
Mapping Computational Thinking
and Programming Skills Using Technacy Theory

Jayanti Nayak(B) , Therese Keane , and Kurt Seemann

Swinburne University of Technology, Melbourne 3122, Australia
{jnayak,tkeane,kseemann}@swin.edu.au

Abstract. Digital Technologies as a compulsory subject was introduced in the
Australian Curriculum to enable students to build up their confidence in becoming
creative developers of digital solutions and to develop thinking skills in problem
solving.This theoretical paper examines a conceptual frameworkwith the potential
to form a working model for teachers teaching Computer Science/Digital Tech-
nologies in K-12 classrooms. Using Technacy Theory as a framework promises
ideas for differentiating technology education by means of setting appropriate
developmental expectations. This paper explores how the teaching of computa-
tional thinking and programming, key concepts found in the teaching of Computer
Science subjects, can be mapped to the Technacy and Innovation Chart setting
developmentally appropriate expectations in the teaching and learning of these
subjects.

Keywords: Computational thinking · Technacy theory · Programming · Child
development

1 Introduction

The last decade has seen exponential growth in digital technologies leading to an influx of
innovative solutions. Students as young as seven years of age are now exposed to several
digital devices and are generally quick to engage with these technologies. There is grow-
ing awareness that students should not just be consumers of technology but increasingly
creators of innovative solutions. To achieve this, students from a very young age should
be encouraged to create products and solutions whilst developing their problem-solving
skills, critical thinking skills, digital literacy, creative thinking skills, collaboration and
communication [1]. These are key elements of computational thinking, a term coined by
Wing [2], defined as “thought processes involved in formulating a problem and express-
ing its solution(s) in such a way that a computer (or human) can effectively carry out”.
In more recent times, education policy makers have realised the importance of devel-
oping computational thinking skills and have endeavored to incorporate them across
various subjects like mathematics, humanities and computer science. Mannila et al. [3]
demonstrated that computational thinking skills can be developed within all disciplines,
while Selby andWoollard [4], through a systematic literature review, stated that compu-
tational thinking is inherently embedded in computer science education. Other studies

© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
T. Brinda et al. (Eds.): OCCE 2020, IFIP AICT 595, pp. 24–32, 2020.
https://doi.org/10.1007/978-3-030-59847-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59847-1_3&domain=pdf
http://orcid.org/0000-0001-6943-1130
http://orcid.org/0000-0002-1939-7955
http://orcid.org/0000-0003-2645-5671
https://doi.org/10.1007/978-3-030-59847-1_3


Mapping Computational Thinking and Programming Skills 25

[5, 6] have also shown that computational thinking skills can be acquired by students
through the teaching of computer science concepts, programming and robotics. There
has been much debate and discussion on how schools can change their curriculum to
incorporate computational thinking froma young age. To illustrate this point, in 2015, the
Australian Curriculum Assessment and Reporting Authority (ACARA) endorsed Digi-
tal Technologies as one of the two core subjects of the Technologies Curriculum [7] for
students in Foundation to Year 10. The Digital Technologies curriculum aims to develop
knowledge, understanding and skills to create digital products with programming as the
vehicle for learning.

Teaching a new curriculum can pose challenges for existing teacherswho have taught
a very different curriculum andmay not have sufficient technical knowledge and/or skills
to adapt their pedagogical content knowledge to the new curriculum content [8]. Studies
have indicated that teachers need adequate professional development to support teach-
ing and implementation of new curriculum. Hill, Keane and Seeman [9] advocate for a
clear set of guidelines, framework and practices that support teachers to improve stu-
dent learning outcomes. While other disciplines such as English and Mathematics have
developed pedagogies for literacy and numeracy respectively, little research exists to
examine equivalent ideas for technological areas of learning such as Digital Technolo-
gies/Computer Science education. This paper will explore a promising new area known
as Technacy Genre Theory as a framework to engage students in programming tasks
and improve their computational thinking skills. Technacy provides a holistic frame-
work with social, environmental and human factors, with significant discourse around
developmental indicators in technical education. The Technacy Theory is discussed in
detail in Sect. 3 of this paper.

2 Theoretical Background

2.1 Computational Thinking

Wing highlights the importance of computational thinking when she states that it is
the “thought process involved in formulating problems and their solutions so that the
solutions are represented in a form that can be effectively carried out by an information-
processing agent” [2]. Progressive thinkers such as Margaret Mead have long argued
that: “children must be taught how to think and not what to think”. It can be argued
that computational thinking skills are important for students. Papert [10], one of the
designers of the LOGO programming language aimed at school-aged students, has for
many decades advocated that learning to program at an early age allowed children to
develop problem solving and logical thinking skills.

