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Preface

The volume is dedicated to the theory of Mean Field Games. This theory aims
at describing differential games with a large number of interacting agents. The
number of applications of the theory is huge, ranging from macroeconomics to
crowd motions and from finance to power grid models. In all these models, each
agent controls his/her own dynamical state, which evolves in time according to a
deterministic or stochastic differential equation. The individual goal is to minimize
some cost depending not only on his/her own control but also on the behavior of the
whole population of agents, which is described through the distribution law of the
dynamical states. In this setting, the central concept is the notion of Nash equilibria,
which describes how agents play in an optimal way by taking into account the
others’ strategies.

The theory of Mean Field Games has been introduced and largely developed
by J.-M. Lasry and P.L. Lions through a series of papers around 2005 and
during the famous lectures of Lions at the Collège de France. At about the same
time, M. Huang, P. Caines, and R. Malhamé discussed similar models under the
terminology of “Nash certainty equivalence principle.”

The first motivation of Lasry and Lions’ early works was to study the limit of
Nash equilibria in N-players differential games, as N goes to infinity, under suitable
conditions of symmetry and coupling. The mean field approach developed to this
purpose led to the construction of a macroscopic model, which is now well suited
to describe, in many different contexts, the equilibria between individual strategies
and collective behavior in large population dynamics. Thus, the theory has known an
impressive growth so far, from a theoretical point of view as well as from the point
of view of applications. This is not surprising because, in terms of mathematics,
the theory is very rich and involves several fields: the analysis of partial differential
equations (PDEs), stochastic analysis, calculus of variations, mean field theory,. . .

In June 2019, a CIME School on Mean Field Games was organized in Cetraro,
Italy. The goal was to cover some of the most important aspects of the theory and
most recent developments. This volume collects the notes of the CIME courses
and contains 4 contributions: the first one (by P. Cardaliaguet and A. Porretta) is
a general introduction to the theory, mostly focused on the PDEs’ ingredients; the
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vi Preface

second contribution (by F. Santambrogio) is dedicated to some variational aspect
of the theory; the third part (by F. Delarue) focuses on the master equation with
common noise; and the last contribution (by Y. Achdou and M. Laurière) is devoted
to the issue of numerics, theory and simulations, and applications to concrete
models. We now explain more in detail the contents of the volume.

• The first chapter, by P. Cardaliaguet and A. Porrretta, is a general presentation
of the theory of Mean Field Games through its two representative PDEs. Both
equations describe, though in a different way, the Nash equilibria of differential
games with infinitely many players. The first one is the MFG system, which
couples a forward Fokker–Planck equation with a backward Hamilton–Jacobi
equation and for which a detailed analysis is presented. The second one is the
master equation, a kind of transport equation on the space of measures, for which
mostly the heuristic ideas are presented.

• In the second chapter, F. Santambrogio describes a class of MFGs having a
variational structure: in this case the MFG equilibria can be obtained by mini-
mizing an energy functional. The chapter is mostly focused on the Lagrangian
approach to first-order MFG systems with local couplings. The main goal is
to prove that minimizers of a suitably expressed global energy are equilibria
in the sense that a.e. trajectory solves a control problem with a running cost
depending on the density of all the agents. This requires a fine regularity analysis
of the minimizers and involves tools from Calculus of Variations and Optimal
Transportation theory.

• The third chapter, by François Delarue, is dedicated to the case that, in the MFG
model, the agents are affected by a common noise. The goal of this chapter is to
address in a rigorous way the solvability of the master equation for mean field
games on a finite state space with a common noise. The results in their own but
also the structure of the underpinning common noise are new in the literature on
Mean Field Games.

• The last part of the volume, by Y. Achdou and M. Laurière, is devoted to the
numerical approximation of the solution to MFG problems. This topic is all
the more important that there are very few explicit or semi-explicit solutions
to MFGs and numerical simulations are often the only way to obtain quantitative
information for this class of models. The chapter focuses on the MFG system and
presents several aspects of a finite difference method used to approximate this
system, including convergence, variational aspects, and algorithms for solving
the resulting systems of nonlinear equations. It also discusses in detail two
concrete applications: a model of crowd motion and a model with heterogeneous
agents in macroeconomics.

Paris, France Pierre Cardaliaguet
Roma, Italy Alessio Porretta
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Chapter 1
An Introduction to Mean Field Game
Theory

Pierre Cardaliaguet and Alessio Porretta

Abstract These notes are an introduction to Mean Field Game (MFG) theory,
which models differential games involving infinitely many interacting players. We
focus here on the Partial Differential Equations (PDEs) approach to MFGs. The two
main parts of the text correspond to the two emblematic equations in MFG theory:
the first part is dedicated to the MFG system, while the second part is devoted to the
master equation.

The MFG system describes Nash equilibrium configurations in the mean field
approach to differential games with infinitely many players. It consists in the
coupling between a backward Hamilton-Jacobi equation (for the value function of a
single player) and a forward Fokker-Planck equation (for the distribution law of the
individual states). We discuss the existence and the uniqueness of the solution to the
MFG system in several frameworks, depending on the presence or not of a diffusion
term and on the nature of the interactions between the players (local or nonlocal
coupling). We also explain how these different frameworks are related to each other.
As an application, we show how to use the MFG system to find approximate Nash
equilibria in games with a finite number of players and we discuss the asymptotic
behavior of the MFG system.

Pierre Cardaliaguet was partially supported by the ANR (Agence Nationale de la Recherche)
project ANR-12-BS01-0008-01, by the CNRS through the PRC grant 1611 and by the Air Force
Office for Scientific Research grant FA9550-18-1-0494.
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2 P. Cardaliaguet and A. Porretta

The master equation is a PDE in infinite space dimension: more precisely it is a
kind of transport equation in the space of measures. The interest of this equation
is that it allows to handle more complex MFG problems as, for instance, MFG
problems involving a randomness affecting all the players. To analyse this equation,
we first discuss the notion of derivative of maps defined on the space of measures;
then we present the master equation in several frameworks (classical form, case of
finite state space and case with common noise); finally we explain how to use the
master equation to prove the convergence of Nash equilibria of games with finitely
many players as the number of players tends to infinity.

As the works on MFGs are largely inspired by P.L. Lions’ courses held at the
Collège de France in the years 2007–2012, we complete the text with an appendix
describing the organization of these courses.

1.1 Introduction

Mean field game (MFG) theory is devoted to the analysis of optimal control
problems with a large number of small controllers in interaction. As an example,
they can model crowd motions, in which the evolution of a pedestrian depends
on the crowd which is around. Similar models are also used in economics: there,
macroeconomic quantities are derived from the microeconomic behavior of the
agents who interact through aggregate quantities, such as the prices or the interest
rates. In the Mean Field Game formalism, the controllers are assumed to be
“rational” (in the sense that they optimize their behavior by taking into account
the behavior of the other controllers), therefore the central concept of solution
is the notion of Nash equilibrium, in which no controller has interest to deviate
unilaterally from the planned control. In general, playing a Nash equilibrium
requires for a player to anticipate the other players’s responses to his/her action.
For large population dynamic games, it is unrealistic for a player to collect detailed
information about the state and the strategies of the other players. Fortunately this
impossible task is useless: mean field game theory explains that one just needs
to implement strategies based on the distribution of the other players. Such a
strong simplification is well documented in the (static) game community since
the seminal works of Aumann [20]. However, for differential games, this idea
has been considered only very recently: the starting point is a series of papers
by Lasry and Lions [143–145, 150], who introduced the terminology in around
2005. The term mean field comes for an analogy with the mean field models in
mathematical physics, which analyse the behavior of many identical particles in
interaction (see for instance [111, 176, 177]). Here the particles are replaced by
agents or players, whence the name of mean field games. Related ideas have been
developed independently, at about the same time, by Caines, Huang and Malhamé
[132–135], under the name of Nash certainty equivalence principle. In the economic
literature, similar models (often in discrete time) were introduced in the 1990s as
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“heterogeneous agent models” (see, for instance, the pioneering works of Aiyagari
[13] and Krussell and Smith [138]).

Since these seminal works, the study of mean field games has known a quick
growth. There are by now several textbooks on this topic: the most impressive one is
the beautiful monograph by Carmona and Delarue [68], which exhaustively covers
the probability approach of the subject. One can also quote the Paris-Princeton
Lectures by Gueant, Lasry and Lions [128] where the authors introduce the theory
with sample of applications, the monograph by Bensoussan, Frehse and Yam [30],
devoted to both mean field games and mean field control with a special emphasis
on the linear-quadratic problems, and the monograph by Gomes, Pimentel and
Voskanyan [122], on the regularity of the MFG system. Finally, [65] by the first
author with Delarue, Lasry and Lions studies the master equation (with common
noise) and the convergence of Nash equilibria as the number of players tends to
infinity.

This text is a basic introduction to mean field games, with a special emphasis on
the PDE aspects. The central ideas were largely developed in Pierre-Louis Lions’
series of lectures at the Collège de France [149] during the period 2007–2012. As
these courses contain much more material than what is developed here, we added
in the appendix some notes on the organization of these courses in order to help the
interested reader.

The main mathematical object of the text is the so-called mean field game system,
which takes the form

⎧
⎨

⎩

(i) −∂tu− νΔu+H(x,Du,m) = 0 in (0, T )× Rd
(ii) ∂tm− νΔm− div

(
Hp(x,Du,m)m

) = 0 in (0, T )× Rd
(iii) m(0) = m0 , u(x, T ) = G(x,m(T )) in Rd

(1.1)

In the above system, the unknowns u and m are scalar and depend on time t ∈ [0, T ]
and space x ∈ Rd . The two equations are of (possibly degenerate) parabolic type
(i.e., ν ≥ 0); the first equation is backward in time while the second one is forward in
time. There are two other crucial structure conditions for this system: the first one is
the convexity ofH = H(x, p,m)with respect to the second variable. This condition
means that the first equation (a Hamilton-Jacobi equation) is associated with an
optimal control problem and is interpreted as the value function associated with a
typical small player. The second structure condition is thatm0 (and thereforem(t, ·))
is (the density of) a probability measure on Rd . The Hamiltonian H = H(x, p,m),
which couples the two equations, depends on space, on the variable p ∈ Rd and on
the probability measure m.

Let us briefly explain the interpretation of this system as a Nash equilibrium
problem in a game with infinitely many small players. An agent (=a player) controls
through his/her control α the stochastic differential equation (SDE)

dXs = b(Xs, αs ,m(s))ds +
√

2νdBs (1.2)
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where (Bt ) is a standard Brownian motion. He/She aims at minimizing the quantity

E

[∫ T

0
L(Xs, αs,m(s))ds +G(XT ,m(T ))

]

,

where the running cost L = L(x, α,m) and the terminal cost G = G(x,m)

depend on the position x of the player, the control α and the distribution m of the
other players. Note that in this cost the evolution of the measure m(s) enters as a
parameter. To solve this problem one introduces the value function:

u(t, x) = inf
α
E

[∫ T

t

L(Xs,m(s), αs )ds +G(XT ,m(T ))

]

,

where the infimum is taken over admissible controls α and where X solves the SDE
(1.2) with initial condition Xt = x. The value function u then satisfies the PDE
(1.1-(i)) where

H(x, p,m) = sup
α

[−b(x, α,m) · p − L(x,m, α)] .

Given the value function u, it is known that the agent plays in the optimal way
by using the feedback control α∗ = α∗(t, x) such that the drift is of the form
b(x, α∗(t, x),m(t)) = −Hp(x,Du(t, x),m(t)). Now, if all agents argue in this
way and if their associated noises are independent, the law of large numbers implies
that their distribution evolves with a velocity which is due, on the one hand, to the
diffusion, and, on the other hand, on the drift term −Hp(x,Du(t, x),m(t)). This
leads to the Kolmogorov-Fokker-Planck equation (1.1-(ii)). The fact that system
(1.1) describes a Nash equilibrium can be seen as follows. As the single player
is “small” (compared to the collection of the other agents), his/her deviation does
not change the population dynamics. Hence the behavior of the other agents, and
therefore their time dependent distribution m(t), can be taken as given in the
individual optimization. This corresponds to the concept of Nash equilibrium where
all players play an optimal strategy while freezing the others’ choices.

The main part of these notes (Sect. 1.3) is devoted to the analysis of the mean
field game system (1.1): we discuss the existence and uniqueness of the solution in
various settings and the interpretation of the system. This analysis takes some time
since the PDE system behaves in a quite different way according to whether the
system is parabolic or not (i.e., ν is positive or zero) and according to the regularity
of H with respect to the measure. These various regimes correspond to different
models: for instance, in many applications in finance, the diffusion is nondegenerate
(i.e., ν > 0), while ν often vanishes in macroeconomic models. In most applications
in economy the dependence of the HamiltonianH = H(x, p,m)with respect to the
probability measure m is through some integral form of m (moments, variance), but
in models of crowd motion it is very often through the value at position x of the
density m(x) of m. We will discuss these different features of the mean field game
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system, with, hopefully, a few novelties in the treatment of the equations. To keep
these notes as simple as possible, the analysis is done for systems with periodic in
space coefficients: the analysis for other boundary problems follows the same lines,
with additional technicalities. We will also mention other relevant aspects of the
MFG systems: their application to differential games with finitely many players, the
long time ergodic behavior, the vanishing viscosity limits, . . .

The second focus of these notes is a (short and mostly formal) introduction to
the “master equation” (Sect. 1.4). Indeed, it turns out that, in many applications, the
MFG system (1.1) is not enough to describe the MFG equilibria. On the one hand,
the MFG system does not explain how the agents take their decision in function
of their current position and of the current distribution of the players (in “feedback
form”). Secondly, it does not explain why one can expect the system to appear as the
limit of games with finitely many players. Lastly, the PDE system does not allow to
take into account problems with common noise, in which the dynamic of the agents
is subject to a common source of randomness. All these issues can be overcome by
the introduction of the master equation. This equation (introduced by Lions in his
courses at Collège de France) takes the form of a partial differential equation in the
space of measures which reads as follows (in the simplest setting):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−∂tU(t, x,m)− νΔxU(t, x,m)+H(x,DxU(t, x,m), m)− ν

∫

Rd

divyDmU(t, x,m, y) m(dy)

+
∫

Rd

DmU(t, x,m, y) ·DpH(y,DxU(t, y,m), m)m(dy) = 0

in (0, T )× Rd × P2

U(T , x,m) = G(x, m) in Rd × P2

where P2 is the space of probability measures on Rd (with finite second order
moment). Here the unknown is the scalar quantity U = U(t, x,m) depending on
time and space and on the measure m (representing the distribution of the other
players). This equation involves the derivative DmU of the unknown with respect
to the measure variable (see Sect. 1.4.2). We will briefly explain how to prove the
existence and the uniqueness of a solution to the master equation and its link with
the MFG system. We will also discuss how to extend the equation to problems with
a common noise (a noise which affects all the players). Finally, we will show how
to use this master equation to prove that Nash equilibria in games with finitely many
players converge to MFG equilibria.

These notes are organized as follows: in a preliminary part (Sect. 1.2), we
introduce fundamental tools for the understanding and the analysis of MFG
problems: a brief recap of the dynamic programming approach in optimal control
theory, the description of the space of probability measures and some basic aspects
of mean field theory. Then we concentrate on the MFG system (1.1) (Sect. 1.3).
Finally, the analysis on the space of measures and the master equation are discussed
in the last part (Sect. 1.4). We complete the text by an appendix on the organization
of P.L. Lions’ courses on MFGs at the Collège de France (Appendix).
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1.2 Preliminaries

In this section we recall some basic notion on optimal control and dynamic
programming, on the space of probability measures and on mean field limits. As
mean field games consist in a combination of these three topics, it is important to
collect some preliminary knowledge of them.

1.2.1 Optimal Control

We briefly describe, in a very formal way, the optimal control problems we will meet
in these notes. We refer to the monographs by Fleming and Rischel [106], Fleming
and Soner [107], Yong and Zhou [180] for a rigorous treatment of the subject.

Let us consider a stochastic control problem where the state (Xs) of the system
is governed by the stochastic differential equation (SDE) with values in Rd :

Xα
s = x +

∫ s

t

b(r,Xα
r , αr )dr +

∫ s

t

σ (r,Xα
r , αr )dBr . (1.3)

In the above equation, B = (Bs)s≥0 is a N-dimensional Brownian motion (starting
at 0) adapted to a fixed filtration (Ft )t≥0, b : [0, T ] × Rd × A → R

d and σ :
[0, T ] × Rd × A → R

d×N satisfy some regularity conditions given below and the
process α = (αs) is progressively measurable with values in some set A. We denote
by A the set of such processes. The elements of A are called the control processes.

A generic agent controls the process X through the control α in order to reach
some goal: here we consider optimal control problems, in which the controller aims
at minimizing some cost J . We will mostly focus on the finite horizon problem,
where J takes the form:

J (t, x, α) = E
[∫ T

t

L(s,Xα
s , αs)ds + g(XT )

]

.

Here T > 0 is the finite horizon of the problem, L : [0, T ] × Rd × A → R

and g : Rd → R are given continuous maps (again we are more precise in the
next section on the assumptions on L and g). The controller minimizes J by using
controls in A. We introduce the value function as the map u : [0, T ] × Rd → R

defined by

u(t, x) = inf
α∈A

J (t, x, α) .
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1.2.1.1 Dynamic Programming and the Verification Theorem

The main interest of the value function is that it indicates how the controller should
choose his/her control in order to play in an optimal way. We explain the key ideas
in a very informal way. A rigorous treatment of the question is described in the
references mentioned above.

Let us start with the dynamic programming principle, which states the
following identity: for any t1 ≤ t2,

u(t1, x) = inf
α∈A
E

[∫ t2

t1

L(s,Xα
s , αs)ds + u(t2,X

α
t2
)

]

. (1.4)

The interpretation is that, to play optimally at time t1, the controller does not need
to predict in one shot the whole future strategy provided he/she knows what would
be the best reward at some future time t2, in which case it is enough to focus on
the optimization between t1 and t2. So far, the optimization process can be built
step by step like in semigroup theory. This relation has a fundamental consequence:
to play in an optimal way the agent only needs to know the current state and play
accordingly (and not the whole filtration at time t).

Fix now t ∈ [0, T ). Choosing t1 = t , t2 = t + h (for h > 0 small) and assuming
that u is smooth enough, we obtain by Itô’s formula and (1.4) that

u(t, x) = inf
α∈AE

[ ∫ t+h

t

L(s,Xα
s , αs)ds + u(t, x)+

∫ t+h

t

(∂tu(s,X
α
s )+Du(s,Xα

s ) · b(s,Xα
s , αs)

+ 1

2
Tr(σσ ∗(s,Xα

s , αs )D
2u(s,Xα

s )))ds
]
.

Simplifying by u(t, x), dividing by h and letting h → 0+ gives (informally) the
Hamilton-Jacobi equation

0 = inf
a∈A

[

L(t, x, a)+ ∂tu(t, x) +Du(t, x) · b(t, x, a)+ 1

2
Tr(σσ ∗(t, x, a)D2u(t, x))

]

.

Let us introduce the Hamiltonian H of our problem: for p ∈ Rd and M ∈ Rd×d ,

H(t, x, p,M) := sup
a∈A

[

−L(t, x, a)− p · b(t, x, a)− 1

2
Tr(σσ ∗(t, x, a)M)

]

.

Then the Hamilton-Jacobi equation can be rewritten as a terminal value problem:

{−∂tu(t, x)+H(t, x,Du(t, x),D2u(t, x)) = 0 in (0, T )× Rd ,
u(T , x) = g(x) in Rd .

The first equation is backward in time (the map H being nonincreasing with respect
to D2u). The terminal condition comes just from the definition of u for t = T .
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Let us now introduce α∗(t, x) ∈ A as a maximum point in the definition of H
when p = Du(t, x) and M = D2u(t, x). Namely

H(t, x,Du(t, x),D2u(t, x)) = −L(t, x, α∗(t, x))−Du(t, x) · b(t, x, α∗(t, x))

− 1

2
Tr(σσ ∗(t, x, α∗(t, x))D2u(t, x)). (1.5)

We assume that α∗ is sufficiently smooth to justify the computation below. We are
going to show that α∗ is the optimal feedback, namely the optimal strategy to play
at time t in the state x. Indeed, one has the following “Verification Theorem”: Let
(Xα∗

s ) be the solution of the stochastic differential equation

Xα∗
s = x +

∫ s

t

b(r,Xα∗
r , α∗(r,Xα∗

r ))dr +
∫ s

t

σ (r,Xα∗
r , α∗(r,Xα∗

r ))dBr

and set α∗s = α∗(s,Xα∗
s ). Then

u(t, x) = J (t, x, α∗).

Note that, with a slight abuse of notation, here α∗ = (α∗s ) is a control, namely
it belongs to A. Strictly speaking, (α∗t ) is the optimal control, α∗(t, x) being the
optimal feedback.

Heuristic Argument By Itô’s formula, we have

g(Xα∗
T ) = u(T ,Xα∗

T ) = u(t, x) +
∫ T

t

(∂t u(s,X
α∗
s )+Du(s,Xα∗

s ) · b(s,Xα∗
s , α∗s )

+ 1

2
Tr(σσ ∗(s,Xα∗

s , α∗s )D2u(s,Xα∗
s )))ds +

∫ T

t

σ ∗(s,Xα∗
s , α∗s )Du(s,Xα∗

s ) · dBs.

Taking expectation, using first the optimality of α∗ in (1.5) and then the Hamilton-
Jacobi equation satisfied by u, we obtain

E

[
g(Xα∗

T )
]
= u(t, x)+ E

[∫ T

t

(∂t u(s,X
α∗
s )−H(s,Xα∗

s ,Du(s,Xα∗
s ),D2u(s,Xα∗

s ))− L(s,Xα∗
s , α∗s ))ds

]

= u(t, x)− E
[∫ T

t

L(s,Xα∗
s , α∗s )ds

]

.

Rearranging terms, we find

u(t, x) = E
[∫ T

t

L(s,Xα∗
s , α∗s )ds + g(Xα∗

T )

]

,

which shows the optimality of α∗. �	
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The above arguments, although largely heuristic, can be partially justified.
Surprisingly, the dynamic programming principle is the hardest step to prove, and
only holds under strong restrictions on the probability space. In general, the value
function is smooth only under very strong assumptions on the system. However,
under milder conditions, it is at least continuous and then it satisfies the Hamilton-
Jacobi equation in the viscosity sense. Besides, the Hamilton-Jacobi has a unique
(viscosity) solution so that it characterizes the value function. If the diffusion is
strongly non degenerate (e.g. if N = d and σ is invertible with a smooth and
bounded inverse) and if the Hamiltonian is smooth, then the value function is
smooth as well. In this setting the above heuristic argument can be justified and
the verification Theorem can be proved to hold.

We finally recall that, whenever α∗ is uniquely defined from (1.5), then the
Hamiltonian H is differentiable at (Du,D2u) and

{
Hp(t, x,Du(t, x),D

2u(t, x)) = −b(t, x, α∗(t, x)) ,
HM(t, x,Du(t, x),D

2u(t, x)) = − 1
2 Tr(σσ ∗(t, x, a∗(t, x))D2(·)) (1.6)

This is a consequence of the so-called Envelope Theorem:

Lemma 1.1 Let A be a compact metric space, O be an open subset of Rd and
f : A × O → R be continuous and such that Dxf is continuous on A × O. Then
the marginal map

V (x) = inf
a∈Af (a, x)

is differentiable at each point x ∈ O such that the infimum in V (x) is a unique point
ax ∈ A, and we have

DV (x) = Dxf (ax, x).

Proof Let x ∈ O be such that the infimum in V (x) is a unique point ax ∈ A. Then
an easy compactness argument shows that, if ay is a minimum point of V (y) for
y ∈ O and y → x, then ay → ax .

Fix y ∈ O. Note first that, as ax ∈ A,

V (y) ≤ f (ax, y) = f (ax, x)+Dxf (ax, zy)·(y−x) = V (x)+Dxf (ax, zy)·(y−x),

for some zy ∈ [x, y].
Conversely,

V (x) ≤ f (ay, x) = f (ay, y)+Dxf (ay, z
′
y)·(x−y) = V (y)+Dxf (ay, z

′
y)·(x−y),

for some z′y ∈ [x, y].
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By continuity of Dxf and convergence of ay , we infer that

lim
y→x

|V (y) − V (x)−Dxf (ax, x) · (y − x)|
|y − x|

≤ lim inf
y→x

∣
∣Dxf (ax, zy)−Dxf (ax, x)

∣
∣+

∣
∣
∣Dxf (ay, z

′
y)−Dxf (ax, x)

∣
∣
∣ = 0.

�	

1.2.1.2 Estimates on the SDE

In the previous introduction, we were very fuzzy about the assumptions and the
results. A complete rigorous treatment of the problem is beyond the aim of these
notes. However, we need at least to clarify a bit the setting of our problem. For this,
we assume the maps b and σ to be continuous on [0, T ] × Rd × A and Lipschitz
continuous in x independently of t and a: there is a constant K > 0 such that, for
any x, y ∈ Rd , t ∈ [0,+∞), a ∈ A,

|b(t, x, a)− b(t, y, a)| + |σ(t, x, a)− σ(t, y, a)| ≤ K|x − y|.

Under these assumptions, for any bounded control α ∈ A, there exists a unique
solution to (1.3). By a solution we mean a progressively measurable process X such
that, for any T > 0,

E

[∫ T

t

|Xα
s |2ds

]

< +∞

and (1.3) holds P-a.s. More precisely, we have:

Lemma 1.2 Let α be a bounded control in A. Then there exists a unique solution
Xα to (1.3) and this solution satisfies, for any T > 0 and p ∈ [2,+∞),

E

[

sup
t∈[t,T ]

|Xα
t |p
]

≤ C(1 + |x|p)+ ‖b(·, 0, α·)‖p∞ + ‖σ(·, 0, α·)‖p∞),

where C = C(T , p, d,K).

Remark 1.1 In view of the above result, the cost J is well-defined provided, for
instance, that the maps L : [0, T ] × Rd × A → R and g : Rd → R are continuous
with at most a polynomial growth.

Proof The existence can be proved by a fixed point argument, exactly as in the more
complicated setting of the McKean-Vlasov equation (see the proof of Theorem 1.2
below). Let us show the bound. We set M := ‖b(·, 0, α·)‖∞ + ‖σ(·, 0, α·)‖∞. We
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have, by Hölder’s inequality

|Xα
s |p ≤ C(p, T , d)

(

|x|p +
∫ s

t

|b(r,Xα
r , αr )|pdr +

∣
∣
∣
∣

∫ s

t

σ (r,Xα
r , αr )dBr

∣
∣
∣
∣

p)

where the constant C(p, T , d) depends only on p, T and d .
Thus

E

[

sup
t≤r≤s

|Xα
r |p
]

≤ C(p, T , d)

(

|x|p +
∫ s

t

E
[|b(r,Xα

r , αr )|p
]
dr + E

[

sup
t≤r≤s

∣
∣
∣
∣

∫ r

t

σ (u,Xα
u , αu)dBu

∣
∣
∣
∣

p])

.

Note that

|b(s,Xα
s , αs)| ≤ |b(s, 0, αs)| + L|Xα

s | ≤M + L|Xα
s |

and, in the same way,

|σ(s,Xα
s , αs)| ≤ M + L|Xα

s |. (1.7)

So we have
∫ s

t

E
[|b(r,Xα

r , αr )|p
]
dr ≤ 2p−1(Mp(s − t)+ Lp

∫ s

t

E
[|Xα

r |p
]
dr).

By the Burkholder-Davis-Gundy inequality (see Theorem IV.4.1 in [172]), we have

E

[

sup
t≤r≤s

∣
∣
∣
∣

∫ r

t

σ (u,Xα
u , αu)dBu

∣
∣
∣
∣

p]

≤ CpE

[(∫ s

t

Tr(σσ ∗(r,Xα
r , αr ))dr

)p/2
]

,

where the constant Cp depends on p only. Combining Hölder’s inequality (since
p/2 ≥ 1) with (1.7), we then obtain

E

[

sup
t≤r≤s

∣
∣
∣
∣

∫ r

t
σ (u,Xα

u , αu)dBu

∣
∣
∣
∣

p
]

≤ Cp(s − t)p/2−12p−1
(

Mp(s − t)+ Lp
∫ s

t
E
[|Xα

r |p
]
dr

)

.

Putting together the different estimates we get therefore, for s ∈ [t, T ],

E

[

sup
t≤r≤s

|Xα
r |p
]

≤ C(p, T , d)

(

1 + |x|p +Mp +
∫ s

t

E
[|Xα

r |p
]
dr

)

≤ C(p, T , d)

(

1 + |x|p +Mp +
∫ s

t

E

[

sup
t≤u≤r

|Xα
u |p
]

dr

)

,

We can then conclude by Gronwall’s Lemma.
�	
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1.2.2 The Space of Probability Measures

In this section we describe the space of probability measures and a notion of distance
on this space. Classical references on the distances over the space of probability
measures are the monographs by Ambrosio, Gigli and Savaré [18], by Rachev and
Rüschendorf [171], Santambrogio [174], and Villani [178, 179].

1.2.2.1 The Monge-Kantorovitch Distance

Let (X, d) be a Polish space (= complete metric space). We have mostly in mind
X = Rd endowed with the usual distance. We denote by P(X) the set of Borel
probability measures on X. Let us recall that a sequence (mn) of P(X) narrowly
converges to a measure m ∈ P(X) if, for any test function φ ∈ C0

b (X) (= the set of
continuous and bounded maps on X), we have

lim
n

∫

X

φ(x)mn(dx) =
∫

X

φ(x)m(dx).

Let us recall that the topology associated with the narrow convergence corresponds
to the weak-* topology of the dual of C0

b (X): for this reason we will also call it
weak-* convergence. According to Prokhorov compactness criterium, a subset K of
P(X) is (sequentially) relatively compact for the narrow convergence if and only if
it is tight: for any ε > 0 there exists a compact subset K of X such that

sup
μ∈K

m(X\K) ≤ ε.

In particular, for any μ ∈ P(X) and any ε > 0, there is some Xε compact subset of
X with μ(X\Xε) ≤ ε (Ulam’s Lemma).

We fix from now on a point x0 ∈ X and we denote by P1(X) the set of measures
m ∈ P(X) such that

∫

X

d(x, x0)m(dx) < +∞.

By the triangle inequality, it is easy to check that the set P1(X) does not depend on
the choice of x0. We endow P1(X) with the Monge-Kantorovitch distance:

d1(m1,m2) = sup
φ

∫

X

φ(x)(m1 −m2)(dx) ∀m1,m2 ∈ P1(X),

where the supremum is taken over the set of maps φ : X → R such that φ is 1-
Lipschitz continuous. Note that such a map φ is integrable against any m ∈ P1(X)

because it has at most a linear growth.
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We note for later use that, if φ : X → R is Lip(φ)-Lipschitz continuous, then

∫

X

φ(x)(m1 −m2)(dx) ≤ Lip(φ)d1(m1,m2).

Moreover, if X1 and X2 are random variables on some probability space (Ω,F ,P)
such that the law of Xi is mi , then

d1(m1,m2) ≤ E [|X1 − X2|] , (1.8)

because, for any 1-Lipschitz map φ : X→ R,

∫

X

φ(x)(m1 −m2)(dx) = E [φ(X1)− φ(X2)] ≤ E [|X1 −X2|] .

Taking the supremum in φ gives the result. Actually one can show that, if the
probability space (Ω,F ,P) is “rich enough” (namely it is a “standard probability
space”), then

d1(m1,m2) = inf
X1,X2

E [|X1 −X2|] ,

where the infimum is taken over random variables X1 and X2 such that the law of
Xi is mi .

Lemma 1.3 d1 is a distance over P1(X).

Proof The reader can easily check the triangle inequality. We now note that
d1(m1,m2) = d1(m2,m1) ≥ 0 since one can always replace φ by −φ in the
definition. Let us show that d1(m1,m2) = 0 implies that m1 = m2. Indeed, if
d1(m1,m2) = 0, then, for any 1-Lipschitz continuous map φ, one has

∫

X
φ(x)(m1−

m2)(dx) ≤ 0. Replacing φ by −φ, one has therefore
∫

X
φ(x)(m1 − m2)(dx) = 0.

It remains to show that this equality holds for any continuous, bounded map
φ : X → R. Let φ ∈ C0

b (X). We show in Lemma 1.4 below that there exists a
sequence of maps (φk) such that φk is k-Lipschitz continuous, with ‖φk‖∞ ≤ ‖φ‖∞,
and the sequence (φk) converges locally uniformly to φ. By Lipschitz continuity of
φk , we have

∫

X
φkd(m1 − m2) = 0. Since we can apply Lebesgue convergence

theorem (because the φk are uniformly bounded and m1 and m2 are probability
measures), we obtain that

∫

X
φ(x)(m1 −m2)(dx) = 0. This proves that m1 = m2.

�	
Lemma 1.4 Let φ ∈ C0

b (X) and let us define the sequence of maps (φk) by

φk(x) = inf
y∈X φ(y)+ kd(y, x) ∀x ∈ X

Then φk ≤ φ, φk is k-Lipschitz continuous with ‖φk‖∞ ≤ ‖φ‖∞, and the sequence
(φk) converges locally uniformly to φ.
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Proof We have

φk(x) = inf
y∈X φ(y)+ kd(y, x) ≤ φ(x)+ kd(x, x) = φ(x),

so that φk ≤ φ. Let us now check that φk is k-Lipschitz continuous. Indeed, let
x1, x2 ∈ X, ε > 0 and y1 be ε-optimal in the definition of φk(x1). Then

φk(x2) ≤ φ(y1)+kd(y1, x2) ≤ φ(y1)+kd(y1, x1)+kd(x1, x2) ≤ φk(x1)+ε+kd(x1, x2).

As ε is arbitrary, this shows that φk is k-Lipschitz continuous. Note that φk(x) ≥
−‖φ‖∞. As φk ≤ φ, this shows that ‖φk‖∞ ≤ ‖φ‖∞.

Finally, let xk → x and yk be (1/k)-optimal in the definition of φk(xk). Our
aim is to show that (φk(xk)) converges to φ(x), which will show the local uniform
convergence of (φk) to φ. Let us first remark that, by the definition of yk , we have

kd(yk, xk) ≤ φk(xk)− φ(yk)+ 1/k ≤ 2‖φ‖∞ + 1.

Therefore

d(yk, x) ≤ d(yk, xk)+ d(xk, x)→ 0 as k → +∞.

This shows that (φ(yk)) converges to φ(x) and thus

lim inf
k

φk(xk) ≥ lim inf
k

φ(yk)+ kd(yk, xk)− 1/k ≥ lim inf
k

φ(yk)− 1/k = φ(x).

On the other hand, since φk ≤ φ, we immediately have lim sup
k

φk(xk) ≤ φ(x), from

which we conclude the convergence of (φk(xk)) to φ(x). �	
Proposition 1.1 Let (mn) be a sequence in P1(X) and m ∈ P1(X). There is an
equivalence between:

i) d1(mn,m)→ 0,

ii) (mn) narrowly converges to m and
∫

X

d(x, x0)mn(dx)→
∫

X

d(x, x0)m(dx).

iii) (mn) narrowly converges to m and lim
R→+∞ sup

n

∫

BR(x0)
c

d(x, x0)mn(dx) = 0.

Sketch of Proof (i) ⇒ (ii). Let us assume that d1(mn,m) → 0. Then, for any
Lipschitz continuous map φ, we have

∫
φmn(dx) →

∫
φm(dx) by definition of

d1. In particular, if we chose φ(x) = d(x, x0), we have
∫

X

d(x, x0)mn(dx) →
∫

X

d(x, x0)m(dx). We now prove the weak-* convergence of (mn). Let φ : X → R
be continuous and bounded and let (φk) be the sequence defined in Lemma 1.4.
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Then
∫

φ(mn −m)(dx) =
∫

φk(mn −m)(dx)+
∫

(φ − φk)(mn −m)(dx).

Fix ε > 0. As (
∫

X
d(x, x0)mn(dx)) converges and m ∈ P1(X), we can find R > 0

large such that

sup
n
mn(X\BR(x0))+m(X\BR(x0)) ≤ ε.

On the other hand, we can find k large enough such that ‖φk − φ‖L∞(BR(x0)) ≤
ε, by local uniform convergence of (φk). Finally, if n is large enough, we have
| ∫ φk(mn −m)(dx)| ≤ ε, by the convergence of (mn) to m in d1. So

∣
∣
∣
∣

∫

φ(mn −m)(dx)

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

φk(mn −m)(dx)

∣
∣
∣
∣+

∣
∣
∣
∣

∫

X\BR(x0)

(φ − φk)(mn −m)(dx)

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

BR(x0)

(φ − φk)(mn −m)(dx)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

φk(mn −m)(dx))

∣
∣
∣
∣

+ (‖φk‖∞ + ‖φ‖∞)(mn(X\BR(x0))

+m(X\BR(x0)))+ 2‖φk − φ‖L∞(BR(x0))

≤ ε + 2‖φ‖∞ε + 2ε.

This shows the weak-* convergence of (mn) to m.
(ii) ⇒ (iii). Let us assume that (mn) narrowly converges to m and∫

X

d(x, x0)mn(dx) →
∫

X

d(x, x0)m(dx). We have to check that

lim
R→+∞ sup

n

∫

BR(x0)c
d(x, x0)mn(dx) = 0. For this we argue by contradiction,

assuming that there is ε > 0 and a subsequence still denoted (mn) and Rn → +∞
such that

∫

BRn(x0)c
d(x, x0)mn(dx) ≥ ε.

Then, for any M > 0 and any n large enough so that Rn ≥ M ,

∫

X
d(x, x0)mn(dx) =

∫

X
(d(x, x0) ∧M)mn(dx)+

∫

BM(x0)
c
d(x, x0)mn(dx)−M

∫

BM(x0)
c
mn(dx)

≥
∫

X
(d(x, x0) ∧M)mn(dx)+ ε −Mmn(BM(x0)

c).
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We let n → +∞ in the above inequality to get, as (
∫

X d(x, x0)mn(dx)) converges
to
∫

X d(x, x0)m(dx) and (mn) converges to m narrowly,

∫

X

d(x, x0)m(dx) ≥
∫

X

(d(x, x0) ∧M)m(dx)+ ε −Mm(BM(x0)c).

As
∫

X d(x, x0)m(dx) is finite, the last term in the right-hand side tends to 0 as
M tends to infinity while the first one tends to

∫

X d(x, x0)m(dx) by monotone
convergence: this leads to a contradiction.

(ii) ⇒ (iii). Let us assume that (mn) weakly-* converges to m and that

lim
R→+∞ sup

n

∫

BR(x0)
c

d(x, x0)mn(dx) = 0. Fix ε > 0. In view of the last condition,

we can find R > 0 large enough such that

sup
n

∫

BR(x0)c
d(x, x0)mn(dx) ≤ ε and

∫

BR(x0)c
d(x, x0)m(dx) ≤ ε.

As the sequence (mn) converges, it is tight by Prokhorov theorem, and we can find
a compact subset K of X such that

sup
n

∫

Kc

mn(dx) ≤ R−1ε and
∫

Kc

m(dx) ≤ R−1ε.

Let K0 be the set of 1-Lipschitz continuous maps on X which vanish at x0. Note
that, for any φ ∈ K0, we have

|φ(x)| = |φ(x)− φ(x0)| ≤ d(x, x0).

Therefore

d1(mn,m) = sup
φ∈K0

∫

X

φ(x)(mn −m)(dx)

≤ sup
φ∈K0

[∫

K

φ(x)(mn −m)(dx)+
∫

BR(x0)\K
d(x, x0)(mn +m)(dx)

+
∫

BR(x0)c
d(x, x0)(mn +m)(dx)

]

≤ sup
φ∈K0

[∫

K

φ(x)(mn −m)(dx)

]

+ R(mn +mn)(K
c)+ 2ε ≤ sup

φ∈K0

[∫

K

φ(x)(mn −m)(dx)

]

+ 4ε.
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By Ascoli-Arzelà, there exists φn ∈ K0 optimal in the right-hand side. In addition,
we can assume that (φn) converges uniformly, up to a subsequence, to some 1-
Lipschitz continuous map φ : K → R. We can extend φn and φ to X by setting

φ̃n(x) = sup
y∈K

[φn(y)− d(y, x0)], φ̃(x) = sup
y∈K

[φ(y)− d(y, x0)].

Then one easily checks that (φ̃n) converges uniformly to φ̃ in X, so that, by weak-*
convergence of (mn) to m we have:

lim
n

∫

X

φ̃n(x)(mn −m)(dx) = 0.

As the (φ̃n) are 1-Lipschitz continuous and coincide with φn onK , we have, arguing
as above,

d1(mn,m) ≤
∫

K

φn(x)(mn −m)(dx)+ 4ε ≤
∫

X

φ̃n(x)(mn −m)(dx)+ 6ε.

Letting n → +∞ in this inequality implies d1(mn,m) → 0. More precisely, we
have proved that this holds for at least a subsequence ofmn. But since this argument
applies to mn as well as to any of its subsequences, a standard argument allows us
to conclude the desired result. �	

In the case where X = R
d , we repeatedly use the following compactness

criterium:

Lemma 1.5 Let r > 1 and K ⊂ P1(R
d ) be such that

sup
μ∈K

∫

Rd

|x|rμ(dx) < +∞ .

Then K is relatively compact for the d1 distance.

Note that bounded subsets of P1(R
d ) are not relatively compact for the d1

distance. For instance, in dimension d = 1, the sequence of measures μn =
n−1
n
δ0 + 1

n
δn satisfies d2(μn, δ0) = 1 for any n ≥ 1 but μn narrowly converges

to δ0.

Proof of Lemma 1.5 Let ε > 0 and R > 0 sufficiently large. We have for any
μ ∈ K:

μ(Rd\BR(0)) ≤
∫

Rd\BR(0)
|x|r
Rr

μ(dx) ≤ C

Rr
< ε , (1.9)

where C = supμ∈K
∫

Rd
|x|rμ(dx) < +∞. So K is tight.
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Let now (μn) be a sequence in K. From the previous step we know that (μn)
is tight and therefore there is a subsequence, again denoted (μn), which narrowly
converges to someμ. By (1.9) and (iii) in Proposition 1.1 the convergence also holds
for the distance d1. �	

1.2.2.2 The d2 Distance

Here we assume for simplicity thatX = Rd . Another useful distance on the space of
measures is the Wasserstein distance d2. It is defined on the space P2(R

d) of Borel
probability measures m with a finite second order moment (i.e.,

∫

Rd
|x|2m(dx) <

+∞) by

d2(m1,m2) := inf
π

(∫

Rd×Rd
|x − y|2π(x, y)

)1/2

,

where the infimum is taken over the Borel probability measures π on Rd ×Rd with
first marginal given by m1 and second marginal by m2:

∫

Rd×Rd
φ(x)π(dx, dy) =

∫

Rd

φ(x)m1(dx),

∫

Rd×Rd
φ(y)π(dx, dy) =

∫

Rd

φ(y)m2(dy) ∀φ ∈ C0
b(R

d ).

Given a “sufficiently rich” probability space (Ω,F ,P), the distance can be defined
equivalently by

d2(m1,m2) = inf
X,Y

(
E

[
|X − Y |2

])1/2
,

where the infimum is taken over random variablesX,Y overΩ with law m1 and m2
respectively.

1.2.3 Mean Field Limits

We complete this preliminary part by the analysis of large particle systems. Classical
references on this topic are the monographs or texbooks by Sznitman [177], Spohn
[176] and Golse [111].
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We consider system of N-particles (where N ∈ N∗ is a large number) and we
want to understand the behavior of the system as the numberN tends to infinity. We
work with the following system: for i = 1, . . . , N ,

⎧
⎪⎪⎨

⎪⎪⎩

dXi
t = b(Xi

t ,m
N
Xt
)dt + dBi

t , mN
Xt
:= 1

N

N∑

j=1

δ
X
j
t

Xi
0 = Zi

(1.10)

where the (Bi) are independent Brownian motions, theZi are i.i.d. random variables
in Rd which are also independent of the (Bi). The map b : Rd × P1(R

d ) → R
d

is assumed to be globally Lipschitz continuous. Note that, under these assumptions,
the solution (Xi) to (1.10) exists and is unique, since this is an ordinary system of
SDEs with Lipschitz continuous drift. A key point is that, because the (Zi) have the
same law and the equations satisfied by the Xi are symmetric, the Xi have the same
law (they are actually “exchangeable”).

We want to understand the limit of the (Xi) as N → +∞. The heuristic idea
is that, as N is large, the (Xi) become more and more independent, so that they
become almost i.i.d. The law of large numbers then implies that

1

N

N∑

j=1

b(Xi
t , X

j
t ) ≈ Ẽ

[
b(Xi

t , X̃
i
t )
]
=
∫

Rd

b(Xi
t , y)PXi

t
(dy),

where X̃i
t is an independent copy of Xi

t and Ẽ is the expectation with respect to this
independent copy. Therefore we expect the Xi to be close to the solution X̄i to the
McKean-Vlasov equation

{
dX̄i

t = b(X̄i
t ,L(X̄i

t ))dt + dBi
t ,

X̄i
0 = Zi (1.11)

This is exactly what we are going to show. For doing so, we proceed in 3 steps:
firstly, we generalize the law of large numbers by considering the convergence
of empirical measures (the Glivenko-Cantelli law of large numbers), secondly we
prove the existence and the uniqueness of a solution to the McKean-Vlasov equation
(1.11) and, thirdly, we establish the convergence.

1.2.3.1 The Glivenko-Cantelli Law of Large Numbers

Here we consider (Xn) a sequence of i.i.d. random variables on a fixed probability
space (Ω,F ,P), with E[|X1|] < +∞. We denote by m the law of X1. The law of
large numbers states that, a.s. and in L1,

lim
N→+∞

1

N

N∑

n=1

Xn = E[X1].



20 P. Cardaliaguet and A. Porretta

Our aim is to show that a slightly stronger convergence holds: let

mN
X := 1

N

N∑

n=1

δXn

Note that mN
X is a random measure, in the sense that mN

X is a.s. a measure and that,
for any Borel set A ⊂ X, mN

X(A) is a random variable. The following result is
(sometimes) known as the Glivenko-Cantelli Theorem.

Theorem 1.1 If E[|X1|] < +∞, then, a.s. and in L1,

lim
N→+∞ d1(m

N
X,m) = 0.

Remark 1.2 It is often useful to quantify the convergence speed in the law of large
numbers. Such results can be found in the text books [171] or, in a sharper form, in
[68, Theorem 5.8], see also the references therein.

Sketch of Proof Let φ ∈ C0
b (X). Then, by the law of large numbers,

∫

Rd

φ(x)mN
X(dx) =

1

N

N∑

n=1

φ(Xn) = E[φ(X1)] a.s.

By a separability argument, it is not difficult to check that the set of zero probability
in the above convergence can be chosen independent of φ. So (mN

X) converge
weakly-* to m a.s. Note also that

∫

Rd

d(x, x0)m
N
X(dx) =

1

N

N∑

n=1

d(Xn, x0)

where the random variables (d(Xn, x0)) are i.i.d. and in L1. By the law of large
numbers we have

∫

Rd

d(x, x0)m
N
X(dx)→

∫

Rd

d(x, x0)m(dx) a.s.

By Proposition 1.1, (mN
X) converges a.s. in d1 to m. It remains to show that this

convergence also holds in expectation. For this we note that

d1(m
N
X,m) = sup

φ

∫

Rd

φ(mN
X −m)(dx) ≤ sup

φ

1

N

N∑

i=1

φ(Xi)−
∫

Rd

φ(x)m(dx),
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where the supremum is taken over the 1-Lipschitz continuous maps φ with φ(0) =
0. So

d1(m
N
X,m) ≤

1

N

N∑

i=1

|Xi | +
∫

Rd

|x|m(dx).

As the right-hand side converges in L1, d1(m
N
X,m) is uniformly integrable which

implies its convergence in expectation to 0. �	

1.2.3.2 The Well-Posedness of the McKean-Vlasov Equation

Theorem 1.2 Let us assume that b : Rd × P1(R
d ) → R

d is globally Lipschitz
continuous and let Z ∈ L2(Ω). Then the McKean-Vlasov equation

{
dXt = b(Xt,L(Xt ))dt + dBt

X0 = Z

has a unique solution, i.e., a progressively measurable process such that

E

[∫ T
0 |Xs |2ds

]
< +∞ for any T > 0.

Remark 1.3 By Itô’s formula, the law mt of a solution Xt solves in the sense of
distributions the McKean-Vlasov equation

{
∂tmt − 1

2Δmt + div(mtb(x,mt)) = 0 in (0, T )× Rd
m0 = L(Z) in Rd .

One can show (and we will admit) that this equation has a unique solution, which
proves the uniqueness in law of the process X.

Proof Let α > 0 to be chosen later and E be the set of progressively measurable
processes (Xt) such that

‖X‖E := E
[∫ ∞

0
e−αt |Xt |dt

]

< +∞.

Then (E, ‖ · ‖E) is a Banach space. On E we define the map Φ by

Φ(X)t = Z +
∫ t

0
b(Xs,L(Xs))ds + Bt , t ≥ 0.
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Let us check that the map Φ is well defined from E to E. Note first that Φ(X)
is indeed progressively measurable. By the L-Lipschitz continuity of b (for some
L > 0),

|Φ(X)t | ≤ |Z| +
∫ t

0
|b(Xs,L(Xs))|ds + |Bt |

≤ |Z| + t|b(0, δ0)| + L

∫ t

0
(|Xs | + d1(L(Xs), δ0))ds + |Bt |,

where one can easily check that d1(L(Xs), δ0) = E
[∫ t

0
|Xs |ds

]

. So

E

[∫ +∞
0

e−αt |Φ(X)t |dt
]

≤ α−1
E[|Z|] + α−2|b(0, δ0)|

+ 2LE

[∫ +∞
0

e−αt
∫ t

0
|Xs |dsdt

]

+
∫ +∞

0
e−αtE [|Bt |] dt

= α−1
E[|Z|] + α−2|b(0, δ0)|

+ 2L

α
E

[∫ +∞
0

e−αs |Xs |ds
]

+ Cd

∫ +∞
0

t1/2e−αt dt,

where Cd depends only on dimension. This proves that Φ(X) belongs to E.
Let us finally check that Φ is a contraction. We have, if X,Y ∈ E,

|Φ(X)t −Φ(Y )t | ≤
∫ t

0
|b(Xs,L(Xs))− b(Ys,L(Ys ))| dt

≤ Lip(b)

(∫ t

0
d1(PXs ,PYs )dt +

∫ t

0
|Xs − Ys |dt

)

.

Recall that d1(PXs ,PYs ) ≤ E [|Xs − Ys |] . So multiplying by e−αt and taking
expectation, we obtain:

‖Φ(X) −Φ(Y )‖E = E
[∫ +∞

0
e−αt |Φ(X)s − Φ(Y )s | dt

]

≤ 2Lip(b)
∫ +∞

0
e−αt

∫ t

0
E [|Xs − Ys |] dsdt

≤ 2Lip(b)

α
‖X − Y‖E.

If we choose α > 2Lip(b), then Φ is a contraction in the Banach space E and
therefore has a unique fixed point. It is easy to check that this fixed point is the
unique solution to our problem. �	
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1.2.3.3 The Mean Field Limit

Let (Xi) be the solution to the particle system (1.10) and (X̄i ) be the solution to
(1.11). Let us note that, as the (Bi) and the (Zi) are independent with the same law,
the (X̄i

t ) are i.i.d. for any t ≥ 0.

Theorem 1.3 We have, for any T > 0,

lim
N→+∞ sup

i=1,...,N
E

[

sup
t∈[0,T ]

|Xi
t − X̄i

t |
]

= 0.

Remark: a similar result holds when there is a non constant volatility term σ in
front of the Brownian motion. The proof is then slightly more intricate.

Proof We consider

Xi
t − X̄i

t =
∫ t

0

(
b(Xi

t ,m
N
Xt
)− b(X̄i

t ,L(X̄i
t ))
)
dt.

By the uniqueness in law of the solution to the McKean-Vlasov equation we can

denote by m(t) := L(X̄i
t ) (it is independent of i). Then, setting mN

X̄t
:= 1

N

N∑

j=1

δ
X̄
j
t

and using the triangle inequality, we have

|Xi
t − X̄i

t | ≤
∫ t

0

∣
∣
∣b(X

i
t ,m

N
Xt
)− b(X̄i

s ,m
N

X̄s
)

∣
∣
∣ ds +

∫ t

0

∣
∣
∣b(X̄

i
s ,m

N

X̄s
)− b(X̄i

s ,m(s))

∣
∣
∣ds

≤ Lip(b)

∫ t

0
(|Xi

s − X̄i
s | + d1(m

N
Xt
,mN

X̄s
))ds + Lip(b)

∫ t

0
d1(m

N

X̄s
,m(s))ds

≤ Lip(b)

∫ t

0
(|Xi

s − X̄i
s | +

1

N

N∑

j=1

|Xj
s − X̄

j
s |)ds + Lip(b)

∫ t

0
d1(m

N

X̄s
,m(s))ds,

(1.12)

since

d1(m
N
Xt
,mN

X̄s
) ≤ 1

N

N∑

j=1

|Xj
s − X̄

j
s |.

Summing over i = 1, . . . , N , we get

1

N

N∑

i=1

|Xi
t−X̄i

t | ≤ 2Lip(b)
∫ t

0

1

N

N∑

j=1

|Xj
s −X̄j

s |ds+Lip(b)
∫ t

0
d1(m

N

X̄s
,m(s))ds.
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Using Gronwall Lemma, we find, for any T > 0, and for some constant CT
depending on Lip(b),

sup
t∈[0,T ]

1

N

N∑

i=1

|Xi
t − X̄i

t | ≤ CT

∫ T

0
d1(m

N

X̄s
,m(s))ds, (1.13)

where CT depends on T and Lip(b) (but not on N). Then we can come back to
(1.12), use first Gronwall Lemma and then (1.13) to get, for any T > 0, and for
some (new) constant CT depending on Lip(b) and which might change from line
to line,

sup
t∈[0,T ]

|Xi
t − X̄i

t | ≤ CT

∫ T

0
(

1

N

N∑

j=1

|Xj
s − X̄

j
s | + d1(m

N

X̄s
,m(s)))ds

≤ CT

∫ T

0
d1(m

N

X̄s
,m(s))ds.

