming model. In: International Parallel
and Distributed Processing Symposium Workshops, pp. 338–347 (2016)

13. OpenMP ARB: OpenMP Application Program Interface, version 5.0 (2018)
14. OpenMP ARB: OpenMP Technical Report 8: version 5.1 preview (2019)
15. Oracle: Oracle Solaris Studio 12.2: OpenMP API User’s Guide (2010). http://docs.

oracle.com/cd/E18659 01/html/821-1381/toc.html
16. Royuela, S.: High-level compiler analysis for OpenMP. Ph.D. thesis (2018)
17. Royuela, S., Duran, A., Liao, C., Quinlan, D.J.: Auto-scoping for OpenMP tasks.

In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 29–43. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30961-8 3

18. Royuela, S., Duran, A., Serrano, M.A., Quiñones, E., Martorell, X.: A functional
safety OpenMP∗ for critical real-time embedded systems. In: de Supinski, B.R.,
Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017.
LNCS, vol. 10468, pp. 231–245. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65578-9 16

19. Royuela, S., Ferrer, R., Caballero, D., Martorell, X.: Compiler analysis for OpenMP
tasks correctness. In: Computing Frontiers, pp. 1–8 (2015)

20. Royuela, S., Pinho, L.M., Quiñones, E.: Enabling Ada and OpenMP runtimes inter-
operability through template-based execution. J. Syst. Arch. 105, 101702 (2020)

21. Serrano, M.A., Royuela, S., Quiñones, E.: Towards an OpenMP specification for
critical real-time systems. In: International Workshop on OpenMP (2018)

22. Tagliavini, G., Cesarini, D., Marongiu, A.: Unleashing fine-grained parallelism on
embedded many-core accelerators with lightweight OpenMP tasking. Trans. Par-
allel Distrib. Syst. 29(9), 2150–2163 (2018)

23. Toledo, L., Peña, A.J., Catalán, S., Valero-Lara, P.: Tasking in accelerators: per-
formance evaluation. In: 20th International Conference on Parallel and Distributed
Computing, Applications and Technologies, pp. 127–132. IEEE (2019)

24. Varbanescu, A.L., Hijma, P., Van Nieuwpoort, R., Bal, H.: Towards an effective
unified programming model for many-cores. In: IPDPS, pp. 681–692. IEEE (2011)

25. Voss, M., Chiu, E., Chow, P.M.Y., Wong, C., Yuen, K.: An evaluation of auto-
scoping in OpenMP. In: Chapman, B.M. (ed.) WOMPAT 2004. LNCS, vol.
3349, pp. 98–109. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
31832-3 9

https://doi.org/10.1007/978-3-540-31832-3_8
https://doi.org/10.1007/978-3-540-31832-3_8
http://docs.oracle.com/cd/E18659_01/html/821-1381/toc.html
http://docs.oracle.com/cd/E18659_01/html/821-1381/toc.html
https://doi.org/10.1007/978-3-642-30961-8_3
https://doi.org/10.1007/978-3-642-30961-8_3
https://doi.org/10.1007/978-3-319-65578-9_16
https://doi.org/10.1007/978-3-319-65578-9_16
https://doi.org/10.1007/978-3-540-31832-3_9
https://doi.org/10.1007/978-3-540-31832-3_9

Static Analysis to Enhance Programmability and Performance in OmpSs-2 33

26. Wang, C.K., Chen, P.S.: Automatic scoping of task clauses for the OpenMP tasking
model. J. Supercomput. 71(3), 808–823 (2015)

27. Willhalm, T., Popovici, N.: Putting intel R© threading building blocks to work. In:
1st International Workshop on Multicore Software Engineering, pp. 3–4 (2008)

28. Yu, C., Royuela, S., Quiñones, E.: OpenMP to CUDA graphs: a compiler-based
transformation to enhance the programmability of NVIDIA devices. In: 23rd Inter-
national Workshop on Software & Compilers for Embedded Systems (2020)

Automatic Detection of MPI Assertions

Tim Jammer1,2(B), Christian Iwainsky1, and Christian Bischof2

1 Hessian Competence Center for High Performance Computing (HKHLR),
Darmstadt, Germany

{tim.jammer,christian.iwainsky}@tu-darmstadt.de
2 Department of Scientific Computing,

Technical University Darmstadt, 64283 Darmstadt, Germany
christian.bischof@tu-darmstadt.de

Abstract. The 2019 MPI standard draft specification includes the addi-
tion of defined communicator info hints. These hints are assertions that
an application makes to an MPI implementation, so that a more opti-
mized implementation is possible. The 2019 draft specifications defines
four assertions: mpi_assert_no_any_tag, mpi_assert_no_any_source,
mpi_assert_exact_length and mpi_assert_allow_overtaking. In this
paper we will explore the capability of a Clang/LLVM based static anal-
ysis to check whether these assertions hold for a given program. With
this tool, existing codebases can benefit from this new addition to the
MPI standard without the need for costly human intervention.

Keywords: MPI 4.0 · Static analysis · MPI communicator info

1 Introduction

The upcoming version 4.0 of the MPI standard includes many changes. In par-
ticular, “the largest changes are the addition of persistent collectives, application
info assertions, and improvements to the definitions of error handling” [10].

With the addition of defined application info assertions, it is possible to hint
that MPI is used in a certain way enabling the possibility of a more optimized
implementation; the allow_overtaking assertion is of particular interest. Using
this assertion, an application can notify an MPI implementation that its correct-
ness does not depend on the strict ordering of messages as described in section 3.5
of the standard [9]. If an application asserts that the overtaking of messages is
allowed, or cannot happen due to the use of different tags and synchronization,
an MPI implementation may entirely skip one of the costly phases of message
matching ensuring the order of messages is preserved [12]. As Dang et al. point
out [2], matching the messages in the correct order is especially costly in the
case of multithreaded MPI.

The no_any_tag and no_any_source assertions quite straightforwardly tell
an implementation that the MPI_ANY_TAG and MPI_ANY_SOURCE constants are
not used in receiving operations. This would enable specific optimizations in the
MPI library. The exact_length assertion tells that “the length [of] messages
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 34–42, 2020.
https://doi.org/10.1007/978-3-030-59851-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_3

Automatic Detection of MPI Assertions 35

received by the process are equal to the lengths of the corresponding receive
buffers” [10]. This does not mean the actual size of the buffer given to the
receive operation contains exactly the space indicated by the arguments for count
and datatype. This is already implied by the standard anyway and tools like
MUST [5,6] already check if the programmer made this specific error. Rather
the exact_length assertion tells an implementation that the size of the send
messages match the size of the receive operations buffers. The MPI standard
allows the sender to issue a send operation with less than the expected elements
by the matching receive operation (e.g.., five integers being sent and matched by
a receive operation for 20 integers). In this example, only the first 5 locations of
the 20 integer long buffer will be filled. The program can then use the MPI_Status
and MPI_Get_count to assess how many elements have actually been received.
As the standard writes: “In the case of a message shorter than the receive buffer,
MPI is quite strict in that it allows no modification of the other locations. A
more lenient statement would allow for some optimizations” [10]. Therefore, the
newly introduced assertion will allow for such optimizations.

As far as the MPI standard is concerned, it is up to the programmer to
decide whether or not such an assertion to the MPI implementation can be
used in a given program. In this paper, we present a compiler based tool that
automatically detects whether one of these assertions can be made safely. Using
this tool, an existing code base can benefit from the newly defined assertions,
without a costly human analysis of the code base to check if it is safe to specify
a given assertion.

Our work is not directly concerned with optimizing MPI applications.
Therefore, we do not consider numerous works regarding the optimization of
MPI applications (e.g., by overlapping computation and communication [1]) as
related. As our approach is more related to other work on the usage of static
analysis for MPI programs (like [4,7,8,11]). These work is mostly focused on
detecting programming errors made by an application engineer and therefore
facilitate a correct usage of MPI. In contrast, our work does not focus on correct
MPI usage by the programmer1, but support developers in the possibility to
utilize a more optimized MPI implementation by specifying additional optional
assertions.

Apart from that there is lots of work to optimize MPI Applications, for
example by overlapping computation and communication (like [1]). But in our
work, we do not change the application. Rather we check if a certain condition
hold for a given application. An applications for which these assertions hold may
then utilize a more optimized implementation.

In the next section, we will explain our tool’s static analysis approach for
deciding if the newly defined assertions hold. In Sect. 3, we discuss the feasibility
and shortcomings of our approach, summarize in Sect. 4 and provide an outlook
on possible future work.

1 We assume the use of MPI in an application to be correct.

36 T. Jammer et al.

2 Analysis Approach

To analyze whether or not an application can be augmented with an assertion
to the MPI library, we developed an LLVM compiler pass to statically analyze
the program at compile time. Currently we restrict ourselves to C and C++
applications using the Clang compiler. As the analysis operates on the LLVM
intermediate representation, our approach should be transferable to other LLVM
input languages. This explicitly includes Fortran, once a stable version of flang
is available in later LLVM versions.

Our analysis assumes that the input program is fully standard compliant and
deadlock-free. Otherwise, the assumptions made during the analysis might not
hold.

Section 2.1 covers the analysis of the allow_overtaking assertion, while
Sect. 2.2 covers the exact_length assertion.

We skip a detailed description of the analysis for the no_any_tag and
no_any_source assertions. It is quite trivial to check for constant values during
compilation. Hence, if the analysis does not detect any MPI_ANY_SOURCE and
MPI_ANY_TAG used in MPI operations, the corresponding assertion can be used.

Our Analysis is interprocedural, but currently limited to the scope of one
object file2. Therefore, if a function from another object file is called that is
neither part of the standard library nor MPI itself, our pass will state that it is
not safe to use any of the assertions.

2.1 allow_overtaking Assertion

To detect if the allow_overtaking assertion can be specified, our pass analyzes
all occasions where a message is sent and checks if it could conflict with other
sent messages in regards to these messages not overtaking each other.

Conflicting Send Operations. A send operation is considered conflict-free,
if there is no other send operation (a) with the same communicator and (b)
message tag (c) to the same target. Furthermore, it is considered conflict free, if
a send operation with matching communicator, tag and target is (d) not on the
same codepath or (e) separated by a synchronization of the processes.

Conditions a, b and c can in many cases be checked statically (e.g., the used
message tag is different). In order to get the best results for this analysis, it
is important to use an optimization level that includes constant propagation.
Hence, the analysis pass we developed should be executed after all other LLVM
optimization passes. Our tool will only consider the message tag, target process
or the used communicator to be different, if a difference can be statically proven.
For this purpose it is not necessary, that the exact value can be computed stat-
ically in a particular case. In many cases a data-flow- and dependency-analysis
can show that there will be a difference in the value at any time during the

2 Refer to Sect. 4 for ideas on how to overcome this shortcoming.

Automatic Detection of MPI Assertions 37

program’s execution. For example, it is sometimes possible to prove that the
message tag of a send operation is different in each loop iteration and this oper-
ation can therefore not conflict with itself. This analysis, which is the base for
several well known compiler optimizations like loop transformations, is done by
the LLVM tool-chain through the ScalarEvolution analysis pass.

If a unique message envelope cannot be detected statically, two send oper-
ations will be marked as conflicting, although in the actual execution of the
program they might still be conflict free. We will discuss an example of this case
in Sect. 3.

For condition d, our pass will check if there exist any code path (i.e. a path
in the control-flow graph) between the two operations.

Synchronization. Finally, our LLVM pass tries to prove that on all possi-
ble codepaths between two send operations there is a process synchronization
(condition e). In the case of a barrier, i.e. when a sending process exits the
barrier, the analysis can assume that the target has successfully posted a match-
ing receive operation; otherwise, the program is erroneous, due to the possibil-
ity of a deadlock. Therefore, the analysis can assume due to our requirement
of deadlock-freeness that a matching receive has completed on the target pro-
cess. As the other process also reached the synchronization point, all other open
receive operation have been completed up to that point, unless it is implemented
as a non-blocking operation, which we discuss in the next paragraph. By assum-
ing the receive operation has completed at the synchronization point, the analysis
can safely assure that no overtaking is possible between a message sent before
the synchronization and after the synchronization.

The MPI standard mandates that we may not draw any conclusion about
the execution state of another processes from other collective operations apart
from the completion of the barrier. (see section 5.13 of the MPI standard [9])
However, the use of an MPI_Allreduce implies a barrier-like synchronization.
This implicit barrier is not implied by the MPI standard in any way, rather it
results of the required data flow for the allreduce operation. A program cannot
have the result of an allreduce operation available, unless all processes have
entered it.

Of course, a synchronization as explained above only prevents a conflict, if it
uses the same communicator as the conflicting messages. Otherwise the analysis
cannot draw any conclusion on the receiving processes status.

When considering Rsend or Ssend, we know by definition that the corre-
sponding receive has started.3 Therefore, it is not possible that the next message
send will overtake and wrongfully match the receive operation currently active.

Non-blocking Operations. For Isend and Bsend, a synchronization only pre-
vents a conflict if the operation completed locally using either MPI_Wait or
3 The particular differences between Rsend and Ssend are not important for this con-

sideration. Important is that when either of those operations successfully finishes,
we can conclude that the matching receive has started on the target process.

38 T. Jammer et al.

MPI_Buffer_detach, respectively4. This holds, as our analysis only covers pro-
grams that are deadlock-free, according to the standard. If the receiving process
has not posted the matching receive when all processes synchronize, a deadlock
might occur.

For non-blocking collectives, at the point when the collective completes, as
indicated by the use of MPI_Wait, the analysis can consider the processes syn-
chronized, implying that the matching receive has to have been posted by that
point.

If an application uses MPI_Irecv, we additionally have to check the assump-
tion that a receive operation has finished when a synchronization takes place. To
this end, we analyze if the scope where a non-blocking receive operation may be
active does not cross a synchronization point. This means that we have to check
if an Irecv operation is issued before a synchronization and if the matching
Wait is issued after the synchronization. To take these cases into account, our
tool also analyzes whether the receive operations are conflict free in the same
manner as explained earlier for the send operations (conditions a-e).

There is no need for special considerations when applying our tool to a mul-
tithreaded program. If two threads send a message, the standard does not man-
date that there is a defined order between these messages. (see Sect. 3.5 of the
MPI standard [9]) Hence, if the assertion allows for messages to overtake each
other, this does not have an effect on a correct program, as the order of these
two operations was not defined in the first place. The standard only guarantees
that messages sent by one thread will be received in that order by the other
process. Therefore the considerations taken for the single-threaded program are
also sufficient for a multi-threaded program.

2.2 exact_length Assertion

In our opinion it is a good programming practice to distinguish messages with
different length by the use of different message tags, in order to avoid program-
ming mistakes that may accidentally match a longer message to a shorter receive
buffer. Hence, we group the communication operations by the used message tag
for our analysis. All messages with a non-constant message tag will be grouped
in the same group. If a receive specifies MPI_ANY_TAG it matches to all message
tags, meaning that it is considered part of every group.

The exact_length assertion can safely be specified, if the length of all send-
ing and all receiving operation is identical within each group. Otherwise the
assertion still could hold, but this is not assertable by our approach using only
static analysis. We implemented this analysis as a proof of concept in our LLVM
pass, knowing that its use is currently limited and that a more refined approach
is desirable. Such an approach could leverage synchronization points and code

4 Currently we have not implemented coverage for the Ibsend operation, but the
implementation would in principle be the same with the difference that both an
MPI_Wait and a following MPI_Buffer_detach is required for the operation to be
considered locally complete.

Automatic Detection of MPI Assertions 39

structure to further segregate the message-size groups into fine grained group-
ings. Messages split by a synchronization point, are not required to have the
same size when using the same message tag.

3 Evaluation

We have tested our developed Clang pass using 48 different small MPI programs5
designed for this purpose. As the detection for no_any_tag and no_any_source
is trivial constant-matching extensive tests are not necessary - the compiler with
its pre-implemented analyzes does the work here. For the exact_length asser-
tion, we validated using our test suite and did not observe any issues. As this
analysis is conservative, we might miss opportunities where this assertion might
be used, but the correctness of the implementation was shown to be ok. As the
analysis of the allow_overtaking assertion required more program logic and is
more complex, we will focus the evaluation on this aspect.

The test cases where written in order to test the design aspects of our analysis.
This means we designed them from scratch as white box tests for our implemen-
tation. We also included several different implementations of a mini-app alike
2D-stencil code calculating heat dispersion. This more elaborate example orig-
inated from teaching of MPI programming. In order to meaningfully evaluate
our implementation with other mini-apps, one has to manually do extensive and
rigorous checking if the assertions can be specified for the respective code. As
this can be error-prone and comes with a huge effort, we stick to this well known
teaching example. Nevertheless, this example will illustrate the feasibility and
shortcomings of our approach.

For roughly 60% of the test cases, it is not safe to specify the
allow_overtaking assertion. Of these cases, our tool detected all cases where
it was not safe to use the assertion.

1 switch (rank) {
2 case 0:
3 MPI_Recv(/*from rank 1*/);
4 MPI_Ibarrier(MPI_COMM_WORLD , &bar_req);
5 MPI_Wait (&bar_req , MPI_STATUS_IGNORE);
6 MPI_Recv(/*from rank 1*/);
7 break;
8 case 1:
9 MPI_Ibarrier(MPI_COMM_WORLD , &bar_req);

10 MPI_Send(/*to rank 0*/);
11 MPI_Wait (&bar_req , MPI_STATUS_IGNORE);
12 MPI_Send(/*to rank 0*/);
13 break;
14 }

Listing 1.1. Exemplary test case with the Ibarrier, where our pass could not prove,
that no overtaking of the messages is possible.

5 Available together with the source code of the analysis tool.

40 T. Jammer et al.

There were, however, some similar cases involving an overlap of communica-
tion and synchronization, where our approach could not detect that there is no
possibility for the involved messages to overtake. One example is shown in List-
ing 1.1. The messages sent by rank 1 can never overtake each other in this case,
but our approach cannot show at compile time that the send operation in line 10
can never overtake the message sent in line 12. This is due to the use of blocking
send/receive in the time between an asynchronous barrier and its corresponding
wait. With logical inference, we can conclude that the receive of rank 0 must
have completed, for the barrier to complete. However, our current implemen-
tation cannot draw such conclusions. It must, according to our current design,
consider the send of rank 1 to be part of both the pre-barrier and post-barrier
communication region. And, as it conflicts in the post-barrier region, it must
consider a potential overtaking and advice against using the allow_overtaking
assertion. Further research may enable to draw such conclusions, but currently
we accept the conservative limitation of our current approach.

Another case, where our tool could not detect that the allow_overtaking
assertion could be specified, occurs when each process communicates with its
predecessor and successor in a ring-like fashion. This means, that for this com-
munication scheme rank 0 is the successor of rank n− 1. In this case, the short-
coming of our static approach cannot prove at compile time, that the predecessor
and successor are different. After all, the program could be called with only two
MPI ranks. This is not a shortcoming of our implementation, as with only two
ranks the predecessor and successor are the same, meaning that it is indeed pos-
sible that the message sent to the next rank will overtake the message to the
previous rank in this case. Using different message tags for forward and backward
communication mitigates this problem.

In the more complex example of a 2D-stencil code, our tool detects that all
assertions could be specified, if different message tags are used for the different
iterations. If the same message tag is used for all iterations, our tool rightfully
concludes that the allow_overtaking assertion could indeed not be specified,
because the order of messages must match the order of iterations as a message
from one iteration should not match to a receive in the next iteration.6 This is
a classic case of a loop driven dependency [3].

Besides the functional aspects, we tested the overhead our analysis con-
tributes to the compilation time with our elaborate mini-app alike example with
about 400 lines of code using Clang’s -ftime-report option. As Clang reports
that our analysis pass requires only 0.3% (0.0014 s) of the total execution time for
all LLVM passes executed on optimization level -O2, we consider the overhead
of our pass to be negligible when other optimizations are applied.

6 Splitting the iteration with a synchronization is also possible but only introduces
unnecessary synchronization overhead in this case.

Automatic Detection of MPI Assertions 41

4 Conclusion

MPI 4.0 offers (in its current draft [10]) new assertions enabling aggressive opti-
mizations by the MPI library: the allow_overtaking and no_any_tag as well
as no_any_source and exact_length assertions. However, in order to specify
those users must analyze their code to ascertain if the requirements for those
are met. We present an LLVM compiler-pass that can statically check program
properties and provide feedback to the user for those assertions. While our anal-
ysis can provide perfect feedback for no_any_tag and no_any_source, feedback
for allow_overtaking and exact_length depends on the properties of the pro-
gram. With allow_overtaking and exact_length our analysis does not detect
all cases where it is possible, but when it infers that the use of those assertions is
possible, this is correct. Especially the analysis for overtaking messages is com-
plex and relies on detailed understanding of the semantics of MPI send, receive
and collective operations. Evaluating the resulting tool, available at https://
github.com/tudasc/mach, on a custom set of test-codes showed no observable
deficiencies. In summary, we provided a first step to lower the burden of manual
analysis and therefore facilitate the usage of those assertions.

Using a Clang optimization pass, we will extend the analysis pass to auto-
matically insert the assertions into the code. Therefore, our tool can be viewed
as a compiler optimization that in some cases can optimize the use of the MPI
library.

In the future we plan to address the main drawback of our current imple-
mentation, i.e. its limitation to a single object file. Besides the usage of a whole
program representation, an annotation whether an assertion holds for a function
will facilitate such an analysis with multiple object files. Additionally, one can
also limit the scope of the assertion to one object file, by duplicating the used
MPI communicator7 and only specify the assertions to the duplicated communi-
cator, while replacing all uses of the original communicator with its duplicate. In
the future, we also want to further refine our analysis (e.g., to also incorporate
the usage of MPI_Probe).

An empirical analysis of the performance gained in real applications is
planned, once MPI implementations have incorporated the usage of the pro-
posed assertions and exploited the expected performance benefits. When we
know about the actual performance gain, it is possible to determine if there is
a trade-off in performance, if one changes the application in order to allow the
specification of an assertion (e.g., use different message tags), or if such a change
would lead to less overall performance. With these data we plan to extend our
tool to give the programmer guidance on how to change an application so that
the assertions hold, in order to facilitate the expected performance gains.

Acknowledgements. This work was supported by the Hessian Ministry for Higher
Education, Research and the Arts through the Hessian Competence Center for High-
Performance Computing. We want to thank the anonymous reviewer for their sugges-
tion to address the current limitation of our tool by duplicating the MPI communicator.
7 Using MPI_Comm_dup_with_info.

https://github.com/tudasc/mach
https://github.com/tudasc/mach

42 T. Jammer et al.

References

1. Danalis, A., Pollock, L., Swany, M., Cavazos, J.: MPI-aware compiler optimizations
for improving communication-computation overlap. In: Proceedings of the 23rd
International Conference on Supercomputing, pp. 316–325 (2009)

2. Dang, H.V., Snir, M., Gropp, W.: Towards millions of communicating threads. In:
Proceedings of the 23rd European MPI Users’ Group Meeting, pp. 1–14 (2016)

3. Dowd, K., Severance, C.: High performance computing (2010). http://cnx.org/
content/col11136/1.5

4. Droste, A., Kuhn, M., Ludwig, T.: MPI-checker: static analysis for MPI. In: Pro-
ceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
pp. 1–10 (2015)

5. Hilbrich, T., Schulz, M., de Supinski, B.R., Müller, M.S.: MUST: a scalable app-
roach to runtime error detection in MPI programs. In: Müller, M., Resch, M.,
Schulz, A., Nagel, W. (eds.) Tools for High Performance Computing 2009, pp.
53–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11261-4_5

6. Hück, A., et al.: Compiler-aided type tracking for correctness checking of MPI
applications. In: 2018 IEEE/ACM 2nd International Workshop on Software Cor-
rectness for HPC Applications (Correctness), pp. 51–58. IEEE (2018)

7. Jaeger, J., Saillard, E., Carribault, P., Barthou, D.: Correctness analysis of MPI-3
Non-blocking communications in PARCOACH. In: Proceedings of the 22nd Euro-
pean MPI Users’ Group Meeting, pp. 1–2 (2015)

8. Luecke, G., Chen, H., Coyle, J., Hoekstra, J., Kraeva, M., Zou, Y.: MPI-CHECK: a
tool for checking Fortran 90 MPI programs. Concurr. Comput. Pract. Exp. 15(2),
93–100 (2003)

9. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 3.1 (2015). https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

10. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
2019 Draft Specification (2019). https://www.mpi-forum.org/docs/drafts/mpi-
2019-draft-report.pdf

11. Saillard, E., Carribault, P., Barthou, D.: PARCOACH: combining static and
dynamic validation of MPI collective communications. Int. J. High Perform. Com-
put. Appl. 28(4), 425–434 (2014)

12. Schonbein, W., Dosanjh, M.G.F., Grant, R.E., Bridges, P.G.: Measuring multi-
threaded message matching misery. In: Aldinucci, M., Padovani, L., Torquati, M.
(eds.) Euro-Par 2018. LNCS, vol. 11014, pp. 480–491. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96983-1_34

http://cnx.org/content/col11136/1.5
http://cnx.org/content/col11136/1.5
https://doi.org/10.1007/978-3-642-11261-4_5
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/drafts/mpi-2019-draft-report.pdf
https://www.mpi-forum.org/docs/drafts/mpi-2019-draft-report.pdf
https://doi.org/10.1007/978-3-319-96983-1_34

Automatic Code Motion to Extend MPI
Nonblocking Overlap Window

Van Man Nguyen1,2,3,4(B), Emmanuelle Saillard2, Julien Jaeger1,3,
Denis Barthou2,4, and Patrick Carribault1,3

1 CEA, DAM, DIF, 91297 Arpajon, France
{van-man.nguyen.ocre,julien.jaeger,patrick.carribault}@cea.fr

2 Inria, Bordeaux, France
{van-man.nguyen,emmanuelle.saillard,denis.barthou}@inria.fr

3 Laboratoire en Informatique Haute Performance pour le Calcul et la simulation,
Bruyères-le-Châtel, France

4 Bordeaux Institute of Technology, University of Bordeaux, LaBRI,
Bordeaux, France

Abstract. HPC applications rely on a distributed-memory parallel pro-
gramming model to improve the overall execution time. This leads to
spawning multiple processes that need to communicate with each other
to make the code progress. But these communications involve overheads
caused by network latencies or synchronizations between processes. One
possible approach to reduce those overheads is to overlap communica-
tions with computations. MPI allows this solution through its nonblock-
ing communication mode: a nonblocking communication is composed of
an initialization and a completion call. It is then possible to overlap the
communication by inserting computations between these two calls. The
use of nonblocking collective calls is however still marginal and adds a
new layer of complexity. In this paper we propose an automatic static
optimization that (i) transforms blocking MPI communications into their
nonblocking counterparts and (ii) performs extensive code motion to
increase the size of overlapping intervals between initialization and com-
pletion calls. Our method is implemented in LLVM as a compilation pass,
and shows promising results on two mini applications.

Keywords: Static optimization · Message Passing Interface ·
Nonblocking communications

1 Introduction

HPC applications (e.g., simulations) run on clusters which sport a mix of shared-
and distributed-memory architecture. In this context, the computations are
spread over multiple NUMA (non-uniform memory access) nodes that are inter-
connected using a high speed network. Thus the application needs to perform
communications between those nodes to carry out the simulation. However the
communications can introduce overheads due to idle times, either because a
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 43–54, 2020.
https://doi.org/10.1007/978-3-030-59851-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_4

44 V. M. Nguyen et al.

process is waiting for data another process must send, or because processes not
progressing at the same speed must synchronize. The time waiting on commu-
nications is not being spent on progressing the computation. A possible opti-
mization would be to leverage these waiting times by performing computations
independent of the communications.

The Message Passing Interface (MPI) defines multiple functions to perform
communications over such distributed architectures. Among these operations,
the nonblocking ones allow communications to asynchronously progress, thus
enabling the overlap of communications by computations. Nonblocking commu-
nications are split into 2 distinct calls, one that initializes the exchange, and one
that waits for its completion. To achieve overlapping, we have to insert com-
putations, that are independent of the communications, between those calls so
they can be performed while the communications are ongoing.

The use of nonblocking collective communications is however marginal. Many
legacy codes still prefer blocking communications and the nonblocking form
introduces a new complexity: it is up to the developer to make sure that the
code does not have any race condition. As statements can be inserted and
executed while the communication is ongoing, they can have an influence on
the communication buffers. Many prior works proposed techniques to increase
overlapping time by looking for specific patterns of code architecture such as
producer-consumer loops or by performing basic code motion. In this paper we
propose an automatic optimization that transforms blocking MPI calls into their
nonblocking counterparts and that optimizes their overlapping potential through
extensive code motion. Our contributions are the following:

– Automatic transformation of blocking MPI calls into their nonblocking mode.
– Increase of overlapping possibilities by performing extensive code motion to

move apart data dependencies.
– Implementation using a state-of-the-art and widespread compilation frame-

work (LLVM).

Section 2 presents related work on the use of nonblocking communications in
optimizing HPC applications. Section 3 introduces a simple motivating example.
Section 4 describes the optimization pass and finally, its implementation and the
results are the subject of Sect. 5.

2 Related Work

2.1 Asynchronous Communications in Scientific Applications

Many applications rely on nonblocking communications to improve performance
on large-scale clusters. But code developers usually perform manual transforma-
tions and major redesign of widely-used algorithms to demonstrate the advan-
tages of such nonblocking calls by reducing communication overheads.

Clement et al. proposed a sorting algorithm suited for distributed architec-
tures [2]. The algorithm is an adaptation of a partition-based sorting algorithm

Automatic Code Motion to Extend MPI Nonblocking Overlap Window 45

that leverages nonblocking calls in order to overlap communications with com-
putations. Although their solution shows potential, it requires balance between
the read and write, network, and computing times.

Similarly Kandalla et al. implemented the Breadth First Search algorithm
with nonblocking neighborhood MPI collective communications [11]. Even if
they show a communication overhead improvement up to 70%, the execution
time does not improve and sometimes degrades. This might be caused by the
additional operations that are needed to partition the problem.

Manually inserting testing points inside the overlapping window, such as calls
to the MPI Test function, is an approach taken by some developers to enforce the
progression of asynchronous communications. Hoefler et al. used this solution to
propose an optimization of a conjugate gradient solver [9] using LibNBC [10], a
custom library which implements MPI nonblocking collective communications.
Song et al. developed an algorithm for the 3D Fast Fourier Transform using
nonblocking MPI collectives, and pushed this approach further by automatically
determining a set of parameters, including the frequency of calls to MPI Test,
in order to achieve performance [14].

2.2 Automatic Transformation of MPI Codes

On the topic of automatic transformations for MPI, Danalis et al. described
communication-computation overlapping possibilities including the transforma-
tion of blocking calls into their nonblocking counterparts, the decomposition of
collective calls into point-to-point ones, the application of code motion, vari-
able cloning, and loop tiling and fission to increase the overlapping window [4].
ASPhALT implements a subset of those optimizations using the open64 source-
to-source compiler [3]. It aims at optimizing producer-consumer loops by per-
forming prepush transformations, meaning that it will try to send the data as
soon as it is generated so that consumer computation can be performed while
the next chunk of data is being produced. The producer-consumer loop is par-
titioned with an arbitrary size to control the amount of data that is generated,
shared and computed.

Guo et al. showed how to improve this approach by adding a performance
analytical model of the application [7]. With the help of user-added annotations,
it predicts performance and decides when the transformation of blocking calls
into nonblocking ones becomes worthy. The transformation itself and the code
motion are still manually done.

Das et al. proposed an approach based on a Wait Graph to sink the comple-
tion call of nonblocking communications [5], that is to move it at a later point
in the execution. This graph contains information about the control and data
flow, enabling them to sink the wait call to the nearest statement that uses a
communication buffer.

Petal [1] is a compiler pass implemented within the ROSE [13] compiler that
also sinks completion calls to the nearest dependency point. Ahmed et al. used an
alias analysis to detect whether a statement uses a communication buffer. Their

46 V. M. Nguyen et al.

method transforms nonblocking communications into persistent communications
when they are nested inside a loop.

Prior work on the transformation of MPI codes to expose communication-
computation overlap possibilities has been mostly focused on a specific scenario
such as producer-consumer loops. The attempts at widening the overlap frame
have been limited by the nearest sensitive statement. In this paper we propose
a solution that performs extensive code transformation and motion so that the
size of the overlapping window can be significantly increased.

3 Motivating Example

This section illustrates how our work transforms MPI codes to increase the
possibilities of overlapping communications with computations.

1 MPI_Alltoall(d1, sendcount , MPI_BYTE , d2,

2 recvcount , MPI_BYTE , MPI_COMM_WORLD);

3 matrix_multiply(a, b, res , matrix_size);

4 touch(d1);

5 matrix_multiply(a2, b2, res2 , matrix_size);

Listing 1.1: Basic example

The alltoall communication at line 1 in Listing 1.1 is blocking. Every MPI
process that is involved in the communication has to wait at that statement until
their input communication buffers (d1) become available again, and until their
output communication buffers (d2) have received the data from other MPI pro-
cesses. A possible improvement in this context would be to translate that block-
ing alltoall call into nonblocking calls with an initialization (MPI Ialltoall)
and a completion (MPI Wait). We can now move the completion call beyond the
first matrix computation, as it is not involved in the communication, and before
the function call that accesses the d1 communication buffer.

1 MPI_Request req;

2 MPI_Ialltoall(d1, sendcount , MPI_BYTE , d2 ,

3 recvcount , MPI_BYTE , MPI_COMM_WORLD , &req);

4 matrix_multiply(a, b, res , matrix_size);

5 MPI_Wait (&req , MPI_STATUS_IGNORE)

6 touch(d1);

7 matrix_multiply(a2, b2, res2 , matrix_size);

Listing 1.2: Optimized version of Listing 1.1

In prior work, the calls would be hoisted or sunk to the first statement that
reads or writes to a communication buffer, depending on the call, as presented in
Listing 1.2. However there are statements beyond the first dependency that are
independent of the MPI call. Moving those statements along with the nonblock-
ing call will further increase the overlapping window. Applied to the previous

Automatic Code Motion to Extend MPI Nonblocking Overlap Window 47

example, it results in the code in Listing 1.3. In this paper we propose a method
to perform such code motion to increase the possibilities of overlapping commu-
nications with computations by identifying such boundaries and by displacing
them further. In the previous code snippet, the completion and the touch calls
are moved beyond the second matrix computation as well, leading to a wider
overlapping window.

1 MPI_Request req;

2 MPI_Ialltoall(d1, sendcount , MPI_BYTE , d2,

3 recvcount , MPI_BYTE , MPI_COMM_WORLD , &req);

4 matrix_multiply(a, b, res , matrix_size);

5 matrix_multiply(a2, b2, res2 , matrix_size);

6 MPI_Wait (&req , MPI_STATUS_IGNORE)

7 touch(d1);

Listing 1.3: Optimized version of Listing 1.1 with extensive code motion

4 Maximizing Communication-Computation Overlap

As defined in the standard, a nonblocking MPI communication is composed of
two calls: an initialization and a completion call. This form enables the overlap
of communications with computations by inserting statements between these
two calls. In order to avoid race conditions, those statements should not modify
the communication buffers. As suggested by prior work, it is possible to per-
form multiple code transformations such as loop fission or sinking the wait to
the nearest dependent statement to enlarge the overlapping frame. To go one
step further, we propose to move not only the initialization call but also the
statements that contribute to the values used in this call, and the same for the
completion call and the statements that depend on it. Defining these backward
and forward slices [15] of computations associated to the MPI calls, and their
insertion points, is the heart of our contribution in order to increase the size of
the overlapping window.

4.1 Finding Slices and Insertion Point

The principle of the method is to automatically determine for any data-exchange
based point-to-point and collective MPI call all statements that it depends on
(the backward slice for that call) and all statements that depend on it (the
forward slice). These slices correspond to a sequence of statements connected by
dependencies. In this work, the scope of these slices is limited to statements that
are in the same control-flow structure: same function, same loop and same if-
then-else construct. To find the slices and the insertion points, we specifically rely
on the Control-Flow Graph (CFG) of the function. It is a directed graph where
the vertices are basic blocks (BB). A basic block is a sequence of instructions
(or statements) that have to be executed in a specific order. When the first
instruction of a given BB has been executed, then the following instructions in
that BB must be executed in that order. One can only enter a BB through its

48 V. M. Nguyen et al.

first instruction, and leave it through its last. The edges are the execution paths
between the basic blocks.

For every point-to-point and collective communication, we consider their
communication buffers and we iteratively build their backward slice. Starting
from the MPI call, the CFG is backwardly visited and each statement that
belongs to the use-def or def-use chains of the MPI call is collected. Each state-
ment that uses or defines a communication buffer and all statements that it
depends on are taken into account. Thus, those chains are iteratively scanned,
allowing the slice to capture indirect dependencies as well. The iterative method
stops when leaving the if-then-else, for loop, or function, surrounding the MPI
call, or when the next statement to put in the list is in another control structure.
The collected sequence of statements correspond to the backward slice, and the
place in the CFG where the iterative method stops to the insertion point for
this slice and for the initialization call. The same applies for the forward slice,
moving forward in the CFG from the MPI call.

Algorithm 1 describes this code transformation for MPI communications, for
the specific case of the initialization call insertion.

First, we build the backward slice of the call. In order to walk through the
CFG from statement to statement, we extend the notion of dominance and post-
dominance from BB to statements. A statement s1 dominates a statement s2 if
s1 belongs to a BB dominating the BB of s2, or if s1 precedes s2 in the sequence
of a BB.

We stop iterating over the statements once a suitable insertion point has
been found for the initialization call. If needed, we allocate a new MPI Request
and create a new call site that will initialize the communication. That new
nonblocking call site will use the same argument list as the blocking version, at
which we append the request. Those newly created instructions are added at the
insertion point. The correctness of an insertion point for the initialization call is
defined by the function stmt immovable init, and described in Sect. 4.2.

We operate the same way for the completion call by visiting the subsequent
statements, starting at the MPI call site. Once we find a suitable insertion
point for the completion call, we insert the MPI Wait() call, using the MPI -
Request that has been created for the corresponding initialization call, or the
MPI Request from the pre-existing nonblocking communication, as its argument.

Finally, the original blocking call is removed from the function. If the com-
munication was already nonblocking, then the original call is simply moved to
the first insertion point.

Automatic Code Motion to Extend MPI Nonblocking Overlap Window 49

Algorithm 1. Finding an insertion point for the initialization call
procedure insert mpi init call(function)

Require: List of MPI communications called in function
Ensure: MPI nonblocking init calls are inserted along with their dependencies at valid

locations.
for all mpi call ∈ function do

list stmt init ← ∅
V ← get dependencies(mpi call) � Build the list of statements upon which

the MPI call depends using use-def and def-use chains.
stmt ← mpi call.get stmt()
while stmt immovable init(stmt, mpi call.get stmt(), V) = false do

stmt ← immediate dominator(stmt)
if stmt ∈ V then

list stmt init ← list stmt init ∪ {stmt}
insert init ← stmt
Move statements from list stmt init to the point of the code where stmt is

the immediate dominator, and insert the init call

procedure stmt immovable init(stmt, call stmt, V)
Ensure: True if stmt is a valid insertion point

if stmt is the first statement of the function then return true
for all tstmt between stmt and its immediate dominator do

if tstmt ∈ V then return true

if call stmt is between stmt and its immediate post-dominator then return true

if stmt is a MPI procedure and stmt �= call stmt then return true
return false

4.2 Defining a Suitable Insertion Point

For each MPI communication, the insertion point for the initialization or the
completion call is the statement after which we will move the initialization,
or before which we will move the completion call. The specific case for the
initialization is displayed in the stmt immovable init function of Algorithm1.

A statement is an insertion point if:

– The statement is the first statement of the current function.
– There is a control flow dependency.
– The statement is an MPI call. This constraint prevents from undoing previous

transformations and from having different sequences of MPI collective calls,
while allowing multiple pending nonblocking calls. Moreover according to the
standard, it is not allowed to execute MPI functions beyond the boundaries
defined by calls such as MPI Init and MPI Finalize.

In the literature another condition would also be a suitable insertion point:

– There is a data dependency between the call and the current statement.

This condition is limiting the size of the overlapping interval. While it is
necessary to not overlap such data dependencies to keep the correctness of the

50 V. M. Nguyen et al.

program, other statements beyond this first dependency might be completely
independent of the MPI call. In such case it can be useful to not stop at this
first data dependency, and to add it to the list of statements that will be moved
around, along with the insertion of the initialization or the completion calls when
a stronger condition is reached.

This limitation is the reason why this condition is not taken into account in
our work. In the following section, we will describe how we deal with such data
dependencies.

4.3 Displacing the Dependencies to Achieve Overlap

While traversing the CFG, we visit every statement until a valid insertion point,
defined in Sect. 4.2, is found either by going from immediate dominator to imme-
diate dominator as shown in Algorithm 1 for the initialization, or by going from
immediate postdominator to immediate postdominator for the completion call.
In the meantime, every visited statement that belongs to the slice, thus every vis-
ited statement that use or define an argument of the MPI call, will be enqueued
rather than being considered as an insertion point, as explained in the previ-
ous section. Those statements will need to be moved to the insertion location
to keep the dependencies and to prevent race conditions that could be caused
by the introduction of nonblocking communications. A queue is used to store
those statements to ensure that the order in which they were visited can be
reproduced.

When a suitable insertion point has been found for the initialization or com-
pletion call, we dequeue the instructions at that location while ensuring that
the execution order of those statements is kept. In the case of the initialization
call, the newly created MPI Request (if necessary), and the nonblocking call are
inserted after dequeuing all the dependent statements. In the case of the com-
pletion call, the call is inserted before dequeuing the other statements. This way,
the order between the dependencies is kept.

5 Implementation and Experimental Results

5.1 Implementation Using LLVM

Algorithm 1 is implemented as a compilation pass in the LLVM compiler [12]:
the code is represented as an intermediate representation (IR) which allows us
to be completely independent of the source language. The only language-related
information we need to consider is the representation of the MPI calls in the
parsed language, to be able to correctly capture them. LLVM defines many
analysis passes whose results can be reused in other optimizations and user-
defined passes. These passes provide us the list of loops, the dominator and
post-dominator trees for a given function, and the use-def and def-use chains of
each value. The pass is applied on selected files of an MPI application using the
LLVM opt tool.

Automatic Code Motion to Extend MPI Nonblocking Overlap Window 51

5.2 Experimental Results

All measurements are performed on a supercomputer based on Intel Sandybridge
processors. This partition is composed of 3,360 cores, each one having 4,000
Mo of memory, distributed over 210 nodes. The nodes are interconnected using
infiniBand. We used the OpenMPI installed by default on this environment,
which is based on version 2.0.4.

Our method is evaluated by measuring the duration of each newly created
overlapping window for the motivating example presented in Listing 1.1 and for
two mini applications from the Mantevo project [8]: miniMD and miniFE. For
blocking calls that have been transformed into their nonblocking form we insert
the time measurement functions immediately below the initialization and above
its associated completion call: we measure the execution time of the statements
that are inside the overlapping window. For example in Listing 1.3, the first
reading would be placed after the MPI Ialltoall between lines 3 and 4, and the
second before the MPI Wait between lines 5 and 6, thus measuring the duration
taken by the two matrix computations that makes the overlapping window up.

All results are collected per process and averaged. We measure the effec-
tiveness of our method by comparing non-iterative transformations (related
work, denoted as basic) with extensive code motion (our method, denoted as
extended). A wide overlapping window means a communication–computation
overlap possibility.

Each version of all the codes was run to ensure numerical results remained
valid with each transformation.

The example in Listing 1.1 is a slightly modified version of a benchmark
designed to measure the performance of nonblocking MPI calls, specifically their
ability to asynchronously progress communications [6]. This example helps verify
the correctness and performance of the transformations. The matrix size in the
matrix multiply call is set so that the function takes a user-defined duration
to complete, 2,500µs in our runs.

Our optimization pass successfully translated the blocking alltoall call into
its nonblocking counterparts and the completion call was sunk below the second
matrix computation. Table 1 shows the duration of the overlapping window mea-
sured for Listings 1.2 and 1.3. The result confirms what we statically observed
on the IR with an overlapping window of 4,803µs, which roughly corresponds to
the overlapping of both matrix computations when performing extensive code
motion. Similarly when using a basic code motion technique the observed dura-
tion of the overlapping interval is at 2,406µs, corresponding to the execution of
one matrix operation.

Table 1. Overlapping window duration for the motivating example

MPI call File Line Interval duration basic (µs) Interval duration extended (µs)

MPI Alltoall bench.c 28 2,406.57 4,803.15

52 V. M. Nguyen et al.

MiniMD simulates molecular dynamics using the Lennard-Jones potential or
the Embedded Atom Model (EAM). It is a simpler version of LAMMPS and is
written in about 5000 lines of C++ code. We used version 1.2, the EAM force and
a problem of size 1283. The benchmark is deployed over 8 nodes, using 15 cores
on each node. Applied to each file of the benchmark, our pass transformed 57
MPI calls. Out of those 57 calls, 30 were executed during the run. The most sig-
nificant transformations are shown in Table 2, the 24 remaining transformations
have an overlapping window that is too narrow to expose any potential gain for
asynchronous progression. The MPI Allreduce called in thermo.cpp shows the
bigger overlapping interval when applying extensive code motion.

Table 2. Most significant overlapping window duration for miniMD

MPI call File Line Interval duration basic

(µs)

Interval duration

extended (µs)

MPI Allreduce thermo.cpp 133 0.05 65.84

MPI Bcast force eam.cpp 524 41.59 54.34

MPI Bcast force eam.cpp 525 32.53 42.51

MPI Bcast force eam.cpp 526 25.66 35.37

MPI Bcast force eam.cpp 527 16.71 18.31

MPI Bcast force eam.cpp 528 9.40 10.09

Max. MPI call overlap 125.94 226.46

MiniFE aims at approximating an unstructured implicit finite element appli-
cation using fewer than 8000 lines of code in C++. We used version 2.0 and
as with miniMD, measurements use the reference benchmark and a problem of
size 10243. It is also run on 8 sandy nodes using 15 cores on each. Our pass
found and transformed 37 MPI calls. Out of those 37 calls, 22 were detected at
runtime and only 3 of them had a significant overlapping window in either the
basic or the extensive case. The duration of their overlapping interval is shown
in Table 3. The basic approach is unable to expose any overlapping potential.
Using extensive code motion, we successfully created an overlapping window of
4 ms.

Table 3. Most significant overlapping window duration for miniFE

MPI call File Line Interval duration basic

(µs)

Interval duration

extended (µs)

MPI Allreduce SparseMatrix functions.hpp 313 0.11 4193

MPI Bcast utils.cpp 92 0.51 166

MPI Allreduce make local matrix.cpp 216 0.22 1.41

Max. MPI call overlap 0.84 4360.41

Automatic Code Motion to Extend MPI Nonblocking Overlap Window 53

5.3 Discussion

In this section we chose to display the duration of the overlap windows instead
of the actual execution time of each program. Success in hiding the commu-
nication times of MPI nonblocking calls heavily depends on the MPI runtime
implementation and on how efficient it is in conducting asynchronous progres-
sion. Nonblocking MPI communications are also often more time consuming than
their blocking counterparts, mainly due to the progression mechanism. For these
reasons the performance gain one can achieve depends more on the quality of
the MPI implementation than on the quality of the transformation method.

As our work focuses on increasing the size of the overlap windows, it is clearer
to display the duration of these intervals. Their duration does not depend on
the quality of the MPI implementation, and allows to clearly show the benefits
of our method when compared to state-of-art.

It is also necessary to note that our optimization pass only detects dependen-
cies that can be resolved through the semantics of the code. As a consequence,
it is not able to properly capture statements or calls that have no data depen-
dencies, yet that have an implicit relationship with the communication, such as
probes to measure the communication time.

6 Conclusion

In this paper we propose a method to automatically perform extensive code
motion in order to increase overlapping opportunities for nonblocking MPI com-
munications. Our algorithm builds on and improves state-of-the-art methods to
transform all blocking communications of a program into nonblocking opera-
tions. While previous work only moves apart the nonblocking calls to the first
instruction they depend on, we use code motion to further extend computation-
communication overlaps. Our method was implemented as a pass in the LLVM
compiler and successfully tested on two miniapplications.

In future work, we will aim at improving the support for already existing
nonblocking communications. In the current implementation, only initialization
calls are moved, because we did not yet succeed in matching existing comple-
tion calls (MPI Test*() and MPI Wait*()) to their corresponding initialization
calls. Thus, the code motion misses information to capture all necessary data
dependencies to ensure the validity of the insertion point. Being able to link the
completion calls to their respective initialization calls will allow moving both
calls to increase overlap possibilities. Another limitation of our approach is the
analysis being intraprocedual. Pushing the boundaries of the analysis beyond
the current function would further improve overlap possibilities.

References

1. Ahmed, H., Skjellum, A., Bangalore, P., Pirkelbauer, P.: Transforming blocking
MPI collectives to non-blocking and persistent operations. In: Proceedings of the
24th European MPI Users’ Group Meeting, pp. 1–11 (2017)

54 V. M. Nguyen et al.

2. Clement, M.J., Quinn, M.J.: Overlapping computations, communications and I/O
in parallel sorting. J. Parallel Distrib. Comput. 28(2), 162–172 (1995)

3. Danalis, A., Pollock, L., Swany, M.: Automatic MPI application transformation
with ASPhALT. In: 2007 IEEE International Parallel and Distributed Processing
Symposium, pp. 1–8. IEEE (2007)

4. Danalis, A., Pollock, L., Swany, M., Cavazos, J.: MPI-aware compiler optimizations
for improving communication-computation overlap. In: Proceedings of the 23rd
International Conference on Supercomputing, pp. 316–325 (2009)

5. Das, D., Gupta, M., Ravindran, R., Shivani, W., Sivakeshava, P., Uppal, R.:
Compiler-controlled extraction of computation-communication overlap in MPI
applications. In: 2008 IEEE International Symposium on Parallel and Distributed
Processing, pp. 1–8. IEEE (2008)

6. Denis, A., Trahay, F.: MPI overlap: benchmark and analysis. In: 2016 45th Inter-
national Conference on Parallel Processing (ICPP), pp. 258–267 (2016)

7. Guo, J., Yi, Q., Meng, J., Zhang, J., Balaji, P.: Compiler-assisted overlapping of
communication and computation in MPI applications. In: 2016 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 60–69. IEEE (2016)

8. Heroux, M.A., et al.: Improving performance via mini-applications. Sandia
National Laboratories, Technical report SAND2009-5574 3 (2009)

9. Hoefler, T., Gottschling, P., Rehm, W., Lumsdaine, A.: Optimizing a conjugate
gradient solver with non-blocking collective operations. In: Mohr, B., Träff, J.L.,
Worringen, J., Dongarra, J. (eds.) EuroPVM/MPI 2006. LNCS, vol. 4192, pp.
374–382. Springer, Heidelberg (2006). https://doi.org/10.1007/11846802 52

10. Hoefler, T., Lumsdaine, A.: Design, Implementation, and Usage of LibNBC. Tech-
nical report, Open Systems Lab, Indiana University, August 2006

11. Kandalla, et al.: Can network-offload based non-blocking neighborhood MPI col-
lectives improve communication overheads of irregular graph algorithms? In: 2012
IEEE International Conference on Cluster Computing Workshops, pp. 222–230.
IEEE (2012)

12. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: International Symposium on Code Generation and Opti-
mization, CGO 2004, pp. 75–86. IEEE (2004)

13. Quinlan, D.: ROSE: compiler support for object-oriented frameworks. Parallel Pro-
cess. Lett. 10(02n03), 215–226 (2000)

14. Song, S., Hollingsworth, J.K.: Computation-communication overlap and parameter
auto-tuning for scalable Pparallel 3-D FFT. J. Comput. Sci. 14, 38–50 (2016)

15. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering, ICSE 1981, pp. 439–449. IEEE Press (1981)

https://doi.org/10.1007/11846802_52

First International Workshop
on the Application of Machine

Learning Techniques to Computational
Fluid Dynamics Simulations
and Analysis (CFDML)

First International Workshop
on the Application of Machine Learning

Techniques to Computational Fluid Dynamics
Simulations and Analysis

1 Background and Description

The First International Workshop on the Application of Machine Learning Techniques
to Computational Fluid Dynamics Simulations and Analysis (CFDML), co-located
with ISC 2020 Digital, was held on-line on June 25th, 2020. The event was designed to
stimulate research at the confluence of computational fluid dynamics (CFD) and
machine learning (ML), by providing a venue to exchange new ideas and discuss
challenges and opportunities. The workshop was also an opportunity to expose a
rapidly emerging field to a broader research community. It brought together researchers
and industrial practitioners working on various aspects of applying ML to CFD and
related domains, in order to provide a venue for discussion, knowledge transfer, and
collaboration among the research community.

The combination of CFD with ML is a recently emerging research direction with
the potential to enable the solution of so far unsolved problems in many application
domains. ML is already applied to a number of problems in CFD, such as the iden-
tification and extraction of hidden features in large-scale flow computations, finding
undetected correlations between dynamical features of the flow, generating synthetic
CFD datasets through high-fidelity simulations, and predicting simulation results with
physics-informed learning techniques. These approaches are forming a paradigm shift,
changing the focus of CFD from, e.g., time-consuming feature detection to in-depth
examinations of such features or from expensive simulations on high-performance
computers to fast predictions on small desktop computers using reduced order and
surrogate models trained on simulation generated data. These methods, thereby, enable
deeper insight into the physics involved in complex natural processes and accelerate
predictions for design processes in various fields in industry and research.

The workshop solicited papers on all aspects of CFD where ML plays a significant
role or enables the solution of complex problems in CFD and related fields. Topics of
interest included physics-based modeling with the main focus on fluid physics, such as
reduced modeling for dimensionality reduction and the Reynolds-averaged Navier-
Stokes (RANS) turbulence modeling, shape and topology optimization in solids, pre-
diction of aeroacoustics, uncertainty quantification and reliability analysis, reinforce-
ment learning for the design of active/passive flow control, and ML approaches that
enable or enhance any of the above techniques. All submitted manuscripts were peer
reviewed by three program committee members using a single-blind process. Sub-
missions were evaluated on originality, technical strength, significance, quality of
presentation, and interest and relevance to the workshop. Six papers were selected for
workshop presentation and inclusion in the proceedings. Authors were asked to revise
their papers based on the feedback of the program committee members.

2 Workshop Summary

Authors of all accepted papers were asked to record videos of their presentations,
which were posted together with PowerPoint slides on the workshop’s website11 prior
to the event. On the day of the workshop, all presenters and attendees connected to a
Zoom channel for an on-line two-hour long panel and Q&A session. Paper presenters
gave a brief summary of their work and the attendees asked questions and discussed the
results. This session was attended by 30 participants. The recording of this session was
distributed to the organizing committee and all the participants.

2.1 Research Papers

In the first research presentation, Zhang and Piggott discussed their paper “Unsuper-
vised Learning of Particle Image Velocimetry”. The authors proposed a novel unsu-
pervised deep learning approach to infer velocity fields from Particle Image
Velocimetry (PIV) measurements. The proposed approach makes use of a loss function
inspired by classical optical flow methods, in order to remove the need for ground truth
data. The approach shows significant promise, with competitive results compared to
recently proposed supervised deep learning methods, and the potential to generalize to
complex real-world flow scenarios where the ground truth is effectively unknowable.

Next, Harel et al., in their paper “Complete Deep Computer-Vision Methodology
for Investigating Hydrodynamic Instabilities”, explored the application of a variety of
deep computer-vision techniques to hydrodynamic instability problems. The authors
investigated the use image retrieval, template matching, parameter regression and
spatiotemporal prediction, focusing on an important canonical flow, the Rayleigh-
Taylor instability. The proposed models and data are made publicly available, and the
authors noted that many of the models can be easily applied to existing simulation
results, or to new more complex problems via transfer learning.

The next three presentations discussed the use of neural networks as a surrogate
model to provide flow field predictions. Such techniques have the potential to replace
or augment expensive computational simulations early on in the design process.
Rüttgers et al., in their paper “Prediction of Acoustic Fields using a Lat-tice-Boltzmann
Method and Deep Learning”, trained a novel deep convolution neural network
(CNN) on a dataset obtained from 20,000 lattice-Boltzmann simulations. The CNN
showed considerable success in predicting the acoustic fields in a 2D square domain,
and the authors discussed plans to extend the framework to three dimensional.
Meanwhile, in their paper “Data-Driven Techniques to Enhance and Supplement
Computational Fluid Dynamics Prediction Capabilities”, Bekemeyer et al. used a fully
connected three-layer neural network to predict the surface pressure on the NASA
common research model. Afterwards, Nogueira et al. presented their paper “Reduced
Order Modelling of Dynamical Systems using Artificial Neural Networks Applied to
Water Circulation”. They discussed the development of two low-dimensional surrogate
models to produce a 36-hour forecast of the depth-averaged hydrodynamics at Lake

1 http://www.ncsa.illinois.edu/enabling/data/deep_learning/news/cfdml20.

First International Workshop on the Application of Machine Learning Techniques 57

http://www.ncsa.illinois.edu/enabling/data/deep_learning/news/cfdml20

George in the USA. Their models involved the use of fully connected and long short-
term memory neural networks, combined with proper orthogonal decomposition to
reduce the dimensionality of the input data. The models were found to achieve
promising accuracy levels (within 6% of the prediction range).

Finally, Luo et al. presented their research on “Parameter Identification of RANS
Turbulence Model using Physics-Embedded Neural Network”. Instead of seeking to
replace the computational simulations, this work advocates for the use of a neural
network to augment the turbulence model in an existing CFD framework. Loss func-
tions are proposed to explicitly encode information about the turbulent transport
physics within the neural network. An inverse problem is then solved by treating the
five parameters in the turbulence model as random variables, with the turbulent kinetic
energy and dissipation rate as known quantities from DNS simulation. The authors
hypothesize that using the neural network to provide only turbulence model parameters
(rather than the full turbulence stress field), aids with solver convergence as well as
making the model more generalizable.

2.2 Panel Discussion

The workshop was concluded by a panel discussion on the topics covered in the
presentations as well as important future research directions. A recurring discussion
point was how to generalize the presented ML techniques to be also applicable to flows
outside the training dataset. For example, how well does a neural-network-based sur-
rogate model perform when predicting flows at higher Reynolds numbers than those
encountered during training? A common talking point here was that there is a pressing
need for more high-quality datasets in or-der to explore this. Additionally, some par-
ticipants felt that in order for ML-based techniques to be adopted in industry, there is a
need for uncertainty quantification and interpretation of the ML methods.

Organizing Committee

Volodymyr Kindratenko National Center for Supercomputing Applications,
USA

Andreas Lintermann Jülich Supercomputing Centre, Forschungszentrum
Jülich GmbH, Germany

Charalambos Chrysostomou The Cyprus Institute, Cyprus
Jiahuan Cui Zhejiang University, China
Eloisa Bentivegna IBM Research, UK
Ashley Scillitoe The Alan Turing Institute, UK
Morris Riedel University of Iceland, Iceland
Jenia Jitsev Jülich Supercomputing Centre, Forschungszentrum

Jülich GmbH, Germany
Seid Koric National Center for Supercomputing Applications,

USA
Shirui Luo National Center for Supercomputing Applications,

USA

58 First International Workshop on the Application of Machine Learning Techniques

Madhu Vellakal National Center for Supercomputing Applications,
USA

Jeyan Thiyagalingam Science and Technology Facilities Council, UK

First International Workshop on the Application of Machine Learning Techniques 59

Complete Deep Computer-Vision
Methodology for Investigating
Hydrodynamic Instabilities

Re’em Harel1,2, Matan Rusanovsky2,3, Yehonatan Fridman2,3, Assaf Shimony4,
and Gal Oren3,4(B)

1 Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
reemharel22@gmail.com

2 Israel Atomic Energy Commission, P.O.B. 7061, Tel Aviv, Israel
3 Department of Computer Science, Ben-Gurion University of the Negev,

P.O.B. 653, Be’er-Sheva, Israel
{matanru,fridyeh,orenw}@post.bgu.ac.il

4 Department of Physics, Nuclear Research Center-Negev,
P.O.B. 9001, Be’er-Sheva, Israel

shimonya@gmail.com

Abstract. In fluid dynamics, one of the most important research fields
is hydrodynamic instabilities and their evolution in different flow regimes.
The investigation of said instabilities is concerned with highly non-linear
dynamics. Currently, three main methods are used for understanding
of such phenomena – namely analytical and statistical models, experi-
ments, and simulations – and all of them are primarily investigated and
correlated using human expertise. This work demonstrates how a major
portion of this research effort could and should be analysed using recent
breakthrough advancements in the field of Computer Vision with Deep
Learning (CVDL, or Deep Computer-Vision). Specifically, this work tar-
gets and evaluates specific state-of-the-art techniques – such as Image
Retrieval, Template Matching, Parameters Regression and Spatiotem-
poral Prediction – for the quantitative and qualitative benefits they
provide. In order to do so, this research focuses mainly on one of the
most representative instabilities, the Rayleigh-Taylor instability (RTI).
We include an annotated database of images returned from simulations
of RTI (RayleAI). Finally, adjusted experimental results and novel phys-
ical loss methodologies were used to validate the correspondence of the
predicted results to actual physical reality to evaluate the model effi-
ciency. The techniques which were developed and proved in this work
can serve as essential tools for physicists in the field of hydrodynamics
for investigating a variety of physical systems. Some of them can be eas-
ily applied on already existing simulation results, while others could be
used via Transfer Learning to other instabilities research. All models as
well as the dataset that was created for this work, are publicly available
at: https://github.com/scientific-computing-nrcn/SimulAI.

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 61–80, 2020.
https://doi.org/10.1007/978-3-030-59851-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_5&domain=pdf
https://github.com/scientific-computing-nrcn/SimulAI
https://doi.org/10.1007/978-3-030-59851-8_5

62 R. Harel et al.

Keywords: Fluid Dynamics · Hydrodynamic instabilities ·
Rayleigh-Taylor instability · Computer Vision · Deep learning · Image
retrieval · Template matching · Regressive convolutional neural
networks · Spatiotemporal prediction

1 Introduction

The Rayleigh-Taylor instability occurs in an interface between two fluids with
different densities in which the lighter fluid pushes the heavier fluid [1]. RTI is
found in many hydrodynamic experiments and natural phenomena such as water
suspended in oil in earth’s gravity, Inertial Confinement Fusion (ICF), astrophys-
ical systems, and many more [2]. Due to its importance, numerous experiments
studying the growth of the instability and its effects on other phenomena are
performed constantly all over the world [3–6]. Generally speaking, there are two
types of experimental platforms for investigating the evolution of RTI: Liquid
or gas systems (for example [3–5]) and High-Energy-Density Physics (HEDP)
systems, in which the fluids are in plasma state after being heated by powerful
lasers (for example [7,8]). In the former systems, it is difficult to control the initial
perturbation, but due to the fact that between consecutive frames (2D images,
the main diagnostics in the experiments) the time difference is short (compared
to the duration of the experiment), namely it typically varies from milliseconds
to seconds. Therefore, it is feasible to obtain with a fast camera tens or more
frames per experimental shot. In the latter systems, the initial perturbation can
be machined precisely prior to the laser drive – while the materials are in a solid
state – but the time scales are much shorter (about tens of nanoseconds) and
only one or at most few frames can be obtained from a single experimental shot.
Therefore, the experimental data from both types of experimental systems con-
tain a partial reflection of the instability – either the exact initial perturbation
or the detailed temporal evolution of the instability is missing, while both are
crucial for understanding the phenomenon. The growth of the perturbation in
RTI depends on numerous variables such as viscosity, ablation, surface tension,
small density gradients, and more. These variables are of different importance in
different physical and experimental systems. In this work the case of two incom-
pressible and immiscible fluids and a single-mode sinusoidal initial perturbation
is considered. In this case, the early growth is exponential in time (T) and is
proportional to (via linear stability theory):

e
√AkgT (1)

where k is the wave number k = 2π/λ, λ is the wavelength, g is earth’s gravity
(and in the general case the acceleration of the system), and A is the well known
Atwood number, given by:

A =
ρ1 − ρ2
ρ1 + ρ2

(2)

where ρ1 is the density of the heavier fluid and ρ2 of the lighter one. In the
late non-linear growth of such a single-mode perturbation, bubbles of the lighter

Complete CVDL Methodology for Investigating Hydrodynamic Instabilities 63

fluid penetrate into the heavy fluid and spikes of heavy fluid penetrate into the
light fluid at constant velocities, given by [9]:

ub/s =

√
2Agλ

cd (1 ± A)
(3)

where ub and us are the velocities of the bubble and the spike, respectively. The
quantity cd is the drag coefficient, which equals to 6π and 3π for 2D and 3D,
respectively. As the perturbation grows, the shear velocities on the sides of the
bubbles and the spikes create vortices due to the Kelvin-Helmholtz instability
(KHI), in which the two materials mix in small length scales. Needless to say
that in reality (experiments), knowing the exact conditions of the density and
the viscosity of the two fluids is unrealistic. A possible way to bridge this gap is
via simulations [10] (which are much cheaper than performing additional exper-
iments): Given the correct initial parameters one can simulate the experiment
and extract the missing time frames. However, initiating the simulation with the
exact initial parameters is impossible due to experimental uncertainties. Never-
theless, it is still a viable solution as one can run parameter-sweep and select the
most similar simulation in comparison to the experiment. However, this solu-
tion might be difficult as there are many different parameters (both physical
parameters with uncertainties and parameters in the analysis of the experimen-
tal results), which makes this process hard for a human. Nowadays, the usage of
different deep learning techniques in this scientific area is growing [11–19], and
as it progresses, the above problem might also be solved using Computer Vision
with Deep Learning (CVDL, or Deep Computer-Vision), since the introduction
of deep learning techniques to the Computational Fluid Dynamics (CFDs) field
proved to yield excellent results [20–26]. Therefore, we first define and devise
several key Computer Vision (CV) problems, which collaboratively will enhance
the understanding of RTI and other physical phenomena as follows:

1. Given a diagnostic image from a simulation/experiment, sort a database in
accordance with an image similarity score to the input.

2. Given a diagnostic image from simulation/experiment, extract the parameters
of the simulation that yields a best match to an image in a database.

3. Given a partial template of a phenomena from a simulation/experiment, find
matches in a database and sort them in accordance with an image similarity
score to the input.

4. Given a set of images that correspond to a set of time steps, and a time
parameter T , predict future non-existing time steps images.

64 R. Harel et al.

Table 1. Quantitative and qualitative advantages for defined problems using CVDL.

Task Quantitative & Qualitative advantages

I. Database sorting by an image
similarity score

• Meaningful order

• Extraction of non-regressive parameters

II. Regressive parameter extraction • Physical parameters that fit the
experimental data

• Uncertainty margins of the model training

III. Find and sort partial templates
by an image similarity score

• Meaningful order

• An extensive and reliable matching survey
which decrease the uncertainty margins for
the template assumption compared to full
images analysis only

IV. Temporal inter/extrapolation of
experiments

• Data augmentation for low-data
experiments

• Assurance and extension of a model

The completion of the tasks above using CVDL techniques have both quan-
titative and qualitative advantages over classical optimization techniques, as
summarized in Table 1:

I. Image Retrieval: A database (in this case, images) is sorted by an image
similarity score, that corresponds to a meaningful physical similarity order-
ing score. In addition, the physical simulation parameters that yield the
maximal image similarity (for example, with the experimental results) can
be used as a non-regressive optimization. Similarly, uncertainty margins for
the physical parameters can be calculated by defining a minimal required
similarity factor.

II. Parameter Regression: Given experimental results and corresponding
simulations with a set of free parameters, the technique provides the values
of the free parameters for a best fit to the experimental results iff the model
training and validation loss converges to approximately the same (small)
value (thus, it successfully generalized the problem). The advantage over
the parameter extraction in the first technique results from the regression
process, which is significant when the simulation database is incomplete.

III. Partial Template Matching: Generally, it is valuable for physical prob-
lems in which there is a measurable pattern that is sensitive to any of the
physical parameters. For example, in [27], the evolution of vortices, created
by supersonic KHI, was measured and compared with hydrodynamic sim-
ulations. The analysis in [27] was based on the large-scale structures (i.e.
the widths of the vortices). The medium-scale structures (i.e. the roll-ups
within the vortices) were measured in the experiment and were compared to
the simulations qualitatively. A more detailed analysis of the templates of
the roll-ups could provide additional physical insights such as the effect of
viscosity in the experimental conditions. Another example, that is relevant

Complete CVDL Methodology for Investigating Hydrodynamic Instabilities 65

to the evolution of RTI, is originated from morphology differences between
experiments in HEDP platforms and simulations of them. A detailed analy-
sis of the morphology of the bubbles and the spikes can provide insights on
magnetic effects due to the plasma conditions in these experiments [28] or
perhaps other physical effects. A third example is the measurement of abla-
tive RTI [29,30] that is relevant to astrophysical systems. Similar to the KHI
example, The ablation effects were analyzed by the width of the mixing zone.
The morphology of the spikes was affected by the ablation as clearly seen
from the experimental images and simulations. A detailed analysis of the
structure of the spikes can provide further insights on the ablation effects. In
each of the examples above, the Partial Template Matching technique might
provide a meaningful image similarity order between the sub-patterns within
the simulation images to the template input of the experimental image. In
addition, this technique provides a more extensive and more reliable match-
ing survey, which can decrease the uncertainty margins for the physical
parameters, compared to analyses of the full images only. Therefore, it can
serve as a convenient method for analyzing the physical effects and their
significance.

IV. Spatiotemporal Prediction: Provides a temporal interpolation/
extrapolation of experimental results. First, it can be useful especially when
the time-step ranges of the simulation and the experiment differs and when a
prediction of experimental results at additional times are needed. Moreover,
It can be used as a data augmentation methodology, by predicting images
from some already known time-steps. This technique can also be used for
self assurance: In cases of series of experimental images, one can provide
images from a reduced range of time-steps. One possible way to evaluate
the model is by predicting the images from time-steps outside the given
range, and comparing them to the ones at hand.

We note that the techniques above can be applied on existing simulations
databases, since physicists usually perform parameter surveys in order to ana-
lyze experimental data using simulations. In other words, it can be applied on
previous works without running any additional simulation.

The rest of the paper is organized as follows: First, in Sect. 2 the state-of-the-
art RTI database – RayleAI – that contains images with different parameters of
a RTI simulation is introduced. Then, the different CVDL methods that are used
in order to solve the key problems presented in Sect. 1 – specifically Information
maximizing Generative Adversarial Network (InfoGAN), Parameters Regression
(pReg), Quality-Aware Template Matching (QATM) and Predictive Recurrent
Neural Network (PredRNN) – are covered with correspondence to the tasks
above. Afterwards, a new evaluation methodology for the tasks above, named
physical loss is introduced in Sect. 4. Next, the results of the different CVDL
methods and evaluations are presented. Finally, future directions are proposed.

66 R. Harel et al.

2 RayleAI – Database Characteristics

In order to implement the CVDL techniques described above, a state-of-the-
art annotated simulation images database named RayleAI [31] was formed.
The simulations were performed using the DAFNA hydrodynamic code [32], a
multi-material Eulerian code with interface tracking and Adaptive Mesh Refine-
ment (AMR) capabilities, which was validated for hydrodynamic instabilities
[27,33]. The code solves the Euler equations, which are relevant to the turbu-
lent flow in the simulated experimental system (Reynolds number of ∼6000 [6]).
The initial perturbation is in the shape of a sinusoidal single-mode given by
y = hcos (2πx/λ) where h is the initial amplitude height. The simulated domain
is x = 2.7 cm (half of the wavelength, i.e. λ = 5.4 cm) and y = 5.4 cm (h varies
between simulations as detailed below), with reflected walls boundary conditions
on all edges. The spatial resolution is 64 × 128 cells, which was found converged
and yields the smallest experimentally measured patterns. Each fluid follows the
equation of state of an ideal gas (with adiabatic index γ = 5/3) and a hydro-
static equilibrium was set adiabatically with a pressure of 1 bar on the interface.
The simulation input consists of three free parameters: Atwood number, gravita-
tional acceleration and the amplitude of the perturbation (as well as additional
time parameter). The database contains 101,250 images produced by 1350 dif-
ferent simulations, 75 time steps for each simulation, where the stride is 0.01 s,
with unique set of the free parameters per each simulation. The format of the
repository is built upon directories, each represents a simulation performance

Table 2. Diagnostic of RTI in different
T and h values from RayleAI.

Table 3. Simulation parameters.

Parameter From To Stride

Atwood number (A) 0.02 0.5 0.02

Gravity (g) [cm/s2] 600 800 25

Amplitude (h) [cm] 0.1 0.5 0.1

X [cm] 2.7 2.7 0.0

Y [cm] 5.4 5.4 0.0

Fig. 1. The full image from the experiment
(T = 0.4 s).

Complete CVDL Methodology for Investigating Hydrodynamic Instabilities 67

with the directory name indicating the parameters of the specific simulation,
and each directory holds several images corresponding to each relevant time
step. For example, the directory gravity 750 amplitude 0.5 atwood 0.16 is a sim-
ulation with g = 750 cm/s2, initial amplitude of 0.5 cm, and A = 0.16. The
ranges of the Atwood number, gravity and initial perturbation are presented in
Table 3. Table 2 shows the simulation images from DAFNA compared to the
experimental images, with g = 750 cm/s2 and A = 0.16.

The choice of these exact parameters were derived from the well known exper-
imental results [6]. The physical parameters in the experiment were A = 0.155,
g = 740 cm/s2 and h = 0.54 cm. The initial amplitude is not given but can be
estimated from the first image by about h = 0.1 cm. Thus, one can deduce that
the simulation in the database with A = 0.16, g = 750 cm/s2 and h = 0.1 cm
should produce the closet result to the experimental one (as shown in Table 2).
An example of an experimental image is shown in Fig. 1. The experiment images
were originally taken in grayscale. For optimal results, each image was pro-
cessed with two methods (Erode-Dilate vs. Histogram Equalization), and the
most fitting result that resembles the interface between the two fluids (by expert
opinion) was selected, cropped and resized, and then binarized by a threshold.
Those images are also included in the database under the experiment folder.

3 Deep Computer-Vision Methods

3.1 Task I: Image Retrieval Using InfoGAN

Generative Advreserial Network (GAN) [34] is a framework capable of learn-
ing a generator network G that transforms noise variable z from some noise
distribution into a generated sample G(z), while the training of the generator
is optimized against a discriminator network D, which targets to distinguish
between real samples with generated ones. The fruitful competition of both G
and D, allows G to generate samples such that D will have difficulty with distin-
guishing real samples from them. In the context of game theory, this competition
might be referred as a variation of a MinMax game in which each player tries to
maximize the minimum gain. In this game for example, G maximizes its mini-
mum gain by generating images with higher resemblance to real images, while D
improves its distinguishing capabilities, thus hardening the generation process of
G. The ability to generate indistinguishable new data in an unsupervised man-
ner is one example of a machine learning approach that is able to understand an
underlying deep, abstract and generative representation of the data. InfoGAN
[35] utilizes latent code variables ci, which are added to the noise variable. These
noise variables are randomly generated from a user-specified domain. The latent
variables impose an information theory regularization term to the optimization
problem, which forces G to preserve the information stored in ci through the
generation process. This allows learning interpretative and meaningful represen-
tations of the data, with a negligible computation cost, on top of a GAN. The
high-abstract-level representation can be extracted from the discriminator (e.g.

68 R. Harel et al.

the last layer before the classification) into a feature vector. These features can
be used in order to measure the similarity between some input image to any
other image, by applying some distance function (e.g. l2 norm) on the features
of the input to the features of the other image. This methodology provides the
ability to order images similarity to a given input image [36].

In order to evaluate InfoGAN performances over RayleAI, the classic CV
technique of LIRE [37] is used for comparison. LIRE is a library that provides
image retrieval based on image characteristics among other classic features. LIRE
is built on top of the open-source text search engine Lucene [38]. LIRE takes
numeric images descriptors, which are mainly vectors or sets of vectors, and
stores them inside a Lucene index as text along with the image path within a
Lucene document. For the evaluation of the similarity of two images, one can
calculate their distance in the space they were indexed to. Many state-of-the-art
methods for extracting features can be used, such as Gabor Texture Features
[39], Tamura Features [40], or FCTH [41]. For the purposes of this work, the
Tamura Features method is the most suitable method that LIRE provides, as it
indexes RayleAI images in a more dispersed fashion. The Tamura feature vector
of an image is an 18 double values descriptor that represents texture features in
the image that correspond to human visual perception.

3.2 Task II: Parameters Regression Using Convolutional Neural
Networks – pReg

Many Deep Learning techniques obtain state-of-the-art results for regression
tasks, in a wide range of CV applications [42] such as Pose Estimation, Facial
Landmark Detection, Age Estimation, Image Registration and Image Orienta-
tion [43,44]. Most of the deep learning architectures used for regression tasks on
images are Convolutional Neural Networks (ConvNets), which are usually com-
posed of blocks of Convolutional layers followed by a Pooling layer, and finally
Fully-Connected layers. The dimension of the output layer depends on the task
and its activation function is usually linear or sigmoid.

ConvNets can be used for retrieving the parameters of an experiment image,
via regression. The presented model (henceforth pReg) (Fig. 2) consists of 3 Con-
volutional layers with 64 filters, with a kernel size 5 × 5, and with l2 regulariza-
tion, each followed by a Max-Pooling layer, a Dropout of 0.1 rate, and finally
Batch Normalization. Then, there are two Fully-Connected layers of 250 and
200 features, which are separated again by a Batch Normalization layer. Finally,
the Output layer of the network has 2 features (as will described next), and is
activated by sigmoid which maps the values to [0, 1], to prevent the exploding
gradients problem. This is important, as in regression tasks gradients might grow
rapidly and eventually explode, if there are no regularizations on the output fea-
tures. Since the most significant parameters for describing each image frame are
Atwood number and time – which pReg is trained to predict – only a subset of
RayleAI was used for the training set, namely images with the following param-
eters: A ∈ [0.08, 0.5] (with a stride of 0.02), g ∈ {625, 700, 750, 800} cm/s2,
h ∈ [0.1, 0.5] cm (with a stride of 0.1 cm) and T ∈ [0.1, 0.6] s (with a stride

Complete CVDL Methodology for Investigating Hydrodynamic Instabilities 69

64

17
8
× 8777764

89
× 43

64
44
× 21

25
0

20
0×

1
2×
11

A: 0.1482
T : 0.4050s

A: 0.155
T : 0.4s

A: 0.14
T : 0.4s

Fig. 2. ConvNet model, named pReg, for A and T parameters regression. Yellow lay-
ers are convolutional layers (5 × 5, with ReLU activation), orange are pooling layers,
purple are dense layers with ReLU activation and the green layer is the output layer,
activated by sigmoid. Green connections with arrows indicate connections with batch
normalization, and the blue dashed connection is a regular connection. The left image
is an example of an experimental input, with the real parameters of A: 0.155, T : 0.4 s,
which the model predicts for the values A: 0.1482, T : 0.4050 s as can be seen under
the green layer. The red dotted trend indicates the similarity search operation that
quantifies the distance of images from RayleAI, based on the l2 distance over A and
T . (Color figure online)

of 0.01 s). A small amount of values for gravity and for amplitude was fixed,
so that the network will not try to learn the variance that these parameters
impose while expanding the database with as minimal noise as possible. The
value ranges of Atwood number and time were chosen in order to expose the
model to images with both small and big perturbations such that the amount
of the latter case ones will not be negligible. The reduced training set consists
of ∼16K images and the validation set consists of ∼4K images. Nonetheless, for
increasing generalization and for decreasing model overfitting, data augmenta-
tion was employed. Since there is high significance for the perspective from which
each image is taken, the methods of data augmentation should be carefully cho-
sen: Rotation, shifting and flipping methods may generate images such that the
labels of the original parameters do not fit for them. Therefore, the training set
was augmented with only zooming in/out (zoom range = 0.1) via TensorFlow
[45] preprocessing.

3.3 Task III: Quality-Aware Template Matching Using QATM

One variation of the Template Matching problem is defined as follows: Given an
exemplar image E, find the most similar region of interest in a target image S
[46]. Classical template matching methods often use Sum-of-Squared Differences
(SSD) and Normalized Cross-Correlation (NCC) [47] to asses the similarity score
between a template and an underlying image. These approaches work well when
the transformation between the template and the target search image is simple.

70 R. Harel et al.

However, with non-rigid transformations, which are common in real-life, they
tend to fail. The Quality-Aware Template Matching (QATM) [48] algorithm
is inspired by assessing the matching quality of source and target patches. It
takes the uniqueness of pairs into consideration rather than simply evaluating
matching score. It defines the QATM(e, s) - measure as the product of likeli-
hoods that a patch s ∈ S is matched in E and a patch e ∈ E is matched in S.
Once QATM(e, s) is computed, one can compute the template matching map
for the template image E and the target searched image S, and eventually, can
find the best-matched region R∗ which maximizes the overall matching quality.
Therefore, the technique is of great need when templates are complicated and
targets are noisy. Thus, it is most suitable for RTI images from simulations and
experiments.

3.4 Task IV: Time Series Prediction Using PredRNN

Learning the evolution of the RTI in order to predict future time or gap frames
requires both understanding of the spatial aspects of each time frame (e.g. the
interface between the fluids), and understanding of temporal development: As
the time progresses, the simulation tends to be more and more chaotic. Convo-
lutional Long Short Term Memory networks (CLSTMs) [49] is a class of algo-
rithms which are able to predict future image states by past and present image
states based on training sequences of images. The architecture of this network is
based on a two-dimensional grid of units that pass spatial information vertically
(upwards), and temporal information horizontally (rightwards). However, the
standard CLSTMs architectures lack the capability of preserving the temporal
information for long terms, since the spatial information that is learned via the
top unit in a specific time step is not passed to the bottom unit in the next time
step, leading to the loss of important information. PredRNN [50] is a state-of-
the-art Long Short Term Memory (LSTM) Recurrent Neural Network (RNN) for
predictive learning. PredRNN memorizes both spatial appearances and temporal
variations in a unified memory pool. Unlike standard LSTMs, and in addition to
the standard memory transition within them, memory in PredRNN can travel
through the whole network in a zigzag direction, i.e, from the top unit of some
time step to the bottom unit of the other. Thus, PredRNN is able to preserve
the temporal as well as the spatial memory for long-term motions. In this work,
PredRNN was used for predicting future time steps of simulations as well as
experiments, based on a given sequence of time steps.

4 Evaluation Methodology

In order to test how the discussed above techniques perform on physical simula-
tions as well as experiments, new task-specific test methods that quantify how
well each technique operates on a concrete database are proposed. Novel evalu-
ation methodologies are presented for the techniques discussed in Sects. 3.1, 3.2
and 3.3, based on a suitable corresponding loss measure for the first two tasks,

Complete CVDL Methodology for Investigating Hydrodynamic Instabilities 71

and a sophisticated clustering-visualization method for the third (QATM). The
evaluation of last technique presented in Sect. 3.4 will be discussed separately.

The first evaluation method, namely physical loss, quantifies how meaningful
the results of the technique are, i.e., whether the results of the technique are
reflected in the (physical) annotations of the data. For example, in the case of
Image Retrieval, it is inconclusive to decide whether the results are sufficient
solely based on visual examination, since it is a difficult task for humans to
determine the correct ordering of lots of results. Thus, it is hard to establish
whether the technique is satisfactory. Therefore, this work suggests to measure
how each input image is physically close to each of the returned image outputs,
based on some or all of their parameter labels. Thus, for Image Retrieval (and
for Parameters Regression, explained later in Sect. 5.2) each output image gets
two scores – one from the technique at hand, e.g. similarity score, and one from
the difference between its parameters to the parameters of the input image.
In the case of high correlations of these scores, one can infer that indeed the
results of the technique are of a meaningful (physical) value. The Relative Error
was chosen in this work as the parameter difference function, although it may
be calculated via any desired error function. Note that since the ranges of the
parameters are scaled differently, it is suggested to normalize them beforehand.

Furthermore, one important aspect that results from physical loss is the
ability to identify the parameters which are likely to produce a small impact on
the simulation results (depending on time). For example, in the case of a small
ratio between the amplitude and the wavelength of the perturbation (up to a
few percent), RTI grows linearly according to Eq. 1 and approximately preserves
its initial shape. Therefore, two simulations that differ only by their initial small
amplitudes will practically result in the same late evolution up to a constant time
shift. As a result, it is expected from physical considerations that if one produces
an amplitude-based physical loss methodology for later time steps, the CVDL
techniques will generate semi-random values of error as the amplitude hardly
affects the simulation in later time steps, or in other words, once the two fluids
are mixed and form a chaotic mixture of the two. A similar result is also expected
for the gravity parameter since for incompressible fluids (a good approximation
in this case), two simulations that differ only by the gravity parameter will
practically result in the same evolution as a function of the normalized time. A
useful definition of the normalized time is T̃ =

√Ag/λT as also reflected from
Eq. 1. Concluding the above physical influence of the initial amplitude and the
gravity parameters, only the Atwood number and time parameters should have
a significant impact on the results and are expected to be identified using the
physical loss methodology.

Another new evaluation method was developed for cases where there are no
meaningful (physical) annotations. Specifically in the case of Template Matching,
where some partial template is searched through a database. Unlike the physi-
cal loss case, the physical parameters of the returned partial region of interest
have no unique physical labels, since it might be expected to find this template
in images from a wide range of different parameters. To this end, a relaxed-

72 R. Harel et al.

evaluation method, that quantifies how well the technique at hand separates
similar images from dissimilar images is presented. Similarly to the physical loss
methodology, two values for each output are used: The score from the technique,
and a cluster number – returned from some unsupervised clustering algorithm.
Scenarios in which continuous sequences from the results of the technique are
from the same cluster might indicate the ability of the technique to perform
a proper distinction between classes of similarity to a given input template.
Alternatively, cases of sequences of results from mixed clusters, especially in the
first and most similar regions, might prove that the technique did not succeed
in separating the most similar images from the rest. K-Means was used as the
clustering algorithm, after extracting the main features from each image using
Principal Component Analysis (PCA) in order to achieve more precise results
[51]. Section 5 presents the evaluation results of the techniques from Sect. 3.

5 Results and Discussion

5.1 Task I: Image Retrieval

In order to test the performance of InfoGAN against LIRE, two separate test
cases were studied: Random and Complex. In the first general test case, 13K
random input test images were chosen from RayleAI. In the latter, approximately
10K input images with T > 0.25 s were chosen in order to pick the most complex
images, as the RTI is more chaotic and dominant in this regime. Then, InfoGAN
and LIRE were performed on the entire RayleAI dataset for both test cases.
Then, for each tested image and for each tool, the results were sorted according
to the similarity scores that were given by the model. To evaluate the results and
quantify how well the tools performed, the physical loss methodology, introduced
in Sect. 4, was employed over the Atwood number parameter. Then, for each tool
and test case, the average physical loss was calculated.

(a) Complex InfoGAN (b) Complex LIRE (c) Random InfoGAN (d) Random LIRE

Fig. 3. LIRE and InfoGAN averaged physical loss methodology over Atwood number.
(Color figure online)

Figure 3 presents the physical loss using a comparison between the technique
score [in blue] and the physical loss [in red] per each index. A thin blue line
is drawn to correlate them. We present only the Atwood number parameter,
as it is the most significant parameter. Figures 3a and b, show that InfoGAN

Complete CVDL Methodology for Investigating Hydrodynamic Instabilities 73

outperformed LIRE on the complex images test, as the averaged physical loss
of the first – and most important – indices of InfoGAN is ∼0.25, in contrast to
∼0.4 of LIRE. Furthermore, InfoGAN outperforms LIRE along the entire 2K
first examined indices, showing many powerful capabilities in the complex data
case. Figures 3c and d, presents that InfoGAN and LIRE perform quite the same
in the first indices, with averaged physical loss of ∼0.4. Yet, when focusing on
the entire 2K first indices, it can be seen that InfoGAN starts to outperform
LIRE with smaller physical loss values. Additionally, it seems that there is a
higher correlation between the scores of InfoGAN to their corresponding physical
loss values (blue and red lines act accordingly) in each of the test cases, which
indicates again the InfoGAN has a better ability to learn the underlying physical
pattern of the data. Another important aspect in which InfoGAN outperforms
LIRE in both test-cases is the width of the physical loss trend: As the red trend
is thinner, there is less noise and therefore the results have more physical sense.
As one can notice, the red lines of InfoGAN are thinner than the red lines of
LIRE. Note, that in all figures, the blue lines are normalized by the min-max
normalization method, contrary to the red lines which are presented as raw
values. The overwhelming superiority of InfoGAN is somehow expected and can
be explained as the ability of a deep learning model to learn complex patterns
from the new tailor-made and trained database. Although LIRE provides decent
results without requiring to be trained on a specific organized database (which
obtaining is not always an easy task), it is still a classical image processing
tool, which lacks the learning capabilities that will allow it to understand deep
patterns from the data. Therefore, for image retrieval applications with suitable
databases, InfoGAN should be used.

5.2 Task II: Parameters Regression

In order to test the performances of the pReg network, evaluation tests that
are similar to the tests presented in Sect. 4 were employed. pReg was used to
predict the – activated by the sigmoid – parameters: A and T for 2K random
images. Then, for each image a search was performed through RayleAI for the
2K images with the lowest scores, based on their l2 distance between their A
and T activated by sigmoid parameters, to that of the input image.

As can be seen in Fig. 4a, the model explains the dependence on time well,
especially in the lowest (≤500) and highest (≥1500) indices, since the red dots
of the normalized physical loss over the time, and the blue dots of the normal-
ized l2 distance from the predicted parameters, act similarly. The slightly higher
difference between the dots in the middle of the scale (500 < indices < 1500)
is somehow expected, as it is harder for models to predict the parameters accu-
rately in cases where there is a ’mild’ physical difference. Yet, in cases where
there is a high resemblance or significant difference with respect to the physical
loss, it is more likely that the model will predict similar parameters or dissimilar
parameters, respectively. Figure 4b shows that the model explains dependence on
the Atwood number parameter even better, as the graphs are almost the same

74 R. Harel et al.

(a) Averaged T (b) Averaged A (c) Averaged A & T

Fig. 4. pReg averaged physical loss over the Atwood number and the time.

with some small noise. This can be explained by the significance and impor-
tance of the Atwood number parameter. Figure 4c shows that the combination
of Atwood number and time greatly outperforms the former two cases, since
the red trend almost converges to the blue trend. Note that as the predicted
parameters in pReg are only A and T , and the difference is calculated only over
them, for each input image there are lots of images in RayleAI with the same
calculated distance – same A and T , but different g or h. Therefore the trends
in Figs. 4b, a, c might have dense blocks of dots – with almost the same scores.
Finally, since images with the same A and T but different g or h have the same
loss (over A and T), they are ordered arbitrarily. Therefore, the physical loss
over all parameters does not explain the similarity order of pReg, because of the
arbitrariness that g and h impose.

5.3 Task III: Template Matching

For the evaluation of the QATM algorithm 16 meaningful templates were
cropped from the experimental images. For each template, the following pro-
cedure was employed: The QATM algorithm was performed on each image in
RayleAI and a matched sub-figure was found. Then, the results were sorted
in accordance to the QATM matching scores. For results evaluation, the loss
methodology of PCA and K-Means was employed as described in Sect. 4.