At the core of computational thinking is the ability to solve complex problems by
breaking it down into small procedures [3, 11]. These procedures include the reliance of
the following skills: logical thinking, algorithmic thinking, problem-solving skills with
understanding of abstraction, generalisation, and decomposition.

2.2 Literacy in Digital Age

Bers [12] defined literacy as “the ability to use a symbol system and a tool to comprehend,
generate, communicate and express ideas or thoughts by making a sharable product



26 J. Nayak et al.

that others can interpret”. Education and policy makers acknowledge the importance of
technological literacy to help prepare children for the 21st century. Keane, Keane and
Blicblau [13] assert that digital literacy is as important as being literate and numerate.
A review of scholarly literature, documents and reports over the last 30 years suggest
that digital literacy is also referred to as computer literacy, information literacy and
technological literacy. Often, the contextual meaning of the term is in relation to the
technology of the given period. For example, computer literacy in the 1980s referred to
working knowledge of desktop computers, whilst in the early 2000s information literacy
incorporatedweb development skills. Currently, there are several initiatives to define and
mandate assessment of technological literacy [14, 15].

2.3 Defining Technacy

While being literate and numerate are fundamental skills, with the dynamic and evolv-
ing nature of the digital environment, it is important to also be technate (to comprehend
technologies) [16]. Technacy and its adjective technate [17] is defined as “the holis-
tic understanding of technology in relation to the creation, design and implementation
of technology projects”. Drawing parallels between literacy, numeracy and technacy,
Seemann and Talbot [18] argue that:

Just as there are levels of competence in literacy from writing one’s name to
writing profound poetry, and in numeracy from adding a few numbers together to
compiling a fundamental formula in physics, so too there is a range in technacy
from being skilled in joining materials together or repairing equipment to being
innovative in the design and development of appropriate technologies and systems.

Table 1 offers a comparative structure and parallel proposition of literacy and tech-
nacy with attention to the higher order cognitive demands of forming abstractions and
inferences [19].

3 Technacy Theory

3.1 Background to Technacy Theory

Technacy Theory was derived from existing practices in cross-cultural technology edu-
cation among Indigenous Australian communities. The Australian Science, Technology
and Engineering Council [ASTEC] acknowledged that an improvement in science and
technology education was necessary, stating that: “technacy – will be as vital to students
of 21st century as literacy and numeracy were to Australians who grew up in the 20th
century” [20]. ASTEC provided funding to look into innovative ways of teaching and
assessing technological knowledge. One of the recommendations was to incorporate
technacy education in primary and secondary school curricula across Australia [21].
Additionally, a generic framework, the Technacy and Innovation Chart (Fig. 1) was
developed to identify, assess and measure developmental indicators of technological
thinking and doing, in the student learner.



Mapping Computational Thinking and Programming Skills 27

Table 1. Comparative structures and forms for literacy and technacy [19]

Structure Key concepts in language
comprehension (literacy)

Equivalent concepts in
technological comprehension
(technacy)

Lexicon Library of words Library of digital material and
resources

Syntax Grammar. Thought structure
techniques to choose and
logically sequence words (a
story, a sentence)

Sequence and Composition.
Thought structure and techniques
for choosing and sequencing the
logical assembly of digital or
material resources

Semantics Meaning making. Creating and
communicating sensible
paragraphs, reports, narratives,
and expositions

Meaning making. Creating and
communicating working
components or programs that
form all or part of a solution or
idea: the outcome works,
achieves the brief

Inference making and
abstraction

Reading Comprehension.
Understanding words and
sentences in their wider
real-world context of application

Technological Comprehension.
Understanding technologies and
systems in their wider real-world
context of application

3.2 Technacy and Innovation Chart

The Technacy and Innovation Chart (Fig. 1) is a 3x3 grid that provides a model to
understand how people respond to increasing degrees of complexity when solving tech-
nological challenges.Along the horizontal axis are the three phasesEmergent,Competent
and Sophisticated which form Technacy Expectations and Complexity whilst the verti-
cal axis are the three domains of innovation: Play, Consolidation and Pioneer, which
describe the level of innovative responses to the technological challenges addressed by
the student learner. The chart is organised by child Developmental Domains and Phases
of Learning Complexity in technologies.