We now take expectation to obtain

E

[

sup
t∈[0,T ]

|Xi
t − X̄i

t |
]

≤ CT

∫ T

0
E

[
d1(m

N

X̄s
,m(s))ds

]
.

One can finally check exactly as in the proof of Theorem 1.1 that the right-hand side
tends to 0. �	

1.3 The Mean Field Game System

In this section, we focus on the mean field game system of PDEs (henceforth, MFG
system) introduced by J.-M. Lasry and P.-L. Lions [144, 145]. It takes the form of a
backward Hamilton-Jacobi equation coupled with a forward Kolmogorov equation

⎧
⎨

⎩

−∂tu− εΔu+H(x,Du,m) = 0,
∂tm− εΔm− div(mHp(x,Du,m) = 0,
m(0) = m0, u(T ) = G(x,m(T )).

(1.14)

The Hamilton-Jacobi equation formalizes the individual optimization problem and
is solved by the value function of each agent, while the Kolmogorov equation
describes the evolution of the population density.

We will first derive in a heuristic way the MFG system (1.14). Then we will
discuss several PDE methods used to obtain the existence and uniqueness of
solutions, in both the diffusive case (ε > 0) and the deterministic case (ε = 0).
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In order to give a more clear and complete presentation of the PDE approach, we
will mostly focus on the simplest form of the system (where the cost of control is
separate from the mean-field dependent cost):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂tu− εΔu+H(x,Du) = F(x,m)

u(T ) = G(x,m(T ))

∂tm− εΔm− div(mHp(x,Du)) = 0

m(0) = m0 ,

(1.15)

where we will distinguish two kind of regimes, depending on the case of smoothing
couplings F,G (operators on the space of measures) rather than on the case of local
couplings (functions defined on the density of absolutely continuous measures).
Sample results of existence and uniqueness will be given in both cases.

For simplicity, we will restrict the analysis of system (1.15) to the periodic
case. This means that x belongs to the d-dimensional torus Td := Rd/Zd , and
all x-dependent functions are Zd -periodic in space. We denote by P(Td) the set of
Borel probability measures on Td , endowed as before with the Monge-Kantorovich
distance d1:

d1(m,m
′) = sup

φ

∫

Td

φ d(m−m′) ∀m,m′ ∈ P(Td),

where the supremum is taken over all 1-Lipschitz continuous maps φ : Td → R.
This distance metricizes the narrow topology on P(Td). Recall that P(Td) is a
compact metric space. For T > 0, we set QT := (0, T )× Td .

1.3.1 Heuristic Derivation of the MFG System

We describe here the simplest class of mean field games, when the state space is
R
d . In this control problem with infinitely many agents, each small agent controls

his/her own dynamics:

Xs = x +
∫ s

t

b(Xr, αr ,m(r))dr +
∫ s

t

σ (Xr, αr ,m(r))dBr, (1.16)

where X lives in Rd , α is the control (taking its values in a fixed set A) and B

is a given M-dimensional Brownian motion. The difference with Sect. 1.2.1 is the
dependence of the drift with respect to the distribution (m(t)) of all the players. This
(time dependent) distribution (m(t)) belongs to the set P(Rd) and is, at this stage,
supposed to be given: one should think at (m(t)) as the anticipation made by the
agents on their future time dependent distribution. The coefficients b : Rd × A ×
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P(Rd)→ Rd and σ : Rd×A×P(Rd)→ Rd×M are assumed to be smooth enough
for the solution (Xt) to exist.

The cost of a small player is given by

J (t, x, α) = E
[∫ T

t

L(Xs, αs,m(s))ds +G(XT ,m(T ))

]

. (1.17)

Here T > 0 is the finite horizon of the problem, L : Rd × A × P(Rd ) → R and
G : Rd × P(Rd )→ R are given continuous maps.

If we define the value function u as

u(t, x) = inf
α
J (t, x, α),

then, at least in a formal way, u solves the Hamilton-Jacobi equation

{−∂tu(t, x)+H(x,Du(t, x),D2u(t, x),m(t)) = 0 in (0, T )× Rd
u(T , x) = G(x,m(T )) in Rd

where the Hamiltonian H : Rd × Rd × Rd×d × P(Rd)→ R is defined by

H(x, p,M,m) := sup
a∈A

[

−L(x, a,m)− p · b(x, a,m)− 1

2
Tr(σσ ∗(x, a,m)M)

]

.

Let us now introduce α∗(t, x) ∈ A as a maximum point in the definition of H when
p = Du(t, x) and M = D2u(t, x). Namely

H(x,Du(t, x), D2u(t, x),m(t)) = −L(x, α∗(t, x), m(t))−Du(t, x) · b(x, α∗(t, x),m(t))

− 1

2
Tr(σσ ∗(x, α∗(t, x))D2u(t, x), m(t)).

(1.18)

Recall from Sect. 1.2.1 that α∗ is the optimal feedback for the problem. However, we
stress that here u and α∗ depend on the time-dependent family of measures (m(t)).

We now discuss the evolution of the population density. For this we make the
two following assumptions. Firstly we assume that all the agents control the same
system (1.16) (although not necessarily starting from the same initial position) and
minimize the same cost J . As a consequence, the dynamics at optimum of each
player is given by

dX∗
s = b(X∗

s , α
∗(s,X∗

s ),m(s))ds + σ(X∗
s , α

∗(s,X∗
s ),m(s))dBs.

Secondly, we assume that the initial position of the agents and the noise driving
their dynamics are independent: in particular, there is no “common noise” impacting
all the players. The initial distribution of the agents at time t = 0 is denoted by
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m0 ∈ P(Rd). From the analysis of the mean field limit of Sect. 1.2.3 (in the simple
case where the coefficients do not depend on the other agents) the actual distribution
(m̃(s)) of all agents at time s is simply given by the law of (X∗

s ) with L(X∗
0) = m0.

Let us now write the equation satisfied by (m̃(s)). By Itô’s formula, we have, for
any smooth map φ : [0, T )× Rd → R with a compact support:

0 = E [φ(T ,X∗
T )
] = E [φ(0,X∗

0 )
]+

∫ T

0
E

[
∂tφ(s,X

∗
s )+ b(X∗

s , α
∗(s,X∗

s ),m(s)) ·Dφ(s,X∗
s )

+ 1

2
Tr(σσ ∗(X∗

s , α
∗(s,X∗

s ),m(s))D
2φ(s,X∗

s ))
]
ds

=
∫

Rd

φ(0, x)m0(dx)+
∫ T

0

∫

Rd

[
∂tφ(s, x)+ b(x, α∗(s, x),m(s)) ·Dφ(s, x)

+ 1

2
Tr(σσ ∗(x, α∗(s, x),m(s))D2φ(s, x))

]
m̃(t, dx)ds

After integration by parts, we obtain that (m̃(t)) satisfies, in the sense of distribu-
tions,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t m̃− 1

2

∑

ij

D2
ij (m̃(t, x)aij (x, α

∗(t, x),

m(t)))+ div(m̃(t, x)b(x, α∗(t, x),m(t))) = 0 in (0, T )× Rd ,
m̃(0) = m0 in Rd ,

where a = σσ ∗.
At equilibrium, one expects the anticipation (m(t)) made by the agents to be

correct: m̃(t) = m(t). Collecting the above equations leads to the MFG system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∂tu(t, x)+H(x,Du(t, x),D2u(t, x),m(t)) = 0 in (0, T )× Rd,
∂tm− 1

2

∑

ij

D2
ij (m(t, x)aij (x, α

∗(t, x),m(t))+ div(m(t, x)b(x, α∗(t, x),

m(s))) = 0 in (0, T )× Rd ,
m(0) = m0, u(T , x) = G(x,m(T )) in Rd ,

where α∗ is given by (1.18) and a = σσ ∗.
In order to simplify a little this system, let us assume thatM = d and σ = √

2εId
(where now ε is a constant). We set (warning! abuse of notation!)

H(x, p,m) := sup
a∈A

[−L(x, a,m)− p · b(x, a,m)]

and note that, by Lemma 1.1, under suitable assumptions one has (see (1.6))

Hp(x,Du(t, x),m(t)) = −b(x, α∗(t, x),m(t)).
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In this case the MFG system becomes

⎧
⎨

⎩

−∂tu(t, x)− εΔu(t, x)+H(x,Du(t, x),m(t)) = 0 in (0, T )× Rd ,
∂tm− εΔm(t, x)− div(m(t, x)Hp(x,Du(t, x),m(t)) = 0 in (0, T )× Rd ,
m(0) = m0, u(T , x) = G(x,m(T )) in Rd ,

This system will be the main object of analysis of this chapter. Note that it is not a
standard PDE system, since the first equation is backward in time, while the second
one is forward in time. As this analysis is not too easy, it will be more convenient to
work with periodic boundary condition (namely on the d-dimensional torus Td =
R
d/Zd ).

1.3.2 Second Order MFG System with Smoothing Couplings

We start with the analysis of the MFG system (1.15). Hereafter, we assume that x
belongs to the d-dimensional torus Td . In this section we assume that the coupling
functions are smoothing operators defined on the set C0([0, T ],P(Td)). To stress
that the couplings are operators, we will write their action as F [m] and G[m], so the
system will be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂tu− εΔu+H(t, x,Du) = F [m]
u(T ) = G[m(T )]
∂tm− εΔm− div(mHp(t, x,Du)) = 0

m(0) = m0 .

(1.19)

Definition 1.1 We say that a pair (u,m) is a classical solution to (1.19) if

(i) m ∈ C0([0, T ],P(Td)) and m(0) = m0; u ∈ C(QT ) and u(T ) = G[m(T )]
(ii) u,m are continuous functions in (0, T ) × Td , of class C2 in space and C1 in

time, and the two equations are satisfied pointwise for x ∈ Td and t ∈ (0, T ).

Let us stress that the above definition only requires u,m to be smooth for
t ∈ (0, T ), which allows m0 to be a general probability measure. Of course, the
smoothness can extend up to t = 0 and/or t = T in case m0 and/or G[·] are
sufficiently smooth. We also notice that the above definition requires Hp(x, p) to
be differentiable, in order for m to be a classical solution. It is often convenient
to use a weaker notion as well: we will simply say that (u,m) is a solution of
(1.19) (without using the adjective classical) if (u,m) satisfy point (i) in the above
Definition, m and Du are locally bounded and if both equations are satisfied in the
sense of distributions in (0, T ), i.e. against test functions ϕ ∈ C1((0, T )× Td) with
compact support in (0, T ).
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The smoothing character of the couplings F,G is assumed in the following
conditions:

F : C0([0, T ],P(Td))→ C0(QT )

is continuous with range into a bounded set of L∞(0, T ;W 1,∞(Td)) (1.20)

and similarly

G : P(Td) ∩ L1(Td)→ C0(Td)

is continuous with range into a bounded set of W 1,∞(Td). (1.21)

We notice that functions F(t, x,m) which are (locally) Lipschitz continuous on
QT × P(Td) naturally provide with corresponding operators given by F [m] =
F(t, x,m(t)); the above assumption (1.20) is satisfied if, for instance, F is Lipschitz
in x uniformly for m ∈ P(Td). Examples of such smoothing operators are easily
obtained by convolution.

As is now well-known in the theory, a special case occurs if the operators F,G
are monotone. This can be understood as an extension of the standard monotonicity
for L2 operators (indeed, F and G are defined in L2(QT ) and L2(Td) respectively).
For instance, F is said to be monotone if

∫ T

0

∫

Td

(F [m1] − F [m2])d(m1 −m2) ≥ 0 ∀m1,m2 ∈ C0([0, T ],P(Td))

and a similar definition applies to G. Let us observe that the monotonicity condition
on F,G is satisfied for a restricted class of convolution operators, but one can take
for instance F [m] = f (k � m) � k, where f is a nondecreasing function and k ≥ 0
a smooth symmetric kernel.

We start by giving one of the early results by J.-M. Lasry and P.-L. Lions.

Theorem 1.4 ([144, 145]) Let F,G satisfy conditions (1.20), (1.21). Assume that
H ∈ C1(QT × Rd ) is convex with respect to p and satisfies at least one of the two
following assumptions:

∃ c0 > 0 : |Hp(t, x, p)| ≤ c0(1 + |p|) ∀(t, x, p) ∈ QT × Rd (1.22)

∃ c1 > 0 : Hx(t, x, p) · p ≥ −c1(1 + |p|2) ∀(t, x, p) ∈ QT × Rd (1.23)

Then, for every m0 ∈ P(Td), there exist u ∈ L∞(0, T ;W 1,∞(Td)) ∩ C0(QT ) and
m ∈ C0([0, T ],P(Td)) such that (u,m) is a solution to (1.19).
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In addition, let F,G be monotone operators. If one of the two following
conditions hold:

{∫ T
0

∫

Td
(F [m1] − F [m2])d(m1 −m2) = 0 ⇒ F [m1] = F [m2]

∫

Td
(G[m1] −G[m2])d(m1 −m2) = 0 ⇒ G[m1] = G[m2]

(1.24)

H(t, x, p1)−H(t, x, p2)−Hp(t, x, p2)(p1 − p2) = 0

⇒ Hp(t, x, p1) = Hp(t, x, p2) ∀p1, p2 ∈ Rd (1.25)

then (u,m) is unique in the above class.
Finally, if in additionHp ∈ C1(QT × Rd ) and F is a bounded map in the space

of Hölder continuous functions, then (u,m) is a classical solution.

Proof We start by assuming that m0 is Hölder continuous in Td . We set

X := {m ∈ C0([0, T ], L1(Td)) : m ≥ 0 ,
∫

Td

m(t) = 1 ∀t ∈ [0, T ]} ,

and we define the following operator: for μ ∈ X, if uμ denotes the unique solution
to

{
−∂tuμ − εΔuμ +H(t, x,Duμ) = F [μ]
uμ(T ) = G[μ(T )] ,

then we set m := Φ(μ) as the solution to

{
∂tm− εΔm− div(mHp(t, x,Duμ)) = 0 ,

m(0) = m0 .

We observe that, for given μ ∈ X, F [μ] belongs to L∞(0, T ;W 1,∞(Td)) and G[μ]
is Lipschitz as well. If condition (1.22) is satisfied, then H has at most quadratic
growth since |H(t, x, p)| ≤ c(1+|p|2) for some constant c > 0. Hence the classical
parabolic theory applies (see [142, Chapter V, Thm 3.1]); there exists a constant
K > 0 and α ∈ (0, 1) such that Duμ ∈ Cα(QT ) and

‖Duμ‖∞ ≤ K . (1.26)

More precisely, the constant K is independent of μ due to the assumptions on the
range of F,G in (1.20)–(1.21).

By contrast, if condition (1.23) holds true, then H has not necessarily natural
growth; however, a gradient estimate follows by using the classical Bernstein’s
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method. This means that we look at the equation satisfied by w := |Du|2. Assuming
u to be smooth, a direct computation gives

∂tw − εΔw = −2|D2u|2 − 2Du ·D (H(t, x,Du)− F [m])
≤ −Hp ·Dw − 2Hx(t, x,Du) ·Du+ 2DuDF [m]
≤ −Hp ·Dw + 2c1(1 + |Du|2)+ |Du|2 + ‖F [m]‖2

W 1,∞

where we used both assumptions (1.20) and (1.23). Since ‖F [m]‖W 1,∞ is bounded
uniformly with respect to m, we conclude that there exists C > 0 such that

∂tw − εΔw +Hp ·Dw ≤ C(1 +w) .

At time t = T we have ‖w(T )‖∞ ≤ ‖DG[m]‖2∞ ≤ C, so we deduce, by maximum
principle, that

‖Du‖2∞ = ‖w‖∞ ≤ CT (1.27)

for some constant CT depending on T , c1, F,G. Therefore, (1.26) holds true under
condition (1.23) as well.

Eventually, we conclude thatHp(t, x,Duμ) is uniformly bounded forμ ∈ X. By
parabolic regularity (see e.g. [142, Chapter V, Thms 1.1 and 2.1]), this implies that
m is uniformly bounded in Cα(QT ), for some α ∈ (0, 1). In particular, the operator
Φ has bounded range in Cα(QT ), so the range of Φ is a compact subset of X. The
continuity of Φ is straightforward: if μn → μ, we have F [μn] → F [μ] in C(QT ),
so un converges uniformly to the corresponding solution uμ, while Dun converges
a.e. to Duμ, hence Hp(t, x,Dun) → Hp(t, x,Duμ) in Lp(QT ) for every p > 1,
which entails the convergence of mn towards m = Φ(μ). By Schauder’s fixed point
theorem (see e.g. [110]) applied to Φ, we deduce the existence of m such that m =
Φ(m), which means a solution (u,m) of (1.19).

For generalm0 ∈ P(Td), we can proceed by approximation. Given a sequence of
smooth functions m0n converging to m0 in P(Td), the corresponding solutions un
will satisfy (1.26) uniformly thanks to (1.20)–(1.21). Using as before the parabolic
regularity one gets thatDun is relatively compact in C0([a, b]×Td) for all compact
subsets [a, b] ⊂ (0, T ). Hence Hp(t, x,Dun) converges in Lp(QT ) for every p <

∞. By standard stability of Fokker-Planck equations, this implies the compactness
ofmn inC0([0, T ];P(Td)). In particular, we deduce both the initial and the terminal
condition (due to the continuity of G). Finally, the limit couple (u,m) satisfies u ∈
L∞(0, T ;W 1,∞(Td )), m ∈ C0([0, T ];P(Td)) and is a solution of (1.19). In fact,
by the parabolic regularity recalled before, this solution satisfies m,Du ∈ Cα(QT )

for some α ∈ (0, 1). If F is a bounded map in the space of Hölder continuous
functions, then we bootstrap the regularity once more. We have that F [m] is Hölder
continuous, so is H(t, x,Du) and therefore by Schauder regularity (see e.g. [142,
Chapter IV]) u belongs to C1+ α

2 ,2+α(QT ) for some α ∈ (0, 1). If Hp is C1, this
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implies that div(Hp(t, x,Du)) is Hölder continuous as well, and we conclude that
m is also a classical solution in (0, T ).

Uniqueness: Let (u1,m1) and (u2,m2) be solutions of (1.19) such that ui ∈
L∞(0, T ;W 1,∞(Td )) ∩ C(QT ) and mi ∈ C0([0, T ];P(Td)). As we already used
above, the mi are locally bounded and Hölder continuous; therefore, m1 − m2 can
be justified as test function in the equation of u1−u2 (and viceversa) in any interval
(a, b) compactly contained in (0, T ). It follows that

− d

dt

∫

Td

(u1 − u2)(m1 −m2) =
∫

Td

(F [m1] − F [m2])(m1 −m2)

+
∫

Td

m1
{
H(t, x,Du2)−H(t, x,Du1)−Hp(t, x,Du1)(Du2 −Du1)

}

+
∫

Td

m2
{
H(t, x,Du1)−H(t, x,Du2)−Hp(t, x,Du2)(Du1 −Du2)

}

(1.28)

where the equality is meant in the weak sense in (0, T ). By convexity of H and
monotonicity of F , it follows that

∫

Td
(u1 − u2)(m1 − m2) is non increasing in

time. Moreover, this quantity is continuous in [0, T ] because ui ∈ C(QT ) and
mi ∈ C0([0, T ];P(Td)). By monotonicity of G, this quantity is nonnegative at
t = T , however it vanishes for t = 0. We deduce that it vanishes for all t ∈ [0, T ].
In particular, the previous equality implies that all terms in the right-hand side are
equal to zero. If condition (1.24) holds true, this implies that F [m1] = F [m2] and
G[m1(T )] = G[m2(T )]; hence, by uniqueness of the parabolic equation (namely,
by maximum principle), we deduce that u1 = u2. This implies Hp(t, x,Du1) =
Hp(t, x,Du2), and for the Fokker-Planck equation this implies that m1 = m2.
Indeed, given a bounded drift b ∈ L∞(QT ), one can easily verify with a duality
argument that if μ ∈ C0([0, T ];P(Td)) is a weak solution of the equation
∂tμ−Δμ− div(b μ) = 0 and μ(0) = 0, then μ ≡ 0. Alternatively, if (1.25) holds
true, then we first obtain that Hp(t, x,Du1) = Hp(t, x,Du2), hence we deduce
that m1 = m2 and we conclude by uniqueness of u. �	
Remark 1.4 Uniqueness of the solution of (1.19) is not expected in general if Lasry-
Lions’ monotonicity condition fails. This lack of uniqueness is well-documented in
the literature: see for instance [25, 40, 68, 149]. By contrast, it is relatively easy to
check that uniqueness holds if the horizon is “short” or if the functions H and G do
not “depend too much” on m, see e.g. [25].

The existence part of the above result can easily be extended to more general
MFG systems, in which the Hamiltonian has no separate structure:

⎧
⎨

⎩

−∂tu− εΔu+H(t, x,Du,m(t)) = 0 in (0, T )× Td
∂tm− εΔm− div

(
m Hp(t, x,Du,m(t))

) = 0 in (0, T )× Td
m(0) = m0 , u(T , x) = G[m(T )] in Td

(1.29)
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The notion of classical solution is given as before. A general existence result in this
direction sounds as follows.

Theorem 1.5 Assume that H : QT × Rd × P(Td) → R is a continuous function,
differentiable with respect to p, and such that bothH andHp are C1 continuous on
QT × Rd × P(Td), and in addition H satisfies the growth condition

Hx(t, x, p,m)·p ≥ −C0(1+|p|2) ∀(t, x, p,m) ∈ QT×Rd×P(Td) (1.30)

for some constant C0 > 0. Assume that G satisfies (1.21) and that m0 ∈ P(Td).
Then there is at least one classical solution to (1.29).

Remark 1.5 Of course, the solution found in the above Theorem is smooth up to
t = 0 (respectively t = T ) if, for some β ∈ (0, 1), m0 ∈ C2+β(Td ) (respectively,
G[m] is bounded in C2+β(Td) uniformly with respect to m ∈ P(Td)).

The proof is relatively easy and relies on gradient estimates for Hamilton-Jacobi
equations (as already used in Theorem 1.4 above) and on the following estimate on
the McKean-Vlasov equation

{
∂tm− εΔm− div (m b(t, x,m(t))) = 0 in (0, T )× Td
m(0) = m0

(1.31)

To this purpose, it is convenient to introduce the following stochastic differential
equation (SDE)

{
dXt = b(t,Xt ,L(Xt ))dt +

√
2ε dBt , t ∈ [0, T ]

X0 = Z0
(1.32)

where (Bt ) is a standard d-dimensional Brownian motion over some probability
space (Ω,A,P) and where the initial condition Z0 ∈ L1(Ω) is random and
independent of (Bt ).

We assume that the vector field b : [0, T ] × Td × P(Td)→ Rd is continuous in
time and Lipschitz continuous in (x,m) uniformly in t . Under the above condition
on b, we have proved in Sect. 1.2.3.2 that there is a unique solution to (1.32). This
solution is closely related to equation (1.31).

Lemma 1.6 Under the above condition on b, if L(Z0) = m0, then m(t) := L(Xt )

is a weak solution of (1.31) and satisfies

d1(m(t),m(s)) ≤ c0(1 + ‖b‖∞)|t − s| 1
2 ∀s, t ∈ [0, T ] (1.33)

for some constant c0 = c0(T ) independent of ε ∈ (0, 1].
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Proof The fact that m(t) := L(Xt ) is a weak solution of (1.31) is a straightforward
consequence of Itô’s formula: if ϕ : QT → R is smooth, then

ϕ(t,Xt ) = ϕ(0, Z0)

+
∫ t

0
[ϕt(s,Xs)+Dϕ(s,Xs) · b(s,Xs,m(s))+ εΔϕ(s,Xs)] ds

+
∫ t

0
Dϕ(s,Xs) · dBs.

Taking the expectation on both sides of the equality, we have, since

E

[∫ t

0
Dϕ(s,Xs) · dBs

]

= 0 ,

E [ϕ(t,Xt )] = E
[

ϕ(0, Z0)+
∫ t

0
[ϕt(s,Xs)+Dϕ(s,Xs) · b(s,Xs,m(s))

+εΔϕ(s,Xs)] ds

]

.

So by definition of m(t), we get

∫

Rd

ϕ(t, x)m(t, dx)

=
∫

Rd

ϕ(0, x)m0(dx)

+
∫ t

0

∫

Rd

[ϕt(s, x)+Dϕ(s, x) · b(s, x,m(s))+ εΔϕ(s, x)]m(s, dx) ds

hencem is a weak solution to (1.31), provided we check thatm is continuous in time.
This is the aim of the next estimate. Let φ : Td → R be 1-Lipschitz continuous and
take, for instance, s < t . Then, using (1.8), we have

d1(m(t),m(s)) ≤ E [|Xt −Xs |] ≤ E
[∫ t

s

|b(τ,Xτ ,m(τ))| dτ +
√

2ε |Bt − Bs |
]

≤ ‖b‖∞(t − s)+ √
2ε(t − s) (1.34)

which yields (1.33). �	
Remark 1.6 Observe that not only the estimate (1.33) is independent of the
diffusion coefficient ε, but actually the precise form (1.34) shows that, when ε → 0,
the map m(t) becomes Lipschitz in the time variable.

We further notice that an estimate also follows, similarly as in (1.34), for the

Wasserstein distance. Indeed, recalling that d2(m1,m2) = infX,Y
(
E
[|X − Y |2])1/2

,
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proceeding similarly as in (1.34) yields

d2(m(t),m(s)) ≤
√|t − s|E

[∫ t

s

|b(τ,Xτ ,m(τ))|2 dτ
] 1

2

+ o(1) as ε → 0

≤ √|t − s|
(∫ T

0

∫

Td

|b|2 mdxdt

) 1
2

+ o(1) as ε → 0.

We prove now Theorem 1.5.

Proof of Theorem 1.5 For a large constant C1 to be chosen below, let C be the set
of maps μ ∈ C0([0, T ],P(Td)) such that

sup
s�t

d1(μ(s), μ(t))

|t − s| 1
2

≤ C1. (1.35)

Then C is a closed convex subset ofC0([0, T ],P(Td)). It is actually compact thanks
to Ascoli’s Theorem and the compactness of the set P(Td). To any μ ∈ C we
associate m = Ψ (μ) ∈ C in the following way. Let u be the solution to

{−∂tu− εΔu+H(t, x,Du,μ(t)) = 0 in (0, T )× Td
u(T ) = G[μ(T )] in Td

(1.36)

Then we define m = Ψ (μ) as the solution of the Fokker-Planck equation

{
∂tm− εΔm− div

(
m Hp(t, x,Du,μ(t))

) = 0 in (0, T )× Td
m(0) = m0 in Td .

(1.37)

Let us check that Ψ is well-defined and continuous. We start by assuming that H
is globally Lipschitz continuous. Then, by standard parabolic theory (see e.g. [142,
Chapter V, Thm 6.1]), equation (1.36) has a unique classical solution u. Moreover,
u is of class C1+α/2,2+α(QT ) where the constant α do not depend on μ. In addition,
the Bernstein gradient estimate (1.27) holds exactly as in Theorem 1.4, which means
that

‖Du‖∞ ≤ K

for some constant K only depending on T , ‖DG[μ]‖∞ and on the constant C0 in
(1.30). Due to (1.21), the constant K is therefore independent of μ. We see now
that the global Lipschitz condition on H can be dropped: indeed, it is enough to
replace H(t, x, p,m) with H̃ (t, x, p,m) = ζ(p)H(t, x, p,m) + (1 − ζ(p))|p|
where ζ : Rd → [0, 1] is a smooth function such that ζ(p) ≡ 1 for |p| ≤ 2K and
ζ(p) ≡ 0 for |p| > 2K + 1. Thanks to the gradient estimate, solving the problem
for H̃ is the same as for H .
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Next we turn to the Fokker-Planck equation (1.37). Since the drift b(t, x) :=
−Hp(t, x,Du(x), μ(t)) belongs to L∞(QT ), there is a unique solution m ∈
C0([0, T ];P(Td)); moreover, since b is bounded independently of μ, say by a
constant C2, from Lemma 1.6 we have the following estimates on m:

d1(m(t),m(s)) ≤ c0(1+‖Hp(·,Du,μ)‖∞)|t−s| 1
2 ≤ c0(1+C2)|t−s|

1
2 ∀s, t ∈ [0, T ] .

So if we choose C1 so large that C1 ≥ c0(1 + C2), then m belongs to C. Moreover,
if we write the equation in the form

∂tm− εΔm−Dm ·Hp(t, x,Du,μ(t)) −m divHp(t, x,Du,μ(t)) = 0

then we observe that m is a classical solution in (0, T ). Indeed, since u ∈
C1+α/2,2+α(QT ) and t → μ(t) is Holder continuous, the maps (t, x) →
Hp(t, x,Du,μ(t)) and (t, x)→ divHp(t, x,Du,μ(t)) belong to Cα(QT ), so that
the solution m belongs to C1+α/2,2+α(QT ) [142, Chapter IV, Thm 10.1].

We have just proved that the mapping Ψ : μ → m = Ψ (μ) is well-defined
from C into itself. The continuity of Ψ can be proved exactly as in Theorem 1.4.
We conclude by Schauder fixed point Theorem that the continuous map μ→ m =
Ψ (μ) has a fixed point μ̄ in C. Let ū be associated to μ̄ as above. Then (ū, μ̄) is a
solution of our system (1.29). In addition (ū, μ̄) is a classical solution in view of the
above estimates. �	

Let us mention that there are no general criteria for the uniqueness of solutions
to (1.29) in arbitrary time horizon T , except for the Lasry-Lions’ monotonicity
condition (1.24) for the case of separate Hamiltonian treated in Theorem 1.4. In case
of local dependence of H(t, x, p,m) with respect to the density m of the measure,
a structure condition on H ensuring the uniqueness was given by P.-L. Lions in
[149] (Lessons 5-12/11 2010) and will be discussed later in Theorem 1.13, in the
subsection devoted to local couplings.

Otherwise, the uniqueness of solutions to (1.29) can be proved for short
time horizon, e.g. using directly the Banach fixed point theorem for contraction
mappings, in order to produce both existence and uniqueness of solutions (as in the
papers by Caines, Huang and Malhamé [132], under a smallness assumption on the
coefficients or on the time interval).

1.3.3 Application to Games with Finitely Many Players

In this subsection, we show how to apply the previous results on the MFG system
to study a N-player differential game in which the number N of players is “large”.
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1.3.3.1 The N -Player Game

The dynamic of player i (where i ∈ {1, . . . , N}) is given by

dXi
t = bi(X1

t , . . . , X
N
t , α

1
t , . . . , α

N
t )dt +

√
2dBi

t , Xi
0 = Zi,

where (Bi
t ) is a d-dimensional Brownian motion.1 The initial condition Xi

0 for this
system is also random and has for law m̃0 ∈ P1(R

d ), and we assume that all Zi

and all the Brownian motions (Bi
t ) (i = 1, . . . , N) are independent. Player i can

choose his bounded control αi with values in Rd and adapted to the filtration (Ft =
σ {Xj

0 , B
j
s , s ≤ t, j = 1, . . . , N}). We make the structure assumption that the

drift bi of player i depends only on his/her own control and position and on the
distribution of the other players. Namely:

bi(x1, . . . , xN , α1, . . . , αN) = b(xi, αi , π�mN,i
x ),

where x = (x1, . . . , xN) ∈ (Rd )N and mN,i
x =

∑

j�i

δxj ,

where b : Td ×Rd ×P(Td)→ Rd is a globally Lipschitz continuous map. We have
denoted by π : Rd → T

d the canonical projection and by π�m̃0 the image of the
measure m̃0 by the map π . The fact that the players interact through the projection
over Td of the empirical measure mN,i

x is only a simplifying assumption related to
the fact that we have so far led our analysis of the MFG system on the torus. Indeed,
here we systematically see maps defined on Td as Zd -periodic maps on Rd .

The cost of player i is then given by

J N
i (α1, . . . , αN ) = J N

i (αi , (αj )j�i )

= E
[∫ T

0
Li(X1

t , . . . , X
N
t , α

1
t , . . . , α

N
t )dt +Gi(X1

T , . . . , X
N
T )

]

.

Here again we make the structure assumption that the running cost Li of player i
depends only on his/her own control and position and on the distribution of the other
players’ positions, while the terminal cost depends only on his/her position and on
the distribution of the other players’ positions:

Li(x1, . . . , xN , α1, . . . , αN ) = L(xi , αi , π�mN,i
x ), Gi(x1, . . . , xN ) = G(xi, π�mN,i

x ),

1In order to avoid the (possible but) cumbersome definition of stochastic processes on the torus
but, at the same time, be able to use the results of the previous parts, we work here with diffusions
in Rd with periodic coefficients and assume that the mean field dependence of the data is always
through the projection of the measures over the torus.
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where L : Td × Rd ×P(Td)→ R and G : Td ×P(Td)→ R are continuous maps,
with

|L(x, α,m)− L(x ′, α,m′)| + |G(x,m)−G(x ′,m′)| ≤ K(|x − x ′| + d1(m,m
′)),

the constantK being independent of α. In addition, we need a coercivity assumption
on L with respect to α:

L(x, α,m) ≥ C−1|α| − C, (1.38)

where C is independent of (x,m) ∈ Td × P(Td). These assumptions are a little
strong in practice, but allow us to avoid several (very) technical points in the proofs.

In that setting, a natural notion of equilibrium is the following.

Definition 1.2 We say that a family (ᾱ1, . . . , ᾱN ) of bounded open-loop controls
is an ε-Nash equilibrium of the N-player game (where ε > 0) if, for any i ∈
{1, . . . , N} and any bounded open-loop control αi ,

J N
i (ᾱi , (ᾱj )j�i ) ≤ J N

i (αi , (ᾱj )j�i )+ ε.

1.3.3.2 The MFG System and the N -Player Game

Our aim is to understand to what extent the MFG system can provide an ε-Nash
equilibrium of the N-player game, at least if N is large enough. For this, we set

H(x, p,m) = sup
α∈Rd

{−b(x, α,m) · p − L(x, α,m)}

and we assume that H , G and m0 := π�m̃0 satisfy the assumptions of Theorem 1.5.
Hereafter, we fix (u,m) a classical solution to (1.29) (here with ε = 1).

Following the arguments of Sect. 1.3.1, we recall the interpretation of the MFG
system. In the mean-field approach, a generic player controls the solution to the
SDE

Xt = X0 +
∫ t

0
b(Xs, αs,m(s))ds +

√
2Bs,

and faces the minimization problem

inf
α
J (α) where J (α) = E

[∫ T

0
L(Xs, αs ,m(s)) ds +G(XT ,m(T ))

]

.

In the above dynamics we assume that X0 is a fixed random initial condition with
lawm0 ∈ P(Td) and the controlα is adapted to some filtration (Ft ). We also assume
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that (Bt ) is a d-dimensional Brownian motion adapted to (Ft ) and that X0 and (Bt )
are independent.

Then, given a solution (u,m) of (1.29),u(0) is the optimal value and the feedback
strategy α∗ such that b(x, α∗(t, x),m(t)) := −Hp(x,Du(t, x),m(t)) is optimal for
the single player. Namely:

Lemma 1.7 Let (X̄t ) be the solution of the stochastic differential equation

{
dX̄t = b(X̄t , α

∗(t, X̄t ),m(t))dt +
√

2dBt
X̄0 = X0

and set ᾱt = α∗(t, X̄t ). Then

inf
α
J (α) = J (ᾱ) =

∫

Td

u(0, x) m0(dx) .

Our goal now is to show that the strategy given by the mean field game is almost
optimal for the N-player problem. We assume that the feedback α∗(t, x) defined
above is continuous in (t, x) and globally Lipschitz continuous in x uniformly in t .
With the feedback strategy α∗ one can associate the open-loop control ᾱi obtained
by solving the system of SDEs:

dX̄i
t = b(X̄i

t , α
∗(t, X̄i

t ),m
N,i
Xt

)dt + √
2dBit , X

i
0 = Zi (where Xt = (X1

t , . . . , X
N
t )),

(1.39)

and setting ᾱit = α∗(t, X̄i
t ). We are going to show that the controls ᾱi realize an

approximate Nash equilibrium for the N-player game.

Theorem 1.6 Assume that (Zi) are i.i.d. random variables on Rd such that
E[|Z1|q] < +∞ for some q > 4. There exists a constant C > 0 such that, for
any N ∈ N∗, the symmetric strategy (ᾱ1, . . . , ᾱN ) is a CεN -Nash equilibrium in
the game J N

1 , . . . ,J N
N where

εN :=
⎧
⎨

⎩

N−1/2 if d < 4
N−1/2 ln(N) if d = 4
N−2/d if d > 4

Namely, for any i ∈ {1, . . . , N} and for any control αi adapted to the filtration (Ft ),

J N
i (ᾱi , (ᾱj )j�i ) ≤ J N

i (αi , (ᾱj )j�i )+ CεN .

The Lipschitz continuity assumption on H and G with respect to m allows us to
quantify the error. IfH andG are just continuous with respect tom, one can only say
that, for any ε > 0, there exists N0 such that the symmetric strategy (ᾱ1, . . . , ᾱN )

is an ε-Nash equilibrium in the game J N
1 , . . . ,J N

N for any N ≥ N0.
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Before starting the proof, we need the following result on product measures
which can be found in [68] (Theorem 5.8. See also the references therein):

Lemma 1.8 Assume that (Zi) are i.i.d. random variables on Rd of law μ such that
E[|Z0|q ] < +∞ for some q > 4. Then there is a constant C, depending only on d ,
q and E[|Z0|q], such that

E

[
d2(m

N
Z ,μ)

]
≤
⎧
⎨

⎩

CN−1/2 if d < 4
CN−1/2 ln(N) if d = 4
CN−2/d if d > 4

Proof of Theorem 1.6 From the symmetry of the problem, it is enough to show that

J N
1 (ᾱ1, (ᾱj )j≥2) ≤ J N

1 (α1, (ᾱj )j�2)+ CεN (1.40)

for any control α, as soon as N is large enough. We note for this that the
map b̃(t, x,m) := b(x, α∗(t, x), π�m) is globally Lipschitz continuous in (x,m)

uniformly in t thanks to our assumptions on b and α∗. Following the proof of
Theorem 1.3 in Sect. 1.2.3, we have therefore that

E

⎡

⎣ sup
t∈[0,T ]

1

N

N∑

i=1

|Xi
t − X̄i

t |
⎤

⎦+ E
[

sup
t∈[0,T ]

|Xi
t − X̄i

t |
]

≤ CT

∫ T

0
E

[
d1(m

N
X̄s
,m(s))ds

]
,

(1.41)

where X̄t = (X̄1, . . . , X̄N ) solves

dX̄i
t = b(X̄i

t , α
∗(t, X̄i

t ), π�L(X̄i
t ))dt +

√
2dBi

t , X̄i
0 = Zi.

By uniqueness in law of the solution of the McKean-Vlasov equation, we have that
the X̄i

s are i.i.d. with a law m̃(s), where m̃(s) solves

∂t m̃−Δm̃− div(m̃b(x, α∗(t, x), π�m̃(t)) = 0, m̃(0) = m̃0.

In view of the assumption on b, it is easy to check that

E[ sup
t∈[0,T ]

|X̄1
t |q ] ≤ C(1 + E[|Z1|q ]) < +∞.

Therefore using Lemma 1.8, we have

E

[

sup
t∈[0,T ]

d1(m
N,1
X̄t

, m̃(t))

]

≤ E
[

sup
t∈[0,T ]

d2(m
N,1
X̄t

, m̃(t))

]

≤ CεN .



1 An Introduction to Mean Field Game Theory 41

Note also that, by the uniqueness of the solution of the McKean-Vlasov equation
(this time in Td ), we have that π�m̃ = m since both flows solve the same equation.
Hence

E

[

sup
t∈[0,T ]

d1(π�m
N,1
X̄t

, m(t))

]

≤ E
[

sup
t∈[0,T ]

d1(m
N,1
X̄t

, m̃(t))

]

≤ CεN .

Using (1.41) we obtain therefore

E

[

sup
t∈[0,T ]

1

N

N∑

i=1

|Xi
t − X̄i

t |
]

+ E
[

sup
t∈[0,T ]

|Xi
t − X̄i

t |
]

≤ CεN.

In particular, by Lemma 1.7 and the local Lipschitz continuity of L and G, we get

J N
1 (ᾱ1, (ᾱj )j≥2) = E

[∫ T

0
L(X1

s , ᾱ
1
s , π�m

N,i
Xs

) ds +G(X1
T , π�m

N,i
XT

)

]

≤ E
[∫ T

0
L(X̄1

s , ᾱ
1
s ,m(s)) ds +G(X̄1

T ,m(T ))

]

+ CεN

≤
∫

Td

u(0, x)m0(dx)dx + CεN. (1.42)

Let now α1 be a bounded control adapted to the filtration (Ft ) and (Y it ) be the
solution to

dY 1
t = b(Y 1

t , α
1
t , m

N,1
Yt

)dt + √
2dB1

t , Y
1
0 = Z1,

and

dY it = b(Y it , ᾱ
i
t , m

N,i
Yt

)dt + √
2dBi

t , Y
i
0 = Zi.

We first note that we can restrict our analysis to the case where E[∫ T0 |α1
s |ds] ≤ A,

forA large enough. Indeed, if E[∫ T0 |α1
s |ds] > A, we have by assumption (1.38) and

inequality (1.42), as soon as A is large enough (independent of N) and N is large
enough:

J N
1 (α1, (ᾱj )j≥2) ≥ C−1

E

[∫ T

0
|α1
s |ds

]

− CT ≥ C−1A− CT

≥
∫

Td

u(0, x)m0(dx)dx + 1 ≥ J N
1 (ᾱ1, (ᾱj )j≥2)+ 1 − CεN

≥ J N
1 (ᾱ1, (ᾱj )j≥2)− (C/2)εN .
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From now on we assume that
∫ T

0
|α1
s |ds ≤ A. Let us first estimate

d1(m
N,1
Ys

,m
N,1
Xs

)). Note that we have, by Lipschitz continuity of b,

|Y 1
t − X1

t | ≤ C

∫ t

0
(|Y 1

s − X1
s | + |α1

s − ᾱ1
s | + d1(m

N,1
Ys

,m
N,1
Xs

))ds

≤ C

∫ t

0
(|Y 1

s − X1
s | + |α1

s − ᾱ1
s | +

1

N − 1

N∑

j=2

|Y js −X
j
s |)ds

while for i ∈ {2, . . . , N} we have, arguing in the same way,

|Y it −Xi
t | ≤ C

∫ t

0
(|Y is −Xi

s | +
1

N − 1

N∑

j�i

|Y js − X
j
s |)ds.

So

1

N

N∑

i=1

|Y it −Xi
t | ≤ C

∫ t

0
(

1

N
|α1
s − ᾱ1

s | +
1

N

N∑

i=1

|Y is −Xi
s |)ds.

By Gronwall lemma we obtain therefore

1

N

N∑

i=1

|Y it −Xi
t | ≤

C

N

∫ t

0
|α1
s − ᾱ1

s |ds.

So

sup
t∈[0,T ]

d1(m
N,1
Ys

,m
N,1
Xs

)) ≤ sup
t∈[0,T ]

1

N − 1

N∑

i=2

|Y it −Xi
t |

≤ sup
t∈[0,T ]

1

N − 1

N∑

i=1

|Y it −Xi
t | ≤

C

N

∫ T

0
|α1
s − ᾱ1

s |ds.

As E[∫ T0 |α1
s − ᾱ1

s |ds] ≤ A, this shows that

E

[

sup
t∈[0,T ]

d1(π�m
N,1
Ys

,m(s))

]

≤ E
[

sup
t∈[0,T ]

d1(m
N,1
Ys

,m
N,1
Xs

)

]

+
[

sup
t∈[0,T ]

d1(π�m
N,1
Xs

,m(s))

]

≤ CA

N
+ CεN ≤ CAεN,
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where CA depends also on A. Therefore, using again the Lipschitz continuity of L
and G with respect to m, we get

J N
1 (α1, (ᾱj )j�2) = E

[∫ T

0
L(Y 1

s , α
1
s , π�m

N,i
Ys

) ds +G(Y 1
T , π�m

N,i
Yt

)

]

≥ E
[∫ T

0
L(Y 1

s , α
1
s ,m(s)) ds +G(X1

T ,m(T ))

]

− CAεN

≥ ∫
Td
u(0, x)m0(dx)− CAεN,

where the last inequality comes from the optimality of ᾱ in Lemma 1.7. Recalling
(1.42) proves the result. �	

We conclude this subsection by recalling that the use of the MFG system to
obtain ε-Nash equilibria (Theorem 1.6) has been initiated—in a slightly different
framework—in a series of papers due to Caines, Huang and Malhamé: see in
particular [131] (for linear dynamics) and [132] (for nonlinear dynamics). In these
papers, the dependence with respect to the empirical measure of dynamics and
payoff occurs through an average, so that the CLT implies that the error term is
of order N−1/2. The genuinely non linear version of the result given above is a
variation on a result by Carmona and Delarue [67] (see also [68], Section 6 in Vol.
II). Many variations and extensions of these results have followed since then: we
refer to [68] and the references therein.

We discuss below, in Sect. 1.4.4, the reverse statement: to what extent the MFG
system pops up as the limit of Nash equilibria. Let us just underline at this stage that
this latter problem is much more challenging.

1.3.4 The Vanishing Viscosity Limit and the First Order System
with Smoothing Couplings

We now analyze the vanishing viscosity limit for system (1.19) and the correspond-
ing existence and uniqueness of solutions for the deterministic problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂tu+H(t, x,Du) = F [m]
u(T ) = G[m(T )]
∂tm− div(mHp(t, x,Du)) = 0

m(0) = m0 .

(1.43)
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To this purpose we strengthen the assumptions on F,G,H . Namely, we assume that

F : C0([0, T ];P(Td))→ C0(QT ) is continuous with range into a bounded set of

L∞(0, T ;W 2,∞(Td))and F is a bounded map from Cα([0, T ];P(Td))
into Cα(QT ), for any α ∈ (0, 1).

(1.44)

Similarly, we assume that

G : P(Td)→ C0(Td) is continuous with range into a bounded set of W 2,∞(Td).
(1.45)

Moreover we assume that H ∈ C2(QT × Rd) and satisfies

∃ c0 > 0 : c−1
0 Id ≤ Hpp(t, x, p) ≤ c0 Id ∀(t, x, p) ∈ QT × Rd (1.46)

and one between (1.23) or the following condition:

∃ c1 > 0 : |Hxx(t, x, p)| ≤ c1(1 + |p|2) ,
|Hxp(t, x, p)| ≤ c1(1+ |p|) ∀(t, x, p) ∈ QT × Rd (1.47)

Under the above smoothing conditions on the couplings F,G, it will be possible
to consider u as a viscosity solution of the Hamilton-Jacobi equation and to make
use of several regularity results already known from the standard viscosity solutions’
theory. Hence, the notion of solution which is the most suitable here is the following
one.

Definition 1.3 A couple (u,m) is a solution to (1.43) if u ∈ C0(QT ) ∩
L∞(0, T ,W 1,∞(Td)), m ∈ C0([0, T ];P(Td)), u is a viscosity solution of the
Hamilton-Jacobi equation, with u(T ) = G[m(T )], andm is a distributional solution
of the continuity equation such that m(0) = m0.

Assumptions (1.44) and (1.45), together with the uniform convexity of the
Hamiltonian ((1.46)), are crucial here in order to guarantee an estimate of semi-
concavity for the function u. This is usually a fundamental regularity property
of solutions of first order equations, but this is most relevant here because of the
properties inherited by the drift term Hp(t, x,Du) in the continuity equation. Let
us recall the definition and some properties of semi-concavity. Proofs and references
can be found, for instance, in the monograph [48].

Definition 1.4 A map w : Rd → R is semi-concave if there is some C > 0 such
that one of the following equivalent conditions is satisfied:

1. the map x → w(x)− C
2 |x|2 is concave in Rd ,
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2. w(λx + (1− λ)y) ≥ λw(x)+ (1− λ)w(y)−Cλ(1− λ)|x − y|2 for any x, y ∈
R
d , λ ∈ [0, 1],

3. D2w ≤ C Id in the sense of distributions,
4. (p−q) · (x−y) ≤ C|x−y|2 for any x, y ∈ Rd , p ∈ D+w(x) and q ∈ D+w(y),

where D+w denotes the super-differential of w, namely

D+w(x) =
{

p ∈ Rd ; lim sup
y→x

w(y)−w(x)− (p, y − x)

|y − x| ≤ 0

}

.

We will use later the following main consequences of semi-concavity (see e.g.
[48]).

Lemma 1.9 Let w : Rd → R be semi-concave. Then w is locally Lipschitz
continuous in Rd , and it is differentiable at x if and only if D+w(x) is a singleton.

Moreover D+w(x) is the closed convex hull of the set D∗w(x) of reachable
gradients defined by

D∗w(x) =
{
p ∈ Rd : ∃xn → x such that Dw(xn) exists and converges to p

}
.

In particular, for any x ∈ Rd , D+w(x) is a compact, convex and non empty subset
of Rd .

Finally, if (wn) is a sequence of uniformly semi-concave maps on Rd which
pointwisely converges to a map w : Rd → R, then the convergence is locally
uniform, Dwn(x) converges to Dw(x) for a.e. x ∈ Rd and w is semi-concave.
Moreover, for any xn → x and any pn ∈ D+wn(xn), the set of cluster points of
(pn) is contained in D+w(x).

The following theorem is given in [145], and some details also appeared in [55].
Here we give a slightly more general version of the result.

Theorem 1.7 Let m0 ∈ L∞(Td). Assume (1.44)–(1.46) and that at least one
between the conditions (1.23) and (1.47) holds true. Let (uε,mε) be a solution
of (1.19). Then there exists a subsequence, not relabeled, and a couple (u,m) ∈
W 1,∞(QT )× L∞(QT ) such that

uε → u in C(QT ), mε → m in L∞(QT )− weak∗,

and (u,m) is a solution of (1.43) in the sense of Definition 1.3.

Proof

Step 1. (Bounds for uε,mε) Let us recall that, by Theorem 1.4, uε and mε are
classical solutions in (0, T ). First of all, by maximum principle and (1.44)–
(1.45), it follows that uε is uniformly bounded inQT . The next key point consists
in proving a semi concavity estimate for uε . To this purpose, let ξ be a direction
in Rd . We drop the index ε for simplicity and we set uξξ (t, x) = D2u(t, x)ξ · ξ .
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Then we look at the equation satisfied by w := uξξ + λ(u +M)2 where λ,M
are positive constants to be fixed later. Straightforward computations give the
following:

−∂tw − εΔw +Hp(t, x,Du) ·Dw +Hξξ (t, x,Du)

+ 2Hξp(t, x,Du) ·Duξ +Hpp(t, x,Du)Duξ ·Duξ
= (F [m])ξξ − 2λ(u+M) (H(t, x,Du)− F [m])− 2λε|Du|2 .

We choose M = ‖u‖∞ + 1, and we use the coercivity of H which satisfies,
from (1.46), H(t, x, p) ≥ 1

2c
−1
0 |p|2 − c for some constant c > 0. Therefore we

estimate

−∂tw − εΔw+Hp(t, x,Du) ·Dw +Hξξ (t, x,Du)+ 2Hξp(t, x,Du) ·Duξ
+Hpp(t, x,Du)Duξ ·Duξ

≤ (F [m])ξξ − λ c−1
0 |Du|2 + c λ (1 + ‖u‖∞)(1 + ‖F [m]‖∞) .

Now we estimate the terms with the second derivatives of H , using condition
(1.46) and one between (1.23) and (1.47). To this purpose, we notice that, if (1.23)
holds true, then we already know that Duε is uniformly bounded in QT , see
(1.27) in Theorem 1.4. Then the bounds assumed in (1.47) come for free because
H is a C2 function and the arguments (t, x,Du) live in compact sets. Therefore,
we can proceed using (1.47) in both cases. Thanks to Young’s inequality, we
estimate

Hξξ (t, x,Du)+ 2Hξp(t, x,Du) ·Duξ +Hpp(t, x,Du)Duξ ·Duξ
≥ 1

2
c−1

0 |Duξ |2 − c(1+ |Du|2)

hence we deduce that

− ∂tw − εΔw +Hp(t, x,Du) ·Dw + 1

2
c−1

0 |Duξ |2

≤ c(1 + |Du|2)+ ‖D2
xxF [m]‖∞ − λ c−1

0 |Du|2 + c λ (1 + ‖F [m]‖∞)

where we used that ‖u‖∞ is bounded and we denote by c any generic constant
independent of ε. The terms given by F [m] are uniformly bounded due to (1.44).
Thus, by choosing λ sufficiently large we deduce that, at an internal maximum
point (t, x) of w, we have |Duξ |2 ≤ C for a constant C independent of ε. Since
|Duξ | ≥ |uξξ | ≥ |w| − c‖u‖2∞, this gives an upper bound at the maximum point
of w(t, x), whenever it is attained for t < T . By the way, if the maximum of w
is reached at T , then maxw ≤ ‖G[m]‖W 2,∞ + c ‖u‖2∞. We conclude an estimate
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for maxw, and therefore an upper bound for uξξ . The bound being independent
of ξ , we have obtained so far that

D2uε(t, x) ≤ C ∀(t, x) ∈ QT

for a constant C independent of ε. Since uε is Zd -periodic, this also implies a
uniform bound for ‖Duε‖∞.