Figure 5 presents the results of three representative templates, while in each
the normalized score results of the algorithm are sorted in an increasing order.
The color of every point represents the cluster of the corresponding template,
achieved by the K-Means algorithm. The triangles and the circles lying above
the curves represent the median and the average of the indices of each cluster,
respectively. To keep the trends readable, only one of each 30 dots is presented.
As can be seen in Fig. 5a, the clustering algorithm divides the indices into four
separate and distinct areas: There is pure congestion of blue dots in the first
thousands of indices, without any rogue non-blue dots. This indicates that the
algorithm understood the template successfully and found lots of significantly
similar sub-figures. This powerful result might be explained because the searched
template is of a ‘unique’ shape, which helps QATM extract lots of uncommon
features and correlate them to RayleAI. Figure 5b, shows a pure congestion of

Complete CVDL Methodology for Investigating Hydrodynamic Instabilities 75

(a) Unique Template (b) Semi-Unique Template (c) Non-Unique Template

Fig. 5. PCA and K-Means clustering methodology made on QATM results. (Color
figure online)

blue dots in the first hundreds of indices, and a mixture of blue and red dots, with
the unignorable presence of green dots in the right following indices. This mixture
of clusters that appears in relatively small indices indicates that the algorithm’s
results start to be less meaningful after a couple of hundreds of indices. This
can be explained by the search template that is less unique than the previous
template. Finally, in Fig. 5c the blue and red clusters seem to be inseparable all
along the index axis. This indicates that the algorithm did not understand well
the template and has difficulties to bring quality matched templates, as expected
from the lack of uniqueness of the input template.

5.4 Task IV: Spatiotemporal Prediction

The PredRNN model was trained on RayleAI sequences of 0.01 s time steps.
However, RTI experiment’s parameters are the following: g = 740 cm/s2, esti-
mated amplitude, and A = 0.155 and it contains 12 black and white images
with an interval of ∼0.033 s between each couple of consecutive frames, while
the time steps of RayleAI ’s simulation are of 0.01 s. In order to fill the missing
time steps, PredRNN was used to predict the missing time intervals of the exper-
iment. The missing time steps were filled in an iterative manner, by predicting
a single future time step at a time. Furthermore, the quality of the prediction of
a simulation was tested with the following parameters: g = 725 cm/s2, A = 0.14
and h = 0.3 cm. As an input, the first 10 images of the simulation were given,
while predicting a total of 49 time steps.

The results of PredRNN prediction are shown in Table 4. The columns rep-
resent time steps ranging from the initial time of Tinit = 0.03 s to the final
time of Tfin = 0.4 s. The first and third rows of images represent the images of
the corresponding time steps of the experiment and the simulation respectively,
and as such can be considered to be Ground Truths (GTs). The second and
the fourth rows of images represent the prediction of PredRNN on the corre-
sponding time steps of the filled experiment and the simulation, respectively. As
one can see, PredRNN produces almost identical predictions to the GT images.
To evaluate the quality of the image produced by PredRNN, Peak Signal-to-
Noise Ratio score was used. PSNR measures the quality of reconstruction of loss

76 R. Harel et al.

Table 4. PredRNN prediction of the experiment and simulation.

(a) PredRNN SSIM (b) PredRNN PSNR

Fig. 6. Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio
(PSNR) scores of the predicted experimental and simulated results.

compression codecs. When comparing the different images, PSNR is an approx-
imation to human perception of reconstruction quality. Complementary, Struc-
tural Similarity Index Measure (SSIM) that predicts the perceived quality of
the images [52] was used. In Fig. 6 quantifies the quality of the predicted images
using PSNR and SSIM evaluation tests between the produced PredRNN images
to their corresponding GT images, similarly to [50]. Both scores measure the
similarity between the predicted frame and its corresponding GT frame. These
scores decrease as time progresses, due to the expected difficulty of the model
to predict the distant future. However, its worth noting that a simple image
sharpening on the predicted results can dramatically increase both SSIM and
PSNR scores.

Complete CVDL Methodology for Investigating Hydrodynamic Instabilities 77

6 Conclusions and Future Work

This work presents a state-of-the-art complete CVDL methodology for investi-
gating hydrodynamic instabilities. First, the problems were defined and their sig-
nificance was emphasised. Second, a new comprehensive tagged database, which
contains simulated diagnostics for training, and experimental ones for testing,
was created for the needed learning process. Third, it was shown how the novel
methodology targets the main acute problems in which CVDL can aid in the
current analysis process, namely using deep image retrieval; regressive deep con-
volutional neural networks; quality aware deep template matching; and deep
spatiotemporal prediction. Fourth, a new physical loss and evaluation method-
ology was formed. This methodology enables to compare the performances of the
model against the physical reality, and by such to validate its predictions. At
last, the usage of the methods on the trained models was exemplified and their
performances were exemplified using the new physical loss methodology. In all of
the four tasks, excellent results, which prove the methodology suitability to the
problem domain were achieved. Thus, it is stressed that the proposed method-
ology can and should be an essential part of the hydrodynamic instabilities
investigation toolkit, along with analytical and statistical models, experiments
and simulations.

In regard to future work, an extension of the methodology might be useful
for solving the discrepancy between simulations and experiments when it is clear
that the initial parameters of the simulation does not cover the entire physical
scope. Since in many cases a classical parameter sweep does not yield the desired
results, an extension of the model – in the form of unmodelled parameters regres-
sion – should be used. For example, it might be useful for the physical problem
presented in [29,30], in which the simulation results do not cope with the exper-
imental ones. Thus, an extended deep regressive parameter extraction model
should be applied in a new form such that unknown parameters – i.e. param-
eters which are not part of the simulation initiation – could be discovered and
formulated. This is crucial, as numerous current efforts suggest that often there
is a missing part in the understanding of the simulated results. Thus, preventing
any traditional method to match the simulated results to the experimental ones.
Once discovered, in order to understand and formulate said unknown parame-
ters, an extensive Explainable AI (XAI) methodology [53] should be performed.

Another strength of the presented methodology is that it can be applied on an
already existing data in case that parameter sweep was previously performed on
other physical data. Therefore, it might yield physical insights without running
any additional simulation. In addition, the toolkit can be easily suited to the
physical problem. For example, if the width of vortices was investigated in a
previous research [27,33,54], template matching would be useful for investigating
the inner structure of the vortices; With series of experimental images from
different times at hand, the spatiotemporal prediction can be used for prediction
of results at unmeasured times. Finally, the models presented in this work might
be invaluable for learning physical problems with less training data and a more
complex form, using Transfer Learning [55].

78 R. Harel et al.

Acknowledgments. This work was supported by the Lynn and William Frankel Cen-
ter for Computer Science. Computational support was provided by the NegevHPC
project [56].

References

1. Sharp, D.H.: Overview of Rayleigh-Taylor instability. Technical report, Los Alamos
National Lab., NM (USA) (1983)

2. Drazin, P.G.: Introduction to Hydrodynamic Stability, vol. 32. Cambridge Univer-
sity Press, Cambridge (2002)

3. Read, K.I.: Experimental investigation of turbulent mixing by Rayleigh-Taylor
instability. Phys. D Nonlinear Phenom. 12, 45–58 (1984)

4. Dalziel, S.B.: Rayleigh-Taylor instability: experiments with image analysis. Dyn.
Atmos. Ocean. 20(1–2), 127–153 (1993)

5. Dimonte, G., Schneider, M.: Turbulent Rayleigh-Taylor instability experiments
with variable acceleration. Phys. Rev. E 54(4), 3740 (1996)

6. Waddell, J.T., Niederhaus, C.E., Jacobs, J.W.: Experimental study of Rayleigh-
Taylor instability: low Atwood number liquid systems with single-mode initial per-
turbations. Phys. Fluids 13(5), 1263–1273 (2001)

7. Knauer, J.P., et al.: Single-mode, Rayleigh-Taylor growth-rate measurements on
the omega laser system. Phys. Plasmas 7(1), 338–345 (2000)

8. Remington, B.A., et al.: Rayleigh-Taylor instabilities in high-energy density set-
tings on the national ignition facility. Proc. Natl. Acad. Sci. 116(37), 18233–18238
(2019)

9. Goncharov, V.N.: Analytical model of nonlinear, single-mode, classical Rayleigh-
Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88(13), 134502
(2002)

10. Youngs, D.L.: Numerical simulation of turbulent mixing by Rayleigh-Taylor insta-
bility. Phys. D Nonlinear Phenom. 12(1–3), 32–44 (1984)

11. Spears, B.K., et al.: Deep learning: a guide for practitioners in the physical sciences.
Phys. Plasmas 25(8), 080901 (2018)

12. Humbird, K.D., Peterson, J.L., Spears, B.K., McClarren, R.G.: Transfer learning
to model inertial confinement fusion experiments. IEEE Trans. Plasma Sci. 48,
61–70 (2019)

13. Gonoskov, A., Wallin, E., Polovinkin, A., Meyerov, I.: Employing machine learning
for theory validation and identification of experimental conditions in laser-plasma
physics. Sci. Rep. 9(1), 7043 (2019)

14. Avaria, G., et al.: Hard X-ray emission detection using deep learning analysis of the
radiated UHF electromagnetic signal from a plasma focus discharge. IEEE Access
7, 74899–74908 (2019)

15. Humbird, K.D.: Machine learning guided discovery and design for inertial confine-
ment fusion. PhD thesis (2019)

16. Gaffney, J.A., et al.: Making inertial confinement fusion models more predictive.
Phys. Plasmas 26(8), 082704 (2019)

17. Kustowski, B., Gaffney, J.A., Spears, B.K., Anderson, G.J., Thiagarajan, J.J.,
Anirudh, R.: Transfer learning as a tool for reducing simulation bias: application
to inertial confinement fusion. IEEE Trans. Plasma Sci. 48, 46–53 (2019)

18. Kim, Y.J., Lee, M., Lee, H.J.: Machine learning analysis for the soliton formation in
resonant nonlinear three-wave interactions. J. Korean Phys. Soc. 75(11), 909–916
(2019). https://doi.org/10.3938/jkps.75.909

https://doi.org/10.3938/jkps.75.909

Complete CVDL Methodology for Investigating Hydrodynamic Instabilities 79

19. Gonoskov, A.: Employing machine learning in theoretical and experimental studies
of high-intensity laser-plasma interactions (2019)

20. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a
deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

21. Raissi, M., Wang, Z., Triantafyllou, M.S., Karniadakis, G.E.: Deep learning of
vortex-induced vibrations. J. Fluid Mech. 861, 119–137 (2019)

22. Mohan, A.T., Gaitonde, D.V.: A deep learning based approach to reduced order
modeling for turbulent flow control using lstm neural networks. arXiv preprint
arXiv:1804.09269 (2018)

23. Wang, Z., et al.: Model identification of reduced order fluid dynamics systems using
deep learning. Int. J. Numer. Methods Fluids 86(4), 255–268 (2018)

24. Lye, K.O., Mishra, S., Ray, D.: Deep learning observables in computational fluid
dynamics. J. Comput. Phys. 410, 109339 (2020)

25. Nathan Kutz, J.: Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4 (2017)
26. Huang, H., Xiao, B., Xiong, H., Zeming, W., Yadong, M., Song, H.: Applications

of deep learning to relativistic hydrodynamics. Nucl. Phys. A 982, 927–930 (2019)
27. Wan, W.C., et al.: Observation of single-mode, Kelvin-Helmholtz instability in a

supersonic flow. Phys. Rev. Lett. 115(14), 145001 (2015)
28. Fryxell, B., et al.: The possible effects of magnetic fields on laser experiments of

Rayleigh-Taylor instabilities. High Energy Density Phys. 6(2), 162–165 (2010)
29. Kuranz, C.C., et al.: How high energy fluxes may affect Rayleigh-Taylor instability

growth in young supernova remnants. Nat. Commun. 9(1), 1–6 (2018)
30. Huntington, C.M., et al.: Ablative stabilization of Rayleigh-Taylor instabilities

resulting from a laser-driven radiative shock. Phys. Plasmas 25(5), 052118 (2018)
31. RayleAI Database. https://github.com/scientific-computing-nrcn/RayleAI
32. Klein, Y.: Construction of a multidimensional parallel adaptive mesh refinement

special relativistic hydrodynamics code for astrophysical applications. Master’s
Thesis (2010)

33. Wan, W.C., et al.: Observation of dual-mode, Kelvin-Helmholtz instability vortex
merger in a compressible flow. Phys. Plasmas 24(5), 055705 (2017)

34. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

35. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
GAN: interpretable representation learning by information maximizing generative
adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–
2180 (2016)

36. Gan-Image-Similarity code repository. https://github.com/marcbelmont/gan-
image-similarity

37. Chatzichristofis, S.A., Lux, M.: Lire: Lucene image retrieval - an extensible Java
CBIR library (2008)

38. The Apache Lucene project. https://lucene.apache.org
39. Zhang, D., Wong, A., Indrawan, M., Lu, G.: Content-based image retrieval using

Gabor texture features. IEEE Trans. Pami 13, 13–15 (2000)
40. Thanamani, A.S., Haridas, K.: Well-organized content based image retrieval system

in RGB color histogram, Tamura texture and Gabor feature (2014)
41. Chatzichristofis, S.A., Boutalis, Y.S.: FCTH: fuzzy color and texture histogram-a

low level feature for accurate image retrieval. In: 2008 Ninth International Work-
shop on Image Analysis for Multimedia Interactive Services, pp. 191–196. IEEE
(2008)

http://arxiv.org/abs/1804.09269
https://github.com/scientific-computing-nrcn/RayleAI
https://github.com/marcbelmont/gan-image-similarity
https://github.com/marcbelmont/gan-image-similarity
https://lucene.apache.org

80 R. Harel et al.

42. Lathuilière, S., Mesejo, P., Alameda-Pineda, X., Horaud, R.: A comprehensive
analysis of deep regression. IEEE Trans. Pattern Anal. Mach. Intell. 42(9), 2065–
2081 (2019)

43. Fischer, P., Dosovitskiy, A., Brox, T.: Image orientation estimation with convo-
lutional networks. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS,
vol. 9358, pp. 368–378. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24947-6 30

44. Mahendran, S., Ali, H., Vidal, R.: 3D pose regression using convolutional neu-
ral networks. In: Proceedings of the IEEE International Conference on Computer
Vision Workshops, pp. 2174–2182 (2017)

45. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283 (2016)

46. Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Prac-
tice. Wiley, Hoboken (2009)

47. Raof, R.A.A., Nazren , A.B.A., Wafi, N.M., Hisham, M.B., Yaakob, S.N.: Template
matching using sum of squared difference and normalized cross correlation. In: 2015
IEEE Student Conference on Research and Development (SCOReD). IEEE (2015)

48. Abd-Almageed, W., Natarajan, P., Cheng, J., Wu, Y.: QATM: quality-aware tem-
plate matching for deep learning. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE (2019)

49. Shi, X., et al.: Convolutional LSTM network: a machine learning approach for
precipitation nowcasting. In: Advances in Neural Information Processing Systems,
pp. 802–810 (2015)

50. Wang, Y., Long, M., Wang, J., Gao, Z., Philip, S.Y.: PredRNN: recurrent neu-
ral networks for predictive learning using spatiotemporal Lstms. In: Advances in
Neural Information Processing Systems, pp. 879–888 (2017)

51. Ding, C., He, X.: K-means clustering via principal component analysis. In: Pro-
ceedings of the Twenty-First International Conference on Machine Learning, p. 29
(2004)

52. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th Interna-
tional Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

53. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

54. Shimony, A., et al.: Construction and validation of a statistical model for the
nonlinear Kelvin-Helmholtz instability under compressible, multimode conditions.
Phys. Plasmas 25(12), 122112 (2018)

55. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer
learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis,
I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01424-7 27

56. NegevHPC Project. http://www.negevhpc.com

https://doi.org/10.1007/978-3-319-24947-6_30
https://doi.org/10.1007/978-3-319-24947-6_30
https://doi.org/10.1007/978-3-030-01424-7_27
http://www.negevhpc.com

Prediction of Acoustic Fields Using a
Lattice-Boltzmann Method and Deep

Learning

Mario Rüttgers1,2,3(B) , Seong-Ryong Koh2 , Jenia Jitsev2 ,
Wolfgang Schröder1,3 , and Andreas Lintermann2,3

1 Institute of Aerodynamics and Chair of Fluid Mechanics,
RWTH Aachen University, Wüllnerstraße 5a, 52062 Aachen, Germany

m.ruettgers@aia.rwth-aachen.de
2 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH,

Wilhelm-Johnen-Straße, 52425 Jülich, Germany
3 Jülich Aachen Research Alliance Center for Simulation and Data Science,

Seffenter Weg 23, 52074 Aachen, Germany

Abstract. Using traditional computational fluid dynamics and aeroa-
coustics methods, the accurate simulation of aeroacoustic sources
requires high compute resources to resolve all necessary physical phe-
nomena. In contrast, once trained, artificial neural networks such as deep
encoder-decoder convolutional networks allow to predict aeroacoustics at
lower cost and, depending on the quality of the employed network, also
at high accuracy. The architecture for such a neural network is developed
to predict the sound pressure level in a 2D square domain. It is trained
by numerical results from up to 20,000 GPU-based lattice-Boltzmann
simulations that include randomly distributed rectangular and circu-
lar objects, and monopole sources. Types of boundary conditions, the
monopole locations, and cell distances for objects and monopoles serve
as input to the network. Parameters are studied to tune the predictions
and to increase their accuracy. The complexity of the setup is succes-
sively increased along three cases and the impact of the number of feature
maps, the type of loss function, and the number of training data on the
prediction accuracy is investigated. An optimal choice of the parameters
leads to network-predicted results that are in good agreement with the
simulated findings. This is corroborated by negligible differences of the
sound pressure level between the simulated and the network-predicted
results along characteristic lines and by small mean errors.

Keywords: Deep convolutional neural networks · Aeroacoustic
predictions · Lattice-boltzmann method

1 Introduction

State-of-the-art machine learning (ML), e.g., deep learning (DL) techniques that
require very large datasets for successful training, can greatly benefit from high-
performance computing (HPC) simulations. Such simulations can be used to
c© The Author(s) 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 81–101, 2020.
https://doi.org/10.1007/978-3-030-59851-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_6&domain=pdf
http://orcid.org/0000-0003-3917-8407
http://orcid.org/0000-0001-7020-7267
http://orcid.org/0000-0002-1221-7851
http://orcid.org/0000-0002-3472-1813
http://orcid.org/0000-0003-3321-6599
https://doi.org/10.1007/978-3-030-59851-8_6

82 M. Rüttgers et al.

generate lots of training data. They come with the flexibility to obtain datasets
corresponding to various task setting parameterizations, which can be used to
train ML models. In contrast, obtaining data from experiments can be costly,
less flexible, and sometimes even impossible. Trained ML models are capable of
performing different forms of predictions on variables of interest if novel input
is provided. Their knowledge is based on observations of phenomena acquired
from the training on simulated data. Such data-driven models are often used as
surrogate models to accelerate predictions compared to classical computationally
demanding simulators, given the accuracy provided is sufficient.

Especially in the field of computational fluid dynamics (CFD), DL models
trained on simulated data are capable of accelerating the prediction of flow fields.
Conventional flow solvers need time to reach solutions at which the impact of
initial conditions vanishes. Then, they can be used to compute, e.g., averaged
results of the flow. In this case, the period of averaging needs to be bridged
before the results can be analyzed. To overcome this issue, methods to accel-
erate the prediction of steady flow fields using convolutional neural networks
(CNNs) are studied [3,7]. In [7], the flow over simplified vehicle bodies is pre-
dicted with CNNs. The corresponding surrogate model is considerably faster
than traditional flow solvers. In [3], CNNs are successfully applied to predict
flow fields around airfoils with varying angles of attack and Reynolds num-
bers. Lee and You [16] predict the unsteady flow over a circular cylinder using
DL methods. They reveal large-scale vortex dynamics to be well predictable
by their models. In [17], CNNs to predict unsteady three-dimensional turbu-
lent flows are investigated. The CNNs correctly learn to transport and integrate
wave number information contained in feature maps. Additionally, a method
that can optimize the number of feature maps is proposed. Unsteady flow and
force coefficients are the main focus of the investigations in [22], in which a data-
driven method using a CNN for model reduction of the Navier-Stokes equations
is presented. In [27], a generative adversarial network (GAN) to forecast move-
ments of typhoons is used and satellite images along with velocity information
from numerical simulations are incorporated. This allows for 6-hour predictions
of typhoons with an averaged error <95.6 km. Unlike numerical predictions on
HPC systems, the GAN-based method takes only seconds. Bode et al. [4] pro-
pose a physics-informed GAN and successfully model flow on subgrid scales in
turbulent reactive flows.

To improve quality and robustness of DL models, training is frequently per-
formed on very large data sets obtained from simulations run on HPC sys-
tems. In aerodynamic problems, small-scale structures and/or fluid mechan-
ics based perturbations can strongly influence the acoustic field although they
might contain only a small amount of total energy. In many engineering applica-
tions, modeling flow-induced sound requires interdisciplinary knowledge about
fluid mechanics, acoustics, and applied mathematics. Furthermore, the numeri-
cal analysis demands high-resolution numerical simulations to accurately deter-
mine the various flow phenomena, e.g., turbulent shear layers [24], fluid-structure
interactions [6], and combustion processes [29], that determine the acoustic field.

Prediction of Acoustic Fields Using an LB Method and DL 83

The sheer quantity and often high dimensionality of the parameters describing
such flow fields complicate post-processing of the simulated data. This poses a
challenge to derive new control models and to make progress in design opti-
mizations [13,33]. The turn-around time between prototyping and manufactur-
ing depends on the complexity of fundamental physical mechanisms. A recent
effort to enhance the efficiency of design development employs an ML framework
to predict acoustic fields of a variety of fan nozzle and jet configurations [21].
Although the concept has not yet been realized, this ML-based approach illus-
trates a prospective possibility to reduce design cycle times of new engine
configurations.

The main objective of the present study is the prediction of acoustic fields via
a robust ML model based on a deep encoder-decoder CNN. The CNN is trained
by acoustic fields containing noise sources surrounded by multiple objects. The
numerical results are obtained from simulations using a lattice-Boltzmann (LB)
method. They include the simulation of wave propagation, reflection, and scat-
tering due to the interaction with sound-hard surfaces.

In the following, the numerical methods to predict room aeroacoustics with
CNNs are described in Sect. 2. Subsequently, results from the sound fields pre-
dicted by CNNs are presented and juxtaposed to results of LB simulations in
Sect. 3. Finally, a summary is given, conclusions are drawn, and an outlook is
presented in Sect. 4.

2 Numerical Methods

To generate training data for the CNN, aeroacoustic simulations are run with an
LB method on two-dimensional rectangular meshes. The LB method is described
in Sect. 2.1, followed by a presentation of the geometrical setup, and the com-
putational meshes in Sect. 2.2. Section 2.3 explains the imposed boundary and
initial conditions. Section 2.4 describes how the acoustic fields are analyzed.
Finally, the network architecture for the prediction of aeroacoustic fields is pre-
sented in Sect. 2.5.

2.1 Lattice-Boltzmann Method

To compute the aeroacoustic pressure field, an LB method is employed. The
governing equation is the Boltzmann equation with the simplified right-hand
side (RHS) Bhatnagar-Gross-Krook (BGK) collision term [2]

∂f

∂t
+ ξk

∂f

∂xk
= −1

τ
(f − feq). (1)

The particle probability density functions (PPDFs) f = f(�x, �ξ, t) describe the
probability to find a particle of a fluid around a location �x with a particle velocity
�ξ at time t [1,8]. The left-hand side (LHS) of Eq. (1) describes the evolution
of fluid particles in space and time, while the RHS describes the collision of

84 M. Rüttgers et al.

Table 1. Physical quantities of the setup and the non-dimensional viscosity ν.

Mesh Δx̃ [m] Δt̃ [s] ω̃ [Hz] ν̃ [m2/s] ν

Mc 0.2 3.4 · 10−4 58.8 1.551717 · 10−5 1.318959 · 10−7

Mf 0.1 1.7 · 10−4 117.6 1.551717 · 10−5 2.637920 · 10−7

particles. The collision process is governed by the relaxation parameter 1/τ with
relaxation time τ to reach the Maxwellian equilibrium state feq. The discretized
form of Eq. (1) yields the lattice-BGK equation

fk(�x + ξkΔt, t + Δt) = fk(�x, t) − 1
τ

(fk(�x, t) − feq
k (�x, t)). (2)

The quantity Δt is the time increment and τ is a function of the kinematic
viscosity ν and the speed of sound cs, i.e.,

τ =
ν + Δtc2s/2

c2s
. (3)

In the LB context, the spatial and temporal spacing are set to Δx = Δt = 1.0
such that cs = 1/

√
3. Table 1 exemplarily lists the LB viscosity for two meshes

Mc and Mf with different resolutions. Note that these values are derived in
Sect. 2.3. The LB viscosity is an artificial parameter simply influencing the time
step, i.e., how much physical time t̃ is covered by a single Δt in the simulation.
Using the viscosities listed in Table 1 would lead to extremely small time steps.
For this reason and in order to conduct numerically stable simulations, ν is set
to a feasible value according to [28]. The indices k in Eq. (2) depend on the
discretization scheme and represent the different directions of the PPDFs. In
this work, the two-dimensional discretization scheme with 9 PPDFS, i.e., the
D2Q9 model [25] is used. The discretized equilibrium PPDF is given by

feq
k = wkρ

(
1 +

ξk�u

c2s
+

(ξk�u)2

2c4s
− �u2

2c2s

)
, (4)

where the quantities wk are weighting factors for the D2Q9 scheme given by 4/9
for k ∈ {0}, 1/9 for k ∈ {1, . . . , 4}, and 1/36 for k ∈ {5, . . . , 8}, and �u is the
fluid velocity. The macroscopic variables can be obtained from the moments of
the PPDFs, i.e., the density ρ =

∑
k fk. The pressure can be computed using

the ideal gas law by p = c2sρ = (1/3)ρ.
The LB method has been chosen for several reasons [18]: (i) the computations

can be performed efficiently in parallel, (ii) it is straightforward to parallelize
the code, (iii) boundary conditions can easily be applied in contrast to, e.g.,
cut-cell methods, and (iv) there is no need to solve a pressure Poisson-equation
for quasi-incompressible flow as the pressure and hence the acoustic field is an
explicit result of the lattice-BGK algorithm. Furthermore, the LB method can
be applied for low to high Knudsen numbers Kn. In the continuum limit, i.e.
for small Kn, the Navier-Stokes and Euler equations can directly be derived
from the Boltzmann equation and the BGK model [8].

Prediction of Acoustic Fields Using an LB Method and DL 85

Fig. 1. Computational domain.

2.2 Geometrical Setup and Computational Meshes

The computational domain has a square shape containing randomly distributed
objects. In physical space, denoted in the following by < ˜>, the domain has
an edge length of L̃ = 25.6 m. Throughout this study, the number of objects
varies depending on the complexity of a computation. The domain of the most
complex case is shown in Fig. 1. It has two rectangular objects R1 and R2 and two
circular objects C1 and C2. Their size is a function of the characteristic length
C̃ = L̃/16, i.e., R1 and R2 have edge lengths ẽ1(R1), ẽ2(R1), ẽ1(R2), ẽ2(R2) ∈
[C̃, 2C̃], and C1 and C2 have radii r̃(C1), r̃(C2) ∈ [C̃, 2C̃]. All objects have a
minimum distance of d̃ = C̃ from the domain boundaries and may overlap.

Two-dimensional uniformly refined meshes Mf and Mc with two distinct
resolutions are generated in Cartesian coordinates. In the fine mesh Mf each
cell has an edge length of Δx̃f = (1/16)C̃ = 0.1 m resulting in 256 × 256 cells.
The coarse mesh Mc has a cell length of Δx̃c = (1/8)C̃ = 0.2 m and a total of
128 × 128 cells.

2.3 Boundary and Initial Conditions

Two types of boundary conditions are imposed at the four domain boundaries
according to [11], i.e., non-reflecting (NRBCs) and wall boundary conditions
(WBCs) are prescribed. As shown for boundaries III and IV in Fig. 1, the NRBCs
have a buffer layer thickness of D̃ = C̃ to ensure a complete dissipation of
acoustic waves and to avoid reflective phenomena at the domain boundaries. In
the buffer layer, an absorption term [11]

Fad = −σ(feq
k (�x, t) − fa), (5)

with weighting factor fa and σ = σm(δ̃/D̃)2 is added to Eq. (2). The quantity δ̃
is the distance to the buffer layer and σm is a constant specified as 0.1.

86 M. Rüttgers et al.

The WBCs are characterized by a no-slip behavior, where the PPDFs are
reflectively bounced back. They are imposed as a layer with thickness D̃ = C̃
as shown for boundaries I and II in Fig. 1, i.e., the computational domain is
reduced by this thickness. In computations with WBC, a maximum number of
three domain boundaries is specified as WBC in a random process. To prevent
strong overlaps of acoustic waves, which may cause numerical instabilities, at
least at one domain boundary an NRBC is imposed.

The acoustic fields, which are exploited to train the CNN model, are config-
ured by a simple source S defined by a sinusoidal function given by

S(t) = A · sin(2πωt), (6)

with a frequency ω = 0.02 · (1/Δt) and the amplitude A = 0.1 ·ρ∞ and ρ∞ = 1.0
in the LB context. A set of the training data is generated by the computational
domains with a noise source restricted by a geometry, i.e., the minimum distance
C̃ between the noise source and the sound-hard objects satisfies the condition
L < 2C̃ where L is a distance between monopoles and domain boundaries.
With ω = 1/T , this yields a non-dimensionalized harmonic period of T = 50Δt.
One wavelength λ is computed from λ = uw/ω, with uw = Δx/Δt being the
velocity with which information is transported in the LB context. This results
in λ = 50Δx for computations in this study, if not stated otherwise.

The relationship between ω in LB context and the frequency ω̃ in physical
space is obtained by inserting

Δt̃ = Δx̃
cs
c̃s

, (7)

with the physical speed of sound c̃s = 340 m/s at reference temperature T∞ =
298.15K into the equation for the frequency ω̃ = 0.02(1/Δt̃). The relationship
between ν in the LB context and the kinematic viscosity ν̃ in physical space is
given by

ν = ν̃ · Δt̃

(Δx̃)2
with ν̃ =

1
ρ̃∞

· K1 · T
3
2∞

T∞ + K2
. (8)

The latter equation is Sutherland’s law [32] with ρ̃∞ = 1.184 kg/m3, K1 =
1.458·10−6 kg/(ms ·K1/2), and K2 = 110.4K. Table 1 lists all necessary variables
in their dimensional and non-dimensional form for Mf and Mc.

2.4 Evaluation of Acoustic Fields

The acoustic fields are determined by a set of the computational domains which
include at least one noise source and randomized solid surfaces. For fluid cells
at location (i, j), i, j ∈ {1, . . . ,m}, the sound pressure level SPL is defined by

SPL(i, j) = 20 log10(p
′
rms(i, j)), (9)

where the maximum number of mesh points m is m = 128 for the coarse grid
and m = 256 for the fine grid configurations. The root-mean-square (rms) values
of pressure fluctuations p′ are calculated by

Prediction of Acoustic Fields Using an LB Method and DL 87

p′
rms(i, j) =

√∑N
n=1(pn(i, j) − pavg(i, j))2

N
, (10)

where pavg(i, j) is the mean pressure averaged over the time period N , and
pn(i, j) is the instantaneous pressure resulting from the simulation at a time
step n within that period. Simulations are carried out for 3, 000 time steps. The
averaging period N = 2, 000 starts after 1, 000 time steps when the acoustic field
is fully developed.

2.5 Machine Learning Techniques

An encoder-decoder CNN is trained to predict the SPL in a supervised manner
using results of the aforementioned LB simulations. The CNN is fed with four
types of input data:

(i) types of boundary condition;
(ii) location of monopoles;
(iii) cell distances for objects;
(iv) cell distances for monopoles.

To correctly predict aeroacoustic fields, the CNN needs to learn the impact of
the various boundary conditions and the location of monopoles on the acoustic
field. Therefore, considering inputs (i) and (ii), cells at location (i, j) are assigned
segmentation values

Υ (i, j) =

⎧⎪⎨
⎪⎩

0, empty or NRBC cell
1
2 , WBC or object cell
1, monopole cell

. (11)

A sensitivity analysis of the input data has been performed before the train-
ing. This analysis revealed that solely using boundary parameters leads to poor
predictions of the network, i.e., it is not effective for CNNs learning from flow
simulations. This is in line with findings in [7]. Since acoustic signals propagate
with a certain wavelength and amplitude at a certain sound speed, distances are
also important parameters for learning. For this purpose, inputs (iii) and (iv)
are provided to the CNN in the form of distance functions Φo for objects and Φm

for monopoles. Such an approach has previously been used for CNNs to predict
steady-state flow fields [3,7]. The distance functions are defined by

Φo(x) =

{
d(x, ∂Ω) x /∈ Ω

0 x ∈ {∂Ω,Ω} and Φm(x) = d(x,M), (12)

88 M. Rüttgers et al.

i.e., for each cell x with location (i, j) in a domain the minimal distances d(x, ∂Ω)
and d(x,M) to the boundary ∂Ω of an object Ω and to a monopole M are deter-
mined. Obviously, it is Φo(x) = Φm(x) = 0 on the boundary and exactly at the
monopole source. For Φo, an assignment of negative distances for cells inside of
an object, as it is usually used by signed-distance functions, turned out to have
a negative impact on predictions, which is why ∀(x ∈ Ω : Φo = 0). The dis-
tances are computed by the fast marching method [30] and are normalized by L̃.
Learning from distances like inputs (iii) and (iv) alone results in mispredictions
near domain boundaries. A combination of all presented types of inputs has been
found to favorably affect predictions.

In the following, the CNN used for predicting the SPL fields is referred to
as acoustics field predictor (AFP). The corresponding network architecture is
shown in Fig. 2 for a case that uses arrays with the size of Mf as inputs. Inputs
(i) and (ii) are combined to one array. Together with fields (iii) and (iv) they are
stacked to form channels of the input. It should be noted that physical quantities
such as the pressure distribution are a solution of the acoustic fields computation
and constitute the ground truth. They are not known a priori and hence cannot
be used for training.

i,ii

iii

iv
256x256x3

Conv-Block
KS: 7x7

FM: Y (256x256)

Conv-Block
KS: 5x5

FM: 2Y (128x128)

Conv-Block
KS: 5x5

FM: 4Y (64x64)

Conv-Block
KS: 3x3

FM: 8Y (32x32)

Conv-Block
KS: 3x3

FM: 16Y (16x16)

32x32x8Y

DeConv

32x32x8Y

DeConv, 64x64x4Y

64x64x4Y

Conv-Block
KS: 3x3

FM: 8Y (32x32)

Conv-Block
KS: 5x5

FM: 4Y (64x64)

128x128x2Y
Conv-Block

KS: 5x5
FM: 2Y (128x128)

DeConv, 128x128x2Y

256x256xY
Conv-Block

KS: 5x5
FM: Y (256x256)

DeConv, 256x256xY

Long skip connection

SPL

Convolution layer

Batch Normalization

ReLU activation

Convolution layer

Batch Normalization

ReLU activation

Conv-Block:

MP

MP

MP

MP,DO

DO

Linear
activation

256x256

S
hort skip

connection

Long skip connection

Long skip connection

Long skip connection

Fig. 2. Network architecture of the AFP including size and number of feature maps
(FMs) as a multiple of Y , kernel size (KS), 2 × 2 maximum pooling layers (MP),
dropout layers (DO), convolutional blocks, and deconvolutional layers.

Prediction of Acoustic Fields Using an LB Method and DL 89

The architecture is inspired by distinct architectures that employ long skip
connections between encoder and decoder layers [19,26,34], like for instance
U-net architectures, which have been successfully used for medical image seg-
mentation [26]. Skip connections between encoding and decoding paths allow
the re-use and fusion of features on different scales. To preserve information
from features on all scales, the activity of each encoder layer is directly fed to
the corresponding decoder layer via long skip connections. These connections
are chosen to have residual form, adding the activity of encoder layers to the
output of decoder layers. This setup is similar to [19], however, different from
the original U-net architecture, where long skip connections have dense form and
concatenate layers on the same scale. As depicted in Fig. 2, the residual long skip
connections perform identity mapping by adding source encoder layer outputs
to target decoder layer outputs [9,19]. This kind of connectivity allows for direct
gradient flow from higher to lower layers across all hierarchy stages during the
backward pass, which prevents common issues with vanishing gradients in deep
architectures. In contrast to dense long skip connections, residual skip connec-
tions lead to smaller numbers of activations to be handled in the decoding path
during the forward and backward passes. As a consequence, they decreased mem-
ory consumption and are more efficient and faster in training without sacrificing
prediction accuracy. Short skip residual connections are also used in so called
convolutional residual blocks (Conv-Blocks). Here, convolutional layers, batch
normalization (BN), and rectified linear unit (ReLU) activation functions are
employed. BN acts as a regularizer, shifting activity of the layers to zero mean,
unit variance. This leads to faster and more reliable network convergence [10].
The number of feature maps (FMs) is a multiple of a given factor Y . The output
of the first convolutional layer is added to the input of the last ReLU activa-
tion, see Fig. 2, which defines residual short skip connections in Conv-Blocks. A
combination of long and short skip connections leads to faster convergence and
stronger loss reduction [5]. In the encoder path, downscaling is performed by
2 × 2 maximum pooling layers (MP). To further avoid overfitting, yet another
regularization method, dropout (DO) [31] is used during training, with a DO
probability of P = 0.5. The final layer is fully connected with a linear activation
function, which is frequently used for regression outputs [15]. Weights and biases
are initialized from a truncated normal distribution centered around the origin
with a standard deviation of σstd =

√
2/f , where f is the number of connections

at a layer [9]. They are updated by an adaptive moments (ADAM) optimizer [12].
The ADAM optimizer adjusts the learning rate (LR) by considering an expo-
nentially decaying average of gradients computed in previous update steps. The
initial learning rate is set to LR = 0.001. The batch size BS represents the
number of training data passed to the network in a single training iteration. In
Sect. 3 it will be shown that in this context a batch size of BS = 5 achieves the
best results. Therefore, it is used throughout this study, if not stated otherwise.
The ground truth GT distribution SPLGT is obtained from

SPLGT =
SPL − SPLmean

SPLstd
, (13)

90 M. Rüttgers et al.

where SPLmean and SPLstd are the mean and the standard deviation of the
complete training dataset of the a priori simulations. The predictions need to be
denormalized before the SPL can be analyzed.

Data augmentation is used to increase training data diversity and to encour-
age learning of useful invariances. Therefore, the coordinate axes i and j are
transposed randomly. Furthermore, for inputs (i) and (ii), the segmentation val-
ues Υ (i, j) are changed to augmented inputs Υaugm(i, j) according to

Υaugm(i, j) =

{
Υ (i, j) i = j

Υ (j, i) i �= j.
(14)

The total loss Ltot between simulated (superscript “sim”) and predicted (super-
script “pred”) SPL values is defined by

Ltot = LMSE + 2 · (
LI
GDL + LII

GDL + LIII
GDL + LIV

GDL

)
︸ ︷︷ ︸

LGDL

, (15)

which is a combination of the mean squared error MSE

LMSE =
1

m2

m∑
i=1

m∑
j=1

(
SPL(i, j)sim − SPL(i, j)pred

)2
(16)

with 1 ≤ i, j ≤ m and a gradient difference loss LGDL. Gradient losses GDL in
i- and j-directions are considered by LGDLI

and LGDLII
, and diagonal gradients

by LGDLIII
and LGDLIV

.
Three types of gradient losses are addressed in this work. The four directions

indicated by roman numbers I–IV in Eq. (15) are defined by introducing integer
variables k and l, i.e., the four directions are denoted by I : (k = 1, l = 1),
II : (k = 2, l = 2), III : (k = 1, l = 2), and IV : (k = 2, l = 1). In the first type,
LGDLA

, the difference between two neighboring cells is considered, inspired by
the gradient loss in the work of Mathieu et al. [20]

LGDLA
=

1
(m − 1)(m − mod(p, 2))

·
∑
i

∑
j

[
SPLsim

i+s,j+t − SPLsim
i,j − SPLpred

i+s,j+t + SPLpred
i,j

]2
. (17)

In Eq. (17) the gradient losses of four neighboring points are defined by the
notations p = mod(k, 2) + mod(l, 2), s = 1 − mod(k + 1, 2) · mod(l + 1, 2), and
t = (−1)k+1 · mod(p, 2) + 1 − s. The gradient loss terms of the first type have
a 1st-order accuracy in terms of a forward difference (FD) formulation [23]. To
integrate radial propagation of a point source into the loss function, central
difference (CD) schemes are added. The gradient loss LGDLB

uses a 2nd-order
accurate CD formulation that incorporates two neighboring cells. The 2nd-order
accurate gradient loss terms in a two-dimensional domain read

Prediction of Acoustic Fields Using an LB Method and DL 91

LGDLB
=

1
4 mod(k + l + 1, 2) + 8 mod(k + l, 2)(m − 2)(m − 2 · mod(p, 2))

·
∑
i

∑
j

[
SPLsim

i+s,j+t − SPLsim
i−s,j−t − SPLpred

i+s,j+t + SPLpred
i−s,j−t

]2 (18)

The third type of gradient loss, LGDLC
, is formulated with a 4th-order accurate

CD scheme and includes four neighboring cells, i.e., two cells in each direction

LGDLC
=

1
144 mod(k + l + 1, 2) + 32 mod(k + l, 2)(m − 4)(m − 4 · mod(p, 2))

·
∑
i

∑
j

[− SPLsim
i+2s,j+2t + 8SPLsim

i+s,j+t − 8SPLsim
i−s,j−t + SPLsim

i−2s,j−2t

+ SPLpred
i+2s,j+2t − 8SPLpred

i+s,j+t + 8SPLpred
i−s,j−t − SPLpred

i−2s,j−2t

]2
.

(19)

The cell-wise prediction accuracy is evaluated by the absolute error

Ξ(i, j) =

∣∣SPLpred(i, j) − SPLsim(i, j)
∣∣

|SPLsim
max − SPLsim

min| . (20)

between SPLpred and SPLsim with SPLsim
max = max(SPLsim) and SPLsim

min =
min(SPLsim). From the Ξ distribution of each simulation a mean absolute error

Γ =
1

m2

m∑
i=1

m∑
j=1

Ξ(i, j) (21)

is calculated to evaluate the prediction quality.

3 Results

In the following, findings of a grid convergence study are discussed in Sect. 3.1.
Results of network-predicted acoustic fields are presented for three cases 1–3 in
Sects. 3.2, 3.3, and 3.4. The complexity of the cases is continuously increased.

The acoustic simulations are conducted on multiple graphics processing units
(GPUs). At average, a solution on Mf is obtained in ≈120 s on a single GPU. Up
to ten GPUs are employed to accelerate the process. Once trained, the network
predictions take only a fraction of a second on a single modern GPU and only
a few seconds on any low end computer such as a laptop. For all computations
the GPU partition of the JURECA system [14], Forschungszentrum Jülich, is
employed. Each GPU node is equipped with two NVIDIA K80 GPUs.

3.1 Grid Convergence Study

A grid convergence study is conducted in a free-field domain containing only a
single monopole at the center and no walls. The impact of doubling the number

92 M. Rüttgers et al.

Fig. 3. a) D = (SPL − SPLmax)/SPLmax at a distance from up to 4λ in radial
direction from a monopole placed in the center of a free field. Three resolutions for one
wavelength are juxtaposed: D(λ = 100Δx) · · ·, D(λ = 50Δx) - - -, D(λ = 25Δx) —.
b) Error E between D(λ = 50Δx) and D(λ = 100Δx).

of cells used to resolve one wavelength λ on the SPL accuracy is investigated.
Therefore, the wavelength resolutions at a distance of up to 4 wavelengths in
radial direction from the source, which corresponds to the maximum appearing
distance considered in the subsequently discussed cases 1–3, is analyzed. In order
to obtain results in a farfield from the center for λ = 100Δx, the domain is
extended to 1, 024 × 1, 024 cells. Figure 3a) shows the divergence D = (SPL −
SPLmax)/SPLmax from the maximum SPL value SPLmax, which appears at
a distance of one wavelength from the monopole location, for λ = 25Δx, 50Δx,
and 100Δx. From this figure, it is evident, that the divergence increases with
increasing distance from the monopole. Furthermore, Fig. 3b) shows the error
for λ = 50Δx compared to λ = 100Δx, i.e., E = D(λ = 50Δx)−D(λ = 100Δx).
Throughout this work a wavelength of λ = 50Δx is used, which covers distances
up to 2λ in cases 1–2, and up to 4λ in case 3. At distances 2λ and 4λ, errors
of E = 0.0239 and E = 0.0657 are obtained. It should be noted that using
λ = 100Δx would massively increase the computational effort and hence, as the
corresponding error is acceptable, meshes with λ = 50Δx are employed in all
cases.

3.2 Case 1: Simple Setup and Parameter Study

The domain in case 1 contains one monopole M1 at the center (8C, 8C) and one
randomly positioned circular object C1. Each computational domain consists of
128×128 cells in the two dimensions. The acoustic solutions of 3, 000 simulations
are split into 2, 600 training data, 200 validation data, and 200 test data. Three
sub-cases 1A, 1B, and 1C listed in Table 2 are configured by one noise source
and one solid object. In case 1A, the number of FMs is investigated by varying
the factor Y as shown in Fig. 2. Variations of Y = 8, Y = 16 and Y = 32
lead to 517, 867, 2, 066, 001 and 8, 253, 089 trainable parameters. It is evident
from comparing Figs. 4b), 4c), and 4d) with the simulation results in Fig. 4a)
that Y = 32 qualitatively reproduces the simulation best. For Y = 8, the AFP

Prediction of Acoustic Fields Using an LB Method and DL 93

Table 2. Simulation configurations defined by objects, the number of noise sources (no.
noise) and simulations (no. sim) generated by randomized distributions of objects. The
number of feature maps (FMs) is defined by Y . The gradient losses GDL are calculated
by FD, 2nd-order-accurate, and 4th-order-accurate CD schemes. The quantities BS and
Γ are the batch size and the mean acoustic error.

Case Object(s) No. noise No. sim Y GDL method BS Γ

1A C1 1 3,000 8 FD 5 0.17506

C1 1 3,000 16 FD 5 0.03312

C1 1 3,000 32 FD 5 0.00887

1B C1 1 3,000 32 FD 5 0.00887

C1 1 3,000 32 2nd order CD 5 0.00671

C1 1 3,000 32 4th order CD 5 0.00222

1C C1 1 3,000 32 2nd order CD 5 0.00671

C1 1 3,000 32 2nd order CD 10 0.00626

C1 1 3,000 32 2nd order CD 20 0.00413

2 R1, C1 1 3,000 32 2nd order CD 5 0.00359

R1, C1 1 6,000 32 2nd order CD 5 0.00280

3 R1, R2, C1, C2 2 6,000 32 2nd order CD 5 0.02581

R1, R2, C1, C2 2 10,000 32 2nd order CD 5 0.02268

R1, R2, C1, C2 2 20,000 32 2nd order CD 5 0.01937

Fig. 4. Example of SPL fields of case 1A: a) simulation result, b) network prediction
with Y = 8, c) Y = 16, and d) Y = 32; e) SPL distribution at j = 64 along LP1:
simulation result · · ·, network prediction with Y = 8 - - -, Y = 16 —, and Y = 32 - · -.

94 M. Rüttgers et al.

completely fails to generate a physically meaningful SPL field. In case of Y = 16,
acoustic waves distant from the object are reproduced well, but superpositions
of acoustic waves in the vicinity of the object are too strong, see Fig. 4c). The
SPL distribution shown in Fig. 4e) along the characteristic line LP1, see Fig. 4a),
substantiates these findings. The valley between M1 and C1, and the decrease
of the SPL value in the shadow of C1 are only captured well for Y = 32.
Furthermore, the CNN has problems capturing fluctuations at the center of M1

as non-physical SPL values are found at isolated locations close to the object.
The mean error Γ listed in Table 2 shows Y = 32 to have the lowest deviation
among the three computations. The training time to reach a convergence of the
loss function increased from approximately one hour for Y = 8 up to two and
four hours for Y = 16 and Y = 32.

To overcome inaccurate predictions close to monopoles, the nature of a noise
source is incorporated into the loss function of the AFP. A simple FD gradient
loss does not consider that monopoles are point sources spreading waves into all
directions. In case 1B, two variations of losses are investigated that are based
on the CD formulations provided in Sect. 2.5. From Fig. 5 it is obvious that
thereby non-physical SPL values vanish near objects. Furthermore, Fig. 5(c)
shows an improvement of the SPL distribution at the center and surroundings
of M1 predicted by a 2nd-order accurate CD gradient loss. In contrast, using a

Fig. 5. Example of SPL fields of case 1B: a) simulation result, b) network prediction
with FD, c) a 2nd-order accurate CD , and d) a 4th-order accurate CD gradient loss;
e) SPL at j = 64 along LP2: simulation result · · ·, network prediction with FD - - -,
2nd-order accurate CD —, and 4th-order accurate CD gradient losses - · -.

Prediction of Acoustic Fields Using an LB Method and DL 95

4th-order accurate CD formulation lowers the accuracy of the predictions near
M1, see Fig. 5(d). It is, however, evident from Table 2 that a slightly lower Γ is
achieved than using a 2nd-order formulation. This is due to the 4th-order accu-
rate CD gradient loss computations reproducing simulations slightly better at
locations distant from monopoles and objects, see Fig. 5(e). SPL fluctuations at
the center of M1 are by far closer to the ground truth using the 2nd-order accu-
rate formulation. Since this study focuses on the prediction of complex acoustic
fields with multiple noise sources, the advantages of the 2nd-order accurate for-
mulation are considered more valuable, i.e., in the following this type of loss is
employed.

The impact of BS is investigated in Fig. 6. Figure 6e) plots the SPL dis-
tribution along line LP3, see Fig. 6a). Although predictions with BS = 10 and
BS = 20 show a slight decrease of Γ , see Table 2, several shortcomings are rec-
ognizable in predicted SPL fields. Figures 6c) and e) show that with BS = 10
non-physical fluctuations near the objects are introduced. These fluctuations are
also present for BS = 20 and are superimposed by inaccuracies appearing in the
vicinity of M1 and at the domain boundaries, i.e., BS = 5 delivers the best
results.

Fig. 6. Example for SPL fields of case 1C: a) simulation result, b) network prediction
with BS = 5, c) BS = 10, and d) BS = 20; e) SPL distribution at j = 64 along line
LP3: simulation result · · ·, network prediction with BS = 5 - - -, BS = 10 —, and
BS = 20 - · -.

96 M. Rüttgers et al.

3.3 Case 2: Influence of the Number of Training Data

In case 2, the number of training, validation, and test data is analyzed. Compared
to case 1, the complexity is increased by adding a rectangular object R1 to the
domain. The training, validation, and test data are composed of 2, 600, 200 and
200 simulations for a total of 3, 000, and of 5, 200, 400, and 400 for a total of
6, 000 simulations. The setups for these cases are summarized in Table 2.

Figure 7 compares the results of an LB simulation qualitatively and quanti-
tatively along line LP4, see Fig. 7a), with predictions generated by using 3, 000
and 6, 000 simulations for learning. When the amount of data is increased, non-
physical fluctuations disappear in regions, where sound waves propagate towards
the surface of R1. Furthermore, the predictions of the acoustic field in the vicinity
of C1 improve from 3, 000 to 6, 000 training datasets.

Fig. 7. Example of SPL fields of case 2: a) simulation result, b) network prediction with
3, 000, and c) 6, 000 simulations; SPL distribution at j = 30 along LP4: simulation
result · · ·, network prediction with 3, 000 - - -, and 6, 000 simulations —.

3.4 Case 3: Complex Setup and Impact of Increasing Training Data

Case 3 ties on to the findings from the previous cases to predict SPL fields in a
domain containing objects C1, C2, R1, and R2, see Fig. 1, on Mf . From Mc to
Mf the number of trainable parameters increases from 8, 253, 089 to 8, 256, 225.
NRBC and WBC boundary conditions are imposed randomly at the domain

Prediction of Acoustic Fields Using an LB Method and DL 97

Fig. 8. Example of SPL fields of case 3: a) simulation result, b) network prediction
with 6, 000, c) 10, 000, and d) 20, 000 simulations; SPL distribution at j = 80 along
LP5: simulation result · · ·, network prediction with 6, 000 - - -, 10, 000 —, and 20, 000
simulations - · -.

boundaries. Two monopoles M1 and M2 are placed inside of the domain. M1 is
located at (5C, 5C) and M2 is positioned randomly. For the training, validation,
and testing of the AFP, a total number of 20, 000 simulations is used. Results of
computations with different simulation inputs are compared to the ground truth
in Fig. 8. Note that the WBC is imposed at domain boundary IV, however, the
complete thickness D̃ is not visualized in the figure. The first case uses 6, 000
simulations with a distribution of 5, 200, 400, and 400 for training, validation,
and testing. The second case employs 10, 000 simulations with a distribution of
8, 800, 600, and 600 for training, validation, and testing. The last case employs all
20, 000 simulations with a distribution of 18, 000, 1, 000, and 1, 000 for training,
validation, and testing. For reference, the different setups and the corresponding
results are listed in Table 2. Obviously, the error Γ decreases when the number
of training data is increased. From Figs. 8(c) and (e) it is evident that the
AFP trained with 8, 800 datasets overpredicts the SPL near M1. In general, it
can be stated that with an increasing complexity the SPL is more difficult to
predict compared to cases 1 and 2. To be more specific, from case 1 to case 3
the error Γ increases by one order of magnitude, i.e., it is at Γ = 0.01937 in
case 3. However, complex acoustic fields are reproduced. For a number of 18,000
simulation, training took 96 hours to reach a convergence of the loss function.

98 M. Rüttgers et al.

4 Summary, Conclusions, and Outlook

A deep learning method has been developed to predict the sound pressure
level distribution in two-dimensional aeroacoustic setups including multiple ran-
domly distributed rectangular and circular objects as hard reflective surfaces and
monopoles as sound sources. The deep learning method is based on an encoder-
decoder convolutional neural network, which has been trained with numerical
simulations based on a lattice-Boltzmann method. To analyze the accuracy of
the network predictions, various learning parameters have been tuned by succes-
sively increasing the complexity of the prediction cases and by analyzing different
loss functions. A network containing 8, 256, 225 trainable parameters, a combina-
tion of the mean-squared error loss and gradient loss formulated by a 2nd-order
accurate central difference scheme, and a batch size of five positively influenced
the predictions. A number of 18, 000 datasets has been used to train the deep
neural network. A mean absolute error of less than 2% shows the neural network
being capable of accurately predicting the acoustic fields. The study has been
complemented with a grid convergence study, which revealed that a resolution
of 50 cells for a single wavelength is sufficient to yield accurate results.

At present, the method is spatially limited to two-dimensional cases. How-
ever, most engineering applications, e.g., design processes to find optimal layouts
for low-noise turbojet engines, feature three-dimensional phenomena. Extending
the presented deep learning method to learn from three-dimensional simulations
will lead to accelerated predictions of three-dimensional aeroacoustic problems.
Furthermore, realistic acoustic fields are frequently characterized by interactions
of multiple noise sources with various frequencies and amplitudes. Therefore, it
is necessary to extend the current setup to monopoles with multiple frequen-
cies and amplitudes. Apart from increasing the domain’s complexity, the level
of generalization will be increased. The presented acoustic field predictor has
been trained and tested on similar situations. Its capabilities to generalize will
be enhanced by testing on situations that have not been part of the training
process, e.g., training with four objects and testing with five. Instead of strictly
separating different gradient losses, the impact of combining them in a single loss
and employing individual weights will be analyzed. In addition, physics-informed
losses that allow the network to comply with physical laws of aeroacoustics will
be integrated. Furthermore, adversarial training will be investigated by adding
a discriminator with an adversarial loss to the current architecture. Such GAN
type architectures have the potential to help finding a suitable loss from the
training data. It is also worth mentioning that the method presented in this
study has the potential to support solving noise control problems. It remains to
investigate if a dedicated acoustic field predictor that can quickly give feedback
on the arrangement of multiple monopoles is capable of finding optimal acoustic
setups. Therefore, the presented acoustic field predictor will be integrated into
a reinforcement learning loop.

Acknowledgments. The authors gratefully acknowledge the computing time granted
through the Jülich Aachen Research Alliance (JARA) on the supercomputer

Prediction of Acoustic Fields Using an LB Method and DL 99

JURECA [14] at Forschungszentrum Jülich. Furthermore, the authors would like to
thank Forschungszentrum Jülich GmbH, RWTH Aachen University, and the JARA
Center for Simulation and Data Science (JARA-CSD) for research funding. This work
was performed as part of the Helmholtz School for Data Science in Life, Earth and
Energy (HDS-LEE).

References

1. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and
applications. Phys. Rep. 222(3), 145–197 (1992). https://doi.org/10.1016/0370-
1573(92)90090-M

2. Bhatnagar, P.L., Gross, E.P., Krook, M.: A Model for collision processes in gases.
I. Small amplitude processes in charged and neutral one-component systems. Phys.
Rev. 94(3), 511–525 (1954). https://doi.org/10.1103/PhysRev.94.511

3. Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.: Prediction of aero-
dynamic flow fields using convolutional neural networks. Comput. Mech. 64(2),
525–545 (2019). https://doi.org/10.1007/s00466-019-01740-0

4. Bode, M., et al.: Using Physics-Informed Super-Resolution Generative Adversarial
Networks for Subgrid Modeling in Turbulent Reactive Flows (2019)

5. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance
of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.)
LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46976-8 19

6. Ewert, R., Schröder, W.: On the simulation of trailing edge noise with a hybrid
LES/APE method. J. Sound Vib. 270, 509–524 (2004). https://doi.org/10.1016/
j.jsv.2003.09.047

7. Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approx-
imation. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD 2016, pp. 481–490. ACM Press,
New York (2016). https://doi.org/10.1145/2939672.2939738

8. Hänel, D.: Molekulare Gasdynamik, Einführung in die kinetische Theorie der Gase
und Lattice-Boltzmann-Methoden. Springer, Heidelberg (2004). https://doi.org/
10.1007/3-540-35047-0

9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: 2015 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 1026–1034. IEEE (2015). https://doi.org/
10.1109/ICCV.2015.123

10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: ICML 2015: Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine Learning, Lille, France,
pp. 448–456. W&CP (2015). https://doi.org/10.5555/3045118.3045167

11. Kam, E.W.S., So, R.M.C., Leung, R.C.K.: Lattice Boltzman method simulation of
aeroacoustics and nonreflecting boundary conditions. AIAA J. 45(7), 1703–1712
(2007). https://doi.org/10.2514/1.27632

12. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2014)
13. Koh, S.R., Meinke, M., Schröder, W.: Numerical analysis of the impact of perme-

ability on trailing-edge noise. J. Sound Vib. 421, 348–376 (2018). https://doi.org/
10.1016/j.jsv.2018.02.017

14. Krause, D., Thörnig, P.: JURECA: modular supercomputer at Jülich supercom-
puting centre. JLSRF 4, A132 (2018). https://doi.org/10.17815/jlsrf-4-121-1

https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1007/978-3-319-46976-8_19
https://doi.org/10.1016/j.jsv.2003.09.047
https://doi.org/10.1016/j.jsv.2003.09.047
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1007/3-540-35047-0
https://doi.org/10.1007/3-540-35047-0
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.2514/1.27632
https://doi.org/10.1016/j.jsv.2018.02.017
https://doi.org/10.1016/j.jsv.2018.02.017
https://doi.org/10.17815/jlsrf-4-121-1

100 M. Rüttgers et al.

15. Lathuilière, S., Mesejo, P., Alameda-Pineda, X., Horaud, R.: A comprehensive
analysis of deep regression (2018)

16. Lee, S., You, D.: Data-driven prediction of unsteady flow over a circular cylinder
using deep learning. J. Fluid Mech. 879, 217–254 (2019). https://doi.org/10.1017/
jfm.2019.700

17. Lee, S., You, D.: Mechanisms of a convolutional neural network for learning three-
dimensional unsteady wake flow (2019)

18. Lintermann, A., Meinke, M., Schröder, W.: Zonal Flow Solver (ZFS): a highly effi-
cient multi-physics simulation framework. Int. J. Comut. Fluid Dyn. 1–28 (2020).
https://doi.org/10.1080/10618562.2020.1742328

19. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections. In: Advances in Neural
Information Processing Systems, pp. 2802–2810 (2016)

20. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error (2015)

21. McKee, C., Harmanto, D., Whitbrook, A.: A conceptual framework for combin-
ing artificial neural networks with computational aeroacoustics for design develop-
ment. In: Proceedings of the International Conference on Industrial Engineering
and Operations Management (2018)

22. Miyanawala, T.P., Jaiman, R.K.: An efficient deep learning technique for the
navier-stokes equations: application to unsteady wake flow dynamics (2017)

23. Moin, P.: Fundamentals of Engineering Numerical Analysis. Cambridge University
Press, London (2001)

24. Niemöller, A., Schlottke-Lakemper, M., Meinke, M., Schröder, W.: Dynamic load
balancing for direct-coupled multiphysics simulations. Comput. Fluids 199, 104437
(2020). https://doi.org/10.1016/j.compfluid.2020.104437

25. Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK Models for Navier-Stokes
Equation. EPL 17(6), 479–484 (1992). https://doi.org/10.1209/0295-5075/17/6/
001

26. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation (2015)

27. Rüttgers, M., Lee, S., Jeon, S., You, D.: Prediction of a typhoon trackusing a
generative adversarial network and satellite images. Sci. Rep. 9 (2019). https://
doi.org/10.1038/s41598-019-42339-y

28. Salomons, E.M., Lohman, W.J.A., Zhou, H.: Simulation of sound waves using
the lattice Boltzmann method for fluid flow: benchmark cases for outdoor sound
propagation. PLoS ONE 11(1), e0147206 (2016). https://doi.org/10.1371/journal.
pone.0147206

29. Schlimpert, S., Koh, S.R., Pausch, K., Meinke, M., Schröder, W.: Analysis of com-
bustion noise of a turbulent premixed slot jet flame. Combust. Flame 175, 292–306
(2017). https://doi.org/10.1016/j.combustflame.2016.08.001

30. Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sci-
ence. Cambridge Monographs on Applied and Computational Mathematics. Cam-
bridge University Press, Cambridge (1999)

31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(56), 1929–1958 (2014)

32. Sutherland, W.: The viscosity of gases and molecular force. Philos. Mag. 36(5),
507–531 (1893)

https://doi.org/10.1017/jfm.2019.700
https://doi.org/10.1017/jfm.2019.700
https://doi.org/10.1080/10618562.2020.1742328
https://doi.org/10.1016/j.compfluid.2020.104437
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1038/s41598-019-42339-y
https://doi.org/10.1038/s41598-019-42339-y
https://doi.org/10.1371/journal.pone.0147206
https://doi.org/10.1371/journal.pone.0147206
https://doi.org/10.1016/j.combustflame.2016.08.001

Prediction of Acoustic Fields Using an LB Method and DL 101

33. Zhou, B.Y., Koh, S.R., Gauger, N., Meinke, M., Schröder, W.: A discrete adjoint
framework for trailing-edge noise minimization via porous material. Comput. Flu-
ids 172, 97–108 (2018). https://doi.org/10.1016/j.compfluid.2018.06.017

34. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip
connections to exploit multiscale features in image segmentation. IEEE Trans.
Med. Imaging 39(6), 1856–1867 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.compfluid.2018.06.017
http://creativecommons.org/licenses/by/4.0/

Unsupervised Learning of Particle Image
Velocimetry

Mingrui Zhang(B) and Matthew D. Piggott

Department of Earth Science and Engineering,
Imperial College London, South Kensington Campus, London, UK

mingrui.zhang18@imperial.ac.uk

Abstract. Particle Image Velocimetry (PIV) is a classical flow esti-
mation problem which is widely considered and utilised, especially as
a diagnostic tool in experimental fluid dynamics and the remote sens-
ing of environmental flows. Recently, the development of deep learning
based methods has inspired new approaches to tackle the PIV problem.
These supervised learning based methods are driven by large volumes
of data with ground truth training information. However, it is difficult
to collect reliable ground truth data in large-scale, real-world scenar-
ios. Although synthetic datasets can be used as alternatives, the gap
between the training set-ups and real-world scenarios limits applicabil-
ity. We present here what we believe to be the first work which takes
an unsupervised learning based approach to tackle PIV problems. The
proposed approach is inspired by classic optical flow methods. Instead
of using ground truth data, we make use of photometric loss between
two consecutive image frames, consistency loss in bidirectional flow esti-
mates and spatial smoothness loss to construct the total unsupervised
loss function. The approach shows significant potential and advantages
for fluid flow estimation. Results presented here demonstrate that our
method outputs competitive results compared with classical PIV meth-
ods as well as supervised learning based methods for a broad PIV dataset,
and even outperforms these existing approaches in some difficult flow
cases. Codes and trained models are available at https://github.com/
erizmr/UnLiteFlowNet-PIV.

Keywords: Particle Image Velocimetry (PIV) · Velocity field
diagnostics · Deep learning · Unsupervised learning

1 Introduction

Particle Image Velocimetry (PIV) is one of the most popular measurement tech-
niques in experimental fluid dynamics, and is also used to diagnose flow infor-
mation from the remote sensing of large-scale environmental flows. The method
provides quantitative measurements of velocity fields in fluids that can be used to
explore complex flow phenomena. When conducting the PIV technique, the fluid

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 102–115, 2020.
https://doi.org/10.1007/978-3-030-59851-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_7&domain=pdf
https://github.com/erizmr/UnLiteFlowNet-PIV
https://github.com/erizmr/UnLiteFlowNet-PIV
https://doi.org/10.1007/978-3-030-59851-8_7

Unsupervised Learning of Particle Image Velocimetry 103

under investigation is seeded with sufficiently small tracer particles (or the pres-
ence of naturally occurring features is exploited). These particles are assumed to
follow the flow dynamics. With illumination (in the laboratory often through the
use of lasers to capture image information over a two-dimensional plane), the
particles in the fluid are visible. By comparing resulting flow images between
time levels, velocity field information can be inferred [1]. There are two main
techniques used for performing classical PIV: cross-correlation and variational
optical flow methods.

The development of deep learning techniques has inspired a new direction for
tackling PIV-like problems. Several authors have in the literature proposed and
demonstrated the use of supervised learning based methods for PIV. However,
due to the unavailability of a broad range of reliable ground truth training data,
supervised learning methods have limitations, especially when seeking to gener-
alise to real-world problems. On the other hand, unsupervised learning is a type
of machine learning approach that looks for previously undetected patterns in a
dataset with no pre-existing labels and with minimum human supervision [2].

In this paper we propose a new fluid velocity estimation method using an
unsupervised learning strategy based upon particle images.

1.1 Cross-correlation and Variational Optical Flow Methods

There are two main standard approaches for performing particle image velocime-
try: cross-correlation and optical flow methods. The cross-correlation method
calculates a displacement by searching for the maximum cross-correlation
between two interrogation windows from an image pair [3], e.g.. such as in
the WIDIM (window deformation iterative multi-grid) method. The cross-
correlation method is efficient and relatively easy to implement. However, it
only outputs a spatially sparse (compared to the resolution of the seed parti-
cles in the fluid) displacement field and requires post-processing. The variational
optical flow method was proposed by Horn and Schunck (HS) [4]. It is a motion
estimation approach that has been applied to PIV problems [5]. It treats the
PIV problem through the solution of an optimisation problem, seeking the min-
imisation of an objective function. The method can output a dense displacement
field, but the optimisation process is time-consuming.

1.2 Deep Learning Methods

Machine learning methods, especially deep learning, have made great progress in
applications to many real-world problems in recent years. In the PIV community,
deep learning has been introduced recently. In [6], the authors provided a proof-
of-concept on this topic, where artificial neural networks are designed to perform
end-to-end PIV for the first time in this work.

PIV techniques are closely related to computational photography, a sub-
domain of computer vision. In this community, there are several important works
related to the motion estimation problem using deep learning. The FlowNetS and
FlowNetC networks [7] were the first proposed for dense optical flow estimation.

104 M. Zhang and M. D. Piggott

FlowNet2 [8], an extension of FlowNet, improves the optical flow estimation to a
state-of-the-art level. In addition, a lighter-weight network LiteFlowNet [9] has
also been proposed. It achieves a similar level accuracy compared to FlowNet2,
using less trainable parameters. Although the networks mentioned above have
achieved excellent performance for estimating motion fields from consecutive
image pairs, their applications is generally limited to rigid or quasi-rigid motion.

Therefore, it is of interest to explore the performance of these existing net-
works on particle image velocimetry problems.

2 Related Work

Supervised and unsupervised learning are two different learning approaches. The
key difference is that supervised learning requires ground truth data while unsu-
pervised learning does not.

2.1 Supervised Learning Methods

End-to-end supervised learning using neural networks for PIV was first intro-
duced by Rabault et al. in [6]. A convolutional neural network and a fully-
connected neural network were trained to perform PIV on several test cases.
That work provided a proof-of-concept for the research community. However,
the trained model did not achieve the ultimate quality of result compared with
traditional PIV methods, and the application scenarios considered were limited
to relatively simple cases. Lee et al. [10] proposed a cascaded network architec-
ture. The network was verified to produce results comparable to standard PIV
methods (one-pass cross-correlation method, three-pass window deformation).
However, it had larger computational costs and lower efficiency. Another deep
architecture approach based on supervised learning was proposed by Cai et al.
in [11]. In that work the author developed a motion estimator PIV-FlowNetS-
en based upon FlowNet. The estimator is able to extract features from particle
images and output dense displacement fields. The model was evaluated both on
synthetic and experimental data, and was shown to achieve good accuracy with
high efficiency compared to correlation-based PIV methods such as the WIDIM
method. Follow-up work introduced a more complex but lighter-weight network
PIV-LiteFlowNet-en [12], based on LiteFlowNet [9]. The model was shown to
have the same level of performance as variational optical flow methods in terms
of estimation accuracy, while showing advantages in terms of efficiency.

The supervised learning approach relies heavily on large volumes of training
data. However, in most real-world scenarios, especially in fluid dynamics, there is
no easily available ground truth data and/or it is extremely difficult to annotate
the data accurately through human means. Although the use of synthetic data
(e.g.. based upon computational fluid dynamics studies) can help construct large
annotated datasets, the gap between synthetic and real-world scenarios limits
the generalisation abilities of the constructed networks. This can mean that
supervised learning based approaches may struggle when confronted with data
from real-world problems.

Unsupervised Learning of Particle Image Velocimetry 105

2.2 Unsupervised Learning Methods

Unsupervised learning is a type of machine learning that, in contrast, looks for
previously undetected patterns in a dataset with no pre-existing labels and with
minimum human supervision.

To the best of our knowledge, there are no previous examples of approaches
that tackle the PIV problem based on unsupervised learning. In the computer
vision community, there is some previous work related to the use of unsuper-
vised learning for optical flow estimation. Yu et al. [13] suggested an unsuper-
vised method based on FlowNet in order to sidestep the limitations of synthetic
datasets. They use a loss function that combines a data term (photometric loss)
measuring photometric constancy over time with a spatial term (smoothness
loss) modelling the expected variation of flow across the image. In [14], Meister
et al. extended the work using a symmetric, occlusion-aware loss based on both
forward and backward optical flow estimates. They also made use of iterative
refinement by stacking multiple FlowNet networks. The model showed advan-
tages and outperformed supervised learning on challenging realistic benchmarks.

Our work is inspired in part by Meister et al. [14]; we extend the unsupervised
learning strategy to PIV problems, building our model based on LiteFlowNet
instead of FlowNet. We trained our model on a synthetic PIV dataset generated
by Cai et al. in [11]. Unlike the supervised strategy, we only use the particle
images pairs in the dataset, and leave the ground truth motion data (which is
used to generate the image pairs) for benchmarking purposes.

3 Method

Given a grayscale image pair I1, I2 : P → R
1 as input, our goal is to estimate

the forward flow field from I1 to I2, Ff ≡ (uf , vf)T , where uf and vf are
scalar velocity fields in two orthogonal directions. As we take the bidirectional
estimate into consideration, the backward flow field is defined as Fb ≡ (ub, vb)T .
In Sect. 3.1 we will introduce the unsupervised loss and how the loss is integrated
for training. The network architecture will be described in Sect. 3.2.

3.1 Unsupervised Loss

In the training process, the input only contains image pairs I1, I2, without the
velocity field ground truth. Therefore, we use traditional optical flow measure-
ments to evaluate our results. The total unsupervised loss is a combination of
photometric loss, estimate flow smoothness loss and consistency loss between
forward and backward fields.

Photometric Loss. The photometric loss is defined in terms of the difference
between the first image and the warped second image using the forward flow
field estimate, and the difference between the second image and the warped first

106 M. Zhang and M. D. Piggott

image using the backward estimate. The bidirectional photometric loss is thus
defined as the sum of two parts:

LP (I1, I2,Ff ,Fb) =
∑

x∈P

ρ
(
I1(x) − I2(x + Ff (x))

)

+ρ
(
I2(x) − I1(x + Fb(x))

)
,

(1)

where ρ(·) is the generalized Charbonnier penalty function, ρ = (x2+ε2)γ , which
is a differentiable, robust convex function [15]. We use the values γ = 0.45, ε =
10−3 in this work.

Image ‘backwarping’ is the key step when computing the photometric loss. In
order to make the loss backpropagation possible during the training process, we
use the differentiable bilinear sampling scheme proposed in [16]. The basic idea
is first to generate a sampling coordinate in target image I2, using I1 and the
flow field estimate Ff . The coordinate can be described as: xs = x + Ff (x) =
(x1+F f

u , y1+F f
v), here x is the coordinate field for image I1. A bilinear sampler

is then used to construct the warped image in terms of coordinate x:

Iwarp(x) =
∑

xi
s,yi

s∈xs

I2(xs)max(0, 1 − ∣∣xs − xi
s

∣∣)max(0, 1 − ∣∣ys − yi
s

∣∣). (2)

Smoothness Loss. There are regions in the images that lack necessary infor-
mation. For example, there may be insufficient particles near image boundaries,
as the particles move out of the image area in the second frame or the parti-
cles have not entered the image in the first frame. Therefore, to tackle resulting
ambiguities, a smoothness loss is included into our total unsupervised loss. To
enhance the regularisation effects, we use a second-order smooth constraint [17]:

LS(Ff ,Fb) =
∑

(s,r)∈N(x)

∑

x∈P

ρ
(
Ff (s) − 2Ff (x) + Ff (r)

)

+ρ
(
Fb(s) − 2Fb(x) + Fb(r)

)
,

(3)

where N represents a four channel filter (x, y and two diagonals, see Fig. 1).
Therefore, the process here is first to compute the convolution of the two flow
components (u in the x and v in the y directions) with the four channel filter
respectively, then compute their Charbonnier loss.

Consistency Loss. The forward and backward flow estimates should be con-
sistent, i.e. the forward flow Ff is expected to be the inverse of the backward
flow Fb(x+Ff) at the corresponding pixel in the second image. The sum of this
pair of flow fields should therefore be zero, and similarly for the backward flow
estimate. The consistency loss function can thus be defined as:

LC(Ff ,Fb) =
∑

x∈P

ρ
(
Ff + Fb(x + Ff)

)

+ρ
(
Fb + Ff (x + Fb)

)
.

(4)

Unsupervised Learning of Particle Image Velocimetry 107

Fig. 1. Four channel filter used in the smoothness loss: in the directions x, y and the
two diagonals, shown in the frames above from left to right respectively. s, x, r indicate
the three neighboring pixels considered for each direction.

Final Integrated Loss. The final integrated loss, L, combines the above loss
terms using weighted (with scalar weights λP , λS , λC) summation:

L(I1, I2,Ff ,Fb) = λP LP + λSLS + λCLC . (5)

3.2 Network Architecture

UnLiteFlowNet-PIV. Our network, named UnLiteFlowNet-PIV, is based on
LiteFlowNet [9]. It extracts two images’ features using a two-stream convolution
neural network (NetC) with shared weights. NetC has a pyramidal structure and
encodes the image from full resolution to a sixth of that of the original. Then a
decoder (NetE) performs cascaded flow inference (convolutionally upsampling)
with flow regularisation. The final flow estimate is upsampled to the original
resolution using bilinear interpolation. In our work, we compute both the forward
and backward flow in one estimation. The input for the forward flow estimation
is (I1, I2), and it is (I2, I1) for the backward flow (Fig. 2).

Training Loss. The training loss function’s design is similar to that in FlowNet
[7] and LiteFlowNet [9], and uses a multi-scale resolution loss. It is the weighted
sum of the estimation losses from each of the intermediate layers:

LT =
∑

i

wiLi, (6)

where Li is the loss function (5). At each layer, the image pair (I1, I2) is down-
sampled to compute the current layer’s loss. As the distance between pixels
effectively changes after downsampling, the flow estimate is multiplied by the
appropriate scaling factor, which is the fraction between the current and the full
image resolution. Here, imax = 6, and L6 indicates the loss at full resolution.

4 Evaluation

4.1 PIV Dataset

The dataset considered in this work was generated by Cai et al. [11]. The dataset
contains 15,050 particle image pairs with the originating flow field ground truth

108 M. Zhang and M. D. Piggott

Fig. 2. Data flow for UnLiteFlowNet-PIV, from inputs to unsupervised loss. Due to
taking bidirectional flows into consideration, the red components represent the forward
part, with the image pair (I1, I2) as input. The blue components indicate the backward
part. Although there are two networks shown for clarity, since shared weights are used
there is only one in the implementation. (Color figure online)

data obtained from computational fluid dynamics simulations. There are eight
different types of flow contained in the dataset, including ‘uniform’ flow, flow
past a backward facing step (‘back-step’) and past a ‘cylinder’, both at a vari-
ety of Reynolds numbers, ‘DNS-turbulence’, sea surface flow driven by a quasi-
geostrophic model (‘SQG’), etc. Detailed information on the dataset is provided
in Table 3. In our work we use half of the dataset for training and the other half
for testing.

4.2 Training Details

We train the model for 40,000 iterations with a batch size of four image pairs
using the Adam optimiser. The learning rate is kept at 10−4. The smoothness
loss weight is λC = 3.0, the consistency loss weight λC = 0.2, photometric loss
weight λP = 1.0. The weights for different layers are set to [12.7, 5.5, 4.35, 3.9,
3.4, 1.1] as in [14], from the full resolution to the lowest level. The image pair are
normalized from value ranges of 0–255 to 0–1 before feeding into the network.

4.3 Results

Table 1 compares the accuracy of our model with previous work and differ-
ent approaches, including classical PIV and state-of-the-art deep learning based
methods. The results are evaluated on the PIV dataset, with the Averaged End-
point Error (AEE) calculated for different flow types. In order to compare the
results easier, we set the units of the AEE to pixel per 100 pixels. The AEE can
be described as the L2-norm of the difference in flow estimation Fe and the flow
ground truth Fg:

AEE = ‖Fe − Fg‖2 . (7)

Unsupervised Learning of Particle Image Velocimetry 109

Fig. 3. Visual comparisons between ground truth flow data (left), our fully unsuper-
vised model UnLiteFlowNet-PIV (middle) and PIV-LiteFlowNet (right) shown on the
first and third rows for respectively the ‘Back-step’ and ‘Cylinder’ flow cases. The
flow field colour is coded in HSV [18]. The second and fourth rows show the input
images overlays (left), along with the errors and corresponding Averaged Endpoint
Error (AEE) values for the two networks and image pairs considered. In the error plots
the white colour indicates zero error, and pixel colour with higher saturation repre-
sents larger errors. It can be observed that even though our new unsupervised model
never has access to the ground truth during training, it still tends to outperform the
supervised model. See also Figs. 4 and 5 for further cases.

110 M. Zhang and M. D. Piggott

Fig. 4. Caption as for Fig. 3 but now for the flow cases ‘JHTDB-channel’ (first two
rows) and ‘DNS-turbulence’ (final two rows). It can be observed that errors are dis-
tributed along the vortex boundaries in both models. However, our UnLiteFlowNet-PIV
model does tend to demonstrate lower errors in the interior, e.g.. around the regions
with strong internal vortices.

Unsupervised Learning of Particle Image Velocimetry 111

Comparison to Classical PIV. It can be observed that our unsupervised
model outperforms classical correlation-based PIV WIDIM methods in almost
all flow cases, especially for the challenging cases of DNS-turbulence and SQG.
Although the unsupervised model does not outperform the Horn–Schunck (HS)
optical flow method [4], the differences are relatively small. In addition, as men-
tioned above, the HS optical flow method requires a large amount of computa-
tional time in order to conduct the optimisation process, which results in low
efficiency especially when multiple image pairs need to be processed. Without
considering the time to load images from disk, the computational time for 500
image (256 × 256) pairs using our UnLiteFlowNet-PIV is 10.17 s on an Nvidia
Tesla P100 GPU, while the HS optical method requires roughly 556.5 s and
WIDIM (with a window size of 29× 29) requires 211.5 s on an Intel Core I7-7700
CPU [12]. Although the classical PIV methods are tested on a CPU, as shown
in the [6,11] the speed improvements for them running on GPUs are limited.
Therefore, efficiency is a great advantage for learning based methods compared
to the classical approaches.

Fig. 5. Caption similar to Fig. 3, but now only showing the ‘SQG’ case. The
UnLiteFlowNet-PIV model again shows more than competitive performance on this
challenging flow case.

Comparison to Deep Learning PIV. The unsupervised learning approach
shows potentially significant advantages compared to state-of-the-art super-
vised learning methods. Figures 3, 4 and 5 demonstrate comparisons between

112 M. Zhang and M. D. Piggott

our fully unsupervised model UnLiteFlowNet-PIV and PIV-LiteFlowNet. PIV-
LiteFlowNet [12] uses a similar network architecture to our UnLiteFlowNet-PIV,
but is trained using a supervised learning strategy with ground truth data.
Although the unsupervised UnLiteFlowNet-PIV never has access to the ground
truth data during the training process, it still outperforms most supervised learn-
ing methods (PIV-NetS-noRef, PIV-NetS, PIV-LiteFlowNet), especially on dif-
ficult cases. Therefore, the unsupervised learning method with an accurate loss
function shows competitive capabilities and often better performance compared
to supervised methods.

PIV-LiteFlowNet-en [12] is an enhanced version of PIV-LiteFlowNet, it adds
one additional layer at the end of the NetE, which improves its inference ability
but makes the network more complicate and heavier. We did not try to con-
struct deeper networks in our work for brevity. There are ideas for improving
the performance by stacking networks [8], which would also be an interesting
avenue to explore in further work.

Table 1. Averaged Endpoint Error (AEE) for the PIV dataset (averaged over all
impage pairs), the error unit is set to pixel per 100 pixels for easier comparison. From
top to bottom, WIDIM and HS optical flow are the classical PIV methods described in
Sect. 1.1, the next four rows are state-of-the-art supervised learning methods described
in Sect. 2.1. The final row shows results of our unsupervised method introduced in this
work.

Methods Back-step Cylinder JHTDB channel DNS turbulence SQG

Train Test Train Test Train Test Train Test Train Test

WIDIM [12] – 3.4 – 8.3 – 8.4 – 30.4 – 45.7

HS optical flow [12] – 4.5 – 7.0 – 6.9 – 13.5 – 15.6

PIV-NetS-noRef [11] 13.6 13.9 19.8 19.4 24.6 24.7 50.6 52.5 51.9 52.5

PIV-NetS [11] 5.8 5.9 6.9 7.2 16.3 15.5 27.1 28.2 28.9 29.4

PIV-LiteFlowNet [12] 5.5 5.6 8.7 8.3 10.9 10.4 18.8 19.6 19.8 20.2

PIV-LiteFlowNet-en [12] 3.2 3.3 5.2 4.9 7.9 7.5 11.6 12.2 12.4 12.6

UnLiteFlowNet-PIV – 10.1 – 7.8 – 9.6 – 13.5 – 19.7

Ablation Study. There are three components to the loss function as mentioned
above. The contributions to model performance of each component are investi-
gated here. Results are summarize in Table 2. The model is trained for 40,000

Table 2. Averaged Endpoint Error (AEE) on test dataset for models trained by dif-
ferent loss functions. The error unit is set to pixel per 100 pixels for easier comparison.

Loss function Back-Step Cylinder JHTDB channel DNS turbulence SQG

LP + LS + LC 10.1 7.8 9.6 13.5 19.7

LP + LS 11.6 10.5 15.3 21.4 22.5

LP + LC 14.1 38.4 18.1 23.6 25.5

Unsupervised Learning of Particle Image Velocimetry 113

Table 3. Detailed description of the PIV dataset considered, from [11]. dx refers to
the particle displacements considered between two image frames in units of number of
pixels. Re refers to the Reynolds numbers considered. ‘JHTDB’ implies that the data
was taken from the Johns Hopkins turbulence databases [19]. Refer to [11] for further
details.

Metric name Description Condition Quantity

Uniform Uniform flow |dx| ∈ [0, 5] 1000

Back-step Flow past a backward facing step Re=800 600

Re=1000 600

Re=1200 1000

Re=1500 1000

Cylinder Flow past a circular cylinder Re=40 50

Re=150 500

Re=200 500

Re=300 500

Re=400 500

DNS-turbulence Homogeneous and isotropic turbulent flow – 2000

SQG Sea surface flow driven by SQG model – 1500

Channel flow Channel flow provided by JHTDB – 1600

JHTDB-mhd1024 Forced MHD turbulence provided by JHTDB – 800

JHTDB-isotropic1024 Forced isotropic turbulence provided by JHTDB – 2000

iterations with three different loss functions: LP + LS + LC (i.e. the full loss
function), LP + LS (no consistency loss), and LP + LC (no smoothness loss).
The model trained using the full loss performs the best among the three on the
test dataset. Removing either smoothness or consistency loss leads to a worse
performance on the test dataset considered here.

5 Conclusion

We present here the first work using an unsupervised learning approach for
solving Particle Image Velocimetry (PIV) problems. The proposed unsupervised
learning approach shows significant promise and potential advantages for fluid
flow estimation. It yields competitive results compared with classical PIV meth-
ods as well as existing supervised learning based methods, and even outper-
forms them on some difficult flow cases. Furthermore, the unsupervised learning
method does not rely on any ground truth data in order to train, which makes
it extremely promising to generalize to complex real-world flow scenarios where
ground truth is effectively unknowable, and thus represents a key advantage over
supervised methods.

Acknowledgements. The authors would like to acknowledge funding from the Chi-
nese Scholarship Council and Imperial College London (a pump priming research award
from the Energy Futures Lab, Data Science Institute and Gratham Institute – Climate
Change and the Environment) that supported this work.

114 M. Zhang and M. D. Piggott

References

1. Adrian, R., Westerweed, J.: Particle Image Velocimetry. Cambridge University
Press, Cambridge (2011)

2. Hinton, G., Sejnowski, T.: Unsupervised Learning: Foundations of Neural Compu-
tation. MIT Press, Cambridge (1999)

3. Westerweel, J.: Fundamentals of digital particle image velocimetry. Exp. Fluids
23(12), 1379–1392 (1997)

4. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17(1–3), 185–203
(1981)

5. Ruhnau, P., Kohlberger, T., Schnorr, C., Nobach, H.: Variational optical flow esti-
mation for particle image velocimetry. Exp. Fluids 38(1), 21–32 (2005)

6. Rabault, J., Kolaas, J., Jensen, A.: Performing particle image velocimetry using
artificial neural networks: a proof-of-concept. Meas. Sci. Technol. 28(12), 125301
(2017)

7. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks.
In: Proceedings of the IEEE International Conference on Computer Vision, pp.
2758–2766 (2015)

8. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0:
evolution of optical flow estimation with deep networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, vol. 2 (2017)

9. Hui, T., Tang, X., Loy, C.: LiteFlowNet: a lightweight convolutional neural net-
work for optical flow estimation. In: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8981–8989 (2018)

10. Lee, Y., Yang, H., Yin, Z.: PIV-DCNN: cascaded deep convolutional neural net-
works for particle image velocimetry. Exp. Fluids 58(12), 1–10 (2017). https://doi.
org/10.1007/s00348-017-2456-1

11. Cai, S., Zhou, S., Xu, C., Gao, Q.: Dense motion estimation of particle images via
a convolutional neural network. Exp. Fluids 60(4), 1–16 (2019). https://doi.org/
10.1007/s00348-019-2717-2

12. Cai, S., Liang, J., Gao, Q., Xu, C., Wei, R.: Particle image velocimetry based on
a deep learning motion estimator. IEEE Trans. Instrum. Meas. 69(6), 3538–3554
(2019)

13. Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: unsupervised learning of
optical flow via brightness constancy and motion smoothness. In: Hua, G., Jégou,
H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 3–10. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49409-8 1

14. Meister, S., Hur, J., Roth, S.: UnFlow: unsupervised learning of optical flow with
a bidirectional census loss. In: The Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

15. Sun, D., Roth, S., Black, M.: A quantitative analysis of current practices in optical
flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–
137 (2014)

16. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: NIPS’15: Proceedings of the 28th International Conference on Neural
Information Processing Systems, vol. 2, pp. 2017–2025 (2015)

17. Zhang, C., Li, Z., Cai, R., Chao, H., Rui, Y.: As-rigid-as-possible stereo under
second order smoothness priors. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8690, pp. 112–126. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10605-2 8

https://doi.org/10.1007/s00348-017-2456-1
https://doi.org/10.1007/s00348-017-2456-1
https://doi.org/10.1007/s00348-019-2717-2
https://doi.org/10.1007/s00348-019-2717-2
https://doi.org/10.1007/978-3-319-49409-8_1
https://doi.org/10.1007/978-3-319-49409-8_1
https://doi.org/10.1007/978-3-319-10605-2_8
https://doi.org/10.1007/978-3-319-10605-2_8

Unsupervised Learning of Particle Image Velocimetry 115

18. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database
and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31
(2011)

19. Li, Y., et al.: A public turbulence database cluster and applications to study
Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9(9), N31
(2008)

Reduced Order Modeling of Dynamical
Systems Using Artificial Neural Networks

Applied to Water Circulation

Alberto Costa Nogueira Jr.1(B), João Lucas de Sousa Almeida1,
Guillaume Auger2, and Campbell D. Watson2

1 IBM Research, Hortolandia, SP 13186-900, Brazil
albercn@br.ibm.com

2 IBM Research, Yorktown Heights, NY 10598, USA
cwatson@us.ibm.com

https://www.research.ibm.com/labs/brazil/

Abstract. General circulation models are essential tools in weather and
hydrodynamic simulation. They solve discretized, complex physical equa-
tions in order to compute evolutionary states of dynamical systems, such
as the hydrodynamics of a lake. However, high-resolution numerical solu-
tions using such models are extremely computational and time consum-
ing, often requiring a high performance computing architecture to be
executed satisfactorily. Machine learning (ML)-based low-dimensional
surrogate models are a promising alternative to speed up these simu-
lations without undermining the quality of predictions. In this work, we
develop two examples of fast, reliable, low-dimensional surrogate models
to produce a 36 h forecast of the depth-averaged hydrodynamics at Lake
George NY, USA. Our ML approach uses two widespread artificial neu-
ral network (ANN) architectures: fully connected neural networks and
long short-term memory. These ANN architectures are first validated in
the deterministic and chaotic regimes of the Lorenz system and then
combined with proper orthogonal decomposition (to reduce the dimen-
sionality of the incoming input data) to emulate the depth-averaged
hydrodynamics of a flow simulator called SUNTANS. Results show the
ANN-based reduced order models have promising accuracy levels (within
6% of the prediction range) and advocate for further investigation into
hydrodynamic applications.

Keywords: Model reduction · Dynamical systems · Artificial neural
networks · Water circulation

1 Introduction

Dynamical systems are mathematical descriptions for the evolution of many com-
plex and sophisticated real-world processes. General circulation models simulate

Supported by The Jefferson Project at Lake George, which is a collaboration of Rens-
selaer Polytechnic Institute, IBM, and The FUND for Lake George.

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 116–136, 2020.
https://doi.org/10.1007/978-3-030-59851-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_8

Reduced Order Modeling Applied to Water Circulation 117

a class of dynamical systems that have well suited features for environmental
applications, including weather and hydrodynamic prediction. These physics-
based predictions are commonly used to make time-critical decisions in response
to, for example, occurrences of extreme weather [1] or harmful algal blooms in
water bodies [23]. However, a drawback of general circulation models is the time
duration for execution, often taking hours to complete. Reducing this execution
time would be of benefit to many users.