The grid has been developed to reflect the learning journey of the student. The
learning journey of the technology student typically begins with Emergent Play. As the
learner gains confidence, they progress from left to right of the chart, attempting more
complex tasks. The column progression from left to right (across the rows) shows the
degree of task complexity. The degree of complexity is often set by the teacher. The row
progression from bottom to top is attributed to the degree of personal initiative shown by
the learner. The vertical progression is demonstrated by the student with the assistance
of educational scaffolding and is subject to factors such as developmental ability [23].
The highest category in the framework aims to develop skills that prepare students to
become independent creators, innovators and pioneers in their field. The centre of the
Technacy Chart (Competent Consolidation) and the perimeter of the edges around it is



28 J. Nayak et al.

Fig. 1. Technacy and innovation chart [22]

where most learners tend to settle before engaging with higher demand technological
challenges and pioneering expectations [23].

3.3 Mapping Key Dimensions of the Technacy and Innovation Chart

To understand the relationship between programming concepts, computational thinking,
child development and technacy as discussed above, these have been mapped by the
authors of this paper against the Technacy and Innovative Chart as shown in Table 2.

Play Domain. Students create knowledge in different ways. Play as a strategy has been
identified as a powerful way to engage students in their learning, especially to form
cognitive schema. Piaget [25], Vygotsky [26], Resnick [27], and Fleer [28] assert that
play is essential for intellectual and cognitive development in children. Practical activities
provide students with the opportunity to experiment and build ideas from their playful
experiences.

In computer programming, play involves students interacting with on-screen objects
such as Scratchy the cat in the programming language called Scratch, or the Turtle in
the programming language called Python. The focus in the Play Domain is to foster
early stages of schema development. The teaching of computer programming using on-
screen objects assists in developing problem-solving skills, logical thinking skills and
algorithmic thinking skills. The manipulation of on-screen objects requires the ability
to comprehend technology knowledge being learned. Hrbacek, Kucera and Strach [29]



Mapping Computational Thinking and Programming Skills 29

Table 2. Relationship: technacy domains, computational thinking and programming concepts

Play domain Consolidation
domain

Pioneer domain

Goal Engage participants’
interest

Develop basic
programming
concepts

Learn to plan, design
and develop solutions

Piaget’s Developmental
Stages [25]

Pre-operational stage Concrete
Operational stage

Formal Operational
stage

Computational
Thinking

Problem-solving skills
Algorithmic thinking
Logical thinking

Abstract thinking
Problem-solving
skills

Decomposition
Generalisation

Programming Concepts Low-level concepts
[24]

Mid-level
concepts [24]

High-level concepts
[24]

Programming Tool Drag-n-drop Text-based

determined that the age of 8 years is the optimal time to introduce early constructs in
programming to students. Scratch and Blockly, block-based visual programming lan-
guages, are popular in the classroom with younger students due to their drag-and-drop
features.

As the student develops confidence, teachers can facilitate their progress from Emer-
gent Play to Competent Play towards Sophisticated Play by setting more higher order
tasks to match the complexity of the project. Students will need assistance, guidance and
directions from teachers [23] to progress through the three phases of the Play Domain.

Consolidation Domain. Block-based programming creates an interactive and engag-
ing environment making it possible for students to create simple games without writing
a single line of code. However, block-based languages have several limitations on what
students can do. Text-based programming languages, on the other hand, offer greater
flexibility at the expense of having pre-affirmed knowledge. At some stage, students
need to be encouraged to move to a text-based programming language to extend them-
selves. There are several high-level programming languages, each with its own syntax
and semantics; however, ultimately, from a pedagogical point of view, they all have
similar underlying programming constructs. Butler and Morgan [24] grouped generic
programming concepts into levels of difficulty - low, mid and high - based on their
complexity as seen in Table 2.

The Consolidation Domain has three phases – Emergent Consolidation, Competent
Consolidation and Sophisticated Consolidation. In theConsolidation Domain, the focus
is on progressing from early discovery to higher cognitive demand in difficulty thus
advancing deep knowledge of the subject in a meaningful way [30]. In the Emergent
Consolidation Phase, teachers can assign tasks that focus on early discovery concepts
[24]. As students develop confidence, they should be encouraged to be stretched into
the Competent Consolidation Phase using programming concepts such as decisions,
loops and arrays: the Competent Phase introduces codified established knowledge and



30 J. Nayak et al.

techniques. The Technacy Chart is consistent with Papert’s idea of low floor, high ceiling
[10], a metaphor where a medium with a low floor assures a low barrier to entry, but the
high ceiling simultaneously does not constrict creativity.