At this stage, let us observe that the above estimate has been obtained as if
uξξ was a smooth function, but this is a minor point: indeed, since u ∈ C1,2(QT )

and H ∈ C2, we have w ∈ C0(QT ) and the above computation shows that
−∂tw− εΔw+Hp(x,Du) ·Dw is itself a continuous function; so the estimate
for w follows applying the maximum principle for continuous solutions.

Now we easily deduce an upper bound on mε as well. Indeed, mε satisfies, for
some constant K > 0

∂tm− εΔm−Dm ·Hp(t, x,Du) = mTr
(
Hpp(t, x,Du)D

2u
)
≤ K m

thanks to the semi concavity estimate and the upper bound ofHpp given in (1.46).
We deduce that mε satisfies

‖mε‖∞ ≤ eKt ‖m0‖∞ . (1.48)

Step 2. (Compactness) From the previous step we know that Duε is uniformly
bounded. Lemma 1.6 then implies that the map t → mε(t) is Hölder con-
tinuous in P(Td), uniformly in ε. This implies that mε is relatively compact
in C0([0, T ],P(Td)). Moreover, from the uniform bound (1.48), mε is also
relatively compact in the weak−∗ topology of L∞(QT ). Therefore, up to
subsequences mε converges in L∞-weak* and in C0([0, T ], P (Td )) towards
some m ∈ L∞(QT ) ∩ C0([0, T ], P (Td)). In particular, m(0) = m0. In
order to pass to the limit in the equation of mε, we observe that the uniform
semi concavity bound implies that, up to subsequences, Hp(t, x,Du

ε) almost
everywhere converges towards Hp(t, x,Du) (see Lemma 1.9), and then it
converges strongly in L1(QT ) by Lebesgue theorem. This allows us to pass to
the limit in the product mεHp(t, x,Du

ε) and deduce that m is a distributional
solution of the continuity equation.

We conclude now with the compactness of uε. SinceDuε is bounded, we only
need to check the uniform continuity of uε in time, which is done with a standard
time-translation argument. First we observe that, as G[mε(T )] ∈ W 2,∞(Td), the
mapsw+(x, t) = G[mε(T )]+C1(T − t) and w−(x, t) = G[mε(T )]−C1(T − t)
are, respectively, a super and sub solution of the equation of uε , forC1 sufficiently
large (but not depending of ε). Hence, by comparison principle

‖uε(t)−G[mε(T )]‖∞ ≤ C1(T − t) . (1.49)
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For h > 0, we consider uεh(x, t) = uε(x, t − h) in (h, T ), which satisfies

−∂tuεh − εΔuεh +H(t − h, x,Duεh) = F [mε](t − h) .

Because of the uniform Hölder regularity of the map t → mε(t) in P(Td ) and
the assumption (1.44) (with α = 1

2 ), we have

sup
t∈[h,T ]

∥
∥F [mε](t − h)− F [mε](t)∥∥∞ ≤ C

√
h

and since H is locally Lipschitz and Duε is uniformly bounded we also have

sup
t∈[h,T ]

|H(t − h, x,Duεh)−H(t, x,Duεh)| ≤ C h .

For the terminal condition we also have, using (1.49),

‖uεh(T )− uε(T )‖∞ = ‖uε(T − h)−G[mε(T )]‖∞ ≤ C1 h .

By the L∞ stability (say, the comparison principle) we deduce that

‖uε(t − h)− uε(t)‖∞ ≤ C(T − t)
√
h+ C1h.

This proves the equi-continuity of uε in time, and so we conclude that uε is
relatively compact in C0(QT ).

By continuity assumptions on F and G, we know that G[mε(T )] converges to
G[m(T )] inC0(Td), and F [mε] converges to F [m] inC0(QT ). It is now possible
to apply the classical stability results for viscosity solutions and we deduce, as
ε → 0, that u is a viscosity solution of the HJ equation −∂tu + H(t, x,Du) =
F [m], with u(T ) = G[m(T )]. Note that, as H(t, x,Du) and F [m] are bounded,
by standard results in viscosity solutions’ theory it turns out that u is Lipschitz
continuous in time as well. �	
Let us now turn to the question of uniqueness of solutions to (1.43). On one hand,

the uniqueness will again rely on the monotonicity argument introduced by Lasry
and Lions; on another hand, the new difficulty lies in showing the uniqueness of m
from the continuity equation; this step is highly non trivial and we will detail it later.

Theorem 1.8 Let m0 ∈ L∞(Td), and let H and F satisfy the conditions of The-
orem 1.7. In addition, assume that F,G are monotone (nondecreasing) operators,
i.e.

∫ T

0

∫

Td

(F [m1] − F [m2])d(m1 −m2) ≥ 0 ∀m1,m2 ∈ C0([0, T ],P(Td))
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and
∫

Td

(G[m1] −G[m2])d(m1 −m2) ≥ 0 ∀m1,m2 ∈ P(Td) .

Then (1.43) admits a unique solution (in the sense of Definition 1.3) (u,m) such
that m ∈ L∞(QT ).

Proof We first observe that the Lasry-Lions monotonicity argument works perfectly
in the setting of solutions given above. Indeed, let (u1,m1) and (u2,m2) be two
solutions of (1.43) in the sense of Definition 1.3, with the additional property that
m1,m2 ∈ L∞(QT ). We recall that for m = mi , we have the weak formulation

∫ T

0

∫

Td

(−m∂tϕ +mHp(t, x,Du) ·Dϕ
) = 0 ∀ϕ ∈ C1

c ((0, T )× Td ) .
(1.50)

Since m ∈ L∞(QT ), by an approximation argument it is easy to extend this
formulation to hold for every ϕ ∈ W 1,∞(QT ) with compact support in (0, T ). We
recall here that u = ui belongs to L∞(0, T ,W 1,∞(Td)) by definition and then, by
properties of viscosity solutions, it is also Lipschitz in time. Hence u ∈ W 1,∞(QT ).
In particular, u is almost everywhere differentiable in QT and, by definition of
viscosity solutions, it satisfies

− ∂tu+H(t, x,Du) = F [m] a.e. in QT . (1.51)

Let here ξ = ξ(t) be a function in W 1,∞(0, T ) with compact support. Using (1.50)
with m = mi and ϕ = uj ξ and (1.51) for uj , i, j = 1, 2, we obtain the usual
equality (1.28) in the weak form

∫ T

0

∫

Td

(u1 − u2)(m1 −m2)∂t ξ

=
∫ T

0

∫

Td

ξ (F [m1] − F [m2])(m1 −m2)

+
∫ T

0

∫

Td

ξ m1
{
H(t, x,Du2)−H(t, x,Du1)−Hp(t, x,Du1)(Du2 −Du1)

}

+
∫ T

0

∫

Td

ξ m2
{
H(t, x,Du1)−H(t, x,Du2)−Hp(t, x,Du2)(Du1 −Du2)

}
.

(1.52)

Now we take ξ = ξε(t) such that ξ is supported in (ε, T − ε), ξ ≡ 1 for t ∈
(2ε, T − 2ε) and ξ is linear in (ε, 2ε) and in (T − 2ε, T − ε). Of course we have
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ξε → 1 and all integrals in the right-hand side of (1.52) converge by Lebesgue
theorem. The boundary layers terms give

∫ T

0

∫

Td

(u1 − u2)(m1 −m2)∂t ξε = 1

ε

∫ 2ε

ε

∫

Td

(u1 − u2)(m1 −m2)

− 1

ε

∫ T−ε

T−2ε

∫

Td

(u1 − u2)(m1 −m2)

where we can pass to the limit because mi ∈ C0([0, T ],P(Td)) and ui ∈ C(QT ).
Therefore letting ε → 0 in (1.52), and using the same initial condition for m1,m2

we conclude that

∫

Td
(G[m1(T )] −G[m2(T )]) d(m1(T )−m2(T ))+

∫ T

0

∫

Td
(F [m1] − F [m2])(m1 −m2)

+
∫ T

0

∫

Td
m1
{
H(t, x,Du2)−H(t, x,Du1)−Hp(t, x, Du1)(Du2 −Du1)

}

+
∫ T

0

∫

Td
m2
{
H(t, x,Du1)−H(t, x,Du2)−Hp(t, x, Du2)(Du1 −Du2)

} = 0 .

Thanks to the monotonicity condition on F,G, and to the strict convexity of H ,
given by (1.46), this implies that Du1 = Du2 a.e. in {m1 > 0} ∪ {m2 > 0}. In
particular, m1 and m2 solve the same Kolmogorov equation: m1 and m2 are both
solutions to

∂tm− div(mHp(t, x,Du
1(t, x))) = 0, m(0) = m0.

We admit for a while the (difficult) fact that this entails the equality m1 = m2

(see Lemma 1.10 below). Then u1 and u2 are two viscosity solutions of the same
equation with the same terminal condition; by comparison, they are therefore equal.

�	
In order to complete the above proof, we are left with the main task, which is the

content of the following result.

Lemma 1.10 Assume that u ∈ C(QT ) is a viscosity solution to

− ∂tu+H(t, x,Du) = F(t, x), u(T , x) = uT (x), (1.53)

where H : [0, T ] × Td × Rd → R satisfies the conditions of Theorem 1.7 and
F ∈ C(QT ) ∩ L∞(0, T ;W 2,∞(Td)), uT ∈ W 2,∞(Td).

Then, for anym0 ∈ L∞(Td), the transport equation

∂tm− div
(
mHp(t, x,Du)

) = 0, m(0, x) = m0(x) (1.54)

possesses at most one weak solution in L∞.
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The proof of the Lemma is delicate and is the aim of the rest of the section.
The difficulty comes from the fact that the vector field Hp(t, x,Du) is not smooth:
it is actually discontinuous in general. The analysis of transport equations with non
smooth vector fields has attracted a lot of attention since the Di Perna-Lions seminal
paper [98]. We rely here on Ambrosio’s approach [15, 16], in particular for the
“superposition principle” (see Theorem 1.9 below). A key point will be played by
the semi concavity property of u. In particular, this implies that Hp(t, x,Du) has
bounded variation; nevertheless, this does not seem to be enough to apply previous
results on the continuity equation, where the vector field is usually supposed to
have a non singular divergence. We will overcome this problem by using the
optimal control representation of Hp(t, x,Du) and the related properties of the
characteristic curves.

Let us first point out some basic properties of the solution u of (1.53). Henceforth,
for simplicity (and without loss of generality) we assume that F = 0 in (1.53),
which is always possible up to defining a new Hamiltonian H̃ = H − F .

We already know that u is unique and Lipschitz continuous, and it is obtained by
viscous approximation. Therefore, one can check (exactly as in Theorem 1.7) that
u is semiconcave in space for any t , with a modulus bounded independently of t .
Moreover, we will extensively use the fact that u can be represented as the value
function of a problem of calculus of variations:

u(t, x) = inf
γ : γ (t)=x

∫ T

t

L(s, γ (s), γ̇ (s))ds + uT (γ (T )) (1.55)

where L(t, x, ξ) = supp∈Rd [−ξ · p − H(t, x, p)] and where γ ∈ AC([0, T ];Td)
are absolutely continuous curves in [0, T ]. For (t, x) ∈ [0, T ) × Td we denote by
A(t, x) the set of optimal trajectories for the control problem (1.55). One easily
checks that, under the above assumptions on H , such set is nonempty, and that, if
(tn, xn) → (t, x) and γn ∈ A(tn, xn), then, up to some subsequence, γn weakly
converges in H 1 to some γ ∈ A(t, x).

We need to analyze precisely the connection between the differentiability of u
with respect to the x variable and the uniqueness of the minimizer in (1.55). The
following properties are well-known in the theory of optimal control and Hamilton-
Jacobi equations (see e.g. [48, Chapter 6]), but we will give the proofs for the
reader’s convenience.

Lemma 1.11 (Regularity of u Along Optimal Solutions) Let (t, x) ∈ [0, T ]×Td
and γ ∈ A(t, x). Then
1. (Uniqueness of the optimal control along optimal trajectories) for any s ∈ (t, T ],

the restriction of γ to [s, T ] is the unique element of A(s, γ (s)).
2. (Uniqueness of the optimal trajectories) Du(t, x) exists if and only if A(t, x)

is reduced to a singleton. In this case, γ̇ (t) = −Hp(t, x,Du(t, x)) where
A(t, x) = {γ }.
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Remark 1.7 In particular, if we combine the above statements, we see that, for any
γ ∈ A(t, x), u(s, ·) is always differentiable at γ (s) for s ∈ (t, T ), with γ̇ (s) =
−Hp(s, γ (s),Du(s, γ (s))).

Proof We recall that, since H is C2 and strictly convex in p, then L is also C2

and strictly convex in ξ , which ensures the regularity of the minimizers. So if γ ∈
A(t, x), then γ is of class C2 on [t, T ] and satisfies the Euler-Lagrange equation

d

dt
Lξ (s, γ (s), γ̇ (s)) = Lx(s, γ (s), γ̇ (s)) ∀s ∈ [t, T ] (1.56)

with the trasversality condition

DuT (γ (T )) = −Lξ (T , γ (T ), γ̇ (T )). (1.57)

Let γ1 ∈ A(s, γ (s)). For any h > 0 small we build some γh ∈ A(t, x) in the
following way:

γh(τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

γ (τ) if τ ∈ [t, s − h)

γ (s − h)+ (τ − (s − h))
γ1(s + h)− γ (s − h)

2h
if τ ∈ [s − h, s + h)

γ1(τ ) if τ ∈ [s + h, T ]

Since γ|[s,T ] and γ1 are optimal for u(s, γ (s)), the concatenation γ0 of γ|[t,s] and γ1
is also optimal for u(t, x). So, comparing the payoff for γ0 (which is optimal) and
the payoff for γh we have

∫ s

s−h
L(τ, γ (τ ), γ̇ (τ ))dτ +

∫ s+h

s

L(τ, γ1(τ ), γ̇1(τ ))dτ

−
∫ s+h

s−h
L(τ, γh(τ ),

γ1(s + h)− γ (s − h)

2h
)dτ ≤ 0 .

We divide this inequality by h and let h→ 0+ to get

L(s, γ (s), γ̇ (s))+ L(s, γ (s), γ̇1(s))− 2L(s, γ (s),
1

2
(γ̇ (s)+ γ̇1(s))) ≤ 0

since limh→0, s∈[s−h,s+h] γh(s) = γ (s) = γ1(s). By strict convexity of L with
respect to the last variable, we conclude that γ̇ (s) = γ̇1(s). Since we also have
γ (s) = γ1(s), and since both γ (·) and γ1(·) satisfy on the time interval [s, T ] the
second order equation (1.56), we conclude that γ (τ) = γ1(τ ) on [s, T ]. This means
that the optimal solution for u(s, γ (s)) is unique.
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Next we show that, if Du(t, x) exists, then A(t, x) is reduced to a singleton and
γ̇ (t) = −Hp(t, x,Du(t, x)) where A(t, x) = {γ }. Indeed, let γ ∈ A(t, x). Then,
for any v ∈ Rd ,

u(t, x + v) ≤
∫ T

t

L(s, γ (s) + v, γ̇ (s))ds + uT (γ (T )+ v) .

Since equality holds for v = 0 and since left- and right-hand sides are differentiable
with respect to v at v = 0 we get by (1.56)–(1.57):

Du(t, x) =
∫ T

t

Lx(s, γ (s), γ̇ (s))ds +DuT (γ (T ))

=
∫ T

t

d

dt
Lξ (s, γ (s), γ̇ (s))+DuT (γ (T )) = −Lξ (t, x, γ̇ (t)) .

By definition ofL, this means that γ̇ (t) = −Hp(t, x,Du(t, x)) and therefore γ (·) is
the unique solution of the Euler-Lagrange equation with initial conditions γ (t) = x

and γ̇ (t) = −Hp(t, x,Du(t, x)). This shows the claim.
Conversely, let us prove that, if A(t, x) is a singleton, then u(t, ·) is differentiable

at x. For this we note that, if p belongs toD∗u(t, x) (the set of reachable gradients of
the map u(t, ·)), then the solution to (1.56), with initial conditions γ (t) = x, γ̇ (t) =
−Hp(t, x, p), is optimal. Indeed, by definition of p, there is a sequence xn →
x such that u(t, ·) is differentiable at xn and Du(t, xn) → p. Now, since u(t, ·)
is differentiable at xn, we know by what proved before that the unique solution
γn(·) to (1.56) with initial conditions γn(t) = xn, γ̇n(t) = −Hp(t, xn,Du(t, xn)),
is optimal. Passing to the limit as n → +∞ implies (by the stability of optimal
trajectories), that γ (·), which is the uniform limit of the γn(·), is also optimal.

Now, from our assumptions, there is a unique optimal curve in A(t, x). Therefore
D∗u(t, x) has to be reduced to a singleton, which implies, since u(t, ·) is semi-
concave, that u(t, ·) is differentiable at x (Lemma 1.9). �	

We now turn the attention to the solutions of the differential equation

{
γ̇ (s) = −Hp(s, γ (s),Du(s, γ (s))) a.e. in [t, T ]
γ (t) = x .

(1.58)

Here we fix a Borel representative of Du(t, x) (e.g. a measurable selection of
D+u(t, x)), so that the vector field Hp(t, x,Du(t, x)) is defined everywhere inQT .
In what follows, we say that γ is a solution to (1.58) if γ ∈ AC([0, T ];Td), if u(s, ·)
is differentiable at γ (s) for a.e. s ∈ (t, T ) and if

γ (s) = x −
∫ s

t

Hp(τ, γ (τ ),Du(τ, γ (τ )))dτ ∀s ∈ [t, T ] .
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We already know (see Remark 1.7) that, if γ ∈ A(t, x), then γ is a solution to
(1.58); now we show that the converse is also true.

Lemma 1.12 (Optimal Synthesis) Let (t, x) ∈ [0, T )× Td and γ (·) be a solution
to (1.58). Then the trajectory γ is optimal for u(t, x).

In particular, if u(t, ·) is differentiable at x, then equation (1.58) has a unique
solution, corresponding to the optimal trajectory.

Proof We first note that γ (·) is Lipschitz continuous because so is u. Let s ∈ (t, T )

be such that equation (1.58) holds (in particular u(s, ·) is differentiable at γ (s))
and the Lipschitz continuous map s → u(s, γ (s)) has a derivative at s. Since u is
Lipschitz continuous, Lebourg’s mean value Theorem [94, Th. 2.3.7] states that, for
any h > 0 small, there is some (sh, yh) ∈ [(s, γ (s)), (s + h, γ (s + h))] and some
(ξht , ξ

h
x ) ∈ CoD∗

t,xu(sh, yh) with

u(s + h, γ (s + h))− u(s, γ (s)) = ξht h+ ξhx · (γ (s + h)− γ (s)) , (1.59)

(where CoD∗
t,xu(s, y) stands for the closure of the convex hull of the set

of reachable gradients D∗
t,xu(s, y)). From Carathéodory Theorem, there are

(λh,i , ξ
h,i
t , ξ

h,i
x )i=1,...,d+2 such that λh,i ≥ 0,

∑
i λ

h,i = 1, with (ξ
h,i
t , ξ

h,i
x ) ∈

D∗
t,xu(sh, yh) and

(ξht , ξ
h
x ) =

∑

i

λh,i (ξ
h,i
t , ξh,ix ) .

Note that the ξh,ix converge to Du(s, γ (s)) as h → 0 because, from Lemma 1.9,
any cluster point of the ξ

h,i
x must belong to D+u(s, γ (s)), which is reduced to

Du(s, γ (s)) since u(s, ·) is differentiable at γ (s). In particular, ξhx = ∑
i λ

h,iξ
h,i
x

converges to Du(s, γ (s)) as h→ 0.
Since u is a viscosity solution of (1.53) and (ξh,it , ξ

h,i
x ) ∈ D∗

t,xu(sh, yh), we have

−ξh,it +H(sh, yh, ξ
h,i
x ) = 0 .

Therefore ξht =
∑

i

λh,iξ
h,i
t =

∑

i

λh,iH (sh, yh, ξ
h,i
x ) converges to H(s, γ (s),

Du(s, γ (s)) as h→ 0.
Then, dividing (1.59) by h and letting h→ 0+ we get

d

ds
u(s, γ (s)) = H(s, γ (s),Du(s, γ (s)) +Du(s, γ (s)) · γ̇ (s) .

Since γ̇ (s) = −Hp(s, γ (s),Du(s, γ (s))), this implies that

d

ds
u(s, γ (s)) = −L(s, γ (s), γ̇ (s)) a.e. in (t, T ) .
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Integrating the above inequality over [t, T ] we finally obtain, since u(T , y) =
uT (y),

u(x, t) =
∫ T

t

L(s, γ (s), γ̇ (s)) ds + uT (γ (T )) .

which means that γ is optimal. The last statement of the Lemma is a direct
consequence of Lemma 1.11-(2). �	

The next step is a key result by Ambrosio (the so-called superposition principle)
on the probabilistic representation of weak solutions to the continuity equation

∂tμ+ div(μb(t, x)) = 0 . (1.60)

For this let us define for any t ∈ [0, T ] the map et : C0([0, T ],Td) → T
d by

et (γ ) = γ (t) for γ ∈ C0([0, T ],Td).
Theorem 1.9 ([15]) Let b : [0, T ] × Td → R

d be a given Borel vector field and
μ be a solution to (1.60) such that

∫

QT
|b|2 dμ < ∞. Then there exists a Borel

probability measure η on C0([0, T ],Td) such that μ(t) = et�η for any t and, for
η-a.e. γ ∈ C0([0, T ],Td), γ is a solution to the ODE

{
γ̇ (s) = b(s, γ (s)) a.e. in [0, T ]
γ (0) = x .

(1.61)

We will also need the notion of disintegration of a measure and the following
well-known disintegration theorem, see for instance [18, Thm 5.3.1].

Theorem 1.10 Let X and Y be two Polish spaces and λ be a Borel probability
measure on X × Y . Let us set μ = πX�λ, where πX is the standard projection from
X×Y ontoX. Then there exists a μ-almost everywhere uniquely determined family
of Borel probability measures (λx) on Y such that

1. the function x �→ λx is Borel measurable, in the sense that x �→ λx(B) is a
Borel-measurable function for each Borel-measurable set B ⊂ Y ,

2. for every Borel-measurable function f : X × Y → [0,+∞],
∫

X×Y
f (x, y)dλ(x, y) =

∫

X

∫

Y

f (x, y) dλx(y)dμ(x).

We are finally ready to prove the uniqueness result:

Proof of Lemma 1.10 Let m be a solution of the transport equation (1.54). We set
Γ := C0([0, T ],Td). From Ambrosio superposition principle, there exists a Borel
probability measure η on Γ such that m(t) = et�η for any t and, for η-a.e. γ ∈ Γ ,
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γ is a solution to the ODE γ̇ = −Hp(t, γ (t),Du(t, γ (t))). We notice that, since
m ∈ L1(QT ), for any subset E ⊂ QT of zero measure we have

∫ T

0

∫

Γ

1{γ (t)∈E}dη =
∫ T

0

∫

Td

1E dmt = 0

which means that γ (t) ∈ Ec for a.e. t ∈ (0, T ) and η-a.e. γ ∈ Γ . In particular,
since u is a.e. differentiable, this implies that u(t, ·) is differentiable at γ (t) for a.e.
t ∈ (0, T ) and η-a.e. γ ∈ Γ . As m0 = e0�η, we can disintegrate the measure η into
η = ∫

Td
ηxdm0(x), where γ (0) = x for ηx -a.e. γ and m0-a.e. x ∈ Td . Therefore,

since m0 is absolutely continuous, for m0-a.e. x ∈ Td , ηx -a.e. map γ is a solution
to the ODE starting from x. By Lemma 1.12 we know that such a solution γ is
optimal for the calculus of variation problem (1.55). As, moreover, for a.e. x ∈ Td
the solution of this problem is reduced to a singleton {γ̄x}, we can conclude that
dηx(γ ) = δγ̄x for m0-a.e. x ∈ Td . Hence, for any continuous map φ : Td → R, one
has

∫

Td

φ(x)m(t, x))dx =
∫

Td

φ(γ̄x(t))m0(x)dx

which defines m uniquely. �	

1.3.5 Second Order MFG System with Local Couplings

We now consider the case that the coupling functions F,G depend on the local
density of the measure m(t, x). Thus we assume that F ∈ C0(QT × R) and G ∈
C0(Td × R) and we consider the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂tu− εΔu+H(t, x,Du) = F(t, x,m(t, x))

u(T ) = G(x,m(T , x))

∂tm− εΔm− div(mHp(t, x,Du)) = 0

m(0) = m0 .

(1.62)

We assume that both nonlinearities are bounded below:

∃ c0 ∈ R : F(t, x,m) ≥ c0 , G(x,m) ≥ c0 ∀(t, x,m) ∈ QT × R+
(1.63)

where R+ = [0,∞). We observe that F,G could be allowed to be measurable
with respect to t and x, and bounded when the real variable m lies in compact sets.
However, we simplify here the presentation by assuming continuity with respect to
all variables.
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1.3.5.1 Existence and Uniqueness of Solutions

For local couplings, there are typically two cases where the existence of solutions
can be readily proved, namely wheneverF,G are bounded, orH(t, x, p) is globally
Lipschitz in p. We give a sample result in this latter case. We warn the reader that,
in the study of system (1.62) with local couplings, the notion of solution to be used
may strongly depend on the regularity of (u,m) which is available. As a general
framework, both equations will be understood in distributional sense, and a basic
notion of weak solution will be discussed later.

In this first result that we give, assuming m0 and Hp(t, x, p) to be bounded, the
function m turns out to be globally bounded and regular for t > 0. Then (u,m)

is a solution of (1.62) in the sense that m ∈ L∞(QT ) ∩ L2(0, T ;H 1(Td)) is a
weak solution of the Fokker-Planck equation, with m ∈ C0([0, T ], L1(Td)) and
m(0) = m0, whereas u ∈ C(QT ) ∩ L2(0, T ;H 1(Td)), with u(T ) = G(x,m(T )),
and is a weak solution of the first equation.

Theorem 1.11 Let m0 ∈ L∞(Td ), m0 ≥ 0 with
∫

Td
m0 = 1. Assume that

H(t, x, p) is a Carathéodory function such thatH is convex and differentiable with
respect to p and satisfies

∃ β > 0 : |Hp(t, x, p)| ≤ β ∀(t, x, p) ∈ QT × Rd . (1.64)

Then there exists a solution (u,m) to (1.62) with Du,m ∈ Cα(QT ) for
some α ∈ (0, 1). If F(t, x,m) is a locally Hölder continuous function and
H(t, x, p),Hp(t, x, p) are of class C1, then (u,m) is a classical solution in
(0, T ).

Finally, if F(t, x, ·), G(x, ·) are nondecreasing, then the solution is unique.
Proof For simplicity, we fix the diffusion coefficient ε = 1. We set

K = {m ∈ C0([0, T ];L2(Td)) ∩ L∞(QT ) : ‖m‖∞ ≤ L} (1.65)

where L will be fixed later. For any μ ∈ K , defining uμ ∈ L2(0, T ;H 1(Td)) the
(unique) bounded solution to

{
−∂tuμ −Δuμ +H(t, x,Duμ) = F(t, x, μ)

uμ(T ) = G(x,μ(T )) ,

one sets m := Φ(μ) as the solution to

{
∂tm−Δm− div(mHp(t, x,Duμ)) = 0 ,

m(0) = m0 .

Due to the global bound on Hp, there exists L > 0, depending only on β and
‖m0‖∞, such that ‖m‖∞ ≤ L. This fixes the value of L in (1.65), so that K is
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an invariant convex subset of C0([0, T ];L2(Td)). Continuity and compactness of
Φ are an easy exercise, so Schauder’s fixed point theorem applies which yields a
solution. By parabolic regularity for Fokker-Planck equations with bounded drift,
m is Cα(QT ) for some α > 0, and so is Du from the first equation. Finally, if the
nonlinearity F preserves the Hölder regularity of m, and if H,Hp are of class C1,
then the Schauder’s theory can be applied exactly as in Theorem 1.4, so u andmwill
belong to C1+ α

2 ,2+α(QT ) for some α ∈ (0, 1) and they will be classical solutions.
The uniqueness follows by the time monotonicity estimate (1.28), which still

holds for any two possible solutions (u1,m1), (u2,m2) of system (1.62), because
they are bounded. The convexity of H and the monotonicity of F,G imply
that F(t, x,m1) = F(t, x,m2) and G(x,m1(T )) = G(x,m2(T )). This readily
yields u1 = u2 by standard uniqueness of the Bellman equation with Lipschitz
Hamiltonian and bounded solutions. Since Hp(t, x,Du1) = Hp(t, x,Du2), from
the Fokker-Planck equation we deduce m1 = m2. �	

Let us stress that the global Lipschitz bound for H implies a global L∞ bound
for m and Du, which is independent of the time horizon T as well. We will come
back to that in Sect. 1.3.6.

Remark 1.8 The existence of solutions would still hold assuming the minimal
condition that the initial distribution m0 ∈ P(Td). The proof remains essentially
the same up to using the smoothing effect in the Fokker-Planck equation, where

‖m(t)‖∞ ≤ Ct− d
2 for someC only depending on the constant β in (1.64). However,

it is unclear how to prove uniqueness when m0 is just a probability measure, unless
some restriction is assumed on the growth of the coupling F . Of course one can
combine the growth of F with respect to m and the integrability assumption of m0
in order to get uniqueness results for some class of unbounded initial data, but this
is not surprising.

Remark 1.9 The monotonicity condition on F and G can be slightly relaxed,
depending on the diffusive coefficient ε and on ‖m0‖∞. In particular, if H satisfies
(1.64) and is locally uniformly convex with respect to p, there exists a positive value
γ , depending on H,F , ε and ‖m0‖∞, such that (1.62) admits a unique solution
whenever F(x,m) + γ m is nondecreasing in m. The value of γ tends to zero if
‖m0‖∞ → ∞ or if ε → 0. Indeed, this is an effect of diffusivity, which could
be understood in the theory as the impact of the independent noise in the players’
dynamics against a mild aggregation cost. This phenomenon was observed first in
[149] and recently addressed in [91] in relation with the long-time stabilization of
the system.

When the Hamiltonian has not linear growth in the gradient, the existence and
uniqueness of solutions with local couplings is no longer a trivial issue. The main
problem is that solutions can hardly be proved to be smooth unless the growth of
the coupling functions F,G or the growth of the Hamiltonian are restricted (see
Remark 1.12 below).
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On one hand, unbounded solutions of the Bellman equation may be not unique.
On another hand, if the drift Hp(t, x,Du) has not enough integrability, the standard
parabolic estimates (including boundedness and strict positivity of the solution) are
not available for the Fokker-Planck equation. This kind of questions are discussed
in [165], where a theory of existence and uniqueness of weak solutions is developed
using arguments from renormalized solutions and L1-theory. We give a sample
result of this type, assuming here that the Hamiltonian H(t, x, p) satisfies the
following coercivity and growth conditions in QT × Rd :

H(t, x, p) ≥ α|p|2 − γ (1.66)

|Hp(t, x, p)| ≤ β (1 + |p|) (1.67)

Hp(t, x, p) · p −H(t, x, p) ≥ α |p|2 − γ (1.68)

for some constants α, β, γ > 0.
We stress that, under conditions (1.66)–(1.68), and for couplings F,G with

general growth, the existence of smooth solutions is not known.

Definition 1.5 Assume (1.66)–(1.68). A couple (u,m) is a weak solution to system
(1.62) if

• F(t, x,m) ∈ L1(QT ), G(x,m(T )) ∈ L1(Td) and u ∈ L2(0, T ;H 1(Td )) is a
distributional solution of

{
−∂tu− εΔu+H(t, x,Du) = F(t, x,m(t, x))

u(T ) = G(x,m(T , x))

• m ∈ C0([0, T ];L1(Td)), m |Du|2 ∈ L1(QT ) and m is a distributional solution
of

{
∂tm− εΔm− div(mHp(t, x,Du)) = 0

m(0) = m0 .

Let us stress that the terminal condition for u is understood in L1(Td), because
u ∈ C0([0, T ];L1(Td)) as a consequence of the equation itself.

The following result is essentially taken from [165], although the uniqueness
statement that we give below generalizes the original result, by establishing that
the uniqueness of u always holds m-almost everywhere. This seems to be the most
general well-posedness result available so far for system (1.62), in terms of the
conditions allowed on H and F,G. Later we discuss the issue of smooth solutions,
some special cases, and several related results, including other possible approaches
to weak solutions.
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Theorem 1.12 [[165]] Assume that H(t, x, p) is convex in p and satisfies condi-
tions (1.66)–(1.68), and that F,G satisfy (1.63) andG(x, ·) is nondecreasing. Then,
for any m0 ∈ L∞(Td), there exists a weak solution to (1.62).

If we assume in addition that F(x, ·) is nondecreasing, then F(x,m) =
F(x, m̃) and G(x,m(T )) = G(x, m̃(T )) for any two couples of weak solutions
(u,m), (ũ, m̃). Moreover, if at least one of the following two assumptions holds:

(i) F(x, ·) is increasing
(ii) H(t, x, p) − H(t, x, q) − Hp(t, x, q) · (p − q) = 0 ⇒ Hp(t, x, p) =

Hp(t, x, q) ∀p, q ∈ Rd
then m = m̃ and u = ũ m-almost everywhere.

In particular, there is at most one weak solution (u,m)withm > 0 and, ifm0 > 0
and log(m0) ∈ L1(Td), there exists one and only one weak solution.

Remark 1.10 We stress that if (u,m) is a weak solution such that u,m ∈ L∞(QT ),
then both u and m belong to L2(0, T ;H 1(Td)) and the two equations hold in
the usual formulation of finite energy solutions, e.g. against test functions ϕ ∈
L2(0, T ;H 1(Td)) ∩ L∞(QT ) with ∂tϕ ∈ L2(0, T ;H 1(Td)′)+ L1(QT ). This fact
can be deduced, for instance, from the characterization that weak solutions in the
sense of Definition 1.5 are also renormalized solutions (see [165, Lemma 4.2]).

In addition, if (u,m) are bounded weak solutions, further results in the literature
can be applied: since F(x,m) is bounded and H has at most quadratic growth,
it turns out that Du is also bounded for t < T , which is enough to ensure that
m ∈ Cα(QT ) and m(t) > 0 for t > 0. In other words, bounded weak solutions are
regularized with standard bootstrap arguments. In particular, under the assumptions
of Theorem 1.12, bounded weak solutions are unique.

The existence part of Theorem 1.12 requires many technical tools which we will
only sketch here, referring to [165] for the details. It is instructive first to recall the
basic a priori estimates of the system (1.62), which explain the natural framework of
weak solutions. We stress that the estimates below are independent of the diffusion
constant ε.

Lemma 1.13 Assume that (u,m) are bounded weak solutions to system (1.62)
and F,G are continuous functions satisfying (1.63). There exists a constant K ,
independent on ε, such that

∫ T

0

∫

Td

m{Hp(t, x,Du)Du −H(t, x,Du)} +
∫ T

0

∫

Td

H (t, x,Du)

+
∫ T

0

∫

Td

F (t, x,m)m+
∫

Td

G(x,m)m ≤ K . (1.69)

The constantK depends on ‖m0‖∞, T , ‖H(t, x, 0)‖∞, c0 and sup
m≤2‖m0‖∞

[F(t, x,m)
+G(x,m)].
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Proof We omit the dependence on t of the nonlinearities, which plays no role.
Since u and m are bounded, they can be used as test functions in the usual weak
formulations of both equations. This yields the energy equality

∫

Td

G(x,m(T ))m(T )+
∫ T

0

∫

Td

F (x,m)m

+
∫ T

0

∫

Td

m [Hp(x,Du) ·Du −H(x,Du] =
∫

Td

m0 u(0) (1.70)

which implies

∫

Td

G(x,m(T ))m(T )+
∫ T

0

∫

Td

F (x,m)m

+
∫ T

0

∫

Td

m [Hp(x,Du) ·Du−H(x,Du] ≤ ‖m0‖∞
∫

Td

u(0)+

≤ ‖m0‖∞
{∫ T

0

∫

Td

(F (x,m))+
∫

Td

G(x,m(T ))−
∫ T

0

∫

Td

H (x,Du)

}

+ ‖m0‖∞
∫

Td

u(0)−

where we used that
∫

Td
u(0) = ∫ T0

∫

Td
F (x,m)+∫

Td
G(x,m(T ))−∫ T0

∫

Td
H (x,Du).

Now we estimate the right-hand side of the previous inequality. From assumption
(1.63) and the maximum principle, we have that u is bounded below by a constant
depending on c0 and the L∞- bound of H(x, 0), so last term is bounded. We
also have F(x,m) ≤ 1

2‖m0‖∞F(x,m)m + C, for some constant C depending on
sup

m≤2‖m0‖∞
F(x,m). Similarly we estimate G(x,m). Therefore, we conclude that

(1.69) holds true. �	
Proof of Theorem 1.12 (Sketch) Without loss of generality, we fix the diffusion
coefficient ε = 1.

Existence To start with, one can build a sequence of smooth solutions, e.g. by
defining Fn(t, x,m) = ρn �F(t, ·, ρn �m))(x), Gn(x,m) = ρn �G(·, ρn �m))(x),
where � denotes the convolution with respect to the spatial variable and ρn is a
standard symmetric mollifier, i.e. ρn(x) = nNρ(nx) for a nonnegative function
ρ ∈ C∞

c (Rd ) such that
∫

Rd
ρ(x)dx = 1.

The existence of a bounded solution un,mn is given, for instance, by Theo-
rem 1.4. From assumption (1.63) and the maximum principle, we have that un is
bounded from below. Due to the a priori estimates (1.69), applied to (un,mn), and
thanks to (1.68) and (1.66), we have that

un is bounded in L2((0, T );H 1(Td ), and mn |Dun|2 is bounded in L1(QT ).
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In addition, we have that

F(t, x,mn),G(x,mn(T )) are bounded and equi-integrable in L1(QT )

and L1(Td), respectively. (1.71)

The heart of the existence proof consists then in considering both the stability
properties of the viscous HJ equation

− ∂tu
n −Δun +H(t, x,Dun) = f n (1.72)

for some f n converging in L1(QT ), and the compactness of the Fokker-Planck
equation

∂tm
n −Δmn − div(mn bn) = 0 (1.73)

where mn |bn|2 is bounded (or eventually, converging) in L1(QT ).
Indeed, as a first step one uses (1.73) to show that mn is relatively compact

in L1(QT ), as well as in C0([0, T ];W−1,q(Td)) for some dual Sobolev space
W−1,q(Td ), and for every t we have that mn(t) is relatively compact in P(Td).
Using the extra estimates (1.71), mn(T ) is relatively compact in the weak L1

topology and F(t, x,mn) is compact in L1(QT ). If we turn the attention to the
Bellman equation (1.72), theL1 convergence of f n is enough to ensure that un,Dun

are relatively compact in L1(QT ) and, thanks to existing results of theL1-theory for
divergence form operators, one concludes that un → u which solves

−∂tu−Δu+H(t, x,Du) = F(t, x,m) .

The convergence of Dun now implies that mn Hp(t, x,Du
n)→ mHp(t, x,Du) in

L1(QT ) and m can be proved to be a weak solution of the limit equation. The proof
of the existence would be concluded if not for the coupling in the terminal condition
u(T ); in fact, to establish that u(T ) = G(x,m(T )) some extra work is needed, and
this can be achieved by using the monotonicity of G(x, ·). For the full proof of this
stability argument, we refer to [165][Thm 4.9].

Uniqueness To shortness notations, we omit here the dependence on t of the
nonlinearities H,F . A key point for uniqueness is to establish that both u and m

are renormalized solutions of their respective equations (see [165, Lemma 4.2]).
This means that if (u,m) is any weak solution, then u satisfies

− ∂tSh(u)−ΔSh(u)+ S′h(u)H(x,Du) = F(x,m)S′h(u)− S′′h(u)|Du|2 (1.74)
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where Sh(r) is the sequence of functions (an approximation of the identity function)
defined as

Sh(r) = h S
( r

h

)
, where S(r) =

∫ r

0
S′(r)dr, S′(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if |s| ≤ 1

2 − |s| if 1 < |s| ≤ 2

0 if |s| > 2

(1.75)

Notice that Sh(r) → r as h → ∞ and since S′h has compact support the
renormalized equation (1.74) is restricted to a set where u is bounded. Similarly
m is also a renormalized solution, in particular it satisfies

∂tSn(m)−ΔSn(m)− div(S′n(m)mHp(x,Du)) = ωn ,

for some ωn
n→∞−→ 0 in L1(QT ). (1.76)

We recall that the renormalized formulations are proved to hold for all weak
solutions, since F(x,m) ∈ L1(QT ) and since m|Du|2 ∈ L1(QT ). In addition,
it is proved in [165, Lemma 4.6] that, for any couple of weak solutions (u,m)
and (ũ, m̃), the following crossed regularity holds: m|Dũ|2, m̃|Du|2 ∈ L1(QT ).
This is what is needed in order to perform first the Lasry-Lions’ argument on the
renormalized formulations, and then letting n → ∞ and subsequently h → ∞ to
conclude the usual monotonicity inequality:

∫ T

0

∫

Td
(F (x, m)− F(x, m̃))(m− m̃)+

∫

Td
[G(x,m(T ))−G(x, m̃(T ))][m(T )− m̃(T )]

+
∫ T

0

∫

Td
m [H(x,Dũ)−H(x,Du)−Hp(x,Du)(Dũ−Du)]

+
∫ T

0

∫

Td
m̃ [H(x,Du)−H(x,Dũ)−Hp(x,Dũ)(Du−Dũ)] ≤ 0 .

This implies, because F(x, ·),G(x, ·) are nondecreasing,

F(x,m) = F(x, m̃) , G(x,m(T )) = G(x, m̃(T )) (1.77)

and, from the convexity of H(x, ·),

H(x,Dũ)−H(x,Du) = Hp(x,Du)(Dũ−Du) in {(t, x) : m(t, x) > 0}
H(x,Du)−H(x,Dũ) = Hp(x,Dũ)(Du−Dũ) in {(t, x) : m̃(t, x) > 0} .

(1.78)
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We warn the reader that (1.77) does not imply alone that u = ũ, because unbounded
weak solutions to the Bellman equation may be not unique. So we need to use some
extra information.

We first want to show thatm = m̃. This is straightforward if F(x, ·) is increasing.
Otherwise, suppose that (1.25) holds true. Then we deduce that

mHp(x,Du) = mHp(x,Dũ) m̃Hp(x,Du) = m̃Hp(x,Dũ) a.e. in QT .

(1.79)

We take now the difference of the renormalized equations of m, m̃, namely

∂t (Sn(m)− Sn(m̃))−Δ(Sn(m)− Sn(m̃))

− div(S′n(m)mHp(x,Du)− S′n(m̃)m̃Hp(x,Dũ)) = ωn − ω̃n

and we aim at showing that, roughly speaking, ‖m(t) − m̃(t)‖L1(Td) is time

contractive. To do it rigorously, we consider the function Θε(s) =
∫ r

0
Tε(r)
ε
dr , with

Tε(r) = min(ε, r); then Θε(s) approximates |s| as ε → 0. Using Tε(Sn(m)−Sn(m̃))
ε

as
test function in the previous equality we get
∫

Td

Θε[Sn(m(t))− Sn(m̃(t))]

+ 1

ε

∫ T

0

∫

Td

|DTε(Sn(m)− Sn(m̃))|2 ≤ ‖ωn‖L1(QT )
+ ‖ω̃n‖L1(QT )

− 1

ε

∫ T

0

∫

Td

(S′n(m)mHp(x,Du)− S′n(m̃)m̃Hp(x,Dũ))DTε(Sn(m)− Sn(m̃))

where we used that the test function is smaller than one. Thanks to Young’s
inequality we deduce

∫

Td

Θε[Sn(m(t))− Sn(m̃(t))] ≤ 1

4ε

∫ T

0

∫

Td

|S′n(m)mHp(x,Du)

− S′n(m̃)m̃Hp(x,Dũ)|2 1{|Sn(m)−Sn(m̃)|<ε}
+ ‖ωn‖L1(QT )

+ ‖ω̃n‖L1(QT )
.

(1.80)

Now we use (1.79): if one between m, m̃ is positive, thenHp(x,Du) = Hp(x,Dũ),
so

∫ T

0

∫

Td

|S′n(m)mHp(x,Du)− S′n(m̃)m̃Hp(x,Dũ)|2 1{|Sn(m)−Sn(m̃)|<ε}

=
∫ T

0

∫

Td

|S′n(m)m− S′n(m̃)m̃|2 |Hp(x,Du)|2 1{|Sn(m)−Sn(m̃)|<ε}
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and since

|S′n(m)m− S′n(m̃)m̃|2 |Hp(x,Du)|2 1{|Sn(m)−Sn(m̃)|<ε} ≤ C ε (m+ m̃)(1 + |Du|2)
we can let n → ∞ using Lebesgue’s theorem since m|Du|2, m̃|Du|2 ∈ L1(QT ).
Therefore, letting n→∞, from (1.80) we obtain (for a.e. ε > 0):

∫

Td

Θε[m(t)− m̃(t)] ≤ 1

4ε

∫ T

0

∫

Td

|m− m̃|2 |Hp(x,Du)|2 1{m−m̃|<ε}

≤ 1

4

∫ T

0

∫

Td

|m− m̃| |Hp(x,Du)|21{m−m̃|<ε} .
(1.81)

Last term converges to zero as ε → 0 (using again Lebesgue’s theorem), whereas
the first integral converges to ‖m(t)− m̃(t)‖L1(Td). Hence, by letting ε → 0 we get
‖m(t)− m̃(t)‖L1(Td) = 0. This concludes the proof of the uniqueness of m.

Now we show that u is unique m-a.e.; to this purpose, we are going to show that

∫

Td

m(t)(u− ũ)+(t) ≤ 0 for a.e. t < T . (1.82)

To prove (1.82), we subtract the renormalized formulations (1.74) for u, ũ. By using
the convexity of H , we have

− ∂t (Sh(u)− Sh(ũ))−Δ(Sh(u)− Sh(ũ))+ S′h(u)Hp(x,Dũ)D(u− ũ)

+ (S′h(u)− S′h(ũ))H(x,Dũ)

≤ F(x,m)(S′h(u)− S′h(ũ))− S′′h(u)|Du|2 + S′′h(ũ)|Dũ|2 .

We multiply this equation by ϕε := Tε(Sh(u)−Sh(ũ))+
ε

; denoting as before Θε the

primitive of Tε(t)
t

, using that 0 ≤ ϕε ≤ 1 we get, in weak sense,

− ∂tΘε[(Sh(u)− Sh(ũ))+] −ΔΘε[(Sh(u)− Sh(ũ))+] + ϕεS
′
h(u)Hp(x,Dũ)D(u− ũ)

≤ |S′h(u)− S′h(ũ)| |H(x,Dũ)+ F(x, m)| + |S′′h(u)| |Du|2 + |S′′h(ũ)| |Dũ|2 .

Now we multiply by Sn(m) this equation, we integrate in (t, T ), we use that u(T ) =
ũ(T ) and (1.76). We obtain

∫

Td

Sn(m(t))Θε[(Sh(u(t))− Sh(ũ(t)))+]

−
∫ T

t

∫

Td

S′n(m)mHp(x,Du)ϕεD(Sh(u)− Sh(ũ))
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+
∫ T

t

∫

Td

Sn(m) ϕεS
′
h(u)Hp(x,Dũ)D(u− ũ)

≤
∫ T

t

∫

Td

Sn(m) |S′h(u)− S′h(ũ)| |H(x,Dũ)+ F(x,m)|

+
∫ T

t

∫

Td

Sn(m)[|S′′h(u)| |Du|2 + |S′′h(ũ)| |Dũ|2]

+
∫ T

t

∫

Td

Θε[(Sh(u(t))− Sh(ũ(t)))+]ωn

where we used that DΘε[(Sh(u(t))−Sh(ũ(t)))+] = ϕε D(Sh(u)−Sh(ũ)). Now we
let n, h→∞, which is allowed using that F(x,m)m,m|Du|2,m|Dũ|2 ∈ L1(QT ).
First we let n→∞, so that we can use the L1-convergence to zero of ωn (whereas
Sh(u), Sh(ũ) are bounded functions). Once n has gone to infinity, we let h → ∞,
so that S′h → 1; using dominated convergence in each term and Fatou’s lemma in
the first integral, we get

∫

Td

m(t)Θε[(u(t)− ũ(t))+] −
∫ T

t

∫

Td

mHp(x,Du)ϕεD(u− ũ)

+
∫ T

t

∫

Td

m ϕε Hp(x,Dũ)D(u− ũ) ≤ 0

for a.e. t ∈ (0, T ). Since mHp(x,Du)D(u − ũ) = mHp(x,Dũ)D(u − ũ) from
(1.78) (where now m̃ = m), we deduce that

∫

Td
m(t)Θε[(u(t)−ũ(t))+] ≤ 0. Letting

ε → 0 yields (1.82). Reversing the roles of u, ũ, we conclude that u = ũ m-a.e.
Finally, it is proved in [165] that, if logm0 ∈ L1(Td), then we have m > 0 a.e.,

in which case we deduce that u = ũ almost everywhere. �	
Several comments and remarks are in order as far as the previous result and MFG

systems with local couplings are concerned.

Remark 1.11 (Extensions of Theorem 1.12)

(i) The result of Theorem 1.12 also holds with homogeneous Dirichlet or Neu-
mann boundary conditions; this extension already appears in [165]. Let us
stress that this is one of the main advantage for the use of renormalized
solutions, which are well adapted to boundary conditions. Indeed, through the
use of renormalization one wishes to approximate a weak solution with its own
truncations, which often preserve natural boundary conditions. By contrast,
the approximation of weak solutions through mollification introduces many
technical problems when dealing with boundary conditions.

Results on the whole space Rd are also available in [166], assuming
m0 ∈ L1(Td) ∩ L∞(Td ); in that case u belongs to L∞((0, T ) × Rd) +
L∞(0, T ;L1(Rd )) and m ∈ L∞(0, T ;L1(Rd )).
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(ii) Similar results hold by assuming the Hamiltonian coercive with q-growth,
namely replacing |p|2 with |p|q in (1.66), (1.68) and a q − 1-growth for Hp,
where 1 < q < 2. However, general uniqueness results in this case have been
proved so far only for the periodic case or for the whole space [165, 166].

(iii) The same results hold for more general diffusion coefficients, namely if the
Laplacian is replaced by the divergence form operator div(A(t, x)D(·)) with
A(t, x) ∈ L∞(0, T ;W 1,∞). In particular, this includes the case where Δu

is replaced by Tr(σ (t, x)σ ∗(t, x)D2u) for a bounded, Lipschitz and elliptic
matrix σ(t, ·), modeling diffusion processes associated to stochastic dynamics
with Lipschitz diffusion coefficients.

Remark 1.12 (Smoothness of Solutions) Solutions of system (1.62) with local
couplings can be proved to be more regular under growth restrictions on H(t, x, p)

and/or on F(t, x,m).
An easy case occurs when

|Hp(t, x, p)| ≤ C(1 + |p|q−1) with q <
d + 2

d + 1
. (1.83)

Indeed, since F(t, x,m) ∈ L1(QT ) (regardless of the growth of F , see estimate
(1.69)) then any weak solution u belongs to Ls(0, T ;W 1,s(T)) for any s < d+2

d+1 .
If (1.83) holds, this implies that Hp(t, x,Du) ∈ Lr for some r > d + 2; in turn,
by standard parabolic results, the solution of the Fokker-Planck equation becomes
bounded in this case, and actually even Hölder continuous. One concludes that u
is bounded as well, from the first equation, and actually Du is Hölder continuous
as well. Smoothness up to C2 regularity then follows according to the smoothness
required on the coefficients.

A somewhat similar situation occurs if F has restricted growth, namely if

|F(t, x,m)| ≤ C(1 +mγ )

with γ < 2
d

; in this case estimate (1.69) implies that F(t, x,m) ∈ Lr(QT ) for some
r > 2+d

2 , and the standard parabolic regularity immediately gives the boundedness,
and then smoothness, of u,m.

The above two situations are straightforward applications, using parabolic
regularity, of the a priori estimates (1.69); in particular they do not require any
smoothness in the x-dependence of the nonlinearities, and directly apply to weak
solutions in order to obtain their boundedness. We recall that proving boundedness
of weak solutions is enough to show that they are unique, see Remark 1.10.

However, in order to get smooth solutions, one can go beyond the above
conditions up to using refined estimates on the system. This was addressed first by
P.-L. Lions, who showed that F(x,m) � mγ with γ < 2

d−2 was enough to ensure
smoothness of solutions, standing on second order estimates which further exploit
the monotonicity of the coupling F . This issue has been extensively investigated
later in a series of papers by D. Gomes and co-workers (see e.g. [120, 121]; most
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results are encoded in the book [122]), coupling the second order estimates with
regularity estimates for the Fokker-Planck equation obtained through the adjoint
method introduced by L.C. Evans. In this series of contributions, some growth
conditions on H and F have been given which allow to have smooth solutions, both
for sub quadratic and for super quadratic Hamiltonians. They are specially important
for the case thatH(x, p) grows superquadratically in p, because in that situation the
approach through weak solutions as developed in Theorem 1.12 cannot be used. It
must be said that the aforementioned regularity results usually require smoothness
of the Hamiltonian and periodic setting, and the smoothness of solutions remains
largely open under general growth assumptions.