Machine learning has emerged as a promising technique to significantly reduce
the simulation time of dynamical systems. Artificial neural networks (ANNs) have
been successfully developed as surrogate models of their more computationally-
demanding counterparts. In essence, ANNs “learn” to perform tasks through
examples without the need to be programmed with rigid rules to execute spe-
cific tasks. For example, [12] replaced a reservoir simulator with ANNs trained on
the input and the output of the model, making the surrogate model agnostic to
the origin of the inputs and substantially decreasing the compute time. [18] used
a method based on LSTM networks to simulate reduced order chaotic dynam-
ical systems, including a barotropic climate model. Their method outperforms
other techniques in short-term predictions, but long-term predictions experience
a cumulative error, leading to erroneous long-term forecasts.

Other machine learning methods used in fluid dynamics simulations include
[20], who used a physics-informed machine learning approach to improve pre-
diction of Reynolds stress in fluids from an estimation in a Reynolds averaged
framework. They used the Random Forest method to build the regression func-
tions and an available direct numerical simulation (DNS) data-set served as
training for their framework. Their methodology improved the estimation of
Reynolds stress, but generated spurious changes in some cases. [7] used a convo-
lutional neural network to accurately reconstructed the velocity field in a fluid,
with a 700 times speedup, including the divergence-free condition for the fluid
in their loss function.

A recent review of machine learning for fluid mechanics [2] highlighted that
combining data driven methods (e.g., ANNs) with reduced order models (ROMs)
is a compelling technique that can outperform each of its components. [2] high-
lighted encouraging results by [19], who used a type of recurrent neural net-
work with long-short term memory (LSTM) to create data-driven predictions of
extreme events in a complex dynamical system.

With this in mind, we hereby develop two low-dimensional ANN-based ROMs
to simulate the hydrodynamics of a freshwater lake in New York, USA. ROMs
represent a technique for reducing the computational complexity of mathemat-
ical models in numerical simulations. A common technique for order reduction
is proper orthogonal decomposition (POD), which is a numerical scheme that
compresses data and preserves the essence of the original information in the form
of an orthonormal basis matrix (which is optimal in the least-squares sense) [21].
The POD method can decouple the approximate solution of a dynamical sys-
tem (e.g., water circulation in a lake) into spatial and temporal components; the
spatial components can then be computed offline while an ANN can predict the
temporal coefficients of the ROM.

118 A. Costa Nogueira Jr. et al.

Hence, the objective of this work is to investigate the feasibility of using ANN-
based ROMs to simulate the hydrodynamics of a freshwater lake. Specifically,
we task ourselves with generating a 36 h hydrodynamic forecast and compare its
skill to the full-order approximate solution given by a high-resolution, hydrostatic
model.

The paper is arranged as follows. First, the dimensionality reduction to pro-
duce the ROM is described, followed by the philosophy and workflow for two
ANN-based ROMs. We then demonstrate the effectiveness of an ANN at pre-
dicting the deterministic and chaotic regimes of a discrete system called the
Lorenz system, followed by results from the ANN-based ROMs predicting the
depth-averaged hydrodynamics of a freshwater lake.

2 Dimensionality Reduction

Consider the full order well-posed dynamical system given by

∂Q(x, t)
∂t

+ N (Q(x, t)) = S(x, t), (x, t) ∈ Ω × T (1)

with suitable initial and boundary conditions. Above, Ω ⊂ R
d(d = 1, 2, 3) and

T ⊂ [0, T] refer to the space domain and time, respectively. Q,S : Ω ×T −→ R
n

denote the space-time solution and source term, respectively, with n being the
number of dependent variables in the system. N is a general nonlinear operator
associated to the dynamical system of interest.

After spatial discretization by any suitable numerical technique, the full order
system is reduced to a system of ordinary differential equations (ODE) as

dQh(t)
dt

+ Nh(Qh(t)) = Sh(t), t ∈ T (2)

where Qh : T −→ R
M is the discrete solution, M is the number of degrees of

freedom (DOFs) of the discrete dynamical system, Nh and Sh : T −→ R
M are

the corresponding discrete nonlinear operator and source term, respectively.
Repeatedly solving the discrete system of ODEs, which is the case in many

forecasting applications, is a hard working and time consuming task. It motivates
us to seek an approximate solution of the full-order problem based on a linear
combination of reduced basis functions {ψl}1≤l≤L ⊂ R

L with L � M . Thus, the
reduced space spanned by the reduced basis functions is

Vrb = span{ψ1, . . . , ψL} ⊂ Vh (3)

where Vh is a finite dimensional subspace of a Hilbert space V defined over the
domain Ω.

An approximation of the full-order system can be expressed by the ansatz

Q(x, t) ≈ Qrb(x, t) = q(x) + q′(x, t) = q(x) +
L∑

i=1

ai(t)ψi(x) (4)

Reduced Order Modeling Applied to Water Circulation 119

where a(t) = [a1(t), . . . , aL(t)]T ∈ R
L is defined as the vector of coefficients of

the approximate solution and, q and q′ are mean and fluctuating quantities that
split the approximation Qrb. According to [21], such splitting prevents the first
reduced coefficient from containing most of the energy of the original system and
therefore adds stability to the reduced system. It is worth noting that we only
expand the term q′ since it depends on both time and space.

For the sake of conciseness, we denote Ψi = ψi(x), and define the following
reduced basis matrix Φ = [Ψ1, . . . , ΨL] ∈ R

M×L which will be used later on.

2.1 Proper Orthogonal Decomposition

A sharp definition of the POD method can be found in [21] where the authors
state that it is a numerical technique that compresses data preserving the essence
of the original information through an orthonormal basis matrix. Such matrix is
built to be the optimal solution of a least-squares problem.

To construct a reduced basis using the POD, we start by arranging a collec-
tion of N snapshots of the fluctuating quantities introduced in Eq. (4) column-
wise as Q′ = [q′(x, t1), . . . , q′(x, tN)] ∈ R

M×N , which is called the snapshot
matrix. At this stage, we consider that q′ is evaluated as a uniform lattice or a
set of randomly distributed points. However, the fluctuation values still depend
on x since these variables must be integrated with respect to the space coordi-
nates to form a correlation matrix (as we shall see later in the solution of the
maximization step of the POD method).

Based on the expansion defined in Eq. (4) and using the reduced basis matrix
definition, we can write Q′ as

Q′ = ΦA with Φ ∈ R
M×L, A ∈ R

L×N , (5)

where we used the matrix of temporal coefficients defined as A =
[a(t1), . . . ,a(tN)].

It is straightforward to show that each Ψi basis function satisfies the following
equation

Ψi = λ
−1/2
i Q′vi (6)

with λ1 ≥ λ2 ≥ . . . ≥ λL, where λ
−1/2
i is the normalization factor and vi are the

eigenvectors of the following eigen problem

Cvi = λivi, (7)

where C =
∫

Ω
Q′T Q′ dΩ is the correlation matrix1

1 Writing the correlation matrix as an integral over the domain Ω means that we
are weighting each variable in the vector q′ associated to a lattice point xi with
the corresponding volume Vi of a fictitious control volume enclosing that lattice
point. For fluctuation data q′ collected from unstructured finite element-like grids,
the enclosing volume of a point xi taken at the centroid of a mesh cell is the cell’s
own volume.

120 A. Costa Nogueira Jr. et al.

A standard way to estimate the dimension L of the reduced basis Φ is the
following criterion ∑L

i=1 λi∑M
i=1 λi

≥ γ, (8)

where 0 < γ < 1 is a threshold that indicates the amount of energy of the
original full order system being preserved by the reduced order system.

A simple projection operation is sufficient to recover the temporal coefficients
associated to the spatial basis functions

aj (ti) = (Q′ (x, ti))
T

Ψj . (9)

It provides the necessary inputs for training the artificial neural networks which
compose the reduced order models proposed in this work.

3 Artificial Neural Networks

As the name suggests, an ANN is a computational system inspired by brain
functioning [13]. An ANN consists of a collection of units called artificial neurons
and virtual wired connections between neurons called edges that mimic synapses
in a biological brain. Information is transmitted from input neurons towards
output neurons according to the paths imposed by the connections forming a
directed graph. Neurons are typically arranged into layers and a sequence of such
interconnected layers creates the ANN itself. Usually, weights and biases are
associated with edges and neurons, respectively, to adjust the learning process
of the network for any specific application. In this work, we consider two types of
ANNs: the traditional fully connected neural network (FCNN) [15] and a specific
recurrent neural network (RNN) [10] called the LSTM neural network [5]. The
code implementation was written in Python using Numpy and Keras together
with the TensorFlow AI library.

4 ANN-Based Reduced Order Models

The POD method produces a separation of variables of the original dynamical
system (cf. Eq. 4). The spatial basis can be computed offline from the snapshot
matrix and remains fixed for each simulation data set. The projection of the
fluctuating quantities onto the spatial basis provides the input for training the
ANN-based ROM that we seek. Such an approach gives us an approximation of
the temporal coefficients such that

C ≈ A = ΦT Q′, (10)

where C = [c(t1), . . . , c(tN)] , C ∈ R
L×N , analogous to the definition of matrix A.

It is woth noting from Eq. (5) that we can easily recover A since Φ is an orthonor-
mal matrix. Once the approximation of the temporal coefficients is obtained, we

Reduced Order Modeling Applied to Water Circulation 121

can write the desired reduced basis approximate solution of the original dynam-
ical system as

Qrb = q + Φ C. (11)

This result accomplishes our goal of having a ROM that works as a proxy model
of the original full order system. In the following, we show how to build two
types of ANN-based ROMs.

4.1 FCNN ROM

After performing the POD method, we can rewrite Eq. (4) as an exclusive time
dependent set of equations

Qrb(t) = q + q′(t) = q +
L∑

i=1

ai(t)Ψi, (12)

and we can differentiate them with respect to time to obtain

dQrb(t)
dt

=
L∑

i=1

Ψi
dai(t)

dt
= Φȧ(t). (13)

Noting that Eq. (2) can be recast as

dQh(t)
dt

= Sh(t) − Nh(Qh(t)), (14)

we can combine both equations in such a way that we isolate the time derivative
of the reduced basis coefficients on the left and keep all the nonlinearities and
sources of the dynamical system on the right; that is,

ȧ(t) ≈ ΦT (Sh(t) − Nh(Qh(t))) . (15)

It suggests that all the complexity of the dynamical system under analysis can
be described by the evolution of the temporal coefficients a(t). Given that, we
set up a FCNN as a regression tool to estimate ȧ(t) as follows

ȧ(t) ≈ dc(t)
dt

= W[l]G[l−1] + b[l], (16)

where W[l] is the weight matrix of the last layer of the FCNN, G[l−1] is the
activation matrix of the penultimate layer and b[l] is the bias vector of the last
layer.

Figure 1 shows a schematic representation of the operations performed to
construct the FCNN ROM. The FCNN is designed to receive the temporal coef-
ficients a(t) as input from the (lake circulation) flow field variables and the
atmospheric forcing terms (cf. input vectors ac and af on the bottom left of
Fig. 1, respectively) and to return an approximation of the time derivative of
the flow field coefficients as output. Such an approach is inspired by the work of

122 A. Costa Nogueira Jr. et al.

[9] which focused on computational fluid dynamics applications, though it did
not depend on external atmospheric forcing terms.

The FCNN’s loss function is minimized with respect to the time derivative
of the temporal coefficients a(t), computed with a high resolution finite differ-
ence scheme. To recover the approximate time coefficients c(t) computed by the
FCNN, we use a 5-stage 4th order strong stability preserving Runge-Kutta (RK)
scheme. Such an approach allows us to predict the field variables of the dynam-
ical system beyond the training window because q(x) and Ψi(x) depend only on
the spatial coordinates. Furthermore, RK time-steps used to reconstruct field
variables don’t need to be the same size as those used for training the FCNN,
ensuring great flexibility for the FCNN ROM.

Fig. 1. Schematic of the FCNN ROM workflow. On the bottom left, the inputs of the
ANN ac and af are the time coefficients associated with the lake circulation flow fields
and the atmospheric forcing variables, respectively. The output ċ is the approximation
of the time derivative of the time coefficients associated to the water circulation.

4.2 LSTM ROM

The LSTM neural network is a type of Recurrent Neural Network (RNN) which
has been primarily utilized in speech modeling [14] and language translation [17].
However, some authors have applied it successfully in forecasting problems includ-
ing turbulent flows [11], weather prediction [6], and runoff applications [24].

Reduced Order Modeling Applied to Water Circulation 123

For a given time series ai(t), the LSTM uses a double-leaf moving window
with input and output time lengths Δtin and Δtout, respectively, to create a set
of training sequences. Upon minimization of the loss function, given a section of
the time series with length Δtin on the left leaf of the moving window, the LSTM
learns how to predict the adjacent section of the time series with length Δtout

on the right leaf of the moving window. Once trained, the LSTM can perform a
forecast of length Δtout using the last Δtin section of the time series. If we want
to stretch the forecast length for multiple time lengths Δtout, we feedback the
trained LSTM with each predicted extrapolation.

Looking at the time coefficients ai(t) in Eq. (4), we can interpret them as a
set of L time series of length N associated with each spatial mode Ψi. Given that,
we use an LSTM neural network with a suitable moving window to estimate the
temporal coefficients a(t) directly so that we can forecast the dynamical system
under analysis by extrapolating those time series. Equation (9) provides the
necessary input for training the LSTM ROM.

We should remark that the LSTM ROM workflow is nearly identical to that
of the FCNN ROM except that the LSTM neural network does not rely on
the derivative of temporal coefficients (ȧ(t)) to minimize the loss function. The
FCNN box in Fig. 1, which computes weights and biases to estimate ȧ(t), can
therefore be replaced by an LSTM neural network that outputs the temporal
coefficients a(t) themselves.

5 Numerical Results

This section demonstrates the effectiveness of the proposed ANN-based ROMs
via two examples: predicting the state of a discrete system called a Lorenz attrac-
tor, and the movement of water in a freshwater lake. Note that while the Lorenz
attractor is a discrete system and does not require dimensionality reduction, it
is, from a theoretical standpoint, a suitable case study for evaluating the ability
of ANNs to forecast deterministic and chaotic physical behavior.

5.1 Lorenz Attractor

The Lorenz attractor is a set of chaotic solutions of the Lorenz system which
consists of the following set of three ODEs:

dx

dt
= σ(y − x), (17)

dy

dt
= x(ρ − z) − y, (18)

dz

dt
= xy − βz. (19)

This system, originally developed by Edward Lorenz in the early 1960s, was an
attempt to represent atmospheric convection through a two dimensional fluid
flow of uniform depth with an imposed temperature difference in the vertical

124 A. Costa Nogueira Jr. et al.

direction. Thus, in the system above, x is a quantity describing the rate of
convection, y is the horizontal temperature variation, and z is the vertical tem-
perature variation. Parameters σ, ρ and β are the Prandtl number, a number
proportional to the Rayleigh number and a geometric factor, respectively.

The time derivatives of the coordinates x, y and z can be interpreted as three
separate time series. Once this system of three ODEs is numerically integrated
along a period T using a time step dt, we have the necessary dataset to train
and test the ANN which models the Lorenz system behavior. As noted above, a
dimensionality reduction is not required.

In this numerical example, we trained a FCNN to predict the deterministic
and chaotic regimes of the Lorenz system. As the chaotic regime was supposed to
be much harder to predict than the deterministic one, we performed a hyperpa-
rameter optimization using the library Optuna (https://optuna.org/) to find the
best neural network architecture for predicting the chaotic case. Then we used
the same FCNN to predict both system behaviors. The best hyperparameters
configuration is shown in Table 1.

Table 1. Best FCNN hyperparameters configuration.

Neurons per layer Learning

rate

L2

regularization

Activation

function

Loss function Optimizer

{3, 24, 25, 33, 22, 26, 3} 5.2e−06 2.3e−05 ELU Mean Squared

Error

ADAM/L-BFGS-B

The ANN’s weights and biases were optimized by two algorithms applied
successively. First, the ADAM algorithm iterates 2000 cycles and then the L-
BFGS-B scheme completes the optimization process until the convergence is
reached. ADAM is a variant of the classical Stochastic Gradient Descent (SGD)
method which is an iterative method for optimizing an objective function. Sim-
ilarly, L-BFGS-B is a second order quasi-Newton algorithm that performs the
same task with the advantage of showing greater accuracy. As the former method
is computationally more efficient, it gives a quick enhanced initial guess to the
latter. The physical parameters of the deterministic Lorenz system were set as:
ρ = 14.0, σ = 10.0, β = 8/3, T = 12.0 s, dt = 0.001 s.

Figure 2 shows plots of the discrete variables and their time derivatives com-
pared to the true solutions over time, along with the absolute errors2. We observe
that the FCNN can predict variables x, y and z with moderate accuracy only for
a short period (about two seconds) since the errors of the time derivatives of the
discrete variables are one order of magnitude smaller than the derivative values
themselves. However, all time derivatives reach the system steady state with
some positive or negative bias resulting in a clear discrepancy between predicted
and reference solutions for x, y and z. As the architecture of the FCNN was
optimized to predict persistent unsteady behavior, typical of chaotic regimes, it
2 Relative errors are not suited for the analysis because the time derivative of the

reference solution has many values close to zero.

https://optuna.org/

Reduced Order Modeling Applied to Water Circulation 125

was expected that only the oscillatory patterns would be captured by the ANN
in the deterministic case.

Fig. 2. Deterministic Lorenz system: a) ẋ, ẏ, ż true and predicted; b) errorẋ = ẋtrue −
ẋpred, errorẏ = ẏtrue − ẏpred, errorż = żtrue − żpred; c) x, y, z true and predicted; d)
errorx = xtrue − xpred, errory = ytrue − ypred, errorz = ztrue − zpred.

Figure 3 shows the same distribution of plots for the chaotic regime, which has
the same physical parameters as in the deterministic system except for ρ = 28.0.
In this case, we report time in terms of Lyapunov timescale which mirrors the
limits of the predictability of the system: counting the number of Lyapunov
units over which the ANN matches the dynamical system’s patterns provides
a threshold beyond which the ANN will fail to predict the system’s behavior.
In the numerical experiments, we computed the Lyapunov unit as ≈ 1/λmax =
1.06s., where λmax is the system’s largest positive Lyapunov exponent (LLE).
We observe that the errors of the predicted time derivatives of the discrete
variables are two orders of magnitude smaller than the maximum values reached
by the derivatives themselves (Figs. 3a and 3b). Such performance is sufficient
to provide a remarkable correspondence between predicted and reference time
series for all discrete variables x, y and z for nearly 9 Lyapunov units, as shown
in Fig. 3c. It is clear that hyperparameter optimization tuned for the chaotic
regime increased the quality of the FCNN prediction substantially. However, it
is not obvious how to extend such predictability limits to realistic hydrodynamics
systems since the LLE are not readily available for such complex systems.

126 A. Costa Nogueira Jr. et al.

For the sake of brevity, we omitted the results of the LSTM approach for the
Lorenz system as they are quite similar to the FCNN ones.

Fig. 3. Chaotic Lorenz system: a) ẋ, ẏ, ż true and predicted; b) errorẋ = ẋtrue −
ẋpred, errorẏ = ẏtrue − ẏpred, errorż = żtrue − żpred; c) x, y, z true and predicted; d)
errorx = xtrue − xpred, errory = ytrue − ypred, errorz = ztrue − zpred.

5.2 Hydrodynamics at Lake George

Lake George is a freshwater lake in upstate New York, USA. It is considered
of medium size (51.5 km × 2.15 km) with a total surface area of 117.4 km2. It is
the subject of a multiyear research effort called The Jefferson Project that has a
goal of understanding the impact of human activity on fresh water, and how to
mitigate those effects. A operational prediction system has developed as part of
The Jefferson Project to perform short-term (1–7 day) forecasts of the weather,
hydrology and hydrodynamics (viz. water circulation) at Lake George [22].

Currently, hydrodynamic predictions are performed daily using the Stan-
ford unstructured-grid, nonhydrostatic, parallel coastal ocean model (SUN-
TANS). SUNTANS solves the three dimensional Reynolds-averaged Navier-
Stokes (RANS) equations on an unstructured, horizontal grid and fixed z-level
vertical domain using a finite-volume (FV) discretization. SUNTANS has been
extensively used in a variety of hydrodynamic applications with good results
[3]. For Lake George, the SUNTANS grid has a varying horizontal resolution of

Reduced Order Modeling Applied to Water Circulation 127

10–50 m and a vertical resolution of 0.5 m close to the surface and 1.6 m at the
deepest point of the lake. Its configuration for daily forecasts at Lake George con-
tains over 40,000 grid cells and takes around 11/2 h to complete a 36 h forecast
using 30 high-end processing cores.

To simulate realistic conditions, SUNTANS requires a realistic atmospheric
forcing. For Lake George, this is provided by the Weather Research and Fore-
casting (WRF) model v3.9.1 [16], which has been configured to generate daily,
36 h forecasts for Lake George at 0.33 km horizontal resolution. More details
about the model setup can be seen in [22]. WRF is said to be one-way coupled
to SUNTANS (i.e., the forecasted state of SUNTANS does not feedback into
WRF).

The time duration and obvious energy requirements demanded by SUNTANS
motivates us to develop a hydrodynamic surrogate model using ANN-based
ROMs. In the following, we discuss the numerical experiments made with the
FCNN and LSTM ROMs. Note that we are not attempting to reconstruct the full
3D hydrodynamic state of Lake George; rather, we focus on reconstructing the
2D depth-averaged values of four variables: temperature, density, and northward
and eastward water velocity. With such a simplified reconstruction, a ML-based
surrogate takes only a couple of seconds to perform a 36 h water circulation fore-
cast. Compared with the 1 1/2 h of a regular forecast made by SUNTANS, it
demonstrates a significant prediction speed up. While a time complexity analysis
for the forward propagation of feed forward neural networks results in O(N4),
such an analysis seems to be virtually unattainable given the huge complexity
of a PDE solver based on a FV discretization method like SUNTANS.

Training data was provided by daily WRF and SUNTANS forecasts with
10 min output resolution for the period from April 1st to 20th, 2019. Each fore-
cast overlaps by 12 h and was included in the training. Data from a single 36 h
forecast by WRF and SUNTANS on April 21st, 2019 was used for testing. The
data contained four atmospheric variables from WRF: surface air temperature
and pressure, and northward and eastward surface wind velocity; and four depth-
averaged hydrodynamic variables from SUNTANS: density, temperature and
northward and eastward water velocity. All data was collected from the cen-
troid of each SUNTANS cell (including the WRF data which was projected onto
the SUNTANS grid).

The aim is to generate a 36 h depth-averaged hydrodynamics forecast of Lake
George starting from April 21st, with a 5% error in the L2-norm with respect to
the full order approximate solution (given by SUNTANS across the same forecast
interval).

FCNN ROM for Hydrodynamics. To find the best performance models, we
applied a hyperparameter optimization on the FCNN architecture of 600 config-
urations randomly chosen with different numbers of hidden layers, neurons per
layer and optimizer iterations, and dropout values and learning rates. Empirical
tests revealed that 5 spatial modes Ψj represent the main circulation features
over the entire lake (see Fig. 4), preserving 96% of the total energy of the full

128 A. Costa Nogueira Jr. et al.

order system. Table 2 shows the percentage preservation by each spatial mode,
indicating how representative each mode is at explaining the variance in each
circulation variable (e.g., density, temperature and velocity components). It is
worth noting that the preserved energy of each spatial mode is the same regard-
less of the circulation variable as the eigenvalues of the correlation matrix are
the same for each circulation variable.

Table 2. Percentage of preserved energy in each spatial mode.

Ψ1(x) Ψ2(x) Ψ3(x) Ψ4(x) Ψ5(x) Total preserved energy

91.4% 2.4% 1.1% 0.6% 0.5% 96.0%

a) Ψ1(x) b) Ψ2(x) c) Ψ3(x) d) Ψ4(x) e) Ψ5(x)

Fig. 4. From top to bottom: Spatial modes relative to Density, Temperature, East and
North velocity components.

Figure 5 shows the time series of the 5 temporal coefficients for each spa-
tial mode. In these plots, blue lines correspond to input used for training the
machine learning model, green lines represent the “true” values simulated by
SUNTANS for testing, and the orange lines represent predicted values by the

Reduced Order Modeling Applied to Water Circulation 129

Fig. 5. Temporal coefficients of the FCNN ROM corresponding to the 5 spatial modes.
From left to right, first row: a1(t),a2(t) and a3(t); second row: a4(t) and a5(t).

FCNN ROM. The time series corresponding to the FCNN ROM temporal coef-
ficients are predicted fairly well. It suggests that the numerical differentiation of
the temporal coefficients recovered from the full order model are quite consis-
tent and reliable, ensuring an accurate reconstruction of the ROM coefficients
through the RK time integration procedure. Although the error of the predicted
time series corresponding to the fourth and fifth modes had been relatively large,
their contributions to the approximating capacity of the surrogate model is quite
insignificant as shown in Table 2.

When the time coefficients are multiplied by the spatial modes according
to Eq. (11), the FCNN ROM produces the desired 36 h hydrodynamic forecast
for Lake George. Figure 6 shows the comparison between the predicted physical
state of Lake George at the end of the 36 h forecast, and its “true” physical state
from SUNTANS. In these plots, the physical variables (temperature, density and
velocity) have been normalized (their values are restricted to the range [0, 1]).

It is evident that variables which change slowly with time, such as density and
temperature, are better approximated by the FCNN ROM than water velocity.
The water velocity is acutely sensitive to surface winds which can change rapidly
with time. The error plots in Fig. 7b shows the impact of a strong wind event
between 12 and 23 h that significantly increases the error of the water velocity
components, degrading the performance of the whole model. Such high frequency
fluctuations are difficult for the neural network to capture because the correlation
matrix C takes into consideration all physical variables at once.

Figure 7a shows the 3 best FCNN ROMs, ranked according to the relative
error of the averaged water velocity components (u+v

2). This choice was made
considering evidence of the difficulty in approximating fast-changing variables.
The hyperparameter optimization strategy generates a set of candidates labeled
with arbitrary numerical indices such as 1617, 1561 and 1100 (cf. Fig. 7) to
identify each individual model that was trained. The water velocity components
were expected to influence the choice of the best ROMs because they are harder

130 A. Costa Nogueira Jr. et al.

Density ρ Temperature T East velocity u North velocity v

True

Predicted

Fig. 6. Full order model solution vs. FCNN ROM approximation for density, temper-
ature and velocity components.

a) Relative error for the 3 best b) Relative error for each
hyperparameter settings variable: ρ, u, v, T

Fig. 7. a) Best performances based on the average u+v
2

error; b) Best configuration:
model 1617.

to approximate, as noted previously. Figure 7b shows the L2-norm relative error
of each variable for the best FCNN ROM setup.

The relative error of all variables is kept below 7% for the duration of the 36 h
forecast, which is quite remarkable. At the end of the forecast, only the density
relative error is above the target of 5%, although a visual comparison between the
predicted and true density distributions shows very small differences. The error
levels achieved are even more impressive if we consider that SUNTANS uses an
internal 3 second time step to reach its solution, while the surrogate model has
an effective timestep of 10 min (the frequency of data output from SUNTANS
and WRF). We should also highlight that deep neural networks performed much

Reduced Order Modeling Applied to Water Circulation 131

better than shallow ones, none of which were selected in the top three FCNN
ROM setups.

Table 3 shows the optimum hyperparameters selection for FCNN ROM num-
ber 1617.

Table 3. FCNN ROM best hyperparameters configuration.

Hidden layers Neurons/Layer Dropout/Layer Learning rate Adam iter

8 {83, 65, 67, 145, 59, 103, 81, 129} 0.3 1e−05 5040

For the sake of completeness, we also investigated the ability of the FCNN
ROM to provide accurate predictions of flow velocities at specific touristic regions
at Lake George. We identified two places of interest using lat-long coordinates:
Million Dollar beach in the south and City of Bolton in the middle west. Circular
areas with 1.0 km of radius centered at those points delimit the regions of interest
where we evaluated the 36 h time averaged error of the best surrogate model
(labeled 1617) to predict eastward and northward flow velocities.

Table 4 shows the time averaged error of the flow velocity components for
the two specific regions of interest.

Table 4. Time averaged percentage error of flow velocities at two regions of interest.

Placement u error (%) v error (%)

Million Dollar beach 0.6 0.5

City of Bolton 3.0 2.4

LSTM ROM for Hydrodynamics. The LSTM learning process used an
asymmetrical sliding window with 200 min input and 10 min output. As before,
hyperparameter optimization was performed using a very simple strategy of
randomly generating different neural network architectures. Such a strategy was
essential to create a competitive model compared with the FCNN ROM.

Figure 8 shows the time series of the 5 temporal coefficients for each spatial
model of the LSTM. The spatial modes are the same as those used by the FCNN
ROM and have already been depicted in the previous subsection. Remarkably,
the LSTM ROM can adequately predict the time series associated with the
temporal coefficients without needing to (directly) compute the time derivatives
of the temporal coefficients, nor integrate the time derivative approximation with
an RK scheme.

132 A. Costa Nogueira Jr. et al.

Fig. 8. Temporal coefficients of the LSTM ROM corresponding to the 5 spatial modes.
From left to right, first row: a1(t),a2(t) and a3(t); second row: a4(t) and a5(t).

Figure 9 shows the comparison of the predicted physical state of Lake George
with the assumed true physical state. As with the FCNN ROM, the depth-
averaged temperature and density variables are better approximated than veloc-
ity due to their large inertial trends. Only the main patterns of the velocity
components can be described by the LSTM ROM. However, as with the FCNN
ROM, there is a monotonic increasing relative error of the density variable. This
is in part because the model performance ranking was based on the relative error
of the average velocity components. The increasing error of the density variable
was not observed when the performance criterion was changed to include other
metrics, such as the error based on the average of all physical variables.

From the error plots of the 3 best performing LSTM ROMs (Fig. 10), the
relative error remains below 6% (and below 7% for each variable) for the duration
of the forecast, which again is a remarkable result. As with the FCNN ROM, we
observe a similar increase in the relative error from 12 to 23 h when the surface
wind strengthened. At the end of the 36 h forecast, only the density relative error
is slightly above the target of 5%, demonstrating the strong ability of the LSTM
architecture to deal with time-evolving sequences. Table 5 shows the optimum
hyperparameters selection for LSTM ROM number 230.

However, such improved results comes with a price: the LSTM ROM needs
4.8 times more degrees of freedom (i.e weights and biases) than the FCNN ROM
to perform equivalently3.

3 The LSTM minimization algorithm finds 264, 690 optimal weights and biases while
FCNN requires only 55, 101.

Reduced Order Modeling Applied to Water Circulation 133

Density ρ Temperature T East velocity u North velocity v

True

Predicted

Fig. 9. Full order model solution vs. LSTM ROM approximation for density, temper-
ature and velocity components.

a) Relative error for the 3 best b) Relative error for each
hyperparameter settings variable: ρ, u, v, T

Fig. 10. a) Best performances based on the average u+v
2

error; b) Best configuration:
model 230.

Table 5. LSTM ROM best hyperparameters configuration.

Hidden layers LSTM cells per layer Dropout Learning rate Adam iterations

3 {133, 92, 129} {0.2, 0.3, 0.3} 0.01 1000

134 A. Costa Nogueira Jr. et al.

6 Conclusions

In this work, we have developed two ANN-based ROMs, namely an FCNN ROM
and an LSTM ROM, which are capable of reproducing a hydrodynamic forecast
for a medium-sized freshwater lake with reasonable accuracy (a relative error of
less than 6% over the entire prediction range) and low computational cost. Both
ANN-based ROMs reduced the dimensionality of the original data provided by
the full-order hydrodynamics model, SUNTANS, to a small number of spatial
basis through the POD technique. POD shows great promise for hydrodynamics
applications as it drastically reduced the computational cost of the forecasting.

More specifically, both ANN-based ROMs performed well at predicting the
temporal coefficients of the depth-averaged hydrodynamic variables. The FCNN
ROM (with a deep neural network configuration) and the LSTM ROM showed
similar results for a 36 h hydrodynamic forecast, trained with the 19 days of
forecasts. However, the LSTM ROM used 4.8 times more learning parameters
than the FCNN ROM to perform equivalently.

The FCNN approach was also tested on predicting the time series of the
Lorenz attractor model. The validation example with hyperparameter optimiza-
tion for the chaotic regime showed outstanding results reaching 9 Lyapunov units
until failing to represent the system’s trends. FCNN also described relatively well
the unsteady section of the deterministic case although with a clear bias in all
discrete variables for the final steady state pattern.

We applied machine learning techniques to data generated by the RANS
simulator, SUNTANS. RANS numerical models are based on assumptions that
simplify computation by decreasing the fidelity of the approximation. Training
the ANN-based ROMs on large eddy simulation (LES) or DNS numerical models
output would provide higher fidelity since they include less assumptions, or none
for DNS. In the literature, we see usage of neural networks [20] trained on DNS
and LES outputs to better represent the Reynolds stress in a RANS model.
We believe this hybrid approach will improve the prediction of mixing events
at the boundaries of lakes and oceans. However, running simulations of realistic
geophysical flows with these models is currently prohibitive from a computational
viewpoint.

Another important point that deserves attention is the capacity of the surro-
gate models to approximate fast changing physical quantities. In [8] the authors
point out that POD-ROMs can produce accurate results only if the problem
of interest admits a fast decaying Kolmogorov n-width which corresponds to
the class of diffusion-dominant problems. Circulation is mostly a convection-
dominant problem with strong variability in velocity components. Another factor
influencing the accuracy of ROMs is the chaotic/turbulent behavior.

As a next step, we want to test the ability of nonlinear dimensionality reduc-
tion [4,8] techniques to describe the circulation features with higher fidelity.

Reduced Order Modeling Applied to Water Circulation 135

References

1. Benjamin, S.G., et al.: A north American hourly assimilation and model forecast
cycle: the rapid refresh. Mon. Weather Rev. 144(4), 1669–1694 (2016). https://
doi.org/10.1175/MWR-D-15-0242.1

2. Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechan-
ics. Annu. Rev. Fluid Mech. 52(1), 477–508 (2020). https://doi.org/10.1146/
annurev-fluid-010719-060214

3. Fringer, O., Gerritsen, M., Street, R.: An unstructured-grid, finite-volumne, non-
hydrostatic, parallel coastal ocean simulator. Ocean Model. 14, 139–173 (2006)

4. Gonzalez, F., Balajewicz, M.: Deep convolutional recurrent autoencoders for learn-
ing low-dimensional feature dynamics of fluid systems (2018)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

6. Karevan, Z., Suykens, J.: Transductive LSTM for time-series prediction: an appli-
cation to weather forecasting. Neural Netw. (2020). https://doi.org/10.1016/j.
neunet.2019.12.030

7. Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solenthaler, B.: Deep
fluids: a generative network for parameterized fluid simulations. Comput. Graph.
Forum (Proc. Eurographics) 38(2) (2019)

8. Lee, K., Carlberg, K.: Model reduction of dynamical systems on nonlinear man-
ifolds using deep convolutional autoencoders. J. Comput. Phys. (2019). https://
doi.org/10.1016/j.jcp.2019.108973

9. Lui, H.F.S.: Construction of reduced order models for fluid flows using deep neural
networks. Master’s thesis, State University of Campinas (2019)

10. Miljanovic, M.: Comparative analysis of recurrent and finite impulse response neu-
ral networks in time series prediction. Indian J. Comput. Sci. Eng. 3 (2012). http://
www.ijcse.com/docs/INDJCSE12-03-01-028.pdf

11. Mohan, A., Gaitonde, D.: A deep learning based approach to reduced order mod-
eling for turbulent flow control using LSTM neural networks (2018)

12. Navrátil, J., King, A., Rios, J., Kollias, G., Torrado, R., Codas, A.: Accelerating
physics-based simulations using end-to-end neural network proxies: an application
in oil reservoir modeling. Front. Big Data 2 (2019). https://doi.org/10.3389/fdata.
2019.00033

13. Nielsen, M.: Neural Networks and Deep Learning. Determination Press (2015).
https://books.google.com.br/books?id=STDBswEACAAJ

14. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural net-
work architectures for large scale acoustic modeling (2014)

15. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

16. Skamarock, W.C., et al.: A description of the advanced research WRF version 3.
NCAR technical note -475+STR (2008)

17. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural net-
works. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3104–
3112. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.pdf

18. Vlachas, P., Byeon, W., Wan, Z., Sapsis, T., Koumoutsakos, P.: Data-driven fore-
casting of high-dimensional chaotic systems with long short-term memory net-
works. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 474(2213), 20170844 (2018)

https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.neunet.2019.12.030
https://doi.org/10.1016/j.neunet.2019.12.030
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1016/j.jcp.2019.108973
http://www.ijcse.com/docs/INDJCSE12-03-01-028.pdf
http://www.ijcse.com/docs/INDJCSE12-03-01-028.pdf
https://doi.org/10.3389/fdata.2019.00033
https://doi.org/10.3389/fdata.2019.00033
https://books.google.com.br/books?id=STDBswEACAAJ
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

136 A. Costa Nogueira Jr. et al.

19. Wan, Z.Y., Vlachas, P., Koumoutsakos, P., Sapsis, T.: Data-assisted reduced-order
modeling of extreme events in complex dynamical systems. PLoS ONE 13 (2018).
https://doi.org/10.1371/fdata.2018.0197704

20. Wang, J.X., Wu, J.L., Xiao, H.: Physics-informed machine learning approach for
reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys.
Rev. Fluids 2, 034603 (2017). https://doi.org/10.1103/PhysRevFluids.2.034603

21. Wang, Q., Ripamonti, N., Hesthaven, J.: Recurrent neural network closure of para-
metric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism
(2019)

22. Watson, C.D., et al.: The application of an internet of things cyber-infrastructure
for the study of ecology of lake George in the Jefferson project (2018)

23. Wynne, T., et al.: Evolution of a cyanobacterial bloom forecast system in western
lake Erie: development and initial evaluation. J. Great Lakes Res. 39, 90–99 (2013).
Remote Sensing of the Great Lakes and Other Inland Waters

24. Xiang, Z., Yan, J., Demir, I.: A rainfall-runoff model with LSTM-based sequence-
to-sequence learning. Water Resour. Rese. 56 (2020). https://doi.org/10.1029/
2019WR025326

https://doi.org/10.1371/fdata.2018.0197704
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1029/2019WR025326
https://doi.org/10.1029/2019WR025326

Parameter Identification of RANS
Turbulence Model Using

Physics-Embedded Neural Network

Shirui Luo1(B), Madhu Vellakal1, Seid Koric1, Volodymyr Kindratenko1,
and Jiahuan Cui2

1 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{shirui,vcmadhu,koric,kindrtnk}@illinois.edu

2 Zhejiang University-University of Illinois at Urbana-Champaign Institute,
Haining 314400, Zhejiang, China
jiahuancui@intl.zju.edu.cn

Abstract. Identifying the appropriate parameters of a turbulence
model for a class of flow usually requires extensive experimentation
and numerical simulations. Therefore even a modest improvement of
the turbulence model can significantly reduce the overall cost of a
three-dimensional, time-dependent simulation. In this paper we demon-
strate a novel method to find the optimal parameters in the Reynolds-
averaged Navier–Stokes (RANS) turbulence model using high-fidelity
direct numerical simulation (DNS) data. A physics informed neural net-
work (PINN) that is embedded with the turbulent transport equations is
studied, physical loss functions are proposed to explicitly impose infor-
mation of the transport equations to neural networks. This approach
solves an inverse problem by treating the five parameters in turbulence
model as random variables, with the turbulent kinetic energy and dissi-
pation rate as known quantities from DNS simulation. The objective is
to optimize the five parameters in turbulence closures using the PINN
leveraging limited data available from costly high-fidelity DNS data. We
validated this method on two test cases of flow over bump. The rec-
ommended values were found to be Cε1 = 1.302, Cε2 = 1.862, Cμ = 0.09,
σK = 0.75, σε = 0.273; the mean absolute error of the velocity profile
between RANS and DNS decreased by 22% when using these neural
network inferred parameters.

Keywords: Turbulence modeling · Neural network · Physics
embedded machine learning

1 Introduction

Reynolds-averaged Navier–Stokes (RANS) simulation remains the workhorse
computational fluid dynamics (CFD) method for industrial enterprises due to its
computational efficiency and easy implementation. However, many flows are dif-
ficult to simulate accurately using RANS models, for example, flow with strong
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 137–149, 2020.
https://doi.org/10.1007/978-3-030-59851-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_9

138 S. Luo et al.

adverse pressure and separation, jet-in-crossflow interactions. The inaccuracy
could be due to RANS inherent simplifications or, more often the case, the
use of inappropriate RANS constants which are usually estimated by fitting
to experimental results of simple flows [1]. The closure model in RANS equa-
tions has traditionally evolved through a combined efforts of mathematics, flow
theory, empiricism, and rudimentary data-driven techniques such as single or
two-variable curve-fitting. These tunable parameters have been determined from
experiments with air and water for fundamental turbulent boundary layers and
free shear flows [2]. Table 1 lists some of the most commonly used constants
in many CFD solvers as the default parameter values (we will refer to them as
the “default” values). They have been found to work well for a wide range of
wall-bounded and free shear flows. However, there is ample empirical evidence
that these parameters are far from being universal [3–5] and the optimal param-
eter values can vary substantially for different flow configurations. Thus, it is
unlikely that the default values of κ − ε model parameters should yield accurate
simulations for all cases, and calibration (either by experimental or high-fidelity
simulation data) for each specific flow configuration should be a pre-requisite [6].

Compared to experimental data, high-fidelity simulation data can provide a
more comprehensive view of the flow than when used for RANS models calibra-
tion, as simulation data can provide flow quantities which cannot be measured in
experiments. If high-fidelity simulation data is provided, the calibration process
is then an inverse problem that given the abundant observable flow field data
from simulation, we need to infer the unknown parameters in the RANS model
transport equations. Solving these inverse problems with differential equations,
however, is typically computationally prohibitive and often requires the solu-
tion of ill-posed problems. Early works on optimizing RANS closure parameters
include schemes like adjoint-based method [7], ensemble Kalman filter [8], and
evolution methods such as the covariance matrix adaption evolution strategy.
Instead of minimizing the error of the whole flow fields, the loss functions in
these previous efforts usually are some aerodynamic coefficients, for example,
the drag coefficient, lift coefficient, and the pitching moment coefficient when
designing an airfoil.

In this work we use a physics-informed neural network (PINN) to calibrate
the five parameters in turbulence model using the whole flow fields from high-
fidelity simulations. The principal idea behind PINN is that: there are some prin-
cipal physical laws that govern the time-dependent dynamics of a system (e.g.
RANS turbulence model) and thus this prior information can act as a regular-
ization agent that constrains the space of admissible solutions to a manageable
size. For example, in incompressible fluid dynamics, we can discard any non-
realistic flow solutions that violate the conservation of mass principle. In return,
encoding such structured information into a learning algorithm results in ampli-
fying the information content of the data that the algorithm sees, enabling it to
quickly steer itself towards the right solution and generalize well even when only
a few training examples are available. The PINN is then grounded in a principal
physics model yet offers the flexibility of learned representations.

Parameter Identification of RANS Turbulence Model 139

It is worth noting that our study is different from pure data-driven turbulence
models, where researchers try to map a direct relationship between mean flow
quantities with Reynolds stress. It is expected that a purely data-driven turbu-
lence model is substantially more challenging than a physics-based model since a
turbulence model requires to discover both the model form and model parameters
whereas a purely data-driven model will abandon the abundant physics in the
RANS turbulence model by only relying on the neural network to map the non-
linear relationships. As such, the drawback of purely data-driven models is that
training datasets play pivoting roles and thus this approach suffers from lack of
extrapolation ability or poor generalization. Even though the model fits very well
to training data, it cannot generalize well to unobserved test data. To overcome
this drawback, the datasets are required to be sufficiently rich with great variabil-
ity, which are generally not available. Despite recent efforts for efficient creation
of datasets with encouraging results, generating the required training dataset
size still requires substantial computational effort. Rather than improving the
model-form error, our work only focuses on calibrating the uncertain parame-
ters in the RANS model, that is, whether RANS simulations could be improved
by using better parameters. This work has a similar concept of data assimila-
tion, which involves combining observations (high-fidelity simulation data) with
“prior knowledge” (mathematical representations of RANS turbulence model)
to obtain an estimate of the true state (optimal parameters in RANS model).
By exploiting inside the neural network training the underlying physical laws
described by turbulence models, the PINN requires substantially less training
data to achieve high accuracy. This work unlocks a range of opportunities in
parameters tuning for fluid simulations.

The paper is organized as follows: Sect. 2 reviews the RANS κ − ε turbu-
lence model, including two transport equations. Section 3 introduces the physics
informed neural network and its specific application for RANS turbulence model-
ing. Section 4 runs a study case with the “flow over the bump” datasets. Section 5
concludes the paper.

2 RANS κ − ε Turbulence Model

The flow of a viscous incompressible fluid with constant properties is governed
by the Navier-Stokes equations:

∂ui

∂t
+

∂(uiuj)
∂xj

= − ∂p

∂xi
+ ν

∂2ui

∂xj∂xj
(1)

∂ui

∂xj
= 0 (2)

where ui is the fluid velocity, p is the pressure (divided by the density ρ),
ν is the fluid kinematic viscosity. In RANS, the Reynolds decomposition will
decompose the dependent variables into mean and fluctuating parts:

ui = ui + ui
′, p = p + p′ (3)

140 S. Luo et al.

where ui and p are ensemble averages of ui and p, respectively, and ui
′ and

p′ are the random fluctuations about the mean field. By substituting the decom-
posed terms into NS equation and taking an ensemble average, one obtains the
system of partial differential equations that governs the mean-velocity and pres-
sure fields of incompressible turbulence flow:

∂ui

∂t
+ uj

∂ui

∂xj
=

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
− ∂τij

∂xj
(4)

∂ui

∂xj
= 0 (5)

where τij = ui
′uj

′ is the unclosed Reynolds-stress term that incorporates the
effects of turbulence motions on the mean stresses. The Reynolds stress tensor
contains six independent unknowns and solving equations requires approximat-
ing the Reynolds stress in terms of u,∇u, or other computable quantities. In the
RANS κ − ε turbulence model, this term is approximated by the eddy-viscosity
model as:

τij = ui
′uj

′ ≈ 2
3
κδij − 2νT Sij (6)

where κ is the average kinetic energy of the velocity fluctuations:

κ =
1
2
ui

′ui
′ (7)

Sij is the strain-rate tensor of the mean field:

Sij =
1
2
(
∂ui

∂xj
+

∂uj

∂xi
) (8)

νT is the turbulent eddy viscosity, in the κ − ε turbulence model, this term is
modeled as:

νT = Cμ
κ2

ε
(9)

where ε is the rate of dissipation of turbulent kinetic energy as:

ε = ν
∂ui

′

∂xj

∂ui
′

∂xj
(10)

The transport equations of turbulent kinetic energy and dissipation rate are:

∂κ

∂t
+ ui

∂κ

∂xi
= −τij

∂ui

∂xj
− ε +

∂

∂xi
(
νT

σκ

∂κ

∂xi
) + ν

∂2κ

∂xi∂xi
(11)

∂ε

∂t
+ ui

∂ε

∂xi
= −Cε1

ε

κ
τij

∂ui

∂xj
+

∂

∂xi
(
νT

σε

∂ε

∂xi
) − Cε2

ε2

κ
+ ν

∂2κ

∂xi∂xi
(12)

The two transport equations represent the turbulent properties of flow, they
can account for history effects like convection and diffusion of turbulent energy.

Parameter Identification of RANS Turbulence Model 141

Here κ can be thought of as the variable that determines the energy in the tur-
bulence and the ε determines the turbulence scale. The five tunable parameters
in the above two transport equations are: Cμ, Cε1, Cε2, σκ, σε. Table 1 shows the
various model constants that largely are used in CFD community. In previous
efforts [9,10], the parameters are determined by requiring the turbulence model
to satisfy experimental data for certain simple standard flow cases. In Launder
and Sharma model, for example, the Cμ coefficient is obtained by considering
the log-law region of a turbulent boundary layer. The Cε1 is usually fixed from
calibrations with homogeneous shear flows, and Cε2 is usually determined from
the decay rate of homogeneous, isotropic turbulence. The last two constants, σκ

and σε, are optimized by applying the model to various fundamental flows such
as flow in channel, pipes, jets, wakes [11].

Table 1. Various κ− ε turbulence model [3,9,12,13] constants that are typically used
in CFD models.

Parameter Launder and Sahrma Jones and Launder Chien Yakhot and Orszag

Cε1 1.44 1.55 1.35 1.063

Cε2 1.92 2.0 1.8 1.7215

Cμ 0.09 0.09 0.09 0.0837

σκ 1.0 1.0 1.0 0.7179

σε 1.3 1.3 1.3 0.7179

Previous efforts on clousure coefficient identification include schemes like
adjoint-based method [7], ensemble Kalman filter [8], the Bayesian inference
combined with some high dimensional model representation technique [14], and
more recently the Isogeometric Analysis for solving PDE-constrained optimiza-
tion problems. The RANS model then requires case-sensitive parameters in a
sense that each category of flow should have their own most suitable parame-
ters [6,15]. Once the high-fidelity data is available, a flexible and efficient scheme
that can easily identify the optimal parameters for a specific category of flow is
thus imperative.

3 Physics-Informed Neural Network

The first glimpses of promise for exploiting structured prior information to con-
struct data-efficient and physics-informed learning machines have already been
showcased in recent studies [16–22]. Based on these prior successes, the principal
idea behind the PINN is that the principal physical laws (usually in the form
of differential equations) that govern the time-dependent dynamic system are
treated as the prior, this prior information is embedded in the network loss func-
tion and then can act as a regularization that constrains the space of admissible
neural network solutions. The benefits of encoding such structured information

142 S. Luo et al.

is that it enables a learning algorithm to quickly steer itself towards the right
solution. Such neural networks are constrained to respect any symmetries, invari-
ances, or conservation principles originating from the physical laws that govern
the observed data. In incompressible fluid dynamics problems, for example, we
can constrain the solution space by discarding any non-realistic flow solutions
that violate the conservation of mass principle.

Figure 1 shows the architecture of physics informed neural network for tur-
bulence modeling application. A feedforward neural network is constructed to
map the relationship between the coordinates, velocity with the turbulent kinetic
energy and dissipation rate. The five tunable parameters in the RANS model
are unknowns that we wish the PINN to optimize. The network’s loss function
combines the mean squared error loss with physical constraints as:

L =
1
N

∑
(κreal − κpred)2 +

1
N

∑
(εreal − εpred)2 + ωf ∗ f + ωg ∗ g (13)

where the MSE of κ and ε denote the mean squared error loss corresponding
to the initial high-fidelity data, the f and g enforce the physics by penalizing
any deviations of the predicted physical law. They are defined based on the two
transport equations as:

f =
∂κ

∂t
+ ui

∂κ

∂xi
+ τij

∂ui

∂xj
+ ε − ∂

∂xi
(
νT

σκ

∂κ

∂xi
) − ν

∂2κ

∂xi∂xi
(14)

g =
∂ε

∂t
+ ui

∂ε

∂xi
+ Cε1

ε

κ
τij

∂ui

∂xj
− ∂

∂xi
(
νT

σε

∂ε

∂xi
) + Cε2

ε2

κ
− ν

∂2κ

∂xi∂xi
(15)

We did not need to specify the geometry or the boundary and initial con-
ditions in the loss as other PINNs do. The parameters are calibrated not only
by minimizing the squared residuals over specified collocation points, but the
two transport equations are also embedded to constrain possible neural network
solutions. The model parameters can be calibrated according to:

Cε1, Cε2, Cμ, σκ, σε = argmin L (16)

Minimizing the loss function is usually performed using backpropagation in
neural network models. In backpropagation, the gradients of an objective func-
tion with respect to the weights and biases of a deep neural network are cal-
culated by starting off from the network output and propagating back towards
the input layer using the chain rule. With the customized loss, the neural net-
work is optimized under partial differential equation constraints. While it seems
that the loss function (embedded with transport equations) is too sophisticated
to quickly get the gradient, the truth is that the differential operations in the
transport equations are easily adapted and implemented in the deep learning
platform, as the backpropagation in TensorFlow and the derivatives computa-
tion are implemented in automatic differentiation. The differential operations in
the transport equations can be easily embedded in the computational graph by

Parameter Identification of RANS Turbulence Model 143

Fig. 1. The architecture of physics informed neural network for turbulence modeling
application.

taking advantage of the chain rule in automatic differentiation. The loss function
is then fully differentiable yet enforced with the PDE constraints.

Automatic differentiation in general, and the back-propagation algorithm
is currently the dominant approach for training deep models by taking their
derivatives with respect to the parameters (e.g., weights and biases) of the model.
Here, we use the exact same automatic differentiation techniques, employed by
the deep learning community, to physics-inform neural networks by taking their
derivatives with respect to their input coordinates (i.e., space and time) where
the physics is described by partial differential equations. It has been empirically
observed that this structured approach introduces a regularization mechanism
that allows us to use relatively simple feed-forward neural network architectures
and train them with small amounts of data.

4 Case Study: Channel Flow with a Lower Curved Wall

The high-fidelity DNS dataset is composed of DNS of converging-diverging
turbulent channel flows at two Reynolds numbers (Reτ = 395 and Reτ =
617) [23,24]. The dataset is from turbulent boundary layers (TBL) with strong
adverse pressure gradient. It is critical to understand flow which undergoes sep-
aration and subsequent turbulent reattachment in the TBL to correctly predict
the efficiency of many aerodynamic devices. Such turbulent flows have been
regarded as being among the most challenging flow dynamics to predict using
turbulence models [25]. It is thus of great interests to study whether turbulence
models leveraging high-fidelity data can have a more satisfactory performance.
The dataset includes 438 and 930 3D velocity and pressure fields for the two
Reynolds respectively [26]. All the terms involved in the balance of each Reynolds
stress component are provided. These DNS have been designed to test and val-
idate turbulence model as flat channel flow data are used for inflow condition.
The RANS calculations are performed using the Ansys Fluent v.14.0 commercial

144 S. Luo et al.

CFD package. The steady-state, two-dimensional, incompressible pressure-based
solver, SIMPLE method, is used with the default settings of the Fluent pack-
age [27]. Figure 2 shows a comparison of the contour plots of the turbulent kinetic
energy. The RANS models are found to predict an incorrect evolution in regions
of adverse pressure gradient. It seems to be related to the fact that these models
do not correctly describe the evolution of the turbulent kinetic energy close to
the walls in adverse pressure gradient regions. It is then urgent to optimize the
RANS parameters in the hope that the discrepancy will, at least to some extent,
be attenuated.

Fig. 2. A comparison of the contour plots of the time averaged turbulent kinetic energy
(top) RANS (bottom) DNS when Reτ = 395.

To improve the RANS performance, we calibrate the five tunable parameters
by the PINNs with the DNS data. The velocities, velocity gradients, pressure,
along with other terms involved in the turbulent kinetic energy budgets are time
and spanwise-averaged. The pre-processed DNS data are feed to the PINNs to
optimize the five parameters by minimizing the customized loss function. The
optimized parameters from the PINNs are:

Cε1 = 1.302, Cε2 = 1.862, Cμ = 0.090, σκ = 0.750, σε = 0.273 (17)

Figures 3 and 4 show the comparison of the time averaged turbulent kinetic
energy and dissipation rate from different simulations (top) DNS, (middle)
Default RANS, (bottom) PINNs RANS. It is clear there is a big discrepancy
between DNS with RANS, especially near the downstream wall region, where
the adverse pressure gradient is most severe. While it is not very intuitive to
tell from the contour plots, nevertheless, it is not hard to see that RANS with
PINNs inferred parameters (bottom ones) are more closely agree to the DNS
data than the RANS with default parameters (middle ones).

Parameter Identification of RANS Turbulence Model 145

Fig. 3. A prior: Comparison of the time averaged turbulent kinetic energy from different
simulations (top) DNS, (middle) Default RANS, (bottom) PINNs RANS.

Fig. 4. A prior: Comparison of the time averaged dissipation rate from different sim-
ulations (top) DNS, (middle) Default RANS, (bottom) PINNs RANS.

To have a more straightforward understanding of the performance compari-
son, we plot the mean profiles of velocity and turbulence kinetic energy at three
locations. These plots can allow us to more closely examine the difference of

146 S. Luo et al.

three simulations, especially near the wall region. Figures 5, 6 and 7 plot the
mean profile of turbulent kinetic energy (TKE), x- and y- velocity along the y
axis at three location when x = 5.7306, x = 6.1399, and x= 6.5493. It shows that
RANS with PINN inferred parameters gives better results near the wall region.

Fig. 5. Plots of the turbulent kinetic energy along y axis when x = 5.7306 (left),
x = 6.1399 (middle), x = 6.5493 (right).

Fig. 6. Plots of the x-velocity along y axis when x = 5.7306 (left), x = 6.1399 (middle),
x = 6.5493 (right).

Figure 8 presents the error contour plots showing the difference of two
RANS models with DNS results. Apparently, the error between DNS-NN is rela-
tively smaller than the error between DNS-Default. To quantify the performance
improvements, we measure the mean absolute error (MAE) of the velocity mag-
nitude between DNS and RANS. The MAE = 1

N

∑ |V DNS − V RANS | shows
that the error of velocity magnitude for all the collocation points can be reduced
by 22% (from 0.069 to 0.054).

It is recognizable that while there is some improvement for the RANS with
inferred parameters from PINNs, the error between RANS and DNS is still note-
worthy. This inaccuracy is due to RANS’s inherent simplifications rather than
the inappropriate use of RANS constants which are usually estimated by fitting
to experimental results of simple flows. If a more accurate result is required,
switching to a more sophisticated model like LES is a more feasible option.

Parameter Identification of RANS Turbulence Model 147

Fig. 7. Plots of the y-velocity along y axis when x = 5.7306 (left), x = 6.1399 (middle),
x = 6.5493 (right).

Fig. 8. A posteriori: Comparison of the error contour plots between RANS and DNS
(left is the x-velocity, right is the y-velocity). (top) error between DNS-Default; (bot-
tom) error between DNS-PINNs, apparently the error in the bottom is relatively smaller
than the error in the top.

5 Conclusion

While high fidelity fluid simulations on high performance computing clusters
have received great attention in recent years [28,29], RANS simulations remain
the workhorse CFD method for industrial applications. In this paper we demon-
strated an alternative method to calibrate the parameters in the RANS tur-
bulence model with high-fidelity DNS data. We leveraged high-resolution DNS
data to train a deep neural network to learn the mapping between the low-
resolution flow and its high-resolution counterpart. We used a physics informed
neural network that is embedded with the turbulent transport equations, physi-
cal loss functions are proposed to explicitly impose information of the transport
equations to deep learning networks. This approach solves an inverse problem by
treating the five parameters in turbulence model as random variables, with the
turbulent kinetic energy and dissipation rate as known quantities from DNS sim-
ulation. The objective is to optimize the five parameters in turbulence closures
using the PINN leveraging limited data available from costly high-fidelity DNS
data. We validated this method on two test cases of flow over bump. The recom-
mended values were found to be Cε1 = 1.302, Cε2 = 1.862, Cμ = 0.09, σK = 0.75,

148 S. Luo et al.

σε = 0.273, the mean absolute error of the velocity profile between RANS and
DNS decreased by 22% when used the neural network inferred parameters.

The PINNs for turbulence modeling is an example of approaches that “bake
in” the physics to address the technical challenges in application of artificial
intelligence in scientific discovery. This study gives an example of how to optimize
parameters for κ − ε turbulence model, it can also be similarly applied to other
models, new classes of numerical solvers for partial differential equations, as well
as new data-driven approaches for model inversion and systems identification.

Acknowledgments. This work utilizes resources supported by the National Science
Foundation’s Major Research Instrumentation program, grant #1725729, as well as
the University of Illinois at Urbana-Champaign.

References

1. Ray, J., Dechant, L., Lefantzi, S., Ling, J., Arunajatesan, S.: Robust Bayesian cal-
ibration of a model for compressible jet-in-crossflow simulations. AIAA J. 56(12),
4893–4909 (2018)

2. Thies, A.T., Tam, C.K.: Computation of turbulent axisymmetric and nonaxisym-
metric jet flows using the κ − ε model. AIAA J. 34(2), 309–316 (1996)

3. Yakhot, V., Orszag, S.A.: Renormalization group analysis of turbulence. I. Basic
theory. J. Sci. Comput. 1(1), 3–51 (1986)

4. Durbin, P.A.: Separated flow computations with the κ− ε-v-squared model. AIAA
J. 33(4), 659–664 (1995)

5. Shih, T., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new κ − ε eddy viscosity
model for high reynolds number turbulent flows. Comput. Fluids 24(3), 227–238
(1995)

6. Shirzadi, M., Mirzaei, P.A., Naghashzadegan, M.: Improvement of k-epsilon tur-
bulence model for CFD simulation of atmospheric boundary layer around a high-
rise building using stochastic optimization and monte carlo sampling technique. J.
Wind Eng. Ind. Aerodyn. 171, 366–379 (2017)

7. Dow, E., Wang, Q.: Quantification of structural uncertainties in the κ − w turbu-
lence model, p. 1762 (2011)

8. Kato, H., Obayashi, S.: Statistical approach for determining parameters of a tur-
bulence model, pp. 2452–2457 (2012)

9. Launder, B.E., Sharma, B.: Application of the energy-dissipation model of turbu-
lence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1(2),
131–137 (1974)

10. Hanjalić, K., Launder, B.E.: A reynolds stress model of turbulence and its appli-
cation to thin shear flows. J. Fluid Mech. 52(4), 609–638 (1972)

11. Platteeuw, P., Loeven, G., Bijl, H.: Uncertainty quantification applied to the k-
epsilon model of turbulence using the probabilistic collocation method, p. 2150
(2008)

12. Jones, W., Launder, B.E.: The prediction of laminarization with a two-equation
model of turbulence. Int. J. Heat Mass Transf. 15(2), 301–314 (1972)

13. Chien, K.: Predictions of channel and boundary-layer flows with a low-reynolds-
number turbulence model. AIAA J. 20(1), 33–38 (1982)

14. Zhang, J., Fu, S.: An efficient approach for quantifying parameter uncertainty in
the SST turbulence model. Comput. Fluids 181, 173–187 (2019)

Parameter Identification of RANS Turbulence Model 149

15. Schaefer, J., Hosder, S., West, T., Rumsey, C., Carlson, J., Kleb, W.: Uncertainty
quantification of turbulence model closure coefficients for transonic wall-bounded
flows. AIAA J. 55(1), 195–213 (2017)

16. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a
deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

17. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlin-
ear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

18. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library
for solving differential equations. arXiv preprint arXiv:1907.04502 (2019)

19. Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for
high-speed flows. Comput. Methods Appl. Mech. Eng. 360, 112789 (2020)

20. Nabian, M.A., Meidani, H.: A deep neural network surrogate for high-dimensional
random partial differential equations. arXiv preprint 1806 (2018)

21. Nabian, M.A., Meidani, H.: Physics-driven regularization of deep neural networks
for enhanced engineering design and analysis. J. Comput. Inf. Sci. Eng. 20(1),
011006 (2020)

22. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial
differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

23. Marquillie, M., Laval, J., Dolganov, R.: Direct numerical simulation of a separated
channel flow with a smooth profile. J. Turbul. 9, N1 (2008)

24. Marquillie, M., Ehrenstein, U., Laval, J.: Instability of streaks in wall turbulence
with adverse pressure gradient. J. Fluid Mech. 681, 205–240 (2011)

25. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, La Canada (1998)
26. Benzi, R., Biferale, L., Bonaccorso, F., et al.: TurBase: a software platform for

research in experimental and numerical fluid dynamics, pp. 51–57 (2017)
27. Jesus, A., Azevedo, J.L., Laval, J.: Large eddy simulations and RANS computations

of adverse pressure gradient flows, p. 267 (2013)
28. Borrell, R., et al.: Parallel mesh partitioning based on space filling curves. Comput.

Fluids 173, 264–2724 (2018)
29. Vazquez, M., et al.: Alya: multiphysics engineering simulation toward exascale. J.

Comput. Sci. 14, 15–27 (2016)

http://arxiv.org/abs/1907.04502

HPC I/O in the Data Center
Workshop (HPC-IODC)

HPC I/O in the Data Center Workshop
(HPC-IODC)

Julian M. Kunkel1, Jay Lofstead2, and Jean-Thomas Acquaviva3

1 University of Reading, Whiteknights, Reading RG6 6AY, UK
j.m.kunkel@reading.ac.uk

2 Center for Computing Research, Sandia National Laboratories,
Albuquerque, USA

gflofst@sandia.gov
3 Data Direct Networks, France
jtacquaviva@ddn.com

1 Introduction

Many public and privately funded data centers host supercomputers for running large
scale simulations and analyzing experimental and observational data. These super-
computers run usually tightly coupled parallel applications that require hardware
components that deliver the best performance. In contrast, commercial data centers,
such as Facebook and Google, execute loosely coupled workloads with a broad
assumption of regular failures. The dimension of the data centers is enormous. A 2013
article summarizes commercial data centers’ dimensions [4]. It estimates, for example,
that Facebook hosts around 100 PB of storage, and Google and Microsoft manage
around 1 million servers each – although the hardware is split among several physical
data centers – a modus operandi not suitable for HPC centers. With the increasing
importance of using machine learning to reveal underlying patterns in data, the data
storage rates are accelerating to feed these additional use cases. Combining traditional
modeling and simulation with ML workloads yields both a write and read-intensive
workload for a single workflow.

Management of the huge amount of data is vital for the effective use of the con-
tained information. However, with limited budgets, it is a daunting task for data center
operators, especially as the design and storage system required hardware depends
heavily on the executed workloads. A co-factor of the increasing difficulty is the
increase in complexity of the storage hierarchy with the adoption of SSD and memory
class storage technology. The US Department of Energy recognizes the importance of
data management, listing it among the top 10 research challenges for Exascale [3].

There are several initiatives, consortia and special tracks in conferences that target
RD&E audiences. Examples are the Storage Networking Industry Association (SNIA)
for enterprises, the Big Data and Extreme-Scale Computing (BDEC) initiative1, the
Parallel Data Systems Workshop (PDSW) and the HEC FSIO workshop [1].

1 http://www.exascale.org/bdec/.

http://www.exascale.org/bdec/

There are many I/O workloads studies and performance analysis reports for parallel
I/O available. Additionally, many surveys of enterprise technology usage include
predictions of analysis for future storage technology and the storage market [2].
However, the analysis conducted for HPC typically focuses on applications and not on
the data center perspective. Information about data center operational aspects is usually
described in file system-specific user groups and meetings or described partially in
research papers as part of the evaluation environment.

In the HPC IODC workshop, we bring together I/O experts from data centers and
application workflows to share current practices for scientific workflows, issues, and
obstacles for both hardware and the software stack, and RD&E to overcome these
issues.

Due to the COVID-19 crisis, the ISC conference changed to a digital edition. We
preserved the nature of the workshop and organized it as a virtual full-day meeting on
the regular workshop day with minimal changes to the agenda.

2 Organization of the Workshop

The workshop was organized by

– Julian Kunkel (University of Reading, UK)
– Jay Lofstead (Sandia National Labs, USA)
– Jean-Thomas Acquaviva (DDN)

The workshop is supported by the Centre of Excellence in Simulation of Weather
and Climate in Europe (ESiWACE), the Virtual Institute for I/O (VI4IO)2 and the
Journal of High-Performance Storage (JHPS)3.

The workshop covered three tracks:

– Research paper presentations – authors needed to submit a paper regarding rel-
evant state-of-the-practice or research for I/O in the datacenter.

– Talks from I/O experts – authors needed to submit a rough outline for the talk
related to the operational aspects of the data center.

– A moderated discussion to identify key issues and potential solutions in the
community.

The CFP has been issued at the beginning of January. Important deadlines were:

– Submission deadline: 2020-04-15 AoE
– Author notification: 2020-05-03
– Workshop: 2020-06-25
– Camera-ready papers: 2020-07-25

From all submissions, the program committee selected three talks from I/O experts
and eleven research papers for presentation during the workshop.

2 http://vi4io.org.
3 https://jhps.vi4io.org/.

HPC I/O in the Data Center Workshop (HPC-IODC) 153

http://vi4io.org
https://jhps.vi4io.org/

2.1 Program Committee

– Thomas Boenisch (High-performance Computing Center Stuttgart)
– Suren Byna (Lawrence Berkeley National Laboratory)
– Matthew Curry (Sandia National Laboratories)
– Sandro Fiore (CMCC)
– Wolfgang Frings (Juelich Supercomputing Centre)
– Javier Garcia Blas (Carlos III University)
– Adrian Jackson (The University of Edinburgh)
– Ivo Jimenez (University of California, Santa Cruz)
– Anthony Kougkas (Illinois Institute of Technology)
– Glenn Lockwood (Lawrence Berkeley National Laboratory)
– Jay Lofstead (Sandia National Laboratories)
– Carlos Maltzahn (University of California, Santa Cruz)
– Suzanne McIntosh (New York University)
– Maria Perez (Technical University of Madrid)
– Robert Ross (Argonne National Laboratory)
– George S. Markomanolis (Oak Ridge National Laboratory)
– Feiyi Wang (Oak Ridge National Laboratory)
– Bing Xie (Oak Ridge National Lab)

3 Workshop Summary

Over the full-day program, about 40 attendees were constantly connected to the virtual
session. More than 100 participants expressed their interest to be informed about the
workshop slides and presentations. In spite of the workshop being held online squarely
on British Time making attending from North America more difficult. This is in line
with the in-person attendance at previous instances and included many North American
attendees, including some from the American west coast.

We had a good mix of talks from I/O experts, data center relevant research, and two
discussion sessions. A short summary of the presentations is given in the following.
The slides and video recordings of the presentations are available on the workshop’s
webpage: https://hps.vi4io.org/events/2020/iodc.

3.1 Research Papers

We have shifted our peer review process to be more community building oriented. Last
year, we changed the review process to shepherd all papers with a solid core, but
potentially presentation flaws, to help develop them so that they are acceptable for
publication. If a paper cannot be successfully be revised in time for the workshop, it
will be rejected. We find this approach is better for building an interactive community.

Our goal was to create a more open, fully interactive process for quickly developing
research papers into quality publishable results.

154 J. M. Kunkel et al.

https://hps.vi4io.org/events/2020/iodc

To support this activity, we were excited to explore the open review process of the
Journal of High-Performance Storage for the research track – the papers were publicly
shared using GoogleDoc in the JHPS incubator and open for comments. We allowed
authors to submit extended papers that may be potentially accepted on JHPS while the
12-page shorter workshop submissions will be published in this edition of Springer’s
Lecture Notes on Computer Science together with the other ISC workshops as was
done previously.

Unfortunately, due to COVID-19, we received notes from various authors that they
would not be able to make the deadline, hence the number of submissions this year was
lower than usual.

In the first research papers session, HPC-IODC was presenting three different talks
sharing the same interest for I/O performance characterization and analysis. Each of
these talks brings its own originality, either with the usage of none HPC API for high-
performance storage, or taking into account network considerations for I/O, or machine
learning techniques applied to IO analysis. The following presentation try to capture
the presentation itself as some elements of the discussion triggered. In more details, the
research presentation covered the following topics:

– Characterizing I/O Optimization Effect Through Holistic Log Data Analysis of
Parallel File Systems and Interconnects
Yuichi Tsujita, Yoshitaka Furutani, Hajime Hida, Keiji Yamamoto, Atsuya Uno
In his presentation, Dr. Tsujita discussed the value of observing not only file system
metrics but also networks aspect in order to understand the I/O behavior of an
application. Â Regarding the result of these analyses, Dr. Tsujita notes the differ-
ence between observation and resolution: as a different toolbox is needed to opti-
mize user-level I/O patterns. For instance, at the K computer, experts were
providing hints or training to improve I/O specifically for the complex MPI-IO. It
remains that most users preferred POSIX-I/O. Therefore, POSIX is now the highest
priority issue. Discussing further the weight of user choices, the author notes that
despite the availability of optimized MPI-IO libraries as dynamically loadable
shared libraries, most of the users keep the default MPI-IO implementation. One
motivation of this work is to raise awareness among the user community, and that
access to profiling information could push users to have interests in advanced I/O
optimization.

– Investigating the Overhead of the REST Protocol to Reveal the Potential for
Using Cloud Services for HPC Storage
Frank Gadban, Julian Kunkel, Thomas Ludwig
This work investigated the relevance of cloud APIs to address performance-oriented
tasks. The authors observe that a correctly configured REST service can deliver high
performance and match MPI in terms of bandwidth, thus making REST a relevant
alternative to MPI based IO tools. Bandwidth was not the only investigated metric
and the authors monitor as well the CPU cost of operating data movement. They
observed that MPI can lead to a poor ratio in terms of bandwidth/cycle. However,
the discussion arises and the point was made that in HPC and MPI in particular,
CPU cycles can be used to decrease latency for instance. Therefore in terms of
methodology, a higher rate of idle cycles is not always positive, such metric would

HPC I/O in the Data Center Workshop (HPC-IODC) 155

systematically penalize spin locking a classic usage of CPU resources to improve
latency and time-critical performance. In the aspect of performance optimization,
specifically for complex systems where performance can be capped by any of its
components, reporting not raw performance but efficiency in respect of the network
throughput and CPU utilization could an interesting way to extrapolate the results
on the different architectures (e.g. HDR200 or faster CPUs).

– Classifying Temporal Characteristics of Job I/O Patterns Using Machine
Learning Techniques
Eugen Betke, Julian Kunkel
In this talk, the authors present their results on the classification of HPC jobs based
on collected information on their I/O pattern. I/O bottlenecks are a multi-factorial
artifact due to a combination of I/O Patterns + IO Configuration System + I/O
Workload. The processed data set covers an impressive 1.000.000 jobs. This work
follows a previous and published study focused on the identification of IO-intensive
jobs. However, their experience has shown that for large systems I/O intensive jobs
could be numerous and the single job is not the right granularity to provide support
and help to end-users. This has been the key motivation to pursue the research effort
in order to classify and to cluster jobs. This is the purpose of the present paper. The
resulting classification scheme is lightweight enough to be operated as soon as a job
is over but can not be performed on-line (during job execution), so the method is
near-line. The proposed methodology did not achieve the point where it can
characterize I/O, for example, at the moment, it can not tell if jobs in this and these
clusters can have a negative impact on the metadata server. This is work in progress,
and at this stage understanding, I/O is still a manual task. It remains that classifi-
cation is an important step toward the goal of automation. The benefit at the
moment is the following: assuming a job is identified as slowing down of a file
system (e.g. massive meta-data operations), with a simple lookup it is possible to
find the whole cluster of jobs that can potentially cause the same issue to the file
system. During the discussion, a point was made on conceptual constraints induced
by an approach based on Machine Learning and Deep Learning. The authors
conclude their talk on a long term objective of a learning model representative of
the whole complexity of HPC-IO systems.

– A Reinforcement Learning Strategy to Tune Request Scheduling at the I/O
Forwarding Layer
Jean Luca Bez, Francieli Zanon Boito, Ramon Nou, Alberto Miranda, Toni Cortes,
Philippe O. A. Navaux
I/O optimization techniques can improve performance for the access patterns they
were designed to target, but they often decrease for others. Moreover, these tech-
niques usually depend on the precise tune of their parameters, which commonly
falls back to the users. The authors propose an approach to tune parameters
dynamically at runtime based on the I/O workload observed by the system. Our
focusing is on the I/O forwarding layer as it is transparent to applications and file
system independent. The approach uses a reinforcement learning technique to make
the system capable of learning the best parameter value to each observed access
pattern during its execution, eliminating the need for a complex and time-

156 J. M. Kunkel et al.

consuming training phase. The authors evaluated the proposal for the TWINS
scheduling algorithm designed for the I/O forwarding layer seeking to reduce
contention and coordinate accesses to the data servers. They demonstrate the
approach can reach a precision of 88% on the parameter selection in the first
hundreds of observations of an access pattern, achieving 99% of the optimal per-
formance. After the talk, it was noted that a baseline to optimal performance is
necessary for comparison reason, as a naive approach may already lead to good
performance numbers.

– Data Systems at Scale in Climate and Weather: Activities in the ESiWACE
Project
Julian Kunkel and the ESiWACE4 team.
The ESiWACE project aims to enable global eddy-resolving weather and climate
simulations on the upcoming (pre-)Exascale supercomputers. In this talk, a selection
of efforts to mitigate the effects of the data deluge from such high-resolution sim-
ulations is introduced. In particular, the speaker described the advances in the Earth
System Data Middleware (ESDM), which enables scalable data management and
supports the inhomogeneous storage stack. ESDM provides a NetCDF compatible
layer at a high-performance and portable-portable fashion. A selection of perfor-
mance results was given and ongoing efforts for workflow support and active
storage are discussed.

– Phobos a scale-out object store implementing tape library support
Patrice Lucas, Philippe Deniel, Thomas Leibovici Phobos is an open-source scale-
out distributed object store providing access to multiple backends from flash and
hard drives to tape libraries. Very large datasets can be efficiently managed on
inexpensive storage media without giving up performance, scalability or fault-
tolerance. Phobos is designed to offer several data layouts, such as mirroring or
erasure coding. IOs through tape drives are optimized by dedicated resource
scheduling policies. Developed at CEA, Phobos is in production since 2016 to
manage the France Genomique multi-petabyte dataset at TGCC.

3.2 Talks from Experts

The following talks from experts included some basic information about the site and
typical application profiles but focus on information regarding I/O tools and strategies
applied to mitigate the pressing issues. The first session of three experts talks are
presenting aspect from production environments, the topics are rather diverse but the
goal is shared: making a high-performance storage service to end-users available.

– The ALICE data management pipeline
Massimo Lamanna
ALICE is an experiment at CERN generating a large volume of data, in the range of
60PB. The data processing pipeline is complex starting with a very fast ingest phase
in the range of 3.5 TB/sec. This phase is embarrassingly parallel and data can be
compressed in the range x6. In the second phase, compressed data percolate through
a compute-intensive process. The process refines and compresses further data,
eventually leading to an additional factor x6 of compression. This later stage of

HPC I/O in the Data Center Workshop (HPC-IODC) 157

compression is not completely lossless and is run on a large GPU farm. Previous
experiments at CERN were relying on data replication as a protection scheme
ALICE will be the first experiment using massively Erasure Code. The workload
will be dominated by large files. Ceph would be a natural candidate for ALICE. In
this respect, CERN has a dual policy toward Ceph: promotion and support. As an
example, Ceph has been considered for OpenStack and Ceph is offered as a service
in CERN alternatively to the homegrown file system EOS, but CERN tends to rely
on EOS for extremely large configurations. EOS uses for some use cases Ceph as a
back-end. The benefit of EOS is that CERN can shape the software to be exactly as
needed and to satisfy specific requirements.

– Accelerating your Application I/O with UnifyFS
Kathryn Mohror
UnifyFS is an on-going effort initiated at Lawrence Livermore National Laboratory
focuses on the development of a file system harnessing node-local storage
resources. The motivation is the renewed importance of node-local storage with the
emergence of Storage Class Memory. To limit the cost of synchronization and
communication between peers of UnifyFS the system alleviates the POSIX con-
straints. Data are publicized when an explicit laminating process occurs. The
lamination is quite similar to synchronization between the peer but the file is made
immutable. Lamination is either implicit when a file is closed or explicit when
chmod() is called. It should be noticed that lamination is about the content (file data)
or not on the file path or metadata. The distance taken with the strict POSIX
semantic is bringing performance improvements as illustrated by benchmark results
or workload similar to checkpoint-restart.

– How to recognise I/O bottlenecks and what to do about them
Rosemary Francis
Rosemary Francis is the CEO of Ellexus company, a start-up specialized in I/O
optimization and profiling. Ellexus develops two different products: Mistral and
Breeze. Breeze allows an in-depth analysis of the I/O activity but generates a large
amount of log information, in the range of strace. In order to integrate an I/O
profiler within a job life-cycle, the second tool Mistral is more suitable. From her
extensive operational knowledge of I/O management, Dr. Francis observes that AI
applications are newer and cleaner: no legacy code or legacy libraries, consequently
IO patterns tend to be much cleaner and saner. Furthermore, she observes that AI IO
patterns are agnostic to parallelism, using a small size configuration it is easy to
extrapolate the IO behavior on a larger system. For instance, insights collected on a
single desktop have allowed the speaker to detect and fix an x3 performance issue
on the whole cluster. The root cause of the performance issue was a misconfigu-
ration in the Linux settings.

– Managing Decades of Scientific Data in Practice at NERSC
Glenn Lockwood
The National Energy Research Scientific Computing Center (NERSC) has been
operating since 1974 and has been storing and preserving user data continuously for
over 45 years as a result. This has resulted in NERSC building significant expertise
in how to store and manage user data for long periods of time–a decade or more–

158 J. M. Kunkel et al.

and the practical factors that must be considered when data must be retained for
longer than the lifetime of the physical components of the data center, including the
entire data center facility itself. As the relevance of HPC extends beyond modeling
and simulation and the usable lifetime of data extends from months to years or
decades, these best practices in long-term data stewardship are likely to become
more important to more HPC facilities. To this end, the speaker presented some of
the practical considerations, best practices, and lessons learned from managing the
scientific data of NERSC’s thousands of users over a period of four decades.

– Portable Validations of Scientific Explorations with Container-native
Workflows
Ivo Jimenez
Researchers working in the computer, computational, or data science often find it
difficult to reproduce experiments from artifacts like code, data, diagrams, and
results which are left behind by previous researchers. The code developed on one
machine often fails to run on other machines due to differences in hardware
architecture, OS, software dependencies, among others. This is accompanied by the
difficulty in understanding how artifacts are organized, as well as in using them in
the correct order. Software container technology such as Docker, can solve most of
the practical issues of portability, and in particular, container-native workflow
engines can significantly aid experimenters in their work. In this talk, Popper was
introduced, a container-native workflow engine that executes each step of a
workflow in a separate dedicated container without assuming the presence of a
Kubernetes cluster or any cloud-based Kubernetes service. With Popper,
researchers can build and validate workflows easily in almost any environment of
their choice including local machines, SLURM based HPC clusters, CI services, or
Kubernetes based cloud computing environments. To exemplify the suitability of
this workflow engine, three case studies with examples from Machine Learning and
High-Performance Computing are turned into Popper workflows. It was also dis-
cussed how Popper can be used to aid in preparing artifacts associated with article
submissions to conferences and journals, and in particular give an overview of the
Journal of High-Performance Storage, a new eJournal that combines open reviews,
living papers, digital reproducibility, and open access.

– Tuning I/O Performance on Summit: HDF5 Write Use Case Study
Xie Bing
The HDF5 I/O library is widely used in HPC across a variety of domain sciences for
its simplicity, flexibility, and rich performance-tuning space. In this work, the
authors addressed an observed HDF5 write performance issue on Summit at OLCF,
which in particular is the poor write performance of HDF5 with the default con-
figuration. To identify the performance issue, they developed an I/O benchmarking
methodology to profile the HDF5 performance on Summit across scales, compute-
node allocations, I/O configurations, and times. They developed a solution to the
issue by altering the HDF5 alignment configuration which resulted in a 100x write
performance improvement for the VPIC benchmark. The speaker expects the
methodology and solution to be applicable to other platforms and technologies.

HPC I/O in the Data Center Workshop (HPC-IODC) 159

3.3 Discussion Sessions

The major distinguishing feature for this workshop compared to other venues is the
discussion rounds. The opportunity for themed, open discussions about issues both
pressing and relevant to the data center community facilitates sharing experiences,
solutions, and problems.

Albeit the workshop was virtual, the discussion covered aspects around APIs,
benchmarking, node-local IO vs. shared storage, setting defaults for users, storage, and
code maintenance.

References

1. Bancroft, M., Bent, J., Felix, E., Grider, G., Nunez, J., Poole, S., Ross, R.,
Salmon, E., Ward, L.: Hec FSIO 2008 workshop report. In: High End Computing
Interagency Working Group (HECIWG), Sponsored File Systems and I/O Work-
shop HEC FSIO (2009)

2. IDC: Enterprise storage services survey. http://www.idc.com/getdoc.jsp?
containerId=254468

3. Lucas, R., committee members: Top ten exascale research challenges,
February 2014. http://science.energy.gov/*/media/ascr/ascac/pdf/meetings/20140210/
Top10reportFEB14.pdf

4. StorageServers Blog: Facts and stats of world’s largest data centers, July 2013.
https://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-
data-centers/

160 J. M. Kunkel et al.

http://www.idc.com/getdoc.jsp?containerId=254468
http://www.idc.com/getdoc.jsp?containerId=254468
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
https://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/
https://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/

Investigating the Overhead of the REST
Protocol When Using Cloud Services for

HPC Storage

Frank Gadban1(B), Julian Kunkel2, and Thomas Ludwig3

1 University of Hamburg, 20146 Hamburg, Germany
frank.gadban@studium.uni-hamburg.de

2 Reading University, Reading, UK
3 DKRZ, 20146 Hamburg, Germany

Abstract. With the significant advances in Cloud Computing, it is
inevitable to explore the usage of Cloud technology in HPC workflows.
While many Cloud vendors offer to move complete HPC workloads into
the Cloud, this is limited by the massive demand of computing power
alongside storage resources typically required by I/O intensive HPC
applications. It is widely believed that HPC hardware and software pro-
tocols like MPI yield superior performance and lower resource consump-
tion compared to the HTTP transfer protocol used by RESTful Web
Services that are prominent in Cloud execution and Cloud storage. With
the advent of enhanced versions of HTTP, it is time to reevaluate the
effective usage of cloud-based storage in HPC and their ability to cope
with various types of data-intensive workloads. In this paper, we inves-
tigate the overhead of the REST protocol via HTTP compared to the
HPC-native communication protocol MPI when storing and retrieving
objects. Albeit we compare the MPI for a communication use case, we
can still evaluate the impact of data communication and, therewith, the
efficiency of data transfer for data access patterns. We accomplish this
by modeling the impact of data transfer using measurable performance
metrics. Hence, our contribution is the creation of a performance model
based on hardware counters that provide an analytical representation of
data transfer over current and future protocols. We validate this model
by comparing the results obtained for REST and MPI on two different
cluster systems, one equipped with Infiniband and one with Gigabit Eth-
ernet. The evaluation shows that REST can be a viable, performant, and
resource-efficient solution, in particular for accessing large files.

Keywords: HPC · Cloud · Convergence · HTTP2 · RESTful APIs ·
HTTP3 · Storage

1 Introduction

High-Performance Computing (HPC) utilizes clusters of powerful and fast inter-
connected computers that can handle complex and data-intensive computational
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 161–176, 2020.
https://doi.org/10.1007/978-3-030-59851-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_10

162 F. Gadban et al.

problems. These systems are managed by batch schedulers [29] where user jobs
are queued to be served based on resource usage and availability and without
any visibility or concerns on the costs of running jobs. Due to various factors,
Cloud Computing [30] gained popularity over the last decade. This has led to the
emergence of the HPC Cloud, where Cloud providers offer high-end hardware
platforms and software environments to run HPC applications.

Due to its simplicity, reliability, flexibility, and consistency, HTTP is the
de facto standard for accessing object storage like Amazon S3 [2], OpenStack
Swift, and EMC Atmos. A wide adoption of cloud storage in HPC requires
the evaluation of the suitability of using HTTP in the HPC environment as an
alternative to HPC-native communication protocols like MPI.

In this work, we first provide a detailed examination of the HTTP protocol
and its performance in terms of latency and throughput under different condi-
tions for accessing remote data. Secondly, we elaborate on an analytic perfor-
mance model for data transfer over several protocols, this model allows us to
compare current and future protocols in a common framework and will help us
predict protocol performance in different hardware environments. We perform
several benchmarks comparing MPI to HTTP and use our model to validate the
obtained results. Finally, and based on the evaluation, we pinpoint the cause of
the HTTP overhead and find that TCP is not the ideal transport protocol for
HTTP and that new versions of the HTTP protocol, like HTTP3 which uses
UDP, might accelerate the usage of cloud storage in HPC. The structure of this
paper is as follows: Sect. 2 represents the related work. Section 3 describes the
test scenarios and defines the relevant metrics that will be addressed using our
benchmarks. Section 4 describes the experimental procedure, the used systems,
and the methodology of the evaluation conducted in this work. Section 5 analyzes
the obtained results. The last section summarizes our findings.

2 Related Work

In the world of HPC, computational performance has long exceeded the perfor-
mance of the traditional file-centric storage systems since the POSIX file system
interface was hardly suitable for data management on supercomputers [41]. Many
workarounds to address this issue were proposed, some of them tried to introduce
evolved I/O algorithms in MPI, like Data aggregation/sieving in ROMIO [37] or
to implement different data organizations on the back-end storage, like PLFS [3]
or to introduce richer data formats for example HDF5, NetCDF [12]. Eventu-
ally and although a file represents a convenient way to store the data, the ideal
concept for scientific computing/HPC would be rather the use of a data object
model [26] where all levels of metadata are encapsulated. In object storage, data
is exposed as objects instead of files or blocks. Each object typically includes the
data itself, a globally unique identifier used to find the object over a distributed
system and a variable amount of metadata that describes the data. Objects
are often accessed directly from the client application, usually using a RESTful
API [35]. As such, any comprehensive performance study of an object storage

Investigating the Overhead of the REST 163

system should take into consideration the latency introduced by a RESTful sys-
tem. Many researchers have tried to solve data transfer issues through HTTP;
some [25] proposed encapsulating TCP data in UDP payloads, others [8] pro-
posed a dynamic connection pool implemented by using the HTTP Keep-Alive
feature to maximize the usage of open TCP connections and minimize the effect
of the TCP slow start. Intel R© is marketing DAOS [28] as the ultimate Open
Source Object Store, nonetheless with a high vendor Lock-in potential since the
promised performance can only be achieved on its own proprietary Optane [40]
storage Hardware. Since Infiniband [1] is one of the most commonly used inter-
connects in HPC, the performance of IP over Infiniband [4,15] has been thor-
oughly studied, however, the performance of HTTP over IP over IB did not get
much attention. Our approach to model and analyze the viability of HTTP over
Infiniband using performance counters is explained in the next section.

3 Methodology

The two major efficiency indicators addressed in our study are latency and
throughput. To our knowledge, few tried to assess the Performance of a REST
Service inside HPC, i.e., within a high-performance network. This is why we
introduce a modeling approach, based on performance counters, then we perform
an evaluation on a testbed, consisting of a content server and a client application
consuming the content. Our benchmark for storage access emulates a best-case
scenario (HTTP GET Operation/Read Only Scenario from a “remote” Stor-
age Server) because we only want to test the viability and base performance of
REST/HTTP as an enabling technology for an object-store. The model with the
performance counters can nevertheless be extended to assess and measure the
resource consumption of different object storage implementations. The tools and
the accomplished tests will be extensively described in Sect. 4. To identify the
major factors impacting the performance, we vary the underlying hardware and
the connection mechanism (Ethernet, Infiniband, RDMA) between the server
and the client. Finally, to validate our model, we compare its predictions with
the experimentally observed values.

3.1 Performance Model

To define our performance model, many metrics are considered, which depict the
used hardware, the software stack, and the network protocol in use. Alongside the
standard network metrics, we focus on hardware counters of the CPU namely the
number of required CPU cycles to identify the processing cost of a data transfer
and the L3 evicted memory, this can be used further to check the memory
efficiency of the different implementations. In a first step, we consider TCP as a
transport protocol, however, the model is later extended in Sect. 5 to cover MPI.
The metrics involved can be summarized as follows. Fixed system parameters:

164 F. Gadban et al.

– R: CPU clock rate in Hz
– rtt: round trip time
– mtu: maximum transfer unit
– mss: maximum segment size, transmission protocol dependent (see Eq. (4))
– mem tp: the memory throughput i.e. speed of data eviction from L3 to main

memory.
– eBW [5]: is the effective bandwidth between client and server.

Experiment-specific configurations and results:

– Obj size: file size transferred from the server to be read by the client.
– Nreq: number of requests achieved in 60 sec
– Ncon: number of open connections kept
– Nthr: number of CPU threads executing the benchmark on the client.