Pioneer Domain. The Pioneer Domain is where students demonstrate a high capacity
to manage novelty and express new ideas. The Pioneer Domain has three levels of
capability demonstrated by the learner. The Emergent Pioneer accommodates student
learners who demonstrate a high and consistent capacity for imagination but have not
yet affirmed competencies to execute their ideas. The Competent Pioneer also has a
capacity to imagine new ideas, but unlike the Emergent Pioneer, has knowledge and
skills of known techniques to execute their ideas. The Sophisticated Pioneer not only
presents novel and creative ideas and has the skills to execute them, but also demonstrates
an ability to create new methods and frameworks to solve novel problems.

4 Conclusion

There is a growing recognition that “coding is the new literacy” [31]. Most technol-
ogy researchers agree that introducing coding to students at an early age is considered
a long-term investment in bridging the skills gap between technology demands of the
labour market and the availability of people to fill them [32]. The Technacy Develop-
mental Framework as presented in this paper can be applied to the Australian Digital
Technologies subject or any computing course which demands students to have skills
in programming and computational thinking. This Framework provides a method in
which to map and describe how a student responds to increasing demand associated
with learning computer science content such as developing programming skills.

This paper asserts that there is promise in combining cognitive development research
and computational thinking theory with Technacy Theory. The Technacy Innovation
Chart offers considerable opportunities for further research when combined with com-
putational thinking concepts, including offering a common dialogue to describe the
learning taking place.

References

1. Voogt, J., Roblin, N.P.: A comparative analysis of international frameworks for 21st century
competences: implications for national curriculum policies. J. Curriculum Stud. 44(3), 299–
321 (2012)

2. Wing, J.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
3. Mannila, L., Dagienė, V., Demo, B., Grgurina, N.,Mirolo, C., Rolandsson, L., et al.: Computa-

tional thinking inK-9 education. In: Proceedings of theWorkingGroupReports on Innovation
& Technology in Computer Science Education Conference, pp. 1–29 (2014)

4. Selby, C., Woollard, J.: Computational thinking: the developing definition. In: Annual Con-
ference on Innovation and Technology in Computer Science Education, University of Kent,
Canterbury: ACM Special Interest Group on Computer Science Education (SIGCSE) (2013)

5. Brennan, K., Resnick, M.: New frameworks for studying and assessing the development
of computational thinking. In: Proceedings of the 2012 Annual Meeting of the American
Educational Research Association, Vancouver, Canada, vol. 1, p. 25 (2012)



Mapping Computational Thinking and Programming Skills 31

6. García-Valcárcel-Muñoz-Repiso, A., Caballero-González, Y.-A.: Robotics to develop com-
putational thinking in early childhood education. Media Educ. Res. J. 27(1), 63–72
(2019)

7. Australian curriculum assessment and reporting authority technologies. https://www.austra
liancurriculum.edu.au/f-10-curriculum/technologies. Accessed 20 May 2020

8. Webb, M., et al.: Computer science in K-12 school curricula of the 2lst century: why, what
and when? Educ. Inf. Technol. 22(2), 445–468 (2016). https://doi.org/10.1007/s10639-016-
9493-x

9. Hill, E., Keane, T., Seemann, K.: Pedagogies and practices for developing innovation capabil-
ity: beyond theAITSLstandards. Paper presented at the 10thBiennial InternationalDesign and
Technology Teacher’s Association Research Conference (DATTArc), Swinburne University
of Technology, Hawthorn, VIC (2018)

10. Papert, S.:Mindstorms: Children, Computers and Powerful Ideas, 2nd edn. Basic Books, New
York (1993)

11. Vee, A.: Understanding computer programming as a literacy. Literacy Compos. Stud. 1(2),
42–64 (2013)

12. Bers, M.U.: Coding, playgrounds and literacy in early childhood education: the development
of KIBO robotics and scratch Jr. Paper presented at the IEEE Global Engineering Education
Conference (EDUCON), Santa Cruz de Tenerife, Spain, pp. 2094–2102 (2018)

13. Keane, T., Keane, W.F., Blicblau, A.S.: Beyond traditional literacy: learning and transforma-
tive practices using ICT. Educ. Inf. Technol. 21(4), 769–781 (2014). https://doi.org/10.1007/
s10639-014-9353-5

14. Avsec, S., Jamšek, J.: Technological literacy for students aged 6–18: a newmethod for holistic
measuring of knowledge, capabilities, critical thinking and decision-making. Int. J. Technol.
Des. Educ. 26(1), 43–60 (2015). https://doi.org/10.1007/s10798-015-9299-y

15. Thorsteinsson, G., Olafsson, B.: Piloting technological understanding and reasoning in Ice-
landic schools. Int. J. Technol. Des. Educ. 26(4), 505–519 (2015). https://doi.org/10.1007/
s10798-015-9301-8