Remark 1.13 (Quadratic Hamiltonian and Hopf-Cole Reduction) In the special
case that H(t, x, p) = 1

2 |p|2+b(t, x) ·p, the system (1.62) can be transformed into

a system of semi linear equations. By introducing the two new unknowns:w = e− u
2

and ϕ = me
u
2 , then (1.62) (with ε = 1) is equivalent to the system

⎧
⎪⎪⎨

⎪⎪⎩

−∂tw −Δw + b ·Dw + 1
2wF(t, x, ϕ w) = 0

∂tϕ −Δϕ − div(b ϕ)+ 1
2ϕF(t, x, ϕ w) = 0

w(T ) = e−G(x,ϕ(T )w(T ))/2 , ϕ(0) = m0
w(0)

(1.84)

Notice that the system (1.84) appears to be simplified, compared to (1.62), but the
initial-terminal conditions are both coupled. The initial condition at t = 0 makes
sense becausew > 0 by strong maximum principle. Still by maximum principle, the
function ϕ is positive as well. Assuming G(x, ·) to be nondecreasing, the condition
w(T ) = e−G(x,ϕ(T )w(T ))/2 defines w(T ) implicitly as a function of ϕ(T ); hence the
final condition reads as w(T ) = ψ(x, ϕ(T )) for a functionψ defined by the implicit

relation ψ(r)− e− 1
2G(x,r ψ(r)) = 0, for r ≥ 0.

When b = 0 and G only depends on x, it is proved in [60] that weak solutions
to (1.84) are bounded. The proof uses a Moser iteration scheme, and it can be
easily verified that the proof still holds, without additional difficulty, for the case
that b ∈ L∞(0, T ;W 1,∞(Td)) and G(x, ·) is monotone. The equivalence between
(1.84) and (1.62) (for this special H ) is easy to verify for bounded solutions,
since the maximum principle gives ϕ,w > 0, so u = −2 logw, m = w ϕ

defines (u,m) back from (1.84). Once solutions are shown to be bounded, then
they are smooth (m,Du ∈ Cα(QT )) by standard bootstrap arguments, and they
are classical solutions in QT if F is locally Hölder continuous. Therefore, system
(1.62) possesses regular, and even classical, solutions in the special case that
H(t, x,Du) = b(t, x) · Du + 1

2 |Du|2, with b Lipschitz continuous in x, and this
holds true without any growth restriction on the couplings F,G.

We mention here further related results on weak solutions and on systems with
local coupling.

• Under general assumptions, essentially the conditions of Theorem 1.12 above,
it has been proved that the discrete solutions of finite difference schemes, as
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defined in [2], converge to weak solutions as the numerical scheme approximates
the continuous equation, i.e. as the mesh size tends to zero. This result is proved
in [4] and provides an independent, alternative proof of the existence of weak
solutions.

• A different notion of weak solution was introduced in [104] relying on the theory
of motonone operators. In particular, if F,G are nondecreasing, then problem
(1.62) can be rephrased as A(m, u) = 0 where A is a monotone operator (on the
couple (m, u)) defined as

A(m, u) :=
(
∂tu+Δu+ f (m)−H(x,Du)

∂tm−Δm− div(mHp(x,Du))

)

Since 〈A(m, u) − A(μ, v), (m − μ, u − v)〉 ≥ 0, where the duality is meant
in distributional sense, A defines a monotone operator. Then the Minty-Browder
theory of monotone operators suggests the possibility to define a notion of weak
solution (u,m) as a couple satisfying

〈A(ϕ, v), (m − ϕ, u− v)〉 ≥ 0 ∀(ϕ, v) ∈ C2(QT )
2 . (1.85)

This notion requires even less regularity on (m, u) than in Definition 1.5, and
of course the existence of a couple (m, u) satisfying (1.85) is readily proved by
weak stability and monotonicity, as in Minty-Browder’s theory. However, the
uniqueness of a solution of this kind is unclear, and has not been proved so far.

• The study of non monotone couplingsF(x,m) in (1.62) leads to different kind of
questions and results. This direction has been mostly exploited for the stationary
system [81, 87] and in special examples for the evolution case. We refer the reader
to [92].

In a different direction, it is worth pointing out that the assumption that
F(x,m) be bounded from below could be relaxed by allowing F(x,m)→ −∞
as m → 0+ as in the model case F(x,m) ∼ logm for m → 0. Results on this
model can be found e.g. in [114, 127].

We conclude this section by mentioning the case of a general Hamiltonian
function H(t, x,Du,m), as in problem (1.29), where now H : QT × Rd ×
[0,+∞) → R is a continuous function depending locally on the density m. In his
courses at Collége de France, P.-L. Lions introduced structure conditions in order to
have uniqueness of solutions (u,m) to the local MFG system:

⎧
⎨

⎩

−∂tu− εΔu+H(t, x,Du,m) = 0 in (0, T )× Td
∂tm− εΔm− div(m Hp(t, x,Du,m)) = 0 in (0, T )× Td
m(0) = m0, u(x, T ) = G(x,m(T ))) in Td

(1.86)
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Assuming H(t, x, p,m) to be C1 in m and C2 in p, the condition introduced by
P.-L. Lions can be stated as the requirement that the following matrix be positive
semi-definite:

⎛

⎜
⎜
⎜
⎝

m ∂2
ppH

1

2
m ∂2

pmH

1

2
m (∂2

pmH)T −∂mH

⎞

⎟
⎟
⎟
⎠

≥ 0 ∀(t, x, p,m) . (1.87)

Notice that condition (1.87) implies that H is convex with respect to p and
nonincreasing with respect to m. In particular, when H has a separate form:
H = H̃ (t, x, p) − f (x,m), condition (1.87) reduces to H̃pp ≥ 0 and fm ≥ 0.
As usual, this condition needs to be taken in a strict form, so that Lions’ result
would state as follows in terms of smooth solutions.

Theorem 1.13 Assume that G(x,m) is nondecreasing in m and that H =
H(t, x, p,m) is a C1 function satisfying (we omit the (t, x) dependence for
simplicity)

(H(p2,m2)−H(p1,m1))(m2 −m1)

−(m2Hp(p2,m2)−m1Hp(p1,m1)) · (p2 − p1) ≤ 0 ,
(1.88)

with equality if and only if (m1, p1) = (m2, p2). Then system (1.86) has at most one
classical solution.

Proof The proof is a straightforward extension of the usual monotonicity argument.
Let (u1,m1) and (u2,m2) be solutions to (1.86). We set

m̃ = m2 −m1, ũ = u2 − u1, H̃ = H(t, x,Du2,m2)−H(t, x,Du1,m1) .

Then, subtracting the two equations we get

d

dt

∫

Td

(u2(t) − u1(t))(m2(t) −m1(t))

=
∫

Td

(−εΔũ+ H̃ )m̃

+ũ(εΔm̃+ div(m2Hp(t, x,Du2,m2)−m1Hp(t, x,Du1,m1)))

=
∫

Td

H̃ m̃− (m2Hp(t, x,Du2,m2)−m1Hp(t, x,Du1,m1)) ·Dũ
≤ 0

by condition (1.88). Since
∫

Td
(u2(t)− u1(t))(m2(t)−m1(t)) vanishes at t = 0 and

is nonnegative at t = T (by monotonicity of G(, ·)), integrating the above equality
between 0 and T gives

∫ T

0

∫

Td

H̃ m̃− (m2Hp(t, x,Du2,m2)−m1Hp(t, x,Du1,m1)) ·Dũ = 0.
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Since (1.88) is assumed in strict form, this implies that Dũ = 0 and m̃ = 0, so that
m1 = m2 and u1 = u2. �	
Remark 1.14 It is immediate to check that if the matrix in (1.87) is positive definite,
then (1.88) holds in the strict form. Indeed, set p̃ = p2 −p1, m̃ = m2 −m1 and, for
θ ∈ [0, 1], pθ = p1 + θ(p2 − p1), mθ = m1 + θ(m2 −m1). Let

I (θ) = (H(x, pθ ,mθ )−H(x, p1, m1))m̃−p̃·(mθHp(x,Duθ ,mθ )−m1 .Hp(x,Du1,m1))

Then

I ′(θ) = −
(
p̃T m̃

)

⎛

⎜
⎝

mθ ∂
2
ppH

1

2
mθ ∂

2
pmH

1

2
mθ (∂

2
pmH)T −∂mH

⎞

⎟
⎠

(
p̃

m̃

)

.

If condition (1.87) holds with a strict sign, then the function I (θ) is decreasing and,
for (p1,m1) � (p2,m2), one has

I (0) = 0 > I(1) = (H(p2,m2)−H(p1,m1))(m2 −m1)

− (m2Hp(p2,m2)−m1Hp(p1,m1)) · (p2 − p1).

We stress that another way of formulating (1.88) is exactly the requirement that I (θ)
be decreasing for every (p1,m1) � (p2,m2).

The main example of Hamiltonian satisfying (1.88) is given by the so-called
congestion case.

Example 1.1 Assume that H is of the form: H(x, p,m) = 1

2

|p|2
(σ +m)α

, where

σ, α > 0. Then condition (1.87) holds if and only if α ∈ [0, 2]. Notice that H is
convex in p and nonincreasing in m if α ≥ 0. Checking condition (1.87) we find

(

−∂mH

m

)

∂2
ppH − 1

4
∂2
pmH ⊗ ∂2

pmH = α|p|2
2mα+2

Id

mα
− α2

4

p ⊗ p

m2α+2

= 2α|p|2Id
4m2α+2 − α2

4

p ⊗ p

m2α+2

which is positive if and only if α ≤ 2.
This example (in the generalized version H = |p|q

(σ+m)α with α ≤ 4(q−1)
q

) was
introduced by P.-L. Lions in [149] (Lesson 18/12 2009) as a possible mean field
game model for crowd dynamics. In this case, the associated Lagrangian cost of the
agents takes the form of L(x, q) = 1

2 (σ +m)α|q|2, where q represents the velocity
chosen by the controllers; the cost being higher in areas of higher density models
the impact of the crowd in the individual motion. The case σ = 0 is also meaningful
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in this example and was treated by P.-L. Lions as well, even if it leads to a singular
behavior of the Hamiltonian for m = 0.

As explained before, the existence of classical solutions with local couplings
only holds in special cases, and this of course remains true for the general problem
(1.86) (see e.g. [113, 116, 123] for a few results on smooth solutions of the
congestion model). Therefore, the statement of Theorem 1.13 is of very little use.
However, a satisfactory result of existence and uniqueness is proved in [5] for
general Hamiltonians H(t, x,Du,m) which include the congestion case (including
the singular model with σ = 0). This is so far the unique general well-posedness
result which exists for the local problem (1.86).

1.3.6 The Long Time Ergodic Behavior and the Turnpike
Property of Solutions

It is a natural question to investigate the behavior of the MFG system (1.62) as
the horizon T tends to infinity. Here we fix the diffusion constant ε = 1 and we
consider nonlinearities F,H independent of t . As explained by Lions in [149] (see
e.g. Lesson 20/11 2009), the limit of the MFG system, as the time horizon T tends
to infinity, is given by the stationary ergodic problem

⎧
⎪⎪⎨

⎪⎪⎩

λ−Δu+H(x,Du) = F(x,m) in Td

−Δm− div
(
mHp(x,Du)

) = 0 in Td∫

Td

m = 1 ,
∫

Td

u = 0
(1.89)

This system has also been introduced by Lasry and Lions in [143] as the limit, when
the number of players tends to infinity, of Nash equilibria in ergodic differential
games. Here the unknowns are (λ, u,m), where λ ∈ R is the so-called ergodic
constant. The interpretation of the system is the following: each player wants to
minimize his/her ergodic cost

J (x, α) := inf
α

lim sup
T→+∞

E

[
1

T

∫ T

0

{
H ∗(Xt ,−αt )+ F(Xt ,m(Xt ))

}
dt

]

where (Xt ) is the solution to

{
dXt = αtdt +

√
2dBt

X0 = x
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It turns out that, if (λ, u,m) is a classical solution to (1.89), then the optimal strategy
of each player is given by the feedback α∗(x) := −Hp(x,Du(x)) and, if Xt is the
solution to

{
dXt = α∗(Xt)dt +

√
2dBt

X0 = x
(1.90)

then m(·) is the invariant measure associated with (1.90) and, setting ᾱt := α∗(Xt ),
then J (x, ᾱ) = λ is independent of the initial position.

The “convergence” of the MFG system in (0, T ) towards the stationary ergodic
system (1.89) was analyzed in [60, 61] when the Hamiltonian is purely quadratic
(i.e. H(x, p) = |p|2), in [58] where the long time behavior is completely described
in case of smoothing coupling and uniformly convex Hamiltonian, and in [167] for
the case of local couplings and globally Lipschitz Hamiltonian. The case of discrete
time, finite states system is analyzed in [118].

The “long time stability” takes the form of a turnpike pattern for solutions
(uT ,mT ) of system (1.62); namely, the solutions become nearly stationary for most
of the time, which is related to the so-called turnpike property of optimality systems
(see e.g. [170]). This pattern is clearly shown in numerical simulations as one can
see in the contribution by Achdou & Lauriere in this volume. The strongest way to
state this kind of behavior is through the proof of the exponential estimate

‖mT (t)− m̄‖∞ + ‖DuT (t)−Dū‖∞ ≤ K(e−ωt + e−ω(T−t )) ∀t ∈ (0, T )
(1.91)

for some K,ω > 0, where (ū, m̄) is a solution to (1.89).
Notice that a weakest statement is also given by the time-average convergence

(which is a consequence of (1.91), if this holds true)

lim
T→+∞

1

T

∫ T

0

∫

Td

(
|DuT −Dū|2 + |mT − m̄|2

)
dxdt = 0 .

Of course this kind of convergence occurs provided the Lasry-Lions monotonicity
condition holds true: in general, the behavior of the time-dependent problem can be
much more complex. For instance it can exhibit periodic solutions. On that topic,
see in particular [57, 88, 90, 153].

In this section we give a new proof of the turnpike property of solutions, by
showing how it is possible to refine the usual fixed point argument in order to
build directly the solution (u,m) embedded with the turnpike estimate (1.91). For
simplicity, we develop this approach in the case of local couplings and globally
Lipschitz Hamiltonian although, roughly speaking, a similar method would work
for any case in which a global (in time) Lipschitz estimate is available for u.

Let us first remark that the stationary system (1.89) is well-defined.
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Proposition 1.2 Assume that (1.63) and (1.64) hold true and F(x,m) is nonde-
creasing in m. Then system (1.89) has a unique classical solution (λ̄, ū, m̄), and
moreover m̄ > 0.

The proof can be established by usual fixed point arguments, very similar as in
Theorem 1.11, so we omit it.

Now we prove the exponential turnpike estimate for locally Lipschitz couplings
F (without any growth restriction) and for globally Lipschitz, locally uniformly
convex Hamiltonian.

Theorem 1.14 Let m0 ∈ P(Td). Assume that F(x,m) is a Carathéodory function
which is nondecreasing with respect to m and satisfies

∀K > 0 , ∃ cK , �K > 0 :
{
|F(x,m)| ≤ cK ,

|F(x,m)− F(x,m′)| ≤ �K |m−m′|
∀x ∈ Td ,m,m′ ∈ R : |m|, |m′| ≤ K . (1.92)

Assume that p �→ H(x, p) is a C2 function which is globally Lipschitz (i.e. it
satisfies (1.64)) and locally uniformly convex:

∀K > 0 , ∃αK, βK > 0 : αK I ≤ Hpp(x, p) ≤ βKI ∀(x, p) ∈ Td × Rd : |p| ≤ K .

(1.93)

Then there exists ω,M > 0 (independent of T ) such that any solution (uT ,mT ) of
problem (1.62) (with ε = 1) satisfies

‖mT (t)− m̄‖∞ + ‖DuT (t)−Dū‖∞ ≤M(e−ωt + e−ω(T−t )) ∀t ∈ (1, T − 1) .
(1.94)

This kind of result is proved in [167] with a strategy based on the stabilization
properties of the linearized system; an approach which explains the exact exponen-
tial rate ω in (1.94) in terms of a Riccati feedback operator. Here we give a new
direct proof of (1.94), mostly based on ideas in [58]. This approach is less precise
in the rate ω but requires less demanding assumptions and avoids the formal use of
the linearized system, though some form of linearization appears in obtaining the
following a priori estimate.

Lemma 1.14 Under the assumptions of Theorem 1.14, let (λ̄, ū, m̄) be the unique
solution of (1.89).
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For σ ∈ [0, 1], m0 ∈ L∞(Td) ∩ P(Td), vT ∈ C1,α(Td ) for some α ∈ (0, 1), let
(μ, v) be a solution of the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∂t v −Δv +H(x,Dū+Dv)−H(x,Dū) = F(x, m̄+ μ)− F(x, m̄)

v(T ) = vT

∂tμ−Δμ− div(μHp(x,Dū+Dv)) = σ div(m̄
[
Hp(x,Dū+Dv)−Hp(x,Dū)

]
)

μ(0) = σ(m0 − m̄) .

(1.95)
Then there exist constants ω,K > 0 such that

‖μ(t)‖2 + ‖Dv(t)‖2 ≤ K(e−ωt + e−ω(T−t ))[‖m0 − m̄‖2 + ‖DvT ‖2] . (1.96)

Proof We first notice that, using the equation satisfied by m̄, we can derive the
equation satisfied by μ+ σm̄ and we deduce immediately that μ+ σm̄ ≥ 0. Since∫

Td
μ(t) = 0 for every t , this implies that ‖μ(t)‖L1(Td) ≤ 2σ for every t > 0. Since

Hp is globally bounded, and m̄ ∈ L∞(Td), by standard (local in time) regularizing
effect in the Fokker-Planck equation, we have ‖μ(t)‖∞ ≤ C‖μ(t − 1)‖L1(Td) for
every t > 1 (see e.g. [142, Chapter V]). In addition, since m0 ∈ L∞(Td), we have
that ‖μ(t)‖∞ is bounded for t ∈ (0, 1) as well. From the global L1 bound, we
conclude therefore that ‖μ(t)‖∞ is bounded uniformly, for every t ∈ (0, T ), by a
constant independent of the horizon T . Due to (1.92), this means that the function
F(x, ·) in the first equation can be treated as uniformly bounded and Lipschitz. The
global bound on the right-hand side, together with the global Lipschitz character of
the Hamiltonian, and the fact that vT ∈ C1,α(Td) for some α ∈ (0, 1), allow us to
deduce the existence of a constantL, independent of T , such that ‖Dv(t)‖∞ ≤ L for
every t ∈ (0, T ). Due to (1.93), this means that H(x, ·) can be treated as uniformly
convex. Therefore, if we set

h(x, p) := H(x,Dū(x)+ p)−H(x,Dū(x))

f (x, μ) := F(x, m̄(x)+ μ)− F(x, m̄(x))

B(x, p) := m̄(x)
[
Hp(x,Dū(x)+ p)−Hp(x,Dū(x))

]
,

we have that (v, μ) solves the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂tv −Δv + h(x,Dv) = f (x,μ)

v(T ) = vT

∂tμ−Δμ− div(μ hp(x,Dv)) = σ div(B(x,Dv))

μ(0) = σ μ0

(1.97)



76 P. Cardaliaguet and A. Porretta

where μ0 = m0 − m̄, and where h(x, p), f (x, s), B(x, p) satisfy the following
conditions for some constants c0, C0, C1, C2 and for every s ∈ R, p ∈ Rd , x ∈ Td :

h(x, 0) = 0 , |hp(x, p)| ≤ c0 , (1.98)

f (x, s)s ≥ 0 , |f (x, s)| ≤ C0 , |f (x, s)| ≤ C1 |s| (1.99)

B(x, p) · p ≥ C−1
2 |p|2 , |B(x, p)| ≤ C2 |p| . (1.100)

In addition, since μ(t, x) ≥ −σm̄(x), we also have, for some constant γ0,

σB(x, p) · p − μ(t, x)(h(x, p)− hp(x, p) · p)
≥ σB(x, p) · p − σm̄(x)(hp(x, p) · p − h(x, p))

= σm̄(x)
[−Hp(x,Dū(x)) · p +H(x,Dū(x)+ p)−H(x,Dū(x))

]

≥ σ γ0 |p|2 ∀(t, x) ∈ QT ,∀p ∈ Rd : |p| ≤ L ,

(1.101)

where we used the local uniform convexity of H and that m̄ > 0.
We now derive the exponential estimate for system (1.97) under conditions

(1.98)–(1.101).
Given T > 0, σ ∈ [0, 1], μ0 ∈ L2(Td) with

∫

Td
μ0 = 0, vT ∈ H 1(Td), we

denote by S(T , σ,μ0, vT ) the solution (μ, v) of system (1.97). We will denote by
〈v〉 = ∫

Td
v and by ṽ = v − 〈v〉. We first prove that there exists a constant C,

independent of σ, T ,μ0, vT , such that

‖μ(t)‖2 + ‖Dv(t)‖2 ≤ C(‖μ0‖2 + ‖DvT ‖2) ∀(μ, v) ∈ S(T , σ,μ0, vT ) .

(1.102)

To prove (1.102), we observe that, due to (1.101),

− d

dt

∫

Td

μ(t)v(t) =
∫

Td

f (x, μ)μ+ σ

∫

Td

B(x,Dv)Dv

−
∫

Td

μ(h(x,Dv)− hp(x,Dv) ·Dv)

≥ σ γ0

∫

Td

|Dv|2 .

(1.103)
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From the Fokker-Planck equation we also have (see e.g. [58, Lemma 1.1]) that there
exists γ, c > 0:

‖μ(t)‖2
2 ≤ c e−γ t‖μ0‖2

2 + c σ 2
∫ t

0

∫

Td

|B(x,Dv)|2

≤ c e−γ t‖μ0‖2
2 + c σ

∫ t

0

∫

Td

|Dv|2

where we used (1.100). Here and after we denote by c possibly different constants
independent of T , σ,μ0, vT . Putting together the above inequalities we get

‖μ(t)‖2
2 ≤ c e−γ t‖μ0‖2

2 + c

∫

Td

μ0v(0)− c

∫

Td

μ(T )vT

which implies

sup
[0,T ]

‖μ(t)‖2
2 ≤ c [‖μ0‖2

2 + ‖DvT ‖2
2] + c ‖μ0‖2‖ṽ(0)‖2 . (1.104)

Since the Hamilton-Jacobi equation implies (using |f (x,μ)| ≤ c |μ| and [58,
Lemma 1.2])

‖ṽ(0)‖2 ≤ c e−γ T ‖ṽT ‖2 + c

∫ T

0
e−γ s‖μ(s)‖2ds ≤ c[‖ṽT ‖2 + sup

[0,T ]
‖μ(t)‖2]

coming back to (1.104) we deduce that

sup
[0,T ]

‖μ(t)‖2
2 ≤ c [‖μ0‖2

2 + ‖ṽT ‖2
2] .

A similar estimate holds for sup[0,T ] ‖ṽ(t)‖2 as well. Finally, using e.g. [58, Lemma
1.2] we have

‖∇v(t)‖2
2 ≤ c(‖ṽ(t + 1)‖2

2 + c

∫ t+1

t

[‖μ(s)‖2
2 + ṽ(s)2])

hence

‖∇v(t)‖2
2 ≤ c [‖μ0‖2

2 + ‖ṽT ‖2
2] ∀t < T − 1.

Standard parabolic estimates also imply that

‖∇v(t)‖2
2 ≤ c [ sup

[T−1,T ]
‖μ(t)‖2

2 + ‖DvT ‖2
2] ∀t ∈ [T − 1, T ]
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so that (1.102) is proved. Now we set

ρ(τ) := sup
T≥2τ

sup
σ,μ0,vT

{

sup
t∈[τ,T−τ ]

∣
∣
∣
∣

∫

Td
v(t) μ(t)

[‖μ0‖2 + ‖DvT ‖2]2
∣
∣
∣
∣ , (μ, v) ∈ S(T , σ, μ0, vT )

}

.

We first remark that, by elementary inclusion property, one has ρ(τ + s) ≤ ρ(τ) for
every s > 0. Hence ρ(·) is a non increasing function and we can define

ρ(∞) := lim
τ→∞ ρ(τ) .

As a first step, we shall prove that ρ∞ = 0. To this purpose, we observe that by
definition of ρ there exist sequences τn → ∞, Tn ≥ 2τn, tn ∈ [τn, Tn − τn],
μn0 ∈ L∞(Td), vnTn ∈ W 1,∞(Td) and σn ∈ [0, 1] such that

(μn, vn) ∈ S(Tn, σn, μ
n
0, v

n
Tn
) ,

∣
∣
∣
∣
∣

∫

Td
μn(tn)v

n(tn)

[‖μn0‖2 + ‖DvnTn‖2]2
∣
∣
∣
∣
∣
≥ ρ∞ − 1/n.

We set, for t ∈ [−tn, Tn − tn]:

μ̃n(t, x) = δnμ
n(tn + t, x), ṽn(t, x) = δn(v

n(tn + t, x)− 〈vn(tn)〉)
δn := 1

‖μn0‖2+‖DvnTn‖2

and we notice that (μ̃n, ṽn) solve the system

{
−ṽnt −Δṽn + δn h(x,Dv

n) = δn f (x, μ
n)

μ̃nt −Δμ̃n − div(μ̃n hp(x,Dvn)) = δn σn div(B(x,Dvn))

where vn, μn are computed at tn + t . By estimate (1.102), ‖μ̃n(t)‖2 and ‖Dṽn(t)‖2
are uniformly bounded. Hence, due to (1.98) and (1.99), −∂t ṽn − Δṽn is
uniformly bounded in L2(Td), which implies that ṽn is relatively compact in
C0([a, b];L2(Td)), for every interval [a, b]. In particular, there exists ṽ ∈
L2
loc(R;L2(Td)) such that ṽn(t)→ ṽ(t) in L2(Td) for every t ∈ R, andDṽn → Dv

in L2((a, b)× Td) for every bounded interval (a, b). Let us call respectively μ̃, σ a
limit of (a subsequence of) μ̃n, σn; since μ̃n(t) weakly converges to μ(t) in L2(Td),
we have that the scalar product

∫

Td
μ̃n(t)ṽn(t) converges for every t ∈ R. It follows

from (1.103) (integrated between tn + t1 and tn + t2) and from (1.100), that

σ γ0

∫ t2

t1

∫

Td

|Dṽ|2 ≤ lim inf
n→∞ σn γ0 δ

2
n

∫ tn+t2

tn+t1

∫

Td

|Dvn|2

≤
∫

Td

μ̃(t1)ṽ(t1)−
∫

Td

μ̃(t2)ṽ(t2) (1.105)
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for every fixed t1, t2 ∈ R. By construction, we also have

ρ∞ − 1/n ≤
∣
∣
∣
∣
∣

∫

Td
μn(tn)v

n(tn)

[‖μn0‖∞ + ‖DvnTn‖∞]2
∣
∣
∣
∣
∣
≤ ρ(τn)→ ρ∞ , (1.106)

hence

ρ∞ = lim
n→∞

∣
∣
∣
∣

∫

Td

μ̃n(0)ṽn(0)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Td

μ̃(0)ṽ(0)

∣
∣
∣
∣ .

On another hand, for any t ∈ R and for n large enough, we have that tn + t ∈
[τn − |t|, Tn − (τn − |t|)], so that

∣
∣
∣
∣

∫

Td

μ̃(t)ṽ(t)

∣
∣
∣
∣ = lim

n

∣
∣
∣
∣
∣

∫

Td
μn(tn + t)vn(tn + t)

[‖μn0‖∞ + ‖DvnTn‖∞]2
∣
∣
∣
∣
∣
≤ lim

n
ρ(τn − |t|) = ρ∞.

(1.107)

Now suppose that ρ∞ > 0 and σ > 0. If ρ∞ = ∫

Td
μ̃(0)ṽ(0) > 0; using (1.105)

with t2 = 0 we deduce, due to (1.107), that
∫ 0
t1

∫

Td
|Dṽ|2 ≤ 0. This implies that

|ṽ(0)| = 0. If ρ∞ = − ∫
Td
μ̃(0)ṽ(0), we get at the same conclusion by choosing

now t1 = 0 in (1.105). But ṽ(0) = 0 is impossible unless ρ∞ = 0. It remains the
case that σ = 0; this means that μ̃ satisfies

∂t μ̃−Δμ̃− div(μ̃ b) = 0

for a bounded drift b(t, x). But this readily leads to μ̃ = 0 (because ‖μ̃(t)‖ ≤
e−ω(t−t0)‖μ̃(t0)‖ for all t0, t and μ̃ is uniformly bounded), and again this implies
ρ∞ = 0.

So we proved that ρ∞ = 0. We claim now that this implies the existence of t0
such that

‖μ(t)‖2 + ‖Dv(t)‖2 ≤ 1

2
[‖μ0‖2 + ‖DvT ‖2] ∀t ∈ [t0, T − t0] . (1.108)

In fact, using the Fokker-Planck equation and (1.103), for every t ∈ [τ, T − τ ] we
have

‖μ(t)‖2
2 ≤ c e−γ (t−τ )‖μ(τ)‖2

2 + c σ 2
∫ T−τ

τ

∫

Td

|B(x,Dv)|2

≤ c e−γ (t−τ )[‖μ0‖2
2 + ‖DvT ‖2]2

+ c

{∣
∣
∣
∣

∫

Td

μ(τ )v(τ )

∣
∣
∣
∣+

∣
∣
∣
∣

∫

Td

μ(T − τ )v(T − τ )

∣
∣
∣
∣

}

,
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hence

‖μ(t)‖2
2 ≤ c[‖μ0‖2

2 + ‖DvT ‖2]2
(
e−γ (t−τ ) + ρ(τ)

)
. (1.109)

Similarly we have, using now the estimate for μ,

‖ṽ(t)‖2
2 ≤ c e−γ (T−τ−t )‖ṽ(T − τ )‖2

2 + c

∫ T−τ

t

e−γ (s−t )‖μ(s)‖2
2ds

≤ c [‖μ0‖2 + ‖DvT ‖2]2
(
e−γ (T−τ−t ) + e−γ (t−τ ) + ρ(τ)

)

which implies, for every t ∈ (τ, T − τ − 1):

‖∇v(t)‖2
2 ≤ c(‖ṽ(t + 1)‖2

2 + c

∫ t+1

t

[‖μ(s)‖2
2 + ṽ(s)2])

≤ c [‖μ0‖2 + ‖DvT ‖2]2
(
e−γ (T−τ−t ) + e−γ (t−τ ) + ρ(τ)

)
.

(1.110)

Since ρ(τ)
τ→∞→ 0, from (1.109)–(1.110) we obtain (1.108) by choosing τ and t

conveniently. Finally, by iteration of (1.108), we deduce the exponential estimate
(1.96). �	
Proof of Theorem 1.14 Let us first assume that m0 ∈ Cα(Td ). We set X =
C0([0, T ];L2(Td)) and we introduce the following norm in X:

|||u|||X := sup
[0,T ]

( ‖u(t)‖L2(Td)

e−ωt + e−ω(T−t )

)

where ω > 0 is given by Lemma 1.14. It is easy to verify that (X, |||u|||X)
is a Banach space and ||| · ||| is equivalent to the standard norm ‖u‖ =
sup[0,T ] ‖u(t)‖L2(Td).

We define the operator T on X as follows: givenμ ∈ X, let (v, ρ) be the solution
to the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−vt −Δv +H(x,Dū+Dv) −H(x,Dū) = F(x, m̄+ μ)− F(x, m̄)

v(T ) = G(x, m̄+ μ(T ))− ū

ρt −Δρ − div(ρ Hp(x,Dū +Dv)) = −div(m̄
[
Hp(x,Dū +Dv)−Hp(x,Dū)

]
)

ρ(0) = m0 − m̄

(1.111)

then we set ρ = T μ. Since Hp is globally bounded, and m̄,m0 ∈ C0,α, by standard
regularity results (see [142, Chapter V, Thms 1.1 and 2.1]) we notice that the range
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of T is bounded in Cα/2,α(QT ), in particular the range of T lies in a bounded set
of L∞ and its closure is compact in X. As a consequence, due to (1.92), there is
no loss of generality if we consider F(x, ·) to be globally bounded and Lipschitz.
Using now the global bound on μ and proceeding as in Lemma 1.14, a global bound
for ‖Dv(t)‖2 follows, and then, by (local) regularizing effect of parabolic equations,
we deduce that there exists a constant L > 0 such that

‖Dv(t)‖∞ ≤ L ∀t ≤ T − 1 , ∀μ ∈ X . (1.112)

We now check that the operator T is continuous: if μn → μ in X, then μn(T ) is
strongly convergent in L2(Td), and F(x, m̄+μn)− F(x, m̄) converges in L2(QT )

as well. By standard parabolic theory, we have that Dvn converges in L2(QT ) to
Dv where v is a solution corresponding to μ. The convergence of Dvn in L2 and
the boundedness of Hp imply that the drift and source terms in the equation of ρn
converge in Lp(QT ) for every p < ∞. This immediately implies the convergence
of ρn in L2(0, T ;H 1(Td)) and then in C0([0, T ];L2(Td)) as well. By uniqueness,
we deduce that ρn converges to Tμ. This concludes the continuity of T . Thus, T
is a compact and continuous operator. We are left with the following claim: there
exists a constant M > 0 such that

|||μ||| ≤ M for every μ ∈ X and every σ ∈ [0, 1] such that μ = σT (μ).

(1.113)

In order to prove (1.113), we use Lemma 1.14 in the interval (0, T − 1); indeed if
μ = σT (μ), then (μ, v) is a solution to (1.95) with vT−1 = v(T − 1). Therefore,
there exists K > 0 (only depending on ‖m0‖∞, and F,H, ū, m̄) such that

‖μ(t)‖2 + ‖Dv(t)‖2 ≤ K(e−ωt + e−ω(T−t )) ∀t ∈ (0, T − 1) .

Since ‖μ(t)‖2 is uniformly bounded for t ∈ (T − 1, T ), we conclude that (1.113)
holds true for some M > 0. By the Schaefer’s fixed point theorem [110, Thm 11.3],
we conclude that there exists μ ∈ X such that μ = Tμ. Setting m = m̄ + μ,
u = ū+ λ̄(T − t) + v, we have found a solution of the MFG system (1.62) which
satisfies the estimate

‖m(t)− m̄‖2 + ‖Du(t) −Dū‖2 ≤ C(e−ωt + e−ω(T−t )) ∀t ∈ (0, T − 1) .

To conclude with the general case, let m0 ∈ P(Td) and let (u,m) be any solution
to system (1.62). By mass conservation and the global Lipschitz bound (1.64), there
exists α ∈ (0, 1) and a constant C, only depending on β, such that

‖m(t)‖Cα(Td) ≤ C ∀t ≥ 1

2
.
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In turn, this implies that

‖Du(t)‖∞ ≤ C ∀t ≤ T − 1

2
.

for a possibly different constant only depending on β, F,G. By monotonicity of
F(x, ·), (u,m) is the unique solution of the MFG system in ( 1

2 , T − 1
2 ) with initial-

terminal conditions given by m( 1
2 ) and u(T − 1

2 ) respectively. By the first part of
the proof, we know that this unique MFG solution satisfies the exponential turnpike
estimate. Hence there exists M > 0 such that

‖mT (t)−m̄‖2+‖DuT (t)−Dū‖2 ≤M(e−ωt+e−ω(T−t )) ∀t ∈ (1/2, T −1/2) .

Using the regularizing effect of the two equations, this estimate is upgraded to L∞-
norms and yields (1.94). �	

Let us stress that the turnpike estimate (1.94) gives an information in a long
intermediate time of the interval (0, T ). A stronger result can also be obtained, by
showing the convergence of (uT (t),mT (t)) at any time scale, i.e. for every t ∈
(0, T ). More precisely, there exists (u,m) solution of the problem in (0,∞):

⎧
⎪⎪⎨

⎪⎪⎩

−∂tu+ λ̄−Δu+H(x,Du) = F(x,m) in (0,∞)× Td,
∂tm−Δm− div(mHp(x,Du)) = 0 in (0,∞)× Td,
m(0) = m0 , Du ∈ Dū+ L2((0,∞)× Td ) , u bounded

(1.114)

such that

uT (t)+ λ̄(T − t)
T→∞→ u(t) ; mT (t)

T→∞→ m(t)

where the convergence is uniform (locally in time). We notice that, since F(x, ·) is
nondecreasing, there is a unique m which solves problem (1.114), while u is unique
up to addition of a constant. Nevertheless the above convergence holds for the whole
sequence T → ∞. i.e. there is a unique solution u of the infinite horizon problem
which is selected in the limit of uT (t) + λ̄(T − t). We also point out that m̄ is
the unique invariant measure of the Fokker-Planck equation (hence m(t) → m̄ as
t →∞). Finally, the same problem (1.114) is obtained as the limit of the discounted
MFG problem when the discount factor vanishes. The discounted (infinite horizon)
problem is described by the system

⎧
⎪⎪⎨

⎪⎪⎩

−∂tu+ δu−Δu+H(x,Du) = F(x,m) in (0,∞)× Td,
∂tm−Δm− div(mHp(x,Du)) = 0 in (0,∞)× Td,
m(0) = m0 , u bounded
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and corresponds to the following minimization problem for each agent:

J (x, α) = inf
α
E

[∫ +∞

0
e−δt

(
H ∗(Xt ,−αt )+ F(Xt ,m(t))

)
dt

]

where δ > 0 is a fixed discount rate. In case of monotone couplings, the limit as
δ → 0 produces a unique solution of (1.114) and is, once more, related to the
ergodic behavior of the controlled system. We refer to [58] where all the above
mentioned results are proved for smoothing couplings in connection with the long
time behavior and the ergodic properties of the master equation. A different proof is
also given in [91] for local couplings and Lipschitz Hamiltonians.

We conclude by mentioning that the aforementioned results, and specifically the
exponential convergence, mostly rely on the presence of the diffusion term in the
equations (the individual noise of the agents). Indeed, in case of first order MFG
systems, only partial results are known, even in case of monotone couplings. The
typical result proved so far consists in the long time average convergence towards
the ergodic first order system, see [52, 53] for the case of, respectively, smoothing
and local couplings.

Remark 1.15 It is well-known that the ergodic behavior of Hamilton-Jacobi equa-
tions has strict connections with the study of homogenization problems. To this
respect, the study of MFG systems is still largely open. MFG problems with
fast oscillation in the space variable (homogenization) are studied in [82, 151].
Interestingly, the monotonicity structure of MFG might be lost after homogenization
(although very recent results by Lions show that some structure is preserved).

1.3.7 The Vanishing Viscosity Limit and the First Order System
with Local Couplings

1.3.7.1 Existence and Uniqueness of Solutions

We now analyze the vanishing viscosity limit of weak solutions. Compared to the
case of smoothing couplings, now we cannot rely anymore on the semi concavity
estimates for u, and the relaxed solutions obtained for the deterministic problem fall
outside the viscosity solutions setting. However, the monotonicity of the couplings,
the coercivity of the Hamiltonian and, eventually, the stability properties of the
system, will allow us to handle the two equations in a purely distributional sense.

To fix the ideas, we still assume that the Hamiltonian H(x, p) is convex and
C1 with respect to p and satisfies assumptions (1.66)–(1.68). We also assume that
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F,G ∈ C(Td × R+) are nondecreasing functions of m which verify, for some
constants Ci > 0,

∃ f ∈ C(R+,R+) nondecreasing, with lim
s→+∞ f (s) = +∞

and f (s)s convex, such that

C0 f (m)− C1 ≤ F(x,m) ≤ f (m)+ C1 , ∀(x,m) ∈ Td × R+
(1.115)

∃ g ∈ C(R+,R+) nondecreasing, with lim
s→+∞ g(s) = +∞

and g(s)s convex, such that

C2 g(m)− C3 ≤ G(x,m) ≤ g(m)+ C3 , ∀(x,m) ∈ Td × R+ .
(1.116)

Of course the simplest example occurs when f (s) and g(s) are power-type
functions, as considered e.g. in [62]. Both nonlinearities F and H could also depend
(in a measurable way) on t , but this would not add any change in the following, so
we omit this dependence to shorten notations.

The key point here is to consider the duality between weak sub solutions of
Hamilton-Jacobi equation and weak solutions of the continuity equation. This topic
has an independent interest for PDEs especially in connection with the theory of
optimal transport.

Definition 1.6 Given f ∈ L1(QT ), g ∈ L1(Td), a function u ∈ L2(0, T ;H 1(Td))

is a weak sub solution of

{
−∂tu+H(x,Du) = f (t, x)

u(T , x) = g(x)
(1.117)

if it satisfies

∫ T

0

∫

Td

u ∂tϕ +
∫ T

0

∫

Td

H (x,Du) ϕ ≤
∫ T

0

∫

Td

f ϕ +
∫

Td

gϕ(T )

∀ϕ ∈ C1
c ((0, T ] × Td) , ϕ ≥ 0 . (1.118)

Hereafter, we will shortly write −∂tu+H(x,Du) ≤ f and u(T ) ≤ g to denote the
previous inequality.

Let us point out that, since H is bounded below thanks to condition (1.66),
any sub solution u according to the above definition is time-increasing up to an
absolutely continuous function; in particular, u admits a right-continuous Borel
representative and admits one-sided limits at any t ∈ [0, T ]. We refer the reader to
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[158, Section 4.2] for the analysis of trace properties of u. We will use in particular
the existence of a trace at time t = 0 for u; this trace should be understood in
the sense of limits of measurable functions (convergence in measure of u(t, x) as
t → 0+).

Definition 1.7 Let m0 ∈ P(Td). Given a measurable vector field b : QT → R, a
function m ∈ L1(QT ) is a weak solution of the continuity equation

{
∂tm− div(m b) = 0

m(0) = m0
(1.119)

if m ∈ C0([0, T ];P(Td)), ∫ T0
∫

Td
m |b|2 <∞ and the distributional equality holds:

−
∫ T

0

∫

Td

m ∂tϕ +
∫ T

0

∫

Td

m b ·Dϕ =
∫

Td

m0ϕ(0) ∀ϕ ∈ C1
c ([0, T )× Td ) .

(1.120)

Let us recall that the requirement that
∫ T

0

∫

Td
m |b|2 < ∞ is very natural in the

framework of weak solutions to the continuity equation, and this is related with the
fact that m(t) is an absolutely continuous curve in P(Td) with L2 metric velocity,
see [18].

Standing on the above two definitions, we have a weak setting for the determinis-
tic MFG system. For simplicity, we restrict hereafter to the case that m0 ∈ L1(Td ).

Definition 1.8 A pair (u,m) ∈ L2(0, T ;H 1(Td )) × L1(QT )+ is a weak solution
to the first order MFG system

{
−∂tu+H(x,Du) = F(x,m)

u(T ) = G(x,m(T ))
(1.121)

{
∂tm− div(mHp(x,Du)) = 0

m(0) = m0
(1.122)

if

(i) F(x,m)m ∈ L1(QT ), G(x,m(T ))m(T ) ∈ L1(Td ), m|Du|2 ∈ L1(QT ), and
u is bounded below

(ii) u is a weak sub solution of (1.121),m ∈ C0([0, T ];P(Td)) is a weak solution
of (1.122)
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(iii) u and m satisfy the following identity:

∫

Td

m0 u(0) dx =
∫

Td

G(x,m(T ))m(T ) dx +
∫ T

0

∫

Td

F (t, x,m)m dxdt

+
∫ T

0

∫

Td

m
[
Hp(x,Du) ·Du−H(x,Du)

]
dxdt

(1.123)

A key point is played by the following lemma, which justifies the duality between
weak sub solutions of the Hamilton-Jacobi equation and weak solutions of the
continuity equation. This also gives sense to the first term in (1.123), where we
recall that the value u(0) is the trace of u(t) as explained before.

In the following, for a convex super linear function φ : Rd → R, we denote by
φ∗ its Legendre transform defined as φ∗(q) = supp∈Rd [q · p − φ(p)].
Lemma 1.15 Let u be a weak sub solution of (1.117) and m be a weak solu-
tion of (1.119). Assume that f, g, u are bounded below and there exist convex
increasing and superlinear functions φ1, φ2 such that φ1(m), φ

∗
1 (f ) ∈ L1(QT ) and

φ2(m(T )), φ
∗
2 (g) ∈ L1(Td).

Then we have m|Du|2 ∈ L1(QT ), u(0)m0 ∈ L1(Td) and

∫

Td

m0 u(0) dx ≤
∫

Td

g m(T ) dx +
∫ T

0

∫

Td

f m dxdt

+
∫ T

0

∫

Td

m [b ·Du−H(x,Du)] dxdt (1.124)

Proof Let ρδ(·) be a sequence of standard symmetric mollifiers in Rd . We set
mδ(t, x) = m(t) � ρδ . We also take a sequence of 1-d mollifiers ξε(t) such that
supp(ξε) ⊂ (−ε, 0), and we set

mδ,ε :=
∫ T

0
ξε(s − t) mδ(s)ds =

∫ T

0

∫

RN

m(s, y)ξε(s − t)ρδ(x − y) dyds .

Notice that this function vanishes near t = 0, so we can take it as test function in
(1.118). We get

∫ T

0

∫

Td

u ∂tmδ,ε +
∫ T

0

∫

Td

H (x,Du)mδ,ε ≤
∫ T

0

∫

Td

f mδ,ε +
∫

Td

g mδ,ε(T ) .

(1.125)
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The first integral is equal to
∫ T

0

∫

Td
−∂suδ,εm(s, y) dsdy, where uδ,ε(s, y) =

∫ T
0

∫

Td
u(t, x)ξε(s− t)ρδ(x−y) dtdx. Notice that this function vanishes near s = T

so it can be used as test function in (1.120). Therefore we have

∫ T

0

∫

Td

u(t, x) ∂tmδ,ε(t, x) dxdt

= −
∫ T

0

∫

Td

mδ,ε(s, y) ∂suδ,ε(s, y) dsdy

= −
∫ T

0

∫

Td

m(s, y)b(s, y) ·Dyuδ,ε dsdy +
∫

Td

m0(y)uδ,ε(0, y)dy .

We shift the convolution kernels from u to m in the right-hand side and we use this
equality in (1.125). We get

−
∫ T

0

∫

Td

Du ·wδ,ε +
∫ T

0

∫

Td

H(x,Du)mδ,ε +
∫

Td

(m0 � ρδ)

(∫ T

0
u(t)ξε(−t) dt

)

≤
∫ T

0

∫

Td

f mδ,ε +
∫

Td

g mδ,ε(T )

(1.126)

where we denote wδ = [(bm) � ρδ] and wδ,ε(t, x) =
∫ T

0 wδ(s, x) ξε(s − t) ds.
Now we let first ε → 0, and then δ → 0. Since u is time increasing (up to an

absolutely continuous function), we have

lim inf
ε→0

∫

Td

(m0 � ρδ)

(∫ T

0
u(t)ξε(−t) dt

)

≥
∫

Td

(m0 � ρδ) u(0)

and since u is bounded below once we let δ → 0 we have m0 u(0) ∈ L1(Td) and

lim inf
δ→0

lim inf
ε→0

∫

Td

(m0 � ρδ)

(∫ T

0
u(t)ξε(−t) dt

)

≥
∫

Td

m0 u(0) . (1.127)

Using the time continuity of m into P(Td), we have

‖mδ,ε(T )− (m(T ) � ρδ)‖∞ ≤ ‖Dρδ‖∞
∫ T

0
ξε(s − T )d1(m(s),m(T ))ds

ε→0→ 0 ,

so we handle the term at t = T :

lim
ε→0

∫

Td

g mδ,ε(T ) =
∫

Td

g(m(T ) � ρδ) .
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Now we can pass to the limit in the last term due to Lebesgue’s theorem, since by
the assumptions we dominate

g(m(T ) � ρδ) ≤ φ∗2 (g)+ φ2(m(T ) � ρδ) ≤ φ∗2 (g)+ φ2(m(T )) � ρδ

where we used Jensen’s inequality in the last step. Since φ∗2 (g), φ2(m(T )) ∈
L1(Td), last term strongly converges in L1(Td), and since g is also bounded below
we deduce that |g(m(T ) � ρδ)| is dominated in L1(Td ). Therefore

lim
δ→0

lim
ε→0

∫

Td

g mδ,ε(T ) =
∫

Td

g m(T ) . (1.128)

We reason in a similar way for the term with f , which satisfies, for some constant
c0,

c0 mδ,ε ≤ f mδ,ε ≤ φ∗1 (f )+ (φ1(m) � ρδ,ε) .

By dominated convergence again we deduce

lim
δ→0

lim
ε→0

∫ T

0

∫

Td

f mδ,ε =
∫ T

0

∫

Td

f m . (1.129)

Finally, using (1.66) we have

−Du ·wδ,ε +H(x,Du)mδ,ε ≥ α

2
mδ,ε|Du|2 − C

[

mδ,ε + |wδ,ε|2
mδ,ε

]

Now we define the lower semi-continuous function Ψ on RN × R by

Ψ (w,m) =

⎧
⎪⎨

⎪⎩

|w|2
m

if m > 0,
0 if m = 0 and w = 0,
+∞ otherwise,

(1.130)

and we observe that Ψ is convex in the couple (w,m). So by Jensen’s inequality we

have |wδ,ε |2
mδ,ε

≤ (
|w|2
m
) � ρδ,ε. Recalling that w = bm in our setting (hence |w|2

m
=

m |b|2), we deduce that

−Du ·wδ,ε +H(x,Du)mδ,ε ≥ α

2
mδ,ε|Du|2 − C

[
mδ,ε + (|b|2 m) � ρδ,ε

]
.
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From the previous inequality we are allowed to use Fatou’s lemma as ε, δ → 0,
obtaining

lim inf
δ→0

lim inf
ε→0

∫ T

0

∫

Td

[−Du ·wδ,ε +H(x,Du)mδ,ε]

≥
∫ T

0

∫

Td

m[−Du · b +H(x,Du)] (1.131)

and we also deduce in between that m|Du|2 ∈ L1(QT ). Finally, collecting (1.127),
(1.128), (1.129) and (1.131), we obtain (1.124). �	

We are now able to discuss the vanishing viscosity limit of the MFG system. In
the following, we will make use of the family of Young measures generated by the
sequence {mε}. To this purpose, we recall the fundamental result concerning Young
measures [181], see e.g. [22, 161]. Here P(R) denotes the space of probability
measures on R.

Proposition 1.3 Let Q be a bounded subset in RN , and let {wn} be a sequence
which is weakly converging in L1(Q). Then there exists a subsequence {wnk } and a
weakly∗ measurable function ν : Q �→ P(R) such that if f (y, s) is a Carathéodory
function and {f (y,wnk (y))} is an equi-integrable sequence in L1(Q), then

f (y,wnk (y)) ⇀ f̄ (y) weakly in L1(Q), where f̄ (y) =
∫

R

f (y, λ)dνy(λ) .

�

Theorem 1.15 Assume that F,G satisfy (1.115)–(1.116), and that H(x, p)

satisfies (1.66)–(1.68). Let m0 ∈ L∞(Td) and let (uε,mε) be a solution of
(1.62). Then there exists a subsequence, not relabeled, and a couple (u,m) ∈
L2(0, T ;H 1(Td))× L1(QT ) such that (uε,mε) → (u,m) in L1(QT ), and (u,m)
is a weak solution to (1.121)–(1.122) in the sense of Definition 1.8.

Proof By Lemma 1.13, (uε,mε) satisfy the a priori estimates (1.69). On account of
conditions (1.66)–(1.68), this implies that there exists a constant C, independent of
ε, such that

∫ T

0

∫

Td
F (x, mε)mε+

∫

Td
G(x,mε(T ))mε(T )+

∫ T

0

∫

Td
mε |Duε |2+

∫ T

0

∫

Td
|Duε |2 ≤ C .

Hence there exists a subsequence, not relabeled, and a function u ∈
L2(0, T ;H 1(Td)) such that uε → u weakly in L2(0, T ;H 1(Td )). Notice that,
since ∂tuε is bounded in L2(0, T ; (H 1(Td))′)+ L1(QT ), by standard compactness
results the convergence of uε to u is strong in L2(QT ). Moreover, since F,G are
bounded below, by maximum principle we also have that uε is bounded below.
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As for mε , from (1.115) we have that f (mε)mε is bounded in L1(QT ). This
implies that mε is equi-integrable and so, by Dunford-Pettis theorem, it is relatively
compact in the weak topology of L1(QT ); there exists a subsequence, not relabeled,
and a function m ∈ L1(QT ) such that mε → m weakly in L1(QT ). Let us
denote by ν(t,x)(·) the family of Young measures generated by mε, according to
Proposition 1.3. Since F(x,mε)mε is bounded in L1(QT ), then F(x,mε) is equi-
integrable and then we have

F(x,mε)→ f̄ weakly in L1(QT ), where f̄ =
∫

R

F(x, λ)dν(t,x)(λ) .

We notice that the bound on F(x,mε)mε implies that
∫

R
F(x, λ)λdν(t,x)(λ) ∈

L1(QT ). Indeed, applying Proposition 1.3 to the function F(x,m)Tk(m), where
Tk(m) = min(m, k), implies

∫ T

0

∫

Td

∫

R

F(x, λ)Tk(λ) dν(t,x)(λ) = lim
ε→0

∫ T

0

∫

Td

F (x,mε)Tk(m
ε) ≤ C ,

and then, by letting k →∞, by monotone convergence we get

∫ T

0

∫

Td

∫

R

F(x, λ)λ dν(t,x)(λ) <∞ . (1.132)

Similarly we reason for the sequence mε(T ). This is equi-integrable in L1(Td) and
then, up to subsequences, it converges weakly in L1(Td); in addition, denoting
{γx(·)} the sequence of Young measures generated by mε(T ), we have that
G(x,mε(T )) is weakly relatively compact in L1(Td) and

G(x,mε)→ ḡ weakly in L1(QT ), where ḡ =
∫

R

G(x, λ)dγx(λ) .

In addition, as before, we deduce that
∫

R
G(x, λ)λdγx(λ) ∈ L1(Td).