Observable metrics (e.g., using Likwid):

– CUC: number of unhalted cycles on each core
– L3EV: amount of data volume loaded and evicted from/to L3 from the per-

spective of CPU cores [16,21], L3EVs and L3EVc are for server and client
respectively.

– PLR: the packet loss rate, proportional to the number of parallel connections.

In our preliminary model t(request) is the time starting from the sending of the
first byte of the request to the time the complete response is received:

t(request) = t(client) + t(network) + t(server) (1)

where t(client), t(network), t(server) are the time fractions needed by the client,
network and server respectively to accomplish the request:

t(client) = t(compute) + t(memory) + t(cpu client busy) (2)

t(server) = t(compute) + t(memory) + t(cpu server busy) + t(pending) (3)

As a rough estimation of the network throughput when using the TCP protocol,
and based on the Mathis et. al. formula [18], while presuming that the TCP
window is optimally configured, we can safely assume that:

net tp = min{ mss · C

RTT · √
PLR

, eBW} (4)

where C = 1 and mss = mtu-40 in case of Ethernet. From this we can calculate
t net:

t net = Obj size/net tp + t queuing (5)

For the sake of simplicity, we suppose that the routing devices between the nodes
don’t add any latency and as such we can neglect t queuing The execution time
t(compute) can then be defined as:

t(compute) = CUC/R (6)

Investigating the Overhead of the REST 165

t(memory) is the time to traverse the different memory caches, usually narrowed
down to:

t(memory) = L3EV/mem tp (7)

Putting it all together, and in the case of intra-node communication, we can
safely assume that:

t(request) =
CUCs

Rs
+

L3EV s

mem tp
+

CUCc

Rc
+

L3EV c

mem tp
+

Obj size

net tp
(8)

Generalizing a bit further, we end up with:

t(request) = α ·rtt+β1 · CUCs

Rs
+β2 · L3EV s

mem tp
+β3 · CUCc

Rc
+β4 · L3EV c

mem tp
+β5 · Obj size

net tp
(9)

Where α is a weighting factor (0 ≤ α < 1) [20], βi are platform and protocol
dependent factors to be evaluated in a later section. As such, many factors can
influence the above starting from the application delivering the content which
affects server CPU and memory usage, those metrics are also affected by the type
of client consuming the data as well as by the networking protocol in use and
the path traversed by the data. In the following sections, we validate this model
while comparing the performance of HTTP over different types of hardware and
connection protocols.

4 Experiments

The tests were performed on two different hardware platforms: the first is the WR
Cluster, a small test system, equipped with Intel Xeon 5650 processors and Gbit
Ethernet, the second is the Mistral supercomputer [9], the HPC system for earth-
system research at the German Climate Computing Center (DKRZ), it provides
3000 compute nodes each equipped with an FDR Infiniband interconnect. The
nodes used for the testing are equipped with two Intel Broadwell processors
(E5-2680 @2.5 GHz) [23]

4.1 Benchmark and Analysis Tools

The RESTful API is the typical way to realize access to object storage, and as
such the tools used in this article were preliminary developed to assess HTTP
performance. The first experiment checks the latency introduced by a simple
web server serving static files, the setup, shown in Fig. 1, consists of the lighttpd
web server [24] hosting files of different sizes. These files contain randomly gen-
erated data, and are placed initially in the in-memory file system (tmpfs) to
minimize any storage-related overhead such as disk drive access time. The tests
are accomplished using the wrk2 tool [36]. In the following analysis, we vary the
number of threads and the number of HTTP connections kept open while trying
to keep a steady rate of 2000 requests/second for 60 s for each file size.

166 F. Gadban et al.

Fig. 1. A simplified overview of the benchmark setup

4.2 Latency

The diagrams in Figs. 2a and 2b show the obtained latency distributions.

Observations and interpretations:

– Latency linearly increases with the number of open connections (see Fig. 2a),
especially true for small file sizes however when the file size grows beyond a
certain limit, the number of connections will become irrelevant to the intro-
duced latency (see Fig. 2b).

– As shown in Fig. 2c, for small file size, we observe a latency divergence in
particular in the 99 percentile area for bigger file size, we noticed in the case
of the 100 KB, the desired request rate of 2000 req/s is not met due to the
limitation of the underlying network infrastructure (1 GB/s–125 MB/s)

– It is interesting to note that, in relation to file size (Fig. 2c) larger files lead
to higher memory and network latencies in a way that they can saturate
the server’s network bandwidth, lowering throughput (see Fig. 2b). There-
fore, for serving large files, high network bandwidth is more important than
compute resources. On the other hand, increasing the number of open Con-
nections (Fig. 2d) will trigger TCP’s congestion mechanism and such they
will be competing for the same bandwidth. Increasing the file size as well
will cause the Open Connections to lose packets and get stuck waiting for
retransmissions.

A similar latency distribution is observed when the tests are conducted on
the same machine, thus using the optimized [10] loopback interface, where
theoretically the network does not pose any throughput bottleneck (iperf [32]
result 20 GBs). From these experiments, we learn that to optimize the through-
put, the web requests should not be using different open connections but rather
use one or a relatively small number of open Connections and label the web
requests accordingly, which is commonly known as HTTP multiplexing [13],
where, using the same TCP connection, multiple HTTP requests are divided into
frames, assigned a unique ID called stream ID and then sent asynchronously, the
server receives the frames and arranges them according to their stream ID and
also responds asynchronously; same arrangement process happens at the client
side allowing to achieve maximum parallelism.

4.3 Throughput

The network throughput of our system
is calculated as follow: Throughput =

Nreq · Obj size

time

Investigating the Overhead of the REST 167

(a) Variable open connections for 100KB files

(b) Variable open connections for 1000KB files

(c) Variable file size for 24 open connections

(d) Variable file size for 500 open connections

Fig. 2. Measured latency for different experiments

168 F. Gadban et al.

The results are shown in Fig. 3. In the case of inter-node communication,
an increase in the number of Open Connections will increase the throughput,
however, this is only relevant for small file sizes below 1 MB.

Fig. 3. Throughput in KB/sec for a variable object size and open connections/threads

4.4 Resource Usage Measurements

In addition to the latency diagrams and the findings gained from them, another
point to consider is the efficiency of the IO itself, this is why we measure the
Memory and CPU usage needed to achieve a certain throughput. To accomplish
this, likwid-perfctr [11] is used. It uses the Linux ‘msr’ module to access the
model specific registers stored in /dev/cpu/*/msr (which contain hardware per-
formance counters), and calculates performance metrics, FLOPS, bandwidth,
etc., based on the event counts collected over the runtime of the application
process. The conducted experiment is similar to Sect. 4.2, however, this time we
are using wrk [14] without specifying a maximum req/s rate, for 1 min, during
this time Likwid is recording the CPU performance counters which are relevant
in this scenario. The server application is pinned to one core using Likwid, the
same is done on the client side, As wrk tests are performed using only 1 thread,
this doesn’t impose a performance limitations and ensures that the process is
run on the first physical core and not migrated between cores which may lead to
overhead. CPU consumption is recorded, CPU CLK UNHALTED CORE is the
metric provided by Likwid that represents the number of clock ticks needed by
the CPU to do some reasonable work. The instructions required to accomplish
one request - by the server as well as by the client - seems to be linear with the
file size, as shown in Fig. 4a. To note that the server seems to be consuming
more CPU cycles as the client to deliver a request, which might be because we
are using the lighttpd web server without modifying the default configuration.

Investigating the Overhead of the REST 169

Note also that over a certain file size limit, the number of timeouts increases
since we are approaching the maximum throughput achieved by the system.

(a) CPU cycles

(b) L3 evicted volume

Fig. 4. Likwid metrics for the client and server with a variable size and open connec-
tions/threads combination

Regarding Memory Utilization: Basically, when reading a file (represented by
HTTP response), the client needs to store the data received in memory. If the
file size exceeds the size of the CPU cache, we expect that data is evicted to main
memory, which is measured in L3 cache evictions. This metric is recorded using
Likwid and shown in Fig. 4b. Basically, we can see that even for 100 MB files only
10 MB of data is evicted on the client. There is no eviction on the server because
it sends the data directly to the client. This is an indication that zero-copy [39]
is in use on the client and the network interface card offloads the processing
of TCP/IP. This allows the network card to store the data directly into the
target memory location. Generally, with zero-copy, the application requests the
kernel to copy the data directly from a file descriptor to the socket bypassing
the copy in user mode buffer and, therefore, reducing the number of context
switches between kernel and user mode. Furthermore, when data does not fit
in the processor L3 caches (12 MB), the evicted data, i.e., the data passed to

170 F. Gadban et al.

memory increases significantly causing a performance drop, curiously the rate
of increase of the client evicted memory is greater than on the server, leading
us to another interesting conclusion, namely that while most studies focused on
optimizing the server-side, it might be the client-side that needs to be addressed.

4.5 REST vs. MPI

As found in the previous tests, the available bandwidth plays an important role
in determining the latency and the throughput being achieved. The following
tests are achieved on Mistral where Infiniband [1] is available. Our next step
is to compare the REST protocol with an established data transfer method in
the HPC world, namely the Message Passing Interface MPI [38]. To achieve
this we launch the same tools used above (likwid + lighttpd) on one node and
(likwid + wrk) on another while varying the file size in a power of 2, and recording
the different metrics, the transfer takes place over the Infiniband interface. Then
we launch the OSU Micro Benchmark [27] alongside with likwid on two nodes
using the same file sizes and record the same metrics. The OSU tests are executed
over Infiniband, the first time by using RDMA and the second time over TCP.
The obtained results are used to plot Fig. 5a and Fig. 5b. We notice that:

(a) Latency

(b) Throughput

Fig. 5. Results for the protocols for a variable file size

– For small object sizes, the latency of Rest is obviously higher than the one
of MPI, as already mentioned in our latency tests, this is due to the HTTP
overhead.

Investigating the Overhead of the REST 171

– The throughput achieved using MPI is better than the one using REST how-
ever when comparing MPI and REST both over TCP, we notice that this
is not the case especially for very small and large files which leads to the
conclusion that the overhead due to the TCP stack is the main factor slowing
down the object storage implementation.

– The performance dip seen in the red line for a file size of above 1 KB is due to
the MPI implementation that uses a combination of protocols for the same
MPI routine, namely the use of the eager protocol [7] for small messages, and
rendezvous protocol for larger messages.

– Another particular finding depicted by Fig. 6a is that the CPU cycles needed
for the sender to push the data when using MPI is higher than by using
REST, this becomes visible for file sizes above 100 KB.

– Fig. 6b shows that, as expected, the evicted data volume stays constant in the
case of MPI over RDMAoIB because of the direct data transfer from server
main memory to client main memory. Furthermore, the L3-evicted mem-
ory for both REST and MPI over TCPoIB is constant for files smaller than
100 KB but increases exponentially afterward. Presumably, because parts of
the protocol such as network packets re/assembly is controlled by the kernel
and not the network interface.

4.6 HTTP Overhead

For HTTP 1.1, knowing the amount of bytes read by the HTTP parser in wrk,
and the number of request achieved: overhead per request = bytes read

Nreq −objsize
We find that the overhead is about 233 bytes per request, mainly due to the

uncompressed, literally redundant, HTTP response headers.

5 Evaluation of the Performance Model

To validate the predictive model defined in Eq. (9), we use the values reported
by the REST latency Benchmark on Mistral in Sect. 4.5; the hardware-specific
parameters are calculated as follows: Data between sockets and memory is
shipped via a 9.6 GT/s QPI interface [23]. According to the Intel QPI speci-
fication [22] 16 bit of data are transferred per cycle, thus the uni-directional
speed is 19,6 GB/s. The communication protocol has an overhead of roughly
11 The compute nodes of Mistral are integrated in one FDR InfiniBand fabric,
the measured bandwidth between two arbitrary compute nodes is 5.9 GByte/s,
as such net tp = 5,9 GByte/s, rtt measured using qperf and found = 0.06 ms
and mtu = 65520 Bytes. We only need to get the values of the coefficients βi

in Eq. (9). This is done by using a regression analysis tool, in this case the one
provided by Excel: the obtained R square and F values are examined, for each
iteration, to check respectively the fitness and the statistically significant of our
model. Finally we calculate the predicted values and we compare them to the

172 F. Gadban et al.

(a) CPU cycles per request

(b) L3 evicted per request

Fig. 6. Likwid metrics for the client and server for the different protocols

ones obtained in the benchmark by determining the error rate using Eq. (10).
The tables can be found at: https://github.com/http-3/rest-overhead-paper.

error% = (t req − t req calcul) · 100/t req (10)

In case of RESToTCPoIB, we find that (α = 1), β1 = β3 = β4 ∼ 1, β2 = 6
and β5 = 3/2. The deviation (error rate) between the estimated value and the
benchmark results is primarily below 10%, and indeed in the range of 1% for
small and large file sizes. Equation (9) yields:

t(request) = rtt+
CUCs

Rs
+6 · L3EV s

mem tp
+

CUCc

Rc
+

L3EV c

mem tp
+

3
2

· Obj size

net tp
(11)

In case of MPIoTCP, we obtain (α = 0.1), β1 = β2 = β3 = β4 ∼ 1, and β5 =
2.7. The error rate is less than 5% for small and large file sizes.

t(request) = 0.1·rtt+CUCs

Rs
+

L3EV s

mem tp
+

CUCc

Rc
+

L3EV c

mem tp
+2.7·Obj size

net tp
(12)

https://github.com/http-3/rest-overhead-paper

Investigating the Overhead of the REST 173

In case of MPIoRDMA, we obtain (α = 0), β1 = β3 = 1/2 and β2 = β4 = β5 ∼
1 . The error rate is primarily below 10%, and less than 5% for small and large
file sizes.

t(request) =
1
2

· CUCs

Rs
+

L3EV s

mem tp
+

1
2

· CUCc

Rc
+

L3EV c

mem tp
+

Obj size

net tp
(13)

By investigating the model terms, we can infer some general behavior and verify
our expectations. The latency for MPIoRDMA is expected to be lower than
the others, this is why α is close to 0 for this model. If β5 is above 1, it is an
indicator that we cannot achieve full network throughput. REST and MPIoTCP
show otherwise similar performance characteristics while the MPIoRDMA model
is approximated to use half the CUC, which actually means it needed twice
as many compared to the TCP models - maybe due to busy waiting. These
assumptions can be verified by looking at Fig. 6a and Fig. 6b. In conclusion,
we notice that while TCP proved itself for end-to-end communications over long
distances, it is however less suitable for data center networking, mainly because of
its processing overhead, hence degrading the aspired performance. On the other
side, CPU and Memory consumption for the REST over TCP Model remained
adequate in comparison with MPI over TCP and MPI over RDMA.

5.1 Comparing the Protocols: HTTP1.1 vs. HTTP2 vs. HTTP3

The same setup described in Fig. 1 is used here, however the web server, in
this case, should be able to deliver the three different protocols. Therefore,
openlitespeed [33] is used and the suitable benchmark tool is h2load [17]. To
note that we test here the ngtcp2 [31] implementation of HTTP3, because it’s
TLS library independent, not like other HTTP3 implementations like quiche [6]
which requires boringssl. Since at the time of writing, the official OpenSSL Team
doesn’t support QUIC [34] we use a patched version of OpenSSL provided by
the ngtcp2 team. Since HTTP3 didn’t achieve the maturity phase yet, we are
using the protocols as they are defined in the 27th Draft by the IETF QUIC
Working group [19]. The latency and throughput results of the tests on Mistral
over InfiniBand are shown in Fig. 7a and Fig. 7b

Although we are expecting HTTP2 and HTTP3 to perform better than
HTTP 1.1, this is not the case. A closer look at the evolution of the param-
eters defined in our model reveals the cause: Despite the obvious traffic saving
of HTTP2, it comes at a considerable memory consumption, which renders the
gained advantages negligible. The chosen HTTP3 implementation is circa 10
times more CPU and memory consuming in comparison to the earlier versions,
which indicates an implementation issue.

174 F. Gadban et al.

(a) Latency (b) Throughput

(c) Client CPU Consumption (d) Client Memory consumption

Fig. 7. Results for the different versions of the HTTP protocol

6 Summary

This paper provides a first assessment of using REST as a storage protocol in an
HPC environment. A performance model for the relevant HTTP Get/Put oper-
ation based on hardware counters is provided and experimentally validated. Our
results demonstrate that REST can provide, in many cases, similar latency and
throughput to the HPC-specific implementations of MPI while enabling better
portability. The developed model covered the general behavior of the different
protocols well and was able to generalize and verify the expected behavior.

The new techniques introduced in HTTP (the use of a small number of con-
nections, multiplexing the HTTP datagram, compressing the header and allow-
ing the server to “push” data pro-actively to the client whilst eventually using
UDP to accomplish these) bear the potential to improve performance and, thus,
provide a perspective for using cloud storage inside HPC environments. How-
ever, in this evaluation, they couldn’t show their benefit. As future work, we aim
to validate that REST is a performant and efficient alternative to common HPC
I/O protocols in an actual HPC scenario.

Investigating the Overhead of the REST 175

References

1. I.T. Association: About Infiniband. https://www.infinibandta.org/about-
infiniband/. Accessed 29 July 2019

2. AWS: AWS S3. https://aws.amazon.com/de/s3/. Accessed 19 July 2019
3. Bent, J., et al.: PLFS: a checkpoint filesystem for parallel applications. In: Pro-

ceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, p. 21. ACM (2009)

4. Bortolotti, D., et al.: Comparison of UDP transmission performance between IP-
over-InfiniBand and 10-Gigabit ethernet. IEEE Trans. Nucl. Sci. 58(4), 1606–1612
(2011)

5. Chang, C.S., Thomas, J.A.: Effective bandwidth in high-speed digital networks.
IEEE J. Sel. Areas Commun. 13(6), 1091–1100 (1995)

6. Cloudflare: Implementation of the QUIC protocol. https://github.com/cloudflare/
quiche. Accessed 01 Apr 2020

7. Denis, A., Trahay, F.: MPI overlap: benchmark and analysis. In: 45th International
Conference on Parallel Processing (ICPP), pp. 258–267. IEEE (2016)

8. Devresse, A., Furano, F.: Efficient HTTP Based I/O on very large datasets for high
performance computing with the Libdavix library. In: Zhan, J., Han, R., Weng, C.
(eds.) BPOE 2014. LNCS, vol. 8807, pp. 194–205. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-13021-7 15

9. DKRZ: Mistral. https://www.dkrz.de/up/systems/mistral/configuration.
Accessed 19 July 2019

10. Dumazet, E.: Increase loopback MTU (2012). https://bit.ly/3c4PHVO. Accessed
24 Feb 2020

11. Eitzinger, J., Röhl, T., Hager, G., Wellein, G.: LIKWID 4 tools architecture
12. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the

HDF5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases, pp. 36–47. ACM (2011)

13. Gettys, J.: SMUX Protocol Specification. https://www.w3.org/TR/1998/WD-
mux-19980710 (1998). Accessed 19 July 2019

14. Glozer, W.: wrk - a HTTP benchmarking tool. https://github.com/wg/wrk.
Accessed 19 July 2019

15. Grant, R.E., Balaji, P., Afsahi, A.: A study of hardware assisted ip over InfiniBand
and its impact on enterprise data center performance. In: IEEE International Sym-
posium on Performance Analysis of Systems & Software (ISPASS), pp. 144–153.
IEEE (2010)

16. Gruber, T.: Likwid:about L3 evict. https://github.com/RRZE-HPC/likwid/
issues/213. Accessed 13 July 2019

17. h2load: benchmarking tool for HTTP/2 server. https://nghttp2.org/
documentation/h2load.1.html. Accessed 19 Oct 2019

18. He, Q., Dovrolis, C., Ammar, M.: On the predictability of large transfer TCP
throughput. Comput. Netw. 51(14), 3959–3977 (2007)

19. IETF: QUIC Working Group. https://quicwg.org/. Accessed 01 April 2020
20. IETF: Request for Comments: 6298. https://tools.ietf.org/html/rfc6298 (2011).

Accessed 19 Jan 2020
21. Intel: Address Translation on Intel X56xx. https://software.intel.com/en-us/

forums/software-tuning-performance-optimization-platform-monitoring/topic/
277182. Accessed 15 Sept 2019

https://www.infinibandta.org/about-infiniband/
https://www.infinibandta.org/about-infiniband/
https://aws.amazon.com/de/s3/
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://doi.org/10.1007/978-3-319-13021-7_15
https://doi.org/10.1007/978-3-319-13021-7_15
https://www.dkrz.de/up/systems/mistral/configuration
https://bit.ly/3c4PHVO
https://www.w3.org/TR/1998/WD-mux-19980710
https://www.w3.org/TR/1998/WD-mux-19980710
https://github.com/wg/wrk
https://github.com/RRZE-HPC/likwid/issues/213
https://github.com/RRZE-HPC/likwid/issues/213
https://nghttp2.org/documentation/h2load.1.html
https://nghttp2.org/documentation/h2load.1.html
https://quicwg.org/
https://tools.ietf.org/html/rfc6298
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/277182
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/277182
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/277182

176 F. Gadban et al.

22. Intel: An Introduction to the Intel R© QuickPath Interconnect. https://www.intel.
com/technology/quickpath/introduction.pdf. Accessed 15 Sept 2019

23. Intel: Intel R© Xeon R© Processor E5–2680. https://ark.intel.com/content/www/
us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.
html. Accessed 15 Sept 2019

24. Kneschke, J.: Lighttpd. https://www.lighttpd.net/. Accessed 29 July 2019
25. Ko, R.K., Kirchberg, M., Lee, B.S., Chew, E.: Overcoming large data transfer bot-

tlenecks in restful service orchestrations. In: IEEE 19th International Conference
on Web Services, pp. 654–656. IEEE (2012)

26. Liu, J., et al.: Evaluation of HPC application i/o on object storage systems. In:
2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW-DISCS), pp. 24–34. IEEE (2018)

27. Liu, J., et al.: Microbenchmark performance comparison of high-speed cluster inter-
connects. IEEE Micro 24(1), 42–51 (2004)

28. Lofstead, J., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E.: DAOS
and friends: a proposal for an exascale storage system. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2016, pp. 585–596. IEEE (2016)

29. Ma, D., Zhang, W., Li, Q.: Dynamic scheduling algorithm for parallel real-time jobs
in heterogeneous system. In: The Fourth International Conference on Computer
and Information Technology, CIT 2004, pp. 462–466. IEEE (2004)

30. Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)
31. ngtcp2: Effort to implement IETF QUIC protocol. https://github.com/ngtcp2/

ngtcp2. Accessed 01 Apr 2020
32. NLANR/DAST: Iperf. https://github.com/esnet/iperf. Accessed 11 July 2019
33. OpenLiteSpeed: OpenLiteSpeed Web Server. https://openlitespeed.org/. Accessed

19 Dec 2019
34. OpenSSL: QUIC and OpenSSL. https://www.openssl.org/blog/blog/2020/02/17/

QUIC-and-OpenSSL/. Accessed 01 Apr 2020
35. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media Inc., Newton

(2008)
36. Tene, G.: A constant throughput, correct latency recording variant of wrk. https://

github.com/giltene/wrk2. Accessed 11 July 2019
37. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective i/o in ROMIO .

In: Proceedings of the Seventh Symposium on the Frontiers of Massively Parallel
Computation, Frontiers 1999, pp. 182–189. IEEE (1999)

38. The MPI Forum, C.: MPI: a message passing interface. In: Proceedings of the 1993
ACM/IEEE Conference on Supercomputing, Supercomputing 1993, pp. 878–883.
ACM, New York (1993). https://doi.org/10.1145/169627.169855. http://doi.acm.
org/10.1145/169627.169855

39. Tianhua, L., Hongfeng, Z., Guiran, C., Chuansheng, Z.: The design and implemen-
tation of zero-copy for Linux. In: Eighth International Conference on Intelligent
Systems Design and Applications, vol. 1, pp. 121–126. IEEE (2008)

40. Wu, K., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: Towards an unwritten contract
of intel Optane SSD. In: 11th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 19), Renton, WA. USENIX Association (2019)

41. Zadok, E., Hildebrand, D., Kuenning, G., Smith, K.A.: POSIX is dead! long live...
errr... what exactly. In: Proceedings of the 9th USENIX Conference on Hot Topics
in Storage and File Systems, p. 12. USENIX Association (2017)

https://www.intel.com/technology/quickpath/introduction.pdf
https://www.intel.com/technology/quickpath/introduction.pdf
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html
https://www.lighttpd.net/
https://github.com/ngtcp2/ngtcp2
https://github.com/ngtcp2/ngtcp2
https://github.com/esnet/iperf
https://openlitespeed.org/
https://www.openssl.org/blog/blog/2020/02/17/QUIC-and-OpenSSL/
https://www.openssl.org/blog/blog/2020/02/17/QUIC-and-OpenSSL/
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://doi.org/10.1145/169627.169855
http://doi.acm.org/10.1145/169627.169855
http://doi.acm.org/10.1145/169627.169855

Characterizing I/O Optimization Effect
Through Holistic Log Data Analysis of
Parallel File Systems and Interconnects

Yuichi Tsujita1(B), Yoshitaka Furutani2, Hajime Hida3, Keiji Yamamoto1,
and Atsuya Uno1

1 RIKEN Center for Computational Science, Kobe, Japan
yuichi.tsujita@riken.jp

2 Fujitsu Limited, Tokyo, Japan
3 Fujitsu Social Science Laboratory Limited, Kawasaki, Japan

Abstract. Recent HPC systems utilize parallel file systems such as
GPFS and Lustre to cope with the huge demand of data-intensive appli-
cations. Although most of the HPC systems provide performance tuning
tools on compute nodes, there is not enough chance to tune I/O activities
on parallel file systems including high-speed interconnects among com-
pute nodes and file systems. We propose an I/O performance optimiza-
tion framework using log data of parallel file systems and interconnects in
a holistic way for improving performance of HPC systems including I/O
nodes and parallel file systems. We demonstrate our framework at the K
computer with two I/O benchmarks for the original and the enhanced
MPI-IO implementations. Its I/O analysis has revealed that I/O perfor-
mance improvements achieved by the enhanced MPI-IO implementation
are due to effective utilization of parallel file systems and interconnects
among I/O nodes compared with the original MPI-IO implementation.

Keywords: I/O characterization · Holistic log data analysis · K
computer · FEFS · Lustre · Tofu · MPI-IO

1 Introduction

HPC systems have been facing the performance gaps between computing power
and I/O performance. Parallel file systems such as GPFS [19] and Lustre [11]
provide a large amount of storage capacity with high I/O bandwidth to bridge
the gap. Most of the I/O optimization research works have addressed to improve
I/O performance of their implementations in an empirical way using I/O bench-
marks rather than analyzing I/O activities on target parallel file systems and
data packet transfers through interconnects. With an increase in the number of
compute nodes and target I/O nodes, it is quite difficult to tune an implemen-
tation only through such benchmark runs.

A profiling tool named Tofu PA [4] is provided at the K computer, which
acquired statistical information called Tofu PA information representing packet
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 177–190, 2020.
https://doi.org/10.1007/978-3-030-59851-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_11

178 Y. Tsujita et al.

transfer status in the Tofu interconnects [1] on used compute nodes, with the
purpose to tune communications among compute nodes. However, there were no
tools to get the Tofu PA information of Tofu interconnects among I/O nodes and
I/O activities of its parallel file systems. A well-balanced I/O workload among
compute nodes, I/O nodes, and parallel file systems is required to optimize I/O
operations. Without knowing status of I/O nodes and parallel file systems, it is
quite difficult to tune I/O operations in HPC applications.

It is expected that utilization of statistics log data of file system servers
and interconnects provides quite useful metrics for I/O performance tuning by
examining statistics of I/O request operations or data packet transfers through
interconnects. In this context, we propose a framework that monitors data packet
transfers on Tofu interconnects on I/O nodes and I/O activities of parallel file
systems with the help of log data collected in the system administration. To
our best knowledge, this is the first work to utilize data packet transfer infor-
mation of Tofu interconnects on I/O nodes among the HPC systems using Tofu
interconnects in tuning I/O operations. The framework consists of several com-
ponents: log data collected by fluentd [3], a PostgreSQL database that keeps a
large amount of executed job information (JOB-DB), compute-node information
table, and analysis function.

Given a unique ID of each job (JOB-ID), the analysis function of the frame-
work provides us data such as averaged values of essential I/O activities on used
OSSes, bandwidth utilization of Tofu interconnects on I/O nodes, and heat-
maps about I/O performance of used OSTs from the log data with the help of
the JOB-DB. In this paper, we show how such analyzed data can be used for
further performance improvements by examining I/O bottlenecks or unbalanced
situations in I/O workload among I/O nodes.

2 Related Work

I/O bottlenecks in various applications were studied in [17,24]. These studies
showed various characteristics in terms of I/O access patterns performed by
applications on HPC systems using Lustre file systems. I/O monitoring at storage
system level has been studied in [7,13,23]. Multi-platform study using system
logs of file systems has been reported in [12].

Log data collection and analysis for performance tuning have been done in
server-side analysis [8,9,25]. Detailed study in production runs has been done in
[15] by analyzing server-side log data. Even sufficient logging of each server-side
component did not provide causal relationships between client and server-side
activities.

Interconnects are also one of the key components in HPC systems. Monitor-
ing data transfers of interconnects has provided hot-spot of traffic congestion for
instance, and such approaches have succeeded in analysis of application activi-
ties associated with the traffic condition [6,27]. However, it is not sufficient to
characterize I/O activities on parallel file systems in HPC systems.

Characterizing I/O Optimization Effect 179

Fig. 1. System configuration of the K computer

Recently, holistic I/O monitoring has been proposed in several research
works [10,26]. Lockwood et al. have proposed a holistic I/O monitoring frame-
work named TOKIO [10]. It consisted of several components for monitoring,
analysis and visualization for administrators and users. The work in [26] has
proposed a monitoring framework named Beacon. This framework provides a col-
lection of monitoring tools for Metadata Servers (MDSes) and Object Storage
Servers (OSSes) and analysis functions including some visualization interface.
These works are similar to our work regarding holistic approach in characteriza-
tion of I/O activities.

In contrast, our work addresses examination of I/O activities through holis-
tic log data analysis of Tofu interconnects and parallel file systems including
associated I/O nodes. The uniqueness of this work is a holistic analysis frame-
work using data packet transfer status on interconnects among I/O nodes and
associated I/O activity traces at parallel file systems.

3 The K computer and Its File System Monitoring

3.1 Overview of the K Computer

The K computer finished its operation for about seven years in August 2019. The
system had two-layered file systems, a single volume of a local file system (LFS)
and eight volumes of a global file system (GFS) as shown in Fig. 1. The LFS was
a scratch high-performance storage space which was used during computations,
while the GFS was used to store programs and data with high redundancy. An
enhanced Lustre named FEFS (Fujitsu Exabyte File System) [18] developed by
Fujitsu based on the version 1.8 release was used to build both file systems. The
K computer consisted of 82,944 compute nodes and 5,184 I/O nodes, where every
system rack consisted of 96 compute nodes and six I/O nodes. Every compute
node and I/O node were connected through the Tofu interconnects. The LFS is
accessible from compute nodes through a subset of I/O nodes named local-I/O
nodes (LIOs). Every node including I/O nodes consisted of Tofu network router
(TNR) [1] where each TNR had 10 communication links (X+, X−, Y+, Y−,
Z+, Z−, A, B+, B−, and C) to construct the 6D mesh/torus network.

180 Y. Tsujita et al.

Performance profiling tools including Tofu PA addressed to tune performance
of compute nodes and communications among compute nodes. The tools have
succeeded to leverage computing potential of the K computer, especially in tun-
ing applications utilizing a large number of compute nodes. The only way to
tune I/O operations is benchmark evaluations because there were no I/O pro-
filing tools for users to examine activities of I/O nodes and parallel file systems
including the Tofu PA information among I/O nodes. Therefore, it was quite
difficult to tune I/O operations using only the existing profiling tools.

3.2 Log Collection for Monitoring the LFS

In the K computer operation, we have collected log data from servers associated
with the LFS as shown in Fig. 2. We have deployed fluentd to collect performance
metrics associated with I/O operations from 5,184 I/O nodes including 2,592
LIOs which also acted as OSSes for the LFS. The proposed analysis framework
utilizes the following log data from a large amount of collected information by
fluentd in the last few months of the K computer operation.

Fig. 2. Log collection from I/O nodes

– Tofu stats: Data packet transfer status metrics of I/O nodes on each Tofu
interconnect link (the number of transferred packets, amount of transferred
data size, and others)

– I/O stats: Statistics of I/O requests obtained from /proc/fs/lustre/ost/
OSS/ost io/stats on every OSS

– I/O rates: Amount of size in read and write operations on every OST

Only the I/O stats have been collected at 1 min intervals, while the remainings
have been collected at 10 min intervals as trial in a conservative manner due
to limited storage space of the log-collection server and minimization in perfor-
mance impact on I/O nodes during the K computer operation. More fine-grained
log collection interval is our future work.

Characterizing I/O Optimization Effect 181

The Tofu stats consist of the following packet processing metrics of the 10
links, which are obtained from a TNR of each I/O node through the Tofu PA
information:

– Cycle counts until target transfer buffer was available in packet transfers
– Amount of transferred data size

It is noted that the cycle counts in the Tofu stats correspond to congestion
status since unavailability of transfer buffers in packet processing closely corre-
sponds to packet transfer congestion. We enforced to retrieve those metrics from
a TNR at every I/O node during the K computer operation for about a few
months until the end of the K computer operation.

The I/O stats consist of the same statistics with those of a standard Lustre,
where we especially focus on the three statistics; req qdepth, req active, and
req waittime. Such statistics give the status of I/O requests coming from com-
pute nodes through I/O nodes. For instance, a large value in both req qdepth
and req waittime indicates very busy status of OSSes or idle status of OSSes
waiting for the next operation due to heavy load of an MDS before I/O
accesses for instance. Such a situation is not suitable for effective I/O opera-
tions. req active indicates the number of active threads for I/O operations.
High numbers in only req active indicate a very good condition in terms of
I/O accesses.

The I/O rates give us I/O throughput status at each OST over time. Col-
lected I/O throughput information is expected to show I/O behavior that hap-
pened on each OST.

3.3 Database for Executed Jobs

The PostgreSQL database server has collected information of executed jobs at
the K computer on the JOB-DB database. The JOB-DB keeps used compute
nodes, elapsed time, and start and finish times of job execution, for instance by
associating with a JOB-ID. Therefore, we can refer to information of a target
job from the JOB-DB by specifying a JOB-ID.

4 Analysis Framework for I/O Activities

Figure 3 depicts system overview of the implemented analysis framework, which
is connected with associated log data collected by fluentd and the JOB-DB to
analyze I/O activities on I/O nodes and the LFS. Given a target JOB-ID, the
framework obtains information of the JOB-ID such as 6D mesh/torus network
positions of used compute nodes and names of used system racks. Such infor-
mation about used compute nodes and system racks is utilized to find used I/O
nodes including LIOs from the I/O node table because the assigned I/O node
layout is configured by the shape of assigned compute nodes. Besides, start and
finish times of the target job obtained from the JOB-DB were used to pick up

182 Y. Tsujita et al.

Fig. 3. Functional overview of implemented analysis framework

essential information associated with the JOB-ID from a large amount of log
data collected by fluentd.

Once the framework collects all essential information, its log analysis function
figures out and gives the following information for the given JOB-ID:

– Maximum waiting times of each interconnect at each used I/O node
– Bandwidth utilization ratio of the interconnects relative to the theoretical

bandwidth
– I/O performance in both write and read operations on each used OST

The former two performance values are calculated by using the packet trans-
fer metrics obtained from the TNR. The function converts the cycle counts into
time value in the unit of second for the maximum waiting times. While the band-
width utilization ratio during the job execution is obtained by dividing the peak
bandwidth of the job by the theoretical bandwidth, where the peak bandwidth
is obtained from throughput values collected in an elapsed time of the specified
job. In the proposed framework, we use the maximum bandwidth utilization to
examine effectiveness in packet transfers associated with I/O operations.

While the I/O performance values were obtained by dividing an amount of
data size in read and write operations by a monitoring interval time (10 min at
this moment) in order to know I/O throughput at each used OST. The analysis
function generates data in the CSV format and associated heat-map image data
are stored in the PNG format.

5 Enhanced MPI-IO Implementation: EARTH on K

MPI-IO is an I/O interface including parallel I/O in the MPI standard [14].
An MPI library for the K computer supports MPI-IO functions for the FEFS
using ROMIO [20]. Although two-phase I/O optimization of ROMIO improves
collective MPI-IO performance, the implementation on the K computer uses an
old implementation of ROMIO which is not optimized for Lustre. Therefore, the
original MPI-IO implementation is not suitable for the FEFS to achieve high
I/O performance.

The recent ROMIO with the improved two-phase I/O for Lustre has a poten-
tial to improve performance on the FEFS. An enhanced implementation named

Characterizing I/O Optimization Effect 183

“EARTH on K” (hereinafter, EARTH) [21,22] has been developed for the K
computer by introducing the improved two-phase I/O with some performance
optimizations for collective MPI-IO at the FEFS.

Its advanced functions are summarized in the following three key optimiza-
tion parameters described by agg, rr, and req, respectively:

– agg: Striping-aware aggregator layout
– rr: Round-robin aggregator layout among compute nodes
– req: I/O throttling and associated stepwise data aggregation with a given

number of I/O requests per step

The striping-aware aggregator layout mitigates data transfer congestion by
suitable layout of processes performing I/O (aggregators) in collective MPI-IO
operations using ROMIO. By placing aggregators so that I/O flows of every I/O
path towards a target OSS are evenly distributed with paying attention into a
striping access pattern against OSTs, we can eliminate data transfer congestion
on those I/O paths. Besides, the round-robin aggregator layout can distribute I/O
workload evenly among compute nodes, and it also prevent aggregators from I/O
congestion on the same compute node if we have multiple aggregators on a subset
of compute nodes. The I/O throttling alleviates I/O request contention on OSSes
by issuing I/O requests from aggregators on compute nodes in a step-wise manner.
Stepwise data aggregation is an optimization associated with the I/O throttling,
where data transfer congestion among compute nodes can be mitigated.

Although the above enhancements outperformed the original version in an
empirical study using I/O benchmark runs, there were not any examinations to
know performance impact of those optimizations because there were no tools
to characterize optimization effect in data transfers among I/O nodes and I/O
accesses against the LFS at the K computer. By using the proposed framework,
we examine their advanced features at the K computer in the following section.

6 Experimental Evaluation

Evaluation for the proposed framework was carried out among the original
MPI-IO implementation and EARTH using two I/O benchmarks; IOR [5] and
HPIO [2]. In both benchmark runs, we initiated 12,288 processes on 3,072 com-
pute nodes forming 8 × 12 × 32 in a logical 3D layout in order to eliminate I/O
interference from other jobs. According to the 3D layout of assigned compute
nodes, 192 OSTs were assigned for parallel I/O, and we set 192 in stripe count
to use all available OSTs. We set 256 MiB and 64 MiB in stripe size in the IOR
run and the HPIO run, respectively.

In the both runs, 1,536 processes worked as aggregators, where aggregator
assignment was aligned to ascending order in MPI ranks from zero in the origi-
nal MPI-IO, while aggregator assignment was defined according to optimization
configuration of the EARTH. We have executed the two I/O benchmark runs so
that we could observe I/O activities of each run under the trial 10 min monitoring
intervals.

184 Y. Tsujita et al.

In this paper, original stands for the original one, while a combination of
the three optimization parameters (agg, rr and req) indicates the EARTH case.
Concerning the EARTH case, agg=1 stands for striping-aware aggregator lay-
out and rr=1 denotes round-robin aggregator layout among compute nodes. A
zero value in each case stands for deactivation in the corresponding layout opti-
mization. The last parameter req with a number describes the number of I/O
requests going to each OST per step in I/O throttling and step-wise data aggre-
gation except that req=0 denotes deactivation of I/O throttling and stepwise
aggregation.

6.1 Benchmark Configuration

We evaluated collective MPI-IO in the two benchmark runs with enabling two-
phase I/O implemented in ROMIO. Every run took around 10 min to cover the
10 min intervals of Tofu stats and I/O rates.

IOR. The following command was executed in write operations to generate a
shared file of 3 TiB (= 256 MiB × 12,288) per iteration:

$ ior -i 5 -a MPIIO -c -U hints_info -k -m -vvv -w -t 256m -b 256m \

-o ${TARGET_DIR}/test-IOR.dat -d 0.1

The same command with just changing “-w” by “-r” was executed, followed by
write operations in every parameter configuration. “hints info”, is a file describ-
ing some hints to set the number of processes per node, and so forth. A target
file (test-IOR.dat) was generated under a directory ${TARGET DIR} with 192
stripe count.

HPIO. We executed the following command for write operations, followed
by read operations to generate a shared file of about 2.1 TiB (∼ (5,992 B +
256 B) × 12,288 × 30,729 − 256 B) per iteration in non-contiguous access
pattern on a target file with specifying the number of processes per node (-H
cb config list=*:4):

$ hpio -n 0010 -r 6 -B -s 5992 -c 30729 -p 256 -m 01 -O 11 -f 0 \
-S 0 -a 0 -g 2 -H cb_config_list=*:4 -d ${TARGET_DIR} -w 1

The target file was generated under a directory ${TARGET DIR} with 192 stripe
count.

6.2 Benchmark Results

Figure 4 shows mean I/O throughput values with standard deviations by IOR
and HPIO benchmarks. The original case (original) shows low performance in
both read and write operations. EARTH with full optimization in aggregator
layout and I/O request throttling and stepwise data aggregation outperformed

Characterizing I/O Optimization Effect 185

other cases by setting four requests per step (agg=1,rr=1,req=4) in the IOR
runs and eight requests per step (agg=1,rr=1,req=8) in the HPIO runs. How-
ever, performance was degraded by changing the number of requests per step
or deactivating aggregator layout optimization. Although we have learned opti-
mization effect through such empirical benchmark runs, it has not been clear
about performance impact of the optimization configuration on I/O nodes and
the LFS.

(a) IOR benchmark (b) HPIO benchmark

Fig. 4. Benchmark results of the original MPI-IO and EARTH with several optimiza-
tion configurations by using (a) IOR and (b) HPIO benchmarks

(a) req qdepth (b) req waittime (c) req active

Fig. 5. Mean stats values obtained from OSSes using our analysis framework during
the IOR benchmark run

6.3 Analysis of OSS Stats Files

Figure 5 shows mean values of req qdepth, req waittime, and req active
obtained during I/O operations at the IOR benchmark run. The original case
had the largest number of requests in a request queue as shown in Fig. 5(a).
Figure 5(b) tells that this case also took the longest times to proceed requests.
Besides, Fig. 5(c) shows the highest number of active I/O threads in the original
case. Note that the maximum number of threads at each OSS of the LFS was
32 at the K computer. Through the observed results, it has turned out that the
original case was not suited for I/O request processing at OSSes.

186 Y. Tsujita et al.

While the EARTH case with good I/O performance (agg=1,rr=1,req=4)
showed quite small number of requests in queue as shown in Fig. 5(a). Figure 5(b)
also gives the fact that this case took quite short times to process I/O requests.
Besides, Fig. 5(c) tells us relatively high number of threads for those cases.

Figure 6 shows same statistics obtained in the HPIO benchmark run. Similar
to the IOR run, the original case was not good compared with the EARTH case
with good optimization configuration indicated by “agg=1,rr=1,req=8”.

(a) req qdepth (b) req waittime (c) req active

Fig. 6. Mean stats values obtained from OSSes using our analysis framework during
the HPIO benchmark run

(a) Bandwidth utilization (b) Waiting time in packet transfer

Fig. 7. Mean values for packet transfers on Tofu interconnects among used I/O nodes
during the IOR benchmark run

6.4 Bandwidth Utilization and Waiting Times in Packet Transfers
on Tofu Interconnects of I/O Nodes

Figure 7 shows mean values of (a) the peak bandwidth utilization ratios and (b)
the maximum waiting times in packet transfers on links of used I/O nodes.

Figure 7(a) indicates that the original case shows the lowest utilization, while
the full set of EARTH optimizations such as “agg=1,rr=1,req=4” performed
higher bandwidth utilization relative to other cases. By considering effectiveness
in packet transfers among I/O nodes via Tofu interconnects, higher utilization

Characterizing I/O Optimization Effect 187

is preferable. In this context, the above optimized case was suitable for I/O
optimization.

The enhanced implementation without aggregator layout optimization indi-
cated by “agg=0,rr=0,req=4” took the longest times in Fig. 7(b). It is also
noted that this case also performed the lowest bandwidth utilization in write
operations as shown in Fig. 7(a). It is remarked that the lack of aggregator lay-
out optimization in the EARTH case led to negative impact in packet transfers
on Tofu interconnects among I/O nodes.

Figure 8 shows similar bandwidth utilization ratios and waiting times in
packet transfers on Tofu links of used I/O nodes at the HPIO benchmark run.
The EARTH case with the best configuration (agg=1,rr=1,req=8) also outper-
formed other cases in Fig. 8(a). This case also showed shorter times in both read
and write operations among the EARTH cases in Fig. 8(b).

(a) Bandwidth utilization (b) Waiting time in packet transfer

Fig. 8. Mean values for packet transfers on Tofu interconnects of used I/O nodes at
the HPIO benchmark run

(a) original (b) agg=0,rr=0,req=0 (c) agg=1,rr=1,req=4

Fig. 9. Write bandwidth heat-maps of used 192 OSTs at the IOR benchmark run

6.5 Load Balancing in I/O Throughput at OSTs

Figure 9 shows write bandwidth heat-maps of used 192 OSTs during the IOR
benchmark runs. Each heat-map shows write bandwidth of each OST ranging

188 Y. Tsujita et al.

from 0 to 160 MiB/s, where horizontal and vertical axes represent subjected
relative 2D positions of used OSTs from the logical 3D layout of the K computer,
ranging from 0 to 15 and from 0 to 11 in horizontal and vertical directions,
respectively.

In the original case in Fig. 9(a), we can observe performance gaps among
the left and right sides separated by the dotted line. Figure 9(b) also shows
performance gaps among OSTs. The both cases are not suitable because total
I/O performance was limited by the slowest OST in parallel I/O. While the most
optimized case in Fig. 9(c) shows a well-balanced situation in write throughput
among OSTs. In the context of parallel I/O characteristics, this case is suitable
for the benchmark run.

Write bandwidth heat-maps at the HPIO run are also shown in Fig. 10. The
EARTH case with insufficient configuration (agg=0,rr=0,req=8) showed lower
performance compared with the original case. Meanwhile, a full set of the three
optimizations in the EARTH case (agg=1,rr=1,req=8) achieved the highest I/O
throughput at every used OST.

(a) original (b) agg=0,rr=0,req=8 (c) agg=1,rr=1,req=8

Fig. 10. Write bandwidth heat-maps of used 192 OSTs at the HPIO benchmark run

7 Summary

We have built a holistic log data analysis framework to characterize I/O activities
at the LFS and packet transfers through the Tofu interconnects of I/O nodes in
I/O optimization at the K computer. The proposed framework has carried out
holistic analysis using bandwidth utilization status of the Tofu links among I/O
nodes in addition to performance metrics in several log data generated at the
LFS and I/O nodes to reveal activities on those interconnects and the LFS.

Two I/O benchmark runs showed distinct differences in I/O activities at
the LFS and packet transfers through the Tofu links among I/O nodes between
the original MPI-IO implementation and the enhanced MPI-IO implementa-
tion named EARTH. Obtained profiling information also gave insights to under-
stand why the EARTH gained I/O performance relative to the original MPI-IO.
Besides, the framework also informed us how much the impact in I/O activities
at the LFS and bandwidth utilization of the Tofu links of I/O nodes among sev-
eral optimization configurations of the EARTH. Our future work is building the

Characterizing I/O Optimization Effect 189

similar framework in our next HPC system named Fugaku [16] to cover essential
information from log data with a fine-grained monitoring interval.

Acknowledgment. This research used computational resources of the K computer
provided by the RIKEN Center for Computational Science.

References

1. Ajima, Y., Inoue, T., Hiramoto, S., Takagi, Y., Shimizu, T.: The Tofu interconnect.
IEEE Micro 32(1), 21–31 (2012)

2. Ching, A., Choudhary, A., keng Liao, W., Ward, L., Pundit, N.: Evaluating I/O
characteristics and methods for storing structured scientific data. In: Proceedings
20th IEEE International Parallel and Distributed Processing Symposium, p. 49.
IEEE Computer Society, April 2006

3. fluentd. https://www.fluentd.org/
4. Ida, K., Ohno, Y., Inoue, S., Minami, K.: Performance profiling and debugging on

the k computer. Fujitsu Sci. Tech. J. 48(3), 331–339 (2012)
5. IOR. https://github.com/hpc/ior
6. Kumar, M., et al.: Understanding and analyzing interconnect errors and network

congestion on a large scale HPC system. In: 2018 48th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN 2018, pp. 107–114.
IEEE, June 2018

7. Kunkel, J.M., et al.: The SIOX architecture – coupling automatic monitoring and
optimization of parallel I/O. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.)
ISC 2014. LNCS, vol. 8488, pp. 245–260. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07518-1 16

8. Liu, Y., Gunasekaran, R., Ma, X., Vazhkudai, S.S.: Automatic identification of
application I/O signatures from noisy server-side traces. In: Proceedings of the 12th
USENIX Conference on File and Storage Technologies (FAST 2014), USENIX, pp.
213–228 (2014)

9. Liu, Y., Gunasekaran, R., Ma, X., Vazhkudai, S.S.: Server-side log data analyt-
ics for I/O workload characterization and coordination on large shared storage
systems. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2016. ACM (2016)

10. Lockwood, G.K., Wright, N.J., Snyder, S., Carns, P., Brown, G., Harms, K.:
TOKIO on ClusterStor: connecting standard tools to enable holistic I/O perfor-
mance analysis. In: 2018 Cray User Group Meeting (CUG) (2018)

11. Lustre. http://lustre.org/
12. Luu, H., Winslett, M., Gropp, W., Ross, R., Carns, P., Harms, K., Prabhat, M.,

Byna, S., Yao, Y.: A multiplatform study of I/O behavior on petascale supercom-
puters. In: Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC 2015, pp. 33–44. ACM (2015)

13. Madireddy, S., et al.: Analysis and correlation of application I/O performance and
system-wide I/O activity. In: Proceedings of the 2017 International Conference on
Networking, Architecture, and Storage (NAS), pp. 1–10. IEEE (2017)

14. MPI Forum. https://www.mpi-forum.org/
15. Patel, T., Byna, S., Lockwood, G.K., Tiwari, D.: Revisiting I/O behavior in large-

scale storage systems: The expected and the unexpected. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2019, pp. 65:1–65:13. ACM (2019)

https://www.fluentd.org/
https://github.com/hpc/ior
https://doi.org/10.1007/978-3-319-07518-1_16
https://doi.org/10.1007/978-3-319-07518-1_16
http://lustre.org/
https://www.mpi-forum.org/

190 Y. Tsujita et al.

16. Post-K (Fugaku) Information. https://postk-web.r-ccs.riken.jp/index.html
17. Saini, S., Rappleye, J., Chang, J., Barker, D., Mehrotra, P., Biswas, R.: I/O per-

formance characterization of Lustre and NASA applications on Pleiades. In: 19th
International Conference on High Performance Computing (HiPC), pp. 1–10 (2012)

18. Sakai, K., Sumimoto, S., Kurokawa, M.: High-performance and highly reliable file
system for the K computer. Fujitsu Sci. Tech. J. 48(3), 302–309 (2012)

19. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing
clusters. In: Proceedings of the 1st USENIX Conference on File and Storage Tech-
nologies, FAST 2002, USENIX Association (2002)

20. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the Sixth Workshop on Input/Output in
Parallel and Distributed Systems, pp. 23–32 (1999)

21. Tsujita, Y., Hori, A., Ishikawa, Y.: Locality-aware process mapping for high per-
formance collective MPI-IO on FEFS with Tofu interconnect. In: Proceedings of
the 21th European MPI Users’ Group Meeting, EuroMPI/ASIA 2014, pp. 157:157–
157:162. ACM (2014). Challenges in Data-Centric Computing

22. Tsujita, Y., Hori, A., Kameyama, T., Uno, A., Shoji, F., Ishikawa, Y.: Improv-
ing collective MPI-IO using topology-aware stepwise data aggregation with I/O
throttling. In: Proceedings of HPC Asia 2018: International Conference on High
Performance Computing in Asia-Pacific Region, 28–31 January 2018, pp. 12–23.
ACM (2018)

23. Uselton, A., Wright, N.: A file system utilization metric for I/O characterization.
In: 2013 Cray User Group Meeting (2013)

24. Xie, B., et al.: Characterizing output bottlenecks in a supercomputer. In: Proceed-
ings of 2012 International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2012, pp. 1–11. IEEE (2012)

25. Xu, C., et al.: LIOProf: exposing Lustre file system behavior for I/O middleware.
In: 2016 Cray User Group Meeting, May 2016

26. Yang, B., et al.: End-to-end I/O monitoring on a leading supercomputer. In: Pro-
ceedings of the 16th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2019, pp. 379–394. USENIX (2019)

27. Zimmer, C., Gupta, S., Larrea, V.G.V.: Finally, a way to measure frontend I/O
performance. In: 2016 Cray User Group Meeting (CUG) (2016)

https://postk-web.r-ccs.riken.jp/index.html

The Importance of Temporal Behavior
When Classifying Job IO Patterns Using

Machine Learning Techniques

Eugen Betke1(B) and Julian Kunkel2

1 DKRZ, Hamburg, Germany
betke@dkrz.de

2 University of Reading, Reading, UK
j.m.kunkel@reading.ac.uk

Abstract. Every day, supercomputers execute 1000s of jobs with differ-
ent characteristics. Data centers monitor the behavior of jobs to support
the users and improve the infrastructure, for instance, by optimizing jobs
or by determining guidelines for the next procurement. The classification
of jobs into groups that express similar run-time behavior aids this anal-
ysis as it reduces the number of representative jobs to look into. It is
state of the practice to investigate job similarity by looking into job pro-
files that summarize the dynamics of job execution into one dimension
of statistics and neglect the temporal behavior.

In this work, we utilize machine learning techniques to cluster and
classify parallel jobs based on the similarity in their temporal IO behav-
ior to highlight the importance of temporal behavior when comparing
jobs. Our contribution is the qualitative and quantitative evaluation of
different IO characterizations and similarity measurements that work
toward the development of a suitable clustering algorithm.

We explore IO characteristics from monitoring data of one million
parallel jobs and cluster them into groups of similar jobs. Therefore,
the time series of various IO statistics is converted into features using
different similarity metrics that customize the classification. We discuss
conventional ML techniques that are applied to job profiles and contrast
this with the analysis of time series data where we apply the Leven-
shtein distance as a distance metrics. While the employed Levenshtein
algorithms aren’t yet optimal, the results suggest that temporal behavior
is key to identify related pattern.

Keywords: IO fingerprinting · Performance analysis · Monitoring

1 Introduction

Scientific large-scale applications of different domains have different needs for
IO and, thus, exhibit a variety of access patterns on storage. Even re-running
the same simulation may lead to different behavior. We can distinguish between

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 191–205, 2020.
https://doi.org/10.1007/978-3-030-59851-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_12

192 E. Betke and J. Kunkel

a temporal behavior, i.e., the operations performed over time such as long read
phases, bursty IO pattern, and concurrent metadata operations, and spatial
access pattern of individual processes of the application as they can be, e.g.,
sequential or random.

On different supercomputers, the same IO patterns may result in different
application runtimes depending on the nature of the access pattern. For example,
machines equipped with burst buffers [1,10] may significantly reduce application
runtimes by absorbing bursty IO traffic. IO congestion and file system perfor-
mance degradation can occur when several IO intensive jobs are running on the
same machine at the same time.

In our environment at DKRZ, the raw monitoring data of a job is captured
in form of a time series of nine metrics per node, each metric sampled at five
seconds intervals. When comparing the time series of such metrics between two
jobs, the key question is how do we define the similarity between multiple time
series. From the user support side, we might be interested in grouping similar
suboptimal jobs and aim to provide one recipe to optimize all that exhibit such
a behavior. Similarly, we might be interested to optimize the pattern for a single
IO phase. We may be interested to ignore computation time and focus on IO
phases only. Regardless of the segment of the time series we look at, we naively
would consider an IO pattern to be identical if the time series for all metrics of
one job is identical to those of another job.

Utilizing time series data of a job for clustering if difficult as it firstly, depends
on runtime, the number of nodes, the gathered metrics, and possibly number of
file systems; secondly, the temporal IO behavior of parallel jobs depends on the
conditions of the cluster it is executed. For various reasons, even re-running the
same job may lead to variations in execution time and, thus, observed statistics.
Moreover, variants of workflows may lead to slight variations of behavior that
might be relevant for a data analyst.

In this article, we discuss and demonstrate the benefit of utilizing time series
data in contrast to profiles. First, we briefly discuss related work in Sect. 2.
Next, we describe our previous work and the monitoring system used in Sect. 3.
Our approach is described in Sect. 4. As jobs are of different length, a similarity
metrics must be able to handle time series of different length. Two classes of
approaches are investigated: (1) we generate job profiles and apply existing ML
techniques to cluster data; (2) we create a string from the time series, and
we apply the Levenshtein distance which indicates the number of changes that
need to be made between two job strings. The experimental conditions for our
evaluation are described in Sect. 5. To evaluate these approach, we perform
a qualitative analysis in Sect. 6 discussing the statistics about the generated
clusters and a quantitative evaluation in Sect. 7 where we search jobs similar to
a given job. Finally, the paper is concluded in Sect. 8.

2 Related Work

There are many tracing and profiling tools that are able to record IO informa-
tion [6]. Most of them focus on individual jobs, and only a few of them apply

The Importance of Temporal Behavior When Classifying Job IO Patterns 193

machine learning for data analysis, in particular across jobs. As the purpose of
applications is computation and, thus, IO is just a byproduct, applications often
spend less than 10% time with IO.

The Ellexus tools1 include the Mistral tool which purpose is to report on and
resolve IO performance issues when running complex Linux applications on high
performance compute clusters. Darshan [2,3] is an open source IO characteriza-
tion tool for post-mortem analysis of HPC applications’ IO behavior. Its primary
objective is to capture concise but useful information with minimal overhead.
This is accomplished by eschewing end-to-end tracing in favor of compact statis-
tics such as elapsed time, access sizes, access patterns, and file names for each
file opened by an application. Darshan can be used not just to investigate the IO
behavior of individual applications but also to capture a broad view of system
workloads for use by facility operators and IO researchers.

There are approaches that monitor record storage behavior and aim to iden-
tify inefficient applications in a cluster. TOKIO [7] integrates logs from various
sources to allow an analysis of data. It allows finding certain inefficient access
patterns in the data.

The LASSi tool [9] was developed for detecting victim and aggressor appli-
cations. To identify such applications, LASSi calculates metrics from Lustre job-
stats and information from the job scheduler. The correlation of these metrics
can help to identify applications that cause the file system to slow down. In
the LASSi workflow this is a manual step, where a support team is involved
in the identification of applications during file system slow down. LASSi’s indi-
cates that the main target group are system maintainers. Understanding LASSi
reports may be challenging for ordinary HPC users, who do not have knowledge
about the underlying storage system.

In [5], the authors utilized probes to detect file system slow-down. A probing
tool measures file system response times by periodically sending metadata and
read/write requests. An increase of response times correlates to the overloading
of the file system. This approach allows the calculation of a slow-down factor
identification of the slow-down time period. This approach is able to detect a
file system slow-down, but cannot detect the jobs that cause the slow-down.

HiperJOBVIZ [8] is a visual analytic tool for visualizing the resource alloca-
tions of data centers for jobs, users, and usage statistics. It provides an overview
of the current resource usage and a detailed view of the resource usage via
multi-dimensional representation of health metrics. TimeRadar2 is a part of the
tool, which summaries the resource usage via radar charts, creating a kind of
comprehensible profile for different user groups.

In contrast to existing approaches, the approach discussed in this paper
focuses on the analysis of job data and investigates clustering strategy to group
similar jobs.

1 https://www.ellexus.com/products/.
2 https://idatavisualizationlab.github.io/HPCC/TimeRadar.

https://www.ellexus.com/products/
https://idatavisualizationlab.github.io/HPCC/TimeRadar

194 E. Betke and J. Kunkel

Fig. 1. A generic example of 4-dimensional raw monitoring data (Node × File System
× Metric × Time) and different levels of segmentation (colored boxes).

3 Preliminary Work

The German Climate Computing Center (DKRZ) maintains a monitoring sys-
tem that gathers various statistics from the Mistral HPC system. Mistral has
3,340 compute nodes, 24 login nodes, and two Lustre file systems (lustre01 and
lustre02) that provide a capacity of 52 PB.

Raw Monitoring Data. On each node, every five seconds nine IO metrics are
gathered on client nodes for each Lustre file system and stored. Five of them
(md read, md mod, md file create, md file delete, md other) capture metadata
activities and the remaining four (read bytes, read calls, write bytes, write calls)
capture data access. Figure 1 illustrates a generic example of raw monitoring
data. In the example the data is captured on 2 nodes, on 2 file systems, for 2
metrics, and at 9 time points ti.

Segmentation. We split the time series of each IO metric into equal-sized time
intervals (segments) and computes a mean performance for each segment. This
stage preserves the performance units (e.g., Op/s, MiB/s) for each IO metric.
The generic example in Fig. 1 creates segments out of three successive time
points just for illustration purposes. Actually, the real raw monitoring data is
converted to 10 min segments, which we found is a good trade-off to represent
the temporal behavior of the application while it reduces the size of the time
series. Depending on aggregation function, segments can be created of metrics,
of file systems, of nodes, or even over all dimensions.

Categorization. Next, to get rid of the units, and to allow calculations between
different IO metrics, we introduced a categorization pre-processing step that
takes into account the performance of the underlying HPC system and assigns a

The Importance of Temporal Behavior When Classifying Job IO Patterns 195

unitless ordered category to each metric segment. We use a three category sys-
tem, which contains the LowIO = 0, HighIO = 1 and CriticalIO = 4 categories.
The category split points are based on the observed file system usage and the
score values assigned to each category represent their weight. We investigated
both concepts in our previous work [4]. This node-level data can then be used
to compute job-statistics by aggregating across dimensions such as time, file
systems, and nodes.

In summary, this data representation has the following key advantages for
data analysis. The ordered categories make the calculations between different
metrics feasible, which is not possible with raw data. Furthermore, the domains
are equally scaled and compatible, because the values are between 0 and 4, and a
value has a meaning. Besides, the resulting data representation is much smaller
compared to the raw data. This allows us to apply compute-intensive algorithms
to large datasets. Finally, irrelevant data is hidden by the LowIO category and
doesn’t distract from significant parts of jobs.

In our previous work, we computed three high-level Job-IO-metrics per job
that aid users to understand job profiles: Job-IO-Balance indicates how IO load
is distributed between nodes during job runtime. Job-IO-Utilization shows
the average IO load during IO-phases but ignores computation phases. Job-
IO-Problem-Time is the fraction of job runtime that is IO-intensive; it is
approximated by the fractions of segments that are considered IO intensive.

We will use them in job profiles as well to capture some temporal behavior.

4 Methodology

The goal of this article is to research the impact of the temporal dimension
when applying clustering strategies on many jobs. Therefore, we compare job-
profiles that neglect the temporal dimension and time series of different length
represented as strings.

Generally, machine learning algorithms expect a fixed number of features.
Thus, the time series that are retrieved on the node-level needs to be pre-
processed. The application of a “specific algorithm” can be understood as a
number of successive processing steps on data. Roughly speaking, there are three
basic steps that we apply: data pre-processing including coding, similarity com-
putation, and clustering. We call one of such a combination a clustering stack.
The pre-processing converts the dynamic-sized monitoring data which depends
on the number of captured IO metrics, allocated nodes, used file systems, and
application runtime into a suitable representation for the clustering algorithm.
Then the clustering is applied. Finally, the clustering result needs to be assessed,
i.e., how suitable is this strategy for our IO statistics and use cases? In the follow-
ing, we have dedicated a section to each step discussing potential alternatives.

Data Pre-processing. The 4-dimensional data (Node × File System × Met-
ric × Time) from our monitoring system is too fine-grain for mass analysis.
To be able to analyse millions of jobs, we must reduce the dimensionality.

196 E. Betke and J. Kunkel

Depending on reduction techniques, the result of the data-preprocessing is either
a dataset of feature vectors for general-purpose algorithms, or a set of job codings
for specific clustering algorithms.

We decided to distinguish how the different dimensions of a job are reduced
and aggregated (if at all); for example, for general-purpose clustering algorithms
we may summarize a metric over the node dimension and then compute the
mean across time to obtain a profile for each metric and file system. For specific
algorithms, that work with time series, we can reduce monitoring data by node,
file system, and across metrics, leaving the time dimension untouched. At this
point you can see clearly, why it is beneficial to have the same unit for all
dimensions, and why we use a category classification which creates a unitless
order.

Coding. Segmented data contains a numeric floating-point value for each data,
which can be too much information for the analysis. Therefore, we introduce two
condensed data representations called binary and hexadecimal coding. Addition-
ally, we introduce zero-aggregation, that is an operation that aggregates contin-
uous zero segments to one zero segment.

Binary coding represents monitoring data as a sequence of numbers, where each
number stands for a specific file system usage. Reduction of data by nodes and
file system, and aggregation by the sum() function creates a 2d data structure
with the metric and the time dimension. In the next reduction step, each conceiv-
able combination of active IO metrics can be mapped to unique number. In our
implementation, we do this by a 9-bit number where each bit represents a metric.
The approach maps the three categories to two states: LowIO is mapped to 0
(compute intense state), and HighIO and CriticalIO are mapped 1 (IO intense
state). On one side, by doing this, we lose information about performance inten-
sity, but on other side, this simplification allows later a more comprehensible
comparison of job activities.

Using this kind of coding we can compute a number for each segment, that
describes unambiguously the file system usage, e.g., a situation where intensive
usage of md read (Code = 16) and read bytes (Code = 32) occur at the same time
and no other significant loads are registered is coded by the value 48. Coding
is reversible, e.g., when having value 48, the computation of active metrics is
straightforward.

In the example below, we reduce the 4d data to 1d data (1) by aggregating
the node and the file system dimensions, (2) by summing up the score values (3)
and mapping each segment in the metric dimension to a number. Additionally,
sequences of zero segments can be reduced to just one zero segment to neglect the
length of an application’s IO phase. For presentation purposes, in the resulting
table we leave zero scores. An example encoded job before and after the reduction
of zero segments is shown here:

The Importance of Temporal Behavior When Classifying Job IO Patterns 197

jobA (after coding): [1:5:0:0:0:0:0:0:96:96:96:96:96:96:96], ’length’:15
jobA (after reduction): [1:5:0:96:96:96:96:96:96:96], ’length’:15

Hexadecimal coding preserves monitoring data for each metric and each segment.
As the name suggests, the value of a segment is converted into a hexadecimal
number. The numbers are obtained in two steps. Firstly, the dimension reduction
aggregates the file system and the node dimensions and computes a mean value
for each metric and segment, which lies in interval [0,4]. Secondly, the mean
values are quantized into 16 levels – 0 = [0,0.25), 1 = [0.5,0.75), . . ., f = [3.75,
4]. The following example shows a five segment long hexadecimal coding:

jobB: ’length’: 6, ’coding’:
’metric_read’ : [0:2:2:2:9],
’metric_write’ : [0:0:0:0:0],
...,
’metric_md_other’: [0:0:0:f:f]

Similarity. We use euclidean distance to determine the similarity between two
job profiles. For time series, we use Levenshtein distance that is the number of
operations (inserts/deletes/changes) required to convert one coding in another.

Clustering. In the last step, similar jobs need to be grouped in clusters. To
handle millions of jobs, the algorithm must be performant. We developed two
strategies that meet the requirement, one based on widely used general-purpose
algorithms, and a specific algorithm.

ClusteringTree Algorithm. As we do not know the number of different classes of
jobs are in the dataset, a traditional k-means classification turned out to be not
productive in our experiments. Therefore, we explored the usage of agglomerative
clustering, however, with its complexity of ≥ O(N2), it wasn’t applicable to our
dataset. Thus, we simplified the application into this algorithm. This algorithm
involves three steps: (1) Agglomerative clustering of a small dataset and labeling
data, (2) training of a decision tree model, and (3) clustering with the decision
tree of the remaining jobs.

SimplifiedDensity Algorithm. Clusters are formed around centroids. That are
job codings that form clusters by attracting similar jobs. All jobs in a cluster
fulfill only one condition, the similarity (SIM) to the centroid has to be larger
than the user defined value. The algorithm takes a non-assigned job and iterates
through existing clusters looking if the similarity to the cluster centroid is larger
than the user defined values. The job is assigned to the first cluster, where the
condition is fulfilled. If there is no such a cluster, the job forms a new cluster
and becomes a centroid of this cluster.

Clustering Stacks. There are various combinations of the different strategies
possible. For simplicity, we refer to one clustering stack just as algorithm. During
our research, we explored various combinations out of the possible combinations.
The paths are visualized Fig. 2 and discussed further in the following section.

198 E. Betke and J. Kunkel

Fig. 2. Algorithms and their actual clustering stacks.

4.1 Algorithms

ML. To apply existing clustering algorithms, first, a job-profile is created in the
pre-processing. The 4d time series can be transformed into the required fixed-
size input format accepted by the general-purpose ML clustering algorithms. In
the preprocessing step, the MinMaxScaler scales the features to values between
0 and 1 using MinMax normalization. Therefore, the highest distance between
two points can be at most εmax = d1/d, where d is the dimension of the dataset.

We explored two job profiles: IO-metric and IO-duration. The IO-metric job
profile utilizes three features, Job-IO-Balance, Job-IO-Utilization, and Job-IO-
Problem-Time (as defined in [4]). After the data pre-processing, we obtain a set
of 3-dimensional data points with a domain between 0 and 1. The maximum
distance between any two jobs (εmax) is 1.44.

The IO-duration job profile contains the fraction of runtime, a job spent
doing the individual IO categories leading to 27 columns. The columns are
named according to the following scheme: metric category, e.g., bytes read 0
or md file delete 4. The first part is the one of the nine metric names and the
second part is the category number (LowIO = 0, HighIO = 1 and CriticalIO =
4). These columns are used for machine learning as input features. There is a
constraint for each metric (metric 0 + metric 1 + metric 4 = 1), that makes 9
features redundant, because they can be computed from the other features. So
we have to deal with 18 features; εmax is 1.17.

In experiments, we observed that the agglomerative clustering algorithm that
is used in this work can handle around 10,000 jobs in a reasonable amount of
time as the complexity is O(N2). With the following additional classification
steps, we are able to cluster 1,000,000 samples:

1. Clustering and labeling 10,000 jobs with agglomerative clustering algorithm.
2. Training of a decision tree model with data from the previous step.
3. Predict labels of 1,000,000 jobs with the trained decision tree model.

The Importance of Temporal Behavior When Classifying Job IO Patterns 199

BIN ALL and BIN AGGZEROS. For these algorithms, we encode the time
series of 9 metrics into one time series that is then assessed using Levenshtein
distance. The similarity between two jobs is determined by the following formula:

similarity (jobA, jobB) = 1 − levenshtein (codingA, codingB)

max (lengthA, lengthhB)
(1)

It computes the number of operations (changes/deletes/inserts) divided by
the length of the longest sequence, and subtracted from the value one. According
to this equation, the similarity between the following two jobs is 73%:

jobA: [1:5:0:0:0:0:0:0:96:96:96:96:96:96:96], ’length’: 15
jobB: [0:0:0:0:0:0:0:0:0:96:96:96:96:96:98], ’length’: 15

As a variation of this approach, we investigated also the case where consecu-
tive zero-sequences are reduced to a single zero segment. This allows us to focus
on IO intensive parts of the job. The example below shows reduced codings from
the previous example. Note, that this operation has no effect on the job length
and similarity computation. The similarity between the following two codings is
53%:

jobA: [1:5:0:96:96:96:96:96:96:96], ’length’: 15
jobB: [0:96:96:96:96:96:98], ’length’: 15

HEX LEV. This similarity function works on the same principle as the BIN
algorithms, with the difference that instead of a single pre-reduced time series
per job, it computes the similarity between all 9 metrics of two different jobs
first and then compute the mean.

This adaption allows applying Levenshtein-based similarity on hexadecimal
coding as follows:

similarity (jobA, jobB) = 1 −
∑

m∈Metric levenshtein
(
codingA,m, codingB,m

)

N · LB

, with LB ≥ LA

(2)

4.2 Assessment

Lastly, the quality of the obtained clusters must be assessed. Overall, we will
assess their suitability using quantitative metrics such as the number of gener-
ated clusters and their sizes and qualitatively by manually exploring clusters of
relevant jobs. We want to emphasize that our goal is to find similar jobs. Unfor-
tunately, it is not feasible to analyse all of them qualitatively with reasonable
effort and there are no tools that can assess the cluster quality automatically.
For the qualitative analysis, we start by looking into a job that is given to user
support, then similar jobs need to be found. In the same cluster, we expect the
sequences to be similar. If not, the clustering algorithm is not effective.

200 E. Betke and J. Kunkel

5 Experimental Setup

5.1 Data

This section describes the job data extracted from Mistral, originally we gathered
1 million jobs from a period of 203 days. Mostly jobs are allowed to run up to
8-hours, leading to time series with up to 48 segments. The general procedure
for monitoring data shorter than 10 min, that occur inevitable in short jobs
and in many last job segments (if job runtime is not divisible by 10 min) is the
following: We compute the mean segment performance, extend the runtime to
10 min, and create a 10 min segment with the computed mean performance. From
the perspective of this work, analysis of non-IO-intensive jobs (jobs with zero in
all segments) is irrelevant. These jobs can be grouped into one class easily. For
that reason, we detect zero-jobs early and remove them from the dataset; these
are about 40% of jobs.

The number of zero-jobs is different for hexadecimal and absolute mode cod-
ings. For BIN algorithms we create 583,000 codings and for HEX algorithms
444,000 codings. The reason is the quantization to HEX coding, which firstly
computes mean performance values for all segments, and then quantizes them
to 16 levels. Hereby, some segments can be quantized to zeros, if the mean value
becomes sufficiently low. Therefore, it may happen that some jobs fall into the
zero-job category if all segments are quantized to zeros. It can not happen in
BIN coding, because it preserves all the active segments, so that no job may
change the category. Interestingly, it affects around 14% of jobs.

5.2 Test Environment

For the performance tests, we allocate a compute node on Mistral supercom-
puter. It is equipped with 2x Intel® Xeon® CPU E5 2680 v3 @ 2.50 GHz, 64
GB DDR4 RAM. For clustering of job profiles, we use the agglomerative cluster-
ing algorithm, decision trees, and the MinMaxScaler from the scikit-learn 0.22.1
library and python 3.8.0. For clustering of binary and hexadecimal codings we
a clustering algorithm implemented in Rust and run it on a single core.

5.3 Algorithm Parameters

ML. We explored our discussed job profiles: IO-metric and IO-duration. For
both datasets we explore ε ∈ [0.03, 0.06, 0.09, 0.1, 0.2, 0.3].

BIN/HEX. We conduct experiments with BIN ALL, BIN AGGZEROS, and
HEX LEV algorithms, varying the SIM ∈ [0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99] param-
eter and capturing clustering progress each time after clustering 10,000 jobs.

The Importance of Temporal Behavior When Classifying Job IO Patterns 201

Fig. 3. Clustering progress.

6 Evaluation

ML. The jobs within clusters have indeed a similar job profile, the time series
and, therefore, the binary coding differs significantly. For example, a cluster
can contain sequences with different IO behavior like in Table 1. Obviously, the
approach don’t work stable enough. We omit further details.

BIN/HEX. In the introduced algorithms, the user-defined similarity (SIM)
defines the closeness a job must fulfill to the cluster centroid to be assigned to
the cluster. It is expected that low SIM values produce a few large but noisy
clusters and a high SIM value produces a large amount of small but clean clus-
ters. Although an optimal SIM value is dependent on use case and dataset, a
parameter exploration may provide important hints to find a good value and
achieve optimal cluster qualities.

Figure 3 shows the number of clusters created when clustering an increasing
total number of jobs for different SIM values; each point represents the number
for an analyzed number of jobs in increments of 10,000 jobs. For all algorithms,
we can see that with an increase in SIM value, the number of clusters created
increases, and the number of total clusters created slows down the more jobs
have been processed as jobs are allocated to existing clusters. For a SIM of 99%,
BIN and HEX LEV can barely group jobs together.

To understand the aggregation behavior better, alternative visualizations are
investigated. In Fig. 4, the number of clusters created for a given similarity value
is plotted. The red line approximates the overall number of clusters, the green
line shows how many contain at least two jobs and the blue line shows how
many of them contain at least 10 jobs. On the red line we can observe increasing
number of cluster with increasing SIM value, but we can also see on the green
line that for the BIN algorithms the number of cluster with two jobs decreases
after SIM ≥ 0.7. The maximum number of clusters is equivalent to the number
of jobs; it is visualized by the gray line. Coding with 100% similarity are of the
same job phenotype, i.e., they have exactly the same length and IO behavior.

202 E. Betke and J. Kunkel

Table 1. IO-metrics job profiles

Job-IO-Utilization Job-IO-Problem-Time Job-IO-Balance Binary coding

4 1 0.4375000 118

4 1 0.4450206 368:368:368:368:368:368:374:368:368:368

4 1 0.4583333 496:496

Fig. 4. Similarity value exploration. (Color figure online)

This kind of investigation could help a user to find the right SIM for a
particular use case. A user can read off the line generalization capabilities of the
algorithm with the particular SIM value. The less clusters are created, the more
job phenotype they contain in average. The green line shows the point where the
algorithms begin to create job clusters with 1 job only. In some use case, this
might be an unwanted behavior.

7 Use Case: Investigating an IO-Intensive Job

The demonstration in this section shows how this approach can be used to
identify a cluster of IO-intensive jobs similar to an existing job.

Based on the parameter investigation, we choose the sim value by the fol-
lowing criteria. The BIN algorithms work best for SIM ≥ 0.7, and the HEX
algorithm requires a higher SIM value, hence we chose 0.9. A further increase of
the SIM value doesn’t make significant improvements in our experiments.

Firstly, we determined an IO intensive job that we use to identify similar jobs.
The IO intensive metric of the selected job is visualized in Fig. 5. Other metrics
contain only zero segments or negligible IO. We can see that this job reads data
over the whole runtime. At beginning, only a subset of the nodes is reading
most of the data, later more nodes participate in the reading. The amount of
transmitted data is not large, but the amount of read calls is exceptionally high
and may potentially degrade the file system performance.

The SIM value selection strategy can vary from use case to use case. As
criteria, we choose a SIM value that creates a moderate number of clusters

The Importance of Temporal Behavior When Classifying Job IO Patterns 203

Fig. 5. IO intensive metric of one high IO intensity job running on 46 nodes. Other
metrics have negligible IO and are omitted. Score is the sum of all nodes stacked by
the node. A color represents the contribution of one of the nodes.

Table 2. Cluster statistics.

SIM Cluster size Number of job types

BIN ALL 0.7 27 17

BIN AGGZEROS 0.7 8 8

HEX LEV 0.9 209 189

Table 3. Job and the cluster centroid. Other jobs in the clusters are similar.

Binary coding Type

192:192:192:192:192:192:196:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 job

192:192:192:192:192:192:192:192:192:192:192:454:230:192:192:192:192:192:192:192:192:192:192:192 centroid

(a) BIN ALL

Binary coding Type

192:192:192:192:192:192:196:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 job

511:238:192:510:192:224:228:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 centroid

(b) BIN AGGZEROS

Hexadecimal coding (partially)

read calls Type

3:3:8:8:8:5:6:8 job

8:8:8:8:8:2:6:8centroid

(c) HEX LEV

(around 50% of job phenotypes) and keeps its generalization capabilities (the
number of clusters with more than 1 job is considerable). For the BIN algorithms
we chose a SIM of 0.7, and the HEX algorithm SIM of 0.9.

In the following, we investigate the cluster that contains this job for the
different algorithms. The number of jobs found in the cluster are listed in Table 2.
It shows that all algorithms find relatively small clusters. In Table 3, we can see
that the jobs are relatively close to the cluster centroid. All other jobs in the
clusters appear to be subjectively similar (not shown in the table). Thus, we
conclude the approach generally works.

8 Summary

In this article, we applied clustering strategies to job-profile and time series of IO
metrics. We conducted a short quantitative analysis to understand generalization

204 E. Betke and J. Kunkel

capabilities of the algorithms and to select the parameters and conducted a
qualitative analysis, i.e., manual inspection of the data to assess the quality of
the approach.

After a series of experiments with general purpose algorithms, the outcome
didn’t meet our expectations. The investigation of resulting clusters shows that
they are noisy. One problem might be the devised approach to use a clustering
and a classification algorithm. It is likely that the reason is that the temporal
behavior is compressed too much into the job-profile neglecting the important
information.

On binary coding, the Levenshtein-based algorithms produce better clusters,
especially with zero aggregation enabled. But the results are not sufficient for
short jobs. Codings like [0:6:0:0] and [0:388:174:0] have the same Levenshtein
distance to the centroid [0:388:0:0] but have different IO behavior.

Using the hexadecimal coding instead of binary coding leads to qualitative
better results with the price that a higher similarity must be chosen. Presumably
one reason is that hexadecimal coding sequences are nine times longer, which
provides better conditions for the Levenshtein similarity.

Despite the suboptimal results of the algorithms when inspecting clusters, the
final experiment actually shows that all the developed algorithms can actually
be applied to identify jobs similar to a given job. The definition of similarity
differs between these algorithms and may make them applicable to specific use
cases. More research is needed to understand the needs of users and data center
staff, and to define the appropriate similarity levels. We believe that the temporal
pattern plays a key role in the definition of similarity as our comparison shows. In
the future, we intend to refine the algorithms to account for different definitions
of similarity.

References

1. Betke, E., Kunkel, J.: Benefit of DDN’s IME-FUSE for I/O intensive HPC appli-
cations. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) High Performance
Computing, pp. 131–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-02465-9 9

2. Carns, P.: Darshan. In: High Performance Parallel I/O. Computational Science
Series, pp. 309–315. Chapman & Hall/CRC (2015)

3. Carns, P., et al.: Understanding and improving computational science storage
access through continuous characterization. ACM Trans. Storage (TOS) 7(3), 8
(2011)

4. Eugen Betke, J.K.: Semi-automatic assessment of I/O behavior by inspecting the
individual client-node timelines – an explorative study on 106 jobs. In: 2014 43rd
International Conference on Parallel Processing Workshops. ISC Events (2020)

5. Kunkel, J., Betke, E.: Tracking user-perceived I/O slowdown via probing. In: Wei-
land, M., Juckeland, G., Alam, S., Jagode, H. (eds.) High Performance Computing:
ISC High Performance 2019 International Workshops, Frankfurt/Main, Germany,
Revised Selected Papers. LNCS, 20 June 2019, pp. 169–182 Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34356-9 15

https://doi.org/10.1007/978-3-030-02465-9_9
https://doi.org/10.1007/978-3-030-02465-9_9
https://doi.org/10.1007/978-3-030-34356-9_15

The Importance of Temporal Behavior When Classifying Job IO Patterns 205

6. Kunkel, J., et al.: Tools for analyzing parallel I/O. In: Yokota, R., Weiland, M.,
Shalf, J., Alam, S. (eds.) High Performance Computing: ISC High Performance
2018 International Workshops, Frankfurt/Main, Germany, 28 June 2018, Revised
Selected Papers. LNCS, ISC Team, vol. 11203, pp. 49–70. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-02465-9 4

7. Lockwood, G.K., Wright, N.J., Snyder, S., Carns, P., Brown, G., Harms, K.:
TOKIO on ClusterStor: connecting standard tools to enable holistic I/O per-
formance analysis. Technical report, Lawrence Berkeley National Lab. (LBNL),
Berkeley, CA, United States (2018)

8. Nguyen, N., Chen, Y., Hass, J., Dang, T.: HiperJobViz: Visualizing
Resource Allocations in HPCC via Multivariate Health-Status Data (2019).
https://texastechuniversity-my.sharepoint.com/:p:/g/personal/tommy dang
ttu edu/EewObo2LMz5Gt1tLBTg1wFYBoMGrvVZ3wLZIRqVGY 50EA?
rtime=xSv7VWIt2Eg

9. Sivalingam, K., Richardson, H., Tate, A., Lafferty, M.: LASSi: metric based I/O
analytics for HPC. CoRR abs/1906.03884 (2019). http://arxiv.org/abs/1906.03884

10. Wang, T., Oral, S., Wang, Y., Settlemyer, B., Atchley, S., Yu, W.: BurstMem:
a high-performance burst buffer system for scientific applications. In: 2014 IEEE
International Conference on Big Data (Big Data), pp. 71–79 (2014)

https://doi.org/10.1007/978-3-030-02465-9_4
https://texastechuniversity-my.sharepoint.com/:p:/g/personal/tommy_dang_ttu_edu/EewObo2LMz5Gt1tLBTg1wFYBoMGrvVZ3wLZIRqVGY_50EA?rtime=xSv7VWIt2Eg
https://texastechuniversity-my.sharepoint.com/:p:/g/personal/tommy_dang_ttu_edu/EewObo2LMz5Gt1tLBTg1wFYBoMGrvVZ3wLZIRqVGY_50EA?rtime=xSv7VWIt2Eg
https://texastechuniversity-my.sharepoint.com/:p:/g/personal/tommy_dang_ttu_edu/EewObo2LMz5Gt1tLBTg1wFYBoMGrvVZ3wLZIRqVGY_50EA?rtime=xSv7VWIt2Eg
http://arxiv.org/abs/1906.03884

1st Workshop “Machine Learning
on HPC Systems” (MLHPCS)

Preface on the 1st Workshop “Machine
Learning on HPC Systems” (MLHPCS)

Janis Keuper1,6, Juan J. Durillo2, Dennis Hoppe3, Jenia Jitsev4

and Sunna Torge5

1 IMLA, Offenburg University
2 LRZ, Munich

3 HLRS, Stuttgart
4 JSC, Jülich

5 ZIH, Dresden
6 Fraunhofer ITWM, Kaiseslautern

1 Workshop Description

Over the last few years, Machine Learning (and in particular Deep Learning) (ML/DL)
has become an important research topic in the High Performance Computing
(HPC) community. Bringing new users and data intensive applications on HPC sys-
tems, ML/DL is increasingly affecting the design and operation of compute infras-
tructures. On the other hand, the ML/DL community is just getting started to utilize the
performance of HPC, leaving many opportunities for better parallelization and scala-
bility. The intent of this workshop is to bring together researchers and practitioners to
discuss three key topics in the context of High Performance Computing and Machine
Learning/Deep Learning: parallelization and scaling of ML/DL algorithms, ML/DL
applications on HPC systems, and HPC systems design and optimization for ML/DL
workloads.

1.1 Scope

The aim of the workshop is to provide a platform for technical discussions and the
presentation of work in progress, as well as, unsolved problems, which is comple-
mentary to the “Machine Learning Day” in the main conference program.

– Unsolved problems in ML/DL on HPC systems
– Scalable ML/DL algorithms
– Parallelization techniques
– Libraries for ML/DL

– Tools + workflows for ML/DL on HPC systems
– Optimized HPC systems design and setup for efficient ML/DL
– ML/DL applications on HPC Systems

1.2 Recorded Talks

Video recordings of all MLHPCS talks are available at: www.mlhpcs.org.

Preface on the 1st Workshop “Machine Learning on HPC Systems” (MLHPCS) 209

https://www.mlhpcs.org

GOPHER, an HPC Framework for Large
Scale Graph Exploration and Inference

Marc Josep-Fabregó1, Xavier Teruel1(B), Victor Gimenez-Abalos1,
Davide Cirillo1, Dario Garcia-Gasulla1, Sergio Alvarez-Napagao1,

Marta Garćıa-Gasulla1, Eduard Ayguadé1, and Alfonso Valencia1,2

1 Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29,
08034 Barcelona, Spain

{marc.josep,xavier.teruel,victor.gimenez,davide.cirillo,dario.garcia,
sergio.alvarez,marta.garcia,eduard.ayguade,alfonso.valencia}@bsc.es

2 ICREA, Pg. Llúıs Companys 23, 08010 Barcelona, Spain

Abstract. Biological ontologies, such as the Human Phenotype Ontol-
ogy (HPO) and the Gene Ontology (GO), are extensively used in biomed-
ical research to investigate the complex relationship that exists between
the phenome and the genome. The interpretation of the encoded infor-
mation requires methods that efficiently interoperate between multi-
ple ontologies providing molecular details of disease-related features.
To this aim, we present GenOtype PHenotype ExplOrer (GOPHER),
a framework to infer associations between HPO and GO terms harness-
ing machine learning and large-scale parallelism and scalability in High-
Performance Computing. The method enables to map genotypic features
to phenotypic features thus providing a valid tool for bridging functional
and pathological annotations. GOPHER can improve the interpretation
of molecular processes involved in pathological conditions, displaying a
vast range of applications in biomedicine.

Keywords: Biological ontologies · Genomics · ML · HPC · Graph
exploration

1 Introduction

Understanding the complex processes taking place in a cell or disease requires
powerful computational frameworks, able to effectively provide meaningful inter-
pretations of large volumes of high-throughput data and clinical information [6].
In the grand challenge of biomedical data integration and interpretation, biolog-
ical ontologies are recognized as essential tools [11]. An ontology is a domain-
specific knowledge formalization, based on sets of entities and relations [16].
Two of the most popular biological ontologies are the Human Phenotype Ontol-
ogy (HPO) [12], describing phenome abnormalities, and the Gene Ontology
(GO) [20], describing genome activities.

The integration of multiple ontologies, i.e., ontology mapping or alignment,
is posing great challenges to Artificial Intelligence (AI) [5]. Despite substantial
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 211–222, 2020.
https://doi.org/10.1007/978-3-030-59851-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_13

212 M. Josep-Fabregó et al.

efforts have been put on the integration of ontology-based biological informa-
tion [17], computationally tractable approaches exploiting the interconnectivity
between multiple large-scale ontological graphs still needs substantial investiga-
tion. To this aim, it is crucial to design HPC solutions and novel parallel algo-
rithms that support fine-grained parallelism, while overcoming memory costs.

We develop and evaluate GOPHER, a system for the efficient traversing and
exhaustive path enumeration in interconnected biological ontologies, enabled
by the large-scale parallelism and scalability of HPC. In addition to efficient
graph exploration functionalities, GOPHER harnesses machine learning to infer
a precise mapping between given ontologies, allowing knowledge processing and
discovery beyond limited cross-references. We applied GOPHER to study asso-
ciations between disease-related phenotypic features and distinct molecular pro-
cesses in humans, as well as in other model organisms (e.g., mouse and fruit fly).
The approach exploits a very simple and yet very strong principle of biologi-
cal ontologies: Preferential attachment, also known as rich get richer. The huge
accuracy obtained in our experiments illustrates the utility of such property.

2 Related Work and Context

Biological ontologies are widely used. For instance, the functional interpretation
of sets of genes is commonly achieved through statistical enrichments of onto-
logical annotations, such as GO terms [15]. Given the pervasive application of
biological ontologies in the biomedical area, community efforts like the Open
Biomedical and Biological Ontologies (OBO) Foundry [18] have been created to
disseminate best practices and curated corpora of ontologies.

A pivotal application of biological ontologies is to study the relationships
between phenotypic and genotypic characteristics [9,22]. While the genome refers
to the full set of genetic material, the phenome is defined as the totality of all
traits expressed by an organism [1]. Finding associations between the phenome
and genome is of utmost priority in biomedicine as it could lead to the identifi-
cation of the molecular drivers underlying human diseases.

Although genome-wide association studies (GWAS) have been carried out
to dissect phenome-genome associations [19], biological complexity [3] and lack
of consensus on pathogenicity and susceptibility [4] entail great limitations. By
querying on annotated datasets to infer novel associations, the grand challenge of
characterizing phenome-genome relationships would greatly benefit from the fine
mapping of ontological terms that tools such as GOPHER are able to generate.