16. Seemann, K.: Technacy education: understanding cross-cultural technological practice. In:
Fien, J., Maclean, R., Park, M.G. (eds.) Work, Learning and Sustainable Development.
Technical and Vocational Education and Training: Issues, Concerns and Prospects, vol. 8,
pp. 117–131. Springer, Dordrecht (2009)

17. Macquarie dictionary: the Macquarie dictionary, 7th edn. https://www.macquariedictionary.
com.au/features/word/search/?search_word_type=Dictionary&word=technacy7. Accessed
20 May 2020

18. Seemann, K., Talbot, R.: Technacy: towards a holistic understanding of technology teaching
and learning among aboriginal Australians. Prospects 25(4), 761–775 (1995)

19. Seemann, K.: Your super-powers: applied design led innovation and working technologically.
Keynote address to theDesign andTechnologyTeacher’sAssociation of theAustralianCapital
Territory, Annual Conference, p. 25. Design and Technology Teacher’s Association of the
Austrailan Capital Territory, Canberra, ACT (2019)

20. Desert Knowledge CRC.: Media Release: Technacy – key to the education revolution - Ninti
One, p. 2. DKCRC, no place of publication (2008)

21. Seemann,K.: LinkingDesertKnowledgewithPedagogyResearch forMiddle SchoolCurricu-
lum, vol. 1, p. 23. Southern Cross University and Design Knowledge Coorperative Research
Centre, Coffs Harbour, NSW (2008)

22. Seemann, K.: Technacy chart. http://technacy.org/tools/chart/106. Accessed 28 Aug 2019
23. Cerovac, M., Seemann, K., Keane, T.: Systems engineering: identification and fostering of

inferential and social skills. Paper presented at the 10th Biennial International Design and
Technology Teacher’s Association Research Conference (DATTArc), Swinburne University
of Technology, Hawthorn, VIC (2018)

https://www.australiancurriculum.edu.au/f-10-curriculum/technologies
https://doi.org/10.1007/s10639-016-9493-x
https://doi.org/10.1007/s10639-014-9353-5
https://doi.org/10.1007/s10798-015-9299-y
https://doi.org/10.1007/s10798-015-9301-8
https://www.macquariedictionary.com.au/features/word/search/%3fsearch_word_type%3dDictionary%26word%3dtechnacy7
http://technacy.org/tools/chart/106


32 J. Nayak et al.

24. Butler, M., Morgan,M.: Learning challenges faced by novice programming students studying
high level and low feedback concepts. In: Proceedings 2007ASCILITESingapore, pp. 99–107
(2007)

25. Piaget, J.: Cognitive development in children: development and learning. J. Res. Sci. Teach.
2(3), 176–186 (1964)

26. Vygotsky, L.S.: The role of play in development. In: Cole, M., Jolm-Steiner, V., Scribner, S.,
Souberman, E. (eds.) Mind in Society, pp. 92–104. Harvard University Press, Harvard (1978)

27. Resnick, M.: Lifelong Kindergarten: Cultivating Creativity Through Projects, Passion, Peers,
and Play. MIT Press, Cambridge (2017)

28. Fleer, M.: Play in the Early Years. Cambridge University Press, New York (2013)
29. Hrbáček, J., Kučera, M., Strach, J.: Teaching robot programming can be a new opportunity for

technical subjects of study. In: IEEE 11th International Conference on Emerging eLearning
Technologies and Applications (ICETA), pp. 133–137. IEEE, New York (2013)

30. Winslow, L.E.: Programming pedagogy—a psychological overview. ACM SIGCSE Bull.
28(3), 17–22 (1996)

31. Bers, M.U.: The TangibleK Robotics program: applied computational thinking for young
children. Early Child. Res. Pract. 12(2), 1–20 (2010)

32. DePryck, K.: From computational thinking to coding and back. In: Proceedings of the
Fourth International Conference on Technological Ecosystems for Enhancing Multicultur-
ality, Salamanca, Spain, pp. 27–29. Association for Computing Machinery (ACM), New
York (2016)


	Mapping Computational Thinking and Programming Skills Using Technacy Theory
	1 Introduction
	2 Theoretical Background
	2.1 Computational Thinking
	2.2 Literacy in Digital Age
	2.3 Defining Technacy

	3 Technacy Theory
	3.1 Background to Technacy Theory
	3.2 Technacy and Innovation Chart
	3.3 Mapping Key Dimensions of the Technacy and Innovation Chart

	4 Conclusion
	References