We can now pass to the limit in the two equations. As for the HJ equation, since
p �→ H(x, p) is convex, then by weak lower semi-continuity we deduce that u
satisfies

{
−∂tu+H(x,Du) ≤ f̄

u(T ) ≤ ḡ
(1.133)

in the sense of Definition 1.6. As for mε, we observe that (1.69) and (1.67) imply
that mε |Hp(x,Du

ε)|2 is bounded in L1(QT ). It follows (see also Remark 1.6) that

d2(m
ε(t),mε(s)) ≤ C|t − s| 1

2 , where d2 is the Wasserstein distance in P(Td).
Therefore,mε(t) is equi-continuous and converges uniformly in the weak∗ topology.
This implies that the L1-weak limit m belongs to C0([0, T ];P(Td)), and m(0) =
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m0. Finally, mε Hp(x,Du
ε) is equi-integrable and therefore weakly converges (up

to subsequences) in L1(QT ) to some vector field w. If Ψ is defined in (1.130), we
deduce

∫ T

0

∫

Td

Ψ (w,m) ≤ lim inf
ε→0

∫ T

0

∫

Td

Ψ (mε,wε) =
∫ T

0

∫

Td

mε |Hp(x,Du
ε)|2 ≤ C

henceΨ (w,m) ∈ L1(QT ). In particular we can set b := w
m

1{m>0}, thenm is a weak
solution of (1.119), with m |b|2 ∈ L1(QT ). Eventually, since mε weakly converges
to m and f (s)s is convex, by lower semicontinuity we deduce that

∫ T

0

∫

Td

f (m)m ≤ lim inf
ε→0

∫ T

0

∫

Td

f (mε)mε ≤
∫ T

0

∫

Td

F (x,mε)mε + C0 ≤ C .

Similarly we have for mε(T ), hence we conclude that

f (m)m ∈ L1(QT ) , g(m(T ))m(T ) ∈ L1(Td) .

Now we observe that, using the monotonicity of F(x, ·) and condition (1.115) we
can estimate

f̄ =
∫

R

F(x, λ)dν(t,x)(λ) ≤ F(x, s)+ 1

s

∫

R

F(x, λ)λ dν(t,x)(λ)

≤ f (s)+ C1 + 1

s

∫

R

F(x, λ)λ dν(t,x)(λ) .

hence

[f̄ − C1]s − f (s)s ≤
∫

R

F(x, λ)λ dν(t,x)(λ) ∀s ≥ 0 .

Recall that f (s)s is convex and the right-hand side belongs to L1(QT ); we deduce
from the above inequality that φ∗1 (f̄ − C1) ∈ L1(QT ), where φ∗1 is the convex
conjugate of φ1(s) := f (s)s. Similarly we reason for ḡ, obtaining that φ∗2 (ḡ −
C3) ∈ L1(QT ) where φ2(s) = g(s)s. Notice that the addition of constants to f̄ , ḡ
in (1.133) is totally innocent up to replacing u with u+ a(T − t)+ b. Collecting all
the above properties, we can apply Lemma 1.15 to u and m and we obtain that the
following inequality holds:

∫

Td

m0 u(0) ≤
∫

Td

ḡ m(T )+
∫ T

0

∫

Td

f̄ m+
∫ T

0

∫

Td

m [b ·Du−H(x,Du)] .

(1.134)
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Now we conclude by identifying the weak limits f̄ , ḡ and b. We start from the
equality (1.70)

∫

Td

G(x,mε(T ))mε(T )+
∫ T

0

∫

Td

F (x,mε)mε

+
∫ T

0

∫

Td

mε [Hp(x,Du
ε) ·Duε −H(x,Duε] =

∫

Td

m0 u
ε(0) .

We observe that uε(0) is equi-integrable: indeed, (uε − k)+ is a sub solution of the
Bellman equation, so that

∫

Td

(uε(0)− k)+ +
∫ T

0

∫

Td

H (x,Duε)1{uε>k}

≤
∫ T

0

∫

Td

F (x,mε)1{uε>k} +
∫

Td

(G(x,mε(T ))− k)+ .

Hence the bound from below of H (see (1.66)) and the equi-integrability of
F(x,mε), G(x,mε(T )) imply that

∫

Td
(uε(0)−k)+ → 0 as k →∞ uniformly with

respect to ε. This implies that uε(0) is equi-integrable, and then it weakly converges
in L1(Td) to some function χ . In particular, when we pass to the limit in (1.62), we
have

∫

Td

ϕ(0) χ +
∫ T

0

∫

Td

uϕt +
∫ T

0

∫

Td

H (x,Du)ϕ ≤
∫ T

0

∫

Td

f̄ ϕ +
∫

Td

ḡ ϕ(T )

∀ϕ ∈ C1(QT ) , ϕ ≥ 0 .

By choosing a sequence ϕj such that ϕj (0) = 1 and ϕj approximates the Dirac
mass at t = 0, we conclude that χ ≤ u(0), where u(0) is the trace of u at time t = 0
in the sense explained above. Finally, we have

∫

Td

G(x,mε(T ))mε(T )+
∫ T

0

∫

Td

F (x,mε)mε

+
∫ T

0

∫

Td

mε [Hp(x,Du
ε) ·Duε −H(x,Duε]

ε→0−→
∫

Td

m0 χ ≤
∫

Td

m0 u(0)

(1.135)
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and using (1.134) we get

lim sup
ε→0

{∫

Td

G(x,mε(T ))mε(T )+
∫ T

0

∫

Td

F (x,mε)mε

+
∫ T

0

∫

Td

mε [Hp(x,Du
ε) ·Duε −H(x,Duε]

}

≤
∫

Td

ḡ m(T )+
∫ T

0

∫

Td

f̄ m +
∫ T

0

∫

Td

m [b ·Du−H(x,Du)] .

(1.136)

Let us denote wε := mε Hp(x,Du
ε). We have called w its weak limit in L1(QT );

since we have

∫ T

0

∫

Td

mε [Hp(x,Du
ε) ·Duε −H(x,Duε]

=
∫ T

0

∫

Td

mε H ∗(x,Hp(x,Du
ε)) =

∫ T

0

∫

Td

mε H ∗
(

x,
wε

mε

)

whereH ∗ is the convex conjugate of H , and since mH ∗ (x, w
m

)
is a convex function

of (m,w), by weak lower semicontinuity we have

lim inf
ε→0

∫ T

0

∫

Td

mε [Hp(x,Du
ε) ·Duε −H(x,Duε] ≥

∫ T

0

∫

Td

mH ∗ (x, w
m

)
.

(1.137)

Therefore we deduce from (1.136)

lim sup
ε→0

{∫

Td
G(x,mε(T ))mε(T )+

∫ T

0

∫

Td
F (x, mε)mε

}

≤
∫

Td
ḡ m(T )+

∫ T

0

∫

Td
f̄ m

+
∫ T

0

∫

Td
m [b ·Du−H(x,Du)]−

∫ T

0

∫

Td
mH ∗ (x, w

m

)

≤
∫

Td
ḡ m(T )+

∫ T

0

∫

Td
f̄ m

(1.138)
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where we have used that w = bm. We use now the monotonicity of F,G to
identify their limits. Indeed, denoting Tk(s) = min(s, k), we have (there is no loss of
generality here in assuming F,G positive, which is true up to addition of constants):

∫ T

0

∫

Td

[F(x,mε)− F(x,m)] (mε −m)

+
∫

Td

[G(x,mε(T ))−G(x,m(T ))] (mε(T )−m(T ))

≤
∫ T

0

∫

Td

F (x,mε)mε +
∫

Td

G(x,mε(T ))mε(T )

−
∫ T

0

∫

Td

F (x,mε) Tk(m)−
∫ T

0

∫

Td

Tk(F (x,m))m
ε +

∫ T

0

∫

Td

F (x,m)m

−
∫

Td

G(x,mε(T )) Tk(m(T ))

−
∫

Td

Tk(G(x,m(T )))m
ε(T )+

∫

Td

G(x,m(T ))m(T ) .

Hence, using (1.138) and the weak convergences ofmε, F (x,mε),G(x,mε(T )) we
get

lim sup
ε→0

{∫ T

0

∫

Td

[F(x,mε)− F(x,m)] (mε −m)

+
∫

Td

[G(x,mε(T ))−G(x,m(T ))] (mε(T )−m(T ))

}

≤
∫ T

0

∫

Td

f̄ [m− Tk(m)] +
∫ T

0

∫

Td

[F(x,m)− Tk(F (x,m))]m

+
∫

Td

ḡ [m(T )− Tk(m(T ))] +
∫

Td

[G(x,m(T ))− Tk(G(x,m(T )))]m(T ) .

Letting k → ∞ the right-hand side vanishes due to Lebesgue ’s theorem, so we
conclude that

lim sup
ε→0

{∫ T

0

∫

Td

[F(x,mε)− F(x,m)] (mε −m)

+
∫

Td

[G(x,mε(T ))−G(x,m(T ))] (mε(T )−m(T ))

}

= 0 .

This means that [F(x,mε) − F(x,m)] (mε − m) → 0 in L1(QT ), and almost
everywhere in QT up to subsequences. In particular, we deduce that F(x,mε) →
F(x,m) a.e. in QT up to subsequences, hence f̄ = F(x,m) and the convergence
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(of both F(x,mε) and F(x,mε)mε) is actually strong in L1(QT ). Similarly we
reason for G(x,mε(T )), which implies that ḡ = G(x,m(T )). If we come back to
(1.138), now the limit of the left-hand side coincides with the right-hand side, and
trapped in between we deduce that

∫ T

0

∫

Td

m
[w

m
·Du −H(x,Du)−H ∗ (x, w

m

)]
= 0

which yields that w
m

= Hp(x,Du) m-a.e. in QT . This implies that w =
mHp(x,Du). Finally, all the weak limits are identified. Coming back to (1.135),
now we know that F(x,mε)mε → F(x,m)m and G(x,mε(T ))mε(T ) →
G(x,m(T ))m(T ), and in addition (1.137) holds withw = mHp(x,Du). Therefore,
we have

∫

Td

G(x,m(T ))m(T )+
∫ T

0

∫

Td

F (x,m)m

+
∫ T

0

∫

Td

m [Hp(x,Du) ·Du−H(x,Du]

≤ lim inf
ε→0

{∫

Td

G(x,mε(T ))mε(T )+
∫ T

0

∫

Td

F (x,mε)mε

+
∫ T

0

∫

Td

mε [Hp(x,Du
ε) ·Duε −H(x,Duε]

}

≤
∫

Td

u(0)m0 .

Combining this information with (1.134), where f̄ , ḡ, b are now identified, yields
the energy equality (1.123). Thus, we conclude that (u,m) is actually a weak
solution of the MFG system in the sense of Definition 1.8. �	

Now we conclude the analysis with a uniqueness result. To this purpose, we need
a refined version of Lemma 1.15, as follows.

Lemma 1.16 Assume that F,G satisfy (1.115)–(1.116), and that H(x, p) satisfies
(1.66)–(1.68). Let (u,m) be a weak solution to (1.121)–(1.122). Then u(t)m(t) ∈
L1(Td) for a.e. t ∈ (0, T ), and the following equality holds:

∫

Td

m(t) u(t) dx =
∫

Td

G(x,m(T ))m(T ) dx +
∫ T

t

∫

Td

F (t, x,m)m dxdt

+
∫ T

t

∫

Td

m
[
Hp(x,Du) ·Du−H(x,Du)

]
dxdt

for a.e. t ∈ (0, T ).
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Proof Let us take t such that m(t) ∈ L1(Td) (this is true for a.e. t ∈ (0, T )). First
we apply Lemma 1.15 in the time interval (t, T ). Notice that, since F(x,m)m ∈
L1(QT ), G(x,m(T ))m(T ) ∈ L1(Td), then the requirements of the Lemma hold
with φ1(s) = f (s)s and φ2(s) = g(s)s, where f, g are given by (1.115)–(1.116).
We obtain that u(t)m(t) ∈ L1(Td) (where u(t) is the right-continuous Borel
representative of u) and

∫

Td

m(t) u(t) dx ≤
∫

Td

G(x,m(T ))m(T ) dx +
∫ T

t

∫

Td

F (x,m)m dxdt

+
∫ T

t

∫

Td

m
[
Hp(x,Du) ·Du−H(x,Du)

]
dxdt

=
∫

Td

u(0)m0 −
∫ t

0

∫

Td

F (x,m)m dxdt

−
∫ t

0

∫

Td

m
[
Hp(x,Du) ·Du−H(x,Du)

]
dxdt

(1.139)

where we used (1.123) in the last equality. Now we wish to apply once more
Lemma 1.15 in the interval (0, t); but this needs to be done in two steps. First of
all, we replace u with uk = min(u, k); uk is itself a sub solution and satisfies (see
e.g. [158, Lemma 5.3])

−∂tuk +H(x,Duk) ≤ F(x,m) 1{u<k} + c 1{u>k}

for some constant c > 0. Since uk(t) ∈ L∞(Td) and m(t) ∈ L1(Td), we can apply
Lemma 1.15 in (0, t) to get

∫

Td

uk(0)m0 ≤
∫

Td

uk(t)m(t)+
∫ t

0

∫

Td

[F(x,m) 1{u<k} + c 1{u>k}]m

+
∫ t

0

∫

Td

m
[
Hp(x,Du) ·Duk −H(x,Duk)

]
.

Letting k →∞ is allowed since u(t)m(t) ∈ L1(Td), and we deduce that

∫

Td

u(0)m0 ≤
∫

Td

u(t)m(t)+
∫ t

0

∫

Td

F (x,m)m

+
∫ t

0

∫

Td

m
[
Hp(x,Du) ·Du−H(x,Du)

]
.

Using this information in (1.139) we conclude the proof of the desired equality. �	
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We are ready for the uniqueness result, where we further invoke the following
lemma. This is a particular case of what proved in [158, Lemma 5.3] for solutions
in the whole space; the proof follows the same steps in the setting of x ∈ Td . A
similar statement is also contained in [62, Thm 6.2].

Lemma 1.17 ([158]) Let u1, u2 be two weak sub solutions of (1.117). Then v :=
max(u1, u2) is also a sub solution of the same problem.

We have all ingredients for the uniqueness result.

Theorem 1.16 Assume that F,G satisfy (1.115)–(1.116), and that H(x, p) satis-
fies (1.66)–(1.68). Let m0 ∈ L∞(Td ), and let (u,m), (ũ, m̃) be two weak solutions
of (1.121)–(1.122), in the sense of Definition 1.8. Then we have F(x,m) = F(x, m̃)

and, if F(x, ·) is an increasing function, then m = m̃ and u = ũ m-almost
everywhere.

Proof After condition (1.115), there is no loss of generality in assuming that
F(x, s) ≤ f (s) (which is the case up to addition of a (same) constant to both H ad
F ). Therefore, using the monotonicty of F(x, ·), we have

F(x,m)s ≤ F(x,m)m+ F(x, s)s ≤ F(x,m)m+ f (s)s

Hence, if we denote by φ1(s) = f (s)s, we have that φ∗1 (F (x,m)) ∈ L1(QT ),
while φ1(m) ∈ L1(QT ). This is of course true for m̃ as well. Similarly we reason
for G(x,m(T )) with φ2(s) = g(s)s given by (1.116). Therefore, we can apply
Lemma 1.15 to u and to m̃ as well as to ũ and m. We obtain

∫

Td

u(0)m0 ≤
∫ T

0

∫

Td

F (x,m)m̃+
∫

Td

G(x,m(T ))m̃(T )

+
∫ T

0

∫

Td

m̃[Hp(x,Dũ)Du −H(x,Du)] ,
∫

Td

ũ(0)m0 ≤
∫ T

0

∫

Td

F (x, m̃)m+
∫

Td

G(x, m̃(T ))m(T )

+
∫ T

0

∫

Td

m[Hp(x,Du)Dũ −H(x,Dũ)] .

We use (1.123) in the first inequality, and similarly we use (1.123) written for
(ũ, m̃) in the second one. When we add the two contributions we deduce the usual
inequality

∫ T

0

∫

Td

(F (x,m)− F(x, m̃))(m− m̃)

+
∫

Td

[G(x,m(T ))−G(x, m̃(T ))][m(T )− m̃(T )]
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∫ T

0

∫

Td

m [H(x,Dũ)−H(x,Du)−Hp(x,Du)(Dũ −Du)]

+
∫ T

0

∫

Td

m̃ [H(x,Du)−H(x,Dũ)−Hp(x,Dũ)(Du−Dũ)] ≤ 0 .

This implies that F(x,m) = F(x, m̃) and G(x,m(T )) = G(x, m̃(T )), and we have

H(x,Dũ)−H(x,Du) = Hp(x,Du)(Dũ−Du) in {(t, x) : m(t, x) > 0}
H(x,Du)−H(x,Dũ) = Hp(x,Dũ)(Du−Dũ) in {(t, x) : m̃(t, x) > 0}.

(1.140)

Of course, if F(x, ·) is increasing, we deduce that m = m̃ almost everywhere.
Now we use Lemma 1.17, which says that z := max(u, ũ) is a sub solution of

the HJ equation. Then we can apply Lemma 1.15 and we obtain, for a.e. t ∈ (0, T ):

∫

Td

m(t) z(t) ≤
∫

Td

G(x,m(T ))m(T )+
∫ T

t

∫

Td

F (x,m)m

+
∫ T

t

∫

Td

m
[
Hp(x,Du) ·Dz −H(x,Dz)

]
. (1.141)

Now we have

∫ T

t

∫

Td

m
[
Hp(x,Du) ·Dz −H(x,Dz)

]

=
∫ T

t

∫

Td

m
[
Hp(x,Du) ·Dũ−H(x,Dũ)

]
1{u≤ũ}

+
∫ T

t

∫

Td

m
[
Hp(x,Du) ·Du−H(x,Du)

]
1{u>ũ}

=
∫ T

t

∫

Td

m
[
Hp(x,Du) ·Du−H(x,Du)

]

thanks to (1.140); thus we deduce from (1.141)

∫

Td

m(t) z(t) ≤
∫

Td

G(x,m(T ))m(T )+
∫ T

t

∫

Td

F (x,m)m

+
∫ T

t

∫

Td

m
[
Hp(x,Du) ·Du −H(x,Du)

]

=
∫

Td

m(t) u(t)
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where we used Lemma 1.16. We conclude that
∫

Td

m(t) [z(t)− u(t)] ≤ 0

which implies that u(t) = z(t) (i.e. u(t) ≥ ũ(t)) m-almost everywhere. Reversing
the roles of the two functions we conclude that u = ũ m-almost everywhere. �	
Remark 1.16 There are other approaches to study the first order MFG system
(1.121)–(1.122), especially if model cases are considered. One possible strategy,
introduced in [145], consists in transforming the system into a second order elliptic
equation for u in time space. More precisely, using that F is one-to-one and
replacing m in the continuity equation by

m(t, x) = F−1(x,−∂tu+H(x,Du)),

one finds an elliptic equation in (t, x) for u. This elliptic equation is fully nonlinear
and degenerate (at least on the points (t, x) where m(t, x) = 0). This strategy is the
starting point of regularity results proved by P.-L. Lions in [149] (Lessons 6-27/11
2009), which in particular lead to uniform bounds for the density m.

Other regularity results, including L∞- bounds or Sobolev regularity for the
density, were obtained by F. Santambrogio in [147, 148, 175] using completely
different techniques inspired by optimal transport theory. Those results are just one
by-product of the Lagrangian approach developed by F. Santambrogio, for which
we refer to his presentation in this same volume.

1.3.7.2 Variational Approach and Optimality Conditions

Following [144] the MFG system (1.62) can be viewed as an optimality condition
for two optimal control problems: the first one is an optimal control of Hamilton-
Jacobi equations and the second one an optimal control of the Fokker-Planck
equation.

In order to be more precise, let us first introduce some assumptions and notations:
without loss of generality, we suppose that F(x, 0) = 0 (indeed we can always
subtract F(x, 0) to both sides of (1.62)). Then we set

Φ(x,m) =
⎧
⎨

⎩

∫ m

0
F(x, ρ)dρ if m ≥ 0

0 otherwise .

As F is nondecreasing with respect to the second variable, Φ(x,m) is convex
with respect to m, so we denote by Φ∗ = Φ∗(x, α) = supm∈R (αm−Φ(x,m))

its convex conjugate. Note that Φ∗ is convex and nondecreasing with respect
to the second variable. We also recall the convex conjugate H ∗(x, q) =
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supp∈Rd (q · p −H(x, p)) already used before. For simplicity, we neglect here
the coupling at t = T and we let G = G(x).

The first optimal control problem is the following: the distributed control is α :
T
d × [0, T ] → R and the state function is u. The goal is to minimize the functional

J HJ (α) =
∫ T

0

∫

Td

Φ∗ (x, α(t, x)) dxdt −
∫

Td

u(0, x)dm0(x)

over Lipschitz continuous maps α : (0, T ) × Td → R
d , where u is the unique

classical solution to the backward Hamilton-Jacobi equation

{−∂tu− εΔu+H(x,Du) = α(t, x) in (0, T )× Td
u(T , x) = G(x) in Td .

(1.142)

The second is an optimal control problem where the state is the solution m of the
Fokker-Planck equation: the (distributed and vector valued) control is now the drift
term v : [0, T ] × Td → Rd . The goal here is to minimize the functional

J FP (v) =
∫ T

0

∫

Td

[mH ∗ (x,−v)+ F(x,m)] dxdt +
∫

Td

G(x)m(T )dx,

where the pair (m, v) solves the Fokker-Planck equation

∂tm− εΔm+ div(mv) = 0 in (0, T )× Td, m(0) = m0. (1.143)

Assuming that F ∗ and H ∗ are smooth enough, the equivalence between the MFG
system and the optimality conditions of the previous two problems can be checked
with a direct verification.

Theorem 1.17 ([149]) Assume that (m̄, ū) is of classC2((0, T )×Td), with m̄(0) =
m0 and ū(T , x) = G(x). Suppose furthermore that m̄(t, x) > 0 for any (t, x) ∈
(0, T )× Td . Then the following statements are equivalent:
(i) (ū, m̄) is a solution of the MFG system (1.62).
(ii) The control ᾱ(t, x) := F(x, m̄(t, x)) is optimal for J HJ and the solution to

(1.142) is given by ū.
(iii) The control v̄(t, x) := −Hp(x,Dū(t, x)) is optimal for J FP , m̄ being the

solution of (1.143).

Let us stress that the above equivalence holds even for ε = 0, say for the
deterministic problem. But of course a formal equivalence for smooth solutions is
of very little help. However, it is possible to exploit the convexity of the optimal
control problems in order to export the equivalence principle to suitably relaxed
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optimization problems. To this purpose, observe that the optimal control problem of
Hamilton-Jacobi equation can be rewritten as

inf
u

∫ T

0

∫

Td
F∗ (x,−∂t u(x, t)− εΔu(x, t)+H(x,Du(x, t))) dxdt −

∫

Td
u(0, x)dm0(x)

under the constraint that u is sufficiently smooth, with u(·, T ) = G(·). Remem-
bering that H is convex with respect to the last variable and that F is convex and
increasing with respect to the last variable, it is clear that the above problem is
convex.

The optimal control problem of the Fokker-Planck equation is also a convex
problem, up to a change of variables which appears frequently in optimal trans-
portation theory since the pioneering paper [28]. In fact, if we set w = mv, then the
problem can be rewritten as

inf
(m,w)

∫ T

0

∫

Td
[m(t, x)H ∗

(

x,−w(t, x)

m(t, x)

)

+ F(x,m(t, x))] dxdt +
∫

Td
G(x)m(T , x)dx,

where the pair (m,w) solves the Fokker-Planck equation

∂tm− εΔm+ div(w) = 0 in (0, T )× Td , m(0) = m0. (1.144)

This problem is convex because the constraint (1.144) is linear and the map

(m,w)→ mH ∗ (x,−w

m

)
is convex.

It turns out that the two optimal control problems just defined are conjugate in
the Fenchel-Rockafellar sense (see, for instance, [100]) and they share the same
optimality condition. Minimizers of such problems are expected to provide with
weak solutions for (1.62). This approach has been extensively used for first order
problems since [53, 54], leading to weak solutions in the sense of Definition 1.8.
A similar analysis was later extended to second order degenerate MFG problems in
[62], as well as to problems with density constraints, in which case one enforces the
constraint that the density m = m(t, x) is below a certain threshold. In this case,
a penalization term appears in the HJ equation as an extra price to go through the
zones where the density saturates the constraint (see [63, 124, 155, 173]).

A similar variational approach was also specially developed for the planning
problem in connection with optimal transportation [126, 158].

We do not comment more on the optimal control approach because this is also
extensively recalled in the contributions by Y. Achdou & M. Lauriere, and in the
one by F. Santambrogio, in this volume.
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1.3.8 Further Comments, Related Topics and References

1.3.8.1 Boundary Conditions, Exit Time Problems, State Constraints,
Planning Problem

The existence and uniqueness results presented here for second order problems
remain valid, with no additional difficulty, for the case of Neumann boundary
conditions, i.e. when the controlled process lives in a bounded domain Ω ⊂ Rd
with reflection on the boundary. Results in this setting can be found e.g. in [165],
or in [86]. A similar situation occurs when the domain happens to be invariant for
the controlled process, and the trajectory cannot reach the boundary because of the
degeneracy of the diffusion or due to the direction of the controlled drift. The study
of the MFG system in this situation appears in [168].

By contrast, in many models, players can leave the game before the terminal
time and the population is not constant: this is for instance the case of MFG with
exit time, which lead to Dirichlet boundary conditions for the two unknowns (u,m)
in the system. An interesting problem arises when the agents also control the time
they stay in the game. The optimal control problem then becomes

u(t, x) = inf
τ,α
E

[∫ τ

0
f (Xt , αt ,m(t))dt + g(XT ,m(T ))

]

where (Xt) is driven by the usual controlled diffusion process. Here the controls
are α and the stopping time τ . The measure m(t) can be (depending on the model)
either the law of Xt given {τ ≥ t} (in which case the mass of m(t) is constant,
but the equation for m is no longer a simple Fokker-Planck equation) or simply the
measure m(t) defined by

∫

Rd

φ(x)m(t, dx) = E [φ(Xt )1τ≥t
] ∀φ ∈ C∞

c (Rd ).

In this case the mass of m(t) is non increasing in time.
Such models have been studied in the framework of bank run in [74] or in

exhaustible commodities trade [84, 125]. In [32], the author provides a general
PDE framework to study the problem and shows that the players might be led to
use random strategies (see also [38]). An early work on the topic is [112] while
surprising phenomena in the mean field analysis are discussed in [46, 112, 156, 157].
Minimal exit time problems for first order MFG problems are also studied in [154].

In many applications, the MFG system also involves state constraints. Namely,
the optimal control problem for a small player takes the form

u(t, x) = inf
γ

∫ T

t

L(γ (s), α(s),m(s)ds +G(γ (T ),m(T )),
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where the infimum is taken over solution of

{
γ̇ (s) = b(γ (s),m(s))ds, γ (s) ∈ Ω ∀s ∈ [t, T ],
γ (t) = x

where Ω is an open subset of Rd (in general with a smooth boundary). This is
the case of the Aiyagari problem [13] in economy for instance (see also [7, 9]).
The natural set-up of the HJ problem is the so-called viscosity solution with state-
constraints and is well understood. However, the analysis led in this section no
longer applies: the measure m develops singularities (not only on the boundary) and
one cannot expect uniqueness of the flow m given the vector field −Hp(x,Du,m).
To overcome this issue one can device a Lagrangian approach (see [47]). The PDE
analysis of this problem is only partially understood (see [49, 50]).

The initial-terminal conditions may also be changed, in what is called the
planning problem. In that model one wishes to prescribe both the initial and the
final distribution, while no terminal condition is assumed on u. This variant of MFG
problem fits into the models of optimal transportation theory, since the goal is to
transport the density from m(0) = m0 to m(T ) = m1 in a way which is optimal for
the agents’ control. Early results for this problem were given by P.-L. Lions in [149]
(Lessons 4-11/12 2009); the second order case was later studied in [163–165], and
the deterministic case in [126, 158]. Very recently, the planning problem has been
also addressed for the master equation with finite states, see [35].

1.3.8.2 Numerical Methods

The topic will be developed in detail in the contribution of Achdou and Lauriere
(see the references therein). Let us just remark here that the computation of the
solution of the MFG system is difficult because it involves a forward equation and
a backward equation. Let us just quote on this point the pioneering work [2], where
a finite difference numerical scheme was proposed in a way that the discretized
equations preserve the structure of the MFG system. In some cases one can also
take advantage of the fact that the MFG system has a variational structure [29].

1.3.8.3 MFG Systems with Several Populations

MFG models may very naturally involve several populations (say, to fix the ideas, I
populations). In this case the system takes the form

⎧
⎨

⎩

(i) −∂tui −Δui +Hi(x,Dui,m(t)) = 0 in (0, T )× Td
(ii) ∂tmi −Δmi − div

(
mi DpHi(x,Dui(t, x),m(t))

) = 0 in (0, T )× Td
(iii) mi(0) = mi,0 , ui(T , x) = Gi(x,m(T )) in Td
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where i = 1, . . . , I , ui denotes the value function of each player in population i and
m = (m1, . . . ,mI ) denotes the collection of densities mi of the population i. The
coupling functionsHi and Gi depend on all the densities. Existence of solutions can
be proved by fixed point arguments as in Theorem 1.5. Uniqueness, however, is a
difficult issue.

The MFG models with several populations were introduced in the early paper
by Caines, Huang and Malhamé [132] and revisited by Cirant [86] (for Neumann
boundary conditions, see also [24, 155]) and by Kolokoltsov, Li and Yang [137] (for
very general diffusions, possibly with jumps). Analysis of segregation phenomena
is pursued in [8, 93].

1.3.8.4 MFG of Control

In most application in economics, the coupling between the agents is not only
through the distribution of their positions but also of their instantaneous controls.
This kind of problem is more subtle than the classical MFG system since it requires,
in its general version, a new constraint explaining how to derive the distribution
of controls. For instance this new system can take the form (for problems with a
constant diffusion):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i) −∂t u(t, x)−Δu(t, x))+H(t, x,Du(t, x), μ(t)) = 0 in (0, T )× Rd
(ii) ∂tm(t, x) −Δm(t, x)− div

(
m(t, x)Hp(t, x, Du(t, x), μ(t))

) = 0 in (0, T )× Rd
(iii) μ(t) = (id,−Hp(t, x, Du,μ))�m(t) in (0, T )

(iv) m(0, x) = m0(x), u(T , x) = g(x, m(T )) in Rd

Here μ(t) is the distribution of states and controls of the players. Its first marginal
m(t) is the usual distribution of players. The new relation (iii) explains how to
compute μ(t) from the distribution of the states m(t) and the optimal feedback
−Hp(t, x,Du,μ). Note that (iii) is itself a fixed point problem. In many applica-
tions, the players only interact through some moments of the distribution of controls,
which simplifies the system. Existence of a solution for MFG of controls can be
achieved under rather general conditions (some structure condition, ensuring (iii) to
have a solution, is however required). Uniqueness is largely open.

Analysis of such problems can be found, among many other references, in [3, 34,
56, 69, 117, 119].

1.3.8.5 MFG with Common Noise and with a Major Player

Throughout this section we have discussed models in which the agents are subject
to individual noises (“idiosyncratic noise”) which are independent. However, it is
also important to be able to deal with problems in which some random perturbation
affects all the players. This perturbation can be quite rough (a white noise) or simply
the (random) position of a single player (who, since he/she cannot be considered
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as an infinitesimal player in this game, is often called a major player). In these
setting, the MFG system becomes random. For instance, in the case of MFG with a
Brownian common noise, it takes the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du(t, x) = [− 2Δu(t, x))+H(x,Du(t, x),m(t))

−√2div(v(t, x))
]
dt + v(t, x) · dWt in (0, T )× Rd ,

dm(t, x) = [2Δm(t, x))+ div
(
m(, x)DpH(x,Du(t, x),m(t))

)]
dt

−div(m(t, x)
√

2dWt

)
, in (0, T )× Rd,

u(T , x) = G(x,m(T )), m(0) = m0, in Rd

Here W is the common noise (a Brownian motion). The new variable v is an
unknown function which ensures the solution u to the backward HJ to be adapted
to the filtration generated by W . Another formulation of this problem involves the
master equation and will be discussed below, at the end of Sect. 1.4. Let us just
mention now that the analysis of MFG with common noise goes back to [149]
(Lessons 12-26/11 2010), where in particular the structure of the master equation
with common noise is described. The probabilistic approach of the MFG system is
studied in [73] (see also [11, 141]) while the first results on the PDE system above
and on the associated master equation are in [65].

MFG problems with a major player have been introduced by Huang in [130]. In
a series of papers, Carmona and al. introduced a different notion of solution for the
problem [70–72], mainly in a finite state space framework, and they showed that
this notion actually corresponds to a Nash equilibrium for infinitely many players.
This result is confirmed in [64] where the Nash equilibria for the N-player problem
is shown to converge to the corresponding master equation. The master equation for
the major problem is also studied in [146] (mostly in finite time horizon and in a
finite state space) and in [66] (short-time existence in continuous space). Variants
on the major player problem are discussed in [31] (MFG with a dominating player
in a Stackelberg equilibrium), [101] (for a principal-agent problem) and in [36].

1.3.8.6 Miscellaneous

Other MFG Systems Let us first mention other variations on the MFG system.
Besides the standard continuous-time, continuous-spaces models, the most relevant
class of MFG models is probably the MFG on finite state space: see, among main
other works, [26, 34, 78, 118]. In these problems the state of a typical player jumps
from one state to another. The coupling between the HJ and the FP equations
takes a much simpler form of a “forward-backward” system of ordinary differential
equations. Another class of MFG problems are MFG on networks [10, 45], in
which the state space is a (one dimensional) network. Motivated by knowledge
growth models [152], some authors considered MFGs in which the interaction
between players leads to a Boltzmann type equation or a Fisher-KPP equation
for the distribution function [42, 43, 160, 169]. MFGs involving jump processes,
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where the diffusion term becomes a fractional Laplacian, have been studied in
[44, 83, 89, 103, 137], while MFGs involving dynamics with deterministic jumps
have been investigated in [33].

MFGs vs Agent Based Models In MFG theory, agents are assumed to be rational.
On the contrary, in Agent Based Models, the agents are supposed to adopt an
automatic behavior. The link between the two approach has been discussed in
[23, 34, 99] where it is shown that MFG models degenerate into Agent Based
Models as the agents become more and more myopic or more and more impatient.

Learning A natural question in Mean Field Games, in view of the complexity of
the notion of MFG equilibria, is how players can achieve in practice to play a MFG
Nash equilibrium. This kind of problem, also related to the concept of adaptative
control [136], has been discussed in particular in the following references: [55, 56,
76, 77, 102, 129].

Efficiency of MFGs In game theory, a classical question is the (in)efficiency of
Nash equilibria (the so-called “price of anarchy”): to what extent are Nash equilibria
doing socially worse than a global planner? This question has also been addressed
for Mean Field Games in [21, 59, 75].

1.4 The Master Equation and the Convergence Problem

In Sect. 1.3 we have explained in detail how the mean field game problem can often
be reduced to a system of PDEs, the MFG system. If this MFG system is suitable
for the analysis of problems in which players have only independent individual
noises (the so-called idiosyncratic noises), it is no longer satisfactory to investigate
more complex models (for instance models in which the players are subject to a
common randomness, the so-called “MFG models with a common noise”). Nor does
it allow to understand the link between N-player differential games and mean field
games. To proceed, we need to introduce another equation: the master equation. The
master equation is an infinite dimensional hyperbolic equation stated in the space of
probability measures. As explained below, it is helpful for the following reasons:

• for standard MFG models, it allows to write the optimal control of a player
in feedback form in function of the current time, the current position and the
current distribution of the other players. This is meaningful since one can expect
in practice that players adapt their behavior in function of these data;

• it provides a key tool to investigate the convergence of the N-player game to the
MFG system;

• it allows to formalize and investigate more complex MFG models, as MFG with
a common noise or MFG with a major player.

In order to discuss the master equation, we first need to have a closer look at
the space of probability measures (Sect. 1.4.1) and then understand the notion of
derivative in this space (Sect. 1.4.2). Then we present the master equation and state,
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almost without proof, the existence and the uniqueness of the solution (Sect. 1.4.3).
We then discuss the convergence ofN-player differential games by using the master
equation (Sect. 1.4.4).

1.4.1 The Space of Probability Measures (Revisited)

We have already seen the key role of the space of probability measures in the mean
field game theory. It is now time to investigate the basic properties of this space
more thoroughly. The results are given mostly without proofs, which can be found,
for instance, in the monographs [18, 174, 178, 179].

1.4.1.1 The Monge-Kantorovich Distances

Let X be a Polish space (i.e., a complete separable metric space) and P(X) be the
set of Borel probability measures on X. There are several ways to metricize the
topology of narrow convergence, at least on some subsets of P(X). Let us denote
by d the distance on X and, for p ∈ [1,+∞), by Pp(X) the set of probability
measures m such that

∫

X

dp(x0, x)dm(x) < +∞ for some (and hence for all) point x0 ∈ X.

The Monge-Kantorowich distance on Pp(X) is given by

dp(m,m′) = inf
γ∈Π(m,m′)

[∫

X2
d(x, y)pdγ (x, y)

]1/p

(1.145)

where Π(m,m′) is the set of Borel probability measures on X×X such that γ (A×
X) = m(A) and γ (X × A) = m′(A) for any Borel set A ⊂ X. In other words, a
Borel probability measure γ on X ×X belongs to Π(m,m′) if and only if

∫

X2
ϕ(x)dγ (x, y) =

∫

X

ϕ(x)dm(x) and

∫

X2
ϕ(y)dγ (x, y) =

∫

X

ϕ(y)dm′(y) ,

for any Borel and bounded measurable map ϕ : X → R. Note that Π(m,m′) is
non-empty, because for instance m⊗m′ always belongs to Π(m,m′). Moreover, by
Hölder inequality, Pp(X) ⊂ Pp′(X) for any 1 ≤ p′ ≤ p and

dp′(m,m
′) ≤ dp(m,m′) ∀m,m′ ∈ Pp(X) .
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We now explain that there exists at least an optimal measure in (1.145). This
optimal measure is often referred to as an optimal transport plan from m to m′.

Lemma 1.18 (Existence of an Optimal Transport Plan) For any m,m′ ∈
Pp(X), there is at least one measure γ̄ ∈ Π(m,m′) with

dp(m,m′) =
[∫

X2
d(x, y)pdγ̄ (x, y)

]1/p

.

Proof We first show that Π(m,m′) is tight and therefore relatively compact for the
weak-* convergence. For any ε > 0 there exists a compact set Kε ⊂ X such that
m(Kε) ≥ 1 − ε/2 and m′(Kε) ≥ 1 − ε/2. Then, for any γ ∈ Π(m,m′), we have

γ (Kε ×Kε) ≥ γ (Kε ×X)− γ (Kε × (X\Kε))

≥ m(Kε)− γ (X × (X\Kε))

≥ 1 − ε/2 −m′(X\Kε) ≥ 1 − ε .

This means that Π(m,m′) is tight. It is also closed for the weak-* convergence.
Since the map γ → ∫

X2 |x − y|pdγ (x, y) is lower semi-continuous for the weak-*
convergence, it has a minimum on Π(m,m′). �	

Let us now check that dp is a distance.

Lemma 1.19 For any p ≥ 1, dp is a distance on Pp.

The proof uses the notion of disintegration of a measure, see Theorem 1.10.

Proof Only the triangle inequality presents some difficulty. Letm,m′,m′′ ∈ Pp and
γ, γ ′ be optimal transport plans from m to m′ and from m′ to m′′ respectively. We
disintegrate the measures γ and γ ′ with respect to m′: dγ (x, y) = dγy(x)dm

′(y)
and dγ ′(y, z) = dγ ′y(z)dm′(y) and we define the measure π on X ×X by

∫

X×X
ϕ(x, z)dπ(x, z) =

∫

X×X×X
ϕ(x, z)dγy(x)dγ

′
y(z)dm

′(y) ∀φ ∈ C0
b(X ×X) .

Then one easily checks that π ∈ Π(m,m′′) and we have, by Hölder inequality,

[∫

X×X
dp(x, z)dπ(x, z)

]1/p

≤
[∫

X×X×X
(d(x, y)+ d(y, z))pdγy(x)dγ

′
y(z)dm

′(y)
]1/p

≤
[∫

X×X
dp(x, y)dγy(x)dm

′(y)
]1/p

+
[∫

X×X
dp(y, z)dγy(z)dm

′(y)
]1/p

= dp(m,m′)+ dp(m′,m′′)

So dp(m,m′′) ≤ dp(m,m′)+ dp(m′,m′′). �	
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In these notes, we are mainly interested in two Monge-Kantorovich distances,
d1 and d2. The distance d2, which is often called the Wasserstein distance, is
particularly useful when X is a Euclidean or a Hilbert space. Its analysis will be
the object of the next subsection.

As for the distance d1, which often takes the name of the Kantorovich-Rubinstein
distance, we have already encountered it several times. Let us point out the following
equivalent representation, which explains the link with the notion introduced in
Sect. 1.2.2:

Theorem 1.18 (Kantorovich-Rubinstein Theorem) For any m,m′ ∈ P1(X),

d1(m,m
′) = sup

{∫

X

f (x)dm(x)−
∫

X

f (x)dm′(x)
}

where the supremum is taken over the set of all 1-Lipschitz continuous maps f :
X→ R.
Remark 1.17 In fact the above “Kantorovich duality result” holds for much more
general costs (i.e., it is not necessary to minimize the power of a distance). The
typical assertion in this framework is, for any lower semicontinuous map c : X ×
X→ R+ ∪ {+∞}, the following equality holds:

inf
γ∈Π(m,m′)

∫

X×X
c(x, y)dγ (x, y) = sup

f,g

∫

X

f (x)dm(x)+
∫

X

g(y)dm′(y) ,

where the supremum is taken over the maps f ∈ L1
m(X), g ∈ L1

m′ (X) such that

f (x)+ g(y) ≤ c(x, y) for m− a.e. x and m′ − a.e y.

The proof of this result exceeds the scope of these notes and can be found in several
textbooks (see [178] for instance).

Let us finally underline the link between convergence for the dp distance and
narrow convergence:

Proposition 1.4 A sequence of measures (mn) of Pp(X) converges to m for dp if
and only if (mn) narrowly converges to m and

lim
n→+∞

∫

X
dp(x, x0)dmn(x) =

∫

X
dp(x, x0)dm(x) for some (and thus any) x0 ∈ X .

The proof for p = 1 is a simple consequence of Proposition 1.1 and Theo-
rem 1.18. For the general case, see [178].
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1.4.1.2 The Wasserstein Space of Probability Measures on R
d

From now on we work in X = Rd . Let P2 = P2(R
d ) be the set of Borel probability

measures on Rd with a finite second order moment: m belongs to P2 if m is a Borel
probability measure on Rd with

∫

Rd
|x|2m(dx) < +∞. The Wasserstein distance is

just the Monge-Kankorovich distance when p = 2:

d2(μ, ν) = inf
γ∈Π(μ,ν)

[∫

R2d
|x − y|2dγ (x, y)

]1/2

(1.146)

where Π(μ, ν) is the set of Borel probability measures on R2d such that γ (A ×
R
d ) = μ(A) and γ (Rd × A) = ν(A) for any Borel set A ⊂ Rd .

An important point, that we shall use sometimes, is the fact that the optimal
transport plan can be realized as an optimal transport map wheneverμ is absolutely
continuous.

Theorem 1.19 (Existence of an Optimal TransportMap) Ifμ ∈ P2 is absolutely
continuous, then, for any ν ∈ P2, there exists a convex map Φ : RN → R such that
the measure (idRd ,DΦ)�μ is optimal for d2(μ, ν). In particular ν = DΦ�μ.

Conversely, if the convex map Φ : RN → R satisfies ν = DΦ�μ, then the
measure (idRd ,DΦ)�μ is optimal for d2(μ, ν).

The proof of this result, due to Y. Brenier [39], exceeds the scope of these notes.
It can be found in various places, such as [178].

1.4.2 Derivatives in the Space of Measures

In this section, we discuss different notions of derivatives in the space of probability
measures and explain how they are related. This part is, to a large extent, borrowed
from [65, 68]. For simplicity, we work in the whole space Rd and set P2 = P2(R

d ).

1.4.2.1 The Flat Derivative

Definition 1.9 Let U : P2 → R. We say that U is of class C1 if there exists a
jointly continuous and bounded map δU

δm
: P2 × Rd → R such that

U(m′)−U(m) =
∫ 1

0

∫

Rd

δU

δm
((1−h)m+hm′, y)(m′−m)(dy)dh ∀m,m′ ∈ P2.
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Moreover we adopt the normalization convention

∫

Rd

δU

δm
(m, y)m(dy) = 0 ∀m ∈ P2. (1.147)

Remark 1.18 If U : P2(T
d) → R, then the derivative is defined in the same way,

with δU
δm

: P2(T
d)× Td → R such that

U(m′)−U(m) =
∫ 1

0

∫

Td

δU

δm
((1− h)m+ hm′, y)(m′ −m)(dy)dh ∀m,m′ ∈ P2(T

d).

If U is of class C1, then the following equality holds for any m ∈ P2 and y ∈ Rd

δU

δm
(m, y) = lim

h→0+
1

h

(
U((1 − h)m+ hδy)− U(m)

)
.

Here is a kind of converse.

Proposition 1.5 Let U : P2 → R and assume that the limit

V (m, y) := lim
h→0+

1

h

(
U((1 − h)m+ hδy)− U(m)

)

exists and is jointly continuous and bounded on P2 × Rd . Then U is C1 and
δU
δm
(m, y) = V (m, y).

Proof Although the result can be expected, the proof is a little involved and can be
found in [66]. �	

Let us recall that, if φ : Rd → R
d is a Borel measurable map and m is a Borel

probability measure on Rd , the image of m by φ is the Borel probability measure
φ�m defined by

∫

Rd

f (x)φ�m(dx) =
∫

Rd

f (φ(y))m(dy) ∀f ∈ C0
b (R

d).

Proposition 1.6 Let U be C1 and be such that Dy
δU
δm

exists and is jointly continu-
ous and bounded on P2 × Rd . Then, for any Borel measurable map φ : Rd → R

d

with at most a linear growth, the map s → U((idRd + sφ)�m) is differentiable at 0
and

d

ds
U((idRd + sφ)�m)|s=0 =

∫

Rd

Dy

δU

δm
(m, y) · φ(y)m(dy).
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Proof Indeed

U((idRd + sφ)�m)− U(m)

=
∫ 1

0

∫

Rd

δU

δm
(mh,s, y)((idRd + sφ)�m)−m)(dy)dh

=
∫ 1

0

∫

Rd

(
δU

δm
(mh,s , y + sφ(y))− δU

δm
(mh,s, y))m(dy)dh

= s

∫ 1

0

∫ 1

0

∫

Rd

Dy
δU

δm
(mh,s, y + sτφ(y)) · φ(y)m(dy)dhdτ,

where

mh,s = (1 − h)m+ h(idRd + sφ)�m.

Dividing by s and letting s → 0+ gives the desired result. �	
Let us recall that, if m,m′ ∈ P2, the set Πopt (m,m′) denotes the set of optimal

transport plans between m and m′ (see Lemma 1.18).

Proposition 1.7 Under the assumptions of the previous Proposition, letm,m′ ∈ P2
and π ∈ Πopt (m,m′). Then

∣
∣
∣
∣U(m

′)− U(m)−
∫

R2d
Dy

δU

δm
(m, x) · (y − x)π(dx, dy)

∣
∣
∣
∣ ≤ o(d2(m,m

′)).

Remark 1.19 The same proof shows that, if π is a transport plan between m and m′
(not necessarily optimal), then

∣
∣
∣
∣U(m

′)− U(m)−
∫

R2d
Dy

δU

δm
(m, x) · (y − x)π(dx, dy)

∣
∣
∣
∣

≤ o

((∫

R2d
|x − y|2π(dx, dy)

)1/2
)

.

Proof Let φt(x, y) = (1 − t)x + ty and mt = φt�π . Then m0 = m and m1 = m′
and, for any t ∈ (0, 1) and any s small we have

U(φt+s�π)− U(φt�π)

=
∫ 1

0

∫

Rd

δU

δm
(ms,h, y)(φt+s�π − φt�π)(dy)dh

=
∫ 1

0

∫

R2d

δU

δm
(ms,h, (1 − t − s)x + (t + s)y)
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− δU

δm
(ms,h, (1 − t)x + ty) π(dx, dy)dh

= s

∫ 1

0

∫ 1

0

∫

R2d
Dy

δU

δm

× (ms,h, (1 − t − τs)x + (t + τs)y) · (y − x) π(dx, dy)dhdτ,

wherems,h = (1−h)φt+s�π+hφt �π . So, dividing by s and letting s → 0 we find:

d

dt
U(φt�π) =

∫

R2d
Dy

δU

δm
(φt�π, (1 − t)x + ty) · (y − x) π(dx, dy).

As Dy
δU
δm

is continuous and bounded by C, for any ε,R > 0, there exists r > 0
such that, if d2(m,m

′) ≤ r and |x|, |y| ≤ R, then

|Dy

δU

δm
(φt�π, (1 − t)x + ty)−Dy

δU

δm
(m, x)| ≤ ε + 2C1|y−x|≥r .

So
∣
∣
∣
∣

∫

R2d
Dy

δU

δm
(φt�π, (1 − t)x + ty) · (y − x) π(dx, dy)

−
∫

R2d
Dy

δU

δm
(m, x) · (y − x)π(dx, dy)

∣
∣
∣
∣

≤ δR +
∫

(BR)2
(ε + 2C1|x−y|≥r )|y − x|π(dx, dy)

≤ δR + εd2(m,m
′)+ 2C

r
d2

2(m,m
′).

where

δR :=
∫

R2d\(BR)2
|Dy

δU

δm
(φt�π, (1 − t)x + ty) · (y − x)|

+ |Dy
δU

δm
(m, x) · (y − x)|π(dx, dy)

≤ C

∫

R2d\(BR)2
|y − x|π(dx, dy) ≤ Cd2(m,m

′)π1/2(R2d\(BR)2)

= d2(m,m
′)oR(1).

This proves the result. �	
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1.4.2.2 W -Differentiability

Next we turn to a more geometric definition of derivative in the space of measures.
For this, let us introduce the notion of tangent space to P2.

Definition 1.10 (Tangent Space) The tangent space Tanm(P2) of P2 at m ∈ P2 is
the closure in L2

m(R
d) of {Dφ, φ ∈ C∞

c (Rd )}.
Following [17] we define the super and the subdifferential of a map defined on

P2:

Definition 1.11 Let U : P2 → R, m ∈ P2 and ξ ∈ L2
m(R

d,Rd ). We say that ξ
belongs to the superdifferential ∂+U(m) of U at m if, for any m′ ∈ P2 and any
transport plan π from m to m′,

U(m′) ≤ U(m)+
∫

Rd×Rd
ξ(x) · (y − x)π(dx, dy)

+ o

((∫

R2d
|x − y|2π(dx, dy)

)1/2
)

.

We say that ξ belongs to the subdifferential ∂−U(m) of U at m if −ξ belongs to
D+(−U)(m). Finally, we say that the map U is W -differentiable at m if ∂+U(m)∩
∂−U(m) is not empty.

One easily checks the following:

Proposition 1.8 If U is W -differentiable at m, then ∂+U(m) and ∂−U(m) are
equal and reduce to a singleton, denoted {DmU(m, ·)}.
Remark 1.20 On can actually check that DmU(m, ·) belongs to Tanm(P2).

Proof Let ξ1 ∈ D+U(m) and ξ2 ∈ D−U(m). We have, for any m′ ∈ P2 and any
transport plan π from m to m′,

∫

Rd×Rd
ξ2(x) · (y − x)π(dx, dy)+ o

((∫

R2d
|x − y|2π(dx, dy)

)1/2
)

≤ U(m′)− U(m) ≤
∫

Rd×Rd
ξ1(x) · (y − x)π(dx, dy)

+ o

((∫

R2d
|x − y|2π(dx, dy)

)1/2
)

.
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In particular, if we choose m′ = (1 + hφ)�m and π = (Id, Id + hφ)�m for some
φ ∈ L2

m(R
d ,Rd ) and h > 0 small, we obtain

h

∫

Rd

ξ2(x) · φ(x)m(dx)+ o (h) ≤ U(m′)− U(m) ≤ h

∫

Rd

ξ1(x) · φ(x)m(dx)+ o (h) ,

from which we easily infer that ξ1 = ξ2 in L2
m(R

d ). �	
Remark 1.19 implies that, if U is C1 with DyδU/δm continuous and bounded,

then U is W-differentiable. In this case it is obvious that DyδU/δm belongs to
Tanm(P2) by definition and that DmU(m, ·) = DyδU/δm. From now on we
systematically use the notation DmU(m, ·) = DyδU/δm in this case.

1.4.2.3 Link with the L-Derivative

Another possibility for the notion of derivative is to look at probability measures
as the law of random variables with values in Rd and to use the fact that the set of
random variables, under suitable moment conditions, is a Hilbert space.

Let (Ω,F ,P) an atomless probability space (meaning that, for any E ∈ F with
P[E] > 0, there exists E′ ∈ F with E′ ⊂ E and 0 < P[E′] < P[E]). Given a map
U : P2 → R, we consider its extension Ũ to the set of random variablesL2(Ω,Rd ):

Ũ(X) = U(L(X)) ∀X ∈ L2(Ω,Rd ).

(recall that L(X) is the law of X, i.e., L(X) := X�P. Note that L(X) belongs to
P2 because X ∈ L2(Ω)). The main point is that L2(Ω,F ,P) is a Hilbert space, in
which the notion of Frechet differentiability makes sense.

For instance, if U is a map of the form

U(m) =
∫

Rd

φ(x)m(dx) ∀m ∈ P2, (1.148)

where φ ∈ C0
c (R

d ) is given, then

Ũ(X) = E[φ(X)] ∀X ∈ L2(Ω,Rd ).