Along the years, Artificial Intelligence (AI) approaches have enabled to model
the behavior of a given system or agent. Recently, data oriented modeling solu-
tions have been gaining popularity and skill, thanks to the increasing digitaliza-
tion of data. Nowadays, its increasingly frequent to see how simple models and
a lot of data trump more elaborate models based on less data [10]. Furthermore,
when working with biological data, complex and detailed modeling solutions
can be plain unfeasible. For this reason, in this work we chose to produce a
very simple modeling solution which is based on the most basic aspects of inter-
action, empowered by a network structure thoroughly refined by experts along

GOPHER 213

years. This is made possible by the power, scalability and parallelism provided
by High-Performance Computing (HPC). A series of popular graph processing
frameworks already exist (e.g., igraph, networkX), however, since our task is
highly specific, we choose to implement an ad-hoc solution which can be thor-
oughly optimized.

HPC systems allow to process data and run complex computations at a high
degree of productivity (in terms of runtime speed, memory usage, or allowed stor-
age). These HPC solutions are commonly based on supercomputers, containing
thousands of compute nodes (e.g., processors) working together to complete one
single task (i.e., parallel processing).

In order to manage such a complex scenario exist a vast number of tools
that ease the use of HPC systems by abstracting the user from the underlying
architecture: the Message Passing Interface (MPI) [13] is the most used parallel
programming model in distributed systems (where memory is not shared, and
thus the data must be explicitly sent by messages); the Open Multi-Processing
(OpenMP) [14] is the standard de facto parallel programming model for shared
memory environments (where the communication is done implicitly via the same
Memory Address Space); and/or the OpenMP SuperScalar (OmpSs) [7], a task-
based parallel programming model, considered as a forerunner for OpenMP (its
ideas have been transferred into the OpenMP standard on several occasions).

3 GOPHER: Analysis, Design, and Implementation

Our goal is to predict when a pair of ontology terms, henceforth referred to as
<genotype, phenotype>, could be directly associated through an intermediate
gene. We build a model to represent direct association, and another to represent
the lack of direct association. Given both models we can measure the probability
with which a new pair belongs to either one of those. To build these models we use
examples from the ontologies. Models are designed to strive for simplicity, prior-
itizing volume over complexity. To that end, we estimate the distribution of dis-
tinct paths (of a given maximum length) that connect <genotype, phenotype>
pairs for both sets. We hypothesize that the type of path (the ordered sequence
of vertex type traversed) may contribute to an accurate modeling.

For simplicity, we assume that the frequency of type of path follows a Gaus-
sian distribution, which has a mean and standard deviation that can be estimated
empirically. We note that this assumption is taken due to the unimodal distri-
bution empirically observed, and we use the pervasive Gaussian to be able to
perform inference. Therefore, given a <type of path, number of paths>, we can
compute the probability of that number of paths being generated by each of the
two corresponding gaussians (one for each of the two sets) using Eq. 1.

P (c|μ, σ) =
1

σ
√

2π
e−(x−μ)2/2σ2

(1)

By making the quotient of these two probabilities we obtain the odds of each
path type. We model the odds of connection of a new pair as the product of

214 M. Josep-Fabregó et al.

each path-specific odds, for a finite number of path types (i.e., all paths up to a
maximum length) as seen in Eq. 2.

Odds(connected|Counts) =
∏

pt∈pathtypes

P (Count(pt)|μcon(pt), σcon(pt))
P (Count(pt)|μdiscon(pt), σdiscon(pt))

(2)

3.1 Analysis of Requirements

Modelling the association between <genotype,phenotype> pairs is subject to
scientific investigation. It is desirable that both the design and the implemen-
tation of the system is highly programmable. Besides programmability, we also
pursue a modular design to enable possible extensions of the system components.

GOPHER offers an efficient solution to modelling an embarrasingly parallel
problem. Indeed, building the model is achieved by sampling pairs of directly
associated (or not) pairs and finding all possible paths of a maximum length
taking from one element of the pair to the other. Meanwhile, the total number
of possible pairs to sample from is huge, which calls for a parallel approach.

3.2 Design and Implementation

Graph Topology. We create a comprehensive graph based on the relation-
ships between phenotypes, genotypes, and genes. Figure 1 shows an example of
this graph’s structure. Ontology relations between phenotypes (blue nodes) and
genotypes (green nodes) are shown as pointed arrows, and association to genes
(red nodes) as dashed lines.

Fig. 1. Example of the graph’s structure. (Color figure online)

GOPHER 215

We define a type of path as the sequence of steps between two nodes in the
graph, according to the nature of each one. We label phenotypes as ‘p’, geno-
types as ‘g’ and genes as ‘G’. Then, a path of type ppGg starts on a phenotype
(p), connects to another phenotype (p) (either its parent or its child), which is
associated to a gene (G), which in its turn is finally associated to a genotype (g).
We also define as a “directly associated pair” a pair of phenotype and genotype
where there exists at least one path of type pGg.

Data Structures. An element is the basic component of the graph, and it can
either be a phenotype, a genotype or a gene. In terms of implementation and
of element structure, there is no difference between phenotypes, genotypes, and
genes. As depicted in Fig. 2a, an element has the following fields:

(a) Structure of an element. (b) Map and vector structures.

Fig. 2. Ontology and pool structures used to represent a GOPHER graph.

– Id: The identifier is an integer defined by the input files. Not all sequential
integer values need to be defined (i.e., phenotype 4 may exist without the
need of the existence of phenotype 3).

– Index: The index is an integer defined by the application. The index can
take values from zero up to the total number of nodes minus one (no gaps,
no duplications within each ontology).

– Children: Vector of pointers to all the children of the element. If the element
is a leaf or a gene, this vector will be empty.

– Parents: Vector of pointers to all the parents of the element. If the element
is a root or a gene, this vector will be empty.

– Neighbours: According to the element type, these vectors can have two
differents uses:

• If the element is a phenotype or genotype, it will have a single vector
containing pointers to its associated genes. It may be empty if the element
has no associations.

216 M. Josep-Fabregó et al.

• If the element is a gene, it will have two vectors, one containing pointers
to its phenotypes associations, and another one pointing the its genotypes
associations. Vectors may be empty, if the gene has no associations to one
of the two ontologies.

Each ontology and the gene pool are defined by two different types of struc-
tures (see Fig. 2b). First, the Map structure allows to access any element of the
graph providing its Id as the key value. Second, the Vector structure allows to
access any element of the graph providing its Index as a key value (i.e., which
actually matches with its position in the vector)1.

Algorithms. GOPHER’s core algorithm is a recursive exploring function, which
searches for all existing paths between a given pair of elements. Using this core
algorithm, we centered on two different functionalities:

• Number of paths for each path type: for each phenotype-genotype pair,
we search for the number of existing paths following each of the possible path
type patterns up to a given maximum length (e.g., 5).

• Average number of paths of a given path type: for each phenotype-
genotype pair, we search for the number of existing paths following the pattern
of a given path type. The obtained data is then aggregated in order to produce
the average and the standard deviation.

Due to the high computational cost of these functions, we implemented the
option to only explore a random part of those pairs.

MPI Parallelization. To avoid unneeded MPI communication between pro-
cesses, there is no graph data distribution; all processes read the input files an
populate a whole graph each. Our first MPI parallelization approach consists of
equally distribute one of the two ontologies (e.g., phenotypes) between the pro-
cesses, and each process explore the pairs starting from its assigned elements.

When finding the number of paths for each path type, no additional commu-
nication is needed (see Algorithm 1). Instead, when we want the average number
of paths of a certain path’s type and its standard deviation, we need to share
the results between processes to calculate the average values after all processes
have finished its assigned iterations. Algorithm 2 describes this functionality.
We can see that there are two communication phases. The first one adds up
the obtained number of paths and pairs from all processes, so each process can
calculate the global average number of paths per pair. When all processes have
the average value, each one calculates its local standard deviation. During the
second communication phase, the local standard deviations values are reduced
at the first process, which afterward calculates the global standard deviation.

This first approach of distributing phenotypes among MPI processes pro-
duces a huge load imbalance between processes. We tracked the origin from this
1 Vectors are parallel-friendly structures that allow to easily split the elements among

different compute elements.

GOPHER 217

Algorithm 1. MPI parallelization without communication
1: chSize ← Ontology 1 size / num Ranks
2: (start, end) ← (my Rank ∗ chSize,my Rank ∗ chSize + chSize)
3: for i ← start, end do
4: for j ← 0, Ontology 2 size do
5: for k ← 0, num path types do
6: Search Paths(Ontology 1(i), Ontology 2(j), path type(k))

Algorithm 2. MPI parallelization with communication
1: chSize ← Ontology 1 size / num Ranks
2: (start, end) ← (my Rank ∗ chSize,my Rank ∗ chSize + chSize)
3: (nPaths, nPairs) ← (0, 0)
4: for i ← start, end do
5: for j ← 0, Ontology 2 size do
6: nPaths ← nPaths+ Search Paths(Ontology 1(i), Ontology 2(j), path type)
7: nPairs ← nPairs + 1

8: MPI AllReduce (nPaths, nPairs)
9: (average, st dev) ← (nPaths/nPairs, Calculate Local St Dev)

10: MPI Reduce (st dev)
11: if my Rank = 0 then
12: st dev ← Calculate Overall St Dev

imbalance down to the number of direct connections per element. As can be
seen in Fig. 3, there is a correlation between the average number of first-degree
connections the elements assigned to a processor have and the time it takes to
explore the paths starting from these elements.

To improve the load balance, we change the work distribution policy. As
described in Algorithm 3, the new approach distributes the elements from the
starting ontology among processes based on the number of the first-degree con-
nections. First, we calculate the total number of connections, and then we dis-
tribute the phenotypes between the MPI processes trying to keep this number
balanced among processes. In Sect. 4 we will compare these two versions.

Algorithm 3. MPI parallelization with new work distribution
1: total work ← 0
2: for i ← 0, Ontology 1 size do
3: total work ← total work + connections(i)

4: chSize ← total work / numRanks
5: (start, end) ← (begin(my Rank, chSize), end(my Rank, chSize))

218 M. Josep-Fabregó et al.

Fig. 3. Correlation between the average number of connections per element and the
useful execution time per thread ID.

OpenMP/OmpSs Parallelization. A second level of parallelism based in
shared memory has been implemented to palliate even more the imbalance
problem previously described. OpenMP and other parallel programming models
based on shared memory are inherently easier to load balance, as the threads
share memory is easy to redistribute work among them without data exchange.

In our case we use OmpSs, as it offers the same benefits as OpenMP but it
simplifies the use of task reductions and, in addition, it has better interoperability
with respect to future techniques we also want to analyze in the future (see
Sect. 5). Our approach is to create a task per path exploration function call.

Algorithm 4. OmpSs parallelization with reduction
1: (nPaths, nPairs) ← (0, 0)
2: for i ← start, end do
3: for j ← 0, Ontology 2 size do
4: # pragma omp task reduction(+, nPaths)
5: nPaths ← nPaths+ Search Paths(Ontology 1(i), Ontology 2(j), path type)
6: nPairs ← nPairs + 1

7: # pragma omp taskwait / barrier
8: MPI All Reduce (num paths, num pairs)
9: (average, st dev) ← (nPaths/nPairs, 0)

10: # pragma omp parallel for reduction(+, st dev)
11: for i ← 0, start − end do
12: st dev ← st dev + (nPaths(i) − average)2

13: MPI Reduce (st dev)

In addition, when we calculate the average number of paths of a certain type,
we need to perform a local reduction on the number of found paths. In this case,
we also parallelize the computation of the standard deviation. This approach
can be seen in Algorithm 4.

GOPHER 219

4 Experimental Results

We obtained all the results on the MareNostrum IV system located at the
Barcelona Supercomputing Center. Each node contains two Intel Xeon Plat-
inum 8160, each one with 24 processors running at 2.1 GHz and 33 MB L3 Cache.
Memory is organized in two NUMA sockets (i.e., one socket per processor), with
a total amount of 192GB per socket (high-mem nodes).

For software, we used: GNU Compilers Collection (gcc) version 7.2.0, Mer-
curium source-to-source compiler (mcxx) version 2.3.0, Nanos++ Runtime
Library version 0.16a, and the OpenMPI Message Passage Interface version 3.1.1.

4.1 Evaluation of Model Results

As introduced in Sect. 3.2, we estimate the parameters of the gaussians for
each path type, so that we can perform inference on unseen pairs by using the
odds ratio. To validate we use the Receiver Operating Characteristic (ROC) and
Precision-Recall (PR) curves, which illustrate overall performance. These curves
are typically evaluated through the area-under-the-curve (AUC). To validate the
outcomes of GOPHER, we evaluate under the following conditions:

– Ontologies: GO and HPO, only human, version: January 2019.
– Path size: all types of paths with size 4 or 5 elements.
– Pairs nature: from phenotypes to genotypes.
– Samples: 85,750 randomly sampled pairs.
– Direct edge removal: yes2.

We estimate the components of the gaussians required for classification using
an equal number of connected and disconnected pairs. To validate the classifi-
cation results we extract the ROC and PR curves from the odds ratio obtained
from Eq. 2, from 85,750 pairs of each type (different from the previous ones). The
AUC of both curves is 0.96, significantly close to perfect performance (i.e., 1).
This means that, even though we removed relevant information (the edges con-
necting pairs directly in the graph), our classifier is able to correctly discriminate
connected from disconnected pairs with minimal error. Further experimentation
on older versions of the ontology is not conducted, as these are known to include
a significant amount of noise [21].

4.2 Performance Results

Performance experiments have been executed with the algorithm Number of
paths for each path type (as described in Sect. 3.2). The decision is based upon the
complexity of the function, which clearly shows the imbalance problem between
MPI processes. It is also the most relevant function for our studies. For experi-
menting purposes, we have run this function with the following parameters:
2 Path frequencies for connected pairs are computed without considering the edges

that directly connect the phenotype and genotype to the same gene, to avoid biasing
the model towards already existing pairs.

220 M. Josep-Fabregó et al.

– Ontologies: GO and HPO, only human, version: January 2019.
– Path size: all types of paths up to a size of 5 elements.
– Pairs nature: from phenotypes to genotypes.
– Samples: 100,000 randomly sampled pairs (constant seed).
– Direct edge removal: yes.

The timing results have been collected only from the computation (graph
exploration) phase, since it takes most of the execution time in relevant cases.
Previous phases, such as graph population and work distribution between pro-
cesses, have been ignored.

Both versions of the algorithm have been tested and compared. In the initial
version (labeled as baseline in Fig. 4), we equally distribute elements from the
origin ontology just considering the number of elements (see Algorithms 1 and 2).
While in the second version, labeled as balancing in the same Figure, we try to
equally distribute the number of direct connection from the origin ontology (see
Algorithm 3) rather than just the number of elements.

0

500

1.000

1.500

T
im

e
(s

)

MPI X Threads

Baseline

Balancing

Fig. 4. Overall performance results (including baseline and balancing).

When we execute enabling none of those optimizations, shown as blue bars
in Fig. 4, in all the case we achieve our better results when we running a
MPI-Threads configuration which uses a high number of threads (and, there-
fore, a small number of MPI processes). This is because imbalance problems in
GOPHER reside mostly in its MPI parallelization, not in OmpSs’.

When we apply the MPI balancing technique, depicted in orange bars in
Fig. 4, we achieve an average speedup of 4,24x (comparing balancing with non-
balancing versions) for the cases with 1, 2 and 4 threads for each MPI processes,
and of 3,21x for the case with 24 threads per MPI process (mostly due to the
lower baseline). When executing within a single node (i.e., first pair of columns
in each group: 48 × 1, 24 × 2, etc.) is when it yields a higher impact, showing no
significant differences among the different MPI-Threads configurations. As we
increase the number of nodes, this version produces better results with higher
thread counts, the gap getting wider with each additional node.

GOPHER 221

5 Conclusions and Future Work

In this paper we introduce the GOPHER framework for large graph exploration
and inference, specially designed to run on HPC systems. GOPHER is developed
to investigate the relationship between the phenome and genome using machine
learning techniques to infer these complex relationships. In particular, it enables
to estimate the likelihood that two ontology terms are associated when missing
a direct connection through a co-annotated gene.

The work presented is extremely interdisciplinary, starting at understanding
the biological questions that we want to answer through preferential attachment.
We use a machine learning approach to infer associations between HPO and
GO terms while working on large graphs. Built on top of an HPC oriented
framework, designed to be modular and adaptable to solve a broad range of
questions regarding a variety of ontologies.

We show that our approach obtains an AUC score of 0.96 over 1. We have also
studied the parallel performance of GOPHER detecting that the main issue is
related to the inherent load imbalance produced by the disparity in the number
of connections. To address this issue we present an improved load balancing
implementation, the evaluation shows that the load balancing implementation
can overcome the performance loss due to the different number of connections
and that it can scale up to 32 nodes with a relative speed-up of 4.24x.

This work opens a wide range of future work opportunities, we plan to study
in detail the performance of GOPHER to find optimization opportunities in
different architectures, including the use of a Dynamic Load Balancing library
[2,8]. We will apply GOPHER to actionable use cases, such as anticancer treat-
ment recommendations, as well as other biological ontologies, such as those of
key model organisms (mouse and fruitfly).

Acknowledgements. This work has been developed with the support of the Severo
Ochoa Program (SEV-2015-0493); the Spanish Ministry of Science and Innovation
(TIN2015-65316-P); and the Joint Study Agreement no. W156463 under the IBM/BSC
Deep Learning Center agreement.

References

1. What exactly are genomes: genotypes and phenotypes? And what about phe-
nomes? J. Theor. Biol. 186(1), 55–63 (1997)

2. Garcia, M., Labarta, J., Corbalan, J.: Hints to improve automatic load balancing
with LeWI for hybrid applications. J. Parallel Distrib. Comput. 74(9), 2781–2794
(2014)

3. Embracing complex associations in common traits: Critical considerations for pre-
cision medicine. Trends Genet. 32(8), 470–484 (2016)

4. Garcia, M., Labarta, J., Corbalan, J.: Evaluating the clinical validity of gene-
disease associations: an evidence-based framework developed by the clinical genome
resource. Am. J. Hum. Genet. 100(6), 895–906 (2017)

5. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. ACM Sigmod Rec.
35(3), 34–41 (2006)

222 M. Josep-Fabregó et al.

6. Cirillo, D., Valencia, A.: Big data analytics for personalized medicine. Curr.
Opin. Biotechnol. 58, 161–167 (2019). https://doi.org/10.1016/j.copbio.2019.03.
004. SBN

7. Duran, A., Ayguadé, E., Badia, R.M., et al.: OmpSs: a proposal for program-
ming heterogeneous multi-core architectures. Parallel Process. Lett. 21(2), 173–193
(2011)

8. Garcia-Gasulla, M., Josep-Fabrego, M., Eguzkitza, B., Mantovani, F.: Computa-
tional fluid and particle dynamics simulations for respiratory system: Runtime
optimization on an arm cluster. In: Proceedings of the 47th International Confer-
ence on Parallel Processing Companion, p. 11. ACM (2018)

9. Gkoutos, G.V., Schofield, P.N., Hoehndorf, R.: The anatomy of phenotype ontolo-
gies: principles, properties and applications. Briefings Bioinform. 19(5), 1008–1021
(2017)

10. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE
Intell. Syst. 24(2), 8–12 (2009)

11. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biologi-
cal and biomedical research: a functional perspective. Briefings Bioinform. 16(6),
1069–1080 (2015). https://doi.org/10.1093/bib/bbv011

12. Köhler, S., Carmody, L., Vasilevsky, N., et al.: Expansion of the Human Phenotype
Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47(D1), D1018–
D1027 (2018). https://doi.org/10.1093/nar/gky1105

13. Message Passing Interface Forum: MPI: A message-passing interface standard. Ver-
sion 3.1. University of Tennessee, June 2015

14. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, version 5.0 (2018)

15. Rhee, S.Y., Wood, V., Dolinski, K., Draghici, S.: Use and misuse of the gene
ontology annotations. Nat. Rev. Genet. 9, 509–515 (2008)

16. Schulze-Kremer, S.: Ontologies for molecular biology and bioinformatics. In Silico
Biol. 2, 179–93 (2002)

17. Shefchek, K.A., Harris, N.L., Gargano, M., et al.: The Monarch Initiative in 2019:
an integrative data and analytic platform connecting phenotypes to genotypes
across species. Nucleic Acids Res. 48(D1), D704–D715 (2019). https://doi.org/10.
1093/nar/gkz997

18. Smith, B., Ashburner, M., Rosse, C., Bard, J., et al.: The obo foundry: coordinated
evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25,
1251–5 (2007)

19. Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., Meyre, D.: Benefits and lim-
itations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484 (2019)

20. The Gene Ontology Consortium: The gene ontology resource: 20 years and still
GOing strong. Nucleic Acids Res. 47(D1), D330–D338 (2018)

21. Tomczak, A., et al.: Interpretation of biological experiments changes with evolution
of the gene ontology and its annotations. Sci. Rep. 8(1), 1–10 (2018)

22. Zhang, W., Zhang, H., Yang, H., et al.: Computational resources associating dis-
eases with genotypes, phenotypes and exposures. Briefings Bioinform. 20(6), 2098–
2115 (2018)

https://doi.org/10.1016/j.copbio.2019.03.004
https://doi.org/10.1016/j.copbio.2019.03.004
https://doi.org/10.1093/bib/bbv011
https://doi.org/10.1093/nar/gky1105
https://doi.org/10.1093/nar/gkz997
https://doi.org/10.1093/nar/gkz997

Ensembles of Networks Produced from
Neural Architecture Search

Emily J. Herron1,2 , Steven R. Young1,2(B) , and Thomas E. Potok2

1 Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN, USA
herronej@ornl.gov

2 Computational Data Analytics, Oak Ridge National Laboratory,
Oak Ridge, TN, USA
youngsr@ornl.gov

Abstract. Neural architecture search (NAS) is a popular topic at the
intersection of deep learning and high performance computing. NAS
focuses on optimizing the architecture of neural networks along with
their hyperparameters in order to produce networks with superior per-
formance. Much of the focus has been on how to produce a single best
network to solve a machine learning problem, but as NAS methods pro-
duce many networks that work very well, this affords the opportunity to
ensemble these networks to produce an improved result. Additionally, the
diversity of network structures produced by NAS drives a natural bias
towards diversity of predictions produced by the individual networks.
This results in an improved ensemble over simply creating an ensemble
that contains duplicates of the best network architecture retrained to
have unique weights.

Keywords: Neural architecture search · Ensembles · High
performance computing

1 Introduction

There has been much work in recent years in developing methods for automati-
cally designing neural networks for various challenges and datasets. This work in
neural architecture search (NAS) largely focuses on finding a single best network.
However, throughout this process many networks are created and evaluated.

Notice: This manuscript has been authored in part by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of federally spon-
sored research in accordance with the DOE Public Access Plan (http://energy.gov/
downloads/doe-public-access-plan).

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 223–234, 2020.
https://doi.org/10.1007/978-3-030-59851-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_14&domain=pdf
http://orcid.org/0000-0002-7300-8172
http://orcid.org/0000-0003-0591-4330
http://orcid.org/0000-0001-6687-3435
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-59851-8_14

224 E. J. Herron et al.

This provides the opportunity to find not just a single network that performs
well, but an ensemble of networks that perform well together on problems of
interest.

In this work, we will study the results of ensembling networks produced by
one such NAS method. The NAS method used is Multi-node Evolutionary Neural
Networks for Deep Learning (MENNDL). It produces a variety of deep learning
networks that perform well on the given dataset. However, the single network
that gives optimal performance may still be limited in its knowledge of the
distribution of the data or be over or under-fitted to the training data. Combining
the outputs of multiple deep neural network classifiers has been demonstrated as
an effective approach that offers significantly better prediction accuracies than
that of individual models [11]. Neural network ensembles do so by combining
outputs from a finite number of neural networks with different parameters that
have been trained on the same data. In this report, we create and evaluate the
performances of ensembles of the best performing networks produced by one or
more runs of MENNDL. We consider two approaches to creating ensembles from
this NAS approach and apply these approaches to two traditional image dataset
benchmarks. The key contribution of this work is a study detailing the effects of
ensembling networks from an NAS method including:

1. The effect of using ensembles created from multiple instantiations of the NAS
method.

2. The effect of the size of the ensemble on performance.
3. The resulting performance measured as accuracy on the problem and the

diversity in the ensemble.

2 Background and Related Work

Deep learning is a branch of machine learning based on the concept of learning
features from multiple layers of abstraction [14]. In recent years, deep learning
models have advanced the state of the art of tasks in fields like image recogni-
tion and generation in computer vision; language translation, text classification;
and sentiment analysis in natural language processing; and automatic speech
identification and generation in speech recognition [3]. Scientific research appli-
cations that involve analysis of large volumes of images produced with specialized
instruments in particular also rely on the use of these models.

2.1 Neural Architecture Search

The features of deep learning models are controlled by a set of hyperparameters,
which in the case of a deep convolutional neural network (CNN), include the
number of hidden layers as well as each layer’s number of nodes, activation func-
tion, and kernel size. The learning capacity of deep neural networks is dependent
upon these hyperparameters, which must be selected appropriately to suit a par-
ticular dataset. The process of tailoring a deep neural network architecture to a

Ensembles of Networks Produced from Neural Architecture Search 225

particular data set can be computationally expensive and time consuming even
with the guidance of experts. Furthermore, the features of scientific datasets
often differ from that of traditional datasets. Hence, models optimized for tra-
ditional datasets may not be well-suited to scientific datasets. Hyperparameters
have traditionally been selected either by manual trial and error or grid search.
Manual search often requires expert users and involves selecting a set of hyperpa-
rameters from a region thought to be best-suited to the data [14]. Grid search, in
contrast, finds an optimal solution after evaluating models assembled with each
possible combination of hyperparameters. This method is preferred to manual
search due to its ease of implementation and tendency to provide a better solu-
tion; however, it fails to be efficient in high dimensional feature spaces. If the
selection is carried out this way, it can be a time-intensive task owning both to
the expansive range of hyperparameters and the evaluation time of each possible
network [13,14]. To overcome the drawbacks of these methods, researchers have
suggested other approaches, including evolutionary algorithms.

We use an evolutionary optimization approach to NAS in this work known as
MENNDL [13]. MENNDL is a GPU-based high performance computing frame-
work that uses an asynchronous steady-state evolutionary algorithm to paral-
lelize the large-scale evaluation of networks on individual nodes, with selection,
mutation, and crossover procedures controlled by a master node. This allows
for a more efficient search of a high dimensional hyperparameter space than grid
search, and improves upon random search by considering previous results [13,14].
Networks produced by evolution-based optimization frameworks like MENNDL
have demonstrated increased accuracy and efficiency compared to those sug-
gested by domain experts [12].

2.2 Neural Network Ensembles

Neural network ensembles have been defined as a collection of neural networks
that have been trained on the same task before their results are combined to pro-
duce a model with better generalization ability than individual networks. They
have been applied to a variety of problems including handwritten digit recogni-
tion, scientific image analysis, face recognition, and OCR [15]. The idea behind
the use of neural network ensembles is that the success of a deep learning model
is predicated upon its ability to learn the distribution of a dataset. However,
a single model that performs optimally on a training dataset may be over-fit
to the training set and perform poorly on unseen data. Ensembles of networks
with different parameters and architectures can reduce this risk since different
networks may learn varying aspects of the training set before being combined to
produce the desired outputs. The networks are typically combined by taking an
average or weighted average of the outputs of each model in order to obtain the
final result [2].

Constructing ensembles of networks can be a challenging task. Traditionally,
ensemble techniques have relied on networks with randomly generated topolo-
gies, weights, or topologies that have learned random subsets of the training data.
The intuition behind this that the networks will be diverse in the sense that they

226 E. J. Herron et al.

differ in terms of their errors [7]. It has been shown that the generalization abil-
ity of an ensemble is directly dependent upon its average generalization ability
(e.g. accuracy) and average diversity of individual networks in the model. Pre-
vious work has found that the accuracy of an ensemble model can be improved
by constructing and weighting multiple base learners and that the diversity of
a model can be enhanced by selecting only learners that are less correlated in
terms of training error [2]. Other studies have concluded that the ideal ensem-
ble is one comprised of accurate networks that make errors on different parts
of the input space [7]. A range of solutions have aimed to address the prob-
lem of assembling neural network ensembles that balance fitness and diversity.
One work demonstrated that large ensembles of neural network models can be
summarized with a relatively small number of representative models selected via
clustering based on distances between model outputs. This method was demon-
strated to, in certain cases, yield better prediction accuracies [1]. Elsewhere, a
cluster-based selective algorithm was proposed for building a neural network
ensemble based on the idea that more effective ensembles are comprised of net-
works that are both accurate and diverse. Clustering was used to identify subsets
of similar networks before selecting the most accurate network from each clus-
ter to form an ensemble. Experiments showed that this approach out-performed
traditional ensemble approaches such as Boosting and Bagging [9]. In another
study, an ensemble-based model was implemented by using a genetic algorithm
to calculate the weights of individual networks to create a population with high
overall accuracy. K-means clustering was then used to select an optimal subset of
learners to improve the diversity of the model. This approach was compared to
other ensemble techniques including the traditional average, weighted average,
and kriging models and demonstrated to outperform each [2]. A different study
examined the relationship between the generalization abilities of neural network
ensembles and correlations between networks based on correctly and incorrectly
classified samples selected at random. It was discovered that, in some instances,
selecting a subset of networks was superior to ensembles of all of the individual
networks. The authors proposed an approach that uses a genetic algorithm to
select an optimal set of neural networks given a set of pre-trained networks to
serve as an ensemble. They demonstrated that this method worked well com-
pared to a popular ensemble approach and produced ensembles with high gener-
alizing ability with a relatively low computational cost [15]. Another publication
introduced a method known as Addemup, which leveraged a diverse population
of neural networks generated by a genetic algorithm in creating an ensemble of
neural networks. The genetic algorithm used for this purpose was designed to
meet an objective function that seeks to maximize the accuracy of the networks
while ensuring dissimilarity between members of the population. Ensembles were
evaluated during training following an approach that focuses on more difficult
examples in order to quickly produce good results. The authors demonstrated
that their algorithm yielded significantly better results than uses of the single
best network alone, the Bagging ensemble approach, and a similar algorithm
with an objective function that only considers validation accuracy [7].

Ensembles of Networks Produced from Neural Architecture Search 227

3 Methods

3.1 MENNDL

Multi-node Evolutionary Neural Networks for Deep Learning (MENNDL) is a
software framework that implements an evolutionary algorithm for optimizing
neural network topology and hyperparameters. More specifically, it can opti-
mize the number of layers, layer type for each layer, and the corresponding layer
hyperparameters. MENNDL utilizes an asynchronous approach to evaluate the
networks it generates in parallel in order to maximize utilization of available
computation resources. Evolutionary algorithms mimic the process of natural
selection, treating a population of neural networks as individuals, each with their
own ‘genes’ or set of architectural hyperparameters. The fitnesses of individuals
in each generation are evaluated before a selection protocol chooses a subset of
individuals in the population who will pass their features on to the next genera-
tion of networks, following crossover and mutation. Given proper initialization,
parameterization, and a sufficient number of generations, this framework pro-
duces high-performing networks by focusing on regions of the parameter space
containing individuals selected at each generation, while avoiding searches in the
neighborhoods of less-fit individuals [3,10]. Figure 1 illustrates the architectures
of the top networks produced by eight separate runs of MENNDL against the
CIFAR-10 image dataset. Note that the architectures of the best performing
networks produced by each run are diverse, yet each network performs compa-
rably on the validation sets. The specific details of the evolutionary algorithm
implemented by MENNDL are provided in [13].

3.2 Ensembles of MENNDL Generated Networks

We created ensembles of the top networks across one or more runs of MEN-
NDL against two different datasets: MNIST and CIFAR-10. For each dataset,
MENNDL was run 24 times on 8 nodes for 6 h each. For each of these runs, a
‘keep best’ flag was used in order to automatically select the individual with the
highest fitness at each generation. The validation accuracies and networks from
each run were saved. Following these runs, four categories of ensembles were
assembled from the networks with the highest validation accuracies. The first
three ensembles were of the top 2, 4, and 8 networks and the fourth was of 8
separately trained versions of the top network. The networks were selected from
each run as well as from pools of 2, 4, and 8 randomly selected runs for the same
dataset. Each of the chosen networks were evaluated on the test set, producing
softmax outputs that were averaged to obtain the final predictions. The ensem-
bles were repeated 24 times for each combination of ensemble type and selection
pool size. Each MENNDL run and ensemble experiment was carried out on the
Summit supercomputer at Oak Ridge National Laboratory. The system has a
total of 4608 nodes, each with two IBM POWER9 CPUs and six NVIDIA Volta
GPUs [8]. The diversity of each ensemble was measured by averaging the total
disagreement between the predicted outputs for each sample, following a method

228 E. J. Herron et al.

similar to the one described in [6]. Given two arrays of sample predictions for a
test set of length m, pi and pj , the average disagreement between the two sets
of predictions is calculated using the equation

d(pi, pj) =
1
m

m∑

k=1

ψ(pik, pjk) (1)

where the disagreement between two predictions for a sample at index k is
given by

ψ(pik, pjk) =

{
0, pik = pjk

1, otherwise
(2)

The average disagreements between the predictions of an ensemble of size n
are then averaged:

1
n2

n∑

i=1

n∑

j=1

d(pi, pj) (3)

The result is a value that measures the probability that two networks in the
ensemble will disagree with one another given a sample in the test set.

Fig. 1. Top network architectures produced by eight separate runs of MENNDL against
the CIFAR-10 training dataset. The validation accuracies are listed for each network.

3.3 Datasets and Experiments

A set of experiments were carried out to compare the accuracies of top individ-
ual networks to those of four different ensembles of top performing networks.
Three ensembles were created by selecting the top 2, 4, and 8 networks from a

Ensembles of Networks Produced from Neural Architecture Search 229

pool of runs. A fourth ensemble was constructed by combining the outputs of
8 separately trained versions of the top network architecture. The top networks
for each of the 24 MENNDL runs against the dataset were evaluated against
ensembles comprised of networks from 1, 2, 4 or 8 randomly selected MENNDL
runs. The top networks and ensembles were selected and evaluated 24 times for
per configuration.

The CIFAR-10 [4] and MNIST [5] image datasets were used in these experi-
ments. The CIFAR-10 dataset consists of 60,000 32 by 32 multicolor images, each
belonging to one of 10 classes. It is divided into a training set of size 50,000 and
test set of size 10,000. The MNIST dataset consists of training and test sets of
60,000 and 10,000 28 by 28 grayscale images of handwritten digits ranging from
0 to 9. Upon initializing each run of MENNDL, the CIFAR-10 samples were nor-
malized with the mean and standard deviation transforms (0.4914 0.4822 0.4465)
and (0.2023 0.1994 0.2010) and MNIST with (0.1307) and (0.3081). 10% of the sam-
ples in each training set were selected at random and held out as a validation
set. Individual networks were trained with a batch size of 64 on the remain-
ing training samples. Afterward, the networks were evaluated on the validation
set to obtain the fitnesses for selection. The CIFAR-10 and MNIST test sets
were used to obtain the accuracies of each ensemble. No data augmentation or
transformation beyond the simple normalization given above was used in this
work.

4 Results

The means of the total networks, generations, and maximum fitnesses across 24
runs of MENNDL against each dataset are listed in Table 1. We note that the
datasets’ mean total networks and generations per run were similiar. However,
the average maximum fitness was significantly higher with MNIST than with
CIFAR-10. The standard deviation of this statistic was also much lower with
the MNIST than CIFAR-10.

The mean test set accuracies for each ensemble and pool size configuration
are listed in Tables 2 and 3 and plotted in Fig. 2. The ensemble accuracies were
generally higher when ensembles were composed of more of the top networks.
This trend was consistent in the case of both when going from the top individual
network to the ensemble of the top 8 networks. Creating an ensemble of only
the top two networks offered accuracy improvements over that of individual
networks of as much as 3.0900 ± 0.3698% on CIFAR-10 and 0.1821 ± 0.0432% on
MNIST. This finding is consistent with our expectations and demonstrates that
creating ensembles of the top two or more MENNDL runs is an effective means of
improving upon the generalizability of the single best-performing network across
one or more runs.

230 E. J. Herron et al.

The CIFAR-10 ensembles also tended to achieve higher overall test set accu-
racies when larger pools of runs were used. However, this trend was not the case
with the MNIST ensembles. This is likely because the average best individual
network fitnesses of the MENNDL runs against the MNIST dataset had consid-
erably lower standard deviations than that of the runs against the CIFAR-10
dataset. In other words, the top network accuracies from the CIFAR-10 dataset
varied more than those from MNIST. Hence, selecting the top overall networks
from larger pools of MENNDL runs against this dataset would more likely result
in top networks with higher generalization ability than top networks chosen from
a smaller pool or single run. Additionally, as the misclassification rate was much
smaller for the best MNIST networks, there is little room to add functionally
diverse networks to the ensemble while still maintaining high classification rates.

The mean accuracies and diversities of ensembles of the top 8 networks and
the top network trained 8 separate times are listed in Tables 4 and 5. These
results reveal that ensembles of the top 8 networks yielded diversities that were
consistently higher than the ensembles of 8 separately trained versions of the top
network. The ensemble diversities’ tendency to decrease as larger pools of runs
were used was likely an artifact of the larger pools of runs’ increased likelihood of
having access to top networks with better generalizability, resulting in outputs
that were less likely to differ from one another.

Table 1. CIFAR-10 and MNIST mean total networks, generations, and fitness of best
network across 24 runs of MENNDL.

Statistic Dataset

CIFAR-10 MNIST

Total networks 607.63± 86.35 589.63± 73.71

Generations 13.54± 1.76 13.08± 1.61

Best network fitness 78.47± 1.26 99.33± 0.10

Table 2. MNIST mean top network and ensemble test set accuracies for run pool sizes
of 1, 2, 4, and 8. Note that the ensembles of the top 8 networks from run pool sizes of
2 and 4 achieved the highest mean accuracies out of all configurations.

MENNDL

runs

Ensemble method

Top network Top 2 networks Top 4 networks Top 8 networks Top network 8x

1 99.4067± 0.1225 99.2471± 0.1225 99.4929± 0.0658 99.4929± 0.0624 99.4092± 0.1226

2 99.2554± 0.1129 99.4375± 0.0697 99.4742± 0.0815 99.5487± 0.0550 99.4471± 0.0897

4 99.2858± 0.0953 99.3954± 0.0816 99.5029± 0.0443 99.5125± 0.0673 99.4629± 0.0666

8 99.2629± 0.1154 99.4117± 0.0860 99.4646± 0.0587 99.5229± 0.0501 99.4038± 0.0933

Ensembles of Networks Produced from Neural Architecture Search 231

Table 3. CIFAR-10 mean top network and ensemble test set accuracies for run pool
sizes of 1, 2, 4, and 8. Note that the ensemble of the top 8 networks from a run pool
size of 8 achieved the highest mean accuracy out of all configurations.

MENNDL

runs

Ensemble method

Top network Top 2 networks Top 4 networks Top 8 networks Top network 8x

1 77.9025± 1.5848 80.9925± 1.2150 82.5629± 1.1345 83.0067± 0.9954 82.7583± 1.5473

2 78.3483± 1.1599 80.8808± 1.6867 83.0500± 0.8213 83.5075± 0.7859 83.4538± 1.2226

4 79.9271± 1.5532 81.6767± 1.2697 83.5146± 0.8869 83.9796± 0.6361 83.1325± 1.0810

8 79.7904± 1.3920 81.7825± 1.7717 83.6996± 0.7334 84.3708± 0.6521 84.0350± 1.0589

Table 4. MNIST mean diversities and accuracies for ensembles of top 8 and of top
network trained 8 separate times selected from run pools of size 1, 2, 4, and 8.

MENNDL runs Ensemble method

Top 8 networks Top network 8x

Diversity Accuracy Diversity Accuracy

1 0.0077± 0.0007 99.4929± 0.0624 0.0058± 0.0016 99.4092± 0.1226

2 0.0071± 0.0005 99.5487± 0.0550 0.0052± 0.0013 99.4471± 0.0897

4 0.0068± 0.0008 99.5125± 0.0673 0.0057± 0.0014 99.4629± 0.0666

8 0.0065± 0.0007 99.5229± 0.0496 0.0061± 0.0009 99.4038± 0.0933

Table 5. CIFAR-10 mean diversities and accuracies for ensembles of top 8 and of top
network trained 8 separate times selected from run pools of size 1, 2, 4, and 8.

MENNDL runs Ensemble method

Top 8 networks Top network 8x

Diversity Accuracy Diversity Accuracy

1 0.2118± 0.0199 83.0067± 0.9954 0.1798± 0.0200 82.7583± 1.5473

2 0.1984± 0.0146 83.5075± 0.7859 0.1801± 0.0148 83.4538± 1.2226

4 0.1943± 0.0110 83.9796± 0.6361 0.1676± 0.0135 83.1325± 1.0810

8 0.1794± 0.0131 84.3708± 0.6521 0.1594± 0.0118 84.0350± 1.0589

232 E. J. Herron et al.

Fig. 2. MNIST and CIFAR-10 MENNDL run pool size vs. mean accuracy for the top
network, ensembles of the top 2, 4, and 8 networks, and an ensemble of 8 separately
trained versions of the top network.

5 Conclusion and Future Work

We have presented a study demonstrating that creating ensembles of multiple
different networks from a NAS method produces a better result than simply

Ensembles of Networks Produced from Neural Architecture Search 233

using the best network produced by the NAS, even if we use multiple copies of
that best network retrained several times. This demonstrates that the increased
diversity of network structure in the ensemble produces increased diversity in
predictions of the networks leading to improved ensemble performance. These
results open the door to several promising directions of future work. As we have
demonstrated the diversity of network structures improves performance, we will
look to explicitly leverage this by evolving ensembles of networks within a NAS
approach instead of simply creating an ensemble as a post-process, thus allowing
the NAS to explicitly identify networks that complement each other.

Acknowledgements. This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, Robinson Pino, program manager, under contract number DE-AC05-
00OR22725.

This research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC05-
00OR22725.

References

1. Bakker, B., Heskes, T.: Clustering ensembles of neural network models. Neural
Netw. 16(2), 261–269 (2003)

2. Chatterjee, S., Bandopadhyay, S., Machuca, D.: Ore grade prediction using a
genetic algorithm and clustering based ensemble neural network model. Math.
Geosci. 42(3), 309–326 (2010)

3. Coletti, M., Lunga, D., Berres, A., Sanyal, J., Rose, A.: Ramifications of evolv-
ing misbehaving convolutional neural network kernel and batch sizes. In: 2018
IEEE/ACM Machine Learning in HPC Environments (MLHPC), pp. 106–113
(2018)

4. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)
5. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs.

2 (2010). http://yann.lecun.com/exdb/mnist
6. Melville, P., Mooney, R.J.: Creating diverse ensemble classifiers (2003)
7. Opitz, D.W., Shavlik, J.W.: Actively searching for an effective neural network

ensemble. Connection Sci. 8(3–4), 337–354 (1996)
8. Patton, R.M., et al.: Exascale deep learning to accelerate cancer research. In: 2019

IEEE International Conference on Big Data (Big Data), pp. 1488–1496 (2019)
9. Qiang, F., Shang-xu, H., Sheng-ying, Z.: Clustering-based selective neural network

ensemble. J. Zhejiang Univ.-Sci A 6(5), 387–392 (2005). https://doi.org/10.1631/
jzus.2005.A0387

10. Real, E., et al.: Large-scale evolution of image classifiers (2017)
11. Sharkey, A.J.: Combining Artificial Neural Nets: Ensemble and Modular Multi-Net

Systems. Springer, London (2012). https://doi.org/10.1007/978-1-4471-0793-4
12. Young, S.R., et al.: Evolving energy efficient convolutional neural networks. In:

2019 IEEE International Conference on Big Data (Big Data), pp. 4479–4485. IEEE
(2019)

13. Young, S.R., et al.: Evolving deep networks using HPC. In: Proceedings of the
Machine Learning on HPC Environments, pp. 1–7 (2017)

http://yann.lecun.com/exdb/mnist
https://doi.org/10.1631/jzus.2005.A0387
https://doi.org/10.1631/jzus.2005.A0387
https://doi.org/10.1007/978-1-4471-0793-4

234 E. J. Herron et al.

14. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H., Patton, R.M.: Optimizing
deep learning hyper-parameters through an evolutionary algorithm. In: Proceed-
ings of the Workshop on Machine Learning in High-Performance Computing Envi-
ronments, MLHPC 2015. Association for Computing Machinery, New York (2015).
https://doi.org/10.1145/2834892.2834896

15. Zhou, Z.H., Wu, J.X., Jiang, Y., Chen, S.F.: Genetic algorithm based selective neu-
ral network ensemble. In: Proceedings of the 17th International Joint Conference
on Artificial Intelligence, vol. 2, pp. 797–802 (2001)

https://doi.org/10.1145/2834892.2834896

SmartPred: Unsupervised Hard Disk
Failure Detection

Philipp Rombach(B) and Janis Keuper

Institute for Machine Learning and Analytics (IMLA), Offenburg University,
Offenburg, Germany

{rombach,keuper}@imla.ai

Abstract. Due to the rapidly increasing storage consumption world-
wide, as well as the expectation of continuous availability of information,
the complexity of administration in today’s data centers is growing per-
manently. Integrated techniques for monitoring hard disks can increase
the reliability of storage systems. However, these techniques often lack
intelligent data analysis to perform predictive maintenance. To solve this
problem, machine learning algorithms can be used to detect potential
failures in advance and prevent them. In this paper, an unsupervised
model for predicting hard disk failures based on Isolation Forest is pro-
posed. Consequently, a method is presented that can deal with the highly
imbalanced datasets, as the experiment on the Backblaze benchmark
dataset demonstrates.

Keywords: Unsupervised learning · Hard disk drives · Anomaly
detection

1 Introduction

The prediction of the reliability of hard disk drives was born out of the need to
protect stored information on hard disks from data loss. For this purpose, several
hard drive manufacturers have developed a technology that monitors and ana-
lyzes the current state of a hard drive, also known as Self-Monitoring, Analysis
and Reporting Technology (SMART). SMART uses sensors to collect informa-
tion about the state of magnetic hard disks and Solid State Drives (SSDs). From
the collected sensor values, SMART creates an overview of the hard disk’s health
and can indicate a current failure. However, no intelligence analysis is performed
by combining several sensor values. In particular, a predictive analysis of the sen-
sor values would make it possible to detect potential errors or failures in advance.
Such predictive maintenance would make it possible to increase the reliability of
storage systems by replacing hard disks before they fail.

The recorded performance values of SMART cover 62 attributes. Each
attribute has assigned a threshold value based on the experience of the man-
ufacturer. If an attribute exceeds its threshold value, the drive is marked as
faulty [15]. Since it is possible to return the drive to the manufacturer for a
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 235–246, 2020.
https://doi.org/10.1007/978-3-030-59851-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_15

236 P. Rombach and J. Keuper

warranty replacement if the threshold is exceeded, it is reasonable to assume
that manufacturers carefully reduce the false alarm rates of their predictions.
This assumption is backed by the evaluation in [6], which showed that the cur-
rent SMART algorithms implemented in the drives have failure detection rates
ranging from only 3 to 10%.

Hard disk failures can be divided into two different categories. On the one
hand, there are predictable failures that can be detected before a hard disk fails.
On the other hand, there are unpredictable failures. In this case, the sudden
death of the hard disk occurs [20]. Unpredictable failures occur quickly and
suddenly and mean that no prediction can be made at the time of failure. The
SMART attributes remain constant during this type of failure and therefore
show no variance in the recorded values. These failures cannot be detected using
the values logged with SMART. Predictable failures are caused by the worsening
of at least one of the SMART attributes overtime before the hard disk fails. By
monitoring these SMART attributes, predictive failure analysis is possible, and
it can be determined whether the hard disk needs to be replaced. In [11], the
percentage of predictable hard disk failures is given as 60%.

There are already several research papers that deal with the failure detection
of hard disks [3–5,7,12–14,16,18,19], they evaluate the results using a binary
classification and thus predict whether a hard disk will fail. However, differences
in the experimental setups make it challenging to compare the performance of
the models created. This includes the choice of dataset and the choice of metrics
used to evaluate the model.

The objective of this paper is to perform a predictive analysis based on the
SMART values and to divide the results into two categories. These categories
reflect the failure probability of a hard disk over a specified period. The analy-
sis is carried out using an anomaly detection algorithm since faulty hard disks
represent only a tiny minority and can be referred to as anomalies.

In summary, the major contributions in this paper are the following:

– Transfer of anomaly detection techniques to the failure prediction in hard
disk drives.

– By choosing the Isolation Forest algorithm, a model is presented to handle the
highly imbalanced dataset without preprocessing. Therefore no downsampling
or upsampling of the instances is necessary.

– The unsupervised method can be performed on a few samples without the
need to generate a training data set. Thus, there is no significant delay
between data acquisition and prediction.

– The detected anomalies are divided into two categories based on their failure
probability. Depending on the classified category, a replacement process for
the hard disk is proposed.

The structure of this work is divided into four basic sections. Section 2 deals
with the research work done so far and its results. In Sect. 3, the model created
to predict hard disk failures is presented. The results achieved are described
and evaluated in Sect. 4. Furthermore, possible limitations of the dataset are
discussed. The work is rounded off by Sect. 5 with a conclusion.

SmartPred: Unsupervised Hard Disk Failure Detection 237

2 Related Work

This section provides an overview of research work focusing on predicting disk
failure. All studies of investigation take the SMART attributes into account.
The metrics used to evaluate the results are Failure Detection Rate (FDR), False
Alarm Rate (FAR), and the failure rate of hard disks in the dataset. Recall, or in
the context of hard disk failure detection, also called FDR, shows how complete
the results are. FDR is a good metric for unbalanced datasets because it only
refers to the anomalies. In Eq. 1 the calculation of FDR is shown.

FDR =
TP

TP + FN
(1)

False Positive Rate (FPR) is referred to as the FAR value when detecting
hard disk failure. FAR is the ratio of correctly detected normal instances to false
positive anomalies. In anomaly detection, the goal is to keep the FAR value as
low as possible. In Eq. 2 the calculation of FAR is shown.

FAR =
FP

FP + TN
(2)

Hamerly and Elkan [3] use two Bayesian approaches, Naive Bayes Expec-
tation Maximization (NBEM), and naive Bayesian classifier, to create semi-
supervised models. Their data is provided by Quantum Inc. and includes 1927
good drives and nine failed drives. They achieve failure detection rates of 35% to
40% for NBEM and 55% for the naive Bayes classifier at approximately 1% FAR.
Hughes et al. [4] use the Wilcoxon rank-sum test to create predictive models.
Since they observed that most of the SMART attributes are distributed more
non-parametrically, their model has tested 3780 drives, with a failure rate of
0.9%. They achieve a detection rate of 60% with a false alarm rate of 0.5%.
In their later research [7], they used several methods, including rank-sum test-
ing, Support Vector Machine (SVM), and unsupervised clustering. The dataset
was substantially smaller, with a population of 369 drives and a failure rate of
51%. SVM achieved the best results with a FDR of 50.6% and a FAR of 0%. 25
SMART attributes were used to create the SVM model. By additionally using
the change rates of the SMART attributes, Zhu et al. in [19] were able to improve
the SVM model to achieve a FDR of 80% at 0.3% FAR.

Wang et al. [14] proposed a strategy to predict drive anomalies based on
Mahalanobis distance. They used the same dataset as in [4,7] and showed that
the method with prioritized attributes selected by the Failure Modes, Mecha-
nisms and Effects Analysis (FMMEA) performed better than the method with all
attributes. In their subsequent study [13], minimum Redundance Maximum Rel-
evance (mRMR) was used to remove redundant information from the attribute
selected by the FMEA. Using these critical parameters, they built a baseline
Mahalanobis space. This model could detect 68% of the faulty disks with 0%
FAR.

238 P. Rombach and J. Keuper

The research work of Zhu et al. in [19] not only included the improvement
of the SVM model, they furthermore created a second model with Back Prop-
agation Artificial Neural Network (BP ANN). BP ANN aimed to increase the
failure detection rate significantly while keeping the FAR low. The models were
created on a real dataset with 23395 drives, and this dataset has a failure rate
of 1.9%, which is significantly lower than the dataset used in [4,7]. The collected
SMART attributes covered eight weeks and were provided from the Baidu data
center. The BP ANN failure detection rate was 95%, and the FAR was reported
as reasonably low. In another paper by Zhu et al. [5], the Classification and
Regression Trees (CART) algorithm is used to create a model for predicting
hard disk failures. Compared to the BP ANN, the advantages of a CART model
are improved prediction results and better stability and interpretability. On the
Baidu dataset, they achieve a FDR of 95% with a FAR of 0.1%.

The proposed model of Xu et al. [17] used a Recurrent Neural Network (RNN)
to predict hard disk failures and to assess the health of hard disks. The SMART
attributes divided by their timestamp are used as input data. The results from
the model are divided into six levels that reflect the health of a hard disk. The
smaller the level, the higher the risk of hard disk failure. Level 6 means that
there is no limitation on the hard disk, and it is functioning reliably. If the hard
disk is assigned to level 1, it means that the hard disk will fail in less than 72 h.
Several RNN-based models were created, focusing on maximizing the FDR and
minimizing the FAR. As a result, the predicted results were a FDR of 87% with
a very low FAR of 0.004% and a FDR of 97.7% and a FAR of 0.59%.

Shen et al. [12] and Xiao et al. [16] both use the random forest as the under-
lying technology in their research. They also use datasets provided by Backblaze
[1] to train and test their models. In [12], the Random Forest (RF) based model
is improved by additional voting. For this purpose, a sliding window is created
that always trains samples from a hard disk of 30 days, and if the number of bad
samples exceeds a limit, this hard drive is marked as faulty. The model achieves
a FDR of 95% with a FAR of 0.4%. In [16], the focus is on training the model
to handle streaming data and process it on-the-fly. This is also called Online
Random Forest (ORF) [9]. By using ORF, performance is increased, and less
memory is used. However, the ORF model takes up to six months to converge
to offline random forest models’ performance. The FDR on ORF is 98%, with a
FAR of 0.7%.

Anomaly detection is performed by Zhang et al. in [18] using Isolation For-
est. The dataset is again from Backblaze in the second quarter of 2018 and is
trained on several training datasets where the number of failed disks varies from
2% to 10%. The FDR was not specified in the research work, but the accu-
racy is described with up to 95% and an average FAR of 5%. Also, the better
performance in terms of training duration compared to the Random Forest is
highlighted.

The presented research papers are sorted chronologically, starting with the
oldest research [3] from the year 2001 up to the newest paper [18] from the year
2019. Most of the research has been focused on the development of supervised

SmartPred: Unsupervised Hard Disk Failure Detection 239

models, resulting in improved predictive performance over the years as measured
by the FDR and FAR values. However, it must be taken into account that the
used supervised models provide their results in the form of a binary classification,
which cannot reflect the deterioration of a hard disk in reality.

3 The Proposed Method

This section describes the process of creating the Isolation Forest models to pre-
dict hard drive failures, intending to predict a failure probability for all hard
drives, group the drives based on this probability, and identifying the suspect
drives by their serial number. As a first step, exploratory data analysis is per-
formed, and relevant features are selected prior to creating the model and opti-
mize the hyperparameters.

3.1 Dataset

The dataset used to predict disk failure is derived from Backblaze [1]. Backblaze
is a cloud storage provider that enables users to store their backups online.
The company provides data storage for both private and business purposes. All
hard drives used by Backblaze are monitored, and the SMART attributes are
logged daily. The collected SMART data is provided in datasets that are publicly
available and can be used freely.

Since 2013, Backblaze provides its SMART datasets for each quarter. These
are compressed and contain one file for each day, which is stored as structured
data. The number of features has been continuously increased since 2013 and
reached 129 features in 2019, of which the first five features are reserved for
identifying the hard disk.

The date feature contains the day on which the values were recorded. The
serial number feature is used to identify the disk in the dataset. All hard disks
of the same type are combined in the feature model. The storage capacity of the
hard disk is specified in the feature capacity bytes in bytes. The failure feature is
an integer in the value range [0, 1] and contains the value 0 if the disk is healthy
and the value 1 if this is the last recorded sample of the disk before the failure.

The remaining 124 features are used for the SMART attributes, divided into
smart x raw and smart x normalized. The features for the raw values contain
the real values recorded; these are stored as floating-point numbers. In contrast,
for the normalized values, a vendor-specific function has been executed based on
the raw values to store them in a specific value range.

To highlight the deterioration of a hard disk, the list of features is extended.
For this purpose an additional feature smart x raw diff is created for each fea-
ture of smart x raw. These features contain the difference value of a disk to
the previous day. The hard disks must be grouped by their serial numbers and
sorted by date to calculate the difference value. Afterward, for each feature of
smart x raw, the calculation of the difference value to the previous value is per-
formed. Since no difference can be calculated for the first entry in the dataset,
this value is set to 0.

240 P. Rombach and J. Keuper

The Backblaze dataset consists of all in all 136568 hard disks with 40737546
samples for the year 2019 and is, therefore, one of the largest SMART datasets
publicly available. The failure rate and wear and tear of hard disks vary according
to the model and manufacturing process [8,10]. In order to minimize the effects
of the different models, this work concentrates on one specific model. This lim-
itation is negligible as the same methodology can be conducted for other hard
disk models in the same manner. The number of hard disks and the number
of failed disks were used as selection criteria for the model. Thus, the model
ST12000NM0007 from Seagate is taken into account and, for simplification, is
referred to as ST1 in the following. The model ST1 contains a total of 38256
hard disks, of which 1155 hard disks fail over a period of one year. Over this
period, 12721076 samples were recorded.

3.2 Feature Selection

To determine the relevant features for prediction, the correlation coefficient
between all SMART Attributes is calculated concerning the feature failure. The
correlation is a bivariate analysis that measures the strength of the association
between two features and the direction of the relationship.

To select the relevant features for the Isolation Forest, features that show a
positive correlation with the feature failure are filtered. The Table 1 shows all
features with a positive correlation.

Table 1. Descriptive statistics of ST1

5 raw 187 raw 197 raw 5 diff 187 diff 197 diff

mean 27.85 1.1 0.14 0.65 0.03 0.01

std 697.15 201.08 15.52 117.97 40.52 9.09

min 0.0 0.0 0.0 −63368.0 −13.0 −280.0

25% 0.0 0.0 0.0 0.0 0.0 0.0

50% 0.0 0.0 0.0 0.0 0.0 0.0

75% 0.0 0.0 0.0 0.0 0.0 0.0

max 65528.0 65535.0 30960.0 57056.0 65535.0 30944.0

The measurements representing the selected raw features are described below:
Reallocated Sectors Count (SMART 5): is the total number of defective

sectors that have been detected and reallocated.
Reported Uncorrectable Errors (SMART 187): is the number of errors

that could not be recovered with Error Correcting Codes (ECCs).
Current Pending Sector Count (SMART 197): is the number of sectors

waiting to be reassigned to the spare area due to uncorrectable errors in reading
and writing a sector.

SmartPred: Unsupervised Hard Disk Failure Detection 241

3.3 Preprocessing

To determine whether a hard disk will fail, the values in each feature must
have a variance greater than 0 concerning this hard disk. If the disk features
have a constant value of 0, they are among the 40% of disks that fail without
significant SMART attributes [11] and are therefore considered false negative by
the model. This is due to the fact that the values do not differ from healthy
disks and, therefore, cannot be detected as anomalies. For this reason, the failed
disks without variance are removed from the dataset.

An important step to avoid incorrect predictions is to inspect the dataset for
possible inconsistent data and to correct them. This process is also called data
cleaning and is divided into four steps:

1. Check the dataset for possible duplicates, if duplicates exist, remove these
samples from the dataset

2. Search in the dataset for values without content. This can result from incor-
rect data collection and processing. If there are missing values in the dataset,
delete these samples from the dataset.

3. Check for each disk whether the values are complete. This means that for a
working disk, the last sample must match the last day of the dataset, and for
a failed disk, the last sample in the failure feature must contain a value of 1.
If these conditions are not met, all samples from that disk will be removed
from the dataset.

4. For each failed hard disk, check if it has a variance greater than 0 in its
features. If not, the hard disk will be removed from the dataset.

After data cleaning, the dataset ST1 contains 37768 disks with 12614746
samples. Thus 1.28% of the data is removed by the cleanup process. With the
failing disks, 287 disks fail without the required variance in features, leaving 868
disks marked as failed in the dataset, which is 75.2%.

3.4 Setup

In order to be able to group the failure probabilities for all hard disks, two Iso-
lation Forest models are created, which differ in their parameters. The metrics
used to evaluate the Isolation Forest models are also different. For the first Iso-
lation Forest Model IF FDR, the failure detection rate is used as the relevant
metric to detect as many faulty disks as possible. In the second Isolation For-
est Model IF FAR, the false alarm rate and precision are the metrics used to
minimize the number of false positive instances.

The implementation of Isolation Forest in scikit-learn provides several hyper-
parameters that have a decisive influence on the prediction results. The most
essential hyperparameter is the contamination value. This value is critical for
mapping between anomalies and normal instances, as it defines the relationship
between abnormal and normal instances for the dataset.

In Fig. 1 a grid search is performed for the parameter contamination and
evaluated with the metrics FDR and FAR. To achieve a FDR of 100%, the value

242 P. Rombach and J. Keuper

Fig. 1. GridSearch CV for contamina-
tion FDR

Fig. 2. GridSearch CV for contamina-
tion FAR

for contamination must be 0.031, which is 3.1% of the complete dataset. How-
ever, the FAR value must also be considered, which is 3%. Since the FAR value is
calculated from the ratio between the true negative and false positive instances,
the number of false positive instances is too high. A detailed representation of
the FAR value is illustrated in Fig. 2. To achieve a tradeoff between FDR and
FAR, the value for contamination is defined as 0.01 for the model IF FDR.

For the model IF FAR, the main focus is on the false alarm rate and pre-
cision, so that the model only predicts hard disk failures if they have a high
probability of failure. For the model IF FAR the value 0.0002 is set as suitable
for contamination.

Once the parameters for the models are set, the models can be created, and
the prediction for the dataset can be made. This process is described below:

1. The cleaned-up dataset ST1 is loaded, it contains the date of the sample and
the serial number as indices, as well as the six selected features. In addition,
the dataset STF with the feature failure is loaded for later evaluation of the
prediction.

2. The period for which the predictions are to be made is specified.
(a) The dataset ST1 is reduced to the samples of one day.
(b) The Isolation Forest model is created with the parameters, and the pre-

diction for the samples is performed.
(c) The anomaly score is attached to a list together with the serial number

and date.
3. Steps a), b), and c) are repeated for each day in the specified period.
4. The anomaly score and the contamination parameter are used to classify each

sample in the list as an anomaly or normal instance.
5. The predicted values are compared with the true values from STF. If the

failure date of a disk is within one week after prediction, it is considered true
positive.

6. Based on the analysis of the data, the confusion matrix is built, and the values
for FDR, FAR, and precision are calculated.

SmartPred: Unsupervised Hard Disk Failure Detection 243

The different values of contamination and the calculated value of precision in
both models can be used to define the failure probability of the hard disk. The
failure probability is stored in a structured text file together with the prediction
date and the serial number.

4 Experimental Results

In this section, the results of the model are presented and evaluated with different
metrics. Furthermore, a comparison with other common models is carried out.
Finally, gained insights and possible limitations of the dataset are discussed.

Figure 3 shows the results for the Isolation Forest model IF FDR. In this
model, the focus is on detecting the largest possible number of faulty disks with
the lowest possible FAR. The FDR is 84.54%, with a FAR of 0.0073%. Also, the
precision is 44.21%, reflecting the probability of failure of the hard drive over
seven days.

Fig. 3. FDR confusion matrix Fig. 4. Precision confusion matrix

In contrast to the IF FDR model, the IF FAR model was developed with the
focus on keeping the number of false positive instances as low as possible. The
results are shown in Fig. 4. All instances detected as faulty have a probability
of failure of 77.85%, which reflects the precision. Due to the high value of the
failure probability, the FAR is also significantly lower, with a value of 0.0006%.
The FDR is 28.37% and thus far below the value of the IF FDR model.

4.1 Comparative Analysis

Table 2 shows a comparison between different anomaly detection algorithms. On
the dataset ST1, the predictions were additionally performed for the algorithms
One-class SVM and Local Outlier Factor (LOF). One-class SVM and LOF were

244 P. Rombach and J. Keuper

selected because they are among the most widely used algorithms in anomaly
detection and provide good results for imbalanced datasets [2]. The FDR is
higher for both algorithms than for the Isolation Forest, but the FAR is also
markedly higher, which harms precision. Additionally, the computation time,
calculated on the prediction of one day, is a multiple of the Isolation Forest.
Precision is an essential factor for the evaluation of the results, as the probability
of failure in the replacement process serves as the underlying principle. Therefore,
the Isolation Forest, out of these three algorithms investigated, is best suited for
prediction.

Table 2. Comparison of Isolation Forest, One-class SVM and LOF

FDR FAR Precision Computation time

IF FDR 84.54% 0.0073% 44.21% 1.10 s ± 10 ms

IF FAR 28.37% 0.0006% 77.85% 1.10 s ± 10 ms

One-class SVM 95.39% 0.2925% 2.19% 15.9 s ± 780 ms

LOF 96.19% 1.1916% 0.55% 16.0 s ± 671 ms

By combining the two models, a categorization of the results can be carried
out. For this purpose, the predictions are made, and the anomalies are saved in
the form of a serial number and the date. Besides that, each instance is provided
with an additional label. For all instances from the model IF FDR the hard
disk receives the label Warning and Failure for the instances from the IF FAR
Model. The Failure label is weighted higher and replaces an existing label on an
instance.

The replacement program of the marked hard disks depends on the number
of data storage systems as well as the Redundant Array of Independent Disks
(RAID) technology used, since the reliability of a RAID array changes depending
on the RAID level.

The goal is to distribute the hard disks with the label Warning over several
RAID arrays in such a way that in each array, a maximum of one marked hard
disk operates. This means that there are no additional costs for the provision of
a new hard disk, and the reliability of the array is not endangered. If it is not
possible to replace the marked hard disks in the array, they must be replaced
with a new hard disk. The marked hard disks from model IF FAR with the label
Failure are to be regarded as critical due to their high failure probability and
should, therefore, be replaced with a new hard disk.

4.2 Limitations

It was discovered that the features smart 5 raw and smart 187 raw are in a value
range of [0, 65535], which is exactly 2 bytes in size. Thus it can be concluded
that a buffer overflow occurs with these two features, and then the values are

SmartPred: Unsupervised Hard Disk Failure Detection 245

reset to 0. A buffer overflow can lead to a degradation of the prediction, but was
taken into account in the created models and compensated by the additional
features smart 5 raw diff and, smart 187 raw diff.

The logging interval of one day is not optimal because there are disks whose
values deteriorate significantly within one day and fail the same day. Hourly
logging would make it easier to identify these disks, but it would also increase
the dataset’s storage requirements considerably. For 10% of the disks detected
as faulty, only one sample indicates the possible failure. Hourly logging could
increase the number of samples that indicate a failure.

5 Conclusion

In this work, it has been shown that the prediction of faulty disks by techniques
of anomaly detection achieves good results, particularly for models that were
created based on the Isolation Forest. The decision for the algorithm was based
on the highly imbalanced dataset, the comprehensible behavior, and low linear
time complexity of the models. Many machine learning methods cannot han-
dle imbalanced datasets without preprocessing as they tend to overestimate the
majority class. The Isolation Forest does not require preprocessing for an imbal-
anced dataset, so there is no need to downsample or upsample the instances.
Furthermore, the training phase is omitted with the unsupervised approach,
which significantly reduces the time between data acquisition and prediction.

Two models were created with a different focus. The model IF FDR concen-
trates on a high failure detection rate and a low false alarm rate. This model
achieved a FDR of 84.54% with a FAR of 0.0073%. Furthermore, the failure
probability of the predicted failing disks is 44.21%. The second model IF FAR
focused on providing a prediction to find the faulty disks that were very likely
to fail within the next seven days. A failure probability of 77.85% was achieved
for the hard disks marked as faulty. The model IF FAR determines which hard
disks require urgent action by infrastructure administration.

Several aspects can improve the accuracy of the models. For applications
in data centers, it would make sense to include the location of the hard disks
and the corresponding array in the dataset, so that the decision whether a hard
disk should be replaced does not have to be performed manually, and can be
calculated by the model. It was also shown that the prediction is limited to the
SMART attributes alone since 25% to 40% of all hard disks fail without any
variance in the data. To improve the prediction, a combination of system log
files and SMART attributes could be used to perform a hard disk assessment in
the future.

References

1. Backblaze: Hard drive stats (2013–2019). https://www.backblaze.com/b2/hard-
drive-test-data.html. Accessed 16 Apr 2020

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html

246 P. Rombach and J. Keuper

2. Goldstein, M.B.: Anomaly Detection in Large Datasets. Verlag Dr. Hut, Munich
(2014)

3. Hamerly, G., Elkan, C., et al.: Bayesian approaches to failure prediction for disk
drives. In: ICML, vol. 1, pp. 202–209 (2001)

4. Hughes, G.F., Murray, J.F., Kreutz-Delgado, K., Elkan, C.: Improved disk-drive
failure warnings. IEEE Trans. Reliab. 51(3), 350–357 (2002)

5. Li, J., et al.: Hard drive failure prediction using classification and regression trees.
In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pp. 383–394. IEEE (2014)

6. Murray, J.F., Hughes, G.F., Kreutz-Delgado, K.: Hard drive failure prediction using
non-parametric statistical methods. In: Proceedings of ICANN/ICONIP (2003)

7. Murray, J.F., Hughes, G.F., Kreutz-Delgado, K.: Machine learning methods for
predicting failures in hard drives: a multiple-instance application. J. Mach. Learn.
Res. 6(May), 783–816 (2005)

8. Pinheiro, E., Weber, W.D., Barroso, L.A.: Failure trends in a large disk drive
population. In: 5th USENIX Conference on File and Storage Technologies (FAST
2007), San Jose, CA. USENIX Association, February 2007

9. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random
forests. In: 2009 IEEE 12th International Conference on Computer Vision Work-
shops, ICCV Workshops, pp. 1393–1400. IEEE (2009)

10. Schroeder, B., Gibson, G.A.: Understanding disk failure rates: what does an MTTF
of 1,000,000 hours mean to you? ACM Trans. Storage (TOS) 3(3), 8-es (2007)

11. Seagate: Get S.M.A.R.T. for reliability. Technical report, Seagate Technology
Paper (1999)

12. Shen, J., Wan, J., Lim, S.J., Yu, L.: Random-forest-based failure prediction for
hard disk drives. Int. J. Distrib. Sensor Netw. 14(11) (2018)

13. Wang, Y., Ma, E.W., Chow, T.W., Tsui, K.L.: A two-step parametric method for
failure prediction in hard disk drives. IEEE Trans. Industr. Inf. 10(1), 419–430
(2013)

14. Wang, Y., Miao, Q., Ma, E.W., Tsui, K.L., Pecht, M.G.: Online anomaly detection
for hard disk drives based on Mahalanobis distance. IEEE Trans. Reliab. 62(1),
136–145 (2013)

15. Wang, Y., Miao, Q., Pecht, M.: Health monitoring of hard disk drive based on
Mahalanobis distance. In: 2011 Prognostics and System Health Management Con-
ference, pp. 1–8. IEEE (2011)

16. Xiao, J., Xiong, Z., Wu, S., Yi, Y., Jin, H., Hu, K.: Disk failure prediction in data
centers via online learning. In: Proceedings of the 47th International Conference
on Parallel Processing, pp. 1–10 (2018)

17. Xu, C., Wang, G., Liu, X., Guo, D., Liu, T.Y.: Health status assessment and failure
prediction for hard drives with recurrent neural networks. IEEE Trans. Comput.
65(11), 3502–3508 (2016)

18. Zhang, T., Wang, E., Zhang, D.: Predicting failures in hard drivers based on iso-
lation forest algorithm using sliding window. J. Phys. Conf. Ser. 1187(4) (2019)

19. Zhu, B., Wang, G., Liu, X., Hu, D., Lin, S., Ma, J.: Proactive drive failure prediction
for large scale storage systems. In: 2013 IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–5. IEEE (2013)

20. Züfle, M., Krupitzer, C., Erhard, F., Grohmann, J., Kounev, S.: To fail or not to
fail: predicting hard disk drive failure time windows. In: Hermanns, H. (ed.) MMB
2020. LNCS, vol. 12040, pp. 19–36. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-43024-5 2

https://doi.org/10.1007/978-3-030-43024-5_2
https://doi.org/10.1007/978-3-030-43024-5_2

1st International Workshop
on Monitoring and Data
Analytics (MODA20)

1st International Workshop on Monitoring
and Data Analytics (MODA20)

Florina Ciorba1, Nicolas Lachiche2, Aurélien Cavelan1, Daniele Tafani3,
and Utz-Uwe Haus4

1 University of Basel, Switzerland
2 University of Strasbourg, France

3 Leibniz Supercomputing Centre, Germany
4 Cray/HPE EMEA Research Lab, Switzerland

1 Introduction

The Exascale computing race poses significant challenges for the collection and
analysis of the vast amount of data that current Petascale, and future (pre-)Exascale
HPC systems will produce, in terms of increasing complexity of the machines, intru-
siveness and scalability of the adopted monitoring solution, and effective inference and
interpretability driven by the acquired data.

The main scope of the 1st ISC-HPC International Workshop on Monitoring and
Operational Data Analytics (MODA20) is to provide insights into the current state and
trends in monitoring and operational data analytics of HPC systems and data centres,
identify potential gaps, and offer an outlook into the future of MODA at increasingly
large scales together with possible solutions for the upcoming Exascale systems.

MODA is becoming common practice at HPC sites and data centres around the
world. However, each site adopts a different, insular approach, rarely adopted in
production environments and mostly limited to the visualisation of the system and
building infrastructure metrics for system health check purposes. This creates a gap
between the collection of operational data and its meaningful and effective analysis and
exploitation, which prevents the closing of the feedback loop between the monitored
HPC system, its operation, and its end users. Under these premises, the goals of the
MODA20 workshop are:

1. Gather and share knowledge and establish a common ground within the interna-
tional community with respect to best practices in monitoring and operational data
analytics.

2. Discuss future strategies and alternatives for MODA, potentially improving existing
solutions and envisioning a common baseline approach in HPC sites and data
centres.

3. Establish a debate on the usefulness and applicability of Artificial Intelligence and
Machine Learning techniques to the collected operational data for optimising the
operation of production systems through novel systems research methods (e.g., for
practices such as predictive and prescriptive maintenance, runtime optimisation,
optimal resource allocation and scheduling).

The workshop offered a forum for invited presentations, technical contributions,
and discussions on:

• State-of-the-practice methods, tools, techniques in monitoring at various HPC sites.
• Solutions for monitoring and analysis of operational data that work very well on

large- to extreme-scale systems with a large number of users.
• Solutions that have proven limitations in terms of efficiency of operational data

collection in real-time or in terms of the quality of the collected data.
• Opportunities and challenges of using machine learning methods for efficient

monitoring and analysis of operational data.
• Integration of monitoring and analysis practices into production system software

(energy and resource management) and runtime systems (scheduling and resource
allocation).

• Discuss explicit gaps between operational data collection, processing, effective
analysis, highly useful exploitation, and propose new approaches to closing these
gaps for the benefit of improving HPC and data centres planning, operations, and
research.

• Other monitoring and operational data analysis challenges and approaches (data
storage, visualisation, integration into system software, adoption).

2 Workshop Organisation

The workshop organising and program committees consist of academics, researchers at
leading HPC sites and in industry. The workshop is unique to the European HPC arena
being the first to address the topic of monitoring and operational data analytics for
improving HPC operations and research.

Organising Committee

Florina Ciorba University of Basel, Switzerland
Nicolas Lachiche University of Strasbourg, France
Aurélien Cavelan University of Basel, Switzerland
Daniele Tafani Leibniz Supercomputing Centre, Germany
Utz Uwe Haus Cray/HPE EMEA Research Lab, Switzerland

Program Committee

Andrea Bartolini University of Bologna, Italy
Valeria Bartsch Fraunhofer ITWM Kaiserslautern, Germany
Norm Bourassa NERSC LBNL, USA
Jim Brandt Sandia National Labs, USA
Rubén Cabezón sciCORE, University of Basel, Switzerland
Carlo Cavazzoni CINECA, Italy

1st International Workshop on Monitoring and Data Analytics (MODA20) 249

Daniele Cesarini CINECA, Italy
Todd Gamblin LLNL, USA
Victor Holanda CSCS, Switzerland
Thomas Ilsche Technische Universität Dresden, Germany
Jacques-Charles Lafoucriere CEA, France
Erwin Laure KTH, Sweden
Filippo Mantovani BSC, Spain
Diana Moise Cray/HPE, Switzerland
Ariel Oleksia Poznan Supercomputing Center, Poland
Melissa Romanus NERSC LBNL, USA
Karthee Sivalingam Cray/HPE, UK
Heiko Schuldt University of Basel, Switzerland
Martin Schulz TU Munich/Leibniz Supercomputing Centre,

Garching, Germany
Keiji Yamamoto RIKEN, Japan

The reviewing of the submitted papers was balanced among the program committee
members and ensured a high quality of the reviews. Based on the submissions and their
reviews, three papers were accepted and presented at MODA20:

• Application IO analysis with Lustre Monitoring using LASSi for ARCHER, by
Karthee Sivalingam and Harvey Richardson

• Characterising HPC Performance Variation with Monitoring and Unsupervised
Learning, by Gence Ozer, Alessio Netti, Daniele Tafani, and Martin Schulz

• AI-Driven Holistic Approach to Energy Efficient HPC, by Robert Tracey, Lan
Hoang, Felix Subelet, and Vadim Elisseev

MODA20 was initially envisioned as a full-day workshop with a balanced mix
between technical paper presentations, keynote and invited talks. As part of the ISC
2020 Digital program, MODA20 was held digitally online, as a live half-day work-
shop, with a keynote address, three paper presentations, and one debate panel. The full
live program is available on the MODA20 website1.

MODA20 gathered experts that described the current solutions and best practices
for monitoring systems at HPC sites and data centres, as well as their strategies for
analysing and interpreting the collected operational data.

The workshop debuted with the live keynote address by Prof. Martin Schulz (TUM
and LRZ, Germany) entitled Challenges and Opportunities in Actively Monitoring and
Managing Power and Energy on HPC Systems followed by an lively questions and
answers (Q&A) session.

The workshop continued with three live paper presentations, that initiated an
interactive real time exchange of questions and answers via the chat functionality.
A strikingly positive aspect of this setup was that the answers to these questions in
certain came from other members of the audience and not always from the authors or

1 https://moda20.sciencesconf.org/resource/page/id/4.

250 F. Ciorba et al.

https://moda20.sciencesconf.org/resource/page/id/4

presenters. This demonstrates the active engagement and interest of the attendees in the
topics addressed by MODA20.

The last part of the workshop was a panel discussion on Monitoring and Opera-
tional Data Analysis: past, present, and future which very early turned in to a free-form
discussion with the entire audience.

2.1 Keynote Address

Prof. Martin Schulz (TUM and LRZ, Germany) gave a keynote address on the Chal-
lenges and Opportunities in Actively Monitoring and Managing Power and Energy on
HPC Systems.

In his keynote, he highlighted that monitoring is very important for the efficient
management of power and energy given the increase in energy costs. He emphasised
the need for an active feedback loop regarding energy and power management during
system design, during infrastructure setup, and especially during system operation. He
described the approach taken by LRZ towards energy efficiency, which is holistic and
addresses all levels of the ecosystem: from infrastructure to applications. Highlights
from this keynote include the data centre data base or DCDB (an open-source tool
developed at LRZ for high-frequency, high-resolution HPC monitoring) and the
Wintermute analytics framework. Martin Schulz also highlighted the challenges that lie
ahead for monitoring: variable data granularity, frequency and usage, in-situ analytics,
and application integration and incentives thereof.

2.2 Research Papers

The first paper, Application IO analysis with Lustre Monitoring using LASSi for
ARCHER, presented by Karthee Sivalingam and co-authored by Harvey Richardson,
described how a combination of the LASSi tool (developed by Cray) and the SAFE
software (developed by EPCC) is used to collect and analyse Lustre I/O performance
data for all jobs running on the UK national supercomputing service (ARCHER), to
provide reports on I/O usage for users in the standard reporting framework, while also
enabling analysis of parallel I/O use on ARCHER to quantify the potential impact of
different applications on file system performance using metrics derived from the LASSi
data. They highlighted that the performance data from LASSi reveals how the same
application can stress different components of the file system depending on how it is
run, and how the LASSi risk metrics permit identification of cases that could poten-
tially cause issues for global I/O performance.

The second paper, entitled Characterising HPC Performance Variation with Mon-
itoring and Unsupervised Learning, was presented by Gence Ozer, and co-authored by
Alessio Netti, Daniele Tafani, and Martin Schulz. Gence Ozer first pointed out the
many challenges of big systems, the different available metrics, and the need for
automated analyses of this big data. Data were collected on their CooLMUC-3, using
their own Data Centre Data Base (DCDB) framework. They propose an approach to
detect variation based on the distance to normal cases learned by clustering. They
experimented at three levels of a HPC system: core, compute node, and infrastructure.
Gence Ozer presented the analysis of long term thermal trends of compute nodes.

1st International Workshop on Monitoring and Data Analytics (MODA20) 251

A second example concerns the cooling consistency of the racks. Future work is to do
more, and more quantitative, experiments on bigger systems.

Robert Tracey presented the work he conducted with his collaborators (Lan Hoang,
Felix Subelet and Vadim Elisseev) on the design and implementation of an AI-Driven
Holistic Approach to Energy Efficient HPC. In his presentation Robert claimed that, in
order to cope with the ever-increasing energy demanded by HPC and data centres (and
its associated costs), it is necessary to have in place a holistic monitoring solution
which allows to comprehensively collect data at different system levels. Such frame-
work should be hardware-agnostic, with interchangeable software components, and
should facilitate the integration of AI techniques to dynamically control applications
and workflows. Robert’s proposed monitoring solution has been implemented fol-
lowing these design principles. His framework collects metrics from different data
sources, i.e. at hardware, software and building infrastructure level. The monitored data
is then stored in an OpenTSDB database instance and conveniently visualised via
Grafana dashboards. As expected, the proposed framework introduces very low
overhead in terms of CPU, memory, network and disk usage.

The collected data allowed Robert and his collaborators to efficiently analyse and,
in some instances, successfully predict the behaviour of their monitored HPC testbed:
in his experiments, workloads could be sorted into different groups, potentially
influencing future node assignment; also, thanks to the collected historical data, the
power draw of single racks could be predicted. Robert’s future research efforts will
mainly focus on collecting more in-band data, investigating security features and
implementing mechanisms to efficiently control cooling infrastructure.

2.3 Panel Discussion

To conclude the workshop, and to partially compensate for the missing in-person coffee
breaks, a panel discussion with open discussion was held. Panelists were invited to
represent both the work discussed in the presentations (Martin Schulz, Karthee
Sivalingam, Robert Tracey), as well as expert experience from among the reviewers
(Daniele Cesarini, Jim Brandt, Valeria Bartsch). The discussion was moderated by
Utz-Uwe Haus.

Asked what they see as the most critical aspect of MODA today, or in the near
future, the panel members’ answers exhibited a surprising overlap, despite very dif-
ferent angles of experience: The adaptivity of future systems poses significant new
challenges to MODA, and performance tuning will needs to be driven by data collected
by more sophisticated monitoring tools (M. Schulz). This poses new data management
challenges, both due to data accumulation, but also in order to support run-time
analysis and feedback (J. Brandt), in particular since the holistic view on all data
available is the only way to get meaningful insight into big systems (R. Tracey). Even
if the monitoring, data collection, analysis and correlation issue is solved, presenting
feedback to application developers and sysadmins is a separate, challenging, but
essential problem (K. Sivalingam), in particular with respect to non-traditional HPC
users in machine learning and data science, which are often not accustomed or aware of
the monitoring possibilities (V. Bartsch).

252 F. Ciorba et al.

What was planned to be a 30 minute discussion with questions and comments from
the audience continued for more than 1 hour, driven by experience reports by audience
members. Time to insight, a criterion often employed in semi-qualitative benchmarking
of scientific codes was cited as a critical measure of success for deployment of MODA
approaches: Dashboards with drill-down interfaces for operators, alert indicators based
on both categorial and artificial-intelligence data analytics, and tools as approachable as
profilers in in IDE, to enable application developers and users to understand system
behaviour.

While mostly centred around technical aspects of MODA, security and privacy
concerns were discussed as a critical topic that needs to be addressed with more
generality: System monitoring data typically contains data that is considered sensitive
for the operator, but also include personally identifiable information as well as business
secrets or intellectual property of users. This makes even the exchange of monitoring
data for research purposes nontrivial. Open source and platform agnostic monitoring
tools were seen as an avenue to offer a path towards open data interfaces that make it
possible to exchange analytics and visualisation components across sites, avoiding the
need to exchange the raw data.

3 Conclusion

We believe that MODA20, despite the unexpected format change to a virtual work-
shop, provides a crystallisation point for future growth of the topic, and paves the way
to a recurring series of events. Presentations and discussions showed that the scope of
topics is even wider than we thought, and that some aspects seem to warrant signifi-
cantly more attention. In this direction we want to specifically mention

• visualisation aspects, in particular reusable methods instead of one-off designs for it,
• user experience design and the cost of such these solutions that are essential to wide

adoption of MODA,
• the wider HPC and scientific programming usage of monitoring data, i.e., beyond

the system operations view point,
• application of Operations Research methods in HPC MODA,
• the challenge of monitoring the behaviour of scripting language and container-

based applications, which appear much more opaque than traditional HPC appli-
cations due to missing monitoring APIs,

• data privacy and security issues, as they relate to the raw data collection, handling,
storage and use of the conclusions.

The latter topic has many facets, as MODA may provide a front line defence
against security breaches and system abuse like the recent cryptocurrency mining

1st International Workshop on Monitoring and Data Analytics (MODA20) 253

events at supercomputing centres2 or the data breach at many European HPC centers
earlier this year3 in the spring of this year. At the same time, MODA itself can be
abused for information disclosure or privacy breaks.

We hope that many of these aspects will figure prominently in submissions to the
next edition of this workshop.

2 https://csirt.egi.eu/academic-data-centers-abused-for-crypto-currency-mining/.
3 https://www.hpcwire.com/2020/05/18/hacking-streak-forces-european-supercomputers-offline-in-
midst-of-covid-19-research-effort/.

254 F. Ciorba et al.

https://csirt.egi.eu/academic-data-centers-abused-for-crypto-currency-mining/
https://www.hpcwire.com/2020/05/18/hacking-streak-forces-european-supercomputers-offline-in-midst-of-covid-19-research-effort/
https://www.hpcwire.com/2020/05/18/hacking-streak-forces-european-supercomputers-offline-in-midst-of-covid-19-research-effort/

Application IO Analysis with Lustre
Monitoring Using LASSi for ARCHER

Karthee Sivalingam(B) and Harvey Richardson

HPE EMEA Research Lab, Broad Quay House, Prince Street, Bristol, UK
{karthee.sivalingam,harvey.richardson}@hpe.com

Abstract. Supercomputers today have to support a complex workload
with new Big Data and AI workloads adding to the more traditional
HPC ones. It is important that we understand these workloads which
constitute a mix of applications from different domains with different
IO requirements. In some cases these applications place significant stress
on the filesystem and may impact other applications making use of the
shared resource. Today, ARCHER, the UK National Supercomputing
service supports a diverse range of applications such as Climate Mod-
elling, Bio-molecular Simulation, Material Science and Computational
Fluid Dynamics. We will describe LASSi, a framework developed by the
ARCHER Centre of Excellence to analyse application slowdown and IO
usage on the shared (Lustre) filesystem.

LASSi combines application job information from the scheduler with
Lustre IO monitoring statistics to construct the IO profile of applica-
tions interacting with the filesystem. We show how the metric-based,
application-centric approach taken by LASSi was used both to under-
stand application contention and reveal interesting aspects of the IO on
ARCHER. In this paper we concentrate on new analysis of years of data
collected from the ARCHER system. We study the general IO usage and
trends in different ARCHER projects. We highlight how different appli-
cation groups interact with the filesystem by building a metric based
IO profile. This IO analysis of projects and applications enables project
managers, HPC administrators, Application developers and Scientist to
not only understand IO requirements but also plan for future. This infor-
mation can be further used for reengineering applications, resource allo-
cation planning and filesystem sizing for future systems.

Keywords: IO · LUSTRE · Monitoring · ARCHER · LASSi

1 Introduction

Supercomputers need to meet the demands of complex large workloads consisting
of many application types at the same time as providing an environment to sup-
port highly-scalable applications. High performance networks, storage systems

Supported by EPRSC.

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 255–266, 2020.
https://doi.org/10.1007/978-3-030-59851-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_16

256 K. Sivalingam and H. Richardson

and workload schedulers all play a part in delivering consistent high perfor-
mance to applications. However there will still be circumstances where a work-
load/application can place stress on the system to the extent that users experi-
ence variations in runtime (perceived as a slowdown) which can result in the loss
of jobs (running past walltime limits) and an increased cost to users. In such an
environment it is crucial to have tools to analyse application behaviour. This is a
complex problem, for example expected run time depends on application param-
eters, available hardware characteristics and any contention for resources. In this
paper, we analyse the broad I/O patterns for a set of applications and introduce
a framework that we have used both for triage of issues in the filesystem and for
analysis of IO workload.

2 ARCHER

ARCHER is the UK national supercomputer and has been supporting multiple
scientific communities such as Ocean science, Plasma Science, Bio-molecular
simulation and Material science since 2014. It is a Cray XC30 [7] supercomputer
comprising of 4920 nodes, high-speed Aries network and a High-performance
Lustre storage system [3]. It has three Lustre file systems based on Cray Sonexion
1600 technology. Two file systems have 12 Object Storage Servers (OSS) and one
file system has 14 OSS. There is one Metadata Server (MDS) and one backup
MDS per file system. Each MDS is a Cray Sonexion 1600 MDS controller module.
Each client accesses the three file systems via 18 Lustre router nodes internal to
the ARCHER system.

3 LASSi

ARCHER typically has thousands of jobs running at the same time and most
jobs access the Lustre filesystem for file I/O. From time to time there are reports
of application slowdown with users reporting issues with interactive access to
the filesystem. Sometimes this would be due to rogue application making great
demands on the filesystem compared to the norm. In order to analyse slowdown
causes, LASSi [16] was developed by Cray Center of Excellence for ARCHER.
This was further developed to provide better understanding of the complex work-
loads and the applications using a shared resource. Even though network and
storage are shared in ARCHER, LASSi focuses only on storage. LASSi uses the
Lustre statistics aggregated by a site-developed tool (LAPCAT) at 3 min inter-
vals along with job metadata from the scheduler. LASSi combines the Lustre
statistics and job metadata to build an application IO profile over time. Job IO
profiles can be analysed to study the interaction of jobs with the filesystem and
with each other due to shared filesystem usage. The results of the analysis has
been used to triage issues and support further analysis.

LASSi moves beyond existing tools like UMAMI, MELT, ldiskfs, LMT,
LLView and NERSC’s FSU [16] (mainly provide raw filesystem or application
statistics) by also focusing on applications that exhibit unusual I/O behaviour

IO Monitoring and Analysis Using LASSi 257

Fig. 1. Example of risk calculation

resulting in filesystem slowdown. LASSi is non-invasive (to the filesystem and
application) and does not require user involvement.

3.1 Metric Based Approach

In this section, we give a brief overview of LASSi’s metric based approach as
described in detail in [16]. LASSi uses the following Lustre statistics for analysis
which can be categorised as OSS and MDS based on the server (Object Storage
Server or MetaData Server) as shown below.