Definition 1.12 The map U : P2 → R is L-differentiable at m ∈ P2 if there
exists X ∈ L2(Ω,Rd ) such that L(X) = m and the extension Ũ of U is Frechet
differentiable at X.

The following result says that the notion of L-differentiability coincides with
that of W -differentiability and is independent of the probability space and of the
representative X. The first statement in that direction goes back to Lions [149]
(Lesson 31/10 2008), the version given here can be found in [109] (see also [19],
from which the sketch of proof of Lemma 1.21 is largely inspired).
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Theorem 1.20 The mapU isW -differentiable atm ∈ P2 if and only if Ũ is Frechet
differentiable at some (or thus any) X ∈ L2(Ω,Rd) with L(X) = m. In this case

∇Ũ(X) = DmU(m,X).

The result can be considered as a structure theorem for the L-derivative.
For instance, if U is as in (1.148) for some map φ ∈ C1

c (R
d ), then it is almost

obvious that

∇Ũ(X) = Dφ(X)

and thus

DmU(m, x) = Dφ(x).

The proof of Theorem 1.20 is difficult and we only sketch it briefly. Complete
proofs can be found in [109] or [19]. The first step is the fact that, if X and X′ have
the same law, then so do ∇Ũ(X) and ∇Ũ(X′):

Lemma 1.20 Let U : P2 → R and Ũ be its extension. Let X,X′ be two random
variables in L2(Ω,Rd ) with L(X) = L(X′). If Ũ is Frechet differentiable at X,
then Ũ is differentiable at X′ and (X,∇Ũ(X)) has the same law as (X′,∇Ũ (X′)).

(Sketch of) Proof The idea behind this fact is that, if X and X′ have the same law,
then one can “almost” find a bi-measurable and measure-preserving transformation
τ : Ω → Ω such that X = X′ ◦ τ . Admitting this statement for a while, we have,
for any H ′ ∈ L2 small,

Ũ(X′ +H ′) = Ũ((X′ +H ′) ◦ τ ) = Ũ(X +H ′ ◦ τ )
= Ũ(X)+ E

[
∇Ũ (X) ·H ′ ◦ τ

]
+ o(‖H ′ ◦ τ‖2)

= Ũ(X′)+ E
[
∇Ũ(X) ◦ τ−1 ·H ′]+ o(‖H ′‖2).

This shows that Ũ is differentiable at X′ with differential given by ∇Ũ(X) ◦ τ−1.
Thus (X′,∇Ũ (X′)) = (X,∇Ũ(X)) ◦ τ−1, which shows that (X,∇Ũ(X)) and
(X′,∇Ũ(X′)) have the same law.

In fact the existence of τ does not hold in general. However, one can show that,
for any ε > 0, there exists τ : Ω → Ω bi-measurable and measure preserving and
such that ‖X′ − X ◦ τ‖∞ ≤ ε. A (slightly technical) adaptation of the proof above
then gives the result (see [51] or [68] for the details). �	

Next we show that ∇Ũ(X) is a function of X:

Lemma 1.21 Assume that Ũ is differentiable at X ∈ L2(Ω,Rd ). Then there exists
a Borel measurable map g : Rd → Rd such that ∇Ũ(X) = g(X) a.s..
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(Sketch of) Proof To prove the claim, we just need to check that ∇Ũ (X) is σ(X)-
measurable (see Theorem 20.1 in [37]), which can be recasted into the fact that

∇Ũ(X) = E
[
∇Ũ(X)|X

]
. Let μ = L(X,∇Ũ(X)) and let μ(dx, dy) = (δx ⊗

νx(dy))PX(dx) be its disintegration with respect to its first marginal PX . Let λ be
the restriction of the Lebesgue measure to Q1 := [0, 1]d . Then, as λ has an L1

density, the optimal transport from λ to νx is unique and given by the gradient of a
convex map ψx(·) (Brenier’s Theorem, see [179]). So we can find2 a measurable
map ψ : Rd × Rd → R

d such that, for PX-a.e. x ∈ Rd , ψx(·)�λ = νx . Let Z be a
random variable with law λ and independent of (X,∇Ũ(X)).

Note that μ = L(X,∇Ũ(X)) = L(X,ψX(Z)) because, for any f ∈ C0
b (R

d ×
R
d ),

E [f (X,ψX(Z))] =
∫

Rd

∫

Q1

f (x,ψx(z))λ(dz)PX(dx)

=
∫

Rd

∫

Rd

f (x, y)(ψx�λ)(dy)PX(dx)

=
∫

Rd

∫

Rd

f (x, y))νx(dy)PX(dx) =
∫

R2d
f (x, y)μ(dx, dy).

So, for any ε,

Ũ(X + ε∇Ũ(X)) = Ũ(X + εψX(Z)),

from which we infer, taking the derivative with respect to ε at ε = 0:

E

[∣
∣
∣∇Ũ(X)

∣
∣
∣
2
]

= E
[
∇Ũ(X) · ψX(Z)

]
.

Note that, as Z is independent of (X,∇Ũ(X)), we have

E

[
∇Ũ(X) · ψX(Z)

]
= E

[
∇Ũ(X) · E [ψx(Z)]x=X

]
,

where, for PX-a.e. x,

E [ψx(Z)] =
∫

Q1

ψx(z)λ(dz) =
∫

Q1

y (ψx�λ)(dy)

=
∫

Rd

y νx(dy) = E
[
∇Ũ(X)|X = x

]
.

2Warning: here the proof is sloppy and the possibility of a measurable selection should be justified.
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So, by the tower property of the conditional expectation, we have

E

[∣
∣
∣∇Ũ(X)

∣
∣
∣
2
]

= E
[
∇Ũ(X) · E

[
∇Ũ(X)|X

]]
= E

[∣
∣
∣E
[
∇Ũ(X)|X

]∣
∣
∣
2
]

.

Using again standard properties of the conditional expectation we infer the equality

∇Ũ(X) = E
[
∇Ũ(X)|X

]
, which shows the result. �	

Proof of Theorem 1.20 Let us first assume that U is W -differentiable at some m ∈
P2. Then there exists ξ := DmU(m, ·) ∈ L2

m(R
d) such that, for any m′ ∈ P2 and

any transport plan π between m and m′ we have

∣
∣
∣
∣U(m

′)− U(m)−
∫

Rd×Rd
ξ(x) · (y − x)π(dx, dy)

∣
∣
∣
∣

≤ o

((∫

R2d
|x − y|2π(dx, dy)

)1/2
)

.

Therefore, for any X ∈ L2 such that L(X) = m, for any H ∈ L2, if we denote by
m′ the law of X +H and by π the law of (X,X +H), we have

∣
∣
∣Ũ(X +H)− Ũ(X)− E [ξ(X) ·H ]

∣
∣
∣ =

∣
∣
∣
∣U(m

′)− Ũ(m)−
∫

R2d
ξ(x) · (y − x)π(x, y)

∣
∣
∣
∣

≤ o

((∫

R2d
|x − y|2π(dx, dy)

)1/2
)

)

= o

(

E

[
|X − Y |2

]1/2
)

.

This shows that U is L-differentiable.
Conversely, let us assume that U is L-differentiable at m. We know from

Lemma 1.21 that, for any X ∈ L2 such that L(X) = m, Ũ is differentiable at
X and ∇Ũ(X) = ξ(X) for some Borel measurable map ξ : Rd → R

d . In view of
Lemma 1.20, the map ξ does not depend on the choice ofX. So, for any ε > 0, there
exists r > 0 such that, for any X with L(X) = m and any H ∈ L2 with ‖H‖ ≤ r ,
one has

∣
∣
∣Ũ(X +H)− Ũ(X)− E [ξ(X) ·H ]

∣
∣
∣ ≤ ε.
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Let now m′ ∈ P2 and π be a transport plan between m and m′ such that
∫

R2d |x −
y|2π(dx, dy) ≤ r2. Let (X, Y ) with law π . We set H = Y − X and note that
‖H‖2 ≤ r . So we have

∣
∣
∣
∣U(m

′)− Ũ (m)−
∫

R2d
ξ(x) · (y − x)π(x, y)

∣
∣
∣
∣

=
∣
∣
∣Ũ(X +H)− Ũ(X)− E [ξ(X) ·H ]

∣
∣
∣ ≤ ε.

This proves the W-differentiability of U . �	

1.4.2.4 Higher Order Derivatives

We say that U is partially C2 if U is C1 and if DyδU/δm and D2
yyδU/δm exist and

are continuous and bounded on P2 × Rd .
We say that U is C2 if δU

δm
is C1 in m with a continuous and bounded derivative:

namely δ2U
δm2 = δ

δm
( δU
δm
) : P2 × Rd × Rd → R is continuous in all variables and

bounded. We say thatU is twiceL-differentiable if the mapDmU isL-differentiable
with respect to m with a second order derivative D2

mmU = D2
mmU(m, y, y

′) which
is continuous and bounded on P2 × Rd × Rd with values in Rd×d . One can check
that this second order derivative enjoys standard properties of derivatives, such as
the symmetry:

D2
mmU(m, y, y

′) = D2
mmU(m, y

′, y).

See [65, 68].

1.4.2.5 Comments

For a general description of the notion of derivatives and the historical background,
we refer to [68], Chap. V. The notion of flat derivative is very natural and has been
introduced in several contexts and under various assumptions. We follow here [65].
Let us note however that these notions of derivatives can be traced back to [14],
while the construction of Proposition 1.5 has already a counterpart in [159].

The initial definition of sub and super differential in the space P2, introduced in
[18], is the following: ξ belongs to ∂+U(m) if ξ ∈ Tanm(P2) and

U(m′) ≤ U(m)+ inf
π∈Πopt (m,m′)

∫

Rd×Rd
ξ(x) · (y − x)π(dx, dy)+ o(d2(m,m

′)).

It is proved in [109] that this definition coincides with the one introduced in
Definition 1.11.
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The notion of L-derivative and the structure of this derivative has been first
discussed by Lions in [149] (see also [51] for a proof of Theorem 1.20 in which the
function is supposed to be continuously differentiable). The proof of Theorem 1.20,
without the extra continuity condition, is due to Gangbo and Tudorascu [109] (see
also [19], revisited here in a loose way).

1.4.3 The Master Equation

In this section we investigate the partial differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−∂tU −ΔxU +H(x,DxU)−
∫

Td

divyDmU(t, x,m, y) dm(y)

+
∫

Td

DmU(t, x,m, y) ·Hp(y,DxU) dm(y) = F(x,m)

in (0, T )× Td × P2

U(T , x,m) = G(x,m) in Td × P2

(1.149)

In this equation, U = U(t, x,m) is the unknown. As explained below, U(t, x,m)
can be interpreted as the minimal cost, in the mean field problem, for a small
player at time t in position x, if the distribution of the other players is m. Equation
(1.149) is often called the first order master equation since it only involves first
order derivatives with respect to the measure. This is in contrast with what happens
for MFG problems with a common noise, for which the corresponding master
equation also involves second order derivatives (see Sect. 1.4.3.3). After explaining
the existence and the uniqueness of a solution for (1.149) (Sect. 1.4.3.1), we
discuss other frameworks for the master equation: the case of finite state space
(Sect. 1.4.3.2) and the MFG problem with a common noise (Sect. 1.4.3.3).

Throughout this part, we work in the torus Td and in the space P2 = P2(T
d)

of Borel probability measures on Td endowed with the Wasserstein distance d2.
The notion of derivative is the one discussed in the previous part (with the minor
difference explained in Remark 1.18).

1.4.3.1 Existence and Uniqueness of a Solution for the Master Equation

Definition 1.13 We say that a map V : [0, T ]×Td×P2 → R is a classical solution
to the Master equation (1.149) if

• V is continuous in all its arguments (for the d1 distance on P2), is of class C2 in
x and C1 in time,

• V is of class C1 with respect to m with a derivative δV
δm

= δV
δm
(t, x,m, y) having

globally continuous first and second order derivatives with respect to the space
variables.
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• The following relation holds for any (t, x,m) ∈ (0, T )× Td × P2:

⎧
⎪⎨

⎪⎩

−∂tV (t, x,m) −ΔxV (t, x,m)+H(x,DxV (t, x,m))−
∫

Td

divyDmV (t, x,m, y) dm(y)

+
∫

Td

DmV (t, x,m, y) ·Hp(y,DxV (t, y,m)) dm(y) = F(x,m)

and V (T , x,m) = G(x,m) in Td × P2.

Throughout the section, H : Td × Rd → R is smooth, globally Lipschitz
continuous and satisfies the coercivity condition:

C−1 Id

1 + |p| ≤ Hpp(x, p) ≤ CId for (x, p) ∈ Td × Rd . (1.150)

We also always assume that the maps F,G : Td × P1 → R are globally Lipschitz
continuous and monotone:

F and G are monotone. (1.151)

Note that assumption (1.151) implies that δF
δm

and δG
δm

satisfy the following mono-
tonicity property (explained for F ):

∫

Td

∫

Td

δF

δm
(x,m, y)μ(x)μ(y)dxdy ≥ 0

for any smooth map μ : Td → R with
∫

Td
μ = 0.

Let us fix n ∈ N∗ and α ∈ (0, 1/2). We set

Lipn(
δF

δm
) := sup

m1�m2

(d1(m1,m2))
−1
∥
∥
∥
∥
δF

δm
(·,m1, ·)− δF

δm
(·,m2, ·)

∥
∥
∥
∥
Cn+2α×Cn−1+2α

and use the symmetric notation for G. We call (HF(n)) the following regularity
conditions on F :

(HF(n)) sup
m∈P1

(

‖F(·,m)‖Cn+2α +
∥
∥
∥
∥
δF(·, m, ·)

δm

∥
∥
∥
∥
Cn+2α×Cn+2α

)

+ Lipn(
δF

δm
) < ∞.

and (HG(n)) the symmetric condition on G:

(HG(n)) sup
m∈P1

(

‖G(·,m)‖Cn+2α +
∥
∥
∥
∥
δG(·, m, ·)

δm

∥
∥
∥
∥
Cn+2α×Cn+2α

)

+ Lipn(
δG

δm
) < ∞.
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In order to explain the existence of a solution to the master equation, we need to
introduce the solution of the MFG system: for any (t0,m0) ∈ [0, T )×P2, let (u,m)
be the solution to:

⎧
⎨

⎩

−∂tu−Δu+H(x,Du) = F(x,m(t))

∂tm−Δm− div(mHp(x,Du)) = 0
u(T , x) = G(x,m(T )), m(t0, ·) = m0

(1.152)

Thanks to the monotonicity condition (1.151), we know that the system admits a
unique solution, see Theorem 1.4. Then we set

U(t0, x,m0) := u(t0, x) (1.153)

Theorem 1.21 Assume that (HF(n)) and (HG(n)) hold for some n ≥ 4. Then the
map U defined by (1.153) is the unique classical solution to the master equation
(1.149).
Moreover, U is globally Lipschitz continuous in the sense that

‖U(t0, ·,m0)− U(t0, ·,m1)‖Cn+α ≤ Cnd1(m0,m1) (1.154)

with Lipschitz continuous derivatives:

‖DmU(t0, ·,m0, ·)−DmU(t0, ·,m1, ·)‖Cn+α×Cn+α ≤ Cnd1(m0,m1) (1.155)

for any t0 ∈ [0, T ], m0,m1 ∈ P1.

Relation (1.153) says that the solutions of the MFG system (1.152) can be
considered as characteristics of the master equation (1.149). As it will be transparent
in the analysis of the MFG problem on a finite state space (Sect. 1.4.3.2 below), this
means that the master equation is a kind of transport in the space of measures. The
difficulty is that it is nonlinear, nonlocal (because of the integral terms) and without
a comparison principle.

The proof of Theorem 1.21, although not very difficult in its principle, is quite
technical and will be mostly omitted here. The main issue is to check that the mapU
defined by (1.153) satisfies (1.154), (1.155). This exceeds the scope of these notes
and we refer the reader to [65] for a proof. Once we know that U is quite smooth,
the conclusion follows easily:

Sketch of Proof of Theorem 1.21 (Existence) Let m0 ∈ P(Td) with a C1, positive
density. Let t0 > 0, (u,m) be the solution of the MFG system (1.152) starting from
m0 at time t0. Then

U(t0 + h, x,m0)− U(t0, x,m0)

h
= U(t0 + h, x,m0)− U(t0 + h, x,m(t0 + h))

h

+U(t0 + h, x,m(t0 + h))− U(t0, x,m0)

h
.
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As

∂tm− div[m(D(ln(m))+Hp(x,Du))] = 0,

Lemma 1.22 below says that

d1(m(t0 + h), (id − hΦ)�m0) = o(h)

where

Φ(x) := D(ln(m0(x)))+Hp(x,Du(t0, x))

and o(h)/h → 0 as h → 0. So, by Lipschitz continuity of U and then
differentiability of U ,

U(t0 + h, x,m(t0 + h)) = U(t0 + h, x, (id − hΦ)�m0)+ o(h)

= U(t0 + h, x,m0)− h

∫

Td

DmU(t0 + h, x,m0, y)

·Φ(y)m0(y)dy + o(h),

and therefore, by continuity of U and DmU ,

lim
h→0

U(t0 + h, x, m(t0 + h))− U(t0 + h, x, m0)

h

= −
∫

Td

(
DmU(t0, x, m0, y) · [D(ln(m0))+Hp(y,Du(t0))]

)
m0(y)dy.

On the other hand, for h > 0,

U(t0+h, x,m(t0+h))−U(t0, x,m0) = u(t0+h, x)−u(t0, x) = h∂tu(t0, x)+o(h),

so that

lim
h→0+

U(t0 + h, x,m(t0 + h))− U(t0, x,m0)

h
= ∂tu(t0, x).
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Therefore ∂tU(t0, x,m0) exists and is equal to

∂tU(t0, x,m0) =
∫

Td

(DmU(t0, x,m0, y) · [D(ln(m0))+Hp(y,Du(t0))])
×m0(y)dy + ∂tu(t0, x)

= −
∫

Td

divyDmU(t0, x,m0, y)m0(y)dy

+
∫

Td

DmU(t0, x,m0, y) ·Hp(y,Du(t0))m0(y)dy

−Δu(t0, x)+H(x,Du(t0, x))− F(x,m0)

= −
∫

Td

divyDmU(t0, x,m0, y)m0(y)dy

+
∫

Td

DmU(t0, x,m0, y) ·Hp(y,DxU(t0, y,m0))m0(y)dy

−ΔxxU(t0, x,m0)+H(x,DxU(t0, x,m0))− F(x,m0)

This means that U satisfies (1.149) at (t0, x,m0). By continuity, U satisfies the
equation everywhere. �	
Lemma 1.22 Let V = V (t, x) be a C1 vector field, m0 ∈ P2 and m be the weak
solution to

{
∂tm+ div(mV ) = 0
m(0) = m0 .

Then

lim
h→0+

d1(m(h), (id + hV (0, ·))�m0)/h = 0.

Proof Recall that m(h) = X·(h)�m0, where Xx(h) is the solution to the ODE

{
d
dt
Xx(t) = V (t,Xx(t))

Xx(0) = x .

Let φ be a Lipschitz test function. Then

∫

Td

φ(x)(m(h)− (id + hV (0, ·))�m0)(dx)

=
∫

Td

(φ(Xx(h))− φ(x + hV (0, x)))m0(dx)

≤ ‖Dφ‖∞
∫

Td

|Xx(h)− x − hV (0, x)|m0(dx) = ‖Dφ‖∞o(h),

which proves that d1(m(h), (id + hV (0, ·))�m0) = o(h). �	
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Proof of Theorem 1.21 (Uniqueness) We use a technique introduced in [149] (Les-
son 5/12/2008), consisting at looking at the MFG system (1.152) as a system of
characteristics for the master equation (1.149). We reproduce here this argument for
the sake of completeness. Let V be another solution to the master equation. The
main point is that, by definition of solution D2

xy
δV
δm

is bounded, and therefore DxV

is Lipschitz continuous with respect to the measure variable.
Let us fix (t0,m0). In view of the Lipschitz continuity of DxV , one can easily

uniquely solve the PDE (by standard fixed point argument):

{
∂t m̃−Δm̃− div(m̃Hp(x,DxV (t, x, m̃)) = 0
m̃(t0) = m0

Then let us set ũ(t, x) = V (t, x, m̃(t)). By the regularity properties of V , ũ is at
least of class C2,1 with

∂t ũ(t, x) = ∂tV (t, x, m̃(t))+ 〈δV
δm

(t, x, m̃(t), ·), ∂t m̃(t)〉C2,(C2)′

= ∂tV (t, x, m̃(t))

+〈 δV
δm
(t, x, m̃(t), ·),Δm̃+ div(m̃Hp(·,DxV (t, ·, m̃))〉C2,(C2)′

= ∂tV (t, x, m̃(t))+
∫

Td

divyDmV (t, x, m̃(t), y) dm̃(t)(y)

−
∫

Td

DmV (t, x, m̃(t), y) ·Hp(y,DxV (t, y, m̃)) dm̃(t)(y)

Recalling that V satisfies the master equation we get

∂t ũ(t, x) = −ΔxV (t, x, m̃(t))+H(x,DxV (t, x, m̃(t)))− F(x, m̃(t))

= −Δũ(t, x)+H(x,Dũ(t, x))− F(x, m̃(t))

with terminal condition ũ(T , x) = V (T , x, m̃(T )) = G(x, m̃(T )). Therefore the
pair (ũ, m̃) is a solution of the MFG system (1.152). As the solution of this system
is unique, we get that V (t0, x,m0) = U(t0, x,m0) is uniquely defined. �	

1.4.3.2 The Master Equation for MFG Problems on a Finite State Space

We consider here a MFG problem on a finite state space: let I ∈ N, I ≥ 2 be the
number of states. Players control their jump rate from one state to another; their cost
depends on the jump rate they choose and on the distribution of the other players
on the states. In this finite state setting, this distribution is simply an element of the
simplex SI−1 with

SI−1 :=
{

m ∈ RI , m = (mi)i=1,...,I , mi ≥ 0, ∀i,
∑

i

mi = 1

}

.
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Given m = (mi) ∈ SI−1, mi is the proportion of players in state i.

The MFG System In this setting the MFG system takes the form of a coupled
system of ODEs: for i = 1, . . . , I ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− d

dt
ui(t)+Hi((uj (t)− ui(t))j�i , m(t)) = 0 in (0, T )

d

dt
mi(t)−

∑

j�i

mj (t)
∂H j

∂pi
((uk(t)− uj (t))k�j ,m(t))

+mi(t)
∑

j�i

∂H i

∂pj
((uk(t)− ui(t))k�i , m(t)) = 0 in (0, T )

mi(t0) = mi,0, u
i(T ) = gi(m(T )).

(1.156)

In the above system, the unknown is (u,m) = (ui(t),mi(t)), where ui(t) is the
value function of a player at time t and in position i while m(t) is the distribution
of players at time t , with m(t) ∈ SI−1 for any t . The map Hi : RI−1 × SI−1 → R
is the Hamiltonian of the problem in state i while m0 = (mi,0) ∈ SI−1 is the initial
distribution at time t0 ∈ [0, T ) and gi : SI−1 → R is the terminal cost in state i. As
usual, this is a forward-backward system.

The Structure for Uniqueness As for standard MFG systems, the existence of
a solution is relatively easy; the uniqueness relies on a specific structure of the
coupling and on a monotonicity condition which become here:

Hi(z,m) = hi(z)− f i(m) (1.157)

where hi is strictly convex in z and

I∑

i=1

(f i(m)− f i(m′))(mi − (m′)i) ≥ 0,
I∑

i=1

(gi(m)− gi(m′))(mi − (m′)i) ≥ 0,

∀m,m′ ∈ SI−1. (1.158)

The Master Equation To find a solution of this MFG problem in feedback form
(i.e., such that the control of a players depends on the state of this player and on
the distribution of the other players), one can proceed as in the continuous space
case and set Ui(t,m0) = ui(t0), where m0 is the initial distribution of the players at
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time t0 and (u,m) is the solution to (1.156). Then U solves the following hyperbolic
system, for i = 1, . . . , I ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂tUi(t,m)+Hi((Uj (t,m)− Ui(t,m))j�i , m)

−
I∑

j=1

∂Ui

∂pj
(t,m)

(∑

k�j

mk
∂Hk

∂pj
((Ul(t,m)− Uk(t,m))l�k,m)

−mj

∑

k�j

∂H j

∂pk
((Ul(t,m)− Uj (t,m))l�j ,m)

)
= 0 in (0, T )× SI−1

Ui(T ,m) = gi(m) in SI−1

This is the master equation in the framework of the finite state space problem. It can
be rewritten in a more compact way in the form

∂tU + (F (m,U) ·D)U = G(m,U) (1.159)

where F,G : SI−1 × RI → RI are defined by

F(m,U) =
(∑

k�j

mk
∂Hk

∂pj
((Ul − Uk)l�k,m)−mj

∑

k�j

∂H j

∂pk
((Ul − Uj )l�j ,m)

)

j

and G(m,U) = −(H j(U,m))j . Equation (1.159) has to be understood as follows:
for any i ∈ {1, . . . , I },

∂tU
i + (F (m,U) ·D)Ui = −Hi(U,m).

Link Between Two Notions of Monotonicity The monotonicity condition stated
in (1.158) is equivalent with the fact that the pair (G,F ) is monotone (in the classical
sense) fromR2d into itself. Indeed, recalling the structure condition (1.157), we have

〈(G,F )(m,U)− (G,F )(m′, U ′), (m,U)− (m′, U ′)〉
=
∑

j

(hj ((Uk − Uj )k�j )− hj ((U
′k − U

′j )k�j ))(mj −m′
j )

−
∑

j

(f j (m)− f j (m′))(mj −m′
j )

+
∑

j�k

(
mk

∂hk

∂pj
((Ul − Uk)l�k)−m′

k

∂hk

∂pj
((U

′l − U
′k)l�k)

)
(Uj − U

′j )

−
I∑

j=1

(
mj

∑

k�j

∂hj

∂pk
((Ul − Uj)l�j )−m′

j

∑

k�j

∂hj

∂pk
((U

′l − U
′j )l�j )

)
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× (Uj − U
′j )

= −
∑

j

(f j (m)− f j (m′))(mj −m′
j )

−
I∑

j=1

mj

(
hj ((U

′k − U
′j )k�j )− hj ((Uk − Uj)k�j )

−
∑

k�j

∂hj

∂pk
((Ul − Uj )l�j )(U

′k − Uk − U
′j − Uj)

)

−
I∑

j=1

m′
j

(
hj ((Uk − Uj )k�j )− hj ((U

′k − U
′j )k�j )

−
∑

k�j

∂hj

∂pk
((U

′l − U
′j )l�j )(Uk − U

′k − Uj − U
′j )
)
,

which is nonnegative since (1.158) holds and h is convex.
The finite state space is very convenient in the analysis of MFGs: it makes

complete sense in terms of modeling and, in addition, it simplifies a lot the analysis
of the master equation. First of all, this is a finite dimensional problem. Secondly,
under the monotonicity condition, the solution of the master equation is also
monotone and it is known that monotone maps are BV in open sets in which they
are finite: so some regularity is easily available.

1.4.3.3 The MFG Problem with a Common Noise

The aim of this part is to say a few words about the MFGs in which all agents are
subject to a common source of randomness. This kind of models are often met in
macro-economy, after the pioneering work of Krusell-Smith [138]. We start with a
toy example, in which the agents are subject to a single shock. Then we describe the
more delicate model where the shock is a Brownian motion.

An Illustrative Example
We consider here a problem in which the agents face a common noise which, in this
elementary example, is a random variable Z on which the coupling costs F and G
depend:F = F(x,m,Z) andG = G(x,m,Z). The game is played in finite horizon
T and the exact value of Z is revealed to the agents at time T/2 (to fix the ideas).

To fix the ideas, we assume that the agents directly control their drift:

dXt = αtdt +
√

2dBt
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(where (αt ) is the control with values in Rd and B a Brownian motion). In
contrast with the previous discussions, the control αt is now adapted to the filtration
generated by B and to the noise Z when t ≥ T/2. The cost is now of the form

J (α) = E
[∫ T

0

1

2
|αt |2 + F(Xt ,m(t), Z) dt +G(XT ,m(T ), Z)

]

,

where F and G depend on the position of the player, on the distribution of the
agents and on the common noise Z. As all the agents will choose their optimal
control in function of the realization of Z (of course after time T/2), one expect the
distribution of players to be random after T/2 and to depend on the noise Z.

On the time interval [T/2, T ], the agents have to solve a classical control problem
(which depends on Z and on (m(t))):

u(t, x) := inf
α
E

[∫ T

t

1

2
|αt |2 + F(Xt ,m(t), Z) dt +G(XT ,m(T )) | Z

]

which depends on the realization of Z and solves the HJ equation (with random
coefficients):

⎧
⎨

⎩

−∂tu−Δu+ 1

2
|Du|2 = F(x,m(t), Z) in (T /2, T )× Rd

u(T , x,Z) = G(x,m(T ), Z) in Rd .
(1.160)

On the other hand, on the time interval [0, T /2), the agent has no information on Z
and, by dynamic programming, one expects to have

u(t, x) := inf
α
E

[∫ T/2

t

1

2
|αt |2 + F̄ (Xt ,m(t)) dt + u(T /2+,XT/2)

]

,

where F̄ (x,m) = E [F(x,m,Z)] (recall that m(t) is deterministic on [0, T /2]).
Thus, on the time interval [0, T /2], u solves

⎧
⎨

⎩

−∂tu−Δu+ 1

2
|Du|2 = F̄ (x,m(t)) in (0, T /2)× Rd

u(T /2−, x) = E [u(T /2+, x)
]

in Rd
(1.161)

As for the associated Kolmogorov equation, on the time interval [0, T /2] (where the
optimal feedback −Du is purely deterministic) we have as usual:

∂tm−Δm− div (m Du(t, x)) = 0 in (0, T /2)×Rd , m(0) = m0. (1.162)
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while on the time interval [T/2, T ], m becomes random (as the control −Du) and
solves

∂tm−Δm− div (m Du(t, x, Z)) = 0 in (T /2)× Rd , m(T /2−) = m(T/2+).
(1.163)

Note the relation: m(T/2−) = m(T/2+), which means that the dynamics of the
crowd is continuous in time.

Let us point out some remarkable features of the problem. Firstly, the pairs
(u,m) are no longer deterministic, and are adapted to the filtration generated by
the common noise (here this filtration is trivial up to time T/2 and is the σ -algebra
generated by Z after T/2). Secondly, the map u is discontinuous: this is due to the
shock of information at time T/2.

The existence of a solution to the MFG system (1.160)–(1.163) can be obtained
in two steps. First one solves the MFG system on [T/2, T ]: given any measure
m0 ∈ P1(R

d ), let (u,m) be the solution to

⎧
⎪⎪⎨

⎪⎪⎩

−∂tu(t, x, Z) −Δu(t, x, Z) + 1

2
|Du(t, x, Z)|2 = F(x,m(t), Z) in (T /2, T )× Rd

∂tm(t, x, Z) −Δm(t, x, Z)− div(m(t, x, Z)Du(t, x, Z)) = 0 in (T /2, T )× Rd
m(T /2, dx, Z) = m0(dx), u(T , x, Z) = G(x,m(T , x,Z), Z) in Rd

Note that u and m depend of course on m0. If we require F and G to be monotone,
then this solution is unique and we can set U(x,m0, Z) = u(T /2, x, Z) (with the
notation of Sect. 1.4.3.1, it should be U(T/2+, x,m0, Z), but we omit the T/2 for
simplicity). It is not difficult to check that, if the couplingsF,G are smoothing, then
U is continuous in m (uniformly in (x, Z)), measurable in Z and C2 in x uniformly
in (m,Z). In addition, it is a simple exercise to prove that U is monotone as well.
Therefore, if we set Ū(x,m) = E[U(x,m,Z)], then Ū is also continuous in m and
C2 in x and monotone. So the system

⎧
⎪⎪⎨

⎪⎪⎩

−∂tu(t, x)−Δu(t, x)+ 1

2
|Du(t, x)|2 = F̄ (x,m(t)) in (0, T /2)× Rd

∂tm(t, x)−Δm(t, x)− div(m(t, x)Du(t, x)) = 0 in (0, T /2)× Rd
m(0, dx) = m0(dx), u(T , x) = Ū(x,m(T/2)) in Rd

has a unique solution. Note that u is a discontinuous function of time, but the
discontinuity

u(T /2+, x)− u(T /2−, x) = u(T /2+, x)− E [u(T /2+, x)
]

has zero mean, that is, it is a “one-step martingale”.

Common Noise of Brownian Type
In general, MFG with a common noise involve much more complex randomness
than a single shock that occurs at a given time. We discuss here very briefly a case
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in which the common noise is a Brownian motion. As before, we just consider an
elementary model in order to fix the ideas.

The game is played in finite horizon T . The agents control directly their drift:
their state solves therefore the SDE

dXt = αtdt +
√

2dBt +
√

2βdWt ,

where (αt ) is the control with values in Rd , B the idiosyncratic noise (a Brownian
motion, independent for each player) and W is the common noise (a Brownian
motion, the same for each player), β ≥ 0 denoting the intensity of this noise. The
control αt is now adapted to the filtration generated by B and W . The cost is of the
(standard) form

J (α) = E
[∫ T

0

1

2
|αt |2 + F(Xt ,m(t)) dt +G(XT ,m(T ))

]

,

where F and G depend on the position of the player and on the distribution of the
agents.

The main difference with the classical case is that now the flow of measures m is
random and adapted to the filtration generated by W . To understand why it should
be so, let us come back to the setting with finitely many agents (in which one sees
better the difference between B and W ). If there areN agents, controlling their state
with a feedback control α = αt(x) (possibly random), then the state of player i, for
i ∈ {1, . . . , N}, solves

dXi
t = αt (X

i
t )dt +

√
2dBi

t +
√

2βdWt .

Note that the Bi are independent (idiosyncratic noise) and independent of the
common noise W . Let mN

t be the empirical measure associated to the Xi :

mN
t = 1

N

N∑

i=1

δXi
t
.

Let us assume that mN converges to some m (formally) and let us try to guess the
equation for m. We have, for any smooth test function φ = φ(t, x) with a compact
support,

∫

Rd

φ(t, x)mt(dx) = lim
N

∫

Rd

φ(t, x)mN
t (dx),
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where, by Itô’s formula,

∫

Rd

φ(t, x)mN
t (dx) =

1

N

N∑

i=1

φ(t,Xi
t )

= 1

N

N∑

i=1

φ(t,Xi
0)

+ 1

N

N∑

i=1

∫ t

0
(∂tφ(s,X

i
s )+Dφ(s,Xi

s ) · αt (Xi
s)+ (1 + β)Δφ(s,Xi

s ))ds

+ 1

N

N∑

i=1

∫ t

0
Dφ(s,Xi

s ) · (dBi
s + dWs)

=
∫

Rd

φ(t, x)mN(0, dx)

+
∫ t

0

∫

Rd

(∂tφ(s, x) +Dφ(s, x) · αt (x)+ (1 + β)Δφ(s, x))mN
s (dx)ds

+ β

∫ t

0
(

∫

Rd

Dφ(s, x)mN
s (dx)) · dWs + 1

N

N∑

i=1

∫ t

0
Dφ(s,Xi

s ) · dBi
s .

As N →+∞, the last term vanishes because, by Itô’s isometry,

lim
N→+∞ E

⎡

⎣

∣
∣
∣
∣
∣

1

N

N∑

i=1

∫ t

0
Dφ(s,Xi

s ) · dBi
s

∣
∣
∣
∣
∣

2⎤

⎦

= lim
N→+∞

1

N2

N∑

i=1

E

[∫ t

0
|Dφ(s,Xi

s )|2ds
]

= 0.

So we find
∫

Rd

φ(t, x)mt(dx) =
∫

Rd

φ(t, x)m(0, dx)

+
∫ t

0

∫

Rd

(∂tφ(s, x)+Dφ(s, x) · αt (x)

+ (1 + β)Δφ(s, x))ms(dx)ds

+ β

∫ t

0
(

∫

Rd

Dφ(s, x)ms(dx)) · dWs.
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This means that m solves in the sense of distributions the stochastic Kolmogorov
equation:

dmt = [(1 + β)Δmt − div(mtα)] dt −
√

2βdiv(mtdWt ).

As the flow m is stochastic and adapted to the filtration generated by W , the value
function u is stochastic as well and is adapted to the filtration generated by W . It
turns out that u solves a backward Hamilton-Jacobi equation. The precise form of
this equation is delicate because, as it is random and backward, it has to involve an
extra unknown vector field v = vt (x) which ensures the solution u to be adapted
to the filtration generated by W (see, on that subject, the pioneering work by Peng
[162] and the discussion in [65] (Chapter 4) or in [68] (Part II, Section 1.4.2)).
The stochastic MFG system associated with the problem becomes (if the initial
distribution of the players is m̄0):

⎧
⎪⎪⎨

⎪⎪⎩

dut =
[

−(1+ β)Δut + 1

2
|Dut |2 − F(x,mt )−

√
2βdiv(vt )

]

dt − √
2βvt · dWt

dmt = [(1 + β)Δmt + div(mtDut )] dt −
√

2βdiv(mtdWt)

m0 = m̄0, uT = G(·,mT )

Finally, one can associate with the problem a master equation, which plays the same
role as without common noise. It takes the form of a second order (in measure)
equation on the space of measures:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂tU − (1 + β)ΔxU + 1

2
|DxU |2 − (1 + β)

∫

Rd

divyDmU(t, x,m, y) m(dy)

+
∫

Rd

DmU(t, x,m, y) ·DxU(t, y,m)m(dy)− 2β
∫

Rd

divxDmU(t, x,m, y) m(dy)

−β
∫

Rd×Rd
Tr(D2

mmU(t, x,m, y, y
′))m(dy)m(dy ′) = F(x,m)

in (0, T )× Rd × P2

U(T, x,m) = G(x,m) in Rd ×P2

where the unknown is U = U(t, x,m).

1.4.3.4 Comments

Most formal properties of the Master equation have been introduced and discussed
by Lions in [149] (Lesson 5/12/2008 and the Course 2010-’11), including of course
the representation formula (1.153). The actual proof of the existence of a solution
of the master equation is a tedious verification that (1.153) actually gives a solution.
This has required several steps: the first paper in this direction is [41], where a
master equation is studied for linear Hamiltonian and without coupling terms (F =
G = 0); [108] analyzes the master equation in short time and without the diffusion
term; [85] obtains the existence and uniqueness for the master equation (1.149); [65]
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establishes the existence and uniqueness of solutions for the master equation with
common noise under the Lasry-Lions monotonicity condition (see also [68]). There
has been few works since then on the subject outside the above references and the
analysis on finite state space in [27, 34]: see [11, 12, 66]. Another approach, not
discussed in these notes, is the so-called “Hilbertian approach” developed by Lions
in [149] (see e.g. Lesson 31/10 2008, and later the seminar 08/11/2013): the idea is
to write the master equation (or, more precisely, its space derivative) in the Hilbert
space of square integrable random variables and use this Hilbert structure to obtain
existence and uniqueness results.

The reader may notice that we have worked here under the monotonicity
assumption. We could have also considered the problem in short time, or with
a “small coupling”. All these settings correspond to situation in which the MFG
system has a unique solution for any initial measure. When this does not hold, the
solution of the master equation is expected to be discontinuous. One knows almost
nothing on the definition of the master equation outside of the smooth set-up: this
remains one of the major issues of the topic. To overcome this difficulty, an idea
would be to add a common noise to smoothen the solution. Although this approach
is not understood in the whole space, there are now a few results in this direction in
the finite state space: we discuss this point now.

The MFG problem on finite state space has been first described by Lions [149]
(Lesson 14/1 2011 and the Course 2011-’12). The probabilistic interpretation is
carefully explained in [78], while the well-posedness of the master equation (and
its use for the convergence of the Nash system) is discussed in this setting in [26]
and [79]. The addition of a common noise to the master equation in finite state
space is described in [34] and [27]. In particular, [27] provides the existence of
smooth solutions even without the monotonicity assumption (see also [146], on
problems with a major player). Finally, for the master equation on finite state space
we definitively refer to the contribution by F. Delarue in the present volume.

1.4.4 Convergence of the Nash System

In this section, we study the convergence of Nash equilibria in differential games
with a finite number of players, as the number of players tends to infinity. We
would like to know if the limit is a MFG model. Let us recall that, in Sect. 1.3.3 we
explained how to use the MFG system to find an ε-Nash equilibrium in a N-player
game. So here we consider the converse problem. As we will see, this question is
much more subtle and, in fact, not completely understood.

On one hand, this problem depends on the structure of information one allows
to the players in the finite player game. If in this game players observe only their
own position (but they are aware of the controls played by the other players and
hence their average distribution), then the limit problem is (almost always) a MFG
game (see the notes below). On the other hand, if players observe each other closely
and remember all the past actions, the convergence cannot be expected because a
deviating player can always be punished in the game with finitely many players
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(this is the so-called Folk Theorem), while it is not the case in Mean Field Games.
This kind of strategy, however, is not always convincing because a player is often
led to punish him/herself in order to punish a deviation. So the most interesting case
is when players play in closed loop strategies (in function of the current position of
the other players): indeed, this kind of strategy is time consistent (and is associated
with a PDE, the Nash system). However, the answer to the convergence problem is
then much more complicated and we only have a partial picture.

We consider here a very smooth case, in which the Nash equilibrium in the N-
player game satisfies a time-consistency condition. More precisely, we assume that
the Nash equilibrium is given through the solution (vN,i ) of the so-called Nash
system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂tvN,i −
∑

j

Δxj v
N,i +H(xi ,Dxi v

N,i)

+
∑

j�i

Hp(xj ,Dxj v
N,j ) ·Dxj v

N,i = F(xi ,m
N,i
X ) in (0, T )× TNd

vN,i (T , x) = G(xi ,m
N,i
X ) in TNd

(1.164)

where we set, for X = (x1, . . . , xN) ∈ (Td)N , mN,i
X = 1

N − 1

∑

j�i

δxj . We explain

below how this system is associated with a Nash equilibrium.
Assuming that the coupling functions F and G are monotone, our aim is to show

that the solution (vN,i ) converges, in a suitable sense, to the solution of the master
equation without a common noise.

Throughout this part we denote by U = U(t, x,m) the solution of the master
equation built in Theorem 1.21 which satisfies (1.154) and (1.155). It solves

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−∂tU −ΔxU +H(x,DxU)−
∫

Td

divyDmU dm(y)

+
∫

Td

DmU(t, x,m, y) ·Hp(y,DxU(t, y,m)) dm(y) = F(x,m)

in (0, T )× Td × P2

U(T , x,m) = G(x,m) in Td × P2

(1.165)

Throughout the section, we suppose that the assumptions of the previous section are
in force.
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1.4.4.1 The Nash System

Let us first explain the classical interpretation of the Nash system (1.164):
The game consists, for each player i = 1, . . . , N and for any initial position

x0 = (x1
0 , . . . , x

N
0 ), in minimizing

Ji(t0, x0, (α
j )) = E

[∫ T

t0

L(Xi
t , α

i
t )+ F(Xi

t ,m
N,i
Xt

) dt +G(Xi
t ,m

N,i
Xt

)

]

where, for each i = 1, . . . , N ,

dXi
t = αit dt +

√
2dBi

t , Xi
t0
= xi0

We have set Xt = (X1
t , . . . , X

N
t ). The Brownian motions (Bi

t ) are independent, but
the controls (αi) are supposed to depend on the filtration F generated by all the
Brownian motions.

Proposition 1.9 (Verification Theorem) Let (vN,i ) be a classical solution to the
above system. Then theN-uple of maps (αi,∗)i=1,...,d := (−Hp(xi,Dxi v

N,i ))i=1,...,d
is a Nash equilibrium in feedback form of the game: for any i = 1, . . . , d , for any
initial condition (t0, x0) ∈ [0, T ] × TNd , for any control αi adapted to the whole
filtration F , one has

Ji(t0, x0, (α
j,∗)) ≤ Ji(t0, x0, α

i , (αj,∗)j�i )

Proof The proof relies on a standard verification argument and is left to the reader.
�	

1.4.4.2 Finite Dimensional Projections of U

Let U be the solution to the master equation (1.165). For N ≥ 2 and i ∈ {1, . . . , N}
we set

uN,i (t, X) = U(t, xi,m
N,i
X ) where

X = (x1, . . . , xN) ∈ (Td )N, m
N,i
X = 1

N − 1

∑

j�i

δxj . (1.166)

Note that the uN,i are at least C2 with respect to the xi variable because so is U .
Moreover, ∂tuN,i exists and is continuous because of the equation satisfied by U .
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The next statement says that uN,i is actually globally C1,1 in the space variables:

Proposition 1.10 For anyN ≥ 2, i ∈ {1, . . . , N}, uN,i is of class C1,1 in the space
variables, with

Dxj u
N,i (t, X) = 1

N − 1
DmU(t, xi,m

N
X, xj ) (j � i)

and

∥
∥
∥Dxk,xj u

N,i (t, ·)
∥
∥
∥∞ ≤ C

N
(k � i, j � i).

Proof Let X = (xj ) ∈ (Td)N be such that xj � xk for any j � k. Let ε :=
minj�k |xj − xk|. For V = (vj ) ∈ (Rd)N with vi = 0, we consider a smooth vector
field φ : Td → Rd such that

φ(x) = vj if x ∈ B(xj , ε/4).

Then, as U satisfies (1.154), (1.155), we can apply Proposition 1.6 which says that,
(omitting the dependence with respect to t for simplicity)

uN,i(X + V )− uN,i(X) = U((id + φ)�m
N,i
X )− U(m

N,i
X )

=
∫

Td

DmU(m
N,i
X , y) · φ(y) dmN,i

X (y)+O(‖φ‖2
L2(m

N,i
X )

)

= 1

N − 1

∑

j�i

DmU(m
N,i
X , xj ) · vj +O(

∑

j�i

|vj |2)

This shows that uN,i has a first order expansion at X with respect to the variables
(xj )j�i and that

Dxj u
N,i (t, X) = 1

N − 1
DmU(t, xi,m

N
X, xj ) (j � i).

As DmU is continuous with respect to all its variables, uN,i is C1 with respect to
the space variables in [0, T ] × TNd .

The second order regularity of the uN,i can be established in the same way. �	
We now show that (uN,i ) is “almost” a solution to the Nash system (1.164). More

precisely, next Proposition states that the (uN,i ) solve the Nash system (1.164) up
to an error of size 1/N .
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Proposition 1.11 One has, for any i ∈ {1, . . . , N},
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∂tuN,i −
∑

j

Δxj u
N,i +H(xi ,Dxi u

N,i )

+
∑

j�i

Dxj u
N,i (t, X) ·Hp(xj ,Dxj u

N,j (t,X)) = F(xi ,m
N,i
X )+ rN,i (t, X)

in (0, T )× TNd
uN,i (T ,X) = G(xi ,m

N,i
X ) in TNd

(1.167)

where rN,i ∈ L∞((0, T )× TdN) with

‖rN,i‖∞ ≤ C

N
.

Proof As U solves (1.165), one has at a point (t, xi,m
N,i
X ):

−∂tU −ΔxU +H(xi ,DxU)−
∫

Td

divyDmU(t, xi ,m
N,i
X , y) dm

N,i
X (y)

+
∫

Td

DmU(t, xi ,m
N,i
X , y) ·Hp(y,DxU(t, y,m

N,i
X )) dm

N,i
X (y) = F(xi,m

N,i
X )

So uN,i satisfies:

−∂tuN,i −Δxiu
N,i +H(xi,Dxi u

N,i )− 1

N − 1

∑

j�i

divyDmU(t, xi,m
N,i
X , yj )

+ 1

N − 1

∑

j�i

Dxj u
N,i (t, X) ·Hp(xj ,DxU(t, xj ,m

N,i
X )) = F(xi,m

N,i
X )

By the Lipschitz continuity of DxU with respect to m, we have

∣
∣
∣DxU(t, xj ,m

N,i
X )−DxU(t, xj ,m

N,j
X )

∣
∣
∣ ≤ Cd1(m

N,i
X ,m

N,j
X ) ≤ C

N − 1
,

so that, by Proposition 1.10,

∣
∣
∣
∣

1

N − 1
DxU(t, xj ,m

N,i
X )−Dxj u

N,j (t,X)

∣
∣
∣
∣ ≤

C

N2

and

1

N − 1

∑

j�i

Dxj u
N,i (t, X) ·Hp(xj ,DxU(t, xj ,m

N,i
X ))

=
∑

j�i

Dxj u
N,i (t, X) ·Hp(xj ,Dxj u

N,j (t,X))+O(1/N).
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On the other hand,

∑

j

Δxj u
N,i = Δxiu

N,i +
∑

j�i

Δxj u
N,i

where, using Proposition 1.10 and the Lipschitz continuity of DmU with respect to
m,

∑

j�i

Δxj u
N,i =

∫

Td

divyDmU(t, xi,m
N,i
X , y)dm

N,i
X (y)+O(1/N) a.e.

Therefore

−∂tuN,i −
∑

j

Δxj u
N,i +H(xi ,Dxi u

N,i)

+
∑

j�i

Dxj u
N,i(t, X) ·Hp(xj ,Dxj u

N,j (t, X)) +O(1/N) = F(xi ,m
N,i
X ).

�	

1.4.4.3 Convergence

We are now ready to state the main convergence results of [65]: the convergence of
the value function and the convergence of the optimal trajectories. Let us strongly
underline that we have to work here under the restrictive assumption that there exists
a classical solution to the master equation. This solution is known to exist only
on short time intervals or under the Lasry-Lions monotonicity assumption. Outside
this framework, a recent (and beautiful) result of Lacker [140] states that the limit
problem is a weak solution of a MFG model (i.e., involving some extra randomness),
provided the idiosyncratic noise is non degenerate.

Let us start with the convergence of the value function:

Theorem 1.22 Let (vN,i ) be the solution to (1.164) andU be the classical solution
to the master equation (1.165). Fix N ≥ 1 and (t0,m0) ∈ [0, T ] × P1.

(i) For any x ∈ (Td)N , let mN
x := 1

N

∑N
i=1 δxi . Then

sup
i=1,··· ,N

∣
∣
∣v
N,i (t0, x)− U(t0, xi,m

N
x )

∣
∣
∣ ≤ CN−1.

(ii) For any i ∈ {1, . . . , N} and xi ∈ Td , let us set

wN,i (t0, xi ,m0) :=
∫

Td

. . .

∫

Td

vN,i (t0, x)
∏

j�i

m0(dxj ),
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where x = (x1, . . . , xN). Then,

∥
∥
∥w

N,i(t0, ·,m0)− U(t0, ·,m0)

∥
∥
∥
L1(m0)

≤
⎧
⎨

⎩

CN−1/d if d ≥ 3
CN−1/2 log(N) if d = 2
CN−1/2 if d = 1

.

In (i) and (ii), the constant C does not depend on t0, m0, i nor N .

Theorem 1.22 says, in two different ways, that the (vN,i )i∈{1,··· ,N} are close to
U . In the first statement, one compares vN,i (t, x) with the solution of the master
equation evaluated at the empirical measure mN

x while, in the second statement,
the averaged quantity wN,i can directly be compared with the solution of the MFG
system (1.152) thanks to the representation formula (1.153) for the solution U of
the master equation.

The proof of Theorem 1.22 consists in comparing the “optimal trajectories” for
vN,i and for uN,i , for any i ∈ {1, . . . , N}. For this, let us fix t0 ∈ [0, T ), m0 ∈ P2
and let (Zi)i∈{1,...,N} be an i.i.d family of N random variables of law m0. We set
Z = (Zi)i∈{1,...,N}. Let also ((Bi

t )t∈[0,T ])i∈{1,...,N} be a family of N independent
d-dimensional Brownian motions which is also independent of (Zi)i∈{1,...,N}. We
consider the systems of SDEs with variables (Xt = (Xi,t )i∈{1,...,N})t∈[0,T ] and
(Yt = (Yi,t )i∈{1,...,N})t∈[0,T ](the SDEs being set on Rd with periodic coefficients):

⎧
⎨

⎩

dXi,t = −Hp

(
Xi,t ,Dxi u

N,i (t,Xt )
)
dt

+√
2dBi

t , t ∈ [t0, T ],
Xi,t0 = Zi,

(1.168)

and

⎧
⎨

⎩

dYi,t = −Hp

(
Yi,t ,Dxi v

N,i (t,Yt )
)
dt

+√
2dBi

t , t ∈ [t0, T ],
Yi,t0 = Zi.

(1.169)

Note that the (Yi) are the optimal solutions for the Nash system, while, by the mean
field theory, the (Xi) are close to the optimal solutions in the mean field limit.

Since the (uN,i )i∈{1,...,N} are symmetrical, the processes ((Xi,t )t∈[t0,T ])i∈{1,...,N}
are exchangeable. The same holds for the ((Yi,t )t∈[t0,T ])i∈{1,...,N} and, actually, the
N R2d -valued processes ((Xi,t , Yi,t )t∈[t0,T ])i∈{1,...,N} are also exchangeable.

Theorem 1.23 We have, for any i ∈ {1, . . . , N},

E
[

sup
t∈[t0,T ]

|Yi,t −Xi,t |
] ≤ C

N
, ∀t ∈ [t0, T ], (1.170)

E

[∫ T

t0

|Dxiv
N,i (t,Yt )−Dxiu

N,i (t,Yt )|2dt
]

≤ CN−2, (1.171)
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and, P-almost surely, for all i = 1, . . . , N ,

|uN,i(t0,Z)− vN,i (t0,Z)| ≤ CN−1, (1.172)

where C is a (deterministic) constant that does not depend on t0, m0 and N .

The main step of the proof of Theorem 1.22 and Theorem 1.23 consists in
comparing the maps vN,i and uN,i along the optimal trajectory Yi . Using the
presence of the idiosyncratic noises Bi and Proposition 1.11 gives (1.171), from
which one derives that the Xi and the Yi solve almost the same SDE, whence
(1.170). We refer to [65] for details.