– OSS: read kb, read ops, write kb, write ops, other
– MDS: open, close, mknod, link, unlink, mkdir, rmdir, ren, getattr, setattr,

getxattr, setxattr, statfs, sync, sdr, cdr

In analysing the statistics, we use the following metrics: risk and ops for an
application run. The risk metric denotes the quantity whereas the ops metric
denotes the quality of IO. The risk metric is calculated by accumulating the risk
of individual operations. For every OSS or MDS operation x on a file system fs,
the risk metric is calculated as follows:

riskfs(x) =
x − α · avgfs(x)

α · avgfs(x)
(1)

where α is an arbitrary scaling factor. Figure 1 illustrates the risk calculation
for any quantity. Individual risk calculations are aggregated to give an overall
risk attributed to OSS or MDS. Any negative risk is ignored when aggregating.

riskoss = riskread kb + riskread ops+
riskwrite kb + riskwrite ops + riskother

(2)

riskmds = riskopen + riskclose + riskgetattr + risksetattr

+ riskmkdir + riskrmdir + riskmknod + risklink

+ riskunlink + riskren + riskgetxattr + risksetxattr

+ riskstatfs + risksync + riskcdr + risksdr

(3)

258 K. Sivalingam and H. Richardson

Fig. 2. LASSi automated daily workflow

On Lustre, 1 MB (and larger) aligned accesses are optimal and much more
efficient than small accesses, our ops metric is used to quantify the quality of IO
and is defined as follows:

read kb ops =
read ops · 1024

read kb
(4)

write kb ops =
write ops · 1024

write kb
(5)

where read kb ops denotes the read quality and write kb ops denotes the write
quality. The risk and ops metrics are designed so that higher value indicate
higher risk of slowdown and bad quality respectively.

3.2 Automated Workflow and Architecture

Figure 2 shows the LASSi workflow. Lustre statistics (collected in the LAPCAT
mysql database) and application data (from PBS) are exported (using custom
tools, LASA and APRUN filter) and ingested to LASSi (using Data Ingest and
LogtoParquet scripts). LASSi uses Spark [19] for data analytics and matplotlib
for generating reports. Daily risk plots are generated and are made available to
helpdesk staff. Aggregated data for each application run is exported to SAFE1,
a portal for ARCHER users. Users can view high-level application IO usage and
generate reports. Custom risk plots and raw Lustre operation data plots can also
be generated manually.

4 ARCHER Analysis

In this section, we build on top of the preliminary analysis of LASSi data, pre-
sented at CUG [17]. For this ARCHER analysis, we use Lustre statistics collected
from April 2017 to November 2019. Whereas our previous analysis focused only
on slowdown with analysis of applications causing slowdown, this analysis focuses
on analysis at three levels

1 https://www.archer.ac.uk/documentation/safe-guide.

https://www.archer.ac.uk/documentation/safe-guide

IO Monitoring and Analysis Using LASSi 259

– ARCHER Projects comprising of multiple application
– Application type based on the executable name
– Application run profiling

ARCHER users are grouped in projects and sub projects based on their consortia
and science areas2. These projects are a good representation of the science area
in general. The Project information is extracted from SAFE and is then ingested
to LASSi to map application runs to Projects. For Application level analysis, we
group application runs based on the executable used in the run command. The
run command used for application launch is available from the PBS logs.

4.1 Projects IO Usage

In order to analyse application IO from different projects we made use of a map-
ping of jobs to projects from SAFE. Table 1 lists the different project names,
project types and the total reads and writes to filesystem. For simplicity we will
use the project type names to refer to the project. Only the top 10(based on
read/write quantity) projects are listed. With a total of 59 PB reads and 192
PB writes, ARCHER applications in general write 3 bytes for every byte of data
read. This trend is reversed for Mesoscale Engineering and Astrophysics and
Cosmology where the application read more data than they write. Computa-
tional Fluid Dynamics and Ocean Science have lesser write proportion. Projects
like Climate Science, Material Chemistry, Atomistic simulation, Geophysics and
Seismology, Plasma Physics and Combustion follow the general trend and write
more than 6 bytes of data for every byte read.

Fig. 3. Proportion of total read and writes in ARCHER for different projects

Figure 3 shows the proportion of total read and writes in ARCHER for
different projects. The large proportion of application in others (37%) illustrates
the huge variety of applications using the ARCHER system. Climate Science,
2 https://www.archer.ac.uk/community/consortia.

https://www.archer.ac.uk/community/consortia

260 K. Sivalingam and H. Richardson

Table 1. Total read and writes (in petabytes) of projects in ARCHER.

Project name Project area Read Write

(PB) (PB)

Plasma Physics Consortium Plasma Physics 0.05 1.47

UK Consortium on Mesoscopic
Engineering Sciences

Mesoscale Engineering 3.57 1.48

UKCTRF Consortium Combustion 0.28 7.01

UK Turbulence Consortium Computational Fluid Dynamics 1.40 4.00

Global Ocean Modelling
Consortium

Ocean Science 10.35 14.56

UK Atomic, Molecular and Optical
Physics R-matrix Consortium
(UKAMOR)

Astrophysics and Cosmology 5.08 1.69

Computational Mineral Physics
Consortium

Geophysics and Seismology 4.32 25.76

UK Car-Parrinello Atomistic Simulation 3.38 29.17

Materials Chemistry HPC
Consortium

Material Chemistry 4.12 26.01

NCAS (National Centre for
Atmospheric Science)

Climate Science 4.08 24.09

Others Multiple 21.94 55.32

Material Chemistry, Atomistic simulation and Geophysics and Seismology share
the major proportion of IO load on ARCHER. They correspond to 27% of reads
and 55% writes.

4.2 Projects IO Trends

In the previous section we showed how projects do IO in general. We expand
this further with analysis of trends in usage over time. We also investigated
trends in metadata usage in addition to read/write usage. For this analysis,
the data was accumulated over months and the cumulative sum of read/write
or metadata operations are plotted over time for different projects. Figure 4
show the Read/Write trends in ARCHER for different projects. We can see a
clear clustering of projects as Material Chemistry, Atomistic simulation, Climate
Science, Ocean Science and GeoPhysics and Seismology read and write 20 to 35
PB of data (highlighted in yellow), 5 other projects had less than 5 PB.

GeoPhysics and Seismology shows a sharp increase in the start of 2019, but
their usage slowed down after that. Atomistic simulation usage is not comparable
to other projects in 2017-18 but this has increased exponentially in 2019. The
Combustion project has shown a increase in usage compared to previous years.

Figure 5 shows the trends in metadata usage in ARCHER for different
projects. Two projects, Material Science and Ocean Science show bigger usage

IO Monitoring and Analysis Using LASSi 261

Fig. 4. Trends in Read/Write in ARCHER for different projects. Reads and Writes are
cumulatively added over time.

Fig. 5. Trends in metadata usage in ARCHER for different projects. Metadata opera-
tions are cumulatively added over time.

compared to other projects, with Material science showing considerable increases
in the recent years. Projects like Combustion, Turbulence, Atomistic Simulation,
Climate Science and GeoPhysics and Seismology uses around 50 billion opera-
tions. We also see a considerable increase in the metadata usage of Atomistic
Simulation and Climate Science. These trends and usage reports can be used by
Project managers and the HPC manager to better plan for projects in the future.
For example, Project usage can be used to allocate projects across filesystem to
enable isolation. IO trends are more important for predicting usage and planning
allocation in future for expansion or new hardware.

262 K. Sivalingam and H. Richardson

Table 2. Application code and description of applications used in ARCHER

Code name Application description

castep Calculating properties of materials from first principles [6]

solver Flow Solver, https://www.ukturbulence.co.uk/flow-solvers.html

vasp Vienna Ab initio Simulation Package, https://www.vasp.at

lammps Large-scale Atomic/Molecular Massively Parallel Simulator [15]

boffin Large Eddy Simulation(LES) code [4]

python Python based codes

Foam Open Source Computational Fluid Dynamics (CFD) Toolbox [9]

xios XML-IO-Server - I/O management in climate codes [14]

atmos Numerical model of the atmosphere [5]

axisem3d Simulation of Seismic wave propagation [13]

HYDRA A Multi-physics Simulation Code [12]

incompact A high-order finite-difference flow solvers [11]

senga Direct Numerical Simulation (DNS) of turbulent combustion [10]

mitgcmuv MIT general circulation model [1]

elk all-electron full-potential linearised augmented-plane wave (LAPW) code [8]

aims ab initio molecular simulations [2]

nwchem Open Source High-Performance Computational Chemistry [18]

4.3 Application Risk Profile

We identified projects usage and analysed trends in their usage in the previous
section. A project users may use multiple applications and this may vary with the
project type. Identifying and understanding application usage of Lustre filesys-
tem will not only improve performance but also avoid slowdown in applications.
Table 2 lists the applications used for this risk and quality analysis and their
description. Risk profile of application shows the quantity of IO an application
does in comparison to the average on the filesystem. We use the risk oss and
risk mds to build the application profile for this scatter plot. For an applica-
tion, risk oss and risk mds values for all corresponding application runs are
identified using their run command and then we use only the 95th percentile to
characterise more risky runs.

Figure 6 shows the risk profile of different Applications with the size of the
circle denoting the number of application runs. In Fig. 6, most applications
are clustered closer to the axis. This shows application either using the OSS
or MDS but not both heavily. axisem3d, senga and solver application have a
higher risk oss compared to risk mds, but the number of runs is relatively low.
HYDRA, xios, mitgcmuv, incompact, Foam and python application have a higher
risk mds compared to risk oss with xios having a considerably higher number
of runs. Applications atmos, vasp and elk have more runs but have lower risks. In
the case of elk, it is run as task farms where hundreds of similar runs are started

https://www.ukturbulence.co.uk/flow-solvers.html
https://www.vasp.at

IO Monitoring and Analysis Using LASSi 263

Fig. 6. Profile of different Application risk with the size of the circle denoting the
number of application runs

at the same. Even with lower risk, the risk of such application gets multiplied
based on the number of simultaneous runs.

4.4 Application Quality Profile

We build the quality profile of application using the ops metrics: read kb ops
for read quality and write kb ops for write quality. Figure 7 shows the quality
profile of applications. The application used are described in table 2 and we use
the 95th percentile as described in the previous section. We see many application
clustered near the read quality axis, this shows that the application have a poor
read quality in general compared to write quality. Writes are usually buffered and
this is one of the reasons for better write quality. There are three outliers that is
not shown in the Fig. 7, senga and HYDRA showing poorer read quality (800–
1000) compared to others and boffin showing the poorest write quality (6000).
Application boffin breaks the trend in quality of IO of ARCHER applications as
its write quality is poorer than its read quality.

In Fig. 7, the size of the circle relates to the number of application runs of
this type. castep, mitgcmuv, aims, incompact and incompact3d show poorer read
quality compared to write quality. Foam, solver and lammps show poor quality
of read and writes. Application like atmos, elk and xios show good quality of
read and write as they are clustered near the origin.

264 K. Sivalingam and H. Richardson

Fig. 7. Profile of different Application quality with the size of the circle denoting the
number of application runs. This is same as Fig. 7 but with reduced axis scale

4.5 Application Run IO Tracing

Having identified applications that cause stress on the filesystem the next step
is to engage with users to gain better understanding of the application. The
IO timelines we can generate are quite course (3 min) although on other more
recent platforms this can be reduced. The second problem is that the application
profile does not identify individual operations that contribute to the summed
statistics. Our approach is to obtain a system level trace of (potentially) all
processes in the application using the strace command. We post-process the
output using a tool we developed to obtain a detailed profile showing how appli-
cations interact with the filesystem through system calls. We can graph rates
of operations (open/close/write), data rates, metadata rates, timelines etc. and
attribute operations to individual files. Using this tool we have been able to
identify applications that open and close the same files repeatedly (hundreds
of times per second), where many processes write to the same file and where
many small I/O operations mixed with large ones lead to serious performance
degradation. The final step is to make changes to applications.

5 Future Work

The ARCHER service will be replaced with a new service (ARCHER2) in 2020.
Moving forward, we are interested in extending the framework in a number of
areas. We would like to make the framework more holistic so that we include
information from the high-speed network and possibly power consumption infor-
mation. Another area we would like to investigate is the use of ML approaches

IO Monitoring and Analysis Using LASSi 265

to classify applications from their ‘telemetry’—be that IO or Network. This may
allow us to not only identify applications but also any unusual behaviour from
their norms. We plan to integrate LASSi into the data collection framework pro-
vided by Cray View for ClusterStor3 so that sites with this software can take
advantage of the alternative view that LASSi can provide.

6 Conclusions

Understanding application requirements for shared resources such as filesystem
and network in a super computer is important for sustained performance and
avoiding contention. We presented the LASSi framework which collects Lustre
statistics and application job metadata and analyses them via derived metric like
risk and ops that represent quantity and quality of application IO respectively.
Based on 32 months of data, we presented analysis of ARCHER project’s IO
usage showing how this changed over time. We characterised different applica-
tion types based on the risk and quality metrics. We observed clear patterns in
application usage and highlighted outliers that have unusual requirements. This
framework is enhanced with a tracing based IO profiler to study finer details.
Such analysis at project and application level will help project managers, applica-
tion developers and scientists understand their IO requirements This can enable
better planning for reengineering applications, resource allocation and filesystem
sizing for future systems. As we approach the Exascale, application IO require-
ments are evolving. Storage environments will change to support them. It will
always prove valuable to understand how application interact with the mem-
ory/storage system to gain new insights on future performance challenges.

Acknowledgement. This work used the ARCHER UK National Supercomputing
Service. We would like to acknowledge EPSRC, EPCC, Cray-HPE, the ARCHER
helpdesk and user community for their support.

References

1. Adcroft, A., et al.: MITgcm user manual. Massachusetts Institute of Technology
(2008)

2. Blum, V., et al.: Ab initio molecular simulations with numeric atom-centered
orbitals. Comput. Phys. Commun. 180(11), 2175–2196 (2009)

3. Braam, P.J., et al.: The Lustre storage architecture. White Paper, Cluster File
Systems Inc., October 23 (2003)

4. Brauner, T., Jones, W., Marquis, A.: LES of the Cambridge stratified swirl burner
using a sub-grid pdf approach. Flow Turbul. Combust. 96(4), 965–985 (2016).
https://doi.org/10.1007/s10494-016-9719-4

5. Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., Shelly, A.: Unified
modeling and prediction of weather and climate: a 25-year journey. Bull. Am.
Meteorol. Soc. 93(12), 1865–1877 (2012). https://doi.org/10.1175/BAMS-D-12-
00018.1

3 https://www.cray.com/products/storage/clusterstor/view.

https://doi.org/10.1007/s10494-016-9719-4
https://doi.org/10.1175/BAMS-D-12-00018.1
https://doi.org/10.1175/BAMS-D-12-00018.1
https://www.cray.com/products/storage/clusterstor/view

266 K. Sivalingam and H. Richardson

6. Clark, S.J., et al.: First principles methods using castep. Zeitschrift für
Kristallographie-Cryst. Mater. 220(5/6), 567–570 (2005)

7. Cray: Cray XC series supercomputers. https://www.cray.com/products/
computing/xc-series (2018)

8. Dewhurst, K., et al.: The elk fp-lapw code. ELK. http://elk.sourceforge.net (2016)
9. Jasak, H., Jemcov, A., Tukovic, Z., et al.: OpenFOAM: a C++ library for complex

physics simulations. In: International Workshop on Coupled Methods in Numerical
Dynamics, vol. 1000, pp. 1–20. IUC Dubrovnik Croatia (2007)

10. Jenkins, K.W., Cant, R.S.: Direct numerical simulation of turbulent flame kernels.
In: Knight, D., Sakell, L. (eds.) Recent Advances in DNS and LES. Fluid Mechanics
and its Applications, vol. 54, pp. 191–202. Springer, Dordrecht (1999). https://doi.
org/10.1007/978-94-011-4513-8 17

11. Laizet, S., Li, N.: Incompact3d: a powerful tool to tackle turbulence problems
with up to o (105) computational cores. Int. J. Numer. Methods Fluids 67(11),
1735–1757 (2011)

12. Langer, Steven H., Karlin, Ian, Marinak, Michael M.: Performance characteristics
of HYDRA – a multi-physics simulation code from LLNL. In: Daydé, Michel, Mar-
ques, Osni, Nakajima, Kengo (eds.) VECPAR 2014. LNCS, vol. 8969, pp. 173–181.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17353-5 15

13. Leng, K., Nissen-Meyer, T., Van Driel, M., Hosseini, K., Al-Attar, D.: AxiSEM3D:
broad-band seismic wavefields in 3-D global earth models with undulating discon-
tinuities. Geophys. J. Int. 217(3), 2125–2146 (2019)

14. Meurdesoif, Y.: Xios: an efficient and highly configurable parallel output library for
climate modeling. In: The Second Workshop on Coupling Technologies for Earth
System Models (2013)

15. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. Tech-
nical report, Sandia National Labs., Albuquerque, NM (United States) (1993)

16. Sivalingam, K., Richardson, H., Tate, A., Lafferty, M.: LASSi: metric based I/O
analytics for HPC. In: SCS Spring Simulation Multi-Conference (SpringSim 2019),
Tucson, AZ, USA (2019)

17. Turner, A., Sloan-Murphy, D., Sivalingam, K., Richardson, H., Kunkel, J.M.: Anal-
ysis of parallel I/O use on the UK national supercomputing service, ARCHER
using cray LASSi and EPCC SAFE. CoRR abs/1906.03891 (2019). http://arxiv.
org/abs/1906.03891

18. Valiev, M., et al.: NWChem: a comprehensive and scalable open-source solution
for large scale molecular simulations. Comput. Phys. Commun. 181(9), 1477–1489
(2010)

19. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016). https://doi.org/10.1145/2934664

https://www.cray.com/products/computing/xc-series
https://www.cray.com/products/computing/xc-series
http://elk.sourceforge.net
https://doi.org/10.1007/978-94-011-4513-8_17
https://doi.org/10.1007/978-94-011-4513-8_17
https://doi.org/10.1007/978-3-319-17353-5_15
http://arxiv.org/abs/1906.03891
http://arxiv.org/abs/1906.03891
https://doi.org/10.1145/2934664

AI-Driven Holistic Approach to Energy
Efficient HPC

Robert Tracey1,2(B), Lan Hoang1(B), Felix Subelet1,3(B),
and Vadim Elisseev1,2(B)

1 IBM Research, STFC Daresbury Laboratory, Sci-Tech Daresbury,
Cheshire WA4 4AD, UK

{Robert.Tracey,Lan.Hoang,Vadim.V.Elisseev}@ibm.com
2 Wrexham Glyndwr University, Mold Road, Wrexham LL11 2AW, UK

3 The University of Liverpool, Liverpool L69 3BX, UK
Felix.Soubelet@liverpool.ac.uk

Abstract. Rapid growth of the world-wide Information Technology (IT)
infrastructure fueled by demands of the global Digital Economy and asso-
ciated demands for electrical power creates significant impact on the envi-
ronment. Over the past decade power usage effectiveness (PUE) was the
major focus for improving energy efficiency of Data Centres in particu-
lar. While PUE did result in significant energy efficiency improvements,
it is not sufficient by itself. Huge energy efficiency gains are expected
from optimizing hardware utilization, cooling and software stacks. We
present an AI-Driven Holistic Approach to energy and power manage-
ment in data centres, which can be described as Energy Aware Scheduling
(EAS). EAS uses AI-driven workloads aware software-hardware co-design
to optimize energy efficiency of a data centre.

Keywords: AI · Energy efficiency · Holistic · Energy aware
scheduling · Co-design

1 Introduction

Rapid growth of the world-wide Information Technology (IT) infrastructure
fueled by demands of the global Digital Economy and associated demands for
electrical power creates significant impact on the environment. At present data
centres consume 3% of the worlds power usage, which is more than most coun-
tries [3] and have a significant impact on carbon footprint. Thus, current Data
Centres and systems, including High Performance Computers (HPC) must be
built considering energy efficiency as one of the foremost design goals [10].

There is a substantial amount of research and development focused on Energy
Efficiency as a core metric [10,34], with some sites reporting up to 40% reduction
in cooling costs [4,20,27]. However, most approaches only consider parts of the
IT system and therefore improve energy efficiency of a component. There is
a strong need for a holistic approach that joins up all the components and
augments information available across the system [5].
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 267–279, 2020.
https://doi.org/10.1007/978-3-030-59851-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_17

268 R. Tracey et al.

In this paper we present our ongoing work on Holistic Approach to energy and
power management, which can be described as Energy Aware Scheduling (EAS).
We are looking at energy efficiency across both hardware and software stacks of the
IT infrastructure: i) data centres, servers, network, cooling, IoT and Edge devices
in one dimension, ii) software stack from firmware through to the OS, applica-
tions and workload managers. EAS uses Machine Learning(ML) and Artificial
Intelligence (AI) methods for modelling of performance and power consumption
and software hardware co-design for implementing various energy/power aware
scheduling policies at different levels of the infrastructure.

Fig. 1. EAS Concept: data, continuously collected across hardware and software stacks
is fed to the AI-based models for performance and power consumption predictions,
which are used by scheduling components to send control decisions back to hardware
and software stacks.

Figure 1 introduces main components of the Holistic EAS: data collected from
a broad range of hardware devices and software components is fed into an AI
component, which produces optimal decisions to meet required criteria, which
are then sent back to hardware and software system components ti implement.
Current work is a continuation from of our previous efforts on EAS [1,2],but it
has more ambitious goals of building a fully automated, AI-driven system for
optimizing energy efficiency of data centres.

The rest of the paper is structured as follows: Sect. 2 presents our Data
Collection Framework. Section 3 describes our choice of ML and AI methods
for analysing the data. Section 4 presents preliminary results of our research.
Finally, we conclude with Sect. 5.

Holistic HPC 269

2 Data Collection Framework

2.1 Architecture

The architecture used for data collection is displayed in Fig.2. Each component
is housed in a Docker [21] container, which provides numerous benefits. Firstly,
each software component can be easily upgraded independently from the other
components in the system. This allows a rolling upgrade model, which allows
us to take advantage of newer features in components that require it without
altering other components. Secondly, it allows us to swap out easily databases
or graphing components if required. Finally it allows us the possibility of being
able to easily move this system to a different set of nodes if required as Docker
is multi architecture, we have also built our components to be the same so that
when moving to different nodes they do not have to be IBM POWERTM servers.

The inputs to the system come from three areas: software level, hardware
level and data centre. This has been a crucial factor from the initial design of
this system to facilitate and bridge all three of these areas into a single interface.

Fig. 2. Intelligent data collection framework architecture

2.2 Monitoring Tools

An important factor that went into the choice of monitoring tools was to ensure
that they have as small as possible impact on the cluster as we can. We are aware
that monitoring tools will always have some impact but one of our main design
goals was to keep this to a minimum. One factor that we were keen to avoid very
early on is to avoid having clients running on the nodes or having multiple relay
nodes. In order to achieve this we have moved all of the major components onto

270 R. Tracey et al.

a single node and also chose tools that required little to no interaction with the
other nodes.

The first tool used is Amester, this gathers data from the Baseboard Man-
agement Controller (BMC) port on IBM POWERTM systems and handles data
from the hardware level. As the BMC port connects to the BMC which is a
specialized service processor used to monitor the physical state of the running
system. This means that all results gathered from other nodes are classed as
out-of-band results, as they will have zero impact on the running of the system
and it’s resources. This zero impact is very important and useful as it allows us
to gather a more accurate reading of the data based on user workloads without
outside interference. This was chosen based on previous work done on the DiG
[12] where similar tools were used to generate data with successful results.

The second tool selected to look at the software layer and workloads being
submitted was IBM Spectrum LSF Explorer. We chose this as we were already
using IBM Spectrum LSF as our workload manager and this integrates well with
it. Also as LSF is already running and gathering this data it requires no extra
overhead on the nodes than is already happening. This currently collects 700+
data points, as this is an initial development system we are capturing all of these
but this could be customized to collect fewer points or new custom ones added
as required. As mentioned we used LSF as it was currently running, due to the
module design of this system this could be swapped out for Slurm [32] or any
other workload manager allowing access to other open source tools.

An important consideration whilst building this system was that the moni-
toring applications did not consume to many resources. Even with them being
on a separate node we did not want to overuse this node with these tools as
that would not help with the energy efficiency of the cluster as a whole. As all
the applications are docker containers we monitored using docker stats, each
container and recorded there usage every second for one minute. The averages of
these results can be seen in Table 1. As can be clearly seen each of the containers
is using minimal resources and together still do not add up to a large section of
the node’s resources. Similar to this the amount of storage to be used also had
to monitored closely. As there is no point in a system that uses all of the storage
so that no jobs can be run or saved. this was something that was closely mon-
itored as we altered some of the sampling rates, this will be discussed in more
detail later. Due to this keeping watch over the storage usage during the early
phases was a priority. In Table 2 you can see the databases do use a significant
amount of storage but it is manageable as the metrics can be altered to record
fewer metrics and also after the initial first year we can remove data every three
months.

This system could easily scale for exascale size as all of the tools were picked
so that they could handle large quantities of data at any given time. This allows
us to upgrade our current system without worrying or port this to a much larger
exascale system.

Holistic HPC 271

Table 1. Resource usage by the Data Collection Framework component averaged from
60 samples over one minute period.

Application CPU (% of a core) Memory usage Memory Net I/O

Nodered 1.57% 147.615 MiB 0.013% 4.32 MB

Grafana 0.11% 26.59 MiB 0% 1.05 GB

LSF Explorer 12.35% 3.26 GiB 0.32% 581.38 MB

OpenTSDB 2.5% 3.84 GiB 0.38% 825.75 MB

Table 2. Disk space usage by the Data Collection Framework components over a four
month period.

Application Disk usage

Nodered 37 MB

Grafana 24 MB

LSF Explorer 221 GB

OpenTSDB 25 GB

2.3 Metrics

When deciding what data to collect for the system we were faced with a difficult
challenge as there is a high number of metrics to choose from. We have decided
to choose metrics that would:

a) be useful to our analysis of the system both for general monitoring and ML,
b) be present on as many of our systems as possible.

From the hardware metrics we decided to focus on ones such as fan power, CPU
power and GPU power as they fit both of our criteria. We set the tools to record
the results every 250 ms as this is how fast the servers read from the sensors.
This would allow for sufficient resolution to see power fluctuations, even if they
were for just a short period of time.

For collecting information about workloads, we used IBM Spectrum LSF
Explorer [26], which collects over 700 metrics. During this early analysis stage
of the project this has been left to collect all metrics so that we can identify the
most useful ones for monitoring and feeding into our ML systems.

At present all data is being kept for the first year to allow for the detailed
analyses and training of our models. Once we are confident in quality of our
results, we will look into reducing amount of historical data to the minimum
required.

Going forward we plan to use tools like PAPI [29] and nvprof [29] for collecting
performance and power consumption metrics from applications and GEOPM [8]
and Variorium [11] for controlling hardware knobs and dials during applications
run time. Based on the work done at the LRZ [13] we feel that this would expand

272 R. Tracey et al.

this level of detail that we would be able to see from our system without adding
too much jitter.

Table 3 shows the average sample rate used in each of the three main areas of
data collection. Sampling at different rates creates a challenge of misalignment
among data points from different metrics. We used linear interpolation in order
to smooth over any gaps that appeared in the data.

Table 3. Average sampling rates per data collection area

Sensor set Average sample rate (secs)

LSF 10

Amester 0.25

IoT 5

2.4 Databases

As part of our system we have utilized two separate databases, due to the con-
tainerized architecture of this system a variety of databases could be used instead
and it would not be difficult to add more or substitute out some of the databases
we have used. This is due to the isolation that being in containers creates and
also due to Grafana supporting many different data sources.

For collecting data from LSF, Elasticsearch [22] was used as it comes packaged
with LSF Explorer and is therefore optimized to work with the high frequency
data sent from this tool. This is especially required as we have altered the sam-
pling rate in LSF in order to capture more granular data. The Table 4 shows the
original values that are set in the LSF data collector and the values they were
changed to. These were altered in order to capture a more granular view of the
running jobs and to also capture more detail on smaller jobs. This has had no
effect to the running of the system or the jobs running on the nodes. The only
issue that has to be monitored is this can create large quantities of data, so the
area storing the elastic search database has to be large enough to accommodate
all of the data that will be generated.

The second database chosen was OpenTSDB [30] which is built on top of
HBase [18]. This was used as it has great support with Grafana, it allows custom
metrics which we would need as we developed and added new custom sensors
from sources not typically used, such as directly from IPMI. Also it has been
known to out perform rival databases such as KairosDB by quite a significant
margin [6].

2.5 Visualisation and API

An important part of any system that capture data is how that data is used
and is made accessible to other users. With this in mind we have used different
methods in order to extract this data.

Holistic HPC 273

Table 4. Original and new values for LSF Explorer Sampling

Metric Original value (secs) New value (secs)

hostgrouploader 3600 60

hostmetricsloader 600 10

lsfbhostsloader 600 10

lsfeventsloader 300 10

lsfjobstatusloader 600 10

The first was to use the open source tool Grafana [25] to generate graphs and
dashboards to visualise the initial data that was being generated. This gave us
two benefits, firstly we were able to easily identify the data being generated as we
added new components and sensors and adapt them as required and secondly
it has allowed us to create live rotating dashboards that we have running on
screens in the office so that we have a live picture of the state of the cluster and
the in use resources.

The second method we added to access the data was via API, it was decided
very early on in the design of this system that this would be a vital component
as with so many data sources being used a critical element would be the ability
for the data to be accessed by a single point of entry. We started developing the
API as a Python library as the libraries we use in ML are all Python based such
as Keras [28], PyTorch [31] and Tensorflow [33]

3 Machine Learning Analysis

This section presents the Machine Learning components of the framework to
analyse and predict energy consumption of the system.

3.1 Clustering

We use clustering analysis to classify events according to their power consump-
tion, fan speed and CPU/GPU utilisation. The clustering technique is based
on k-mean classification [16] and provides a breakdown of events that show a
different levels of load on the HPC cluster.

3.2 Predictive Management

For this paper, we propose to use Long Short Term Memory(LSTM) network
[7], a type of Recurrent Neural Network [14] which is highly suitable for time
series data. The LSTM network consists of multiple block units. Each block
unit has a cell, an input gate, a forget gate and an output gate. These gates
allow including the influence of the previous time step data for more accurate
time series prediction. The network is trained based on the fan power and CPU
Utilisation of the cluster in three previous time steps. Output from the Network
provide ongoing predictions for the cluster.

274 R. Tracey et al.

4 Preliminary Results

4.1 Experimental Setup

We are conducting our research on a cluster of IBM POWER8/9TMservers
(2 CPUs per node, 10/12 cores per CPU, Nominal frequency 3.6–4.2 GHz,
512/1024 GB RAM, 4 NVIDIA Tesla P100/V100 GPUs per node, 16 GB/GPU,
NVIDIA NVLink) with IBM Spectrum ScaleTM storage subsystem, 100 Gb/s
EDR Infiniband and 10 GigE networks and RHEL 7.x operating system. This
cluster is used as a research system in our lab, which we use to develop and test
our new projects for IBM clients and IBM internal use. In order to get a good
baseline of workloads we encourage the researchers on site to also submit jobs
to it as well so that we can collect real world information.

At a room level we are using ESP8266 [24] micro controllers with DHT22
[17] sensors to gather temperature and humidity data. Within the room we are
also making use of existing monitoring infrastructure which consists of room and
rack level IoT devices, Trendpoint Enkapsis [23] Power Management Devices and
CSIM Babel Buster [19] edge devices. These gather data from different parts
of the data centre environment including, power usage at the breaker, room
temperature and current information about the main room cooling systems.
The benefit of using edge devices such as the Babel Buster is that it is able
to communicate on multiple protocols to various IoT devices in the room. It
is then able to process this data and present key metrics via Simple Network
Management Protocol (SNMP) [35] to our Data Collection Framework.

4.2 Generated Graphs

In Fig. 3 we can see the temperature of the water going into and out of the
data centre cooling systems over a period of time. This allows us to see if any
problems arise in the cooling systems and also allows us to see if our cluster is
negatively impacting the cooling. We will use such data in our clustering and
prediction analyses.

Fig. 3. Generated stats showing water temperature used for the cooling systems in the
data centre

Holistic HPC 275

4.3 Clustering and Prediction Analysis

In this section, we inspect a time series over 3 months of CPU Utilisation, Fan
Power and Rack Power see Fig. 4. The CPU Utilisation time series have a high
frequency of sampling, with 765,986 data points from mid November 2019 to
mid February 2020. Meanwhile, the Fan Power time series and Rack Power time
series have 647 and 663 data points respectively. As a result, we performed linear
interpolation to upsample the Fan Power and Rack Power time series. The time
series of total CPU Utilisation and Fan Power show similar spikes at the same
time in the overall rack power. This suggests that CPU Utilisation and Fan
Power are the main factors dominating the energy consumption of the rack.

Fig. 4. Graph showing the time series of Rack Power, Fan Power and CPU Utilization.

The correlation matrix of the timeseries further demonstrates positive corre-
lations across the timeseries, in particular between RackPW and Fan Power, and
between Fan Power and CPU UT, shown in Table 5. Further clustering analy-
sis using the k-means methods show that the data points of Rack Power, Fan
Power and CPU utilisation can fall into 3 to 6 groups. Figure 5 shows the analy-
sis using the elbow method ([9]) to determine the number of clustering group (in
this case k = 3) and the corresponding 3D plotting of the data points. The 3D
graph indicates that the clustering boundary demonstrates the different levels of
Rack Power, which is influenced by both CPU Utilisation and Fan Power, which

Table 5. Correlation matrix of the timeseries for CPU UT, Fan Power and Rack Power

CPU UT FanPW RackPW

CPU UT 1.00 0.37 0.15

FanPW 0.37 1.00 0.40

RackPW 0.15 0.40 1.00

276 R. Tracey et al.

increases or decreases in response to the HPC cluster’s temperature and work-
loads. These graphs allow us to pinpoint groups of workloads in Fig. 5 Group 2
can be classified as a ML series of jobs, these have high power consumption, but
low CPU utilization, which means that GPU’s are being heavily used, this is a
common theme for ML jobs.

Fig. 5. Clustering analysis based on the time series variables

We subsequently trained a multivariate LSTM model to predict the Rack
Power based on CPU Utilisation and Fan Power. This model has one hidden layer
with 50 LSTM blocks, a dropout layer to regularise the Deep Neural Network
and one Final Dense Network.

Fig. 6. Loss curve of the Machine Learning model across epochs

The model was trained in 30 epochs, each using a batch of 5,000 data points
(out of the total 432,000 points for training and 300,113 points for testing). The
loss curve of the model in Figure 6 shows that learning has converged after 30
epochs and the final model performs well in prediction mode, with an R2 = 99.7
when used on the test data set (Fig. 7).

Holistic HPC 277

Fig. 7. Machine Learning prediction of Rack Power based on CPU Utilisation and Fan
Power

Overall the LSTM prediction model shows that Rack Power can be predicted
with high precision based on corresponding CPU Utilisation and Fan Power of
the current and previous timesteps. While the number of parameters used in this
analysis is limited, the framework and methodology are transferable and scal-
able to include more variables and parameters. This AI-driven holistic approach
contributes building an architecture towards an intelligence control system that
utilise these correlation for predictive control. As a direction for future research,
we plan to apply a technique called Deep Reinforcement Learning [15].

5 Conclusions and Future Work

We have presented our on-going work on AI driven Holistic Approach to Energy
Efficient Computing. We have outlined our vision of using ML and AI in com-
bination with software-hardware co-design for analysing and optimizing energy
efficiency throughout different parts of software and hardware stacks. We have
described details of the Data Collection Framework and ways to access the data
via GUI and APIs. We have also presented preliminary results from AI based
analysis of the data to support our vision.

Going forward we plan to evolve our system by extending the number and
types of IoT devices in use to get a better map of the Data Centre and its
environment. This will include extending the use of Edge devices to help with
the processing of streaming data to reduce data processing load of the main
cluster. We also plan to integrate in-band data collection from applications into
our Data Collection framework. Feeding results of our models into a scheduler,
e.g. LSF and cooling system controlling software are also on our list. Note that
while we are using certain proprietary software in our tests, our architecture
is very open and can be utilized in different environments. In terms of Machine
Learning algorithm, directions for future research include further implementation
of AI-driven control techniques that combines Predictive Analytics and Deep
Reinforcement Learning.

278 R. Tracey et al.

Acknowledgements. Authors would like to thank S. Hills and J. Whittle, UKRI-
STFC for help with the deployment of the test-bed cluster and K. Jordan, IBM
Research for fruitful discussions. This work was supported by the STFC Hartree Cen-
tres Innovation Return on Research programme, funded by the Department for Busi-
ness, energy and Industrial Strategy. Copyright. (c) UKRI-STFC, IBM Corp. 2020

References

1. Puzovic, M., et al.: A study on cross-architectural modelling of power consumption
using neural networks. Supercomput. Front. Innovations 5(4), 24–41 (2018)

2. Elisseev, V., et al.: Energy aware scheduling study on BlueWonder, E2SC@SC18
3. Andrae, A.S.G., Edler, T.: On global electricity usage of communication technol-

ogy: trends to 2030. Challenges 6, 117–157 (2015)
4. Bartolini, A., et al.: The D.A.V.I.D.E. big-data-powered fine-grain power and per-

formance monitoring support. In: Proceedings of the 15th ACM International Con-
ference on Computing Frontiers, pp. 303–308. CF 2018, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3203217.3205863

5. Bashroush, R.: A comprehensive reasoning framework for hardware refresh in data
centers. IEEE Trans. Sustain. Comput. 3(4), 209–220 (2018)

6. Greenberg, H.N., DeBardeleben, N.: Tivan: a scalable data collection and analytics
cluster. In: SC (2018)

7. Hochreiter, S., Schmidhuber, J.: LSTM can solve hard long time lag problems. In:
Advances in Neural Information Processing Systems, pp. 473–479 (1997)

8. Kunkel, Julian M., Yokota, Rio., Balaji, Pavan, Keyes, David (eds.): ISC 2017.
LNCS, vol. 10266. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
58667-0

9. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in
k-means clustering. Int. J. 1(6), 90–95 (2013)

10. Brochard, L., et al.: Energy-Efficient Computing and Data Centers. Wiley, Hobo-
ken (2019). https://doi.org/10.1002/9781119422037.fmatter

11. Labasan, S. et al.: Variorum: extensible framework for hardware monitoring and
contol. In: E2SC at SC (2017)

12. Libri, A., Bartolini, A., Benini, L.: Dwarf in a giant: enabling scalable, high-
resolution HPC energy monitoring for real-time profiling and analytics. CoRR
abs/1806.02698 (2018). http://arxiv.org/abs/1806.02698

13. Ozer, G., et al.: Towards a predictive energy model for HPC runtime systems using
supervised learning, August 2019

14. Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-
term memory (LSTM) network. arXiv preprint arXiv:1808.03314 (2018)

15. Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement Learning, vol. 135.
MIT Press, Cambridge (1998)

16. Teknomo, K.: K-means clustering tutorial. Medicine 100(4), 3 (2006)
17. adafruit: Dht22. https://learn.adafruit.com/dht
18. Apache: Hbase. https://hbase.apache.org/
19. Control Solutions Minnesota: Modbus to SNMP Gateway (2020). https://

www.csimn.com/CSI pages/BBPRO-V210.html
20. DeepMind: DeepMind AI Reduces Google Data Centre Cooling Bill

by 40% (2016). https://deepmind.com/blog/article/deepmind-ai-reduces-google-
data-centre-cooling-bill-40

https://doi.org/10.1145/3203217.3205863
https://doi.org/10.1007/978-3-319-58667-0
https://doi.org/10.1007/978-3-319-58667-0
https://doi.org/10.1002/9781119422037.fmatter
http://arxiv.org/abs/1806.02698
http://arxiv.org/abs/1808.03314
https://learn.adafruit.com/dht
https://hbase.apache.org/
https://www.csimn.com/CSI_pages/BBPRO-V210.html
https://www.csimn.com/CSI_pages/BBPRO-V210.html
https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40
https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40

Holistic HPC 279

21. Docker: Docker. https://docker.com/
22. Elasticsearch: Elasticsearch: The Official Distributed Search Analytics Engine

(2020). https://www.elastic.co/elasticsearch/
23. Enkapsis: Enkapsis - Trendpoint (2020). https://trendpoint.com/branch-circuit-

monitoring/enkapsis/
24. espressif: Esp8266. https://www.espressif.com/en/products/socs/esp8266/

overview
25. Grafana: Grafana: The open observability platform — Grafana Labs (2020).

https://www.grafana.com/
26. IBM: IBM Spectrum Scale LSF Explorer (2020). https://www.ibm.com/support/

knowledgecenter/en/SS6MQM 10.1.0/getting started/about.html
27. Kathy Kincade: Less is more: Lbnl breaks new ground in data center

optimization. https://www.nersc.gov/news-publications/nersc-news/nersc-center-
news/2020/less-is-more-lbnl-breaks-new-ground-in-data-center-optimization/

28. Keras: Keras. https://keras.io/
29. NVIDIA: Profiler. https://docs.nvidia.com/cuda/profiler-users-guide/index.html
30. OpenTSDB: Opentsdb. http://opentsdb.net/
31. PyTorch: PyTorch. https://pytorch.org/
32. Schedmd: Slurm. https://slurm.schedmd.com/
33. TensorFlow: Tensorflow. https://www.tensorflow.org/
34. The HPC PowerStack: The HPC PowerStack (2019). https://powerstack.caps.

in.tum.de/index.html
35. Snmp. https://en.wikipedia.org/wiki/Simple Network Management Protocol

https://docker.com/
https://www.elastic.co/elasticsearch/
https://trendpoint.com/branch-circuit-monitoring/enkapsis/
https://trendpoint.com/branch-circuit-monitoring/enkapsis/
https://www.espressif.com/en/products/socs/esp8266/overview
https://www.espressif.com/en/products/socs/esp8266/overview
https://www.grafana.com/
https://www.ibm.com/support/knowledgecenter/en/SS6MQM_10.1.0/getting_started/about.html
https://www.ibm.com/support/knowledgecenter/en/SS6MQM_10.1.0/getting_started/about.html
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2020/less-is-more-lbnl-breaks-new-ground-in-data-center-optimization/
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2020/less-is-more-lbnl-breaks-new-ground-in-data-center-optimization/
https://keras.io/
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://opentsdb.net/
https://pytorch.org/
https://slurm.schedmd.com/
https://www.tensorflow.org/
https://powerstack.caps.in.tum.de/index.html
https://powerstack.caps.in.tum.de/index.html
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

Characterizing HPC Performance
Variation with Monitoring
and Unsupervised Learning

Gence Ozer1(B), Alessio Netti1,2, Daniele Tafani2, and Martin Schulz1

1 Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
gence.ozer@tum.de, schulzm@in.tum.de

2 Leibniz-Rechenzentrum, Boltzmannstr. 1, 85748 Garching, Germany
{alessio.netti,daniele.tafani}@lrz.de

Abstract. As HPC systems grow larger and more complex, character-
izing the relationships between their different components and gaining
insight on their behavior becomes difficult. In turn, this puts a burden
on both system administrators and developers who aim at improving the
efficiency and reliability of systems, algorithms and applications. Auto-
mated approaches capable of extracting a system’s behavior, as well as
identifying anomalies and outliers, are necessary more than ever.

In this work we discuss our exploratory study of Bayesian Gaussian
mixture models, an unsupervised machine learning technique, to char-
acterize the performance of an HPC system’s components, as well as
to identify anomalies, based on sensor data. We propose an algorithmic
framework for this purpose, implement it within the DCDB monitoring
and operational data analytics system, and present several case studies
carried out using data from a production HPC system.

Keywords: HPC systems · Monitoring · Operational data analytics ·
Clustering · Anomaly detection

1 Introduction

As the demand for more capable High-Performance Computing (HPC) systems
increases, supercomputing centers keep adding hardware and software resources
to build significantly more complex and heterogeneous platforms: on top of
their extreme power consumption [19], these systems also introduce new major
challenges regarding hardware reliability [6] and performance variability [13],
which in turn hinder the optimization of system operations. To address these
issues, monitoring frameworks can be used to capture fine-grained sensor data
(e.g., power or temperature) from all components in a production HPC system,
allowing users and administrators alike to understand and characterize the sys-
tem’s behavior, as well as identify potential anomalies: processes of this kind
are referred to as Operational Data Analytics (ODA) [4]. This knowledge subse-
quently can support tuning strategies to improve energy efficiency and system
reliability, among other aspects.
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 280–292, 2020.
https://doi.org/10.1007/978-3-030-59851-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_18

Characterizing Performance Variation in HPC Systems 281

The majority of HPC centers still relies on the domain knowledge and exper-
tise of system administrators, who manually analyze key monitoring metrics and
log streams, to steer operations and thus enact ODA [5]. As systems become more
complex, however, manual tuning becomes impractical and correlations between
metrics become both more critical and at the same time difficult to spot: this
can be addressed by partially automating the ODA processes, using data mining
algorithms to construct a global overview of the performance of a system and
to find outliers, allowing system administrators to focus on root cause analysis
and mitigation actions. In the context of this paper, we focus on performance
variation and anomaly detection: the first is a systematic approach to character-
ize the performance of an HPC system and extract behavioral patterns both in
time and across system components. The latter can be seen as an extreme case
of performance variation, where the behavior of a set of components severely
deviates from the others due to abnormal events, such as faults or failures [11].

Related Work. Many approaches to performance variation and anomaly detec-
tion have been proposed, relying on either text log streams or monitoring sensors
as sources of data. These approaches can be classified according to the techniques
they employ, starting from supervised machine learning: Tuncer et al. proposed
an approach to detect performance anomalies based on monitoring data, which
is processed and fed to classifiers [18]. Similarly, Baseman et al. proposed a
framework using density estimation and random forest classification to detect
anomalies [2]. Wang et al. combined instead independent component analysis
with Bayesian classifiers to spot anomalies in virtual machines [20].

In contrast, others employ unsupervised machine learning techniques: Dani
et al. performed classification using the K-means algorithm to find abnormal
log streams [8]. Similarly, Münz et al. applied K-means to network traffic data
in order to detect anomalous activity [14]. Zhang et al. targeted the domain of
cloud computing and applied DBSCAN clustering to fine-grained, thread-level
resource usage metrics to detect performance anomalies [21]. Finally, Borgh-
esi et al. developed a semi-supervised approach based on auto-encoders, which
leverages the reconstruction error to detect anomalous states [3].

Less common is the use of traditional statistical analysis techniques: Gabel
et al. developed a fault detection model for cloud services using statistical tests
such as the Tukey test or the sign test [10]. Cohen et al. used tree-augmented
Bayesian networks to achieve anomaly detection based on performance data [7].
Guan et al. [12], instead, used a most relevant principal components method to
characterize faults based on the correlations between monitoring sensors. Among
commercial solutions, Datadog utilizes median absolute deviation algorithms to
identify anomalous states in the servers.1 However, while there is an abundance
of anomaly detection techniques, there is to our knowledge a lack of techniques
combining the former with a systematic performance characterization of an HPC
system’s components. Moreover, the feasibility of current approaches in an online
context and their associated details are not clear, yet.

1 https://docs.datadoghq.com/monitors/monitor types/outlier/.

https://docs.datadoghq.com/monitors/monitor_types/outlier/

282 G. Ozer et al.

Contributions. In this work we explore and evaluate the effectiveness of unsuper-
vised machine learning for characterizing performance variation in HPC systems.
In particular, we present an experimental approach using Bayesian Gaussian
mixture models applied to HPC monitoring data, which allows us to extract sta-
tistical descriptions of the behavior of components at any level in an HPC system
via Gaussian distributions. Based on this, we also propose an anomaly detection
method that employs the Mahalanobis distance. We conduct an exploratory anal-
ysis on available monitoring data from the CooLMUC-3 cluster operated by the
Leibniz Supercomputing Centre (LRZ), and present the insights on early expe-
riences with our approach. Monitoring is performed via the Data Center Data
Base (DCDB) framework [15], and the online implementation of our approach
is realized with its Wintermute ODA extension [16].

Organization. The paper is structured as follows. In Sect. 2 we present our
exploratory analysis of the CooLMUC-3 monitoring data. In Sect. 3 we then
describe our approach to performance variation characterization, and in Sect. 4
we present several case studies. Section 5 concludes the paper.

2 HPC Environment and Monitoring Data

First, we introduce the CooLMUC-3 system on which we conduct our exploratory
analysis and the associated monitoring metrics. In particular, we highlight the
relationships between metrics as well as variation across components.

2.1 HPC Environment

We employ the CooLMUC-3 HPC system hosted at LRZ:2 it is composed of 148
compute nodes, each equipped with an Intel Xeon Phi 7210 CPU with 64 phys-
ical cores each having 4 threads. Each node has 96 GB of RAM, 16 GB of high-
bandwidth memory (HBM) and a dual-rail Intel OmniPath network interface.
In addition, CooLMUC-3 uses warm water cooling for all of its components: this
includes, for example, the network switches and allows all racks to be completely
isolated from the environment, reducing heat dispersion to ambient air. We lever-
age the Data Center Data Base (DCDB) framework developed at LRZ [15] to
perform monitoring on CooLMUC-3. DCDB operates continuously on this sys-
tem, collecting fine-granularity production sensor data from both compute nodes
and the system’s infrastructure. The data is collected by plugin-based daemons
called Pushers and is sent via the MQTT protocol to Collect Agents, which act
as data brokers. The data is finally stored in an Apache Cassandra database,
from which it can be queried.

Monitoring data is collected from a variety of sources: in compute nodes, we
collect CPU performance counters (e.g., number of instructions) via a Perfevents
plugin, paired with additional CPU activity information from the stat interface,

2 https://doku.lrz.de/display/PUBLIC/CoolMUC-3.

https://doku.lrz.de/display/PUBLIC/CoolMUC-3

Characterizing Performance Variation in HPC Systems 283

(a) Correlation matrix. (b) Time series of the sensors.

Fig. 1. The correlation matrix associated to the sensors monitored in the CooLMUC-3
system, and an excerpt of the time series for the compute node power, CPU instructions
and temperature sensors.

as well as memory usage information from meminfo and vmstat with a ProcFS
plugin. Moreover, we collect network-related metrics and additional sensors (e.g.,
power consumption or temperature) via a SysFS plugin. We also collect out-of-
band data for rack-level power consumption via a REST plugin, as well as a
series of metrics related to the warm water cooling system (e.g., inlet water
temperature) with an SNMP plugin. All sensors follow a numerical time series
format and are sampled every 10 s.

2.2 Analysis of Monitoring Data

In order to characterize the DCDB metrics and their behavior under a uni-
form workload, we execute a series of proxy applications from the Coral-2 suite3

on a set of 32 CooLMUC-3 nodes, with DCDB activated. Specifically, we use
LAMMPS, Kripke and Nekbone, which were configured to use one MPI rank
per node and 64 threads, as many as the physical CPU cores per node. In our
experience on this system, this type of configuration leads to good performance
and makes full use of available resources such as the HBM memory. As the appli-
cations have diverse performance profiles, we expect our analysis to be general,
with minimal resulting bias. The results are shown in Fig. 1: for space reasons,
we do not present the analysis in its full extent, but focus on the aspects that
are most relevant in the context of this work.

Figure 1a shows the correlation matrix for a subset of DCDB metrics that
exhibit interesting behaviors. Strong correlation patterns can be observed in
this subset, with most metrics related to computational intensity such as CPU
3 https://asc.llnl.gov/coral-2-benchmarks.

https://asc.llnl.gov/coral-2-benchmarks

284 G. Ozer et al.

instructions or idle time (col idle) having a direct impact on power consumption
and temperature (knltemp). A similar behavior is observed for other CPU met-
rics, such as cache misses (misses), whereas OS-level metrics such as number of
context switches (ctxt) and size of the kernel stack (Kernelstack) have weaker
correlations. Due to their clear interactions, these metrics provide a robust base
for statistical analysis and anomaly detection.

In Fig. 1b we show instead an excerpt of the time series for the power, CPU
instructions and temperature sensors respectively, for each of the 32 nodes, while
running LAMMPS and then Nekbone. The two runs are separated by a vertical
line: on top of the applications’ behavior, we observe a large variance in the
metrics across nodes. While instructions show only light variance, mostly under
Nekbone, power consumption exhibits a spread of up to 30W, and temperature
of up to 3◦. If expressed in a concise, clear manner, this information could be
leveraged by runtime tuning frameworks, for example, to distribute power bud-
gets across a set of nodes [9], proving that characterizing the performance of
components in an HPC system in a systematic way is indeed necessary.

3 The Variation Detection Framework

Based on our experience described in Sect. 2, we propose an approach for cap-
turing HPC performance variation in a generic fashion. Our variation detection
framework is based on unsupervised machine learning applied to monitoring
sensor data and, as shown in Fig. 2, comprises three steps: data preparation,
clustering and outlier detection. The framework is designed to operate in online
and offline scenarios, and can be easily integrated in any monitoring system.

Data Preparation. First, the sensor data collected by the underlying monitoring
system must be prepared for the clustering stage. We fill in missing values in
the time series of each sensor by means of linear interpolation, and we transform
all monotonic sensors that come in the form of accumulators (e.g., instructions
or energy) into their first-order derivative, by applying the delta operation to
consecutive readings. This way, we are able to count the number of occurrences of
a certain event in each time range rather than the total number of events since
boot time. Finally, the data is smoothed over specified aggregation windows,
depending on the desired type and granularity of the analysis, supplying the
input that will be used for the clustering process.

Clustering with Lookback. After the data transformation operations are com-
plete, clustering can be performed in N dimensions in order to characterize per-
formance variation. The selected subset of sensors out of the full dataset deter-
mines the number of dimensions in the clustering space as well as the scope of
the analysis: an analysis focused on CPU performance variation will use metrics
such as the per-CPU instructions or cache misses, whereas an energy efficiency-
oriented analysis will consider metrics such as the compute node-level power
consumption. Each HPC component involved in the analysis (e.g., CPU cores,

Characterizing Performance Variation in HPC Systems 285

Fig. 2. Overview of the proposed variation detection framework.

compute nodes or racks) will represent a point in the clustering space whose coor-
dinates are identified by the values of its selected metrics. In general, however,
due to the limitations of most clustering algorithms, we expect our approach to
be effective only when using a low number N (i.e., less than 10) of dimensions.

We use Gaussian Mixture Models (GMM) as a clustering approach: they try
to explain the data by fitting multiple Gaussian distributions over it, typically
using the Expectation-Maximization (EM) algorithm. Once the parameters of
the individual distributions have been identified, each individual point in the
data can be assigned to one of them, thus creating a series of clusters. This
method generalizes well to different datasets, provides good results with mini-
mal parameter tuning and produces compact statistical descriptions of the data
clusters. Among existing GMM algorithms, we use Bayesian Gaussian Mixture
Models (BGMM) [17]: compared to ordinary GMM algorithms, these are able to
identify the optimal number of Gaussian distributions to use in the fitting pro-
cess autonomously, further reducing model tuning and proving useful in online,
continuous scenarios, where HPC systems exhibit highly diverse states. The max-
imum number of Gaussian distributions that are potentially generated by the
BGMM algorithm can be specified as a parameter. We also experimented with
algorithms such as DBSCAN, but we were not able to produce good results
without tuning of parameters on a per-dataset basis.

We apply BGMM clustering to the points in the clustering space using a
configurable lookback approach, considering not only the points corresponding
to the most recent aggregation window for each HPC component, but also those
corresponding to past ones. This approach has several benefits: it allows us to
compare the characteristics of components over time, making in turn the cluster-
ing process more stable due to the increased number of points. Upon completion,
the BGMM algorithm provides the mean vector and covariance matrix of each
Gaussian distribution and assigns each point to one of them.

Outlier Detection. Since the BGMM algorithm does not label outliers auto-
matically, we introduce a two-step outlier detection approach. First, due to the
BGMM optimization process, small clusters grouping multiple outlier points can
potentially be formed. As such, we label as outliers all points belonging to clus-
ters that have a number of points lower than a configurable threshold. Second,
some points might be assigned to certain clusters even though the associated
probabilities are extremely low. To identify these points, we calculate their dis-
tance from the respective distributions using the Mahalanobis distance, which

286 G. Ozer et al.

is a scale-invariant metric that scales to multiple dimensions and that considers
correlations in the data. Its equation is the following:

DM (x) =
√

(x− µ)TS−1(x− µ) (1)

In Eq. 1, µ and S respectively represent the mean vector and covariance
matrix of the Gaussian distribution to which the point x is assigned by the
BGMM algorithm. If the resulting distance is higher than a configurable thresh-
old, the point is classified as an outlier. Since the Mahalanobis distance is pro-
portional to the number of standard deviations that separate a point from a
distribution’s mean, this threshold is generic and does not need to be tuned
ad-hoc for each experiment, but only in extreme scenarios.

Implementation. We implemented our approach for both offline and online oper-
ation: the first offline implementation was made in Python, using the popular
scikit-learn library. This implementation is suitable for experiments focusing on
large historical datasets and requiring extensive data manipulation. Conversely,
the second implementation is tailored for lightweight online operation in pro-
duction HPC systems. This was carried out using the DCDB monitoring frame-
work for HPC systems [15] and its Wintermute extension for online operational
data analytics [16]. The resulting plugin is written in C++ and is based on the
OpenCV GMM implementation: due to the lack of implementations in C++,
we use a simple GMM model in the plugin in place of the more sophisticated
BGMM one, relying on our offline implementation for hints on the ideal number
of clusters to use in a certain scenario.

4 Case Studies

Here we present several case studies carried out using cluster-wide CooLMUC-3
data from Summer 2019: we target different aspects of the HPC system, starting
from application phases at the CPU core level, up to power consumption and
temperature at the compute node level and finally up to the rack level, analyzing
the cooling system’s efficiency. This way we evaluate the effectiveness of our
framework with different granularities and data sources. For convenience, the
experiments were carried out offline using archived data, but can be reproduced
online using the DCDB Wintermute framework.

4.1 CPU Core-Level Analysis

We start with a short-term analysis of application behavior at the CPU core
level. To this end, we execute the Kripke and LAMMPS proxy applications on
4 compute nodes of CooLMUC-3 and analyze the 1-min averages of the CPU
instructions and cache misses (misses) metrics. Specifically, each point in the
2-D clustering space is a CPU core from a single node we selected out of the 4
available. We use the lookback feature to consider all data in the past 5 min and
highlight the applications’ behavior over time.

Characterizing Performance Variation in HPC Systems 287

(a) Kripke. (b) LAMMPS.

Fig. 3. Results of clustering applied at the CPU core level to perform application phase
detection in Kripke (a) and LAMMPS (b). Each point is a CPU core in a CooLMUC-3
compute node with its 1-min averages of the instructions and cache misses metrics.

The results are shown in the scatter plots in Fig. 3 for the Kripke and
LAMMPS proxy applications respectively. In the scatter plots we show the out-
lier points as not belonging to any distribution, since this information is not
reliable due to the very low probabilities involved. In Fig. 3a, Kripke exhibits a
clear separation between its different phases on both axes, which are captured by
3 distinct Gaussian distributions. No outliers were identified, as variance across
CPU cores appears to be limited. This is especially true for Clusters 1 and 2,
which likely correspond to the compute-intensive phases of Kripke due to their
higher instructions count. Cluster 0, on the other hand, may be associated with
the application’s initialization phase, due to its low instructions and high cache
misses counts, and shows higher variance across CPU cores.

The behavior associated to LAMMPS, in Fig. 3b, is similar to what we
observed with Kripke: Cluster 2 captures the initialization phase of the applica-
tion, on the top left corner, while the other 3 clusters capture more compute-
intensive phases. Interestingly, it can be observed that, while the point clouds
associated to Clusters 1 and 3 were separated into two low-variance Gaussian
distributions, Cluster 0 captures several distinct point clouds, resulting in a
single distribution with higher variance. We attribute this behavior to the opti-
mization process behind the EM algorithm. In general, it can be noted that
LAMMPS exhibits both higher cache misses and lower instructions counts than
Kripke, indicating stronger memory activity for this specific configuration. Since
we only aim to characterize performance patterns, our approach’s effectiveness
at distinguishing the applications themselves is not clear: for this purpose, super-
vised learning models relying on a wide pool of metrics have been shown to be
effective [1].

288 G. Ozer et al.

(a) CPU idle time. (b) Network interface temperature.

Fig. 4. Results of clustering applied at the compute node level. Each point represents a
compute node in CooLMUC-3 with its 2-week average power consumption, temperature
and CPU idle time (a) or network interface temperature (b).

4.2 Compute Node-Level Analysis

Here we perform a long-term compute node-level analysis, using data between
September 2nd and 15th from CooLMUC-3. In particular, for each of its 148
compute nodes we use the 2-week averages of their power consumption, tem-
perature (knltemp) and CPU idle time (col idle), and the resulting points are
clustered in a 3-D space with a maximum of 4 Gaussian distributions. The last
of the three metrics is replaced by the network interface temperature (hfi0temp)
in a second experiment. Although we have no knowledge of the running jobs in
this time frame we expect the 2-week averages, given the maximum allowed job
execution time of 48 h, to mitigate the bias of single applications and extract
real node performance. We do not use lookback.

Results are shown in the scatter plots in Fig. 4a, which uses the CPU idle
time as third metric, and Fig. 4b, which uses the network interface temperature.
In both cases, a strong linear correlation can be observed among the metrics: as
expected, a compute node with low CPU idle time consumes more power and
has higher temperatures, due to the workload and communication of HPC appli-
cations. Despite the 2-week aggregation, a large spread in node behavior can still
be observed: in Fig. 4a, compute nodes in Cluster 0 have higher CPU idle times
with lower power and temperature values. Conversely, nodes in Cluster 2 exhibit
heavier load, with up to 200W of average power consumption; this behavior is
likely the symptom of a job scheduling policy that does not account for inter-
node workload balance. Furthermore, a few nodes were classified as outliers: one
of them shows a peculiar behavior, consuming 20% more power than other nodes
with similar CPU idle time. We are currently monitoring this anomaly, in order

Characterizing Performance Variation in HPC Systems 289

(a) Results of clustering. (b) Original per-rack data.

Fig. 5. Results of clustering applied at the rack level. Each point represents a rack
in CooLMUC-3 with its hourly averages of the cooling system’s warm water inlet
temperature, return temperature and heat removed, at different points in time.

to identify its root cause. The same considerations apply for Fig. 4b: in this
case, nodes belonging to Cluster 1 show higher network interface temperatures,
which are likely caused by cooling inefficiency or manufacturing variability. A
single node is classified as an outlier, with a higher network interface temperature
than other nodes under similar load.

4.3 Rack-Level Analysis

For this last case study, we analyze several infrastructure metrics related to the
3 racks composing CooLMUC-3. Each rack contains roughly 50 nodes, as well as
sensors for its section of the warm water cooling system. We consider two weeks of
data, from June 28th to July 11th, for three sensors: the water’s inlet temperature
in the racks (cool-priInletTemp), its return temperature (cool-priReturnTemp)
and finally the amount of heat removed from the racks (cool-power) quantified
in Watts. We compute hourly averages for each metric, obtaining the 3-D points
on which clustering is performed, with a maximum of 4 Gaussian distributions.
Finally, we use the lookback feature to extend the number of points, so as to
cover the entire 2 week range of available data.

The results are shown in the scatter plots in Fig. 5a, with the points labeled
according to their Gaussian distributions, and in Fig. 5b according to the rack
they belong to. Unlike in Sect. 4.2, only the return temperature and the heat
removed metrics appear to be strongly correlated: this is expected, as the greater
is the temperature difference between the inlet and return water, the greater
is the amount of heat removed from the system. As the inlet temperature is

290 G. Ozer et al.

enforced externally, this metric does not show any correlation with the others
and shows little variance across racks. Furthermore, it can be seen how the label-
ing between the two figures matches perfectly, with every rack separated and
modeled by a distinct Gaussian distribution: the implication of this is that our
approach can supply a statistical description of each rack’s cooling performance,
which simplifies performance characterization of the system, as well as anomaly
detection. It can also be seen that Cluster 1 (i.e., Rack 2) shows a consistently
higher return temperature, and that some outliers are present: three points in
particular, which show deviation with respect to the inlet water temperature,
come from the same time frame. This hints at the presence of an anomaly in
the cooling system at that time, likely caused by environmental factors. These
examples demonstrate the effectiveness of our framework in identifying the per-
formance variation of HPC components: while most of these effects could be
identified by human operators, the clear-cut statistical indicators we use sim-
plify both data visualization at scale and proactive control by ODA algorithms.

5 Conclusions

In this paper we have presented a framework to characterize performance varia-
tion in the components of HPC systems: we employ Bayesian Gaussian mixture
models applied to sensor monitoring data, so as to extract the behavioral groups
associated to the components and their statistical description. Based on this, we
proposed an anomaly identification mechanism that uses the Mahalanobis dis-
tance of the single clustering points to the fitted Gaussian distributions and also
provided the online implementation of our approach in the DCDB Wintermute
framework. We then presented the early findings of an exploratory analysis using
our approach on production monitoring data from the CooLMUC-3 HPC system
at LRZ, discussing several case studies carried out at different granularity levels
effectively: our approach can capture different behaviors both in time and across
different components, as well as flag suspicious behaviors as anomalies.

As future work, we plan to validate our approach in a quantitative way,
identifying use cases with clear accuracy metrics. Moreover, we plan to further
test our approach in combination with dimensionality reduction techniques, in
order to enrich the information encoded within the clustering space, as well as
devise techniques to identify relevant metrics for clustering automatically.

References

1. Ates, E., et al.: Taxonomist: application detection through rich monitoring data. In:
Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014,
pp. 92–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1 7

2. Baseman, E., Blanchard, S., DeBardeleben, N., Bonnie, A., et al.: Interpretable
anomaly detection for monitoring of high performance computing systems. In:
Proceedings of the ACM SIGKDD 2016 Workshops (2016)

3. Borghesi, A., Libri, A., Benini, L., Bartolini, A.: Online anomaly detection in HPC
systems. In: Proceedings of AICAS 2019, pp. 229–233. IEEE (2019)

https://doi.org/10.1007/978-3-319-96983-1_7

Characterizing Performance Variation in HPC Systems 291

4. Bourassa, N., Johnson, W., Broughton, J., Carter, D.M., et al.: Operational data
analytics: optimizing the national energy research scientific computing center cool-
ing systems. In: Proceedings of the ICPP 2019 Workshops, pp. 5:1–5:7. ACM (2019)

5. Bourassa, N., Ott, M.: EEHPCWG operational data analytics survey (2019).
https://eehpcwg.llnl.gov/assets/sc19 11 425 525 operational data analytics ott
bourassa.pdf

6. Cappello, F., Geist, A., Gropp, W., Kale, S., et al.: Toward exascale resilience:
2014 update. Supercomput. Front. Innovations 1(1), 5–28 (2014)

7. Cohen, I., Chase, J.S., Goldszmidt, M., Kelly, T., Symons, J.: Correlating instru-
mentation data to system states: a building block for automated diagnosis and
control. In: OSDI, vol. 4, p. 16 (2004)

8. Dani, M.C., Doreau, H., Alt, S.: K-means application for anomaly detection and
log classification in HPC. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE
2017. LNCS (LNAI), vol. 10351, pp. 201–210. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60045-1 23

9. Eastep, J., et al.: Global extensible open power manager: a vehicle for HPC commu-
nity collaboration on co-designed energy management solutions. In: Kunkel, J.M.,
Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266, pp. 394–412.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58667-0 21

10. Gabel, M., Gilad-Bachrach, R., Bjorner, N., Schuster, A.: Latent fault detection
in cloud services. Microsoft Research, Technical report MSR-TR-2011-83 (2011)

11. Gainaru, A., Cappello, F.: Errors and faults. In: Herault, T., Robert, Y. (eds.)
Fault-Tolerance Techniques for High-Performance Computing. CCN, pp. 89–144.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20943-2 2

12. Guan, Q., Fu, S.: Adaptive anomaly identification by exploring metric subspace
in cloud computing infrastructures. In: Proceedings of SRDS 2013, pp. 205–214.
IEEE (2013)

13. Inadomi, Y., Patki, T., Inoue, K., Aoyagi, M., et al.: Analyzing and mitigating
the impact of manufacturing variability in power-constrained supercomputing. In:
Proceedings of SC 2015, pp. 1–12. IEEE (2015)

14. Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering.
In: Proceedings of the GI/ITG Workshop MMBnet, pp. 13–14 (2007)

15. Netti, A., Mueller, M., Auweter, A., Guillen, C., et al.: From facility to applica-
tion sensor data: modular, continuous and holistic monitoring with DCDB. In:
Proceedings of SC 2019. ACM (2019)

16. Netti, A., Mueller, M., Guillen, C., Ott, M., et al.: DCDB Wintermute: enabling
online and holistic operational data analytics on HPC systems. In: Proceedings of
HPDC 2020. ACM (2020)

17. Roberts, S.J., Husmeier, D., Rezek, I., Penny, W.: Bayesian approaches to Gaussian
mixture modeling. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1133–1142
(1998)

18. Tuncer, O., Ates, E., Zhang, Y., Turk, A., et al.: Online diagnosis of performance
variation in HPC systems using machine learning. IEEE Trans. Parallel Distrib.
Syst. 30, 883–896 (2018)

19. Villa, O., Johnson, D.R., Oconnor, M., Bolotin, E., et al.: Scaling the power wall:
a path to exascale. In: Proceedings of SC 2014, pp. 830–841. IEEE (2014)

https://eehpcwg.llnl.gov/assets/sc19_11_425_525_operational_data_analytics_ott_bourassa.pdf
https://eehpcwg.llnl.gov/assets/sc19_11_425_525_operational_data_analytics_ott_bourassa.pdf
https://doi.org/10.1007/978-3-319-60045-1_23
https://doi.org/10.1007/978-3-319-60045-1_23
https://doi.org/10.1007/978-3-319-58667-0_21
https://doi.org/10.1007/978-3-319-20943-2_2

292 G. Ozer et al.

20. Wang, G., Yang, J., Li, R.: An anomaly detection framework based on ICA and
Bayesian classification for IaaS platforms. KSII Trans. Internet Inf. Syst. (TIIS)
10(8), 3865–3883 (2016)

21. Zhang, X., Meng, F., Chen, P., Xu, J.: TaskInsight: a fine-grained performance
anomaly detection and problem locating system. In: Proceedings of CLOUD 2016,
pp. 917–920. IEEE (2016)

15th Workshop on Virtualization
in High-Performance Cloud

Computing (VHPC’20)

Preface to the 15th Workshop
on Virtualization in High-Performance Cloud

Computing (VHPC’20)

Michael Alexander and Anastassios Nanos

Introduction

Containers and virtualization technologies constitute key enabling factors for flexible
resource management in modern data centers, and particularly in cloud environments.
Cloud providers need to manage complex infrastructures in a seamless fashion to
support the highly dynamic and heterogeneous workloads and hosted applications
customers deploy. Similarly, HPC environments have been increasingly adopting
techniques that enable flexible management of vast computing and networking
resources, close to marginal provisioning cost, which is unprecedented in the history of
scientific and commercial computing. Most recently, Function as a Service (Faas) and
Serverless computing, utilizing lightweight VMs-containers widens the spectrum of
applications that can be deployed in a cloud environment, especially in an HPC con-
text. Here, HPC-provided services become accessible to distributed workloads outside
of large cluster environments.

Various virtualization-containerization technologies contribute to the overall pic-
ture in different ways: machine virtualization, with its capability to enable consolidation
of multiple underutilized servers with heterogeneous software and operating systems
(OSes), and its capability to live-migrate a fully operating virtual machine (VM) with a
very short downtime, enables novel and dynamic ways to manage physical servers; OS-
level virtualization (i.e., containerization), with its capability to isolate multiple user-
space environments and to allow for their coexistence within the same OS kernel,
promises to provide many of the advantages of machine virtualization with high levels
of responsiveness and performance; lastly, unikernels provide for many virtualization
benefits with a minimized OS/library surface. I/O Virtualization in turn allows physical
network interfaces to take traffic from multiple VMs or containers; network virtual-
ization, with its capability to create logical network overlays that are independent of the
underlying physical topology is furthermore enabling virtualization of HPC
infrastructures.

The VHPC program committee invited talks, research papers and demos related to
virtualization across the entire software stack with a special focus on the intersection of
HPC, containers-virtualization and the cloud. The main areas of focus were
design/architecture, low-level systems software, management, performance manage-
ment, modeling and configuration/tooling.

Program

The workshop ran for approximately 10 hours, starting from 4pm CEST, ending at 2am
CEST (the next day). There were 8 research papers presented, two lightning talks, three
invited talks and two keynote presentations. The main focus of the workshop was the
evolution of virtualization and container technologies in relation to packaging,
deploying, and executing HPC applications in public infrastructure. Highlighted talks
from the program include Daniel Walsh’s talk from RedHat on Podman, Krzysztof
Rzadca’s talk on Autopilot from Google, as well as the unikernel paper from Stefan
Lankes (RWTH Aachen) about RustyHermit. The second part of the workshop covered
hardware acceleration (talks by Seetharami Seelam from IBM Watson, orchestration
issues for agriculture use-cases from Yiannis Georgiou (RYAX) and an interesting
survey about performance variability for containerized applications on GRNET’s
supercomputer by Dimitris Dellis (GRNET).

The workshop was held as a fully virtual event via Zoom, peaking at 80 attendees,
sustaining more than 40 participants during most of the workshop’s running time. At
the panel discussion, 25 people were online, and of those, 20 engaged in a fruitful panel
debate about where containers, orchestrators and low-level systems virtualization
stacks are going.

Five papers were submitted, and after a double-blind review process, four papers
were accepted. The workshop was held virtually with live presentations on June 24,
2020.

Organization

Chairs

Michael Alexander BOKU, Vienna, Austria
Anastassios Nanos Nubis, Greece

Program Committee

Stergios Anastasiadis University of Ioannina, Greece
Paolo Bonzini Red Hat, Italy
Jakob Blomer CERN, Europe
Eduardo César Universidad Autonoma de Barcelona, Spain
Taylor Childers Argonne National Laboratory, USA
Stephen Crago USC ISI, USA
Tommaso Cucinotta St. Anna School of Advanced Studies, Italy
François Diakhaté CEA DAM Ile de France, France
Kyle Hale Northwestern University, USA
Brian Kocoloski Washington University, USA

Preface to the 15th Workshop on Virtualization 295

Simon Kuenzer NEC Laboratories Europe, Germany
John Lange University of Pittsburgh, USA
Giuseppe Lettieri University of Pisa, Italy
Klaus Ma Huawei Technologies, China
Alberto Madonna Swiss National Supercomputing Center,

Switzerland
Nikos Parlavantzas IRISA, France
Anup Patel Western Digital, USA
Kevin Pedretti Sandia National Laboratories, USA
Amer Qouneh Western New England University, USA
Carlos Reaño Queen’s University Belfast, UK
Adrian Reber Red Hat, Germany
Riccardo Rocha CERN, Europe
Borja Sotomayor University of Chicago, USA
Jonathan Sparks Cray, USA
Kurt Tutschku Blekinge Institute of Technology, Sweden
John Walters USC ISI, USA
Yasuhiro Watashiba Osaka University, Japan
Chao-Tung Yang Tunghai University, Taiwan

The chairs would like to thank the ISC-HPC and Workshop organizers and the
members of the program committee, along with the speakers and attendees, whose
interaction contributed to a stimulating environment. VHPC is planning to continue the
successful co-location with ISC-HPC in 2021.

296 M. Alexander and A. Nanos

Service Function Chaining Based
on Segment Routing Using P4

and SR-IOV (P4-SFC)

Andreas Stockmayer, Stephan Hinselmann, Marco Häberle(B),
and Michael Menth

Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany
{andreas.stockmayer,marco.haeberle,menth}@uni-tuebingen.de,

stephan.hinselmann@student.uni-tuebingen.de

Abstract. In this paper we describe P4-SFC to support service func-
tion chaining (SFC) based on a single P4-capable switch and off-the-shelf
components. It utilizes MPLS-based segment routing for traffic forward-
ing in the network and SR-IOV for efficient packet handling on hosts.
We describe the P4-SFC architecture and demonstrate its feasibility by
a prototype using the Tofino Edgecore Wedge 100BF-32X as P4 switch.
Performance test show that L2 throughput for VNFs on a host is sig-
nificantly larger when connected via SR-IOV with the host’s network
interface card instead of over a software switch.

1 Introduction

Packet processing at the network ingress or egress typically requires network
functions (NFs) such as firewalls, IDS/IPS, NAT, and others. In the past, these
functions have been provided as hardware appliances. To reduce costs, many of
them are today implemented as applications running on standard server hard-
ware as so-called virtual NFs (VNFs). Complex services may be composed of
multiple VNFs. This is called service function chaining (SFC). As the VNFs of a
SFC are generally located on different hosts, SFC requires forwarding support in
the network. That means, a packet which is classified for a specific SFC must be
forwarded along a path that visits all VNFs of the respective SFC in a predefined
order.

The IETF has proposed various approaches for this problem. One approach
requires per-SFC state in the network, the other requires the ability of a node
– we call it the SFC ingress node – to encode a source route in the packet
header. Segment routing based on MPLS is one preferred option for source route
encoding. It requires the SFC ingress node to push a stack of MPLS labels, but
intermediate SFC forwarders just need to pop individual labels. While the latter

This work was supported by the bwNET2020+ project which is funded by the Ministry
of Science, Research and the Arts Baden-Württemberg (MWK). The authors alone are
responsible for the content of this paper.

c© The Author(s) 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 297–309, 2020.
https://doi.org/10.1007/978-3-030-59851-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_19

298 A. Stockmayer et al.

is simple, pushing a large header stack is hardly supported by today’s affordable
hardware.

In recent years, programmable data planes have been developed with the
goal to facilitate new headers and forwarding behavior on software and hardware
switches. P4 is a widespread programming language to specify switch behavior.
It utilizes match-and-action tables for packet forwarding which are populated by
a controller. We leverage this technology in this work and refer to [4] for further
background.

The contribution of this paper is a simple architecture (P4-SFC) using MPLS-
based segment routing for SFC forwarding, a P4-programmable switch as SFC
ingress node, and communication with VNFs using SR-IOV hardware virtualiza-
tion on hosts. To demonstrate the feasibility of P4-SFC, a prototype of P4-SFC
is implemented using the Tofino Edgecore Wedge 100BF-32X as hardware plat-
form. It forwards packets at a speed of 100 Gb/s and pushes large header stacks
in line speed. Apart from the P4 switch, the prototype consists only of com-
modity hardware and comprises an SFC orchestrator that allows customers to
submit their own VNF implementations that do not need to be SFC-aware.

The paper is structured as follows. In Sect. 2, we give an overview of seg-
ment routing, SFC-supporting protocols, and summarize SFC-related activities.
Section 3 presents P4-SFC including the P4 pipeline of the SFC ingress node
and an P4-SFC orchestrator. Section 4 reports on a prototype implementation
of P4-SFC and experiments for validation purposes. Section 5 discusses some
performance issues and compares the L2 throughput of VNFs with and without
SR-IOV. Section 6 summarizes the work and gives conclusions.

2 Related Work

In this section, we first explain segment routing, then we give an overview of
existing protocol stacks for SFC, and summarize selected SFC-related activities.

2.1 Segment Routing

With label switching, an MPLS label identifies a connection. The ingress label
switching router (LSR) pushes a label onto a packet, intermediate LSRs switch
the label according to their forwarding tables, and the egress LSR pops the label.
Segment routing (SR) is a new approach for source routing and may leverage
MPLS forwarding. Here, a label identifies a segment, which may be a link, a path,
a node, etc. The ingress LSR pushes a label stack onto a packet. LSRs forward
the packet according to the topmost label and possibly pop it. Thus, with SR,
the network can remain unaware of individual connections as only ingress LSRs
need to know them to push the right label stack. However, most MPLS nodes
can push only few labels. In this work, we utilize SR and program a P4-capable
switch for pushing large label stacks.

P4-SFC 299

2.2 Protocol Stacks for SFC

The IETF has identified SFC as a problem for traditional networks due to their
topological dependencies [16]. Traditional networks have a rather static config-
uration but SFC requires a highly dynamical network limiting high availability
and scaleability.

A major result of te IETF’s SFC working group is the network service header
(NSH) [17]. It consists of three parts: a base header providing information about
the header structure and the payload protocol, a service path header containing
the path identification and location within a service path, and a context header
for metadata.

Another document proposes an MPLS-based forwarding plane for SFC [9].
It suggests tuples consisting of an “SFC context label” and an “SF label” sim-
ilar to the NSH. The context label identifies the SFC by the contained service
path identifier (SPI), and the SF label identifies the next service function to be
actioned. In case of label switching, the context label is maintained and used
by LSRs to switch consecutive SF labels for VNFs. In case of segment routing,
tuples of context/SF labels are stacked by the ingress LSR and are consecu-
tively popped with completed VNF operations. A similar approach is described
in another working group draft [7].

These protocols are partly competing and not fully compatible. In all pro-
posed protocol suites, all devices involved in an SFC, e.g., forwarding nodes and
NFs, need to be SFC-aware, i.e., they need to respect protocol specifics. P4-SFC
allows customers to use VNFs that are not SFC-aware. Furthermore, it leaves
the network unaware of SFCs, utilizes only common MPLS labels, and requires
forwarding nodes to pop only single labels, i.e., no special hardware features are
needed. Only the SFC ingress node pushes a label stack.

2.3 Selected SFC-Related Activities

The ETSI has published a set of documents describing an architecture for net-
working operations and orchestration (MANO) of NFVs [8]. It provides an
overview with focus on interoperability, but it does not offer an NFV/SFC net-
working stack.

The Open Platform for NFV (OPNFV) [2] has been started by the Linux
Foundation in 2014. It is a cooperative project among 20 companies with the goal
to develop an NFV infrastructure (NFVI) software stack to build and test NFV
functionality. Its long-term goal is to provide a standard platform for NFVI.

Most commercial cloud operators, e.g., Amazon [3] or Microsoft [15], offer
configurable, complex services to their customers based on NFV/SFC. Exam-
ples of such NFs are firewalls, gateways, and load balancers. These services are
comfortable for customers but are limited to functions provided by the cloud
operators. P4-SFC allows customers to upload their own VNF binaries.

NFVnice [14] is a user-space scheduler on a host that decides whether a packet
is delivered to its desired VNF. It also monitors all VNFs in the system. If VNFs
in a later stage of an SFC are overloaded, NFVnice drops packets already at an
early stage of the SFC to reduce wasted work.

300 A. Stockmayer et al.

P4NFV [10] and P4SC [6] propose to implement NFs based on P4-capable
hardware because general purpose hardware is too slow for fast packet process-
ing. Their contribution is an architecture for the management of VNFs on P4
switches. The work is applicable to P4-based hardware and software switches.

3 Architecture of P4-SFC

In this section we explain the implementation of the P4-based SFC ingress node
and how VNFs are efficiently integrated on hosts so that they remain SFC-
unaware and transparent for routing.

3.1 Implementation of the SFC Ingress Node

We briefly describe the requirements of the SFC ingress node and explain a P4
pipeline for implementation of this functionality in P4.

Requirements. In P4-SFC, the SFC ingress node classifies traffic and adds
appropriate MPLS label stacks to packets that require processing by a specific
SFC. The classifier identifies flows for a specific SFC. We utilize flow descriptors
consisting of source and destination IP addresses, port numbers, and IP protocol
number for that purpose. Wildcards are supported. That label stack encodes
both the forwarding in the network and the identification of the VNFs. Therefore,
the label stack can be large. To keep things simple, we support up to n = 10
labels in our small testbed (see Sect. 4). However when using jumbo frames, large
numbers of labels are possible.

Fig. 1. Match-and-action table “push Label Stack” to push label stacks of different
size.

P4-SFC 301

P4 Pipeline. We describe the supported header stacks, the ingress and egress
control flow, and the pushLabelStack control block in more detail.

Supported Header Stacks. Incoming packets are parsed so that their header val-
ues can be accessed within the P4 pipeline. To that end, we define up to n MPLS
labels, an IP header, and a TCP/UDP header.

Ingress and Egress Control Flow. The ingress control flow consists of a
Push_Label_Stack control block and an IP_MPLS_Forward control block. The
push_Label_Stack control block adds an appropriate label stack to the packet,
i.e., it serves as classifier. The IP_MPLS_Forward control block performs simple
IP/MPLS forwarding. The egress flow just sends the packet and does not imple-
ment any special control blocks.

Implementation of the Push_Label_Stack Control Block. The implementation
challenge is that an arbitrary number of up to n labels need to be pushed.
Header sizes are fixed. An intuitive approach is pushing a single label per pipeline
execution and recirculating the packet for another pipeline execution until the
desired label stack is fully pushed. The drawback of this approach is that pushing
n labels requires n-fold packet processing capacity, which reduces the throughput
of the SFC ingress node.

Our solution uses the match-and-action table (MAT) push Label Stack
whose structure is given in Fig. 1. The MAT utilizes the fields of the source
and destination addresses and port numbers as well as the IP protocol number
as match keys. A ternary match is used so that wildcards are supported. We
provide actions push_LS_i to push a stack of i labels onto the packet. This
action has i parameters but the table has n label entries (L1, ..., Ln). In case of
a match, the corresponding action is executed with the appropriate number of
arguments. Afterwards, the IP_MPLS_Forward control block is carried out. For
the implementation of the IP_MPLS_Forward control block we reuse available
demo code.

3.2 Transparent and Efficient VNF Integration on Hosts

We now specify how packets are forwarded from a switch to a VNF on a host
and back. This is challenging since the VNF should remain unaware of the label
stack, and the packet forwarding from the host’s network interface card (NIC) to
the VM hosting the VNF should be efficient. The following steps are illustrated
by Fig. 2.

We assume that up to N VNFs are supported by a host, either within a
container or a separate VM. Each potential VNF constitutes a logical network
segment while the corresponding physical network segment is the switch over
which the VNF is reachable. The forwarding table of the switch is configured
such that an incoming packet with a topmost label pointing at a specific VNF is
equipped with a VLAN tag pointing at the VNF and forwarded to the respective
host.

302 A. Stockmayer et al.

Fig. 2. P4-SFC utilizes label stacks in packets for segment routing in the network, but
passes only IP packets to VNFs. Therefore, VNF remain unaware of the SFC.

The NIC of the host is statically configured to map packets with VLAN tags
to virtual PCI devices that serve as virtual NICs (vNICs) for VMs or containers.
These features are enabled by virtual machine device queue (VMDq) and single
root I/O virtualization (SR-IOV). These technologies are supported by most
contemporary NICs and CPUs. With VMDq, a NIC can have multiple internal
queues and with SR-IOV, a so-called Physical Function (PF) can be virtualized
into Virtual Functions (VFs). A VF can be passed-through as PCI device to a
VM or container. We utilize SR-IOV to pass through a queue of the NIC as a VF
to a VM/container in order to serve as a vNIC. The NIC used in our prototype
provides up to 128 VFs so that up to N = 128 VNFs can be supported on a
host. More powerful NICs providing even more VFs also exist.

Within a VM/container, the forwarding table of the MPLS Router Module
in the Linux kernel is utilized to deliver the IP packet to the VNF without the
label stack, to store the label stack, to push the label stack again when the
packet is returned from the VNF, and to send the packet to the appropriate
egress interface. Then, the packet is returned from the host to the switch in the
corresponding VLAN. The switch removes the VLAN tag and the label for the
next segment.

3.3 P4-SFC Orchestrator

The P4-SFC orchestrator is written in Python and leverages the libvirt and LXD
framework for VM/container management. It interacts with administrators for
management purposes and with customers for the specification of SFCs. It places
VNFs on hosts and computes paths for SFCs, it launches and terminates SFCs,
it adds new hosts and migrates VNFs among hosts.

P4-SFC 303

Administrator/Customer Interaction and SFC Specification. The
orchestrator offers a CLI interface for maintenance, e.g., for adding a new host
to the system or moving VNFs.

Customers provide a configuration file in json format with a description of
their SFCs. The specification of an SFC includes a flow descriptor, a list of VNFs,
their executable binaries, their resource requirements (CPU, RAM, I/O), and
information whether they are to be deployed as VMs or containers. Customers
may request permanent storage for a VNF, e.g., for logging purposes, so that it
has permission to write to shared network storage. The VNF binaries provided
by customers are also saved to shared network storage. VNF applications are
required to receive and send packets via /dev/net/tun, but they can remain
unaware of SFCs.

VNF Placement and Path Calculation. The orchestrator determines hosts
to run VNFs such that resource requirements communicated by the customers
are met. Storage is not part of these requirements since shared network storage
is used. If resources are not sufficient, VNFs may be migrated or new hosts may
be added. While there is an extensive body of literature on VNF placement, our
prototype uses only simple algorithms for this task.

The orchestrator knows the network topology. Either the network topology
is static like in our prototype or it can be dynamically discovered with protocols
like LLDP [11]. Based on this information, the orchestrator computes paths from
the SFC ingress node to desired destinations including the VNFs specified by
SFCs. The path calculation is performed whenever a forwarding entry for the
SFC ingress node needs to be modified.

Launch and Termination of SFCs. The orchestrator holds a disk image as
template for VMs/containers supporting VNFs. P4-SFC requires an appropri-
ate configuration of the forwarding table of the MPLS Router Module which is
initially applied to the template. The template is copied to every host so that
VMs/containers can be cloned from it. Resources required by a VNF are provided
by the customer’s SFC description and are enforced by the orchestrator using
appropriate configuration files for the VM/container. A libvirt xml definition
specifies the hardware resources assigned to a VM. Similarly, an LXD configu-
ration file uses cgroup statements to limit the kernel space resources available
to the container.

If an SFC is to be launched, the orchestrator determines for each VNF a
host with sufficient resources and finds a free VF on the NIC of that host. This
VF determines the label for the VNF. The orchestrator defines a VM/container
with suitable parameters, i.e., the VM/container template, sufficient resources,
the VF, and a pointer to the VNF binary. It then starts the VM/container and
the appropriate VNF binary from the shared network storage. Finally, the SFC
ingress node is configured. To that end, a path is computed for the SFC and
an entry is added to the MAT push Label Stack (see Fig. 1) containing the flow

304 A. Stockmayer et al.

descriptor and the label stack for the SFC. The flow descriptor is needed for
packet classification.

If an SFC is to be stopped, the VMs/containers with its VNFs are terminated
and the corresponding entry is removed from the MAT push Label Stack.

Adding a New Host. To add a new host to P4-SFC, the orchestrator needs
ssh access and permissions for VM/container management on the new host. It
initially scans for available resources on the new host and adds them to its pool
of available capacities. It then copies the VM/container templates to the host
and configures the virtualization frameworks.

To make the new host and its potential VNFs reachable in the network, the
forwarding table of the switch to which the host is attached is equipped with
forwarding entries for the labels of all potential VNFs on the new host. If a host
is removed, the corresponding labels are removed from the switch.

VNF Migration. VNFs may need to be migrated to another host, e.g., for
maintenance purposes. The orchestrator supports this process by first cloning
and starting the VNF on the new host, changing the respective entry of its SFC
in the MAT push Label Stack, and terminating the VNF on the old host.

4 P4-SFC Prototype

We first give an overview of the testbed and describe functional tests. Finally,
we report on the virtualization platform of the hosts.

Fig. 3. Testbed for functional tests of P4-SFC.

P4-SFC 305

4.1 Testbed

Figure 3 illustrates the testbed setup. A small datacenter which consists of an
SFC ingress node, three forwarding nodes, and three servers hosting VNFs.
Traffic is forwarded using segment routing using the bidirectional labels asso-
ciated with the links. The MPLS forwarding nodes are standard Linux PCs with
software switches using the mpls router kernel module and iproute2. The SFC
ingress node is a Tofino Edgecore Wedge 100BF-32X with the implementation
as reported in Sect. 3.1. In addition, an orchestrator as outlined in Sect. 3.3, but
omitted in the figure, controls the testbed.