1.4.4.4 Comments

The question of the convergence of N-player games to the MFG system has been
and is still one of the most puzzling questions of the MFG theory (together with the
notion of discontinuous solution for the master equation). In their pioneering works
[143–145] Lasry and Lions first discussed the convergence for open-loop problems
in a Markovian setting, because in this case the Nash equilibrium system reduces
to a coupled system of N equations in Rd (instead of N equations in RNd ), and in
short time, where the estimates on the derivatives of the vN,i propagate from the
initial condition.

The convergence of open-loop Nash equilibria (in a general setting) is now
completely understood thanks to the works of Fischer [105] and Lacker [139], who
identified completely the possible limits: these limits are always MFG equilibria. If
these results are technically subtle, they are not completely surprising because at the
limit players actually play open-loop controls: so there is not a qualitative difference
between the game with finitely many players and the mean field game.

The question of convergence of closed-loop equilibria is more subtle. As shows
a counter-example in [68, I.7.2.5], this convergence does not hold in full generality:
however, the conditions under which it holds are still not clear. We have presented
above what happens in MFG problems for monotone coupling and nondegenerate
idiosyncratic noise. The result also holds for MFG problems with a common noise:
see [65]. The convergence is quite strong, and there is a convergence rate. In that
same setting, [97] and [96] study the central limit theorem and the large deviation.
Lacker’s result [140], on the other hand, allows to prove the convergence towards
(weak) solutions of MFG equilibria without using the master equation, under the
assumption of nondegeneracy of the idiosyncratic noise only. The result relies on
the fact that, in some average sense, the deviation of a player barely affects the
distribution of the players when N is large. Heuristically, this is due to the presence
of the noise, which prevents the players to guess if another player has deviated or
not. One of the drawbacks of Lacker’s paper is that there might be a lot of (weak)
MFG equilibria, outside of the monotone case where it is unique. It is possible that
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actually only one of these equilibria is selected at the limit: this is what happens in
the examples discussed in [80, 95].

Appendix: P.-L. Lions’ Courses on Mean Field Games at the
Collège de France

Mean Field Game theory has been largely developed from Lions’s ideas on the topic
as presented in his courses at the Collège de France during the period 2007–2012.
These courses have been recorded and can be found at the address:

http://www.college-de-france.fr/site/pierre-louis-lions/_course.htm
To help the reader to navigate between the different years, we collect here some

informal notes on the organization of the courses. We will use brackets to link some
of the topics below to the content of the previous sections.

Organization 2007–2008

(Symmetric functions of many variables; differentiability on the Wasserstein space)

• 09/11/2007
Behavior as N → ∞ of symmetric functions of N variables. Distances on
spaces of measures. Eikonal equation in the space of measures (by Lax-Oleinik
formula). Monomial on the space of measures. Hewitt-Savage theorem.

• 16/11/2007
A proof of Hewitt-Savage theorem by the use of monomials on the space of
measures.

• 23/11/2007

1st hour: A remark on quantum mechanics (antisymmetric functions of N
variables).

2nd hour: Extensions on the result about the behavior as N → ∞ of
symmetric functions of N variables.

– other moduli of continuity (|uN(X)− uN(Y )| ≤ C infσ maxi |xi − yσ(i)|).
– relaxation of the symmetry assumption: symmetry by blocs.
– distances with weights (replacing 1/N by weights (λi)).

Discussion on the differential calculus on P2: functions C1 over P2 defined
through conditions on their restriction to measures with finite support.

• 07/12/2007

1st hour: Back to the differential calculus on P2; application to linear
transport equation, to 1st order HJ equations (discussion on scaling

http://www.college-de-france.fr/site/pierre-louis-lions/_course.htm
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(1/N)
∑

i H (NDxiu
N) - discussion on the restriction to subquadratic

hamiltonians).
2nd hour: Second order equations. Heat equations (independent noise, com-

mon noise); case of diffusions depending on the measure.

• 14/12/2007
Discussion about differentiability, C1, C1,1 on the Wasserstein space [cfr.
Sect. 1.4.2]. Wasserstein distance computed by random variables.

Organization 2008–2009

(Hamilton-Jacobi equation in the Wasserstein space - Derivation and analysis of the
MFG system)

• 24/10/08
Nash equilibria in one shot symmetric games as the number of players tends to
infinity (example of the towel on the beach).
Characterization of the limit of Nash equilibria.
Existence - Discussion on the uniqueness through an example.
Nash equilibria (in the game with infinitely many players) as optima of a
functional (efficiency principle).

• 31/10/2008
Differentiability on P2 through the representation as a function of random
variables. Definition of C1, link with the differentiability of functions of many
variables. Structure of the derivative: law independent of the choice of the
representative, derivative as a function of the random variable [cfr. Sect. 1.4.2].
First order Hamilton-Jacobi equations in the space of measures. Definition with
test functions in L2(Ω). Lax-Oleinik formula. Uniqueness of the solution.

• 07/11/2008
First order Hamilton-Jacobi equations in the space of measures: comparison.
Limit of HJ with many variables: Eikonal equation, extension to general Hamil-
tonians, weak coupling.
Discussion about the choice of the test function: is it possible to take test
functions on L2(Ω) which depend on the law only?

• 14/11/2008
1st hour: 2nd order equations in probability spaces. Back to the limit of equations

(A) ∂tuN −ΔuN = 0 and (B) ∂tuN −∑i,j
∂2uN

∂xi∂xj
= 0: different expressions for

the limit.
2nd hour: strategies for the proof of uniqueness for the limit equation (A): (1)
by verification—restricted to linear equation, (2) in L2(Rd )—requires coercivity
conditions which are missing here, (3) Feng-Katsoulakis technique—works
mostly for the heat equation and relies on the contracting properties of the heat
equation in the Wasserstein space.
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• 21/11/2008
(Digression: Back to the family of polynomials: restriction to U(m) =
Πk

∫

Rd
φk(x)m(x).)

Analysis of the “limit heat equation” in the Wasserstein space (case (A)):
explanation of the fact that it is a first order equation - interpretation as a
geometric equation.
Back to uniqueness: use of HJ in Hilbert spaces (cf. Lions, Swiech). Key point:
diffusion almost in finite dimension. Proof of uniqueness by using formulation in
L2(Ω).
Nonlinear equations of the form

(∗) ∂tu
N − 1

N

∑

i

F (N D2uNi ) = 0.

Heuristics for the limit by polynomials.
Limit equation of (*): ∂tU − E1[F(E2[U ′′(G,G)])] = 0. Uniqueness: as before.
Beginning of the analysis of the case of complete correlation.

• 28/11/2008
Analysis of “limit heat equation” in the Wasserstein space (case (B)). Discussion
on the well-posedness.
Remark on the dual equation.

• 05/12/2008
Derivation of the MFG system from the N-player game [cfr. Sect. 1.4.4].
Back to the system of N equations and link with Nash equilibria. Ref.
Bensoussan-Frehse. Uniqueness of smooth solutions; existence: more difficult,
requires conditions in x of the Hamiltonian (growth of ∂H

∂x
).

Problem: understand what happens as N → +∞.

Key point: one needs to have | ∂u
N
j

∂xj
| ≤ C and | ∂u

N
j

∂xi
| ≤ C/N . Known for T small

or special structure of H . Open in general.
One then expects that uNi → U(xi,m, t). Derivation of the Master equation for
U (without common noise, [cfr. Sect. 1.4.3]).
Discussion on the Master equation; uniqueness. No maximum principle.
Derivation of the MFG system from the Master equation.
Direct derivation of the MFG system from the Nash system: evolution of the
density of the players in the RNd system for the Nash equilibrium with N
players when starting from an initial density m0; cost of a player with respect
to the averaged position of the other players. Propagation of chaos under the

assumption | ∂
2uNj

∂xj ∂xk
| ≤ C/N2.

• 19/12/2008
Analysis of the MFG system for time dependent problems: second order [cfr.
Thm 1.4 and Thm 1.11].
Existence: H Lipschitz or regularizing coupling.
Discussion on the coupling: local or nonlocal, regularizing.
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Case H Lipschitz + coupling of the form g = g(m,∇m) with a polynomial
growth in ∇m. A priori estimates for (m, u) and its derivatives.
Case of a regularizing coupling F = F(m) without condition on H (here H =
H(∇u)): a priori estimates by Bernstein method.

• 09/01/2009
Existence of solutions for the MFG system: by strategy of fixed point and
approximation.
Starting point: H Lipschitz and regularizing coupling.
Other cases by approximation.
Description of “la ola”.
Discussion on the uniqueness for the system MFG. Two regimes: monotone
coupling versus small time horizon.

• 16/01/2009
1st hour: Interpretation of the MFG system (with a local coupling and planning
problem setting) as an optimal control problem of the Fokker-Planck equation
[cfr. Thm 1.17].
Comment on the existence of a minimum, on the uniqueness (counter-example
to uniqueness when the monotonicity is lost).
Loss of uniqueness by analysis of the linearized system (when existence of a
trivial solution): the linearized problem is well-posed only if the horizon is small.
2nd hour: Use of the Hopf-Cole transform for quadratic Hamiltonians [cfr.
Remark 1.13].
Back on the existence of the solution to the MFG system [cfr. Remark 1.12]:

{−∂tu−Δu+H(p) = f (m)

∂tm−Δm− div(mHp(Du)) = 0

– if f is bounded and H is subquadratic, existence of smooth solutions (e.g.,
H(p) = pα , α ≤ 2). (works also for f (m) = c0m

p for p small).
– if H is superquadratic and f is nonincreasing: open problem.
– if f (m) = cmβ with c > 0, H(p) = c0|p|γ with γ > 1. First a priori

estimate on
∫ ∫

m1+β + m|Du|γ ≤ C. Second a priori estimate obtained
by multiplying by Δm the equation for u, and by Δu the equation of m
and adding the resulting quantities (computation for γ = 2): one gets
d
dt

∫
DuDm = ∫ |D2u|2m+ f ′(m)|Dm|2.

Organization 2009–2010

(Analysis of the MFG system: the local coupling - Variational approach to MFGs)

• 06/11/2009
Presentation of the MFG system.
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1st hour: Maximum principle in the deterministic case for smooth solutions: if
u0 ≤ v0, then u ≤ v.
Proof by reduction to a time-space elliptic equation with boundary conditions
Dirichlet and nonlinear Neumann (+ discussion on the link with Euler equation).
Proof that this is an elliptic equation.
2nd hour: generalization to the case where the initial condition on u is a function
of m. Discussion of the maximum principle when the running cost f grows: not
true in general.
Discussion of the maximum principle when the continuity equation has a right-
hand side.

• 13/11/2009
Comparison principle in the second order setting with a quadratic hamiltonian.
Quadratic Hamiltonian: change of variable (Hopf-Cole transform, [cfr.
Remark 1.13]) and algorithm to build solutions.
Conjecture: no comparison principle for more general Hamiltonians.

• 20/11/2009
Comparison principle: second order setting with a quadratic Hamiltonian and
stationary MFG systems.
Comments on the convergence of the MFG system as T →+∞ [cfr. Sect. 1.3.6]:
convergence of mT (t), uT (t)− < uT (t) >, and < uT (t) > /T . Claim that
uT (t)− λ̄(T − t) converges.
Ergodic problem: comparison in the deterministic setting: if f1 ≤ f2, then λ̄1 ≤
λ̄2. When H(x, ξ) ≥ H(x, 0) for all ξ , then m = [f−1(x, λ)]+ where λ is such
that

∫
m = 1. Then u = constant in {m > 0}; solve H(x,Du) = λ in {m = 0}

with boundary conditions. Justification by ν → 0+ for instance.
Comparison in the second order setting: quadratic H .
Planification problems. Approach by penalization. Link with Wasserstein.

• 27/11/2009
Link between MFG with optimal control of (backward) Fokker-Plank equation:

∂tm+Δm+ div(mα) = 0, m(T , x) = m1(x)

where α = α(x, t) and the cost is of the form

∫ T

0

∫

Q

mL(x, α)dxdt + Ψ (m)+
∫

Q

Φ(x,m(0, x))dx

Planing pb: Φ = 1
2ε‖m−m0‖2

2.
Derivation of the optimality conditions. Generalization to the case L(x, α,m)

which is a functional ofm. Approach by optimal control to the planning problem.
Leads to controllability issues. Discussion of the polynomial case.
2nd hour: First order planning problem: existence of a smooth solution.
Step 1: link with quasilinear elliptic equations with nonlinear boundary condi-
tions [cfr. Remark 1.16].
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Step 2: L∞ estimates on w := ∂tu + H(x,Du) (i.e., estimate on m): extension
of Bernstein method by looking at the equation satisfied by w.
Step 3: L∞ estimate on u. Indeed u is smooth and solves ∂tu+H(Du) = f (m)

where f (m) is bounded. So it is a forward and backward solution which gives
the result.

• 04/12/2009
Planning problem (without diffusion): link with quasilinear elliptic equation
(in time-space) with nonlinear boundary conditions. Lipschitz estimates on u:
Bernstein method again. Difficulties: constants are subsolutions and boundary
conditions.

• 11/12/2009
First hour: Back to the first order planning problem.
Dual problem, i.e., optimal control of HJ equation [cfr. Sect. 1.3.7.2]. Namely

inf
u

∫ ∫

G(
∂u

∂t
+H(Du))−

∫

(m1u(T )−m0u(0)).

Computation of the first variation, and link with the MFG system. Comment on
the fact that f = f (m) has to be strictly increasing. Generalization to second
order problems.
Counter-examples:

(i) (reminder when H at most linear (first or second order): existence of
solutions). In this case there is no existence of solution for the dual problem
(at least for small time).

(ii) Regularity? Normalization:H(0) = 0, H ′(0) = 0, f (1) = 0, A = H ′′(0) >
0, f ′(1) = a > 0. Then m = 1, u = 0 is the unique solution form0 = mT =
0. One linearizes to get ∂tv − νΔv = an, ∂tn + νΔn + div(ADv) = 0
with n(0) = n0 and n(T ) = nT where

∫
n0 = ∫

n1. Stability requires
that A > 0. Proposition: the linearized (periodic) problem is well-posed iif
A > 0, a ≥ 0, ν ≥ 0. Proof for first order, straightforward; for second order,
Fourier.

Second hour: end of the proof.

Second Order Planning Problem Approach by optimization (optimal control
of Fokker-Planck equation) yields the existence and uniqueness of very weak
solutions. Main issue: regularity. Understood when H = 1

2 |p|2. Theorem: when
H = 1

2 |p|2, and f non decreasing with polynomial growth, then there is a
unique smooth solution. Generalization to the case |H ′′(p) − I | ≤ C√

1+|p|2
(conj. could be generalized to the case cI ≤ H ′′ ≤ CI ). Proof by the Hopf-Cole
transformation.

• 18/12/2009
MFG problems with congestion terms [cfr. Example 1.1]: minimize

E

[∫ T
t
q−1|αs |q(m(s,Xs))

ads + u0(XT )
]

with dXs = σdWs − αsds where
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q > 1 and a > 0. Leads to the MFG system of the form

⎧
⎪⎨

⎪⎩

∂tu− νΔu+ 1
p
|Du|p
mb = 0

−∂tm− νΔm+ div( |Du|
p−2Du

mb m) = 0

m(T ) = mT , u(0) = u0

(1.173)

Discussion of the (lack of) link with the optimal control of the Fokker-Planck
equation. Uniqueness condition for the MFG system (for p = 2 and 0 < b ≤ 2).

• 08/01/2010
Back to the congestion problem. Uniqueness of the solution of (1.173) in the
case (1) where the Hamiltonian is of the form |Du|2/(2f (m)) (and the term in
the divergence by mDu/f (m) and (2) p > 1 and 0 < b ≤ 4/p′).
Discussion on the existence of a solution for ν = 0 by using the fact that the
equation of u is an elliptic equation in time-space: bounds on u, m and on Du.
Regularity issue if m vanishes.
Analysis of the case ν > 0, p = 2, 0 < b(≤ 2): a priori estimates and notion of
solution.

• 15/01/2010
Back to to the congestion problem (1.173) when p = 2, b = 1. A priori
estimates continued (bounds on u, on

∫ ∫ |Du|2(1 + m−1), on
∫ ∫ |D2u|2 and

on
∫ ∫ |Du|2|Dm|2/m2). Existence of a solution by approximation (replacing

|Du|2/m by |Du|2/(δ +m) for δ > 0).

Organization 2010–2011

(the master equation in infinite and finite dimension)

• 05/11/2010
Uniqueness for the MFG system when H = H(Du,m) [cfr. Thm 1.13]. Differ-
ent approaches: monotonicity, continuation, reduction to an elliptic equation.

• 12/11/2010
Uniqueness for the MFG system when H = H(Du,m) (continued): lineariza-
tion, problems with actualization rate.
On the Master equation (MFGf)3 :

1. Heuristics: Master equation as a limit system of Nash equilibria with N

players as N →+∞
2. The Master Equation contains the MFG equation (when β = 0)
3. Back to the uniqueness proof: U is monotone
4. Back to N →+∞: MFGf contains the Nash system without individual noise.

3Warning: missing term in the MFGf.
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• 19/11/2010
1st hour: Back to the Master equation.4 Check that when ν � 0 the equation does
not match with Nash eq for N players. Link with optimal control problems in the
case of separate variables (discussion of the case of non separate variables).
2nd hour: Hamilton-Jacobi equation associated with an optimal control of
Fokker-Planck equation. Derivation of the master equation by taking the deriva-
tive of the Hamilton-Jacobi equation.

• 26/11/2010
Erratum on the master equation. Interpretation of the Master Equation as a limit
as N →+∞: explanation of the second order terms [cfr. Sect. 1.4.3.3].

(1) Interpretation in terms of optimal control problem (β = 0)
(2) Uniqueness related to the convexity of F and Φ
(3) General principle for the link between optimal control and the Master

Equation in infinite dimension.

• 03/12/2010
System derived from Hamilton-Jacobi: propagation of monotonicity.

• 10/12/2010
System derived from Hamilton-Jacobi:

– Propagation of monotonicity for second order systems.
– Propagation of smoothness, method of characteristics.

• 17/12/2010
Propagation of monotonicity for ∂U

∂t
+ (H ′(DU)D)U = f (x)+∑ aα,β

∂2U
∂xαxβ

.
• 07/01/2011

Existence and uniqueness of a monotone solution for ∂U
∂t

+ (H ′(DU)D)U =
f (x).
Remarks on semi-concavity for HJ equations.

• 14/01/2011
1st hour: Structure of the master equation in the discrete setting (without
diffusion):

∂tUi + (
∑

j

xjH
′
j (x,∇U)∇)Ui +Hi(x,∇U) = 0.

Propagation of Monotonicity
2nd hour: Propagation of monotonicity for independent noises (in the infinite
dimensional setting). Finite dimensional setting, in which the noise yields a term
of the form

∑
k,l aklxl∂kUi +∑k akiUk .

Monotonicity for the common noise (in the infinite dimensional setting; the finite
dimensional setting being open).

4Warning: missing term in the MFGf.
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Organization 2011–2012

(Analysis of the master equation for MFG in the finite state space, [cfr.
Sect. 1.4.3.2])

• 28/10/2011
Analysis of equation: ∂U

∂t
+ (U.∇)U = 0 (where U : Rn × (0,+∞)→ Rn).

– case U0 = ∇φ0: then U = ∇φ with φ sol of HJ equation.
– case U0 monotone, bounded and Lipschitz continuous: existence and unique-

ness of a monotone, bounded and Lipschitz continuous sol, which is smooth
if U0 is smooth.

Generalization to ∂V
∂t
+ (F (V ).∇)V = 0, provided F and V0 monotone (since

U = F(V ) the initial equation)
Explicit formula: linear case, method of characteristics: solution is given by U =
(U−1

0 + tId )
−1 as long as there is no shock. Quid in general?

Propagation of the condition ∂Ui
∂xj

≤ 0, j � i.
• 04/11/2011

Back to the system ∂U
∂t
+ (U.∇)U = 0.

Propagation of the condition ∂Ui
∂xj

≤ 0, j � i. Consequence: ∂Ui
∂xi

is a bounded
measure.
A striking identity: if U is a classical solution of ∂U

∂t
+ (F (U).∇)U = 0, then

∂
∂t

det(∇U)+ div(F (U) det(∇U)) = 0.
• 25/11/2011

Application to non-convex HJ equations: examples of smooth solutions.
• 09/12/2011

Propagation of monotonicity with second order terms.
• 16/12/2011

Analysis of ∂U
∂t
+ (F (U).∇)U = 0.

Following Krylov idea: introduce W(x, η, t) = U(x, t) · η.
• 06/01/2012

Analysis of ∂U
∂t

+ (F (U).∇)U = f (x): existence of a smooth global solution
under monotonicity assumptions.
A priori estimates when U0 satisfies U ′

0(z)ξ · ξ ≥ α|U ′
0(z)ξ |2 for some α > 0

and any z, ξ .
• 13/01/2012

Analysis of ∂U
∂t

+ (F (U).∇)U = 0 with U0 and F monotone (continued). A
priori estimates on ∇U under the assumption that there exists α > 0 such that
F ′(z)ξ · ξ ≥ α|F ′(z)ξ |2 for any z, ξ .
Generalization to the case with a right-hand side of the form akl∂klU

i + bikl∂lU
k

where aαβ symmetric ≥ 0.
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Additional Notes

• 08/11/2013
Seminar: on the differentiability in Wasserstein space, point of view of the
random variables. MFGs in the finite state case: the master equation as a first
order hyperbolic system. Back to the infinite dimensional case, the Hilbertian
approach: if U(t, x,X) is the solution of the classical master equation, one sets
V (t,X) = U(t,X,L(X)). Discussion of the monotonicity in the Hilbertian
framework.
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Chapter 2
Lecture Notes on Variational Mean Field
Games

Filippo Santambrogio

Abstract These lecture notes aim at giving the details presented in the short course
(6 h) given in Cetraro, in the CIME School about MFG of June 2019. The topics
which are covered concern first-order MFG with local couplings, and the main goal
is to prove that minimizers of a suitably expressed global energy are equilibria in
the sense that a.e. trajectory solves a control problem with a running cost depending
on the density of all the agents. Both the case of a cost penalizing high densities
and of an L∞ constraint on the same densities are considered. The details of a
construction to prove that minimizers actually define equilibria are presented under
a boundedness assumption of the running cost, which is proven in the relevant cases.

2.1 Introduction and Modeling

The theory of Mean Field Games was introduced around 2006 at the same time
by Lasry and Lions, [23–25], and by Huang et al. [21], in order to describe the
evolution of a population of rational agents, each one choosing (or controlling)
a path in a state space, according to some preferences which are affected by the
presence of other agents nearby in a way physicists call mean-field effect. The
evolution is described through a Nash equilibrium in a game with a continuum
of players. This can be interpreted as a limit as N → ∞ of a game with N

indistinguishable players, each one having a negligible effect as N → ∞ on the
mean-field. The class of games we consider, called Mean Field Games (MFG for
short), are very particular differential games: typically, in a differential game the
role of the time variable is crucial since if a player decides to deviate from a
given strategy (a notion which is at the basis of the Nash equilibrium definition),
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the other can react to this change, so that the choice of a strategy is usually not
defined as the choice of a path, but of a function selecting a path according to the
information the player has at each given time. Yet, when each player is considered
as negligible, any deviation he/she performs will have no effect on the other players,
so that they will not react. In this way we have a static game where the space
of strategies is a space of paths. Because of indistinguishability, the main tool to
describe such equlibria will be the use of measures on paths, and in this setting we
will use the terminology of Lagrangian equilibria. In fluid mechanics, indeed, the
Lagrangian formulation consists in “following” each particle and providing for each
of them the corresponding trajectories. On the other hand, fluid mechanics also uses
another language, the so-called Eulerian formulation, where certain quantities, and
in particular the density and the velocity of the particles, are given as a function of
time and space. MFG equilibria can also be described through a system of PDEs
in Eulerian variables, where the key ingredients are the density ρ and the value
function ϕ of the control problem solved by each player, the velocity v(t, x) of the
agents at (t, x) being, by optimality, related to the gradient ∇ϕ(t, x).

The MFG theory is now studied by may scholars in many countries, with a
quickly growing set of references. For a general overview of the theory, it is possible
to refer to the 6-years course given by P.-L. Lions at Collège de France, for which
videorecording is available in French [28] or to the lecture notes by P. Cardaliaguet
[9], based on the same course. In the present lecture notes we will only be concerned
with a sub-class of MFG, those which are deterministic, have a variational structure,
and are in some sense congestion games, where the cost for an agent passing
through a certain point depends, in an increasing way, on the density ρ(t, x) at such
a point. We will also see a variant of this class of problems where the penalization
on ρ is replaced by a constraint on it (of the form ρ(t, x) ≤ 1, for instance), which
does not fit exactly this framework but shares most of the ideas and the properties.
The topic of this course and these lecture notes were already presented in [5], so
that there will be some superposition with such a survey paper, but in these notes we
will focus on some more particular cases so as to be able to provide more technical
details and proofs. Moreover, not all regularity results were available when [5] was
written, and some proofs are simplified here.

2.1.1 A Coupled System of PDEs

Let us describe in a more precise way the simplest MFG models and the sub-class
that we consider. First, we look at a population of agents moving inside a domain
" (which can be a bounded domain in Rd or, for instance, the flat torus Td :=
R
d/Zd . . . ), and we suppose that every agent chooses his own trajectory solving a

minimization problem

min
∫ T

0

( |x ′(t)|2
2

+ h(t, x(t))

)

dt +#(x(T )),
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with given initial point x(0). The mean-field effect will be modeled through the
fact that the function h(t, ·) depends on the density ρt of the agents at time t .
The dependence of the cost on the velocity x ′ could of course be more general
than a simple quadratic function, but in all these lecture notes we will focus on
the quadratic case (some results that we present could be generalized, while for
some parts of the analysis, in particular the regularity obtained via optimal transport
methods, the use of the quadratic cost is important).

For the moment, we consider the evolution of the density ρt as an input, i.e. we
suppose that agents know it. Hence, we can suppose the function h to be given,
and we want to study the above optimization problem. The main tool to analyze it,
coming from optimal control theory, is the value function. The value function ϕ is
in this case defined via

ϕ(t0, x0) := min

{∫ T

t0

(
|x′(t)|2

2
+ h(t, x)

)

dt +#(x(T )), x : [t0, T ] → ", x(t0) = x0

}

(2.1)

and it has some important properties. First, it solves the Hamilton–Jacobi equation

(HJ)

{
−∂tϕ + 1

2 |∇ϕ|2 = h,

ϕ(T , x) = #(x)

(in the viscosity sense, but we will not pay attention to this technicality, so far);
second, the optimal trajectories x(t) can be computed using ϕ, since they are the
solutions of

x ′(t) = −∇ϕ(t, x(t)).

Now if we call v the velocity field which advects the density ρ (which means
that ρ is the density of a bunch of particles each following a trajectory x(t) solving
x ′(t) = vt (x(t))), fluid mechanics tells us that the pair (ρ, v) solves the continuity
equation

(CE) ∂tρ +∇ · (ρv) = 0

in the weak sense, together with no-flux boundary conditions ρv · n = 0, modeling
the fact that no mass enters or exits ".

In MFG we look for an equilibrium in the sense of Nash equilibria: a configu-
ration where no player would spontaneously decide to change his choice if he/she
assumes that the choices of the others are fixed. This means that we can consider
the densities ρt as an input, compute h[ρ], then compute the optimal trajectories
through the (HJ) equation, then the solution of (CE) and get new densities as an
output: we have an equilibrium if and only if the output densities coincide with the
input. This means solving the following coupled (HJ)+(CE) system: the function ϕ
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solves (HJ) with a right-hand side depending on ρ, which on turn evolves according
to (CE) with a velocity field depending on ∇ϕ(t, x).

⎧
⎪⎪⎨

⎪⎪⎩

−∂tϕ + |∇ϕ|2
2 = h[ρ]

∂tρ −∇ · (ρ∇ϕ) = 0,

ϕ(T , x) = #(x), ρ(0, x) = ρ0(x).

(2.2)

To be more general, it is possible to conside a stochastic case, where agents
follow controlled stochastic differential equations of the form dXt = αt dt +√

2νdWt and minimize

E

[∫ T

0

(
1

2
α2
t + h[ρt ](Xt)

)

dt +#(X(T ))

]

.

In this case, a Laplacian appears both in the (HJ) and in the (CE) equations:

{
−∂tϕ − ν$ϕ + |∇ϕ|2

2 − h[ρ] = 0

∂tρ − ν$ρ −∇ · (ρ∇ϕ) = 0.
(2.3)

2.1.2 Questions and Difficulties

Let us be precise now about the kind of questions that one would like to attack, at
the interface between mathematical analysis and modeling.

From the analysis and PDE point of view, the most natural questions to ask in
MFG is the existence (and possibly the uniqueness and the regularity properties)
of the solutions of systems like the above ones. This is an Eulerian question, as
the objects which are involved, the density and the velocity, which is related to
the value function, are defined for time-space points (t, x). This question can be
intuitively attacked via fixed points methods: given ρ, compute h[ρ], ϕ, then the
solution of the evolution equation on ρ, thus getting a new density evolution ρ̃, and
look for ρ̃ = ρ. Yet, this requires strong continuity properties of this sequence of
operators (and, by the way, uniqueness of those solutions if we want the operators to
be univalued) which corresponds to uniqueness, regularity, and stability properties
of the solutions of the corresponding PDEs. These properties are not always easy to
get, but can be usually obtained when

• either we have ν > 0 in System (2.3), i.e. the equations are parabolic and
the regularization effect of the Laplacian provides the desired estimates (this
applies quite easily to the present quadratic case, where a change-of-variable
u = e−ϕ/2 transforms the Hamilton–Jacobi equation of (2.3) into a linear
parabolic equation; the general case is harder and require to use uniqueness and
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stability properties which are valid for the Fokker–Planck equations under milder
regularity assumptions, and which have been recently proven in [36]);

• or the correspondence ρ �→ h[ρ] is strongly regularizing (in particular this
happens for non-local operators of the form h[ρ](x) = ∫

η(x − y) dρ(y) for
a smooth kernel η). Indeed, if h is guaranteed to be smooth, then ϕ satisfies
semiconcavity properties implying BV estimates on the drift ∇ϕ; this, in turn,
provides uniqueness and stability for the continuity equation thanks to the
DiPerna Lions theory [16] (this is more or less the point of view presented in
[9]).

One of the main interesting cases which is left out is the case where ν = 0 and
h[ρ] = g ◦ ρ (the local case, where h at a point directly depends only on ρ at the
same point). Whenever g is an increasing function this is a very natural model to
describe aversion to overcrowding and recalls in a striking way the models about
Wardrop equilibria (see [14, 15, 44]).

From the point of view of modeling and game theory, the other natural question is
to provide the existence of an equilibrium in the sense of finding which trajectories
are followed by each players (or, since players are considered to be indistinguish-
able, just finding a measure on possible trajectories). This is on the contrary a
Lagrangian question, as individual trajectories are involved. The unknown is then
a probability measure on a suitable space of paths, which induces measures ρt at
each instant of time. From these measures we deduce the function h(t, ·), which is
an ingredient for the optimization problem solved by every agent. The goal is then to
choose such a probability on paths so that a.e. path is optimal for the cost built upon
the function hwhich is induced by such probability. Again, there is a difficulty in the
local case with ν = 0. Indeed, if ρt (·) is just the density of a measure, it is defined
only a.e. and so will be h(t, ·). Hence, there will be no meaning in integrating it on
a path, unless we choose a precise representative, which is a priori arbitrary unless
ρt is continuous. Of course this difficulty does not exist whenever h is defined via
convolution, and in many cases it can also be overcome in the local case for ν > 0
since parabolic equations have a regularization effect and one can expect ρt to be
smooth.

For both the Eulerian and the Lagrangian question, an answer comes from a
variational interpretation: it happens that a solution to the equilibrium system (2.2)
can be found by an overall minimization problem as first outlined in the seminal
work by Lasry and Lions [24]. This allows to prove existence of a solution in a
suitable sense, and the optimality conditions go in the direction of a Lagrangian
equilibrium, as we will see in Sects. 2.2.2 and 2.2.3.

2.2 Variational Formulation

As we said, solutions to the equilibrium system (2.2) can be found by an overall
minimization problem.
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The description that we give below will be focused on the case h[ρ](x) =
V (x)+g(ρ(x)), where we identify the measure ρ with its density w.r.t. the Lebesgue
measure on". The function V : "→ R+ is a potential taking into account different
local costs of different points in ".

For the variational formulation, we consider all the possible population evolu-
tions, i.e. pairs (ρ, v) satisfying ∂tρ + ∇ · (ρv) = 0 (note that this is the Eulerian
way of describing such a movement; in Sect. 2.2.2 we will see how to express it in
a Lagrangian language) and we minimize the following energy

A(ρ, v) :=
∫ T

0

∫

"

(
1

2
ρt |vt |2 + ρtV +G(ρt )

)

dx dt +
∫

"

# dρT ,

where G is the anti-derivative of g, i.e. G′(s) = g(s) for s ∈ R+ with G(0) = 0.
We fix by convention G(s) = +∞ for ρ < 0. Note in particular that G is convex,
as its derivative is the increasing function g.

The above minimization problem recalls, in particular when V = 0, the
Benamou–Brenier dynamic formulation for optimal transport (see [4]). The main
difference with the Benamou–Brenier problem is that here we add to the kinetic
energy a congestion cost G; also note that usually in optimal transport the target
measure ρT is fixed, and here it is part of the optimization (but this is not a crucial
difference). Finally, note that the minimization of a Benamou–Brenier energy with
a congestion cost was already present in [8] where the congestion term was used to
model the motion of a crowd with panic.

As is often the case in congestion games, the quantity A(ρ, v) is not the total cost
for all the agents. Indeed, the term

∫ ∫ 1
2ρ|v|2 is exactly the total kinetic energy, and

the last term
∫
# dρT is the total final cost, as well as the cost

∫
V dρt exactly

coincides with the total cost enduced by the potential V ; yet, the term
∫
G(ρ) is

not the total congestion cost, which should be instead
∫
ρg(ρ). This means that the

equilibrium minimizes an overall energy (we have what is called a potential game),
but not the total cost; this gives rise to the so-called price of anarchy.

Another important point is the fact that the above minimization problem is
convex, which was by the way the key idea of [4]. Indeed, the problem is not convex
in the variables (ρ, v), because of the product term ρ|v|2 in the functional and of
the product ρv in the differential constraint. But if one changes variable, defining
w = ρv and using the variables (ρ,w), then the constraint becomes linear and the
functional convex. We will write Ā(ρ,w) for the functionalA(ρ, v)written in these
variables. The important point for convexity is that the function

R× Rd  (s,w) �→

⎧
⎪⎪⎨

⎪⎪⎩

|w|2
2s if s > 0,

0 if (s,w) = (0, 0),

+∞ otherwise

is convex (and it is actually obtained as sup{as + b · w : a + 1
2 |b|2 ≤ 0}).
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2.2.1 Convex Duality

In order to convince the reader of the connection between the minization of A(ρ, v)
(or of Ā(ρ,w)) and the equilibrium system (2.2), we will use some formal argument
from convex duality. A rigorous equivalence between optimizers and equilibria will
be, instead, presented in the Lagrangian framework in Sect. 2.2.3.

In order to formally produce a dual problem to minA, we will use a min-max
exchange procedure. First, we write the constraint ∂tρ+∇ · (ρv) = 0 in weak form,
i.e.

∫ T

0

∫

"

(ρ∂tφ +∇φ · ρv)+
∫

"

φ0ρ0 −
∫

"

φT ρT = 0 (2.4)

for every function φ ∈ C1([0, T ] × ") (note that we do not impose conditions
on the values of φ on ∂", hence this is equivalent to completing (CE) with a no-
flux boundary condition ρv · n = 0). Equation (2.4) requires, in order to make
sense, that we give a meaning at ρt for every instant of time t (and in particular for
t = T ), which is possible because whenever the kinetic term is finite then the curve
ρt is a(n absolutely) continuous curve in the space of measures (continuous for the
weak convergence, and absolutely continuous for the W2 Wasserstein distance, see
Sect. 2.4.1). However, we do not insist on this now, as the presentation stays quite
formal.

Using (2.4) , we can re-write our problem as

min
ρ,v

A(ρ, v)+ sup
φ

∫ T

0

∫

"

(ρ∂tφ +∇φ · ρv)+
∫

"

φ0ρ0 −
∫

"

φT ρT ,

since the sup in φ takes value 0 if the constraint is satisfied and +∞ if not. We now
switch the inf and the sup and get

sup
φ

∫

"

φ0ρ0+ inf
ρ, v

∫

"

(#−φT )ρT+
∫ T

0

∫

"

(
1

2
ρt |vt |2 + ρtV +G(ρt )+ ρ∂t φ + ∇φ · ρv

)

dx dt .

First, we minimize w.r.t. v, thus obtaining v = −∇φ (on {ρt > 0}) and we replace
1
2ρ|v|2 +∇φ · ρv with − 1

2ρ|∇φ|2. Then we get, in the double integral,

inf
ρ
{G(ρ)− ρ(−V − ∂tφ + 1

2
|∇φ|2)} = − sup

ρ
{pρ −G(ρ)} = −G∗(p),

where we set p := −V −∂tφ+ 1
2 |∇φ|2 and G∗ is defined as the Legendre transform

ofG. Then, we observe that the minimization in the final cost simply gives as a result
0 if# ≥ φT (since the minimization is only performed among positive ρT ) and−∞
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otherwise. Hence we obtain a dual problem of the form

sup
{

−B(φ, p) :=
∫

"

φ0ρ0 −
∫ T

0

∫

"

G∗(p) : φT ≤ #, −∂tφ + 1

2
|∇φ|2 = V + p

}

.

Note that the condition G(s) = +∞ for s < 0 implies G∗(p) = 0 for p ≤ 0. This
in particular means that in the above maximization problem one can suppose p ≥ 0
(indeed, replacing p with p+ does not change the G∗ part, but improves the value
of φ0, considered as a function depending on p). The choice of using two variables
(φ, p) connected by a PDE constraint instead of only φ is purely conventional, and
it allows for a dual problem which has a sort of symmetry w.r.t. the primal one.
Also the choice of the sign is conventional and due to the computation that we will
perform later (in particular in Sect. 2.4).

Now, standard arguments in convex duality would allow to say that optimal pairs
(ρ, v) are obtained by looking at saddle points ((ρ, v), (φ, p)), provided that there
is no duality gap between the primal and the dual problems, and that both problems
admit a solution. This would mean that, whenever (ρ, v) minimizes A, then there
exists a pair (φ, p), solution of the dual problem, such that

• v minimizes 1
2ρ|v|2 + ∇φ · ρv, i.e. v = −∇φ ρ-a.e. This gives (CE): ∂tρ − ∇ ·

(ρ∇φ) = 0.
• ρ minimizes G(ρ) − pρ, i.e. g(ρ) = p if ρ > 0 or g(ρ) ≥ p if ρ = 0 (in

particular, when we have g(0) = 0, we can write g(ρ) = p+); this gives (HJ):
−∂tφ + 1

2 |∇φ|2 = V + g(ρ) on {ρ > 0} (as the reader can see, there are some
subtleties where the mass ρ vanishes;).

• ρT minimizes (# − φT )ρT among ρT ≥ 0. But this is not a condition on ρT ,
but rather on φT : we must have φT = # on {ρT > 0}, otherwise there is no
minimizer. This gives the final condition in (HJ).

This provides an informal justification for the equivalence between the equilibrium
and the global optimization. It is only informal because we have not discussed
whether we have or not duality gaps and whether or not the maximization in (φ, p)
admits a solution. Moreover, even once these issues are clarified, what we will
get will only be a very weak solution to the coupled system (CE)+(HJ). Nothing
guaranteees that this solution actually encodes the individual minimization problem
of each agent. This will be clarified in Sect. 2.2.3 where a Lagrangian point of view
will be presented.

However, let us first give the duality result which can be obtained from a suitable
application of Fenchel-Rockafellar’s Theorem, and for which details are presented,
in much wider generality, in [11].

Theorem 2.2.1 Set D = {(φ, p) ∈ C1([0, T ] × ") × C0([0, T ] × ") : −∂tφ +
1
2 |∇φ|2 = V + p, φT ≤ #} and P = {(ρ, v) : ∂tρ + ∇ · (ρv) = 0, ρ0 = ρ0},
where the continuity equation on (ρ, v) is satisfied in the sense of (2.4) and (ρt )t is
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a continuous curve of probability measures on ", with vt ∈ L2(ρt ) for every t . We
then have

min{A(ρ, v) : (ρ, v) ∈ P} = sup{−B(φ, p) : (φ, p) ∈ D}.

Note that in the above theorem we called D and P the domains in the dual
and primal problems respectively, with the standard confusion between dual and
primal (officially it is the problem on measures which should be the dual of that on
functions, and not viceversa) which is often done when we prefer to call “primal”
the first problem that we meet and which is the main object of our analysis.

It is important to observe that the above theorem does not require the assumption
on the growth rate of the Hamiltonian and of the congestion function G, which
translate into this quadratic case into “G(s) ≤ C(sq + 1) for an exponent q <

1 + 2/d”, which is present in the paper [11]. This restriction was required in order
to find a suitable relaxed solution to the dual problem, which has in general no
solution in D. This result is the object of the following theorem, where we omit
this condition on q , since it has been later removed in more recent papers. Indeed,
[12] was the first paper where this assumption disappears, for second-order MFG
with possibly degenerate diffusion (which include the first-order case; also refer to
[19], where duality was used for regularity purposes, which explicitly focuses on
the first-order case).

Theorem 2.2.2 Set D̃ = {(φ, p) ∈ BV ([0, T ] ×")×M([0, T ] × ") : −∂tφ +
1
2 |∇φ|2 ≤ V + p, φT ≤ #}. We then have

min{A(ρ, v) : (ρ, v) ∈ P} = max{−B(φ, p) : (φ, p) ∈ D̃}

and the max on the right hand side is attained.

A disambiguation is needed, when speaking of BV functions, about the final
condition φT ≤ # . Indeed, a BV function could have a jump exactly at t = T and
hence its pointwise value at the final time is not well-defined. The important point
is that, if φ(T −) does not satisfy the required inequality, but φ(T ) is required to
satisfy it, then a jump is needed, i.e. a singular part of the measure p concentrated
at {t = T }, and this part will be considered in the dual cost (this is particularly
important when the costG∗ in the dual problem has linear growth, and singular parts
are allowed, which will be the case for the density-constrained case of Sect. 2.5).

However, most of these notes will not make use of this refined duality, both
because we want to consider cases where the growth rate of G does not satisfy
this inequality and because we will need to use (in Sect. 2.3) smooth test functions
and apply the duality. For this sake, it will be more convenient to choose almost-
maximizers (φ, p) ∈ C1 × C0 rather than maximizers with limited regularity.

We finish this section with a last variant, inspired by the crowd motion model of
[31]. We would like to consider a variant where, instead of adding a penalization
g(ρ), we impose a capacity constraint ρ ≤ 1. How to give a proper definition of
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equilibrium? A first, naive, idea, would be the following: when (ρt )t is given, every
agent minimizes his own cost paying attention to the constraint ρt (x(t)) ≤ 1. But if
ρ already satisfies ρ ≤ 1, then the choice of only one extra agent will not violate the
constraint (since we have a non-atomic game), and the constraint becomes empty.
As already pointed out in [38], this cannot be the correct definition.

In [38] an alternative model is formally proposed, based on the effect of the
gradient of the pressure on the motion of the agents, but this model is not variational,
and no solution has been proven to exist in general in its local and deterministic
form.

A different approach to the question of density constraints in MFG was presented
in [13]: the idea is to start from the the variational problem

min

{∫ T

0

∫

"

(
1

2
|vt |2 + V

)

dρt +
∫

"

# dρT : ρ ≤ 1

}

.

This means that we use G = I[0,1], i.e. G(s) = 0 for s ∈ [0, 1] and +∞ otherwise.
The dual problem can be computed and we obtain

sup

{∫

"

φ0ρ0 −
∫ T

0

∫

"

p+ : φT ≤ #, −∂tφ + 1

2
|∇φ|2 = V + p

}

(note that this problem is also obtained as the limit m →∞ of g(ρ) = ρm; indeed
the functional 1

m+1

∫
ρm+1 %-converges to the constraint ρ ≤ 1 as m→∞).

By looking at the primal-dual optimality conditions, we get again v = −∇φ and
φT = # , but the optimality of ρ means

0 ≤ ρ < 1 ⇒ p = 0, ρ = 1 ⇒ p ≥ 0.

This gives the following MFG system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂tϕ + |∇ϕ|2
2 = V + p,

∂tρ −∇ · (ρ∇ϕ) = 0,

ϕ(T , x) = #(x), ρ(0, x) = ρ0(x),

p ≥ 0, ρ ≤ 1, p(1 − ρ) = 0.

(2.5)

It is important to understand that p is a priori just a measure on [0, T ] ×", since it
has a sign (and distributions with a sign are measures) and it is penalized in terms of
its L1 norm. Indeed, even if Theorem 2.2.2 is stated exactly by taking p in the space
of measures, in general according to the function G∗ it is possible to obtain extra
summability (if G has growth of order q then one obtains p ∈ Lq

′
). Here, instead,

since G∗ is linear we do not obtain more than measure bounds. This means that ϕ is
not better than a BV function, and in particular it could have jumps. From the first
equation in System (2.5) and the positivity of p we see that ϕ could have a jump
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at time t = T in the sense that ϕ(T −) > ϕ(T ) = # . Hence, an alternative way to
write the same system is to remove the possible singular part of p concentrated on
t = T but consider as a final value for ϕ the value that it takes at T −. In this way,
we can re-write System (2.5) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∂tϕ + |∇ϕ|2
2 = V + p,

∂tρ −∇ · (ρ∇ϕ) = 0,

ϕ(T , x) = #(x)+ P(x), ρ(0, x) = ρ0(x),

p ≥ 0, ρ ≤ 1, p(1 − ρ) = 0,

P ≥ 0, P (1 − ρT ) = 0.

(2.6)

Formally, by looking back at the relation between (HJ) and optimal trajectories,
we can guess that each agent solves

min
∫ T

0

( |x ′(t)|2
2

+ h(t, x(t))

)

dt + #̃(x(T )), (2.7)

where h = p + V and #̃ = # + P . Here p and P are pressures arising from the
incompressibility constraint ρ ≤ 1 and only present in the saturated zone {ρ = 1},
but they finally act as prices paid by the agents to travel through saturated regions.
From the economical point of view this is meaningful: due to a capacity constraint,
the most attractive regions develop a positive price to be paid to pass through them,
and this price is such that, if the agents keep it into account in their choices, then
their mass distribution will indeed satisfy the capacity constraints.

This problem of course presents the same difficulties of the case where conges-
tion is penalized and not constrained: what does it mean to integrate p on a path if
p is only a measure? We will see later on a technique to get rid of this difficulty,
following an idea by Ambrosio and Figalli [2] for applications to the incompressible
Euler equation, but this techniques requires at least that p is a sufficiently integrable
function. In these notes, we will present Ambrosio and Figalli’s ideas in the case
where h is L∞, insisting on he simplification that it brings, and in Sect. 2.5 we will
provide indeed an L∞ regularity result on both p and P . In the original paper on
density-constrained MFG, [13], the L∞ regularity result on p was not available,
and suitable regularity results of the form p ∈ L2

t BVx were proven via a technique

similar to that used in Sect. 2.3 of these notes. Since we have L2
t BVx ⊂ L2

t L
d/(d−1)
x ,

this BV regularity result was enough to apply, at least to a certain extent, the theory
developed in [2].

2.2.2 Lagrangian Formulation

We present now an alternative point of view for the overall minimization problem
presented in the previous sections. As far as now, we only looked at an Eulerian point
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of view, where the motion of the population is described by means of its density
ρ and of its velocity field v. The Lagrangian point of view would be, instead, to
describe the motion by describing the trajectory of each agent. Since the agents are
supposed to be indistinguishable, then we just need to determine, for each possible
trajectory, the number of agents following it (and not their names. . . ); this means
looking at a measure on the set of possible paths.

Set C = H 1([0, T ];"); this will be the space of possible paths that we use. In
general, absolutely continuous paths would be the good choice, but we can restrict
our attention to H 1 paths because of the kinetic energy term that we have in our
minimization. We define the evaluation maps et : C→ ", given for every t ∈ [0, T ]
by et (ω) = ω(t). Also, we define the kinetic energy functional K : C → R given
by

K(ω) = 1

2

∫ T

0
|ω′|2(t) dt .

We endow the space C with the uniform convergence (and not the strong H 1

convergence, so that we have compactness of the sublevel sets of K). For notational
simplicity, we will also often write K# for the kinetic energy augmented by a
final cost: K#(ω) := K(ω) + #(ω(T )); similarly, we will denote by K#,h the
same quantity when also a running cost is included: K#,h(ω) := K#(ω) +∫ T

0 h(t, ω(t)) dt .

Proposition 2.2.3 Suppose (ρ, v) satisfies the continuity equation ∂tρ+∇ · (ρv) =
0 and

∫ T
0

∫

"
ρ|v|2 < ∞. Then there exist a representative of ρ such that t �→ ρt

is weakly continuous, and a probability measure Q ∈ P(C) such that ρt = (et )#Q

and

∫

C
K(ω) dQ(ω) ≤ 1

2

∫ T

0

∫

"

ρ|v|2.

Conversely, if we have ρt = (et )#Q for a probability measure Q ∈ P(C) with∫

CK(ω) dQ(ω) < ∞, then t �→ ρt is weakly continuous and there exists a time-
dependent family of vector fields vt ∈ L2(ρt ) such that ∂tρ +∇ · (ρv) = 0 and

1

2

∫ T

0

∫

"

ρ|v|2 ≤
∫

C
K(ω) dQ(ω).

The above proposition comes from optimal transport theory and we will discuss a
more refined version of it in Sect. 2.4. Its proof can be found combining, for instance,
Theorems 5.14 and 5.31 in [39]. It allows to re-write the minimization problem

min {A(ρ, v) : ∂tρ +∇ · (ρv) = 0} ,
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in the following form:

min

{

J (Q) :=
∫

C
K dQ+

∫ T

0
G((et )#Q) dt +

∫

"

# d(eT )#Q, Q ∈ P(C), (e0)#Q= ρ0

}

,

(2.8)

where G : P(")→ R is defined through

G(ρ) =
{∫

(V (x)ρ(x)+G(ρ(x))) dx if ρ ! Ld,

+∞ otherwise.

The functional G is a typical local functional defined on measures (see [6]). It is
lower-semicontinuous w.r.t. weak convergence of probability measures provided
lims→∞G(s)/s = +∞ (which is the same as lims→∞ g(s) = +∞), see, for
instance, Proposition 7.7 in [39].

Under these assumptions, it is easy to prove, by standard semicontinuity argu-
ments in the space P(C), that a minimizer of (2.8) exists. We summarize this fact,
together with the corresponding optimality conditions, in the next proposition. The
optimality conditions are obtained by standard convex perturbations: if Q̄ is an
optimizer andQ a competitor with finite energy, then one sets Qε := (1−ε)Q̄+εQ
and differentiates the cost w.r.t. ε at ε = 0. The idea is just that a point optimizes a
convex functional on a convex set if and only if it optimizes its linearization around
itself.

Proposition 2.2.4 Suppose that " is compact, that G is a convex and superlinear
function, and that V and # are continuous functions on ". Then Problem (2.8)
admits a solution Q̄.

Moreover, Q̄ is a solution if and only if for any other competitorQ ∈ P(C) with
J (Q) < +∞ with (e0)#Q = ρ0 we have

Jh(Q) ≥ Jh(Q̄),

where J#,h is the linear functional

J#,h(Q) =
∫

K dQ+
∫ T

0

∫

"

h(t, x) d(et )#Q+
∫

"

# d(eT )#Q,

the function h being defined through ρt = (et )#Q̄ and h(t, x) = V (x)+ g(ρt (x)).

Remark 2.1 The above optimality condition and its interpretation in terms of equi-
libria (see below), as well as the definition of the functional via an antiderivative,
strongly recall the setting of continuous Wardrop equilibria, studied in [15] (see
also [14] for a survey of the theory). Indeed, in [15] a traffic intensity iQ (a positive
measure on ") is associated with each measure Q on C, and we define a weighted
length on curves ω using iQ as a weighting factor. We then prove that the measure
Q which minimizes a suitable functional minimizes its linearization, which in turn
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implies that the same Q is concentrated on curves which are geodesic for this
weighted length, depending on Q itself. Besides some technical details about the
precise mathematical form of the functionals, the main difference between Wardrop
equilibria (which are traditionally studied in a discrete framework on networks,
see [44]) and MFG is the fact that Wardrop’s setting is static: in such a traffic
notion we consider a continuous traffic flow, where some mass is constantly injected
somewhere in the domain, and at the same time constantly absorbed somewhere else
(see Chapter 4 of [39] for other models of this form).

We now consider the functional J#,h. Note that the function h is obtained from
the densities ρt , which means that it is well-defined only a.e. However, the integral
∫ T

0

∫

" h(t, x) d(et )#Q is well-defined and does not depend on the representative of
h, since J (Q) < +∞ implies that the measures (et )#Q are absolutely continuous
for a.e. t . Hence, this functional is well-defined for h ≥ 0 measurable.

Formally, we can also write

∫ T

0

∫

"

h(t, x) d(et )#Q =
∫

C
dQ

∫ T

0
h(t, ω(t)) dt

and hence we get

J#,h(Q) =
∫

C
dQ(ω)

(

K(ω)+
∫ T

0
h(t, ω(t)) dt +#(ω(T ))

)

=
∫

C
K#,h dQ.