4.2 Functional Tests

We conduct the following experiments. An external source sends traffic via the
datacenter to a destination. Within the datacenter, traffic is treated by an SFC.
We experiment with three different SFCs that consist of the SFCs A, B, and
C. We run tcpdump on source, destination, and the hosts to observe whether
a packets are sent, received, or delivered to a specific VNF. We describe three
experiments in which traffic was received by the destination.

SFC A contains only the single VNF A0 and the label stack is (L1, L6).
The successful experiment demonstrates that the implemented segment routing
works.

SFC B contains two VNFs B0 and B1 on the same host and the label stack
is (L2, L7, L8). The successful experiment shows that multiple VNFs can be
reached on the same host. To that end, the traffic is forwarded from B0 via S2

to B1.
SFC C contains two VNFs C0 and C1 on different hosts with the label stack

L1, L9, L4, L5, L10. The successful experiment shows the correct operation of
alternating VNF delivery and network forwarding.

4.3 Host Virtualization Platform

We use servers with a Xeon Gold 6134 processor, 8 cores, and 128 GB RAM as
hosts. Linux kernel 5.3.10 serves as operating system. We leverage the Intel VT-
x feature to enable hardware-accelerated virtualization. We use Linux Kernel-
based Virtual Machine (KVM) [13] as a hypervisor. VMs are created based
on QEMU and are managed using the libvirt [18] framework. This approach
enables almost native performance for VMs [12]. Containers are supported with
the LXD [5] framework using cgroups [1] to isolate containers from each other
and manage resource allocation.

In contrast to VMs, containers are lightweight so that many of them can be
accommodated on a single host. However, isolation among them is not perfect.
In addition, there is some risk that malicious VNFs exploit security breaches
and compromise the host. This tradeoff influences the choice whether VMs or
containers should be used for VNFs. Thus, trusted VNFs can be deployed as

306 A. Stockmayer et al.

containers so that they can benefit from a smaller resource footprint and a faster
starting time compared to VMs.

We presented only one specific instantiation of P4-SFC. KVM-based virtual-
ization on host could by easily substituted by e.g. XEN [20] without modification
of the orchestrator. Segment routing could be implemented with IPv6 instead of
MPLS but this requires changes to the SFC ingress node and the orchestrator.

5 Performance Evaluation

We first compare the forwarding efficiency VNF interconnection with SR-IOV
and a virtual switch on the host and then we discuss additional performance
aspects.

5.1 Performance Comparison

We compare the throughput for a VNF integrated with SR-IOV as presented in
Sect. 3.2 with the one of a VNF connected via the Open vSwitch (OVS) software
switch [19]. We utilize the same host platform as in Sect. 4.1 and two Mellanox
ConnectX-5 NICs with 100 Gb/s. We set up 2 VMs with 8 cores each and utilize
both iperf2 and iperf3 for TCP throughput test for 10 s. Iperf2 supports multiple
threads, but iperf3 is the newer version. To test SR-IOV-based integration, each
of the two VMs uses one VF on different NICs. To test OVS-based integration,
both VMs are connected only via the OVS and not via a real NIC, which is an
optimistic approximation for OVS-based VNF communication.

Table 1. L2 throughput for VNFs with different integration.

L2 packet size Forwarding technology iperf3 1 flow iperf2 1 flow iperf2 8 flows

1500 OVS 3.11 Gb/s 3.3 Gb/s 3.24 Gb/s

bytes SR-IOV 32.3 Gb/s 36.3 Gb/s 93.4 Gb/s

104 OVS 54.3 Mb/s 2.24 Mb/s 4.24 Mb/s

bytes SR-IOV 2.24 Gb/s 2.17 Gb/s 7.64 Gb/s

Table 1 shows the results. With iperf3, multithreading is not supported so
that we used it only for experiments with a single flow. For large packets and
OVS, around 3 Gb/s L2 throughput are achieved, both with iperf2 and iperf3,
with 1 and 8 flows. Thus, 3.3 Gb/s seems to be the upper limit of OVS. With
SR-IOV, we obtain a L2 throughput of 32.3 Gb/, 36.3 Gb/s, and 93.4 Gb/s in
different experiments. Thus, the L2 throughput is up to 28 times larger than with
OVS. For small packets, the L2 throughput is significantly reduced for both OVS
and P4-SFC. In addition, we observe TX errors on the OVS NICs. With iperf2
and a single flow we even witness interface resets. Therefore, the throughput is
extremely low in those cases. These problems were not observed with SR-IOV.

P4-SFC 307

5.2 Additional Performance Aspects

We discuss additional performance aspects.

Ingress Node Forwarding Speed. Tofino performs P4 code in line speed so
that its full capacity 100 Gb/s can be used for packet classification and encap-
sulation with label stacks.

Encapsulation Overhead. The segment routing approach used in P4-SFC
imposes multiple labels per packet. Each MPLS label is only 4 bytes large. Thus,
the header overhead for a stack of 10 labels amounts only to 40 bytes which is
the size of a single IPv6 header, which has hardly any impact on forwarding
performance.

Ingress Node Scalability. The SFC ingress node needs to support a large
number of SFCs, therefore, the size of the entries in the MAT push Label Stack
(see Fig. 1) is critical. Each entry consists of ingress and egress IPv4 addresses
(2× 4 bytes), ingress and egress ports (2× 2 bytes), IPv4 protocol number
(1 bytes) for SFC classifier and 10 MLPS labels (10× 4 bytes) for segment rout-
ing. This amounts to 53 bytes per table entry, which allows for a number of SFCs
in an order of magnitude of 100 K.

Traffic Engineering. Segment routing has potential for traffic engineering so
that a smart orchestrator could optimize network performance.

6 Conclusion

In this work, we proposed P4-SFC as an architecture for SFC. It has a P4-based
SFC ingress node which can push large header stacks needed for segment routing.
It uses SR-IOV-based host virtualization to achieve high VNF throughput. It
uses plain MPLS forwarding and allows VNFs to be SFC-unaware and allows
customers to upload own binaries as VNFs. P4-SFC has been demonstrated as a
prototype. The SFC ingress node has been implemented on the Tofino Edgecore
Wedge 100BF-32X. The orchestrator controls both the SFC ingress node and
hosts. Experiments showed that the chosen approach for host virtualization is
more powerful than using software switches.

References

1. Linux control groups. http://man7.org/linux/man-pages/man7/cgroups.7.html.
Accessed 14 July 2020

2. Open Platform for NFV (OPNFV). https://www.opnfv.org/. Accessed 14 July
2020

3. Amazon: Amazon Web Services. https://aws.amazon.com. Accessed 14 July 2020

http://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.opnfv.org/
https://aws.amazon.com

308 A. Stockmayer et al.

4. Bosshart, P., et al.: P4: programming protocol-independent packet processors.
ACM SIGCOMM Comput. Commun. Rev. 44(3), 87–95 (2014)

5. Canonical: Linux Containers. https://linuxcontainers.org/lxd/introduction/.
Accessed 14 July 2020

6. Chen, X., Zhang, D., Wang, X., Zhu, K., Zhou, H.: P4SC: towards high-
performance service function chain implementation on the P4-capable device. In:
IFIP/IEEE Symposium on Integrated Network and Service Management (IM)
(2019)

7. Clad, F., et al.: Service Programming with Segment Routing, November 2019.
http://www.ietf.org/internet-drafts/draft-ietf-spring-sr-service-programming-01.
txt

8. ETSI OSM Team: ETSI Open Source Mano. https://www.etsi.org/technologies/
nfv/open-source-mano. Accessed 14 July 2020

9. Farrel, A., Bryant, S., Drake, J.: RFC8595: An MPLS-Based Forwarding Plane for
Service Function Chaining, June 2019. https://tools.ietf.org/html/rfc8595

10. He, M., Basta, A., Blenk, A., Deric, N., Kellerer, W.: P4NFV: an NFV architecture
with flexible data plane reconfiguration. In: International Conference on Network
and Services Management (CNSM) (2018)

11. IEEE: 802.1AB-2016 - IEEE Standard for Local and metropolitan area networks
- Station and Media Access Control Connectivity Discovery (2016)

12. Intel: Enabling Intel Virtualization Technology Features and Benefits. https://
www.intel.com/content/dam/www/public/us/en/documents/white-papers/
virtualization-enabling-intel-virtualization-technology-features-and-benefits-
paper.pdf. Accessed 14 July 2020

13. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM: the Linux virtual
machine monitor. In: Ottawa Linux Symposium (2007)

14. Kulkarni, S.G., et al.: NFVnice: dynamic backpressure and scheduling for NFV
service chains. In: ACM SIGCOMM, pp. 71–84 (2017)

15. Microsoft: Microsoft Azure. https://azure.microsoft.com. Accessed 14 July 2020
16. Quinn, P., Nadeau, T.: RFC7498: Problem Statement for Service Function Chain-

ing, April 2015. http://www.rfc-editor.org/rfc/rfc7498.txt
17. Quinn, Ed.,P., Elzur, Ed.,U., Pignataro, Ed.,C.: RFC8300: Network Service Header

(NSH), January 2018. https://tools.ietf.org/html/rfc8300
18. Hat, R.: libvirt: The Virtualization API. http://libvirt.org. Accessed 14 July 2020
19. The Linux Foundation: Open vSwitch. https://www.openvswitch.org/. Accessed

14 July 2020
20. The Linux Foundation: Xen Project. http://xenproject.org/. Accessed 14 July 2020

https://linuxcontainers.org/lxd/introduction/
http://www.ietf.org/internet-drafts/draft-ietf-spring-sr-service-programming-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-spring-sr-service-programming-01.txt
https://www.etsi.org/technologies/nfv/open-source-mano
https://www.etsi.org/technologies/nfv/open-source-mano
https://tools.ietf.org/html/rfc8595
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://azure.microsoft.com
http://www.rfc-editor.org/rfc/rfc7498.txt
https://tools.ietf.org/html/rfc8300
http://libvirt.org
https://www.openvswitch.org/
http://xenproject.org/

P4-SFC 309

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Seamlessly Managing HPC Workloads
Through Kubernetes

Sergio López-Huguet1(B), J. Damià Segrelles1, Marek Kasztelnik2,
Marian Bubak2, and Ignacio Blanquer1

1 Instituto de Instrumentación para Imagen Molecular (I3M),
Centro mixto CSIC - Universitat Politècnica de València,

Camino de Vera s/n, 46022 Valencia, Spain
serlohu@upv.es, {dquilis,iblanque}@dsic.upv.es

2 ACC Cyfronet, Sano Centre for Computational Medicine,
AGH University of Science and Technology,

Nawojki 11, 30-950 Kraków, Poland
ymkaszte@cyfronet.pl, bubak@agh.edu.pl

Abstract. This paper describes an approach to integrate the jobs man-
agement of High Performance Computing (HPC) infrastructures in cloud
architectures by managing HPC workloads seamlessly from the cloud job
scheduler. The paper presents hpc-connector, an open source tool that
is designed for managing the full life cycle of jobs in the HPC infras-
tructure from the cloud job scheduler interacting with the workload
manager of the HPC system. The key point is that, thanks to running
hpc-connector in the cloud infrastructure, it is possible to reflect in the
cloud infrastructure, the execution of a job running in the HPC infras-
tructure managed by hpc-connector. If the user cancels the cloud-job,
as hpc-connector catches Operating System (OS) signals (for example,
SIGINT), it will cancel the job in the HPC infrastructure too. Further-
more, it can retrieve logs if requested. Therefore, by using hpc-connector,
the cloud job scheduler can manage the jobs in the HPC infrastructure
without requiring any special privilege, as it does not need changes on
the Job scheduler. Finally, we perform an experiment training a neural
network for automated segmentation of Neuroblastoma tumours in the
Prometheus supercomputer using hpc-connector as a batch job from a
Kubernetes infrastructure.

The work presented in this article has been partially funded by the regional government
of the Comunitat Valenciana (Spain), co-funded by the European Union ERDF funds
(European Regional Development Fund) of the Comunitat Valenciana 2014–2020, with
reference IDIFEDER/2018/032 (High-Performance Algorithms for the Modeling, Sim-
ulation and early Detection of diseases in Personalized Medicine). The work is also
co-funded by PRIMAGE (PRedictive In-silico Multiscale Analytics to support cancer
personalised diaGnosis and prognosis, empowered by imaging biomarkers) a Horizon
2020 RIA project funded under the topic SC1-DTH-07-2018 by the European Com-
mission, with grant agreement no: 826494.

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 310–320, 2020.
https://doi.org/10.1007/978-3-030-59851-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_20

Seamlessly Managing HPC Workloads Through Kubernetes 311

Keywords: Integrating cloud and HPC · Kubernetes · Docker and
Singularity containers

1 Introduction

Most scientific workloads combine requirements that could be efficiently
addressed using a combination of High-Throughput Computing (HTC) and High-
Performance Computing (HPC) workloads [7,8,20]. Focusing on Medical Imag-
ing, HPC is extensively used for artificial intelligence model building and simula-
tion. HTC is widely used in image post-processing and applying trained models
to new datasets. HTC workloads can be efficiently tackled on cloud computing
infrastructures, which fit to massive, coarsely coupled and embarrassingly par-
allel jobs. HPC workloads typically require infrastructures composed of a large
number of highly-coupled computing nodes. HPC infrastructures are typically
provided by singular data centers through specific interfaces.

Cloud computing platforms provide access to a large variety of computing
resources on demand and without needing on-premise resources. Therefore, cloud
services assist on reducing the cost contention and the ecological impact thanks
to the self-adaptive mechanisms that dynamically adjust the cloud infrastruc-
ture depending on different aspects. Furthermore, it is possible to build hybrid
cloud platforms depending on the institution necessities. Cloud infrastructures
are much more flexible than HPC systems. Contrary to Cloud infrastructures,
which can be adapted to the applications requirements, in HPC systems appli-
cations must be adapted to the execution environment. One important aspect
for final users relies on the job management.

On the other hand, an HPC cluster delivers a huge amount of specialized
and already configured computation resources to the researchers. Clusters can
run free and commercial set of toolboxes which are already prepared to be used
efficiently in distributed environments. As a result, running an application in
this scenario can be easier than in a pure cloud model for the researcher (who
wants to perform calculations and does not want to focus on the hardware and
software installation and fine tuning).

The institutions can take benefit of employing a hybrid processing platform
composed of HPC and cloud infrastructures. The architecture platform can be
complex because there are a lot of aspects to consider: authentication, authoriza-
tion, data storage, software requirements, special hardware, etc. Furthermore,
the majority of the institutions that use HPC infrastructures, use infrastruc-
tures that are provided by third parties. Therefore, they must adapt their other
processing infrastructures (for example, a public or private cloud platform) to
use the different HPC infrastructures. This work presents hpc-connector1, an
open source tool that allows to seamlessly integrate the cloud architecture with
the access to the HPC cluster, without administrator privileges.

1 https://gitlab.com/primageproject/hpc-connector.

https://gitlab.com/primageproject/hpc-connector

312 S. López-Huguet et al.

2 Scenario and Related Work

2.1 Architecture

Cloud application architectures typically comprise front-end services and back-
end nodes. Front-end services provide external access and manage back-end
resources through a job scheduler API or a graphical interface. In some cases,
front-end nodes use resource manager tools in order to scale in or out the
resources, depending on usage metrics to provide an agreed Quality of Service.
The back-end nodes are a set of heterogeneous resources that run the jobs sent
by the users through the job scheduler.

There are examples of cloud platforms in the literature that use the previ-
ous architecture scheme. In [14], the authors present an architecture to process
Internet of Things (IoT) data collected from smart agriculture. In our previous
works, we presented a cloud architecture for data analysis [19] and for processing
medical imaging [18].

However, there are no examples of hybrid cloud and HPC infrastructures that
could provide a seamless interface for both types of workloads. The PRIMAGE
project [21] is an ongoing research project that uses artificial intelligence tech-
niques for the processing of medical imaging in paediatric cancer. In this project,
the platform architecture combines an HPC infrastructure (the Prometheus
supercomputer [10]) and an on-premise cloud platform. The tool presented in
this work was designed to solve the problem of combining the execution of some
applications in several infrastructures with no administrator privileges.

Job schedulers (or workload managers) manage the remote execution of the
applications on the available resources. The most popular job schedulers designed
for containers technologies are Docker Swarm, Kubernetes2, some frameworks of
Apache Mesos3 and Nomad4. Regarding workload managers in the HPC environ-
ment, there are a lot that are widely used: SLURM [22], Torque5 or HTCondor6.
It should be pointed out that hpc-connector was designed to integrate any cloud
architecture (provided with any job scheduler) with an HPC infrastructure (also
provided with any workload manager). In this work, we will use Kubernetes as
the cloud job scheduler, and SLURM for the HPC infrastructure.

Application portability and delivery are key issues not only in cloud com-
puting environments but also in HPC. Containers probably are now the most
popular technology for application delivery, thanks to the reproducibility, trace-
ability, provenance, isolation, and portability. Docker7 has reached the maximum
popularity as container technology on cloud infrastructures, thanks to its rich
ecosystem of tools and great versatility. However, Docker containers run under
the root user space and do not provide easily multi-tenancy (it is necessary to

2 https://kubernetes.io.
3 http://mesos.apache.org/.
4 https://www.nomadproject.io/.
5 https://adaptivecomputing.com/cherry-services/torque-resource-manager/.
6 https://research.cs.wisc.edu/htcondor/.
7 https://www.docker.com/.

https://kubernetes.io
http://mesos.apache.org/
https://www.nomadproject.io/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://research.cs.wisc.edu/htcondor/
https://www.docker.com/

Seamlessly Managing HPC Workloads Through Kubernetes 313

create previously the users during the container building stage). Singularity con-
tainers [17] are widely used in the HPC environments because they run under
user space, support multi-tenancy and provide mechanisms to use Message Pass-
ing Interface (MPI). There are other container technologies and runtimes, such
as Podman8, Charliecloud9, Shifter10, etc., but we will use Docker and Singu-
larity as container technologies for cloud and HPC infrastructures, respectively.
It should be noted that the common used HPC workload managers (such as
SLURM) can run unprivileged containers without requiring changes or installing
a plugin (as containers are processes that are executed in the user space).

2.2 Objectives and Requirements

The goal of this work is to provide a tool that permits the combination of a job
scheduler that runs applications embedded in Docker containers (for example,
Kubernetes) on the cloud environment, with the HPC workload managers that
run applications bare metal or in unprivileged containers. Considering the sce-
nario described in the previous section, the identified requirements and assump-
tions needed to fulfill are:

(R1) Users must use the same method to submit or cancel jobs to the HPC
workload manager, as the job scheduler on the cloud environment does.

(R2) The job scheduler used on the cloud environment must manage the full
life cycle of a job in the HPC infrastructure. For example, the job
scheduler should be able to submit, cancel, get execution state, get the

logs, etc.
(R3) The data required to run the job must be accessible in the HPC infrastruct-

ure. There are several options: users upload it in advance, the job down-
loads it before starting, or there is a shared storage between the HPC
infrastructure and any other environments that could use the data.

(R4) Any user authorised to access the cloud and the HPC resources must be
able to execute jobs without requiring special privileges in neither the
HPC nor the cloud infrastructures.

(R5) The solution should be extensible to deal with different job schedulers and
workload managers.

2.3 State of the Art

The combination of the potential of High Performance Computing for simulation
and Big Data and cloud computing for massive data processing has become a
driving forces for complex disciplines such as Brain science [9]. The relevance
of High Performance and Cloud Computing for addressing challenges related to
medical imaging has boosted with the take off of the application of Artificial
Intelligence [4,5]. A revision study [11] highlights 83 articles applying some kind

8 https://podman.io/.
9 https://hpc.github.io/charliecloud/.

10 https://www.nersc.gov/research-and-development/user-defined-images/.

https://podman.io/
https://hpc.github.io/charliecloud/
https://www.nersc.gov/research-and-development/user-defined-images/

314 S. López-Huguet et al.

of HPC techniques in Medical Imaging [2], many of them also suitable of being
addressed using cloud computing.

Although there are authors that propose hardware specific configurations
based on FPGAs and GPUs [12,16], current tendencies propose the use of cloud
computing platforms, especially public offerings [13] with special examples on
solutions provided directly by main industry players in cloud [1]. However, in
most of the cases, the use of clouds is limited to the storage and access of medical
imaging data with low processing capabilities [2,15]. Recently, solutions propos-
ing the combination of container-based platform with computing accelerators
have arisen [3].

3 The Proposed Solution: HPC-Connector

Institutions that manage HPC and cloud environments can integrate job sched-
ulers by developing the appropriate plug-ins and extending the current job types
to make them compatible between both environments. Large HPC consortia and
institutions may follow this approach. However, in most cases users face a situa-
tion in which they can acquire both types of resources from different providers.

Another approach is to adapt the job scheduler on the cloud platform to
be able to communicate with the workload manager, as cloud infrastructures
are widely accessible and much more flexible than an HPC infrastructure for
a regular user. This option could be complex and cumbersome, as it would
require continuous work as new updates to the job scheduler arise. If the job
scheduler is released under open-source licenses, the institution must extend it
with the desired functionality following the rules from the project developers. It
should be pointed out that, if the institution wants to use more than one HPC
infrastructure with different configurations (for example, in one case you only
can interact using a REST API but, in the other case, you can only interact
using ssh commands), the software extension could be even more complex.

Adapting the job scheduler to the workload managers could be complex and,
besides, it forces to keep using the adapted job scheduler in the future for making
the adaption effort profitable. For this reason, we propose a solution by creating
an external tool (hpc-connector) that manages the jobs in the HPC infrastructure
from the cloud infrastructure, as any other job without special privileges.

The key point of the proposed solution is the following: once a user submits
a job to the job scheduler that wants to be executed in the HPC infrastructure
(fulfilling R1), a special job is executed in the cloud infrastructure. The special
mirror job is a an instance of hpc-connector, which will manage the job in the
HPC infrastructure (R2). Thus, the mirror job updates the job scheduler as the
execution of the HPC job progresses in the HPC infrastructure. As hpc-connector
does not need any special privilege (like mounting a directory or accessing special
kernel directives), the special mirror job can run in the user space (fulfilling R4).
After submitting the job, hpc-connector will monitor it (R2) until the end or its
cancellation by the HPC workload manager. Once the job ends, hpc-connector
can retrieve, if the HPC infrastructure allows it, the job output (R2). Further-
more, hpc-connector is able to catch the SIGINT signal that the job scheduler

Seamlessly Managing HPC Workloads Through Kubernetes 315

can send to the job before killing it. Therefore, if an appropriate cloud job config-
uration is performed (the cloud job receives a SIGINT signal and it has a grace
period before killing it after the signal is received) and the job still running,
hpc-connector will cancel the job in the HPC infrastructure (R2).

The tool presented is designed to be running in any environment (even in
a local machine) because it is implemented in Python, so it can be running
embedded in a any type of container or bare metal. Regarding the support of
HPC infrastructures, as each HPC backend has its own methods for managing
the jobs and the data, it is necessary to implement some specific functionality
for each backend in hpc-connector to interect with the job submission, informa-
tion retrieval about the job execution, canceling, or deleting jobs. Furthermore,
if the institution wants to retrieve the logs, it is required to implement how to
operate with files (like upload, download, or remove) and operations with direc-
tories (list, create, or delete). The tool uses the super-class Backend so, for each
new HPC infrastructure, a new subclass from the Backend class must be cre-
ated with the name of the HPC infrastructure. For example, let’s consider two
different HPC infrastructures: cluster1 and cluster2. The infrastructure cluster1
uses SLURM as workload manager with a REST API. On the other hand, clus-
ter2 also uses SLURM but only provides a REST API to manage the files, so
the users must interact with SLURM via ssh. Thus, cluster2 implementation is
different from cluster1 because, although both use SLURM, the job operations
must be performed using ssh for cluster2. Therefore, cluster1 and cluster2
sub classes from Backend class must be implemented. Thus, hpc-connector ful-
fils R5 because it is designed to be running in any environment and it can be
extended for new HPC infrastructures.

4 Use Case: Segmentation of Neuroblastoma Tumours

To validate the usefulness of the hpc-connector, we performed a test case. The
scenario uses a private cloud platform and the Prometheus HPC infrastructure.
The cluster deployed on the private cloud infrastructure is composed of 3 virtual
nodes with 4 vCPUs, 32 GB of memory RAM, 80 GB of Solid State Disk and 1
NVIDIA Tesla V100 each. The job scheduler used is Kubernetes (version v1.15.9)
and the container technology is Docker (version 18.06.2-ce).

The HPC infrastructure is the Prometheus supercomputer [10], which is
located in the 289th position of the TOP500 list (June 2020). Prometheus cluster
provides REST API to interact with SLURM (version 19.05.5) called Rimrock
(Robust Remote Process Controller)11 and PLGData service12 to interact with
the file system.

The selected use case is a training of a neural network using Tensorflow for
performing an automated segmentation of neuroblastoma tumours. Neuroblas-
toma is the most frequent solid cancer of the early childhood [6]. This use case
belongs to the PRIMAGE project [21].

11 https://submit.plgrid.pl/.
12 https://data.plgrid.pl/?locale=en.

https://submit.plgrid.pl/
https://data.plgrid.pl/?locale=en

316 S. López-Huguet et al.

First, we define two ConfigMap objects, which store non-confidential data
in key-value pairs). The Fig. 1 shows the definition (in YAML13 format) of the
ConfigMap that contains the information required by hpc-connector to use the
backend Prometheus. This ConfigMap will be used for all jobs that want to
connect with Prometheus. If we were using another HPC infrastructure, the
configuration value would maybe contain other dictionary keys.

Fig. 1. ConfigMap definition to specify the Prometheus configuration required by hpc-
connector.

Once the ConfigMap for accessing properly to the HPC infrastructure is
defined, the users must define the job configuration. As we are using Rimrock ser-
vice from Prometheus cluster, the required parameters are at least, the host and
the SLURM script in plain text. In this script, we specify the amount of resources,
the special hardware (GPUs), and the batch queue (plgrid-gpu). Then, we imple-
ment the tasks: show the hostname, load modules and run the Singularity image
(available at the directory $SCRATCH/singularity/neuroblastoma.sandbox).

Fig. 2. Job definition to specify the job configuration required by hpc-connector to
launch the job using, in this HPC backend, Rimrock.

13 https://yaml.org/.

https://yaml.org/

Seamlessly Managing HPC Workloads Through Kubernetes 317

Figure 2 shows the ConfigMap definition for the job configuration. This new
ConfigMap is specific for each job in Prometheus cluster.

Figure 3 shows the Kubernetes batch job definition. As it is described in
Sect. 3, the job executed in the cloud infrastructure consists of running hpc-
connector to managing the job in Prometheus cluster. It should be noted that
his job is configured with a termination grace period and, if the users cancel this
Kubernetes job, it has 30 s to execute the command kill -SIGINT 1. If this
occurs, hpc-connector will catch the signal and immediately cancel the job in
the HPC infrastructure. Once the job is submitted to Kubernetes, it is possible
to check (in real time) the progress of the execution consulting the logs of hpc-
connector. Figure 4 is a screenshot of the Kubernetes dashboard showing the logs
of the created job.

Fig. 3. hpc-connector job definition.

318 S. López-Huguet et al.

Fig. 4. Consulting the logs of hpc-connector using the Kubernetes dashboard.

5 Conclusions

This paper has presented hpc-connector, which is an open source tool for seam-
lessly integrating HPC workloads in cloud infrastructures without requiring
administrator privileges or changes on the workload manager, providing the
users with the same user interface even across different HPC infrastructures.
The tool implemented fulfils the requirements identified in Sect. 2.2: running in
the user space, and agnosticism of the workload manager (it is implemented as a
Python tool easy extendable to other HPC infrastructures) to manage the jobs
in an HPC infrastructure.

The experiment performed in Sect. 4 demonstrated that this approach can
address a wider range of complex problems in a convenient way. In this exper-
iment, we successfully trained a neural network using GPUs in an HPC super-
computer (Prometheus) using hpc-connector from a Kubernetes job hosted in a
private cloud infrastructure.

Future work includes improving the functionality of hpc-connector : upload
the data (from a repository or from a directory in the Docker container) before
submitting the job (if necessary) or consider retrieving the results and storing
them in an external repository or in the Docker container itself (for example, if
the container has mounted a shared filesystem). Another possible enhancement
could be the ability to refresh the HPC credentials when they expire.

References

1. Azure for health. https://azure.microsoft.com/en-us/industries/healthcare/#
security. Accessed 07 May 2020

2. Cloud access to mammograms enables earlier breast cancer detection. https://
www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-
cancer-detection. Accessed 07 May 2020

https://azure.microsoft.com/en-us/industries/healthcare/#security
https://azure.microsoft.com/en-us/industries/healthcare/#security
https://www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-cancer-detection
https://www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-cancer-detection
https://www.itnonline.com/content/cloud-access-mammograms-enables-earlier-breast-cancer-detection

Seamlessly Managing HPC Workloads Through Kubernetes 319

3. Getting to the heart of the HPC and AI the edge in healthcare. https://www.
nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-
in-healthcare/. Accessed 07 May 2020

4. High Performance Computing and deep learning in medicine: Enhancing physi-
cians, helping patients. https://ec.europa.eu/digital-single-market/en/news/
high-performance-computing-and-deep-learning-medicine-enhancing-physicians-
helping-patients. Accessed 07 May 2020

5. Medical Imaging Gets an AI Boost. https://www.hpcwire.com/2019/12/03/
medical-imaging-gets-an-ai-boost/. Accessed 07 May 2020

6. Bhatnagar, S.: An audit of malignant solid tumors in infants and neonates. J.
Neonatal Surg. 1, 5 (2012)

7. Cabellos, L., Campos, I., Fernández-Del-Castillo, E., Owsiak, M., Palak, B.,
P�lóciennik, M.: Scientific workflow orchestration interoperating HTC and HPC
resources. Comput. Phys. Commun. (2011). https://doi.org/10.1016/j.cpc.2010.
12.020

8. Callaghan, S., Maechling, P., Small, P., Milner, K., Juve, G., et al.: Metrics for
heterogeneous scientific workflows: a case study of an earthquake science appli-
cation. Int. J. High Perform. Comput. Appl. (2011). https://doi.org/10.1177/
1094342011414743

9. Chen, S., He, Z., Han, X., He, X., et al.: How big data and high-performance
computing drive brain science (2019). https://doi.org/10.1016/j.gpb.2019.09.003

10. Cyfronet Krakow, P.: Prometheus supercomputer. www.cyfronet.krakow.pl/
computers/15226,artykul,prometheus.html. Accessed 07 May 2020

11. Gulo, C.A.S.J., Sementille, A.C., Tavares, J.M.R.S.: Techniques of medical image
processing and analysis accelerated by high-performance computing: a systematic
literature review. J. Real-Time Image Process. 16(6), 1891–1908 (2017). https://
doi.org/10.1007/s11554-017-0734-z

12. Hussain, T., Haider, A., Shafique, M., Taleb Ahmed, A.: A high-performance sys-
tem architecture for medical imaging (2019). https://doi.org/10.5772/intechopen.
83581

13. Ivanova, D., Borovska, P., Zahov, S.: Development of PaaS using AWS and Ter-
raform for medical imaging analytics. In: AIP Conference Proceedings (2018).
https://doi.org/10.1063/1.5082133

14. Jamalian, S., Rajaei, H.: Data-intensive HPC tasks scheduling with SDN to enable
HPC-as-a-service. In: Proceedings - 2015 IEEE 8th International Conference on
Cloud Computing, CLOUD 2015, pp. 596–603. Institute of Electrical and Elec-
tronics Engineers Inc., August 2015. https://doi.org/10.1109/CLOUD.2015.85

15. Kao, H.Y., et al.: Cloud-based service information system for evaluating quality
of life after breast cancer surgery. PLoS ONE (2015). https://doi.org/10.1371/
journal.pone.0139252

16. Kovacs, L., Kovacs, R., Hajdu, A.: High performance computing in medical image
analysis HuSSaR, June 2018. http://arxiv.org/abs/1806.06171

17. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for
mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/
journal.pone.0177459

18. López-Huguet, S., Garćıa-Castro, F., Alberich-Bayarri, A., Blanquer, I.: A cloud
architecture for the execution of medical imaging biomarkers. In: Rodrigues, J.,
et al. (eds.) ICCS 2019. LNCS, vol. 11538, pp. 130–144. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22744-9 10

https://www.nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-in-healthcare/
https://www.nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-in-healthcare/
https://www.nextplatform.com/2018/03/28/getting-to-the-heart-of-hpc-and-ai-at-the-edge-in-healthcare/
https://ec.europa.eu/digital-single-market/en/news/high-performance-computing-and-deep-learning-medicine-enhancing-physicians-helping-patients
https://ec.europa.eu/digital-single-market/en/news/high-performance-computing-and-deep-learning-medicine-enhancing-physicians-helping-patients
https://ec.europa.eu/digital-single-market/en/news/high-performance-computing-and-deep-learning-medicine-enhancing-physicians-helping-patients
https://www.hpcwire.com/2019/12/03/medical-imaging-gets-an-ai-boost/
https://www.hpcwire.com/2019/12/03/medical-imaging-gets-an-ai-boost/
https://doi.org/10.1016/j.cpc.2010.12.020
https://doi.org/10.1016/j.cpc.2010.12.020
https://doi.org/10.1177/1094342011414743
https://doi.org/10.1177/1094342011414743
https://doi.org/10.1016/j.gpb.2019.09.003
www.cyfronet.krakow.pl/computers/15226, artykul, prometheus.html
www.cyfronet.krakow.pl/computers/15226, artykul, prometheus.html
https://doi.org/10.1007/s11554-017-0734-z
https://doi.org/10.1007/s11554-017-0734-z
https://doi.org/10.5772/intechopen.83581
https://doi.org/10.5772/intechopen.83581
https://doi.org/10.1063/1.5082133
https://doi.org/10.1109/CLOUD.2015.85
https://doi.org/10.1371/journal.pone.0139252
https://doi.org/10.1371/journal.pone.0139252
http://arxiv.org/abs/1806.06171
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1007/978-3-030-22744-9_10

320 S. López-Huguet et al.

19. López-Huguet, S., et al.: A self-managed Mesos cluster for data analytics with
QoS guarantees. Future Gener. Comput. Syst., 449–461. https://doi.org/10.1016/
j.future.2019.02.047

20. Manuali, C., et al.: Efficient workload distribution bridging HTC and HPC in scien-
tific computing. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp.
345–357. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-
3 27

21. Mart́ı-Bonmat́ı, L., et al.: PRIMAGE project: predictive in silico multiscale ana-
lytics to support childhood cancer personalised evaluation empowered by imaging
biomarkers. Eur. Radiol. Exp. 4(1), 1–11 (2020). https://doi.org/10.1186/s41747-
020-00150-9

22. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

https://doi.org/10.1016/j.future.2019.02.047
https://doi.org/10.1016/j.future.2019.02.047
https://doi.org/10.1007/978-3-642-31125-3_27
https://doi.org/10.1007/978-3-642-31125-3_27
https://doi.org/10.1186/s41747-020-00150-9
https://doi.org/10.1186/s41747-020-00150-9
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

Interference-Aware Orchestration
in Kubernetes

Achilleas Tzenetopoulos1(B), Dimosthenis Masouros1, Sotirios Xydis1,2,
and Dimitrios Soudris1

1 National Technical University of Athens, Athens, Greece
{atzenetopoulos,demo.masouros,sxydis,dsoudris}@microlab.ntua.gr

2 Harokopeio University of Athens, Athens, Greece

Abstract. Nowadays, there is an increasing number of workloads, i.e.
data serving, analytics, AI, HPC workloads, etc., executed on the Cloud.
Although multi-tenancy has gained a lot of attention to optimize resource
efficiency, current state-of-the-art resource orchestrators rely on typi-
cal metrics, such as CPU or memory utilization, for placing incoming
workloads on the available pool of resources, thus, neglecting the inter-
ference effects from workload co-location. In this paper, we design an
interference-aware cloud orchestrator, based on micro-architectural event
monitoring. We integrate our solution with Kubernetes, one of the most
widely used and commercially adopted cloud orchestration frameworks
nowadays, and we show that we achieve higher performance, up to 32%
compared to its default scheduler, for a variety of cloud representative
workloads.

Keywords: Cloud-computing · High performance computing ·
Resource management · Scheduling · Kubernetes · Interference-aware

1 Introduction

The continuous increase in the amount of workloads uploaded and executed
on the cloud, has forced data-center (DC) operators and cloud providers, to
embrace workload co-location and multi-tenancy as first class system design
concern regarding resource efficiency [3]. Workloads placed on the same phys-
ical machines continuously contest for shared resources, such as cache, mem-
ory occupancy, memory/network bandwidth, and others, causing interference to
each other, which, in turn, induces huge negative impact on their performance.
Multi-sharing and multi-diversity of resources can cause serious degradation on
the performance of running applications, thus the need for interference-aware
scheduling of incoming workloads on a cluster is indispensable. This situation
becomes even more consecutive, as cloud providers currently provide users with
elasticity and resizability of their computing capacity, leading to a dynamic pro-
visioning of resources.

This work is partially funded by the EU Horizon 2020 research and innovation program,
under project EVOLVE, grant agreement No 825061.

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 321–330, 2020.
https://doi.org/10.1007/978-3-030-59851-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_21

322 A. Tzenetopoulos et al.

Several research works have administered the problem of resource allocation.
Quasar [8], and other works [9,12] were able to determine the right amount of
resources to meet QoS constraints. Meanwhile, under-utilized servers contribute
to expenses and limit the scaling of the data-center [4], while HPC environ-
ments suffer from under-utilization as well [18]. Even the mature Google clus-
ter manager Borg [20], achieves 25–35% and 40% CPU and memory utilization
respectively, while reserved resources are 75% and 60% at the same time.

Recently, HPC and Cloud worlds are getting more and more close [1]. The
latest advancements and performance improvements of container-based virtual-
ization [10] have driven many HPC applications to be containerized, enabling
increased productivity through prompt and seamless updates and rollbacks to
previous versions. Indeed, the current trend for the scheduling of arriving work-
loads on a pool of available resources even in HPC environments [23] is through
container orchestrators, such as Kubernetes [6] which provide a common envi-
ronment for the whole infrastructure, be it on-premises or in the cloud.

Even though container orchestrators provide major benefits, such as ease
of use and deployment, abstraction of resources, scaling and others, they are
focusing mostly on availability rather than performance optimization, relying
on coarse metrics, e.g., CPU or memory utilization, thus neglecting interference
effects, overlooking the specifications of the underlying infrastructure and the
nature of the imposed stress on the shared resources.

Contention on the low-level shared resources of a system, i.e. low-level caches
and bus bandwidth, can lead to unpredictable performance variability [13,24]
and degradation, which highly reduces the QoS of applications [16]. Open-
sourced services like Prometheus [2], and the Elasticsearch, fluentd and Kibana
(EFK) stack [22] provide well-organized systems for metrics logging, aggregation
and querying. However, the metrics acquired are usually too coarse, not able to
reveal the real system state. As a result the resource under contention cannot be
identified and the root cause of application degradation remains unmanageable.

In this work, we propose an interference-aware custom scheduler for Kuber-
netes, able to efficiently place applications on a cluster of available machines.
Using a universal approach for every kind of workload behavior and duration
our framework aims to maximize resource utilization and minimize application
execution delays provoked by interference phenomena. Compared to prior works,
we use low-level metrics, which describe micro-architectural events, capable of
providing useful information in terms of the resource under contention, namely
the origin of system’s inability to serve workloads’ needs efficiently. Our sched-
uler outperforms the default one of Kubernetes, improving the performance of
the scheduled workloads, up to 32%, by efficiently equilibrating the usage of the
aforementioned resources between the different components on the machine.

2 Experimental Setup and Motivational Analysis

In this section, we describe the Kubernetes scheduling process and discuss some
of its shortcomings. Motivated by Kubernetes inefficient workload placement, we
exploit the insights provided by hardware counters placed in our system.

Interference-Aware Orchestration in Kubernetes 323

2.1 System Hardware and Experimental Workloads

System Architecture: We consider a dual-socketed multi-processor system (24
logical cores/socket, 128 GB Memory), referred to as H1, on top of which, we
have deployed 5 virtual machines (VMs) with various configurations, serving as
the nodes of our cluster. The combination of VMs with containers is currently
the common way of deploying cloud clusters at scale, since it establishes the
perfect catalyst for reliability and robustness [15].

Each VM’s cores range from 4 up to 16 and RAM size from 8192(MB) up to
65536(MB). The virtual cores of each VM have been mapped onto the physi-
cal cores of the servers using the CPU pinning options of the libvirt library
to enable the monitoring of VM-specific metrics. On top of the VMs, we have
deployed Kubernetes [6] as our container orchestrator. We used a single-master
node cluster with the VM serving as master being deployed in a separate physical
machine, not affecting the testing results. All the referenced workloads running
on the cluster have been containerized, utilizing the Docker platform. Finally,
in order to record low-level performance counters, we utilize the Performance
Counter Monitoring (PCM) API [21] that provides micro-architectural events
from core up to system level. The PCM tool runs natively on the physical
machines, since it requires access to Model-Specific Registers (MSRs) of the
system and the corresponding metrics are communicated through a Network
File System (NFS) to the Kubernetes orchestrator.

Experimental Workloads: Cloud data-center server machines accommodate a
wide range of workloads, which are basically either batch/best-effort (BE) appli-
cations, or user-interactive/latency-critical (LC) applications. The former type of
workloads require the highest possible throughput, whereas the latter demand
to meet their QoS constraints. In order to cover both BE and LC workloads,
we consider workloads from three popular scientific benchmarking libraries, i.e.
scikit-learn [19] and SPEC 2006 [14] (as BE) and cloudsuite [11] (as LC) suites
as referred in Table 1.

2.2 Kubernetes Scheduler

Kubernetes Scheduler, henceforth referenced as kube-scheduler is a core compo-
nent of Kubernetes. It is responsible for selecting the most viable node for the
placement of any incoming application. Briefly, the process is comprised of two
different stages.

Table 1. Summary of workloads used as cloud applications.

Benchmark Setup Type

Scikit-Learn Lasso, Linear Regression, Linear Discriminant Analysis, Ada
Boost Classifier, Random Forest Regressor, Random Forest
Classifier

best-effort

SPEC 2006 astar, leslie, cactus, sphinx batch

Cloudsuite data-serving, in-memory analytics, web-serving latency-critical

324 A. Tzenetopoulos et al.

First, the scheduler determines the set of feasible placements, which is the set
of nodes that meet a set of given constraints. Those constraints, called predicates,
are related to affinity and node availability. Secondly, after the filtering, with only
the feasible nodes remaining, kube-scheduler using a set of pre-defined rating
functions, determines the viability of each node. Those priority functions favor
nodes using criteria like image locality, affinity and resource usage.

Container orchestrators provide also the additional utility of explicitly setting
resource requirements and limits by the developer for each application deployed.
However, resource allocations imposed by users often exaggerate the average
resources required by applications, which, in turn, leads to low-utilization in
data-centers as it was also mentioned in Sect. 1. Although kube-scheduler usually
favors the node with the least requested per capacity ratio of resources (RAM,
CPUs), this results in suboptimal pod placement, even in simple deployment
scenarios. To show the effects of this suboptimality, we assigned kube-scheduler
the task to schedule a scikit-lasso pod on a small cluster of two VMs v1 (4
vcpus, 8 GB RAM) and v2 (8 vcpus, 16 GB of RAM), in which there were already
deployed some resource-stressing micro-benchmarks from the iBench suite [7],
specifically 3×cpu-iBench in v1 and 6×L3-iBench in v2. After multiple tests,
the scheduler consistently favored v2. However, by placing the aforementioned
application in v1, we achieved an average speedup of 1.46x.

2.3 Quantifying Interference Level

While offline solutions based on intermittent bench-marking, e.g., [7], offer a
great perspective of the performance of co-scheduled applications, by stressing
and considering individual low-level resources, to identify the real bottleneck of
the system, we need to inspect and examine the low-level performance counters
as a whole [17]. In order to quantify socket-level interference, we extract the
amount of Last Level Cache (LLC) misses, the C0-state percentage, reads and
writes from and to the memory respectively and the Instructions Per Cycle
(IPC). Henceforth by performance we refer to the fraction 1

latency and by relative
performance the fraction of performance when executed isolated divided by the
actual performance latency

isolated latency .
In order to evaluate the impact of each kind of resource stress on the perfor-

mance of applications, we tentatively co-schedule workloads described in Table 1
with iBench. Figure 1 depicts the relative performance (y-axis) of all our target
workloads when co-scheduled with different numbers (x-axis) of specific resource-
stressing, iBench micro-benchmarks. The solid line in each plot shows the esti-
mate of the central tendency of the relative performance while the surrounding
area illustrates the confidence interval for that estimate. This plot reveals that,
as the resource interference moves higher in the memory hierarchy, the impact
on the performance increases exponentially. Specifically, we notice that stressing
the LLC has the greatest effect on the performance of our workloads.

This can be explained due to the fact that LLC misses require data to be
fetched from the off-chip memory. Memory reads and writes are the requests
for data on behalf of LLC misses, as well as DRAM traffic due to prefetching,

Interference-Aware Orchestration in Kubernetes 325

Fig. 1. Impact of stress on different resources on the performance of applications.

L3 misses Reads IPC C0 Custom Score

0
0.2
0.4
0.6
0.8

1

(a) LLC stress

0
0.2
0.4
0.6
0.8

1

(b) Mem. BW stress

0
0.2
0.4
0.6
0.8

1

(c) Mixed stress

Fig. 2. Correlation between applications performance degradation and system metrics.

providing a low level performance counter able to depict the number of memory
accesses. However, during high volume of interference, different processes are
competing for memory access [5], and as the available bandwidth is not able to
support all requests at the same time, neither memory reads and writes number
nor L3 cache misses are any longer valuable indicators of the contention beyond
this point. In this case, we conscript IPC, another low level hardware metric as
an indicator of further slowdown caused by delays in process execution due to
memory bus competition.

Interference-Aware Node Scoring: Proper scheduling requires a score that
reflects the interference on the system. In the previous paragraph, we discussed
the preeminence of memory traffic and IPC as contention bottlenecks. We utilize
the custom metric

S =
Reads + Writes

IPC
(1)

as a valid system condition depictor, where Reads/Writes are DRAM mem-
ory read/write traffic on a socket in GB. To show its effectiveness, we compare
different metrics accuracy on reflecting system’s condition utilizing the Pear-
son’s correlation between the performance of each application and the metric’s
average value prior to application’s scheduling. Figure 2 shows the correlation
between the application’s relative performance under different levels of stress.
Our custom metric seems to be highly correlated with application’s performance
in most scenarios. Furthermore, while C0-state seems to be a great system per-
formance indicator, it fails in the last one. As Fig. 2c shows, when different pods
(cpu,L3,memBw) are deployed, C0 is not a reliable system state indicator any-
more.

326 A. Tzenetopoulos et al.

3 Interference-Aware Container Orchestration

3.1 Integration

Our approach uses the Kubernetes project provided scheduler. In fact, we
removed most of the default priority functions except for the node affinity. The
nodes’ condition evaluation and the final node selection is taking place in our
external framework. The customized kube-scheduler is used in order to use the
high variety of constraints, predicates and utilities it offers.

System Metrics: Using PCM, we extract system, socket and core metrics.
We calculate the weighted average of the metrics extracted over the last 20 s,
using weights ranging from 50 to 1 with the latest metrics weighing the most.
Metrics are divided into socket and core metrics. The socket consists the first
level of abstraction in our approach. From the metrics provided we use the ones
described in Eq. 1 and the cores’ C6-state and IPC extracted in a 0.4 s interval.
In a core-C6 state, further parts of the core are shut down and power gated.

3.2 System Model

We target conventional data center environments, where applications are arriving
on the cluster and an orchestrator is responsible for scheduling them on the
available pool of VMs lying on top of the server systems, as shown in Fig. 3.

Target HW Model: Each server is uniquely identified by an identifier i ∈ N
≤n,

where n is the total number of servers available on the cluster. We denote
the jth, j ∈ N

≤mi socket of server i as sij , where mi is the total number
of sockets in server i. Every socket sij∀i, j is characterized by its attributes
〈C6, IPC,Reads,Writes〉 and is consisted of oj number of cores. Furthermore,
a node (VM) in the cluster consisted of vcpus pinned in socket j is denoted as
nj,i
l . Every node is characterized by the total number of cores pl ≤ oj and their

average C6-state percentage 〈C6〉. In addition, each core of socket sij and node’s
nj,i
l is denoted as cj,i,lk , k ∈ N

≤i .

i=1 i=2 i=n

Fig. 3. Target system architecture

Interference-Aware Orchestration in Kubernetes 327

Application Model: We consider that each workload arriving on the cluster
is characterized by a tuple A = 〈Writesiso, Readsiso, C0iso〉, where Writesiso,
Readsiso, C0iso refer to the mean values of the respective low-level performance
counters (as described in Sect. 2). As Writesiso and Readsiso refer to socket
metrics, C0iso is related to core level metrics and is the average value of the
socket’s cores belonging to the examined cluster. Those metrics can be easily
monitored during the first execution of the application, thus there is no extended
profiling and offline analysis required.

3.3 Algorithm

The Algorithm is consisted of 2 levels. In the first level, we consider as a bin
every different socket in the system and afterwards, in the second level, we select
the most viable node of the ones belonging to the selected socket. As we have
pinned underlying system’s sockets and their respecting cores in separate VMs,
we are able to have insight and take advantage of the real system metrics. This
information allows our custom scheduler to greedily schedule applications in a
manner that minimizes interference and maximizes the utilization of the server’s
resources.

First Level: Cores in a socket share their L3 cache. In this stage we are trying
to address both interference effects and core availability. Using best-fit heuristic
algorithm, with respect to the PCM metrics extracted, we construct a scoring
function using Eq. 1. For every batch of incoming applications, our custom sched-
uler uses socket extracted metrics in order to initialize each socket object with
the corresponding metrics. In addition, using the sij〈C6〉∀j we add the addi-
tional factor c in the Eq. 1 as shown in Algorithm 1. More specifically, we verify
core availability for each node associated with the examined socket. If there is
not a single core available (space <1), we include sij〈c6〉, otherwise we do not.
Afterwards, for every application in the current batch, the most viable socket
is selected. Algorithm 1 is executed for every socket belonging to the cluster.
After the most viable socket selection, we update its measured metrics with the
scheduled application stress surcharge and proceed to the next stage.

Second Level: After selecting the most appropriate socket according to our pri-
ority function, the L3 cache and memory bandwidth are not prioritizing factors
anymore as their are shared between the cores within the socket. The next level
of abstraction in our system, are the nodes (VMs). Owing to node heterogene-
ity, in terms of virtual cores and memory capacity in this stage of our approach
we need to choose the most appropriate of the nodes whose cores are pinned
to the selected socket. We use the number of cores of each node in combina-
tion with the average c6-state of those cores and select the predominant node
to schedule the current application. Next we update again the node’s c6-state
using application’s average value. While, our contribution is based on the node
affinity functionality, Kubernetes will handle cases of resources starvation in
an availability-centric way.

328 A. Tzenetopoulos et al.

Algorithm 1. Calculate Score for server i and socket j

Require: sij〈c6〉 ≥ 0
1: space ← 0

2: for ∀ni,j
l do

3: if ni,j
l 〈c6〉 ∗ pl > 1 then

4: space ← space + 1
5: end if
6: end for

{Search for c6-state core availability}
7: if space ≥ 1 then
8: c ← oj
9: else
10: c ← oj ∗ sij〈c6〉
11: end if
12: return (sij〈reads〉 + sij〈writes〉) / sij〈ipc〉 ∗ c

Fig. 4. Applications relative performance in different workload density.

4 Evaluation

Experimental Setup: The cluster is consisted of four worker nodes as described
in Sect. 2. For every test-case, we log the application completion time and the
socket metrics captured during the makespan of the batch.

Scheduling Under Realistic Workloads: To evaluate our proposed solution,
we examine a scenario where various workloads arrive to our system on random
intervals, ranging from 10 to 50 s, using the benchmarks described in Table 1.
Figure 4 illustrates the results of scheduling workloads varying from 20 to 80
applications in our Kubernetes cluster. As we can see, our custom scheduler
outperforms the default kube-scheduler in all the cases, providing an average of
20% and a maximum of 32% improvement over the median performance. In cases
of huge amount of workloads (>70), the target system becomes saturated, hurt-
ing the overall performance in both cases. However, even in such over-stressed
scenarios, we see that our proposed approach achieves higher performance over
the naive one, with an average of 25%.

Available Resources Usage: In order to depict the more fair workload bal-
ancing, we placed in one of the two sockets L3 stress using iBench. Afterwards,
similar to the previous test, we deployed 4–6 random batches of the workloads ref-
erenced in Table 1. In Fig. 5, we present some hardware system metrics extracted.
More specifically, each figure describes the absolute difference in resource usage
between the two sockets during the execution of our workloads. In Fig. 5a, the

Interference-Aware Orchestration in Kubernetes 329

0

20

40

60

80

1 1001 2001 3001 4001 5001 6001L3
 M

is
se

s
pe

r 0
.4

 s
ec

.
(m

illi
on

s)

Kubernetes
Custom

(a) L3 cache

0

0.3

0.6

0.9

1.2

1 1001 2001 3001 4001 5001 6001

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Kubernetes
Custom

(b) IPC

0

20

40

60

80

1 1001 2001 3001 4001 5001 6001

C
6-

st
at

e
pe

rc
en

ta
ge

Kubernetes
Custom

(c) C6-state

Fig. 5. Resources Usage imbalance between the sockets; x-axis denotes the
timestep(400 ms)

imbalance between each socket’s cache misses in Kubernetes scheduler is signifi-
cantly greater than our proposed one. Consequently, one of the two sockets was
over-utilized, degrading running applications’ performance due to contention,
while the other one had that specific resource available and unused. On the
other side, our proposed scheduler is aware of the L3 cache interference and dis-
tributes applications in a more evenhanded way, trying to share the load between
the separate components of the system. Similarly in Fig. 5b and 5c is displayed
the more balanced resource usage during the execution of the workload our pro-
posed approach scheduled. C6-state percentage and the IPC seem also to come
up against a more equitable sharing in our custom approach.

5 Conclusion

In this paper, we address the problem of interference in multi-tenant cloud infras-
tructures. We designed an integrated with Kubernetes interference-aware custom
scheduler, deployed on the top of a virtualized environment. We experimentally
evaluated the pod placement of our proposed scheduler using different scenarios
and compared it with the default Kubernetes scheduler. Our results showed that
our custom approach can improve the overall performance of the deployed work-
loads, while, at the same time, achieves a more balanced resource utilization.

References

1. Evolve H2020 official website. https://www.evolve-h2020.eu/
2. Authors, P.: Prometheus-monitoring system & time series database (2017)
3. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing (2007)
4. Barroso, L.A., Hölzle, U.: The datacenter as a computer: an introduction to the

design of warehouse-scale machines. Synth. Lect. Comput. Architect. 4(1), 1–108
(2009)

5. Blagodurov, S., Zhuravlev, S., Fedorova, A.: Contention-aware scheduling on mul-
ticore systems. ACM Trans. Comput. Syst. (TOCS) 28(4), 8 (2010)

6. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, Omega, and
Kubernetes (2016)

7. Delimitrou, C., Kozyrakis, C.: ibench: quantifying interference for datacenter appli-
cations. In: 2013 IEEE International Symposium on Workload Characterization
(IISWC), pp. 23–33. IEEE (2013)

https://www.evolve-h2020.eu/

330 A. Tzenetopoulos et al.

8. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster
management. In: ACM SIGARCH Computer Architecture News, vol. 42, pp. 127–
144. ACM (2014)

9. Ebrahimi, E., Lee, C.J., Mutlu, O., Patt, Y.N.: Fairness via source throttling: a
configurable and high-performance fairness substrate for multi-core memory sys-
tems. In: ACM SIGPLAN Notices, vol. 45, pp. 335–346. ACM (2010)

10. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and Linux containers. In: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–
172. IEEE (2015)

11. Ferdman, M., et al.: Clearing the clouds: a study of emerging scale-out workloads on
modern hardware. In: Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems (2012)

12. Ferdman, M., Kaynak, C., Falsafi, B.: Proactive instruction fetch. In: Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 152–162. ACM (2011)

13. Guo, J., et al.: Who limits the resource efficiency of my datacenter: an analysis
of alibaba datacenter traces. In: Proceedings of the International Symposium on
Quality of Service, p. 39. ACM (2019)

14. Henning, J.L.: Spec CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Architect. News 34(4), 1–17 (2006)

15. V. Inc.: Containers on virtual machines or bare metal? Deploying and Securely
Managing Containerized Applications at Scale, White Paper, December 2018

16. Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., Kozyrakis, C.: Heracles:
improving resource efficiency at scale. In: ACM SIGARCH Computer Architecture
News, vol. 43, pp. 450–462. ACM (2015)

17. Masouros, D., Xydis, S., Soudris, D.: Rusty: runtime system predictability lever-
aging LSTM neural networks. IEEE Comput. Archit. Lett. 18(2), 103–106 (2019)

18. Panwar, G., et al.: Quantifying memory underutilization in HPC systems and using
it to improve performance via architecture support. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 821–835
(2019)

19. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12(Oct), 2825–2830 (2011)

20. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the
Third ACM Symposium on Cloud Computing, p. 7. ACM (2012)

21. Willhalm, T., Dementiev, R., Fay, P.: Intel performance counter monitor-a better
way to measure CPU utilization (2012). Dosegljivo https://software.intel.com/
en-us/articles/intelperformance-counter-monitor-a-better-way-to-measure-cpu-
utilization. [Dostopano: September 2014]

22. Yang, K.: Aggregated containerized logging solution with fluentd, elastic search
and kibana. Int. J. Comput. Appl. 150(3) (2016)

23. Yenier, D.G., Wolfgang Gentzsch, U.: Kubernetes and HPC applications in hybrid-
cloud environments – part II, March 2020. https://www.hpcwire.com/2020/03/19/
kubernetes-and-hpc-applications-in-hybrid-cloud-environments-part-ii/

24. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: ACM SIGPLAN Notices, vol. 45, pp.
129–142. ACM (2010)

https://software.intel.com/en-us/articles/intelperformance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intelperformance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intelperformance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://www.hpcwire.com/2020/03/19/kubernetes-and-hpc-applications-in-hybrid-cloud-environments-part-ii/
https://www.hpcwire.com/2020/03/19/kubernetes-and-hpc-applications-in-hybrid-cloud-environments-part-ii/

RustyHermit: A Scalable, Rust-Based
Virtual Execution Environment

Stefan Lankes1(B), Jonathan Klimt1, Jens Breitbart2, and Simon Pickartz3

1 Institute for Automation of Complex Power Systems, RWTH Aachen University,
Aachen, Germany

{slankes,jonathan.klimt}@eonerc.rwth-aachen.de
2 Bosch Chassis Systems Control, Robert Bosch GmbH, Gerlingen, Germany

jens.breitbart@de.bosch.com
3 ParTec Cluster Competence Center GmbH, Munich, Germany

pickartz@par-tec.com

Abstract. System-level development has been dominated by program-
ming languages such as C/C++ for decades. These languages are inheren-
tly unsafe, error-prone, and a major reason for vulnerabilities. High-level
programming languages with a secure memory model and strong type
system are able to improve the quality of the system software. This paper
explores the programming language Rust for development of a scalable,
virtual execution environment and presents the integration of a Rust-
based IP stack into RustyHermit. RustyHermit is part of the standard
Rust toolchain and common Rust applications are able to build on top
of RustyHermit.

1 Introduction

The C programming language is still dominating system-level software develop-
ment as it was designed for this exact case and is known to provide high perfor-
mance. However, C is also known to be error-prone and difficult to use in large
scale projects as even senior developers can hardly avoid an incorrect usage of
C. Dangling pointers and missing boundary checks are other typical reasons for
issues within kernel code. This is not a new observation. As described in by Cut-
ler et al. [3], the Pilot kernel [29] and the Lisp machine [8] are early examples of
the usage of a high-level language (Mesa and Lisp, respectively) for Operating
System (OS) development. However, the approach has not gained acceptance
and is hardly used because memory safety of high-level languages often induces
runtime overhead (e.g., due to garbage collection).

Furthermore, the OS requirements changed fundamentally over the last years.
The basic infrastructure within OSs was established in the seventies when hard-
ware was expensive and resource sharing was the focus. The virtualization of
hardware resources has been established for a simplified resource sharing, e.g.,
sharing a processor in round-robin manner. However, in the era of cloud com-
puting, complete machines are virtualized supporting server consolidations. Vir-
tualization is implemented as another software abstraction layer in an already
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 331–342, 2020.
https://doi.org/10.1007/978-3-030-59851-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_22

332 S. Lankes et al.

highly layered software stack. Typical modern OSs still include support for old
physical protocols (e.g., floppy disks), irrelevant optimizations (e.g., disk ele-
vator algorithms on SSDs) and backward-compatible interfaces (e.g., POSIX).
Anil Madhavapeddy et al. discuss these issues in [20,21] and present unikernels,
i.e., specialized library OSs, as a solution. Unikernels are built by compiling high-
level languages directly into specialized single-address-space machine images. In
doing so, unused code is removed by static code analysis and system calls are
replaced by common function calls promising a faster resource handling. Uniker-
nels are able to run directly on a hypervisor or bare metal on the hardware.
They provide a smaller footprint compared to traditional OS kernels and have
more prospect to optimize the applications, e.g., the application and the kernel
can be optimized by means of Link-time Optimization (LTO).

Current Unikernels relinquish backward compatibility, often rely on uncom-
mon programming interfaces, and barely support multi-processor systems. In
[16], we present a rewrite of HermitCore [14] in Rust called RustyHer-
mit and demonstrate that the performance of the Rust implementation is on
a par with the original C implementation. RustyHermit is integrated into
the standard runtime of Rust and its compiler infrastructure. It is trivial to
port pure Rust application to RustyHermit, as it just requires a configuration
change. Only applications, which bypass the Rust runtime and call directly a C
library, have to port also the C library to the new system. Furthermore, existing
C/C++ and Fortran applications can be linked with RustyHermit and generate
a bootable image. In this paper, we focus on the integration of a Rust-based IP
stack enabling the building and deployment of secure and efficient cloud appli-
cations.

The rest of this paper is structured as follows: We start with a discussion of
the related work in the area of unikernels and the usage of high-level program-
ming languages for kernel development. In Sect. 3, we give a short introduction
to Rust, followed by the Sect. 4 on kernel development using Rust and the inte-
gration of the IP stack. In the Sect. 5 we compare the performance of our kernel
with Linux. Finally, Sect. 6 summarizes the paper and give a short outlook.

2 Related Work

High-level programming languages provide type-safety and memory-safety as
well as convenient abstractions of concurrent programming reducing the sus-
ceptibility to errors. However, kernel developers are often skeptical to use new
languages because they expect them to introduce additional overhead compared
to C [37] and require a redevelopment of kernel components. Yet, many research
projects use high-level programming languages to benefit from new features such
as a safe memory handling. New system programming languages, e.g., D [4],
Nim [27], Go [7], and Rust [35], have emerged in the last decade. For nearly
every language there exists an OS project.

In Rust, the compiler is able to determine when memory has to be freed
avoiding the need for according runtime checks. This results in far less runtime

RustyHermit 333

overhead compared to other high-level programming languages, but introduces
unique memory handling at the language level. Levy et al. [17,18] show that Rust
is attractive for kernel development because it promises memory-safety while pro-
viding good performance. In addition, Balasubramanian et al. [1] show that Rust
offers software fault isolation (SFI) with lower overhead and Narayanan et al.
in [24] steps to realize a Rust-based verified firmware. Currently, Microsoft [22]
is also analyzing Rust as a system programming language. Projects such as
Redox [31], Tock [36] or teaching kernels such as our eduOS-rs [6] show that
Rust is usable for OS development, but all these Rust kernels were not designed
for cloud environments.

Both HermitCore and RustyHermit belong to the class of unikernels or
library OSs. MirageOS [20], IncludeOS [2], rumprun kernels [9], and OSv [10] are
typical representatives. The fundamental drawback of unikernels is the porting
effort that is required to adapt existing applications to the underlying minimalis-
tic OS. This often requires both expert work and a considerable amount of time.
One objective of the Unikraft [38] project is to build unikernels targeted at spe-
cific applications, without requiring the time-consuming, expert work. Unikraft
is written in C, uses newlib [30] as the C library, and LwIP [5] as the network
stack.

Like Unikraft, HermitCore relies on LwIP as it is easy to combine to a
kernel and the list of requirements is small. However, LwIP was mainly designed
for embedded systems and it is a challenge to get the same performance as
provided by common operating systems (e.g., Linux). For instance, Kuenzer
et al. [12] can improve the performance by using a low-level API (instead of a
socket interface) and to integrate checksum offloading. Further improvements
can be achieved by supporting the Data Plane Development Kit (DPDK) [28].
However, this is not available for all devices.

The compatibility of unikernels to common OSs (e.g., Linux) is currently
still limited. HermiTux [26] has similar objectives and realizes compatibility to
Linux by rewriting system calls and using a modified C library. However, the
compatibility of HermiTux is limited as not all Linux system calls have been
re-implemented. RustyHermit is also not compatible to common OSs, but it
offers the possibility to write portable Rust applications. Changes to the source
code are not required to run the application on Linux or other OSs.

3 Introduction to Rust

Rust is a new programming language originally designed by Graydon Hoare as a
replacement for C/C++. Its goal is to provide the same level of performance, but
to allow for more comprehensive safety checks at compile time and by default
enabled runtime checks when the compile time checks are not sufficient (e.g.,
array access with indices not known at compile time). We discuss only the fea-
tures relevant to understand this paper, a detailed overview on Rust can be
found in [11].

Rust relies on ownership to provide safe memory handling without runtime
overhead. Each resource (e.g., memory) in Rust has a variable that is called its

334 S. Lankes et al.

owner. There is exactly one owner at a time and whenever this owner goes out
of scope, the resource will be dropped and the memory freed. Ownership can
be forwarded to another variable invalidating the original owner, or the owner
can borrow the resource to another variable. Read only access can be provided
to multiple variables at a time via immutable borrows, as long as no mutable
borrow is happening at the same time. In general, these rules prevent data races,
the dangling pointer problem, and pointer aliasing for mutable access. For most
tasks it is possible to develop code that these rules are satisfied at compile time,
however it is also possible to use std::cell::RefCell to bypass compile time
checks, but enforce runtime checks.

Similarly to these checks, Rust provides compile time checks as well ensuring
the correct execution of concurrent or parallel code. Data that is shared between
threads must implement the so-called sync trait (the rust term for an interface)
or must be wrapped into a mutex providing this trait. This rule prevents data
races, as long as the synchronization mechanism (e.g., the mutex) is implemented
correctly. Furthermore, the Rust compiler checks the lifetime of values shared by
threads and will not compile code in which a value is not guaranteed to outlive
the threads borrowing a value.

All checks named before can be circumvented by using the unsafe keyword.
Unsafe Rust code provides the same level of control as C, e.g., it provides raw
pointers enabling direct, unchecked memory accesses and even supports the
usage of inline assembly. Code in unsafe regions should be reviewed more care-
fully than code that is checked by the compiler and as a result it is typically
frown upon by the Rust community. Currently, it is not possible to write a ker-
nel without unsafe code. For instance, inline assembly is important to restore
the context of the FPU. However, the RustyHermit only requires 1170 lines
of unsafe code corresponding to only 1.71% of total code size.

The Rust standard library is divided into an OS-independent and an OS-
dependent part. The library known as core library is the major part of the OS-
independent library and already implements basic error/panic handling, string
operations, and atomic operations. Furthermore, Rust offers the possibility to
redefine the global memory allocator. This allocator is used by all other Rust
codes unless explicitly circumvented. In contrast, the part known as std con-
denses the OS-dependent libraries and extends them with various data struc-
tures, console output, and thread handling. It is easily possible to create a project
that does not use std by adding #![no_std] to the main file.

4 A Unikernel Written in Rust

RustyHermit is a rewrite of our 64 bit unikernel HermitCore [14,15] which
was written in C. RustyHermit is completely written in Rust, supports the
Intel 64 Architecture and comes with support for SSE4, AVX2, and AVX512.
It has multi-core and single-core multiprocessing support by the means of mul-
tithreading and multiprocessing. The Kernel supports the execution of more
threads than available cores. This is an important feature for dealing with con-
current applications or to integrate performance monitoring tools. Currently, the

RustyHermit 335

scheduler does not support load balancing as explicit thread placement is favored
over automatic strategies. Scheduling overhead is reduced to a minimum by the
employment of a dynamic timer, i.e., the kernel does not interrupt computa-
tion threads which run exclusively on certain cores and do not use any timer.
To improve the security behavior, RustyHermit provides a stack guard and is
completely position-independent. Consequently, the loader is able to randomize
the memory layout.

4.1 Integration of RustyHermit into libstd

One major goal of RustyHermit was a complete integration into the Rust
toolchain to simplify the application development. Any common Rust applica-
tion should be buildable with RustyHermit. To achieve this goal, the kernel
provides the required interfaces to the Standard Library (libstd) whilst being
based only on the core library. The operating system abstraction layer of the
Rust toolchain is relative small, so only around 26 files within a total of ˜3000
lines of code are required to integrate RustyHermit into the standard library
of Rust.

Most operating systems are written in C and use a common C library as
interface to the kernel. These functions are typically provided by a helper crate1

in Rust realizing an interface to the C functions. For instance, the C interface
for Rust is published in the crate libc2, however C functions are by definition
unsafe.

In case of RustyHermit, the complete kernel is written in Rust and theo-
retically, it could be directly integrated into the Rust standard library. However,
the kernel uses a set of external crates to detect processor features, programming
of the interrupt controller, or log messages. As the Rust community wants to
reduce the dependencies of the basic runtime libraries to external crates, we can-
not integrate RustyHermit into libstd directly. Instead, we create two helper
crates hermit-abi3 and hermit-sys4. The former describes only the interface to
the library operating system for linkage and is included in libstds dependencies,
just like the libc crate does for the Linux interface of the Standard Library. The
latter is a helper crate, with the main purpose of building the kernel as static
library from source and linking it to the application.

Separating the kernel and libstd into separate compilation units also allows
the use of different compiler settings for each of them. Hereby, we are able to
compile the kernel without FPU and AVX/SSE support and to enable it for the
rest of the application. This is necessary because AVX and SSE is not longer
limited to floating-point operations and the compiler would use these instructions
to optimize the kernel code. The usage of AVX and SSE within the kernel would
trigger interrupts to save the FPU context.
1 Crate is a tree of modules that produces a library or executables. Much like a package

in other programming languages.
2 https://crates.io/crates/libc.
3 https://crates.io/crates/hermit-abi.
4 https://crates.io/crates/hermit-sys.

https://crates.io/crates/libc
https://crates.io/crates/hermit-abi
https://crates.io/crates/hermit-sys

336 S. Lankes et al.

Listing 1.1. Extension of Cargo.toml to integrate RustyHermit

[target.’cfg(target_os = "hermit ")’. dependencies]

hermit -sys = "0.1.*"

A Rust based RustyHermit application can be build by adding the hermit-
sys crate to the application dependencies as shown in Listing 1.1 and declare
it as an external crate in the applications source. Rust’s package manager
Cargo [34] will then download the kernel’s sources, compile it, and link it to the
application.

4.2 Network Support

The library operating system only provides basic features such as interrupt
handling, device drivers, memory management, and scheduling. One possible
solution to integrate network support, is the use of real hardware drivers. The
hypervisor emulates these devices by trapping every request to the device and
emulating the behavior of the real hardware (trap and emulate). This approach
comes with an important overhead.

Another solution is to use para-virtualization where the hypervisor provides
a simpler and faster interface for the I/O devices to the guest, who is aware of
running on a hypervisor. Today, virtio is the standard abstraction layer [25] for
these para-virtualized I/O devices on KVM-accelerated hypervisors. The driver
is split into two parts: the frontend and the backend. The former is provided
by the guest kernel while the backend is provided by the host. This abstraction
layer can be used for para-virtualization of any I/O device. In case of a network
interface, there exist at least two buffers. One buffer is handling all incoming
packets, while the second buffer is handling all outgoing packets. The original
version of virtio [32] was developed by Rusty Russell for the support of his own
virtualization solution. RustyHermit provides a frontend driver in the kernel
that is used to access the file system with virtio-fs [39] and network support.

As shown in Fig. 1, RustyHermit uses smoltcp [19] as a dual IPv4/IPv6
stack and is provided by hermit-sys to the Rust runtime.smoltcp is an event-
driven TCP/IP stack written in Rust and designed for bare-metal, real-time
systems. In principle, hermit-sys creates a thread, which handles all incoming
packets including ARP and ICMP packets with the help of smoltcp. The IP
stack is added to hermit-sys and not to the kernel, so it can use the default
memory allocator of the Rust runtime and to enable hardware dependent opti-
mizations (e.g., AVX support) as explained before Sect. 4.1. We implemented a
direct interface between smoltcp and Rust’s standard library to forward TCP
streams to all common Rust applications. All outgoing messages are directly
passed through the IP stack to the virtio interface. Incoming messages triggers
an interrupt, where the interrupt handler wakes the IP thread of hermit-sys.
Acknowledgments and retransmission of lost messages are directly handled by
this thread. If the incoming message is intended for a specific thread, which is

RustyHermit 337

Hardware

Host OS
virtIO

libOS
virtIO

libStd

ABI
hermit-sys + TCP

Application

Fig. 1. Architecture overview of RustyHermit.

blocked on a socket, the IP thread wakes the thread and afterwards the thread
consumes the data.

This approach works well for communication pattern in which the delay
between requesting data and receiving data is high enough to hide the overhead
of both the interrupts and the context switches between the threads. To get peak
performance for communication pattern with a short delay, the driver switch to
a polling mode. In this case, interrupts from the virtio device will be disabled.
The complete communication is then realized by the application threads, which
are waiting for incoming messages. If the IP stack is not used for 20 ms, the
driver switch back to the non-polling mode.

We implemented this behavior with Futures [33], which are Rust way of
expressing asynchronous computation. This interface provides a polling method
to check if the data is available. The usage of this standard mechanism offers
the possibilities to easily check several futures asynchronously.

5 Evaluation

All benchmarks were performed on a NUMA system possessing two sockets each
with 12 physical cores, exposing 24 cores in total. The CPUs are Intel Skylake
CPUs (Xeon Gold 6128) clocked at 3.4 GHz, equipped with 256 GiB DDR4 RAM
and 19.25 MiB L3 cache. We used a 4.18.0 Linux kernel with CentOS 8. All
benchmarks are compiled with optimization level 3 and LTO.

As said before, unikernels are designed to run within a hypervisor. For the
evaluation, qemu-kvm 2.12.0 is used and accelerated by KVM.All benchmarks
run within virtual machines with the same setup. The network interface and

338 S. Lankes et al.

the storage is integrated by virtio to reduce the overhead. The only difference is
that for Linux guests the virtual machine is configured to provide 4 GB of main
memory, while RustyHermit is configured with 512 MByte main memory.

5.1 OS Micro-benchmarks

In this section we present benchmarks regarding system call overhead and
scheduling. The getpid system call is the one with the smallest runtime and
closely represents the overhead of a system call. The function yield_now of the
Rust runtime triggers the scheduler to check if another task is ready and switches
to them. In our case, the system is idle and consequently the function returns
directly after the check of the ready queues. For benchmarking the system call
performance, we call getpid and yield_now 1 000 000 times and measure the num-
ber of cycles the call took. Table 1 summarizes the results as average number
of CPU cycles for Linux and RustyHermit. The overhead of RustyHermit
is smaller as system calls are just function calls in library OSs and the runtime
system is smaller compared to the Linux software stack.

Table 1. Comparison of basic system services by Linux and RustyHermit.

System activity Linux RustyHermit

Time to boot ≤15 s ≤1.0 s

Reserved memory 748MByte 58 MByte

Boot image size 1.8 GByte 1.55 MByte

yield_now() 1439 cycles 68 cycles

getpid() 1147 cycles 43 cycles

Table 1 also shows memory consumption of a minimal CentOS 8 configura-
tion, where only a secure shell server is running and compares it with the memory
consumption of the smallest possible RustyHermit application. To determine
these numbers, the memory consumption of the hypervisor on the host system
is evaluated. The numbers show the physically allocated memory. The reserved
memory in the logical address space is clearly larger because the virtual machines
are configured to use up to 4 GByte memory for the Linux guest and 500 MByte
for RustyHermit as guest. Both virtual machines are not fully utilized. The
low memory consumption and the small image size for RustyHermit promise
a better resource utilization in data centers.

To evaluate the boot time, the time between the start of the virtual machine
and the first response of a ICMP-based ping request is measure. To avoid side
effects from the storage device, the boot image is stored in tmpfs. The last step
before entering the main function of the Rust application in RustyHermit is
the initialization of the network stack. Therefore, the results show the minimal
time to start the unikernel application within a hypervisor. While it is possible

RustyHermit 339

1 4 16 64 256 1Ki 4Ki 16Ki
100

101

102

103

104

Size in Byte

T
hr
ou

gh
pu

t
in

M
bp

s

RustyHermit

Linux

Fig. 2. Comparsion of the network throughput between RustyHermit and Linux

to start applications in Linux before the network services have started, this is
a rather unlikely scenario and it is more likely that other services are started
between the network service start and the application start. As expected for
a unikernel, RustyHermit is clearly faster in comparison to Linux which is
beneficial for services requiring low latencies.

5.2 Network Performance

To determine the network performance, a benchmark is used transferring data
with Rust’s standard TCP stream interface. Both the server and the client are
running on the same node. The sender is running in all test scenarios within a
VM, while the receiver is running natively on the host system. In case of the
senders, the checksums of the IP packets are built within the guest machine. All
interfaces use an MTU of 1500 Bytes and the Nagle algorithm [23] is disabled.

Figure 2 compares the performance between RustyHermit and Linux. Up
to a message size of the MTU, RustyHermit provides a clearly higher bandwidth
in comparsion to Linux. For messages with the size of 512 bytes, RustyHermit
is twice as fast. Linux is more efficient at splitting messages larger than the
MTU size and as a result Linux currently provides higher performance for large
messages. This is something that needs to be worked on in smoltcp and is not
directly part of RustyHermit.

340 S. Lankes et al.

6 Conclusion

In this paper, we present RustyHermit a unikernel completely written in Rust.
We integrate a Rust-based IP stack not depending on C/C++. RustyHermit
is published on GitHub [13] and is completely integrated into Rust’s toolchain.
Consequently, common Rust applications, which do not bypass the Rust runtime
and directly use OS services are able to run on RustyHermit without modifi-
cations.

We show that RustyHermit provides excellent performance in micro bench-
marks and has a small memory footprint compared to a minimal CentOS 8
virtual machine image. The IP stack smoltcp and its integration into Rust’s
standard library provide a higher bandwidth in comparison to Linux for message
smaller than the MTU size. In combination with the low memory footprint is
RustyHermit suitable for the development of scalable micro services.

References

1. Balasubramanian, A., Baranowski, M.S., Burtsev, A., Panda, A., Rakamari, Z.,
Ryzhyk, L.: System programming in rust: beyond safety. SIGOPS Oper. Syst.
Rev. 51(1), 94–99 (2017). https://doi.org/10.1145/3139645.3139660

2. Bratterud, A., Walla, A., Haugerud, H., Engelstad, P.E., Begnum, K.: IncludeOS:
a resource efficient unikernel for cloud services. In: Proceedings of the 2015 IEEE
7th International Conference on Cloud Computing Technology and Science (Cloud-
Com) (2015)

3. Cutler, C., Kaashoek, M.F., Morris, R.T.: The benefits and costs of writing a
POSIX kernel in a high-level language. In: 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 1–19, September 2018

4. D Language Foundation: The D Programming Language. https://dlang.org/.
Accessed 4 Mar 2019

5. Dunkels, A.: Design and Implementation of the LwIP TCP/IP Stack. Swedish
Institute of Computer Science (2001)

6. eduOS-rs: A teaching operating system written in rust. https://rwth-os.github.io/
eduOS-rs/. Accessed 13 Feb 2019

7. Google: The Go Programming Language. https://golang.org. Accessed 4 Mar 2019
8. Greenblatt, R.D., Knight, T.F., Holloway, J.T., Moon, D.A.: A LISP machine.

ACM SIGIR Forum 15(2), 137–138 (1980)
9. Kantee, A.: Flexible operating system internals - the design and implementation

of the anykernel and rump kernels. Ph.D. thesis, Department of Computer Science
and Engineering, Aalto University, Aalto, Finland (2012)

10. Kivity, A., et al.: OSv - Optimizing the operating system for virtual machines. In:
USENIX Annual Technical Conference (2014)

11. Klabnik, S., Nichols, C.: The Rust Programming Language (Manga Guide). No
Starch Press, San Francisco (2018)

12. Kuenzer, S., et al.: Unikernels everywhere: the case for elastic CDNs. In: Pro-
ceedings of the 13th ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments, VEE 2017, pp. 15–29. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3050748.3050757

https://doi.org/10.1145/3139645.3139660
https://dlang.org/
https://rwth-os.github.io/eduOS-rs/
https://rwth-os.github.io/eduOS-rs/
https://golang.org
https://doi.org/10.1145/3050748.3050757

RustyHermit 341

13. Lankes, S., Breitbart, J., Pickartz, S.: Rustyhermit - a rust-based, lightweight
unikernel. https://github.com/hermitcore/libhermit-rs. Accessed 3 Oct 2019

14. Lankes, S., Pickartz, S., Breitbart, J.: HermitCore: a unikernel for extreme scale
computing. In: Proceedings of the 6th International Workshop on Runtime and
Operating Systems for Supercomputers, ROSS 2016, pp. 4:1–4:8. ACM, New York
(2016)

15. Lankes, S., Pickartz, S., Breitbart, J.: A low noise unikernel for extrem-scale sys-
tems. In: Knoop, J., Karl, W., Schulz, M., Inoue, K., Pionteck, T. (eds.) ARCS
2017. LNCS, vol. 10172, pp. 73–84. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-54999-6 6

16. Lankes, S., Breitbart, J., Pickartz, S.: Exploring rust for unikernel development.
In: Proceedings of the 10th Workshop on Programming Languages and Operating
Systems, PLOS 2019, pp. 8–15. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3365137.3365395

17. Levy, A., et al.: Ownership is theft: experiences building an embedded OS in Rust.
ACM, New York, October 2015

18. Levy, A., Campbell, B., Ghena, B., Pannuto, P., Dutta, P., Levis, P.: The case for
writing a kernel in rust. Proceedings of the 8th Asia-Pacific Workshop on Systems
(APSys 2017), pp. 1–7 (2017)

19. M-Labs: uhyve - a minimal hypervisor for rustyhermit. https://github.com/m-
labs/smoltcp. Accessed 1 Aug 2019

20. Madhavapeddy, A., et al.: Unikernels: library operating systems for the cloud. In:
Proceedings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2013, pp. 461–472.
ACM, New York (2013). https://doi.org/10.1145/2451116.2451167

21. Madhavapeddy, A., Scott, D.J.: Unikernels: rise of the virtual library operating
system. ACM Queue 11(11), 30 (2013)

22. Microsoft Security Response Center: Why rust for safe systems program-
ming. https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-
programming/. Accessed 1 Aug 2019

23. Nagle, J.: Congestion Control in IP/TCP Internetworks. https://tools.ietf.org/
html/rfc896. Accessed 10 July 2020

24. Narayanan, V., Baranowski, M.S., Ryzhyk, L., Rakamarić, Z., Burtsev, A.:
Redleaf: towards an operating system for safe and verified firmware, pp. 37–
44 (2019). https://doi.org/10.1145/3317550.3321449. http://doi.acm.org/10.1145/
3317550.3321449

25. OASIS Virtual I/O Device (VIRTIO) TC: Virtual I/O Device (VIRTIO) Ver-
sion 1.1 (2018). https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.
1-csprd01.html

26. Olivier, P., Chiba, D., Lankes, S., Min, C., Ravindran, B.: A binary-compatible
unikernel. In: Proceedings of the 15th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE 2019, pp. 59–73. Association
for Computing Machinery, New York (2019). https://doi.org/10.1145/3313808.
3313817

27. Picheta, D.: Nim in action. http://nim-lang.org/. Accessed 4 Mar 2019
28. DPDK Project: Data Plane Development Kit. https://www.dpdk.org. Accessed 10

July 2020
29. Redell, D.D., et al.: Pilot - an operating system for a personal computer. Commun.

ACM 23(2), 81–92 (1980)
30. RedHat: Newlib - a c library for embedded systems. https://sourceware.org/

newlib/. Accessed 13 Feb 2019

https://github.com/hermitcore/libhermit-rs
https://doi.org/10.1007/978-3-319-54999-6_6
https://doi.org/10.1007/978-3-319-54999-6_6
https://doi.org/10.1145/3365137.3365395
https://github.com/m-labs/smoltcp
https://github.com/m-labs/smoltcp
https://doi.org/10.1145/2451116.2451167
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://doi.org/10.1145/3317550.3321449
http://doi.acm.org/10.1145/3317550.3321449
http://doi.acm.org/10.1145/3317550.3321449
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3313808.3313817
http://nim-lang.org/
https://www.dpdk.org
https://sourceware.org/newlib/
https://sourceware.org/newlib/

342 S. Lankes et al.

31. Redox: A unix-like operating system written in rust. https://www.redox-os.org.
Accessed 13 Feb 2019

32. Russell, R.: Virtio: towards a de-facto standard for virtual i/o devices. SIGOPS
Oper. Syst. Rev. 42(5), 95–103 (2008). https://doi.org/10.1145/1400097.1400108

33. Rust Project Developers: Future - a Representation of asynchronous computation.
https://doc.rust-lang.org/std/future/trait.Future.html. Accessed 10 July 2020

34. Rust Project Developers: Cargo - a rust package manager. https://doc.rust-lang.
org/cargo/. Accessed 4 Mar 2019

35. Rust Project Developers: The Rust Programming Language. https://www.rust-
lang.org. Accessed 4 Mar 2019

36. Tock: A secure embedded operating system for cortex-m based microcontrollers.
https://www.tockos.org. Accessed 4 Mar 2019

37. Torvalds, L.: (2004). http://harmful.cat-v.org/software/c++/linus
38. Unikraft: An easy way of crafting unikernels. http://unikraft.neclab.eu. Accessed

4 Mar 2019
39. Virtio-fs Project Developers: virtio-fs. https://virtio-fs.gitlab.io. Accessed 14 July

2020

https://www.redox-os.org
https://doi.org/10.1145/1400097.1400108
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/cargo/
https://doc.rust-lang.org/cargo/
https://www.rust-lang.org
https://www.rust-lang.org
https://www.tockos.org
http://harmful.cat-v.org/software/c++/linus
http://unikraft.neclab.eu
https://virtio-fs.gitlab.io

Rootless Containers with Podman
for HPC

Holger Gantikow1,2(B) , Steffen Walter1 , and Christoph Reich2

1 science+computing AG, Atos, Tübingen, Germany
gantikow@gmail.com, steffen.walter@atos.net

2 Institute for Cloud Computing and IT Security, Furtwangen University,
Furtwangen, Germany

{holger.gantikow,christoph.reich}@hs-furtwangen.de

Abstract. Containers have become popular in HPC environments to
improve the mobility of applications and the delivery of user-supplied
code. In this paper we evaluate Podman, an enterprise container engine
that supports rootless containers, in combination with runc and crun
as container runtimes using a real-world workload with LS-DYNA, and
the industry-standard benchmarks sysbench and STREAM. The results
suggest that Podman with crun only introduces a similar low overhead
as HPC-focused container technologies.

Keywords: Virtualization · Container · Podman · Singularity · runc ·
crun · Rootless containers · LS-DYNA · Benchmark · Performance
analysis

1 Introduction

Over the last half decade, containers have become a valuable asset when it
comes to running services and applications. Especially in enterprise environ-
ments, where containers have turned into an integral part of the development,
deployment and operation of modern microservice architectures, they are well
received. They also prove to be particularly suitable for HPC environments,
where they improve the mobility of applications and the delivery of user-supplied
code. HPC centers are increasingly confronted with these requirements, since
users there are not only demanding software for traditional MPI-based simula-
tions but also increasingly novel software stacks and workflows to support work-
loads from the data science domain. In addition, modern sites call for solutions
that open up ways for simplified use of resources distributed across multiple
locations and for obtaining supplementary resources from the cloud [18] at a
progressive rate. Containers are a suitable component to support the demands
for flexibility in a in many ways converging future of compute. They decouple
applications and their dependencies from the underlying operating system and
encapsulate them in an easily redistributable unit. Due to special requirements of
HPC environments in the form of HPC-specific hardware and related libraries [2]
c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 343–354, 2020.
https://doi.org/10.1007/978-3-030-59851-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_23&domain=pdf
http://orcid.org/0000-0003-4648-4381
http://orcid.org/0000-0002-8112-515X
http://orcid.org/0000-0001-9831-2181
https://doi.org/10.1007/978-3-030-59851-8_23

344 H. Gantikow et al.

this abstraction is not yet fully realized. Despite these limitations and other open
issues [17], the achieved state still represents a serious advancement compared
to a few years ago.

At the beginning of the containerization trend started by Docker, there was,
as already before with LXC, only one runtime available, which could not be
integrated easily into HPC environments due to inherent differences in concepts.
As a result, a number of HPC-focused container runtimes have been developed
over the last few years, most notably Singularity [10], but also Shifter [8], Char-
liecloud [12] and most recently Sarus [1]. They made the concept of contain-
ers usable in HPC environments, differentiated by diverging functional extent
and implementation. However, due to their HPC focus, these runtimes were not
widely accepted beyond HPC environments and only Singularity has achieved
a notable degree of adoption in the enterprise HPC market. Even though the
interoperability of the individual runtimes has well increased due to the Open
Container Initiative (OCI) specifications, especially enterprise users show an
interest in a common solution, which is suitable for a variety of containerized
workloads, including HPC, and that consequently also allows a converging of
resources.

The Podman [4] container engine fills this gap to a certain extent, as it
distinguishes itself by features such as the ability to strongly isolate workloads
that are particularly relevant in enterprise container environments, as well as an
implementation and process model that is much closer to HPC environments.
To the best of our knowledge, the potential of Podman in HPC has not been
evaluated beyond basic functional testing [13] yet, a gap we are trying to address
with our research. The same applies to performance differences between the OCI
compatible runtimes runc and crun, both supported by the Podman engine for
spawning and running containers, insights we consider of use for other container
engines that rely on runc.

The focus of this paper is to investigate the suitability of Podman in the
context of HPC and to identify current limitations. We concentrate on the per-
formance of the container engine, with both runc and crun as runtime, compared
to the native bare metal performance and the HPC-focused Singularity runtime
used in enterprise HPC. We are especially interested in the overhead introduced
when processing a real-world workload using the Finite Element Analysis (FEA)
application LS-DYNA. This application from the field of Computer Aided Engi-
neering (CAE) is widely used in the automotive industry for crash test sim-
ulation. This investigation is complemented by a series of industry-standard
benchmarks.

The rest of the paper is organized as follows: Sect. 2 introduces related work
on container runtimes targeted at HPC environments with focus on performance
overhead. Section 3 covers the basic concepts of Podman in the context of HPC.
Section 4 presents the results of our evaluation of the Podman engine with the
FEA application LS-DYNA using MPI + Infiniband for communication, as well
as CPU and memory performance, using the sysbench and STREAM bench-
marks and gives configuration details related to the environment used for the

Rootless Containers with Podman for HPC 345

experimental evaluation. Limitations we came across are discussed in Sect. 5.
The paper concludes in Sect. 6.

2 Related Work

As Docker was not able to make its mark in HPC centers due to technical
challenges, several container platforms were created to address the needs of the
HPC community, each characterized by a specific focus and means to implement
the privilege escalation required to start containers.

Singularity [10] is characterized by its easy integration into existing HPC
workflows, uses a flat single file image format for performance reasons and offers
compatibility with legacy OS installations via a setuid starter. Shifter [8] reuses
some components of the Docker workflow and combines the basic concept of
containers with a chroot environment. Charliecloud [12] is characterized by a very
compact code base and the use of user namespaces to spawn containers. Sarus
[1], the latest HPC-specific runtime, is built around OCI specifications, uses the
runtime specification reference implementation runc and extends features for
HPC use cases by the use of OCI hooks.

The extent of overhead introduced by container virtualization has been inves-
tigated many times over the last years. The study carried out by Felter et al.
[6] represents the central paper when it comes to Docker containers, as it evalu-
ated a variety of typical services, such as MySQL, in conjunction with standard
benchmarks. It concluded that “Docker equals or exceeds KVM performance in
every case we tested”. This core statement is true throughout various application
domains: Di Tommaso et al. [5], who investigated the execution speed of genomic
pipelines, shared this conclusion of “negligible impact on the execution perfor-
mance”. Zhang et al. [19] summarized a “much better scalability than virtual
machines” with a Spark-based Big Data workload.

These studies have in common that they usually do not consider HPC-
optimized runtimes. HPC-specific studies are rather sparse and often only exam-
ine partial aspects, such as only comparing a single runtime against native per-
formance as in Wang et al. [16] and Younge et al. [18] - or only non-distributed
workloads as in Kovács [9]. The most thorough and recent work is by Torrez et al.
[15], where the three HPC-focused runtimes Charliecloud, Shifter, Singularity are
compared using a number of standard benchmarks, with the conclusion that “the
flexibility gained by using containers does not come at the cost of performance”.
Sadly the work lacks the inclusion of the Sarus engine and an evaluation of a
real-world workload.

3 Podman

Although Docker helped containers achieve their current popularity, it met with
disfavor not only in the HPC community, but also in Enterprise Linux distri-
butions. This led to the development of the Podman engine, which integrates
more naturally into a Linux system. In order to avoid potential security risks

346 H. Gantikow et al.

caused by the client-server architecture implemented by Docker, Podman uses
a classic fork-exec model, which also improves audit capabilities, as, by lacking
user switches, the audit subsystem has the possibility to document which user
performed container-related operations. The development of Podman is mainly
driven by Red Hat, which leads to the integration of corresponding packages in
Red Hat Enterprise Linux (RHEL) and its derivatives, a detail that is interesting
for HPC environments that often rely on RHEL-based distributions.

Coming from the enterprise breed of container runtimes, Podman follows
the “as much isolation as possible” paradigm rather than the “as much isola-
tion as necessary” preferred by HPC container runtimes. As expected, the full
range of safeguards for workload isolation is therefore supported. In addition to
namespaces and cgroups these include seccomp filters, Linux Security Modules
(SELinux, AppArmor) and capabilities. These mechanisms, which we presented
in more detail in an earlier work in the context of Docker [7], are not neces-
sarily all implemented by HPC-focused runtimes and may be less relevant to
traditional HPC workloads. We expect that with the advent of a wider variety
of applications, converged resources and the need for additional isolation from
bare metal operations and concurrent workloads, these will become more impor-
tant. How we addressed these mechanisms for MPI workloads is documented in
Sect. 4.1.

The most prominent feature of Podman is support for rootless containers,
which allows the execution of containers without privilege escalation mecha-
nisms, such as root daemon or setuid binary. Podman, like Charliecloud, uses
the user namespace functionality for this. Processes inside a new user names-
pace have different privileges and user IDs than those outside and require cor-
responding configuration of /etc/sub{g,u}id. Limitations of rootless containers
are discussed in Sect. 5.

The Podman engine uses the runtime runc, also used by Docker and Sarus,
which is written, as Podman, in Go. It also supports the state-of-the-art runtime
crun, which is implemented in C and described by the developers as “fast and
low-memory footprint”. Crun is currently used as the default runtime in Fedora,
as it already migrated to the resource limiting feature cgroups V2, only supported
by crun as of now.

As the name Pod Man(ager) implies, Podman supports the concept of Pods,
which is used to group a set of containers that collectively implement a complex
application. These containers are not completely isolated from each other, but
share several namespaces, which simplifies communication. This could be used
to provide a group of compute containers with a data sidecar container that only
serves the specific input data belonging to a job. In addition, since Kubernetes
is based on pods by default, this feature provides increased flexibility in a con-
verged environment to either launch suitable workloads in Kubernetes or to use
Kubernetes workloads with Podman.

To build container images Podman relies Buildah and offers the possibility
to create OCI compatible images from a Dockerfile without root privileges or
background services, which is a notable improvement over Docker-based build
processes. It also features functionality to create an image from scratch by using

Rootless Containers with Podman for HPC 347

the local package manager to install software as a measure to reduce image bloat
over the regular way of running the package manager inside the container itself.
It also supports multistage builds, that allow exclusion of build time only tools,
as compilers and package managers that are obsolete at run time, from the final
build. This can result in smaller image sizes.

A feature that seems more appropriate for HPC environments than for
enterprise workloads with stateless containers is the built-in support for Check-
point/Restore in Userspace (CRIU). It is used to checkpoint containers and
restore them at a later time and also to migrate containers to another sys-
tem, helping with scheduled downtimes and emergency patches. Unfortunately,
CRIU cannot be used in combination with rootless containers and when using
MPI and Infiniband-based workloads as of now.

Support for OCI Hooks represent a feature we have not yet had the oppor-
tunity to gain experience with. OCI Hooks are a mechanism which is used by
Sarus to extend the runtime functionality, for example to enable synchronization
with the Slurm Scheduler [1]. However, we are aware of an extended Berkeley
Packet Filter (eBPF)-based hook from the Podman developers, which is used
for automated creation of seccomp filters.

4 Evaluation

To investigate the suitability of Podman for HPC workloads we conducted a
series of experimental evaluations, comparing rootless Podman to native execu-
tion and Singularity as HPC-focused reference runtime. As container runtime
for Podman we used both runc and crun to investigate potential benefits from
utilizing the newer implementation written in C (crun) over runtimes in Go
(runc, Singularity). This resulted in four distinct runtime environments: Native,
Singularity, Podman-runc and Podman-crun.

Our test environment is part of an automotive industry environment used for
crash test simulations, aero dynamics and other CAE workloads. It consists of
one cell with 8 nodes and is part of a cluster with several hundred servers using
FDR Infiniband and Gigabit Ethernet as interconnect. The nodes are equipped

Table 1. Evaluation cluster details

(a) Hardware Environment (b) Software Environment

Component Details Component Version

Server 8x NEC HPC 1816Rf-2 Operating System CentOS Linux 8.1.1911

Processor 2x Intel Xeon E5-2680 v3

(Hyper Threading enabled)

Kernel 4.18.0-147.3.1.el8 1.x86 64

Memory 128 GB DDR4 (2134MHz) Singularity 3.5.2

Interconnect FDR Mellanox Infiniband

HCA MT27500 (ConnectX-3)

Podman 1.6.4

crun 0.13

Platform MPI 9.1.4.3r

Local Storage Intel SSDSC2BB80 LS-DYNA mpp r9 3 dm 134916

348 H. Gantikow et al.

with SSD-based local storage and use CentOS Linux 8.1 with permissive SELinux
and a local evaluation user. To ensure meaningful and comparable results all tests
were executed on the same systems without configuration changes during the
evaluation period. Details related to the evaluation environment are documented
in Table 1.

As real-world workload we use two versions of a LS-DYNA crash simulation,
the core application the cluster is used with on a daily basis.

To achieve a more detailed view of the overhead induced by containers, we
also perform a series of industry-standard benchmarks. To measure CPU per-
formance we utilize sysbench that calculates the prime numbers between 1 and
40 million using one thread per CPU core. For memory performance we rely
on STREAM [11]. Benchmark versions, configurations and execution calls are
documented in Table 2.

4.1 LS-DYNA

LS-DYNA is used to simulate the impact of automotive crashes, explosions and
sheet metal stamping. We use the car2car model, a widely used workload origi-
nally published by the National Crash Analysis Center (NCAC) to measure the
performance of LS-DYNA. The model includes 2.4 million single elements and

Table 2. Benchmark Configuration

Component Version Compile Flags, Call, Configuration

STREAM 5.10 gcc -m64 -O3 -mcmodel=medium -ffreestanding
-fopenmp
-DSTREAM ARRAY SIZE=3000000000
-DSTREAM=double stream.c -o stream

sysbench CPU 1.0.17 sysbench cpu –threads=24
–cpu-max-prime=40000000 run

LS-DYNA car2car short V03c memory=600m memory2=60m endtime=0.02

LS-DYNA car2car long V03c memory=600m memory2=60m [default
endtime=0.12]

(a) Zoom In Perspective (b) Side View Perspective

Fig. 1. NCAC car2car Model at time = 95 ms

Rootless Containers with Podman for HPC 349

simulates a frontal crash of two minivans (see Fig. 1) each at the speed of 35
mph and covers the first 120 ms of the crash. For quicker turnaround times we
created an additional model that only covers the first 20 ms. We refer to these
workloads in the course of this paper as short run (20 ms) and long run (120 ms)
configuration.

We used LS-DYNA on 8 nodes with 24 processes each, as it does not scale
very well horizontally and the selected configuration has proven to be efficient.
The rest of the configuration is characterized as follows: All processes on one host
share a working directory, that is located on a local SSD. The inter-process com-
munication on each host is accomplished via shared memory and the inter-node
communication is implemented by remote memory access via FDR Infiniband.
We use a hybrid model using compatible MPI implementations on the host and
in the container. This is the most common way to execute MPI containers. For
this setup mpirun is called on the host to start the containers and afterwards
connects to the MPI within the containers. This approach reduces the portabil-
ity of the container image by the need for compatible MPI implementations [2],
but is easier to implement. Furthermore, in our test case we are restricted to
the MPI implementation required by LS-DYNA anyway. Upon using mpirun to
start a containerized run, one container is being created for each process. The
different jobs were directly started with mpirun, omitting batch system inte-
gration, but still maintaining an identical LS-DYNA invocation throughout the
tests. We extended the shell environment with information regarding the LS-
DYNA licence server, Platform MPI library path and MPI meta variables, and
passed the updated environment into the container that starts the application.
To obtain meaningful results, each LS-DYNA run was carried out six times with
each configuration in every runtime environment.

Starting the containerized workload with Singularity was straightforward
and required no additional parameters or adjustments: mpirun mpp i=Caravan-
V03c-2400k-main-shell16-120ms.k memory=600 memory2=60.

Since Podman is not developed specifically for HPC workloads, we had to
make some adjustments to the container execution call: interprocess communi-
cation and shared memory access require pid and ipc namespace sharing among
the containers. The net namespace must also be shared between the containers

Table 3. LS-DYNA: Arithmetic mean + overhead

Native Singularity Podman-runc Podman-crun

Short Run 1097,67 s 1116,17 s 1154,83 s 1120,17 s

Long Run 6393,33 s 6521,17 s 6712,00 s 6521,83 s

Std Dev Short 2,42 (0,22%) 5,12 (0,46%) 4,54 (0,39%) 2,71 (0,24%)

Std Dev Long 12,64 (0,20%) 18,45 (0,28%) 9,78 (0,15%) 12,98 (0,20%)

Overhead Short – 2,09% 5,63% 2,45%

Overhead Long – 1,61% 4,58% 1,62%

Mean Overhead – 1,85% 5,10% 2,04%

350 H. Gantikow et al.

and the host, so that MPI on the host can manage internode communication.
These adjustments are achieved by appending the command line parameters –
net=host –pid=host –ipc=host. Furthermore we used –env=host to pass the host
environment into the container and –volume to bind mount a shared working
directory and pass the Infiniband device into the containers.

The analysis of the results1 (see Fig. 2 and Table 3) from the different runs
show: a) All container runtimes introduce a certain amount of overhead com-
pared to native execution of the simulation (1,85% - 5,10% for the arithmetic
mean of short and long run). b) This overhead might be negligible for many
workloads over the benefits of containers, as 2/3 runtimes only add 2,04% or
less overhead. c) Although Singularity causes the least overhead, the differences
of Podman in combination with crun as runtime are minor, especially for long
runs of LS-DYNA (1,61% vs 1,62%). d) Compared to Singularity and crun the
performance of runc is noticeably lower.

Discussions with Podman developers indicate that the slight difference of
Podman with crun compared to Singularity might be related to Podman isolation
mechanisms activated by default, such as a seccomp profile or more extensive
use of namespaces.

4.2 Benchmarks

To ensure comparability with other evaluations and to get specifics on where
the overhead described in Sect. 4.1 comes from, we performed some addi-
tional industry-standard benchmarks on a single node. We used sysbench and
STREAM to measure CPU and memory performance. Sysbench is a multi-
threaded benchmark tool that supports different tests to measure performance.
The evaluation scope of this paper covers the CPU test. STREAM performs sim-
ple vector operations and measures the available memory bandwidth. It needs to

Fig. 2. LS-DYNA: Elapsed time to normal termination for car2car model

1 Values used in Fig. 2 and Table 3 are based on “elapsed time” as returned by LS-
DYNA and do not include startup and teardown periods, which are further discussed
Sect. 5.

Rootless Containers with Podman for HPC 351

be compiled to use a data set that is significantly larger than the CPU caches. To
reflect CPU cache size and the amount of memory available in our test systems
we modified the preprocessor definition STREAM ARRAY SIZE to increase the
elements per array to 3 billion. When using large data sets, the resulting values
are naturally dominated by the bandwidth between the CPU and the memory
rather than the handling of cache misses [11]. Details concerning benchmark
versions, configurations and execution calls are documented in Table 2.

Figure 3a shows the results of the sysbench CPU benchmark that were sam-
pled over 25 runs with each runtime environment. The variation of the execution
times reported by the benchmark reported is ≈300 ms, not counting rare outliers.
Therefore, the results only differ by 0,4%, which does not lead to any direct con-
clusions, except that the results of all container-based runtime environments are
virtually identical and there seems to be no added overhead by containerization.

Figure 3b illustrates the arithmetic mean of the performance data collected
during five runs of the STREAM benchmark for STREAM’s four memory-bound
vector kernels in each runtime environment. Again, the measurements are within
a very small window, the results differ by less than 1% and containerization does
not seem to impose additional overhead in most cases. For this reason the y-axis
of the graph starts at a higher value than 0 to illustrate the differences in more
detail.

(a) Sysbench: prime number computation time (b) STREAM: performance in GB/s

Fig. 3. Sysbench + STREAM results

The Copy part of STREAM, which only copies the elements of one vector
into another (C[i] = A[i]|i = 1 . . . n [11]), shows similarities to the results of the
LS-DYNA benchmark. It can be concluded that the overhead of containerized
LS-DYNA is at least partially due to memory intensive operations.

5 Limitations

During our evaluation we were affected by limitations of rootless Podman: Some
Podman commands fail when no subordinate user IDs (subuid) and subordinate

352 H. Gantikow et al.

group IDs (subgid) are not configured, even though we did not make use of the
feature since sub{u,g}ids cannot be used with MPI jobs, since shared memory
access and shared file access is not supported.

When using network based authentication systems like LDAP, sub{u,g}ids
cannot be configured easily, because the files /etc/sub{u,g}id are not utilized.
According to Podman Developers the addition of new directives in the nss-
witch.conf to support the subuid and subgid databases is work in progress. In
rare cases when trying to start new containers for a job run, it failed with an
error indicating that there already exists a container storage for the requested
name, even though none by that name is known to Podman at the time.

We observed that startup and teardown costs of Podman containers are con-
siderably greater than that of Singularity containers. We measured the following
deltas when comparing the total real wall clock from the start of mpirun until
successful termination and the “elapsed time” as reported by LS-DYNA: native:
≈3 s, Singularity: ≈5 s, Podman: ≈25 s. We are currently working with the devel-
opers to clarify the cause, but the most probable reason is due to the layered
filesystem that needs to be set up and torn down again in combination with a
≈2 GB LS-DYNA image. Further investigations have shown that the measured
delta is independent of the number of servers and thus the number of containers
(one per physical core). Application runs with 8, 4 and 2 hosts (192, 96 and 48
containers) all resulted in a constant delta of ≈25 s.

Other limitations that did not affect our evaluation, but can be relevant
to other HPC environments, are the lack of direct Slurm support, failure to
bind to ports < 1024 (privileged ports), and the inability to run from home
directories on NFS or GPFS. In addition, rootless Podman does not support
CRIU’s checkpoint and restore features and cgroups V1 yet. The latter issue
will be solved in the long run by moving to V2, which is already supported in
Fedora 31 for crun [14]. A comprehensive list of limitations that apply to rootless
containers is maintained by the Podman developers [3].

6 Conclusion

Our evaluation showed that Podman, despite the different focus of the project, is
essentially suitable for use in HPC. In terms of real-world workload performance,
Podman performs on a similar level as Singularity, at least in conjunction with
crun as runtime. Our results with industry-standard benchmarks are consistent
with other studies on other runtimes, namely that containers generate only a
small performance overhead, if at all. However, it is still higher with real-world
workloads than with benchmarks. At the moment there are still some limita-
tions in Podman, including issues that should be fixed in future versions, but
which cause more problems in a production environment than in our evaluation
environment. From an administrator’s point of view, these include restrictions
on the use of directory services such as LDAP, shortcoming of rootless contain-
ers in combination with distributed file systems and, from the user’s point of
view, a more complex integration with MPI workloads than Singularity. Nev-
ertheless, Podman offers a number of advantageous features. These include the

Rootless Containers with Podman for HPC 353

ability to create images with user privileges only, support for pods and stronger
isolation. This makes it an interesting option for newer workloads and converged
environments and bridges the gap between single-node container engines and
Kubernetes. In future work we want to examine Podman specific features and
explore the possibilities of OCI Hooks, especially for integration with workload
managers.

References

1. Benedicic, L., Cruz, F.A., Madonna, A., Mariotti, K.: Sarus: highly scalable docker
containers for HPC systems. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H.
(eds.) ISC High Performance 2019. LNCS, vol. 11887, pp. 46–60. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34356-9 5

2. Canon, R.S., Younge, A.: A case for portability and reproducibility of HPC con-
tainers, pp. 49–54. IEEE (2019). https://doi.org/10.1109/CANOPIE-HPC49598.
2019.00012

3. Containers Organization: libpod: Shortcomings of Rootless Podman. https://
github.com/containers/libpod/blob/master/rootless.md

4. Containers Organization: Podman—podman.io. https://podman.io/
5. Di Tommaso, P., Palumbo, E., Chatzou, M., Prieto, P., Heuer, M.L., Notredame,

C.: The impact of Docker containers on the performance of genomic pipelines.
PeerJ 3, e1273 (2015). https://doi.org/10.7717/peerj.1273

6. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and Linux containers. In: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–
172, March 2015. https://doi.org/10.1109/ISPASS.2015.7095802

7. Gantikow, H., Reich, C., Knahl, M., Clarke, N.: Providing security in container-
based HPC runtime environments. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.)
ISC High Performance 2016. LNCS, vol. 9945, pp. 685–695. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46079-6 48

8. Jacobsen, D.M., Canon, R.S.: Contain This, Unleashing Docker for HPC. Cray User
Group 2015, p. 14 (2015). https://www.nersc.gov/assets/Uploads/cug2015udi.pdf

9. Kovács, Á.: Comparison of different Linux containers. In: 2017 40th International
Conference on Telecommunications and Signal Processing (TSP), pp. 47–51. IEEE
(2017). https://doi.org/10.1109/TSP.2017.8075934

10. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for
mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/
journal.pone.0177459

11. McCalpin, J.D.: Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter (May), 19–25 (1995)

12. Priedhorsky, R., Randles, T.: Charliecloud: unprivileged containers for user-defined
software stacks in HPC. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2017, Association
for Computing Machinery, New York (2017). https://doi.org/10.1145/3126908.
3126925

13. Reber, A.: Podman in HPC environments. https://podman.io/blogs/2019/09/26/
podman-in-hpc.html

https://doi.org/10.1007/978-3-030-34356-9_5
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00012
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00012
https://github.com/containers/libpod/blob/master/rootless.md
https://github.com/containers/libpod/blob/master/rootless.md
https://podman.io/
https://doi.org/10.7717/peerj.1273
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1007/978-3-319-46079-6_48
https://www.nersc.gov/assets/Uploads/cug2015udi.pdf
https://doi.org/10.1109/TSP.2017.8075934
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1145/3126908.3126925
https://podman.io/blogs/2019/09/26/podman-in-hpc.html
https://podman.io/blogs/2019/09/26/podman-in-hpc.html

354 H. Gantikow et al.

14. Suda, A.: The current adoption status of cgroup v2 in containers. https://medium.
com/nttlabs/cgroup-v2-596d035be4d7

15. Torrez, A., Randles, T., Priedhorsky, R.: HPC container runtimes have mini-
mal or no performance impact, pp. 37–42. IEEE (2019). https://doi.org/10.1109/
CANOPIE-HPC49598.2019.00010

16. Wang, Y., Evans, R.T., Huang, L.: Performant container support for HPC appli-
cations. In: ACM International Conference Proceeding Series (2019). https://doi.
org/10.1145/3332186.3332226

17. Watada, J., Roy, A., Kadikar, R., Pham, H., Xu, B.: Emerging trends, techniques
and open issues of containerization: a review. IEEE Access 7, 152443–152472
(2019). https://doi.org/10.1109/ACCESS.2019.2945930

18. Younge, A.J., Pedretti, K., Grant, R.E., Brightwell, R.: A tale of two systems:
using containers to deploy HPC applications on supercomputers and clouds. In:
Proceedings of the International Conference on Cloud Computing Technology and
Science, CloudCom (2017). https://doi.org/10.1109/CloudCom.2017.40

19. Zhang, Q., Liu, L., Pu, C., Dou, Q., Wu, L., Zhou, W.: A comparative study of
containers and virtual machines in big data environment. In: IEEE International
Conference on Cloud Computing, CLOUD, vol. 2018-July, pp. 178–185 (2018).
https://doi.org/10.1109/CLOUD.2018.00030

https://medium.com/nttlabs/cgroup-v2-596d035be4d7
https://medium.com/nttlabs/cgroup-v2-596d035be4d7
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1145/3332186.3332226
https://doi.org/10.1145/3332186.3332226
https://doi.org/10.1109/ACCESS.2019.2945930
https://doi.org/10.1109/CloudCom.2017.40
https://doi.org/10.1109/CLOUD.2018.00030

Bioinformatics Application
with Kubeflow for Batch Processing

in Clouds

David Yu Yuan(B) and Tony Wildish

Technology and Science Integration, European Bioinformatics Institute,
European Molecular Biology Laboratory, Hinxton, UK

davidyuan@ebi.ac.uk

https://www.ebi.ac.uk/

Abstract. Bioinformatics pipelines make extensive use of HPC batch
processing. The rapid growth of data volumes and computational com-
plexity, especially for modern applications such as machine learning
algorithms, imposes significant challenges to local HPC facilities. Many
attempts have been made to burst HPC batch processing into clouds
with virtual machines. They all suffer from some common issues, for
example: very high overhead, slow to scale up and slow to scale down,
and nearly impossible to be cloud-agnostic.

We have successfully deployed and run several pipelines on Kuber-
netes in OpenStack, Google Cloud Platform and Amazon Web Services.
In particular, we use Kubeflow on top of Kubernetes for more sophisti-
cated job scheduling, workflow management, and first class support for
machine learning. We choose Kubeflow/Kubernetes to avoid the over-
head of provisioning of virtual machines, to achieve rapid scaling with
containers, and to be truly cloud-agnostic in all cloud environments.

Kubeflow on Kubernetes also creates some new challenges in deploy-
ment, data access, performance monitoring, etc. We will discuss the
details of these challenges and provide our solutions. We will demon-
strate how our solutions work across all three very different clouds for
both classical pipelines and new ones for machine learning.

Keywords: Kubernetes · Kubeflow · Workflow · Container
orchestration · Deployment · Clouds · Data management · Monitoring ·
OpenStack · Google Cloud Platform · Amazon Web Services

1 Introduction

Bioinformatics pipelines make extensive use of HPC batch processing farms. The
data size is growing exponentially in Terabyte to Petabyte range. The compu-
tational complexity is also growing rapidly with job duration reaching weeks to
months. HPC facilities can no longer satisfy these rapidly growing requirements.
With the modern applications of machine learning algorithms, GPUs become

c© The Author(s) 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 355–367, 2020.
https://doi.org/10.1007/978-3-030-59851-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_24&domain=pdf
http://orcid.org/0000-0003-1075-1628
http://orcid.org/0000-0003-4297-4738
https://doi.org/10.1007/978-3-030-59851-8_24

356 D. Y. Yuan and T. Wildish

critical for batch processing, but long wait times for GPU batch queues are
common. With rapidly changing GPU models, high unit price and long procure-
ment cycles, it is impossible to run some pipelines simply due to the lack of
specific GPU models on premises.

HPC-in-the-cloud solutions provide VM-based workflow management. Open
source tools like Cluster-in-the-Cloud are more portable, but also need lots of
maintenance. In general, batch clusters are complex to configure for general
users, and don’t take good advantage of cloud-native capability. We tried imple-
mentations on different clouds: Google Cloud Platform, Microsoft Azure and
Oracle Cloud. The solutions are very cloud-specific, and thus unportable.

Container and its orchestration engine Kubernetes is the obvious choice to
overcome issues with VM-based batch solutions in clouds. The basic Kuber-
netes job framework is insufficient for Bioinformatics pipelines. It is more of a
framework for frameworks. Kubeflow [1] is a comprehensive and cloud-agnostic
workflow engine on Kubernetes. It is designed for machine learning workflows
but generic enough to run any workflow on Kubernetes in a simple, portable and
scalable fashion.

In this article, we are to deploy Kubernetes and Kubeflow to run two
pipelines: one for classic pipeline and the other for machine learning, targeting
three clouds: a private cloud based on OpenStack (OSK), and two public clouds
of Google Cloud Platform (GCP) and Amazon Web Services (AWS). Although
Kubernetes has become the de facto standard on almost all major clouds, there
are also some new challenges in data access, performance monitoring, and GPU
etc. We will discuss the details of these challenges and our solutions. We will
demonstrate how our solutions work across all three very different clouds for
both classical pipelines and new ones for machine learning.

2 Method

Docker and Kubernetes have become the de facto standard for container and
container orchestration. All major cloud providers and operating systems provide
first class support for them. In our previous investigation, we have confirmed that
Bioinformatics pipelines can be migrated from HPC into public clouds with ease.
In addition, the resulting Kubernetes clusters are almost identical in Google,
Amazon and Microsoft [2]. Together, Docker and Kubernetes become universal
platforms for Infrastructure-as-a-Service (IaaS) for Bioinformatics pipelines and
other workloads.

Kubernetes has a job framework built into its APIs [3]. However, it is in its
infancy and incapable to support complex pipelines for Bioinformatics. Google,
together with many other major cloud vendors, have just started a new workflow
engine, Kubeflow, on Kubernetes to make ML simple, portable and scalable.
Kubeflow shows promise as a platform to manage the workflows of Bioinformatics
pipelines with efficiency, scalability and portability. In this section, we will focus
on the challenges, temporary and long term, and our solutions to address them.

Bioinformatics Application with Kubeflow for Batch Processing in Clouds 357

2.1 Deployment

We have Kubernetes clusters for HPC on three clouds: OSK, GCP and AWS.
We run Rancher Kubernetes Engine (RKE) [4] on OSK. Public clouds have
their Kubernetes engines built in: GKE on GCP and EKS on AWS. Kubernetes
provides a good solution for computing. It is relatively weak on integration with
storage and network.

We then deployed Kubeflow for batch processing. There are two categories
of deployment for Kubeflow:

1. Cloud-agnostic: the deployment scripts are maintained by the open source
community or third party, for example the first two scripts in the table [5].
They require the Kubernetes cluster created first.

2. Cloud-specific: the deployment scripts are maintained by cloud providers such
as GCP, AWS, IBM and OpenShift. Microsoft is using the community main-
tained script at present.

We have been using both cloud-agnostic and cloud-specific scripts. The cloud-
agnostic script is completely portable. We are able to deploy Kubeflow on Open-
Stack, GCP and AWS without modification. This would reduce our operational
cost in production and the implementation of the hybrid cloud strategy. The
cloud-specific script provides tight integration with the underlying cloud infras-
tructure. The benefit to end users is minimal at this point. Therefore, we have
chosen the cloud-agnostic script (kfctl istio dex.v1.0.0.yaml) [6] for all of our
three clouds. It provides a consistent mechanism for authentication and autho-
rization [7] as shown in Fig. 1.

Fig. 1. Multi-user, auth-enabled Kubeflow was modified from Kubeflow documenta-
tion (https://www.kubeflow.org/docs/started/k8s/kfctl-istio-dex/) under CC BY 4.0
license.

https://www.kubeflow.org/docs/started/k8s/kfctl-istio-dex/

358 D. Y. Yuan and T. Wildish

Storage. Cloud providers only support a very small subset of Volume Plug-
ins, with few overlaps. They all support ReadWriteOnce mode. About 60% of
them support ReadOnlyMany. Only 30% of them support the ReadWriteMany
model [8]. Bioinformatics pipelines almost always assume local access to POSIX-
like file systems for both read and write, so we use an NFS persistent volume as
a workaround to make our pipelines cloud-agnostic.

NFS has many limitations in security, performance, scalability and, to a cer-
tain extent, data integrity. We only use it to pass a small amount of intermediate
data between tasks in the same pipeline. For temporary files within a task, we use
the default Storage Classes to create Persistent Volumes. The Volume Plugins
for the default Storage Classes always support ReadWriteOnce. The Persistent
Volume Claims (PVCs) always use the default Storage Classes if omitted. This
makes the PVC manifest syntactically identical in all the clouds to create tem-
porary storage for reading and writing within a task. We mount emptyDir in a
pod for caching. If cache is small, we set emptyDir.medium field to “Memory”
for fast access as the tmpfs mounted is a RAM-backed filesystem.

Networking. The integration between the internal and external networks of
a Kubernetes cluster is another difficulty for users. We use three options to
integrate the internal networks created by Kubeflow with the outside world:
port-forward, load balancer and Ingress.

Kubeflow creates Istio ingress gateway service with NodePort by default, for
example:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

istio-ingressgateway NodePort 10.43.184.114 <none> 15020:30024/TCP,80:31380/TCP,443:31390/TCP,31400:31400/TCP,

15029:30610/TCP,15030:30412/TCP,15031:32070/TCP,15032:32526/TCP,15443:30403/TCP 12d

We use port-forward for quick access on a Kubernetes client. This does not
require any change on the networking.

kubectl port-forward svc/istio-ingressgateway -n istio-system 8080:80 &

open http://localhost:8080

For public clouds, load balancers can be configured easily to expose Kubeflow.
As Istio ingress gateway services on both ports 80 and 443, it is important to
enable SSL with a signed certificate and redirect requests from port 80 to port
443 for security reasons.

kubectl patch service -n istio-system istio-ingressgateway \

-p ‘{"spec": {"type": "LoadBalancer"}}’

Once the service type is changed to LoadBalancer, an external IP will be
assigned to the service to access Kubeflow on GCP. A host name is generated
on AWS as well.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

istio-ingressgateway LoadBalancer 10.32.7.82 35.190.144.146 15020:31092/TCP,80:31380/TCP,443:31390/TCP,31400:31400/TCP,

15029:31624/TCP,15030:31175/TCP,15031:30963/TCP,15032:30674/TCP,15443:30189/TCP 6d11h

Bioinformatics Application with Kubeflow for Batch Processing in Clouds 359

There is no load balancer configured for RKE in our private OSK cloud at
present. We assign a floating IP to the Kubernetes cluster. We then configure
the ingress control to access Kubeflow via the floating IP.

2.2 Data Access

The pipelines usually have very little control over the storage for input and out-
put. Most of Bioinformatics pipelines assume local access to POSIX-like file sys-
tems for simplicity. Kubeflow and its orchestrator Kubernetes naturally assume
that pipelines use cloud-native storage as the data sources. Persistent Volumes
need to be mounted as temporary storage for input and output.

We use commands (e.g., curl, wget, scp etc.) or any special clients, such as
Globus or Aspera to download or upload files in the pipelines. This approach
has its obvious drawbacks. This biggest issue is scalability. Data files have to
be moved in batch mode and then processed. They often require large amounts
of storage from Terabytes to Petabytes. As we have discussed before, the only
Persistent Volume for multiple clouds is NFS. Accessing input and output data
becomes moving many files into and out of NFS server for seemingly local access
is very inefficient. It is impractical to move Terabytes to Petabytes of data to
persistent volumes before computing.

POSIX-like File System for Bioinformatics Applications. We use One-
data [9] to fill the functionality gap. Onedata presents a globally federated
POSIX VFS built out of local storage in Ceph, S3, NFS, Lustre, and other
storage backends. There are several limitations:

1. Onedata does not support Kubernetes. There is no storage provisioner for
Onedata.

2. There is only n-1 version compatibility between its client and server. Short
release cycle essentially eliminates backward compatibility in practice.

3. Both client and server require root privilege.

The only viable option to bypass all the limitations above is to create Docker
images with both OneClient and a Bioinformatics application. There are two
options to create such merged Docker images:

1. Starting with onedata/oneclient : <version tag> as the base image, install a
Bioinformatics application. Sometimes, it is necessary to use the multi-staged
build.

2. Building an image on a Docker server supporting conda, install OneClient
with exactly the version as OneProvider.

To merge Samtools, we simply installed it into a given OneClient image which
is fairly standard. To merge the latest version of Freebayes with OneClient, we
use a two-staged build. The binaries of bamleftalign and freebayes are built from

360 D. Y. Yuan and T. Wildish

the source in a Python image first. They are then copied into OneClient image.
A Dockerfile is available in the repository [10].

The second option of installing OneClient can be tricky. OneClient requires
specific versions of libraries. Its installer does not do a good job to ensure that
the prerequisite is met correctly.

The utility oneclient is called to mount a POSIX VFS in the container. The
Bioinformatics tools will access remote files as if from a local file system as input
for just-in-time data ingestion and as output for transparent write-through.

S3-Like Cloud Storage. S3 has firmly established its dominance as a popular
cloud storage. We first tried Tensorflow API to download and upload files in
S3 buckets as we were using Tensorflow/Keras in our machine learning pipeline,
but switched to AWS CLI for S3 based on the Python library Boto 3 for better
performance, scalability and resource consumption.

Neither AWS CLI nor Boto 3 provides official Docker images. We have created
a custom image. A default Persistent Volume is used as a cache for input and
output. We do not accumulate the files on the temporary storage. We download
them only when they are needed, and upload them as soon as they are generated.
In the pipelines, we use Kubeflow sidecar or a separate component for file transfer
in parallel.

As shown in a sidecar snippet in [11], we extend the custom AWS CLI image
with some simple shell scripts (image=‘davidyuyuan/aws:1000g’). We then use
Kubeflow sidecar API to call our scripts for cloud storage. Both the sidecar and
separate components are useful depending on whether we want to transfer files
just for a single operation or shared by multiple parallel operations. They enable
the classic pipelines to access cloud storage a little easier.

2.3 Monitoring

Logging and telemetry are weak in clouds, including major public clouds. Most
of the existing solutions are designed for virtual machines instead of containers
(Docker), still less for container orchestration (e.g., Kubernetes) and much less
for workloads (e.g., Kubeflow and pipelines on it). Our attempt to establish
a cloud-agnostic solution or HPC batch processing via container orchestration
adds one more challenge.

We have identified a single tool for both logging and telemetry for both
VMs and Kubernetes including Kubeflow and Bioinformatics pipelines on all
three clouds. Elasticsearch [12] has been known to the Open Source community
for a long time. It is undeniably complex to create a traditional deployment of
Elasticsearch with high availability, performance and scalability. We are using
the SaaS solution and also investigating the feasibility to run Elasticsearch on
Kubernetes [13]. Our goal is to let Kubernetes handle high availability, perfor-
mance and scalability for a simple deployment. The details of the investigation
is beyond the scope of this article. We will focus on how we make use of the
SaaS solution for the pipelines on Kubeflow.

Bioinformatics Application with Kubeflow for Batch Processing in Clouds 361

Fig. 2. Deployment architecture of an Elasticsearch instance.

At minimum, Elasticsearch consists of Kibana, Elasticsearch, Logstash or
Beats. As shown in Fig. 2, our SaaS instance contains the components on
the server side: Elasticsearch and Kibana. We use Beats (Filebeat and Met-
ricbeat) on the client side for logging and telemetry. Beats is simple to use with
lower overhead compared with Logstash. DaemonSet is used to run containers
(e.g., docker.elastic.co/beats/metricbeat:7.6.0) in Kubernetes clusters,
instead of classic OS-specific installation packages for VMs.

Fig. 3. Monitoring multiple Kubernetes clusters with Elasticsearch.

This allows us to monitor clusters in different clouds in a single pane of glass,
for example public GCP and private OSK in Fig. 3. Together with Filebeat con-
tainer (docker.elastic.co/beats/filebeat:7.6.0), we are able to monitor
both logging and telemetry of Kubernetes including Kubeflow and Bioinformat-
ics pipelines in all three clouds.

2.4 Using GPUs with Kubeflow

Machine Learning (ML) has wide applications in Bioinformatics, for example,
genomic sequence assembly, literature analysis and image processing. Some ML

362 D. Y. Yuan and T. Wildish

pipelines take weeks to complete a training cycle, exceeding the time-limit of
HPC queues. The training cycles need to be repeated many times for hyperpa-
rameter tuning.

Kubeflow runs on Kubernetes clusters with or without GPU. We position our
OpenStack private cloud for pipeline development and CPU-only training. The
same pipelines can be deployed as-is onto Kubeflow on GCP and AWS, where
Kubernetes clusters may include GPUs. This allows us to bypass the timeout
issue with HPC queues, to avoid long GPU procurement cycles, to acquire larger
capacities, and to minimise the cost in public clouds.

Kubeflow includes Jupyter Notebooks by default, where they can be cre-
ated with or without GPU support, depending on the initial image. In addition,
Kubeflow pipeline DSL provides very handy APIs to consume GPU or TPU in
a Python package:

kfp.dsl.ContainerOp.apply(gcp.use_tpu())
kfp.dsl.ContainerOp.set_gpu_limit()

GCP and AWS provide different GPU models. They both support GPU in
passthrough mode for bare metal performance. However, GCP provides separate
node pools for CPUs and GPUs as well as multiple GPU pools for different GPU
models in the same Kubernetes cluster. This allows us to create an ideal platform
to run ML pipelines on Kubeflow.

3 Result

We have successfully run two types of pipelines on Kubeflow/Kubernetes on
GCP, AWS and our private OSK. Our goal is to enhance and to prove the capa-
bility of the platform for Bioinformatics. We want to make it suitable for large
scale Bioinformatics research for both classic pipelines and new ML pipelines for
both high throughput and high performance workloads.

1. Classic Bioinformatics pipelines - variant calling on 1000 Genomes Project [14]
representing high throughput workload

2. Machine Learning pipelines - image classification on cardiomyocytes from
Image Data Repository [15] representing high performance workload

3.1 Classic Bioinformatics Pipelines

We have created a brand new pipeline, consisting of two classical tools for
genomics: Samtools and Freebayes. Freebayes are to be run in parallel, one set of
pods per chromosome. The output VCFs from Freebayes are cached on a shared
disk, and then uploaded to an S3 bucket as soon as they arrive at the staging
area (Fig. 4).

The data sources and the methods to access them are completely unchanged
when we run the pipeline on GCP, AWS or the private OSK clouds:

Bioinformatics Application with Kubeflow for Batch Processing in Clouds 363

Fig. 4. Example of a simplified classic bioinformatic workflow.

1. Human reference genome is downloaded from an FTP server at EBI [16]. It
then gets preprocessed by Samtools to generate fasta files and their indices.

2. Queries or a list of file names of the 1046 genomes is stored in an S3 bucket. It
gets downloaded by a sidecar as discussed above. Freebayes is to loop through
the list for each genome for each region in batches in parallel.

3. The actual alignments of the 1046 genomes are accessed with Onedata for
just-in-time data ingestion from a storage volume at EBI. We have discussed
details on how to integrate Onedata with Kubernetes above.

A complete run of 1046 genomes on all 26 regions takes several weeks. We
usually scale down to three fastest regions (‘GL000207.1’, ‘MT’, ‘Y’) for a 40-
hour-run (Fig. 5). The exit handler gets invoked by Kubeflow where we have

Fig. 5. Pods for the pipeline scale up and down efficiently as needed.

364 D. Y. Yuan and T. Wildish

only implemented a simple logic to list all the VCFs uploaded to the S3 bucket
(onExit - list-results).

One point worth noting is that Kubeflow uses Python as the programming
language for pipelines. It provides developers much needed lexicon to construct
DAG with simple expressions and function calls in an extremely condensed and
elegant style [17].

3.2 Machine Learning Pipelines

Kubeflow is designed to provide the first class support for Machine Learning. As
shown in the diagram in Kubeflow overview [1], tools and services needed for
ML have been integrated into the platform, where it is running on Kubernetes
clusters on public and private clouds.

A set of the most popular ML tools, such as Jupyter, TensorFlow, PyTorch,
MPI, XGBoost, MXNet, etc., are included. We used Jupyter and TensorFlow for
our ML pipeline. The Kubeflow applications and scaffolding integrates the ML
tools with the underlying Kubernetes cluster supported by various clouds, in our
case: GCP, AWS and OpenStack on premises. There are also other components
providing service mesh, programming model, instrumentation, influencing, etc.
to make the platform fully operational for both experimental and production
phases.

We have created a notebook for image classification. The images are whole
slides of cardiomyocytes published in 2018 [18]. The public data is stored in
the IDR hosted by EBI. We have decided to use our Kubeflow on GCP with
GPU support to speed up the model training for high performance. A notebook
server is created with an Docker image with Tensorflow 2.1.0 and GPU support
accordingly.

We use the latest OMERO 5.6.0 JSON API [19] to download the images.
There is a limit on the IDR server of maximum downloads of 1000 images, which
gives us 1978 images to work with, comparable to the original datasets of 2277
usable images. This is on the smaller side for CNN training and validation. The
image quality and annotation are good so it gives us satisfying results (Fig. 6).

The training and validation with GPU are surprisingly fast with 4s for each
epoch on the original images and 8 s for augmented images. With the per second
billing on both GCP and AWS together with dynamic resource allocation on
Kubeflow, the cost to run ML pipelines with GPUs is very low. This fully cloud-
native and cloud-agnostic approach provides advantages not only over HPC on
premises but also over HPC-in-the-cloud, where GPUs still have to be reserved
for the lifecycle of the job, whether they are used well or not.

Bioinformatics Application with Kubeflow for Batch Processing in Clouds 365

Fig. 6. Training and validation of a CNN model with cardiomyocytes images on Kube-
flow

4 Conclusion

We have successfully run pipelines on Kubernetes in OpenStack, Google Cloud
Platform and Amazon Web Services, in particular, on Kubeflow with more
sophisticated job scheduling, workflow management, and first class support to
machine learning. We choose Kubeflow/Kubernetes to avoid the overhead of
provisioning of virtual machines, to achieve rapid scaling with containers, and
to be truly cloud-agnostic in all three cloud environments.

We have chosen two very typical pipelines in Bioinformatics: one for genomic
sequence analysis and the other for image classification; one for classic tools and
the other for modern machine learning; one for high throughput and the other
for high performance; one for classic pipeline and the other for Jupyter note-
book. With the successful deployment of these two pipelines, we can conclude
confidently that Kubeflow can satisfy complex requirements by Bioinformatics.

Kubeflow and Kubernetes have also introduced interesting challenges. We
have systematically analysed and addressed various aspects in deployment, stor-
age and networking. We have identified and implemented methods to access data
for input and output in CLI and Python APIs. We have successfully proposed
and implemented a creative solution to combine the strength of Onedata and
Docker for the just-in-time data ingestion as well as transparent write-through.
For S3 storage, we have created a custom AWS CLI image and run the container
as either a sidecar or a separate operation for parallel operations to transfer

366 D. Y. Yuan and T. Wildish

objects. We also have integrated Elasticsearch for both logging and telemetry.
By adding GPU to the Kubernetes cluster, and then to Jupyter notebook server,
we are able to train a CNN model in seconds per epoch.

With the excellence in Kubeflow and Kubernetes frameworks and our solu-
tions to compensate for their limitations, we are able to run both high throughput
and high performance pipelines at scale. We are confident that it is feasible to
run Bioinformatics pipelines efficiently via container orchestration in all major
clouds with excellent portability. Jobs in different pipelines or between different
runs are now able to share cloud resources efficiently, much better than tradi-
tional HPC-in-the-cloud solutions.

References

1. Kubeflow.org. https://www.kubeflow.org/docs/started/kubeflow-overview/
2. Yuan, D.: RSEConUK 2019, University of Birmingham, 17–19 September 2019,

Case Study of Porting a Bioinformatics Pipeline into Clouds. https://sched.co/
QSRc

3. Kubernetes, Concepts → Workloads → Controllers → Jobs - Run to Com-
pletion. https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-
completion/

4. Overview of RKE. https://rancher.com/docs/rke/latest/en/
5. Installing Kubeflow. https://www.kubeflow.org/docs/started/getting-started/
6. Cloud-agnostic Kubeflow deployment. https://raw.githubusercontent.com/

kubeflow/manifests/v1.0-branch/kfdef/kfctl istio dex.v1.0.0.yaml
7. Authentication with Istio + Dex. https://journal.arrikto.com/kubeflow-authenti

cation-with-istio-dex-5eafdfac4782
8. Storage volume. https://kubernetes.io/docs/concepts/storage/persistent-

volumes/#access-modes
9. Onedata. https://onedata.org/#/home

10. Two-staged build. https://gitlab.ebi.ac.uk/TSI/kubeflow/blob/master/pipelines/
1000g/freebayes/Dockerfile

11. Function samtools op. https://gitlab.ebi.ac.uk/TSI/kubeflow/-/blob/1.0.1/
pipelines/1000g/1000g.py

12. Elasticsearch. https://www.elastic.co/elasticsearch
13. Elastic Cloud on Kubernetes. https://www.elastic.co/downloads/elastic-cloud-

kubernetes
14. Data - 1000 Genomes Project. https://www.internationalgenome.org/data/
15. IDR: Image Data Repository. https://idr.openmicroscopy.org/webclient/?

show=project-402
16. Human Reference Genome, v37. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

technical/reference/human g1k v37.fasta.gz
17. Kubeflow pipeline APIs. https://kubeflow-pipelines.readthedocs.io/en/stable/

index.html
18. Nirschl, J.J., et al.: A deep-learning classifier identifies patients with clinical heart

failure using whole-slide images of H&E tissue. https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5882098/

19. OMERO 5.6.0 JSON API. https://docs.openmicroscopy.org/omero/5.6.0/
developers/json-api.html

https://www.kubeflow.org/docs/started/kubeflow-overview/
https://sched.co/QSRc
https://sched.co/QSRc
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://rancher.com/docs/rke/latest/en/
https://www.kubeflow.org/docs/started/getting-started/
https://raw.githubusercontent.com/kubeflow/manifests/v1.0-branch/kfdef/kfctl_istio_dex.v1.0.0.yaml
https://raw.githubusercontent.com/kubeflow/manifests/v1.0-branch/kfdef/kfctl_istio_dex.v1.0.0.yaml
https://journal.arrikto.com/kubeflow-authentication-with-istio-dex-5eafdfac4782
https://journal.arrikto.com/kubeflow-authentication-with-istio-dex-5eafdfac4782
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://onedata.org/#/home
https://gitlab.ebi.ac.uk/TSI/kubeflow/blob/master/pipelines/1000g/freebayes/Dockerfile
https://gitlab.ebi.ac.uk/TSI/kubeflow/blob/master/pipelines/1000g/freebayes/Dockerfile
https://gitlab.ebi.ac.uk/TSI/kubeflow/-/blob/1.0.1/pipelines/1000g/1000g.py
https://gitlab.ebi.ac.uk/TSI/kubeflow/-/blob/1.0.1/pipelines/1000g/1000g.py
https://www.elastic.co/elasticsearch
https://www.elastic.co/downloads/elastic-cloud-kubernetes
https://www.elastic.co/downloads/elastic-cloud-kubernetes
https://www.internationalgenome.org/data/
https://idr.openmicroscopy.org/webclient/?show=project-402
https://idr.openmicroscopy.org/webclient/?show=project-402
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz
https://kubeflow-pipelines.readthedocs.io/en/stable/index.html
https://kubeflow-pipelines.readthedocs.io/en/stable/index.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882098/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882098/
https://docs.openmicroscopy.org/omero/5.6.0/developers/json-api.html
https://docs.openmicroscopy.org/omero/5.6.0/developers/json-api.html

Bioinformatics Application with Kubeflow for Batch Processing in Clouds 367

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Converging HPC, Big Data and Cloud
Technologies for Precision Agriculture
Data Analytics on Supercomputers

Yiannis Georgiou1(B), Naweiluo Zhou2, Li Zhong2, Dennis Hoppe2,
Marcin Pospieszny3, Nikela Papadopoulou4, Kostis Nikas4,

Orestis Lagkas Nikolos4, Pavlos Kranas5, Sophia Karagiorgou6,
Eric Pascolo7, Michael Mercier1, and Pedro Velho1

1 Ryax Technologies, Saint-Fons, France
{yiannis.georgiou,michael.mercier,pedro.velho}@ryax.tech

2 HLRS, Stuttgart, Germany
{naweiluo.zhou,li.zhong,dennis.hoppe}@hlrs.de

3 PSNC, Poznań, Poland
marcin.pospieszny@man.poznan.pl

4 ICCS, Athens, Greece
{papadopoulou,nikas,nikolos}@cslab.ece.ntua.gr

5 Leanxscale, Madrid, Spain
kranas@leanxscale.com

6 Ubitech, Athens, Greece
karagiorgou@ubitech.eu

7 CINECA, Casalecchio di Reno, Italy
eric.pascolo@cineca.it

Abstract. The convergence of HPC and Big Data along with the influ-
ence of Cloud are playing an important role in the democratization of
HPC. The increasing needs of Data Analytics in computational power
has added new fields of interest for the HPC facilities but also new prob-
lematics such as interoperability with Cloud and ease of use. Besides the
typical HPC applications, these infrastructures are now asked to han-
dle more complex workflows combining Machine Learning, Big Data and
HPC. This brings challenges on the resource management, scheduling
and environment deployment layers. Hence, enhancements are needed to
allow multiple frameworks to be deployed under common system man-
agement while providing the right abstraction to facilitate adoption.

This paper presents the architecture adopted for the parallel and dis-
tributed execution management software stack of Cybele EU funded
project which is put in place on production HPC centers to execute
hybrid data analytics workflows in the context of precision agriculture
and livestock farming applications. The design is based on: Kubernetes
as a higher level orchestrator of Big Data components, hybrid work-
flows and a common interface to submit HPC or Big Data jobs; Slurm
or Torque for HPC resource management; and Singularity containeriza-
tion platform for the dynamic deployment of the different Data Ana-
lytics frameworks on HPC. The paper showcases precision agriculture

c© Springer Nature Switzerland AG 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 368–379, 2020.
https://doi.org/10.1007/978-3-030-59851-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-59851-8_25

Converging HPC, Big Data and Cloud Technologies for Precision Agriculture 369

workflows being executed upon the architecture and provides some ini-
tial performance evaluation results and insights for the whole prototype
design.

1 Introduction

High Performance Computing has been traditionally used for scientific comput-
ing to solve complex problems which require extreme amounts of computation.
HPC is designed with performance as principal focus, leveraging on supercom-
puters along with parallel and distributed processing techniques. The rise of Big
Data came with an increasing adoption of data analytics and Artificial Intelli-
gence in modern applications that make use of data-driven models and analy-
sis engines to facilitate the extraction of valuable insights. Big Data Analytics
utilize Cloud data-centers which provide elastic environments based on com-
modity hardware and adapted software; while instead of performance they focus
on flexibility and programming simplicity. Containerization, based on Docker,
has greatly improved the productivity and simplicity of Cloud technologies; and
together with the advanced orchestration, introduced through systems such as
Kubernetes, enabled the adoption of Big Data software by a large community.

Today, Big Data Analytics are becoming more compute-intensive, mainly
due to AI and in particular Deep Learning, while needing extremely-fast knowl-
edge extraction for rapid and accurate decisions. The convergence of HPC and
Big Data, especially regarding systems software, resource management and pro-
gramming, is an important concern which appears as top research objective
in the Strategic Research Agenda (SRA4) of HPC in Europe as published by
ETP4HPC [1].

Big Data analytics are applied extensively, under the digitalization efforts,
in various industries such as pharmaceutics, construction, automotive but also
agriculture and farming. Supercomputers and HPC can be of great benefit to
Big Data Applications since large datasets can be processed in timely manner.
But the steep learning curve of HPC systems software and parallel programming
techniques along with the rigid environment deployment and resource manage-
ment remain an important obstacle towards the usage of HPC for Big Data
analytics. In addition, the usage of classic Cloud and Big Data tools for con-
tainerization and orchestration cannot be applied directly on the HPC systems
because of security and performance drawbacks. Hence workflows mixing HPC
and Big Data executions cannot be yet combined intelligently using off-the-shelf
software.

CYBELE [2] is an EU funded project which aims to provide solutions to the
above issues. It brings a prototype architecture combining HPC and Big Data
hardware and software tools to enable the deployment of data analytics work-
flows, in the context of precision agriculture and livestock farming. CYBELE
proposes a suite of Cloud-level tools combined with Big Data and HPC systems
software and adapted techniques to bring the right abstractions to data sci-
entists with non-HPC systems expertise to optimally leverage HPC platforms.

370 Y. Georgiou et al.

CYBELE disposes four production HPC platforms across Europe upon which
a complete set of demonstrators1 will be rolled-out, covering 9 topics in total:
from protein-content prediction in organic soya yields, to climate smart predic-
tive models, to autonomous robotic systems, to crop yield forecasting, down to
sustainable livestock production, aquaculture and open sea fishing.

This paper focuses on the systems software layer and in particular on the
basic building blocks of the parallel and distributed execution management tools
used in CYBELE. However, the described tools and techniques can be used in
any case where Big Data Analytics need to be executed on HPC platforms.
We consider an architecture featuring one Big Data partition composed of VMs
managed by Kubernetes, using a mix of Docker and Singularity runtimes for
containerization, along with one HPC partition, as the typical HPC produc-
tion system, composed of baremetal machines managed by Slurm or Torque,
using only Singularity containerization. The contributions of this paper are the
following:

– Meta-scheduling and resource abstraction techniques enabling first the execu-
tion of Big Data Analytics as batch jobs on Slurm or Torque managed HPC
partitions, through a Kubernetes micro-service submission based on singu-
larity containers and wlm-operator software adapted for multi-user support;
and second the possibility to deploy Big Data Analytics and Cloud-level tools
such as workflow managers and databases on the VMs of the Big Data parti-
tions, using the typical Kubernetes API. The deployed Cloud-level tools will
provide the needed abstractions to non-HPC experts for the Data Analytics
execution on the underlying HPC-Big Data hybrid system.

– An Environment deployment tool for the creation of customizable environ-
ments based on singularity containerization and a specialized repository with
pre-built images featuring Big Data and AI frameworks (such as Pytorch,
Tensorflow and Horovod) for specific HPC resources (such as GPUs and Infini-
band).

The reminder of the paper goes as follows: Sect. 2 provides the related work,
Sect. 3 describes the Meta-scheduling and resource abstraction techniques, Sect. 4
presents the Environment Deployment tool, Sect. 5 the validation using precision
agriculture data analytics and finally Sect. 6 the Conclusions and Future Works.

2 Related Work

2.1 Resource Management and Orchestration

Older state-of-the-art HPC resource managers such as Slurm [12] and Torque
do not provide integrated support for environment provisioning and hence no
orchestration [4] is feasible. However, newer resource managers such as Mesos2

1 https://www.cybele-project.eu/demonstrators.
2 https://github.com/apache/mesos.

https://www.cybele-project.eu/demonstrators
https://github.com/apache/mesos

Converging HPC, Big Data and Cloud Technologies for Precision Agriculture 371

and Kubernetes3 enable the deployment of containers and allow the applications’
lifecycle management. Another widely used orchestrator with limited capabilities
but simplicity in usage is Docker Swarm4. Kubernetes [5] is the de-facto standard
for Cloud and Big Data orchestration, it has a rapidly growing community and
ecosystem with plenty of platforms being developed upon it. Kubernetes simpli-
fies the deployment and management of containerized applications. It is based on
a highly modular architecture which abstracts the underlying infrastructure and
allows internal customizations such as deployment of different software defined
networking or storage solutions. It supports various Big Data frameworks such as
Hadoop MapReduce, Spark and Kafka and has a powerful set of tools to express
the application lifecycle considering parameterized redeployment in case of fail-
ures, auto-scaling, state management, etc. Furthermore, it provides advanced
scheduling capabilities and the possibility to express different schedulers
per job.

2.2 Containerization in HPC

Containers have recently started to be applied on HPC clusters. HPC applica-
tions are hardware specific, and their applications are often specifically optimized
for the nodes. Considering that performance is the focus for HPC applications,
it poses the key question for massive usage of containerized applications on
HPC cluster [6–8]. Nevertheless, the flexibility of containerization principles and
the productivity advantages makes them very interesting for HPC. Singularity5

[13] is a technology that bears all the benefits of Bring-Your-Own-Environment,
composability and portability, also matching the security requirements in HPC
environments. While Docker [11] is the popular approach for containerization in
cloud environments, it poses security implications when it comes to HPC cen-
ters: Docker allows root user operation, which can lead to privilege escalation. In
addition, Docker containers rely on Docker daemon, which requires root access.
Rootless mode for the Docker daemon is still experimental. On the other hand,
Singularity is a container technology that has been designed for use on HPC sys-
tems [14]. Singularity containers do not rely on a daemon for execution and are
executed as child processes. Moreover, the user within a Singularity container is
the same user as the user of the host system who executes the container, with the
same privileges, thus preventing privilege escalation. Regarding the transparent
use of resources, Singularity also provides native support for MPI and GPUs.
Udocker6 is another basic user tool (written in Python) to execute simple Docker
containers in user space without requiring root privileges.

3 https://github.com/kubernetes/kubernetes.
4 https://github.com/docker/classicswarm.
5 https://github.com/sylabs/singularity.
6 https://github.com/indigo-dc/udocker.

https://github.com/kubernetes/kubernetes
https://github.com/docker/classicswarm
https://github.com/sylabs/singularity
https://github.com/indigo-dc/udocker

372 Y. Georgiou et al.

3 Orchestration and Resources Abstraction in HPC

For the execution of Data Analytics on supercomputers we propose a combina-
tion of Big Data, HPC and Cloud tools. The meta-scheduling and orchestration
tasks are based upon Kubernetes. The first role of Kubernetes, in that context, is
to allow the deployment of either Big Data (ML, DL, etc.) or HPC (MPI-based)
workloads upon Big Data or HPC platforms through the same command line
interface (kubectl) or API (Kubernetes API) making use of a common represen-
tation using YAML language. The deployment on the Big Data platforms can
be done directly through this API. The deployment on the HPC platforms pass
through the integration of a specific existing open-source software named wlm-
operator7 which has been adopted and extended to fit our needs. The software
wlm-operator, allows the submission of a job on the dedicated HPC resource
manager (Slurm or Torque) by using the Singularity containerization. Kuber-
netes will also perform resource management and containers orchestration on
the Big Data platforms of the supercomputing centers, enabling typical widely
used cloud-native software, to be introduced to supercomputers. This is the case
of the various Cloud services for which, as we can see on Fig. 1, the resource
abstraction is provided through the help of Kubernetes.

Fig. 1. Architecture for Big Data Analytics on hybrid HPC-Big Data platforms

7 https://sylabs.io/guides/cri/1.0/user-guide/k8s.html.

https://sylabs.io/guides/cri/1.0/user-guide/k8s.html

Converging HPC, Big Data and Cloud Technologies for Precision Agriculture 373

3.1 Kubernetes and Container Runtimes

Kubernetes controls the deployment lifecycle of containerized applications while
managing distributed systems resiliently. Another important part is the resources
abstraction through the containerization platform used. As the matter of fact,
Kubernetes introduced pods, which specify the resources utilized by a group of
application containers. At run time, a pod’s containers are instances of container
images, packaged and distributed through container image registries. The usage
of a containerization platform on Kubernetes goes through the support of spe-
cialized Container Runtime Interface (CRI) which has to comply on the Open
Container Interface (OCI) standards. Kubernetes uses by default Docker and its
specialized CRI, which is the traditional choice and supported out-of-the box by
most cloud-Native software. Docker runtime will be used on Big Data partitions
to deploy Cloud services which will then be used to abstract the complexity of
deploying experiments on hybrid HPC/BD platforms. For the actual execution
of the Big Data Analytics which can take place either on the Big Data or the
HPC partition, we adopt Singularity platform. The maintainers of Singularity
have proposed Singularity CRI8 to allow the usage of Singularity for the pods
runtime within Kubernetes and the particular mechanism wlm-operator9 which
can enable the direct connection between Kubernetes pods and execution on
HPC partition through Singularity containers.

In the installation and configuration phase of each worker we need to dis-
tinguish the nodes that will use Singularity or Docker as runtime. To perform
a rightly matched scheduling we need to define specific label per node to show
which runtime is used and then on the application submission (yaml of the pod)
we need to provide the right node-selector to determine the need in terms of
runtime and divert the pod to be scheduled on the right node. As shown in
Fig. 1 the workers with Docker runtime will be used to deploy the Cloud services
while those with Singularity will allow the deployment of BD/HPC workloads.

3.2 Integration of Kubernetes and Slurm/Torque with Multi-user
Support

At least one of the Kubernetes workers that will be deployed with Singular-
ity runtime will also need to have Slurm or Torque login nodes capabilities,
which will enable the connection with the HPC cluster. This means that from
that worker node we should have the capability to run Slurm or Torque com-
mands and in particular job submissions. Based on that we have installed and
deployed the wlm-operator software which will open a communication proto-
col with the Slurm or Torque Resource Manager to submit and monitor con-
tainerized HPC jobs through Kubernetes API. The wlm-operator integrates with
Slurm by default but in the context of our project and to respect the needs of
a particular testbed we have extended it to also support Torque. Furthermore

8 https://github.com/sylabs/singularity-cri.
9 https://github.com/sylabs/wlm-operator.

https://github.com/sylabs/singularity-cri
https://github.com/sylabs/wlm-operator

374 Y. Georgiou et al.

we have enhanced the mechanism of wlm-operator with multi-user support. The
prerequisites of wlm-operator software are to have Singularity-CRI runtime on
at least the Kubernetes worker node with the Slurm (or Torque) login capabil-
ities and Singularity software installed on all HPC compute nodes to manage
containerization on the HPC side.

The wlm-operator software can automatically discover Slurm partition
resources (CPUs, memory, nodes, wall-time) and propagates them as node labels
to Kubernetes by creating one virtual node (virtual-kubelet) per partition. For
this the virtual-kubelet technique is used internally10. Similar procedure is fol-
lowed for Torque queues. Each Slurm partition (or Torque queue) is represented
as a dedicated virtual node in Kubernetes. Those node labels will be respected
during Slurm job scheduling so that a job will appear only on a suitable parti-
tion with enough resources. The communication protocol between Kubernetes
and Slurm (or Torque) is based upon a gRPC proxy, named red-box, which
takes place on the worker node that operates the Slurm (or Torque) login bina-
ries. Furthermore, on that Kubernetes worker the user to submit jobs will have
to be created on the HPC site and have the rights to submit and monitor jobs.

In order to bridge the communication between Torque and Kubernetes.
Torque-Operator extends the wlm-operator with Torque support [3]. Both oper-
ators share similar mechanisms, nevertheless, their implementation varies sig-
nificantly as Torque and Slurm have different structures and parameters. The
Torque job script is encapsulated into a Kubernetes yaml job script. The yaml
script is submitted from a Kubernetes login. The Torque script part is processed
by the Toque-Operator. A dummy pod is generated to transfer the Torque job
specification to a scheduling queue e.g., waiting queue, test queue (scheduling
queue is a terminology of job scheduler). Torque-Operator invokes the Torque
binary qsub which submits Torque job to the Torque cluster. When the Torque
job completes, Torque-operator creates a Kubernetes pod which redirects the
results to the directory that the user specifies in the yaml file.

By default, with the current version of wlm-operator, all submitted Slurm
jobs will be executed on behalf of one user. This is very limiting in our context
because we need multi-user support in order to enable individual monitoring,
accounting, fairshare scheduling and other features per single user or group of
users. For this, we provide a dynamic adaptation of the user context by automat-
ically reconfiguring the virtual-kubelet and agent which is used as a pass-through
for the Slurm or Torque job, along with the necessary red-box socket, on the node
having the Slurm/Torque login capabilities, using the right user privileges. This
gives us the ability to enable each user to use Kubernetes with her account and
submit Big Data Analytics on the Slurm or Torque cluster through her account
as well, hence removing the initially existing isolation and security barriers of
wlm-operator. The mechanisms presented in this paper will be provided as open-
source once they are considered more mature.

10 https://github.com/virtual-kubelet/virtual-kubelet.

https://github.com/virtual-kubelet/virtual-kubelet

Converging HPC, Big Data and Cloud Technologies for Precision Agriculture 375

4 Environment Deployment

In our hybrid Big Data-HPC context, the Environment Deployment tool is
responsible for setting up the environment for the task execution and deploy-
ment. Based on our needs we sought for the following features:

1. the ability to define the environment for any application, without need for
access to the underlying system, i.e. the ability to decouple development and
deployment,

2. portability across different systems, including HPC and Big Data resource
partitions and

3. the ability to transparently use all available system resources, i.e. accelerators,
high-performance interconnects, storage.

We based our solution on Singularity containerization and pre-built images for
specific AI and Big Data frameworks and HPC resources. For this we offer
a repository of singularity images with Pytorch, Tensorflow, Keras, Horovod
optimized for specific versions of GPUs, Infiniband and their adapted libraries
CUDA, verbs, etc. Different combinations of the above results in a number of
pre-defined images that can be used as the base to deploy a specific Big Data
Analytics application.

4.1 Singularity Container Creation and Deployment

A Singularity container image is a single, immutable (read-only), SIF (Singu-
larity Image Format) file. The environment is stored within the image and can
include everything from the application code/executable to runtimes to system
libraries. Using Singularity, a user can build an image from either a Singularity
definition file or by downloading an existing image from a container library, or
from Docker hub. In the latter case, the build process transforms the Docker
image to a Singularity image. We highlight the following issues and our solu-
tions, related to container creation in the context of its usage in hybrid Big
Data - HPC platform:

1. A Singularity image may or may not contain the application itself. In the
repository we prepare the images to be generic and we give the ability to the
users to either built their application within a new image or just use the base
image and deploy their application externally.

2. Although Singularity does not require elevated privileges to deploy an image,
it still requires elevated privileges to build an image. Therefore, Singularity
image files cannot be built directly on HPC systems, where user access rights
are limited. We build all container images on external desktops/servers. The
produced image can then be uploaded to the system where it will be deployed,
or a shared repository from where it can be used directly by users.

3. To make transparent usage of the network and/or the GPUs, since contain-
ers do not virtualize the system, Singularity relies on the host environment
as well. For example, for the case of MPI, Singularity partly uses the host

376 Y. Georgiou et al.

runtime to manage MPI processes. Similarly, for the case of GPUs, it uses
the host device drivers and related user-space driver libraries. This can cause
compatibility issues, if the runtime encapsulated within the container image
is not compatible with the runtime on the host. Therefore, even though we
externally build Singularity images, we do take into account the related soft-
ware versions of the underlying HPC systems, to ensure compatibility.

Once a Singularity image is created, either uploaded to the target system or
pulled onto the target system from the component library, it can be deployed
to execute the corresponding application task. To guarantee an optimal and
simplified deployment of singularity images the following parameters need to be
configured correctly for the deployment process. These are the bindmounts, the
environment variables and the possibility to use instances. Since these are very
closely related to the specific application to be deployed we do not provide any
generic solution. Nevertheless some batch scripts examples featuring the usage
of singularity deployments and best practices can still be helpful. The pre-built
Big Data images along with their definition files will be provided as open-source
once they have been sufficiently tested.

5 Multi-GPU Scaling of Sample Precision Agriculture
Application

In order to validate the orchestration and environment deployment layers of our
hybrid Big Data/HPC solution we have performed some experiments using one
real-life precision agriculture application. The aim of the application is to develop
a framework for automatic identification and counting of wheat ears in fields
by getting data from sensors on ground that will enable crop yield prediction
at early stages and provide more informed decisions for sales planning. The
application consists in training a deep learning algorithm written in Python and
using Fastai/Pytorch framework based on a group of RGB images (initially 138
images). In particular we deployed the wheat ears counting application upon one
single HPC node testing the scaling and parallelization of the code by increasing
the number of GPUs.

The experiments have been performed on a dedicated testbed where the
previously described architecture of Kubernetes orchestration on both Big Data
and HPC partitions has been deployed, along with the integration to Slurm and
Singularity for the execution on the HPC partition. The HPC testbed is part of
BULL NOVA cluster and we made use of the following hardware:

– one HPC BareMetal node, featuring a Bull Sequana S800 machine, equipped
with 4X2 Intel Xeon Platinum 8253 (256CPUs), 4 TB RAM and 4 GPUs
NVIDIA GV100GL Tesla V100 PCIe 16 GB,

– one Big Data VirtualMachine node, with 4 CPUs and 8 GB RAM

The execution took advantage of the singularity pre-built image for fas-
tai/pytorch and was triggered through the orchestration layer of Kubernetes

Converging HPC, Big Data and Cloud Technologies for Precision Agriculture 377

abstraction using Kubectl command line utility. In the case of BareMetal node
the execution is finally submitted by Slurm, whereas in the case of VM it is
submitted directly by Kubernetes as batch job. The experiment was repeated 5
times for each case and the median value is shown in Table 1.

Table 1. Execution time of wheat-ears application on 1 VirtualMachine (4 CPUs)
node or one BareMetal (256 CPUs) node scaling from 0 to 4 GPUs

VirtualMachine (VM) or BareMetal (BM) VM BM BM BM BM BM

Number of CPUs 4 256 256 256 256 256

Number of GPUs 0 0 1 2 3 4

Execution Time (sec) 37008 7020 417 312 274 247

The usage of BareMetal node may be misleading because the execution is
not done literally as bare metal. Both cases use containerization with singularity
for the executions with the difference that in the second case it is done on VM
while in the first on bare-metal. The results in Table 1 show the performance
improvement of our application when using a powerful HPC BareMetal node
with GPU instead of small VM, 100* orders of magnitude. Besides that it shows
how the scaling of GPUs impacts the application performance: 10* orders of
magnitude when using GPUs rather than only CPU. Our goal is to enable further
performance optimizations by providing a distributed version selecting between
pytorch.distributed or horovod. Furthermore and most importantly, these simple
executions enabled us to validate the usability of our integrations combining
Kubernetes, Slurm and Singularity in a hybrid Big Data/HPC environment for
execution of Deep Learning training models.

6 Conclusions

This paper presents a prototype architecture to enable the execution of Big Data
Analytics upon supercomputers using different Big Data and HPC hardware
partitions and a converged Big Data-HPC-Cloud software stack. We proposed
mechanisms that make use of Kubernetes as high-level orchestrator and com-
mon API to allow the deployment of Data Analytics as HPC jobs, through an
integration with Slurm based on an a multi-user version of wlm-operator and
Singularity containerization. Furthermore we proposed an environment deploy-
ment tool bringing pre-built images of Big Data and AI frameworks (Pytorch,
Tensorflow, etc.) specifically adapted to targeted HPC resources (GPUS, Infini-
band, etc.) which can be used as base to further built environments to be used
for different types of Data Analytics on HPC.

These mechanisms are aimed to be used as the basic building blocks to pro-
vide supercomputers abstraction targeting data-scientists with no-HPC exper-
tise. For this we aim to deploy Cloud-level software such as the Spring Cloud

378 Y. Georgiou et al.

Dataflow workflow manager11 and the LeanXscale database12. These tools can
be used to create hybrid Big Data-HPC workflows, with the necessary data man-
agement, to be deployed transparently, for a data-scientist, through the common
Kubernetes API and the aforementioned techniques to the underlying supercom-
puter. Further optimizations will be researched for the multi-user support of the
Kubernetes integration with Slurm and for this we will explore the possibil-
ity to use the newly introduced Slurm REST-API13 which will allow a more
direct communication with Cloud services. The support of specialized Big Data
frameworks such as Spark and Flink need the usage of a resource manager. This
role can be played by Kubernetes [10] and this is another direction that we are
exploring. In this context we are studying ways to allow the collocation of Big
Data and HPC jobs by making use of Kubernetes to deploy Spark applications
on Slurm clusters through a non-interfering method of low-priority jobs [9].

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement NO. 825355.

References

1. ETP4HPC. Strategic research agenda (SRA4) for HPC in Europe, March 2020.
https://www.etp4hpc.eu/pujades/files/ETP4HPC SRA4 2020 web(1).pdf

2. Perakis, K., Lampathaki, F., Nikas, K., Georgiou, Y., Marko, O., Maselyne, J.:
CYBELE - fostering precision agriculture & livestock farming through secure access
to large-scale HPC enabled virtual industrial experimentation environments fos-
tering scalable big data analytics. Comput. Netw. 168, 107035 (2020). ISSN 1389–
1286

3. Zhou, N., Georgiou, Y., Zhong, L., Zhou, H., Pospieszny, M.: Container orchestra-
tion on HPC systems. In: IEEE CLOUD (2020, to appear)

4. Casalicchio, E.: Container orchestration: a survey. In: Puliafito, A., Trivedi, K.S.
(eds.) Systems Modeling: Methodologies and Tools. EICC, pp. 221–235. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-92378-9 14

5. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up and Running Dive into the
Future of Infrastructure, 1st edn. OReilly Media (2017)

6. Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A.F.:
Performance evaluation of container-based virtualization for high performance
computing environments. In: 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pp. 233–240 (2013)

7. Plauth, M., Feinbube, L., Polze, A.: A performance survey of lightweight virtual-
ization techniques. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC
2017. LNCS, vol. 10465, pp. 34–48. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-67262-5 3

8. Zhang, J., Lu, X., Panda, D.K.: Is singularity-based container technology ready
for running MPI applications on HPC clouds? In: Proceedings of The10th Inter-
national Conference on Utility and Cloud Computing, Association for Computing
Machinery (2017)

11 https://spring.io/projects/spring-cloud-dataflow.
12 https://www.leanxcale.com/.
13 https://slurm.schedmd.com/rest.html.

https://www.etp4hpc.eu/pujades/files/ETP4HPC_SRA4_2020_web(1).pdf
https://doi.org/10.1007/978-3-319-92378-9_14
https://doi.org/10.1007/978-3-319-67262-5_3
https://doi.org/10.1007/978-3-319-67262-5_3
https://spring.io/projects/spring-cloud-dataflow
https://www.leanxcale.com/
https://slurm.schedmd.com/rest.html

Converging HPC, Big Data and Cloud Technologies for Precision Agriculture 379

9. Mercier, M., Glesser, D., Georgiou, Y., Richard, O.: Big data and HPC collocation:
using HPC idle resources for Big Data analytics. In: BigData, pp. 347–352 (2017)

10. Spark - Kubernetes integration. https://spark.apache.org/docs/latest/running-on-
kubernetes.html

11. Boettiger, C.: An introduction to Docker for reproducible research. In: ACM
SIGOPS Operating Systems Review (2015)

12. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

13. Godlove, D.: Singularity: simple, secure containers for compute-driven workloads.
PEARC 24(1–24), 4 (2019)

14. Muscianisi, G., Fiameni, G., Azab, A.: Singularity GPU containers execution on
HPC cluster. In: ISC Workshops, pp. 61–68 (2019)

https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

Author Index

Alvarez-Napagao, Sergio 211
Auger, Guillaume 116
Ayguadé, Eduard 211

Barthou, Denis 43
Betke, Eugen 191
Bischof, Christian 5, 34
Blanquer, Ignacio 310
Breitbart, Jens 331
Bubak, Marian 310

Carribault, Patrick 43
Cirillo, Davide 211
Costa Nogueira Jr., Alberto 116
Cui, Jiahuan 137

de Sousa Almeida, João Lucas 116

Elisseev, Vadim 267

Ferrer, Roger 19
Fischer, Moritz 5
Fridman, Yehonatan 61
Furutani, Yoshitaka 177

Gadban, Frank 161
Gantikow, Holger 343
Garcia-Gasulla, Dario 211
García-Gasulla, Marta 211
Georgiou, Yiannis 368
Gimenez-Abalos, Victor 211

Häberle, Marco 297
Harel, Re’em 61
Herron, Emily J. 223
Hida, Hajime 177
Hinselmann, Stephan 297
Hoang, Lan 267
Hoppe, Dennis 368
Hück, Alexander 5

Iwainsky, Christian 34

Jaeger, Julien 43
Jammer, Tim 34
Jitsev, Jenia 81
Josep-Fabregó, Marc 211

Karagiorgou, Sophia 368
Kasztelnik, Marek 310
Keuper, Janis 235
Kindratenko, Volodymyr 137
Klimt, Jonathan 331
Koh, Seong-Ryong 81
Koric, Seid 137
Kranas, Pavlos 368
Kunkel, Julian 161, 191

Lankes, Stefan 331
Lehr, Jan-Patrick 5
Lintermann, Andreas 81
López-Huguet, Sergio 310
Ludwig, Thomas 161
Luo, Shirui 137

Masouros, Dimosthenis 321
Menth, Michael 297
Mercier, Michael 368
Munera, Adrian 19

Netti, Alessio 280
Nguyen, Van Man 43
Nikas, Kostis 368
Nikolos, Orestis Lagkas 368

Oren, Gal 61
Ozer, Gence 280

Papadopoulou, Nikela 368
Pascolo, Eric 368
Peñacoba, Raul 19
Pickartz, Simon 331
Piggott, Matthew D. 102
Pospieszny, Marcin 368
Potok, Thomas E. 223

Quiñones, Eduardo 19

Reich, Christoph 343
Richardson, Harvey 255
Rombach, Philipp 235
Royuela, Sara 19
Rusanovsky, Matan 61
Rüttgers, Mario 81

Saillard, Emmanuelle 43
Schröder, Wolfgang 81
Schulz, Martin 280
Segrelles, J. Damià 310
Shimony, Assaf 61
Sivalingam, Karthee 255
Soudris, Dimitrios 321
Stockmayer, Andreas 297
Subelet, Felix 267

Tafani, Daniele 280
Teruel, Xavier 211
Tracey, Robert 267

Tsujita, Yuichi 177
Tzenetopoulos, Achilleas 321

Uno, Atsuya 177

Valencia, Alfonso 211
Velho, Pedro 368
Vellakal, Madhu 137

Walter, Steffen 343
Watson, Campbell D. 116
Wildish, Tony 355

Xydis, Sotirios 321

Yamamoto, Keiji 177
Young, Steven R. 223
Yuan, David Yu 355

Zhang, Mingrui 102
Zhong, Li 368
Zhou, Naweiluo 368

382 Author Index

	Preface
	Organization
	Contents
	First Workshop on Compiler-Assisted Correctness Checking and Performance Optimization for HPC (C3PO’20)
	Preface to the First Workshop on Compiler-assisted Correctness Checking and Performance Optimization for HPC (C3PO’20)
	Introduction
	Organization
	Organizing Committee
	Program Committee
	Program
	Invited Talk
	Research Papers

	Compiler-Assisted Type-Safe Checkpointing
	1 Introduction
	2 Checkpoint Restart
	2.1 Error Types

	3 Type Asserts for Checkpoint-Restart
	3.1 TypeART
	3.2 TyCart

	4 Evaluation
	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Static Analysis to Enhance Programmability and Performance in OmpSs-2
	1 Introduction
	2 Related Work
	3 The OmpSs-2 Programming Model
	3.1 Data-Sharings
	3.2 Task Synchronization and Nesting

	4 Compiler Analysis Techniques for OmpSs-2
	4.1 Automatic Definition of Task Data-Sharing Clauses, Auto-sope
	4.2 Automatic Release of Task Dependencies, Auto-release

	5 Evaluation
	5.1 LLVM Implementation
	5.2 Benefits in OmpSs-2 Programmability: Auto-scope
	5.3 Benefits in OmpSs-2 Performance: Auto-release

	6 Discussion
	References

	Automatic Detection of MPI Assertions
	1 Introduction
	2 Analysis Approach
	2.1 allow_overtaking Assertion
	2.2 exact_length Assertion

	3 Evaluation
	4 Conclusion
	References

	Automatic Code Motion to Extend MPI Nonblocking Overlap Window
	1 Introduction
	2 Related Work
	2.1 Asynchronous Communications in Scientific Applications
	2.2 Automatic Transformation of MPI Codes

	3 Motivating Example
	4 Maximizing Communication-Computation Overlap
	4.1 Finding Slices and Insertion Point
	4.2 Defining a Suitable Insertion Point
	4.3 Displacing the Dependencies to Achieve Overlap

	5 Implementation and Experimental Results
	5.1 Implementation Using LLVM
	5.2 Experimental Results
	5.3 Discussion

	6 Conclusion
	References

	First International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics Simulations and Analysis (CFDML)
	First International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics Simulations and Analysis
	1 Background and Description
	2 Workshop Summary
	2.1 Research Papers
	2.2 Panel Discussion

	Organizing Committee

	Complete Deep Computer-Vision Methodology for Investigating Hydrodynamic Instabilities
	1 Introduction
	2 RayleAI – Database Characteristics
	3 Deep Computer-Vision Methods
	3.1 Task I: Image Retrieval Using InfoGAN
	3.2 Task II: Parameters Regression Using Convolutional Neural Networks – pReg
	3.3 Task III: Quality-Aware Template Matching Using QATM
	3.4 Task IV: Time Series Prediction Using PredRNN

	4 Evaluation Methodology
	5 Results and Discussion
	5.1 Task I: Image Retrieval
	5.2 Task II: Parameters Regression
	5.3 Task III: Template Matching
	5.4 Task IV: Spatiotemporal Prediction

	6 Conclusions and Future Work
	References

	Prediction of Acoustic Fields Using a Lattice-Boltzmann Method and Deep Learning
	1 Introduction
	2 Numerical Methods
	2.1 Lattice-Boltzmann Method
	2.2 Geometrical Setup and Computational Meshes
	2.3 Boundary and Initial Conditions
	2.4 Evaluation of Acoustic Fields
	2.5 Machine Learning Techniques

	3 Results
	3.1 Grid Convergence Study
	3.2 Case 1: Simple Setup and Parameter Study
	3.3 Case 2: Influence of the Number of Training Data
	3.4 Case 3: Complex Setup and Impact of Increasing Training Data

	4 Summary, Conclusions, and Outlook
	References

	Unsupervised Learning of Particle Image Velocimetry
	1 Introduction
	1.1 Cross-correlation and Variational Optical Flow Methods
	1.2 Deep Learning Methods

	2 Related Work
	2.1 Supervised Learning Methods
	2.2 Unsupervised Learning Methods

	3 Method
	3.1 Unsupervised Loss
	3.2 Network Architecture

	4 Evaluation
	4.1 PIV Dataset
	4.2 Training Details
	4.3 Results

	5 Conclusion
	References

	Reduced Order Modeling of Dynamical Systems Using Artificial Neural Networks Applied to Water Circulation
	1 Introduction
	2 Dimensionality Reduction
	2.1 Proper Orthogonal Decomposition

	3 Artificial Neural Networks
	4 ANN-Based Reduced Order Models
	4.1 FCNN ROM
	4.2 LSTM ROM

	5 Numerical Results
	5.1 Lorenz Attractor
	5.2 Hydrodynamics at Lake George

	6 Conclusions
	References

	Parameter Identification of RANS Turbulence Model Using Physics-Embedded Neural Network
	1 Introduction
	2 RANS - Turbulence Model
	3 Physics-Informed Neural Network
	4 Case Study: Channel Flow with a Lower Curved Wall
	5 Conclusion
	References

	HPC I/O in the Data Center Workshop (HPC-IODC)
	HPC I/O in the Data Center Workshop (HPC-IODC)
	1 Introduction
	2 Organization of the Workshop
	2.1 Program Committee

	3 Workshop Summary
	3.1 Research Papers
	3.2 Talks from Experts
	3.3 Discussion Sessions

	References

	Investigating the Overhead of the REST Protocol When Using Cloud Services for HPC Storage
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Performance Model

	4 Experiments
	4.1 Benchmark and Analysis Tools
	4.2 Latency
	4.3 Throughput
	4.4 Resource Usage Measurements
	4.5 REST vs. MPI
	4.6 HTTP Overhead

	5 Evaluation of the Performance Model
	5.1 Comparing the Protocols: HTTP1.1 vs. HTTP2 vs. HTTP3

	6 Summary
	References

	Characterizing I/O Optimization Effect Through Holistic Log Data Analysis of Parallel File Systems and Interconnects
	1 Introduction
	2 Related Work
	3 The K computer and Its File System Monitoring
	3.1 Overview of the K Computer
	3.2 Log Collection for Monitoring the LFS
	3.3 Database for Executed Jobs

	4 Analysis Framework for I/O Activities
	5 Enhanced MPI-IO Implementation: EARTH on K
	6 Experimental Evaluation
	6.1 Benchmark Configuration
	6.2 Benchmark Results
	6.3 Analysis of OSS Stats Files
	6.4 Bandwidth Utilization and Waiting Times in Packet Transfers on Tofu Interconnects of I/O Nodes
	6.5 Load Balancing in I/O Throughput at OSTs

	7 Summary
	References

	The Importance of Temporal Behavior When Classifying Job IO Patterns Using Machine Learning Techniques
	1 Introduction
	2 Related Work
	3 Preliminary Work
	4 Methodology
	4.1 Algorithms
	4.2 Assessment

	5 Experimental Setup
	5.1 Data
	5.2 Test Environment
	5.3 Algorithm Parameters

	6 Evaluation
	7 Use Case: Investigating an IO-Intensive Job
	8 Summary
	References

	1st Workshop “Machine Learning on HPC Systems” (MLHPCS)
	Preface on the 1st Workshop “Machine Learning on HPC Systems” (MLHPCS)
	1 Workshop Description
	1.1 Scope
	1.2 Recorded Talks

	GOPHER, an HPC Framework for Large Scale Graph Exploration and Inference
	1 Introduction
	2 Related Work and Context
	3 GOPHER: Analysis, Design, and Implementation
	3.1 Analysis of Requirements
	3.2 Design and Implementation

	4 Experimental Results
	4.1 Evaluation of Model Results
	4.2 Performance Results

	5 Conclusions and Future Work
	References

	Ensembles of Networks Produced from Neural Architecture Search
	1 Introduction
	2 Background and Related Work
	2.1 Neural Architecture Search
	2.2 Neural Network Ensembles

	3 Methods
	3.1 MENNDL
	3.2 Ensembles of MENNDL Generated Networks
	3.3 Datasets and Experiments

	4 Results
	5 Conclusion and Future Work
	References

	SmartPred: Unsupervised Hard Disk Failure Detection
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Dataset
	3.2 Feature Selection
	3.3 Preprocessing
	3.4 Setup

	4 Experimental Results
	4.1 Comparative Analysis
	4.2 Limitations

	5 Conclusion
	References

	1st International Workshop on Monitoring and Data Analytics (MODA20)
	1st International Workshop on Monitoring and Data Analytics (MODA20)
	1 Introduction
	2 Workshop Organisation
	Organising Committee
	Program Committee
	2.1 Keynote Address
	2.2 Research Papers
	2.3 Panel Discussion

	3 Conclusion

	Application IO Analysis with Lustre Monitoring Using LASSi for ARCHER
	1 Introduction
	2 ARCHER
	3 LASSi
	3.1 Metric Based Approach
	3.2 Automated Workflow and Architecture

	4 ARCHER Analysis
	4.1 Projects IO Usage
	4.2 Projects IO Trends
	4.3 Application Risk Profile
	4.4 Application Quality Profile
	4.5 Application Run IO Tracing

	5 Future Work
	6 Conclusions
	References

	AI-Driven Holistic Approach to Energy Efficient HPC
	1 Introduction
	2 Data Collection Framework
	2.1 Architecture
	2.2 Monitoring Tools
	2.3 Metrics
	2.4 Databases
	2.5 Visualisation and API

	3 Machine Learning Analysis
	3.1 Clustering
	3.2 Predictive Management

	4 Preliminary Results
	4.1 Experimental Setup
	4.2 Generated Graphs
	4.3 Clustering and Prediction Analysis

	5 Conclusions and Future Work
	References

	Characterizing HPC Performance Variation with Monitoring and Unsupervised Learning
	1 Introduction
	2 HPC Environment and Monitoring Data
	2.1 HPC Environment
	2.2 Analysis of Monitoring Data

	3 The Variation Detection Framework
	4 Case Studies
	4.1 CPU Core-Level Analysis
	4.2 Compute Node-Level Analysis
	4.3 Rack-Level Analysis

	5 Conclusions
	References

	15th Workshop on Virtualization in High-Performance Cloud Computing (VHPC’20)
	Preface to the 15th Workshop on Virtualization in High-Performance Cloud Computing (VHPC’20)
	Introduction
	Program
	Organization
	Chairs
	Program Committee

	Service Function Chaining Based on Segment Routing Using P4 and SR-IOV (P4-SFC)
	1 Introduction
	2 Related Work
	2.1 Segment Routing
	2.2 Protocol Stacks for SFC
	2.3 Selected SFC-Related Activities

	3 Architecture of P4-SFC
	3.1 Implementation of the SFC Ingress Node
	3.2 Transparent and Efficient VNF Integration on Hosts
	3.3 P4-SFC Orchestrator

	4 P4-SFC Prototype
	4.1 Testbed
	4.2 Functional Tests
	4.3 Host Virtualization Platform

	5 Performance Evaluation
	5.1 Performance Comparison
	5.2 Additional Performance Aspects

	6 Conclusion
	References

	Seamlessly Managing HPC Workloads Through Kubernetes
	1 Introduction
	2 Scenario and Related Work
	2.1 Architecture
	2.2 Objectives and Requirements
	2.3 State of the Art

	3 The Proposed Solution: HPC-Connector
	4 Use Case: Segmentation of Neuroblastoma Tumours
	5 Conclusions
	References

	Interference-Aware Orchestration in Kubernetes
	1 Introduction
	2 Experimental Setup and Motivational Analysis
	2.1 System Hardware and Experimental Workloads
	2.2 Kubernetes Scheduler
	2.3 Quantifying Interference Level

	3 Interference-Aware Container Orchestration
	3.1 Integration
	3.2 System Model
	3.3 Algorithm

	4 Evaluation
	5 Conclusion
	References

	RustyHermit: A Scalable, Rust-Based Virtual Execution Environment
	1 Introduction
	2 Related Work
	3 Introduction to Rust
	4 A Unikernel Written in Rust
	4.1 Integration of RustyHermit into libstd
	4.2 Network Support

	5 Evaluation
	5.1 OS Micro-benchmarks
	5.2 Network Performance

	6 Conclusion
	References

	Rootless Containers with Podman for HPC
	1 Introduction
	2 Related Work
	3 Podman
	4 Evaluation
	4.1 LS-DYNA
	4.2 Benchmarks

	5 Limitations
	6 Conclusion
	References

	Bioinformatics Application with Kubeflow for Batch Processing in Clouds
	1 Introduction
	2 Method
	2.1 Deployment
	2.2 Data Access
	2.3 Monitoring
	2.4 Using GPUs with Kubeflow

	3 Result
	3.1 Classic Bioinformatics Pipelines
	3.2 Machine Learning Pipelines

	4 Conclusion
	References

	Converging HPC, Big Data and Cloud Technologies for Precision Agriculture Data Analytics on Supercomputers
	1 Introduction
	2 Related Work
	2.1 Resource Management and Orchestration
	2.2 Containerization in HPC

	3 Orchestration and Resources Abstraction in HPC
	3.1 Kubernetes and Container Runtimes
	3.2 Integration of Kubernetes and Slurm/Torque with Multi-user Support

	4 Environment Deployment
	4.1 Singularity Container Creation and Deployment

	5 Multi-GPU Scaling of Sample Precision Agriculture Application
	6 Conclusions
	References

	Author Index