It is then tempting to interpret the optimality conditions on Q̄ stated in Proposi-
tion 2.2.4 by considering that they can only be satisfied if Q̄-a.e. curve ω satisfies

K(ω)+
∫ T

0
h(t, ω(t)) dt+#(ω(T )) ≤ K(ω̃)+

∫ T

0
h(t, ω̃(t)) dt+#(ω̃(T )) for every ω̃ s.t. ω̃(0)=ω(0).

(2.9)

This would be exactly the equilibrium condition in the MFG. Indeed, the MFG
equilibrium condition can be expressed in Lagrangian language in the following
way: find Q such that, if we define ρt = (et )#Q̄ and h(t, x) = V (x) + g(ρt (x)),
then Q is concentrated on minimizers of K#,h for fixed initial point.

Yet, there are two objections to this way of arguing. The first concerns the fact
that the functional K#,h does indeed depend on the representative of h that we
choose and it looks suspicious that such an equilibrium statement could be true
independently of the choice of the representative. Moreover, the idea behind the
optimality in (2.9) would be to choose a measure Q concentrated on optimal, or
almost optimal, curves starting from each point, and there is no guarantee that such
a measure Q satisfies J (Q) < +∞.

The approach that we present in Sect. 2.2.3 below, due to Ambrosio and Figalli
[2] and first applied to MFG in [13] for the case of MFG with density constraints,
is a way to rigorously overcome these difficulties. The goal is to find a suitably
chosen representative ĥ of h so that we can prove that if Q̄ minimizes J#,h, then
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it is concentrated on curves minimizing K
#,ĥ

.We develop here this theory under
the assumption h ∈ L∞, while the original proofs were more general, but required
some technicalities that we will briefly address in a comment. We will explain in
which points theL∞ assumption allows to obtain cleaner and more powerful results.
Moreover, we insist that we are allowed to stick to this more restrictive setting
because we will see, in Sects 2.4 and 2.5, that we do have h ∈ L∞ in the cases
of interest for us.

2.2.3 Optimality Conditions on the Level of Single Agent
Trajectories

In this section we consider a measurable function h : [0, T ] × " → R and we
suppose that h is upper-bounded by a constant H0, i.e. h ≤ H0 a.e. As far as lower
bounds are concerned, all the section is written supposing h ∈ L1([0, T ] ×"), but
it is not difficult to adapt it to the case where h (or, rather, its negative part) is only
a measure. Let us define then

hr(t, x) :=
�
B(x,r)

h(t, y) dy if B(x, r) ⊂ "

and then

ĥ(t, x) :=
{

lim supr→0 hr(t, x) if x � ∂",

H0 if x ∈ ∂".

First, we observe that ĥ is a representative of h, in the sense that we have h = ĥ

a.e. (in the case where h is a measure then hr is defined as ht (B(x, r))/Ld(B(x, r))

and ĥ is a representative of the absolutely continuous part of h). Indeed, a.e. point
in " is a Lebesgue point for h, so that the above lim sup is indeed a limit and equal
to h, and the boundary where the definition is not given as a limsup is supposed to
be negligible. In some sense, we will obtain the desired result by writing estimates
involving hr and passing to the limit as r → 0.

Proposition 2.2.5 Suppose that Q̄ minimizes J#,h among measures with J (Q) <
+∞ and suppose that G is a convex function with polynomial growth, that # is a
continuous function and that" is a smooth domain. Define ĥ as above and suppose
that (et )#Q is absolutely continuous for a.e. t . Then Q̄ is concentrated on curves ω
such that

K
#,ĥ

(ω) ≤ K
#,ĥ

(ω̃) for every ω̃ s.t. ω̃(0) = ω(0).

Proof The proof is an adaptation of those proposed in [2, 13].
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Consider a countable set D ⊂ H 1# ([0, T ]), where H 1# ([0, T ]) is the Hilbert space
of H 1 functions on [0, T ], valued in Rd , and vanishing at t = 0 (but not necessarily
at t = T ), dense in H 1# ([0, T ]) for the H 1 norm. Also consider a curve γ ∈ D, a
vector y ∈ B(0, 1) ⊂ Rd , a number r > 0, and a cut-off function η ∈ C1([0, T ]),
with η(0) = 0, and η > 0 on (0, T ], with η(T ) = 1. Consider a Borel subsetE ⊂ C,
with E ⊂ {ω : ω(t)+γ (t)+B(0, r) ⊂ " for every t} and define a map S : C→ C
as follows

S(ω) =
{
ω + γ + rηy if ω ∈ E

ω if ω � E.

Defining Q = S#Q̄ we can easily see that we have J (Q) < +∞ (we use here the
polynomial growth of G, since the density of (et )#Q can be decomposed as the sum
of two densities with finite value for G, and we need a bound for the sum, which is
not available, for instance, for convex functions with exponential growth).

Comparing J#,h(Q) to J#,h(Q̄) and erasing, by linearity, the common terms
(those coming from the integration on Ec) we get

∫

E

K#(S(ω)) dQ̄(ω)+
∫∫

h(t, ·+γ (t)+ rη(t)y) d(et )#(Q̄1E) ≥
∫

E

K#(ω) dQ̄(ω)+
∫∫

h(t, ·) d(et )#(Q̄1E).

The first parameter we get rid of is the parameter y, as we take the average among
possible y ∈ B(0, 1). It is important to note that we have

�
B(0,1)

K(ω + rηy) dy = K(ω)+O(r2)

(by symmetry, there is no first-order term in r , even if this is not important and we
would only need terms tending to 0 as r → 0, independently of their order) and to
use the definition of hr (and, by analogy, of #r ) in order to obtain

∫

E

(
K#r (ω + γ )+O(r2)

)
dQ̄(ω)+

∫∫

hrη(t)(t, · + γ (t)) d(et )#(Q̄1E) ≥

≥
∫

E

K#(ω) dQ̄(ω)+
∫∫

h(t, ·) d(et )#(Q̄1E).

Now, we observe that h = ĥ a.e. together with (et )#Q̄ ! Ld (Ld being the
Lebesgue measure) allow to replace, in the right hand side, h with ĥ. Moreover,
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we rewrite some terms using the following equalities

∫∫

hrη(t)(t, · + γ (t)) d(et)#(Q̄1E) =
∫

E

dQ̄(ω)
∫

hrη(t)(t, ω(t)+ γ (t)) dt

∫∫

ĥ(t, ·) d(et)#(Q̄1E) =
∫

E

dQ̄(ω)
∫

ĥ(t, ω(t)) dt

We then use the arbitrariness of E, thus obtaining the following fact: for Q̄ a.e. ω
s.t. ω(t) + γ (t)+ B(0, r) ⊂ " for every t we have

K#r (ω+γ )+O(r2)+
∫ T

0
hrη(t)(t, ω(t)+γ (t)) dt ≥ K#(ω)+

∫ T

0
ĥ(t, ω(t)) dt .

This result is true for a.e. curve for fixed γ , while we would like to obtain
inequalities which are valid on a full-measure set which is the same for every γ . This
explains the use of the dense set D. On the same full-measure set this inequality is
true for every γ ∈ D, since D is countable. Then, using the density of D and the
continuity, for fixed r > 0, of all the quantities on the left-hand side, we obtain the
following: for Q̄ a.e.ω and for every γ ∈ H 1# ([0, T ]) s.t.ω(t)+γ (t)+B(0, 2r) ⊂ "

for every t we have

K#r (ω + γ )+O(r2)+
∫ T

0
hrη(t)(t, ω(t)+γ (t)) dt ≥ K#(ω)+

∫ T

0
ĥ(t, ω(t)) dt .

(2.10)

In order to obtain this result every γ ∈ H 1# ([0, T ]) is approximated by a sequence
γk ∈ D, with bothH 1 and uniform convergence, so that we have |γk−γ | ≤ r (which
explains the condition ω(t)+γ (t)+B(0, 2r) ⊂ " with a different radius now): the
kinetic term K(ω+γk) passes to the limit because of strongH 1 convergence, while
the integral term passes to the limit via dominated convergence (if h is bounded
from above and below, otherwise we use a Fatou’s lemma with a limsup, since we
have at least h ≤ H0), since each function hrη(t)(t, ·) is continuous, and they are all
bounded above by a same constant. This is a first point where we use the L∞ upper
bound h ≤ H0. Indeed, if we do not have a suitable bound on h, the L∞ norm of
hrη(t) could explose as t → 0 since η(t)→ 0 (and, unfortunately, it is not possible
in general to guarantee integrablity in time of this bound if we want η ∈ H 1).

Inequality (2.10) is true for fixed r > 0, but taking a countable sequence tending
to 0 we can pass to the limit as r → 0 on a full-measure set, thus obtaining the
following: for Q̄ a.e. ω and for every γ ∈ H 1# ([0, T ]) s.t. ω(t)+ γ (t) ∈ "̊ for every
t we have

K#(ω + γ )+
∫ T

0
ĥ(t, ω(t) + γ (t)) dt ≥ K#(ω)+

∫ T

0
ĥ(t, ω(t)) dt .
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Also this limit uses h ≤ H0 as an assumption to apply Fatou’s lemma with limsup
(we need to upper bound the terms with hrη(t)). Of course some integrability on the
curve of the maximal function of h would be enough, but this is a much trickier
condition (see below in Remark 2.3). Note that on the left hand side we used the
continuity of # .

This shows optimality of a.e. ω compared to every curve lying in the interior of
the domain ". In order to handle curves touching ∂", let us take a family of maps
ζδ : "→ "̊ with the following properties: Lip(ζδ)→ 1 as δ → 0, |ζδ(x)−x| ≤ Cδ

for every x ∈ ", and ζδ(x) = x if d(x, ∂") ≥ δ. We just observe now that, for a
given curve ω : [0, T ] → ", we have

K
#,ĥ

(ζδ ◦ ω) ≤ Lip(ζδ)2K(ω)+#(ω(T ))+
∫ T

0
ĥ(t, ω(t)) dt

+|#(ζδ(ω(T ))−#(ω(T )| +H0|{t : 0 < d(ω(t), ∂") < δ}| → K
#,ĥ

(ω).

Again we used h ≤ H0 < ∞. As a result, we obtain that Q̄-a.e. curve ω optimizes
K
#,ĥ

in the class of H 1 curves staying in " and sharing the same starting point. �	
Remark 2.2 The proof can be easily adapted to the case where the function # is
not continuous but only bounded, but we need in this case to suppose that (eT )#Q̄
is absolutely continuous. It is then possible to treat # exactly as h, replacing it with
its representative #̂. This will be useful in the density-constrained case where # is
replaced by a new function # + P .

Remark 2.3 Both in [2] and [13] h is not required to be bounded, but the statement is
slightly different and makes use of the Maximal functionMh := supr hr . The result
which is obtained is the optimality of Q̄-a.e. curve in the class of curves ω̃ with∫
Mh(t, ω̃(t)) dt < +∞, and moreover the result is local in time (perturbations

are only allowed to start from t0 > 0). Besides this small technicality about locality
in time, the optimality which is obtained is only useful if there are many curves ω̃
satisfying this integrability condition on Mh. A typical statement is then “for Q-a.e.
curve ω̃ this is the case”, but it is not straightforward for which measure Q should
one require this. Again, the typical approach is to prove that this is the case for all
measures Q with J (Q) < +∞ (which are in some sense the relevant measures for
this problem, and this corresponds to some integrability property of the densities
ρt := (et )#Q). In this case, we can compute

∫ ∫

Mh(t, ω(t)) dt dQ(ω) =
∫

dt
∫

"

Mh(t, x) d(et )#Q.

We would like to guarantee that every Q with J (Q) < +∞ is such that∫ ∫
Mh(t, ω(t)) dt dQ(ω) < ∞. Since we know that G((et )#Q) is integrable,

it is enough to guarantee G∗(Mh) ∈ L1. In the case where G(s) ≈ sq (hence
g(s) ≈ sq−1 we need Mh ∈ Lq

′
. Since in this case we know ρ ∈ Lq , then
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h ≈ g(ρ) ∈ Lq
′

and this implies Mh ∈ Lq
′

from standard theorems in harmonic
analysis, as soon as q ′ > 1.

As we can see, the analysis of these equilibrium conditions motivates a deeper
study of regularity issues, for several reasons. Indeed, in order to apply the previous
considerations it would be important to obtain upper bounds on h[ρ]; when this is
not possible, at least obtaining higher integrability (in particular when we only know
h ∈ L1, passing to L1+ε would be crucial) would be important in order to deal with
the integrability of Mh. Higher integrability can sometimes be obtained via higher-
order estimates (proving BV or Sobolev estimates). More generally, better regularity
on ρ (or on the dual variable ϕ) could give “better” solutions to the (HJ) equation
(instead of just a.e. solutions).

This is why in the next sections we will see some regularity techniques.
In Sect. 2.3 we will prove Sobolev results on the optimal density ρ which are
interesting in themselves, and also imply higher integrability. Then in Sect. 2.4
we will see how to directly obtain L∞ results with a different technique. Finally,
Sect. 2.5 is devoted to the density-constrained case: for this case, [13] presented a
non-trivial variant of the technique used here in Sect. 2.3 and obtained BV estimates
on the pressure, which implied that the pressure is a function belonging to a certain
Lq space, q > 1: here, instead, we will present the approach of [27] which provides
p ∈ L∞ (yet, we will choose an easier proof, not available in [27]).

2.3 Regularity via Duality

We present here a technique to prove Sobolev regularity results for the optimal
density ρ. This technique, based on duality, is inspired from the work of [7], and
has been applied to MFG in [13]. It is actually very general, and [42] shows how
it can be used to prove (or re-prove) many regularity results in elliptic equations
coming from convex variational problems.

We start from a lemma related to the duality results of Sect. 2.2.1.

Lemma 2.3.1 For any (φ, p) ∈ D and (ρ, v) ∈ P we have

B(φ, p)+A(ρ, v) =
∫

"

(#−φT ) dρT+
∫ T

0

∫

"

(
G(ρ)+G∗(p) − ρp

)
dx dt+ 1

2

∫ T

0

∫

"

ρ|v+∇φ|2 dx dt.

Proof We start from

B(φ, p)+A(ρ, v) =
∫ T

0

∫

"

(
1

2
ρ|v|2 +G(ρ) +G∗(p) + Vρ

)

dx dt+
∫

"

# dρT −
∫

"

φ0 dρ0.

(2.11)
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Then we use
∫

"

# dρT −
∫

"

φ0 dρ0 =
∫

"

(# − φT ) dρT +
∫

"

φT dρT −
∫

"

φ0 dρ0

and

∫

"

φT dρT −
∫

"

φ0 dρ0 =
∫ T

0

∫

"

(−φ∇ · (ρv)+ ρ∂tφ) dx dt

=
∫ T

0

∫

"

(

∇φ · (ρv)+ ρ

(
1

2
|∇φ|2 − (p + V )

))

dx dt .

If we insert this into (2.11) we get the desired result. �	
It is important to stress that we used the fact that φ isC1 since (ρ, v) only satisfies

(CE) in a weak sense, i.e. tested againstC1 functions. The same computations above
would not be possible for (φ, p) ∈ D̃.

The regularity proof will come from the previous computations applied to
suitable translations in space and/or time.

In order to simplify the exposition, we will suppose that " = Td is the d-
dimensional flat torus, which avoids boundary issues. To handle the case of a domain
" with boundary, we refer to the computations in [42] which suggest how to adapt
the method below. Finally, for simplicity, we will only prove in this paper local
results in (0, T ), so that also the time boundary does not create difficulties.

Here is the intuition behind the proof in this spatially homogeneous case. First,
we use Lemma 2.3.1 to deduce

B(φ, p) +A(ρ, v) ≥
∫ T

0

∫

"

(
G(ρ)+G∗(p)− ρp

)
dx dt

(since the other terms appearing in Lemma 2.3.1 are positive). Then, let us suppose
that there exist two function J, J∗ : R→ R and a positive constant c0 > 0 such that
for all a, b ∈ R we have

G(a)+G∗(b) ≥ ab + c0|J (a)− J∗(b)|2. (2.12)

Remark 2.4 Of course, this is always satisfied by taking J = J∗ = 0, but there are
less trivial cases. For instance, if G(ρ) = 1

q
ρq for q > 1, then G∗(p) = 1

q ′ q
r ′ , with

q ′ = q/(q − 1) and

1

q
|a|q + 1

q ′
|b|q ′ ≥ ab + 1

2 max{q, q ′} |a
q/2 − bq

′/2|2,

i.e. we can use J (a) = aq/2 and J∗(b) = bq
′/2. Another easy case to consider is the

one where G′′ ≥ c0 > 0. In this case we can choose J = Id and J ∗ = (G∗)′.
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We wish to show that if (ρ, v) is a minimizer of A then J (ρ) ∈ H 1
loc((0, T ) ×

"). Should B admit a C1 minimizer φ (more precisely, a pair (φ, p)), then by the
Duality Theorem 2.2.1, we would have B(φ, p)+A(ρ, v) = 0. Using Lemma 2.3.1,
we get J (ρ) = J∗(p). If we manage to show that ρ̃(t, x) := ρ(t + η, x + δ) with a
corresponding velocity field ṽ satisfies

A(ρ̃, ṽ) ≤ A(ρ, v)+ C(|η|2 + |δ|2) (2.13)

for small η ∈ R, δ ∈ Rd , then we would have

C(|η|2 + |δ|2) ≥ A(ρ̃, ṽ)+ B(φ, p) ≥ c||J (ρ̃)− J∗(p)||2L2 .

Using then J∗(p) = J (ρ), we would get

C(|η|2 + |δ|2) ≥ c||J (ρ̃)− J (ρ)||2
L2,

which would mean that J (ρ) is H 1 as we have estimated the squaredL2 norm of the
difference between J (ρ) and its translation by the squared length of the translation.
Of course, there are some technical issues that need to be taken care of, for instance
ρ̃ is not even well-defined (as we could need the value of ρ outside [0, T ]×"), does
not satisfy the initial condition ρ̃(0) = ρ0, we do not know if B admits a minimizer,
and we do not know whether (2.13) holds.

To perform our analysis, let us fix t0 < t1 and a cut-off function ζ ∈ C∞
c (]0, T [)

with ζ ≡ 1 on [t0, t1]. Let us define

{
ρη,δ(t, x) := ρ(t + ζ(t)η, x + ζ(t)δ),

vη,δ(t, x) := v(t + ζ(t)η, x + ζ(t)δ)(1 + ζ ′(t)η)− ζ ′(t)δ.
(2.14)

It is easy to check that the pair (ρη,δ, vη,δ) satisfies the continuity equation together
with the initial condition ρη,δ(0) = ρ0. Therefore it is an admissible competitor in
A for any choice of (η, δ). We may then consider the function

M : R× Rd → R, M(η, δ) := A(ρη,δ, vη,δ).

The key point here is to show that M is C1,1.

Lemma 2.3.2 Suppose V ∈ C1,1. Then, the function (η, δ) �→ M(η, δ) defined
above is also C1,1.

Proof We have

A(ρη,δ , vη,δ) =
∫ T

0

∫

Td

1

2
ρη,δ |vη,δ |2 dx dt+

∫ T

0

∫

Td

V dρη,δ+
∫ T

0

∫

Td

G(ρη,δ) dx dt+
∫

Td

#(x) dρη,δT .
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Since ρη,δ(T , x) = ρ(T , x), the last term does not depend on (η, δ). For the other
terms, we use the change-of-variable

(s, y) = (t + ζ(t)η, x + ζ(t)δ)

which is a C∞ diffeomorphism for small η. Then we can write

∫ T

0

∫

Td

(
G(ρη,δ(x, t)) + V (x)ρη,δ(x, t)

)
dx dt =

∫ T

0

∫

Td

(G(ρ(y, s))+ V (y − ζ(t)δ)ρ(y, s)) dx dt

=
∫ T

0

∫

Td

(G(ρ(y, s))V (y − ζ(t)δ)ρ(y, s))K(η, δ, s) dy ds,

where K(η, δ, s) is a smooth Jacobian factor (which does not depend on y since the
change of variable is only a translation in space). Hence, this term depends smoothly
on (η, δ), with the same regularity as that of V .

We also have

∫ T

0

∫

Td
ρη,δ |vη,δ |2 dx dt =

∫ T

0

∫

Td
ρ(s, y)|(1 + ηζ ′(t))v(s, y)− δζ ′(t)|2 dx dt

=
∫ T

0

∫

Td
ρ(s, y)|(1 + ηζ ′(t (η, s)))v(s, y)−δζ ′(t (η, s))|2K(η, δ, s) dy ds,

where K(η, δ, s) is the same Jacobian factor as before, and t (η, s) is obtained by
inversing, for fixed η > 0, the relation s = t + ηζ ′(t), and is also a smooth map.
Hence, this term is also smooth. �	

We can now apply the previous lemma to the estimate we need.

Proposition 2.3.3 There exists a constant C, independent of (η, δ), such that for
|η|, |δ| ≤ 1, we have

|M(η, δ)−M(0, 0)| = |A(ρη,δ, vη,δ)−A(ρ, v)| ≤ C(|η|2 + |δ|2).

Proof We just need to use Lemma 2.3.2 and the optimality of (ρ, v). This means
that M achieves its minimum at (η, δ) = (0, 0), therefore its first derivative must
vanish at (0, 0) and we may conclude by a Taylor expansion, using boundedness of
the second derivatives (as a consequence of the C1,1 regularity). �	

With this result in mind, we may easily prove the following

Theorem 2.3.4 If (ρ, v) is a solution to the primal problem minA, if " = Td and
if J satisfies (2.12), then J (ρ) satisfies, for every t0 < t1,

||J (ρ(· + η, · + δ))− J (ρ)||2
L2([t0,t1]×Td ) ≤ C(|η|2 + |δ|2)
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(where the constant C depends on t0, t1 and on the data), and hence is of class
H 1
loc(]0, T [×Td)).

Proof Let us take a minimizing sequence (φn, pn) for the dual problem, i.e. φn ∈
C1, pn + V = −∂tφn + 1

2 |∇φn|2 and

B(φn, pn) ≤ inf
(φ,p)∈F

B(φ, p) + 1

n
.

We use ρ̃ = ρη,δ and ṽ = vη,δ as in the previous discussion. Using first the
triangle inequality and then Lemma 2.3.1 we have (where the L2 norme denotes the
norm in L2((0, T )× Td ))

c0||J (ρη,δ)− J (ρ)||2
L2 ≤ 2c0(||J (ρη,δ)− J∗(pn)||2L2 + ||J (ρ)− J∗(pn)||2L2)

≤ 2(B(φn, pn)+A(ρη,δ, vη,δ)+ B(φn, pn)+A(ρ, v)),

hence

||J (ρη,δ)−J (ρ)||2
L2 ≤ C(B(φn, pn)+A(ρ, v))+C(|η|2+|δ|2) ≤ C

n
+C(|η|2+|δ|2).

Letting n go to infinity and restricting the L2 norm to [t0, t1] × Td gives the claim.
�	

Remark 2.5 If one restricts to the case η = 0, then it is also possible to use a cut-off
function ζ ∈ C∞

c (]0, T ]) with ζ(T ) = 1, as we only perform space translations.

In this case, however, the final cost
∫

Td
#(x) dρη,δT depends on δ, and one needs to

assume # ∈ C1,1 to proveM ∈ C1,1. This allows to deduce H 1 regularity in space,
local in time far from t = 0, i.e. J (ρ) ∈ L2

loc(]0, T ];H 1(Td )).
A finer analysis of the behavior at t = T also allows to extend the above H 1

regularity result in space time till t = T , but needs extra tools (in particular defining
a suitable extension of ρ for t > T ). This is developed in [37]. Moreover, it is also
possible to obtain regularity results till t = 0, under additional assumptions on ρ0
and at the price of some extra technical work, as it is done in [19].

Remark 2.6 From J (ρ) = J∗(p), the above regularity result on ρ can be translated
into a corresponding regularity result on p whenever an optimal pair (φ, p) exists
(even if the dual problem is stated in D̃: we could indeed prove that there exists
a maximizing sequence composed of smooth functions, satisfying suitable H 1

bounds, which would imply the same regularity for the maximizer of the relaxed
dual problem).

Remark 2.7 When G(ρ) = ρq , q > 1, the above H 1 result can be applied to
ρq/2 and combined with the Sobolev injection H 1 ⊂ L2∗ . This shows that we have
ρ ∈ L

q̃
loc((0, T )×") for an exponent q̃ > q , given by q(d+1)/(d−1) in dimension

d > 1 (and any exponent q̃ <∞ if d = 1). This is a better integrability than justLq ,
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which came from the finiteness of the functional. The exponent has been computed
using the Sobolev injection in dimension d + 1, the dimension of (0, T ) × ". If
we distinguish the behavior in time and space, just using J (ρ) ∈ L2

t H
1
x , we get

ρ ∈ L2
t L

qd/(d−2)
x for d > 2, ρ ∈ L2

t L
q̃
x for any q̃ < ∞ in dimension d = 2, and

L2
t L

∞
x in dimension d = 1.

Finally, we finish this section by underlining the regularity results in the density-
constrained case [13]: the same kind of strategy, but with many more technical
issues, which follow the same scheme as in [7] and [1], and the result is much
weaker. Indeed, it is only possible to prove in this case p ∈ L2

loc((0, T );BV (Td))
(exactly as in [1]). Even if very weak, this result is very important in what it gives
higher integrability on p, which was a priory only supposed to be a measure and
this allows to get the necessary summability of the maximal function that we briefly
mentioned in Sect. 2.2.3.

2.4 Regularity via OT, Time Discretization, and Flow
Interchange

In this section we will interpret the Eulerian variational formulation as the search
for an optimal curve in the Wasserstein space, i.e. the space of probability measures
endowed with a particular distance coming from optimal transport. This will lead
to a very efficient time discretization on which we are able to perform suitable
computations providing strong bounds.

2.4.1 Tools from Optimal Transport and Wasserstein Spaces

The space P(") of probability measures on " can be endowed with the Wasserstein
distance: if μ and ν are two elements of P("), the 2-Wasserstein distance W2(μ, ν)

between μ and ν is defined via

W2(μ, ν) :=
√

min

{∫

"×"
|x − y|2 dγ (x, y) : γ ∈ P("×") and (πx)#γ = μ, (πy)#γ = ν

}

.

(2.15)

In the formula above, πx and πy : " × " → " stand for the projections on
respectively the first and second component of"×". If T : X → Y is a measurable
application and μ is a measure on X, then the image measure of μ by T , denoted by
T#μ, is the measure defined on Y by (T#μ)(B) = μ(T −1(B)) for any measurable
set B ⊂ Y . For general results about optimal transport, the reader might refer to
[3, 43], or [39].
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The Wasserstein distance admits a dual formulation, the dual variables being the
so-called Kantorovich potentials. The main properties of these potentials, in the case
which is of interest to us, are summarized in the proposition below. We restrict to
the cases where the measures have a strictly positive density a.e., as in this particular
case the potentials are unique (up to a global additive constant). The proof of these
results can be found, for instance, in [39, Chapters 1 and 7].

Proposition 2.4.1 Let μ, ν ∈ P(") be two absolutely continuous probability
measures with strictly positive density. Then there exists a unique (up to adding
a constant to ϕ and subtracting it from ψ) pair (ϕ,ψ) of Kantorovich potentials
satisfying the following properties.

1. The squared Wasserstein distanceW 2
2 (μ, ν) can be expressed as

1

2
W 2

2 (μ, ν) =
∫

"

ϕμ+
∫

"

ψν.

2. The “vertical” derivative of W 2
2 (·, ν) at μ is ϕ: if μ̃ ∈ P(") is any probability

measure, then

lim
ε→0

1
2W

2
2 ((1 − ε)μ+ εμ̃, ν)− 1

2W
2
2 (μ, ν)

ε
=
∫

"

ϕ(μ̃− μ).

3. The potentials ϕ and ψ are one the c-transform of the other, meaning that we
have

{
ϕ(x) = infy∈" |x−y|2

2 − ψ(y)

ψ(y) = infx∈" |x−y|2
2 − ϕ(x).

4. There holds (Id − ∇ϕ)#μ = ν and the transport plan γ := (Id, Id − ∇ϕ)#μ is
optimal in the problem (2.15). We also say that the map x �→ x − ∇ϕ(x) is the
optimal transport map from μ to ν.

The function ϕ (resp. ψ) is called the Kantorovich potential from μ to ν (resp. from
ν to μ).

We will denote by % the space of absolutely continuous curves from [0, 1] to
P(") endowed with the Wasserstein distance W2.

Definition 2.4.2 We say that a curve ρ is absolutely continuous if there exists a
function a ∈ L1([0, 1]) such that, for every 0 � t � s � 1,

W2(ρt , ρs) �
∫ s

t

a(r) dr.

We say that ρ is 2−absolutely continuous if the function a above can be taken in
L2([0, 1])
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This space will be equipped with the distance d% of the uniform convergence, i.e.

d%(ρ
1, ρ2) := max

t∈[0,1]W2(ρ
1
t , ρ

2
t ).

The main interest of the notion of absolute continuity for curves in the Wasserstein
space lies in the following theorem, which we recall without proof (but we refer to
[3] or to Chapter 5 in [39]).

Theorem 2.4.3 For ρ ∈ % the quantity

|ρ̇t | := lim
h→0

W2(ρt+h, ρt )
h

exists and is finite for a.e. t . Moreover, we have the following

• if ρ ∈ % is a 2-absolutely continuous curve, there exists for a.e. t a vector field
vt ∈ L2(ρt ) such that ||vt ||L2(ρt )

≤ |ρ̇t | and such that the continuity equation
∂tρ + ∇ · (ρv) = 0 holds in distributional sense;

• if ρ ∈ % is such that there exists a family of vector fields vt ∈ L2(ρt ) satisfying∫ T
0

∫

"
|vt |2 dρt dt < +∞ and ∂tρ + ∇ · (ρv) = 0, then ρ is a 2-absolutely

continuous curve and ||vt ||L2(ρt )
≥ |ρ̇t | for a.e. t .

Finally, we can represent
∫ 1

0 |ρ̇t |2 dt in various ways such as

∫ 1

0
|ρ̇t |2 dt = sup

N�2
sup

0�t1<t2<...<tN�1

N∑

k=2

W 2
2 (ρtk−1, ρtk )

tk − tk−1
(2.16)

= min

{∫ 1

0

∫

"

|vt |2 dρt dt : ∂tρ + ∇ · (ρv) = 0

}

. (2.17)

Observe that the kinetic energy in (2.16) is exactly the same quantity appearing
in Sect. 2.2.3.

2.4.2 Discretization in Time of Variational MFG and
Optimality Conditions

We first start from the observation that the above tools from optimal transport theory
allow to re-write the variational problem defining MFG equilibria into the following
form

min

{∫ T

0

1

2
|ρ̇t |2 dt+

∫ T

0
G(ρt ) dt+

∫

"

# dρT : ρ : [0, T ] → P("), ρ0 = ρ0

}

.
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A useful approximation can be obtained via time-discretization: we fix a time
step τ = T/N and we look for a sequence ρ0 = ρ0, ρ1, . . . , ρN solving

min

{
N−1∑

k=0

(
W 2

2 (ρk, ρk+1)

2τ
+ τG(ρk)

)

+
∫

"

# dρN

}

.

If ρ0, ρ1, . . . , ρN solves the above minimization problem then, for each 0 < k <

N , the measure ρk solves

min

{
W 2

2 (ρ, ρk−1)

2τ
+ W 2

2 (ρ, ρk+1)

2τ
+ τG(ρ) : ρ ∈ P(")

}

,

i.e. it solves a minimization problem similar to what we see in the JKO scheme for
gradient flows (see [3, 22, 40]), which would be of the form

min

{
W 2

2 (ρ, ρk−1)

2τ
+ G(ρ)

}

.

By the way, for k = N , we have a true JKO-style problem with one only Wasserstein
distance.

From this similarity with the JKO scheme, we are lead to apply techniques which
have been previously applied to this other setting, and in particular the notion of flow
interchange, developed in [30].

Consider the functional Fm(ρ) :=
∫
Fm(ρ(x)) dx, where Fm(s) := sm. The

important point about this functional, if we suppose " to be convex, is that it is a
geodesically convex functional on the W2 Wasserstein space (see [32]). This means
that it is convex along constant-speed geodesic interpolations in W2("). Consider
now (ρs)s be the gradient flow of Fm(ρ), i.e. a solution of ∂sρ−∇ ·(ρ∇(F ′

m(ρ))) =
0, with initial datum at s = 0 equal to the optimal ρ at step k. From the EVI
definition of gradient flows [3] and the geodesic convexity of Fm we obtain the
following inequality, valid for every ν

d

ds

W 2
2 (ρs, ν)

2
≤ Fm(ν)− Fm(ρs).

We can also compute

d

ds
G(ρs) = −

∫

∇(g(ρs)+ V ) · ∇(F ′
m(ρs)) dρs.
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On the other hand, the optimality of ρk implies that the derivative of the sum of the
Wasserstein terms and of the G term should be non-negative, which provides

∫

∇(g(ρk)+ V ) · ∇(F ′
m(ρk)) dρk ≤ Fm(ρk+1)− 2Fm(ρk)+ Fm(ρk−1)

τ 2 .

Let us start from the easier case V = 0: in this case we get

0 ≤
∫

g′(ρk)F ′′
m(ρk)ρk|∇ρk|2 ≤

Fm(ρk+1)− 2Fm(ρk)+ Fm(ρk−1)

τ 2 .

This shows that k �→ Fm(ρk) is (discretely) convex. If ρ0 ∈ Lm, and if for some
reason we suppose ρT ∈ Lm, then, after passing to the limit τ → 0, we deduce a
uniform bound on ||ρt ||Lm . This also works form = ∞. This was essentially a result
proven by P.-L. Lions in his course ([28], lecture of November 27, 2009), in a more
general setting (still with no x-dependence, but with more general Hamiltonians
than the quadratic one).

Note that the case where ρT is prescribed is known under the name of planning
problem (see, for instance, [20, 34, 35]) but is out of the scopes of these notes. When,
instead, we have a final penalization, the same flow interchange technique provides

∫

∇# · ∇(F ′
m(ρN)) dρN ≤ Fm(ρN−1)− Fm(ρN )

τ
.

After an integration by parts, using ∇(F ′
m(ρN))ρN = m(m− 1)ρm−1

N ∇ρN = (m−
1)∇(Fm(ρN)), and assuming # ∈ C1,1 and ∂#/∂n ≥ 0 on ∂", we obtain

Fm(ρN) ≤ Fm(ρN−1)+ τ (m− 1)
∫

Fm(ρN)$#,

i.e.

(1 − Cτ)Fm(ρN) ≤ Fm(ρN−1), for C = (m− 1)||($#)+||L∞ . (2.18)

This shows that not only k �→ Fm(ρk) is convex, but that we control its final
derivative. From a continuous point of view, it is as if we had a function u ≥ 0,
with u′′ ≥ 0 and u′(T ) ≤ Cu(T ). This is not enough to provide a bound on u(T )
as, for instance, all functions of the form u(t) = λ(1 − C(T − t))+ satisfy these
assumptions (note by the way that, in case CT > 1, we also have u(0) = 0, which
shows that adding an assumption on the initial data would not be enough). Yet, we
can obtain u(T ) ≤ 2C

∫ T
0 u. This can be, for instance, applied to the case where

the two functionals G and Fm have the same order of growth: G ≈ Fm. From the
finiteness of the integral of Fm we would deduce in this case a uniform bound for
Fm(ρT ) and, if Fm(ρ0) <∞, a uniform bound in time.
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However, we are able, following the non-trivial computations in [26], to obtain
much more.

To give an idea of the method, let us stick to the case V = 0 and let us impose
a very stringent assumption on the congestion function g. We will suppose g′(s) ≥
cs−1 an assumption which is satisfied in the entropy case G(s) = s log s. We will
see that the important assumption is indeed the inequality g′(s) ≥ csα for α ≥ −1.
The idea is to exploit the positive term

∫
g′(ρk)F ′′

m(ρk)ρk|∇ρk|2. In this case we
have

∫

g′(ρk)F ′′
m(ρk)ρk|∇ρk|2 ≥ c

∫

ρm−2
k |∇ρk|2 = c||∇(ρm/2

k )||2
L2 .

We then apply the Sobolev injection of H 1 into Lβ , for an exponent 2β > 2. This
allows, for instance, to write

||(ρm/2
k )||2

L2β ≤ C||∇(ρm/2
k )||2

L2 + C

∫

ρmk

for a suitable constant C. As the last term in the right hand side is just Fm(ρk), we
obtain a bound on Fmβ(ρk) in terms of Fm(ρk) and of its second variation in k. The
idea is then to apply Moser’s iteration on exponentsmj ≈ βj . This is delicate, since
in order to take care of the second derivative in time (even if it is discrete) we need
to integrate in time, and the integral (sum over k in the discrete setting) in time of
the L2β norms raised to the power 2 is not the L2β norm in time-space. This can
be dealt with using the fact that all the functionals Fm are convex in time, which
allows to obtain reversed Jensen inequalities: if a function u ≥ 0 is convex, indeed,
we have

(∫ T2

T1

u(t) dt

)1/β

≤ (T2 − T1)
1β

ε

∫ T2+ε

T1−ε
u1/β(t) dt .

This allows hence to obtain an estimate of the form

(∫ ∫ T2

T1

Fmβ(ρ(t)) dt

)1/β

≤ C(m, ε)

∫ T2+ε

T1−ε
Fm(ρ(t)) dt

and, choosing suitable values of ε = εm and exploiting the polynomial behaviour of
C(m, ε) in m and ε−1, it is possible to iterate this estimate in the spirit of the work
of Moser [33] for elliptic regularity, thus obtaining an estimate on ||ρ||L∞([T1,T2]×"
in terms of

∫

[T1−ε,T2+ε]×" G(ρ) dx dt .
Even if the computations are less straightforward it is not difficult to see that

the assumption g′(s) ≥ cs−1 can be replaced by a more general one where we use
g′(s) ≥ csα for an exponent α ≥ −1, and that it is enough, in order to obtain L∞
bounds, that this inequality is satisfied for s ≥ s0 (see [26]).
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The situation is trickier when there is an exterior potential V . In this case we
have
∫

g′(ρk)F ′′
m(ρk)ρk |∇ρk |2 ≤

Fm(ρk+1)− 2Fm(ρk)+ Fm(ρk−1)

τ 2 −
∫

(∇V · ∇ρk)F ′′
m(ρk)ρk.

The new term needs to be estimated in terms of V and Fm, which can be done
in two possible ways. Either we integrate by parts, as we did for the final cost # ,
and suppose V ∈ C1,1 and ∂V/∂n ≥ 0, in which case we use ∇ρkF ′′

m(ρk)ρk =
(m− 1)∇(Fm(ρ)) and we get

−
∫

(∇V · ∇ρk)F ′′
m(ρk)ρk ≤ (m− 1)

∫

($V )Fm(ρk),

or we use a Young inequality:

−
∫

(∇V · ∇ρk)F ′′
m(ρk)ρk ≤

1

2

∫

|∇V |2F ′′
m(ρk)ρ

2
k +

1

2

∫

|∇ρk|2F ′′
m(ρk).

The first term in the right-hand side can be bounded by Cm2Fm(ρk) as soon
as V is Lipschitz continuous, and the second can be bounded in terms of∫
g′(ρk)F ′′

m(ρk)ρk|∇ρk|2 as soon as g′(ρ) ≥ ρα with α ≥ −1. We will see in
the statement of Theorem 2.4.4 that this computation (only assuming V to be
Lipschitz) can only be exploited for L∞ regularity under some very restrictive
assumptions.

However, a difficulty arising in this case is that k �→ Fm(ρk) is no more convex.
From a continuous point of view, we do not have anymore a time-dependent function
u with u′′ ≥ 0, but rather a solution of u′′ + ω2u ≥ 0, for a constant ω depending
on m. Differently from convexity, in general this inequality cannot provide bounds,
if we think that functions of the form u(t) = λ sinωt solve the equality case for
any λ, on intervals of the form [0, T ], T = kπ/ω. Hence, this inequality can
only provide bounds on short intervals of time, smaller than π/ω. In particular,
when doing Moser’s iterations, we need to divide every interval into smaller ones;
since the reverse Jensen inequality requires to enlarge these intervals, there will
be many new integrals on overlapping intervals. As a result, this will bring to a
larger multiplicative constant depending on m (since ω also depends on m, and the
parameter εm in the enlargement of the intervals also depends onm) in the estimates.
This is not a problem as soon as the dependence is polynomial.

A final remark about the case where (g′s) ≥ sα but α < −1. This case is called
in [26] “weak congestion”. In this case, we only have a control of Fm in terms of
Fβ(m+1+α). Thus we must start the iterative procedure with a value m such that
m < β(m + 1 + α), i.e. we must impose a priori some Lm regularity on ρ (with
an exponent m which depends on α and β, the latter depending itself only on the
dimension of the ambient space). Such a regularity can be obtained, for instance, by
assuming that ρ0 (which is fixed) is in Lm(") and that T is small enough. Indeed, if
this is the case, the boundary condition (2.18) combined with the interior estimate



2 Lecture Notes on Variational Mean Field Games 189

u′′+ω2u ≥ 0 show that if T is small enough (given the potentials and the congestion
function f ), the Lm norm of ρ on [0, T ] ×" must be bounded.

We do not develop all the details,which are very technical, here but we summarize
here below the L∞ results which can be found in [26]. The results are based on the
above estimates obtained in the time-discrete setting, together with a suitable use of
the limit τ → 0.

Theorem 2.4.4 Consider a running cost of the form h[ρ] = V (x)+ g(ρ). Suppose
that the inequality g′(s) ≥ sα is satisfied for every s ≥ s0. Then, we have:

• If V is Lipschitz, α ≥ −1, and s0 = 0 then ρ ∈ L∞loc((0, T )×").
• The same result holds if s0 > 0 but V ∈ C1,1 and ∂V/∂n ≥ 0.
• These results extend to (0, T ] if # ∈ C1,1 and ∂#/∂n ≥ 0.
• If α < −1, then the same results, for V,# ∈ C1,1, ∂V/∂n ≥ 0 and ∂#/∂n ≥ 0,

are true if we already know ρ ∈ Lm0((0, T ) × ") for m0 > d|α + 1|/2. This is
true in particular if ρ0 ∈ Lm0 and T is small enough.

It is now straightforward to apply the L∞ bounds on ρ to obtain boundedness
from above of h[ρ], and then apply the content of Sect. 2.2.3 in order to transform
the optimality into a the equilibrium condition characterizing optimal tranjectories
in MFG.

2.5 Density-Constrained Mean Field Games

In this section we are concerned with the model presentd in [13] (but, compared to
such a paper, we will restrict to the case where the cost is quadratic in the velocity):
the variational problem to be considered is

min

{∫ T

0

∫

"

(
1

2
|vt |2 + V

)

dρt dt +
∫

"

# dρT : ρ ≤ 1

}

.

This can be translated into

min

{∫ T

0

1

2
|ρ̇t |2 dt+

∫ T

0
G(ρt ) dt+

∫

"

# dρT : ρ : [0, T ] → P("), ρ0 = ρ0

}

,

where G is a very degenerate functional:

G(ρ) :=
{∫

V dρ if ρ ≤ 1,

+∞ if not.
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We already discussed that this provides the following MFG system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∂tϕ + |∇ϕ|2
2 = V + p,

∂tρ − ∇ · (ρ∇ϕ) = 0,

ϕ(T , x) = #(x)+ P(x), ρ(0, x) = ρ0(x),

p ≥ 0, ρ ≤ 1, p(1 − ρ) = 0,

P ≥ 0, P (1 − ρT ) = 0.

(2.19)

and that the running cost of every agent is in the end V + p (note that this is
coherent with the general formula V+G′(ρ), where the derivativeG′ = g should be
replaced here by a generic element of the subdifferntial ∂G). Note that in this case
we also have an effect on the final cost, where # is replaced by # + P . This can be
interpreted in two ways. In general, we did not put any density penalization at final
time (i.e. the final cost is not of the form#+g(ρT ) but only of the form#), but here
the constraint ρT ≤ 1 is also present on the final density, and lets its subdifferential
appear. On the other hand, we can consider that the constraint ρt ≤ 1 for all t < T

is enough to impose the same (by continuity in the Wasserstein space of the curve
t �→ ρt ) for t = T , so that in the final cost functional we can omit the constraint
part. If we interpret this in this way, how can we justify the presence of a final cost
P ? The answer comes from the fact that the natural regularity for the pressure p,
which is supposed to be positive, is being a positive measure (since distributions
with a sign are measures, and also because in the dual problem p is penalized in a
L1 sense). Hence, the extra cost P represents the singular part of p concentrated on
t = T . What we will prove in this section is that we have p ∈ L∞([0, T ] ×") and
P ∈ L∞("), thus decomposing the pressure into a bounded density in time-space
and a bounded density at the final time.

This problem can also be discredited in the same way as in Sect. 2.4, and this
discretization technique will be the one which will rigorously provide the estimates
we look for. Yet, before looking at the details, we prefer first to give an heuristic
derivation of the main idea in continuous time. The key point will consist in proving
$(V + p) ≥ 0 on {p > 0}. To do this, we consider System (2.19), and denote by
Dt := ∂t − ∇ϕ · ∇ the convective derivative. The idea is to look at the quantity
−Dtt (logρ). Indeed, the continuity equation in (2.19) can be rewritten Dt(logρ) =
$ϕ. On the other hand, taking the Laplacian of the Hamilton–Jacobi equation, it is
easy to get, dropping a positive term, −Dt($ϕ) � $(p + V ). Hence,

−Dtt (logρ) � $(p + V ). (2.20)

Then, we observe that logρ is maximal where ρ = 1, hence we have
−Dtt (logρ) � 0. This implies $p � −$V on {p > 0}.

Let us say that the strategy of looking at the convective derivative of logρ was
already used by Loeper [29] to study a similar problem (related to the reconstruction
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of the early universe). Moreover, also in [29] the rigorous proof was done by time-
discretization.

As the tools which are required to study theL∞ regularity are much less technical
than for the density-penalized case, we will develop here more details. In particular,
we will write here the optimality conditions for the discrete problems and see that
quantities acting like a pressure appear. For the convergence of these quantities to
the true pressures p and P , we refer to [27], whose results are also recalled in
Sect. 2.5.3.

Some regularity will be needed in order to be able to correctly perform our
analysis. In particular, we will assume that ρ̄0 is smooth and strictly positive and
that V and # are C2 function. We will also add a small entropy penalization to the
term G, thus considering

Gλ(ρ) =:=
{∫

V dρ + λ
∫
ρ logρ if ρ ≤ 1,

+∞ if not

and we will also add the same entropy penalization to the final cost, thus solving

min

{
N−1∑

k=0

(
W 2

2 (ρk, ρk+1)

2τ
+ τGλ(ρk)

)

+
∫

"

# dρN + λ

∫

"

ρN logρn dx

}

.

Yet, all the estimates that we establish will not depend on the smoothness of ρ̄0, V

and # or on the value of λ.

2.5.1 Optimality Conditions and Regularity of p

In this subsection, we fix N ≥ 1 and k ∈ {1, 2, . . . , N − 1} a given instant of
time. We will fix an optimal sequence (ρ0 = ρ0, ρ1, . . . ρN and set ρ̄ := ρk; we
also denote μ := ρk−1 and ν := ρk+1. From the same consideration of the previous
section, we know that ρ̄ is a minimizer, among all probability measures with density
bounded by 1, of

ρ �→ W 2
2 (μ, ρ)+W 2

2 (ρ, ν)

2τ
+ τGλ(ρ)

Lemma 2.5.1 The density ρ̄ is strictly positive a.e.

Proof The proof is based on the fact that the derivative of the function s �→ s log s at
s = 0 is−∞, so that minimizers avoid the value ρ = 0. It can be obtained following
the procedure in [39, Lemma 8.6], or of [26, Lemma 3.1], as the construction done
in these proofs preserves the constraint of having a density smaller than 1. �	
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Proposition 2.5.2 Let us denote by ϕμ and ϕν the Kantorovich potentials for the
transport from ρ̄ to μ and ν respectively (this potentials are unique up to additive
constants because ρ̄ > 0). There exists p ∈ L1("), positive, such that {p > 0} ⊂
{ρ̄ = 1} and a constant C such that

ϕμ + ϕν

τ 2 + V + p + λ log(ρ̄) = C a.e. (2.21)

Moreover p and log(ρ̄) are Lipschitz continuous.

Proof Let ρ̃ ∈ P(") such that ρ̃ ≤ 1. We define ρε := (1 − ε)ρ̄ + ερ̃ and use
it as a competitor. Clearly ρε � 1, i.e. it is an admissible competitor. We will
obtain the desired optimality conditions comparing the cost of ρε to that of ρ. Using
Proposition 2.4.1, as ρ̄ > 0, the Kantorovich potentials ϕμ and ϕν are unique (up to
a constant) and

lim
ε→0

W 2
2 (μ, ρε)−W 2

2 (μ, ρ̄)+W 2
2 (ρε, ν)−W 2

2 (ρ̄, ν)

2τ 2 =
∫

"

ϕμ + ϕν

τ
(ρ̃ − ρ̄).

The term involving V is straightforward to handle as it is linear. The only remaining
term is the one involving the entropy. For this term (following, for instance, the
reasoning in [26, Proposition 3.2]), we can obtain the inequality

lim sup
ε→0

∫
ρε logρε −

∫
ρ̄ log ρ̄

ε
�
∫

"

log(ρ̄)(ρ̃ − ρ̄).

Putting the pieces together, we see that
∫

" u (ρ̃ − ρ̄) � 0 for any ρ̃ ∈ P(") with
ρ̃ � 1, provided that u is defined by

u := ϕμ + ϕν

τ 2
+ V + λ log(ρ̄)

It is known, analogously to [31, Lemma 3.3], that this leads to the existence of a
constant C such that

⎧
⎪⎪⎨

⎪⎪⎩

ρ̄ = 1 on {u < C}
ρ̄ � 1 on {u = C}
ρ̄ = 0 on {u > C}

(2.22)

Specifically, C is defined as the smallest real C̃ such that Ld ({u � C̃}) � 1, and it
is quite straightforward to check that this choice works. Note that the case {u > C}
can be excluded by Lemma 2.5.1. We then define the pressure p as p = (C − u)+,
thus (2.21) holds. It satisfies p � 0, and ρ̄ < 1 implies p = 0.

It remains to answer the question of the Lipschitz regularity of p and log(ρ̄).
Notice that p is positive, and non zero only on {ρ̄ = 1}. On the other hand, log(ρ̄) �
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0 and it is non zero only on {ρ̄ < 1}. Hence, one can write

p =
(

C − ϕμ + ϕν

τ 2 + V

)

+
and log(ρ̄) = −1

λ

(

C − ϕμ + ϕν

τ 2 + V

)

−
.

(2.23)

Given that the Kantorovich potentials and V are Lipschitz, it implies the Lipschitz
regularity for p and log(ρ̄). �	
Let us note that ϕμ and ϕν have additional regularity properties, even though this
regularity heavily depends on τ .

Lemma 2.5.3 The Kantorovich potentials ϕμ and ϕν belong to C2,α("̊)∩C1,α(")

and p ∈ C2,α({p > 0}).
Proof If k ∈ {2, . . . , N}, thanks to Proposition 2.5.2 (applied in k − 1 and k + 1),
we know that μ and ν have a Lipschitz density and are bounded from below. Using
the regularity theory for the Monge Ampère-equation [43, Theorem 4.14], we can
conclude that ϕμ and ϕν belong to C2,α("̊) ∩ C1,α(").

Once we have the regularity of ϕμ + ϕν , as we were supposing V ∈ C2, we
get C2,α regularity for p + λ log ρ̄, which in turns implies the same regularity for
p = (p + λ log ρ̄)+ in the open set {p > 0}. �	
Theorem 2.5.4 We have the following L∞ estimate:

p ≤ maxV −minV.

Proof First we will prove that, on the open set {p > 0}, we have $(p + V ) ≥ 0.
In order to do this, we consider the (optimal) transport map from ρ̄ to μ given by

Id− ∇ϕμ, and similarly for ν. Let us define the following quantity:

D(x) := − log(μ(x −∇ϕμ(x)))+ log(ν(x −∇ϕν(x)))− 2 log(ρ̄(x))

τ 2 .

Notice that if ρ̄(x) = 1, then by the constraint μ(x − ∇ϕμ(x)) � 1 and ν(x −
∇ϕν(x)) � 1 the quantityD(x) is positive. On the other hand, using (Id−∇ϕμ)#ρ̄ =
μ and the Monge-Ampére equation, for all x ∈ "̊ there holds

μ(x − ∇μϕμ(x)) = ρ̄(x)

det(I −D2ϕμ(x))
,

and a similar identity holds for ϕν . Hence the quantity D(x) is equal, for all x ∈ "̊,
to

D(x) = log(det(I −D2ϕμ(x)))+ log(det(I −D2ϕν(x)))

τ 2 .
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Diagonalizing the matrices D2ϕμ,D
2ϕν and using the convexity inequality log(1−

y) � −y, we end up with

D(x) � −$(ϕμ(x)+ ϕν(x))

τ 2 .

This shows that, on the region {p > 0}, we have the desired inequality $(p +
V ) ≥ 0, thanks to (2.21).

We want now to determine where does p + V attain its maximum. Because
of subharmonicity this should be on the boundary of {p > 0}. This boundary is
composed by points on ∂" and by points where p = 0.

To handle the boundary ∂", recall that∇ϕμ is continuous up to the boundary and
that x − ∇ϕμ(x) ∈ " for every x ∈ " as (Id − ∇ϕμ)#ρ̄ = μ. Given the convexity
of ", it implies ∇ϕμ(x) · n"(x) � 0 for every point x ∈ ∂", where n"(x) is the
corresponding outward normal vector. This translates, applying this first to ϕμ and
then to ϕν , into ∇(p + V )(x) · n"(x) ≤ 0. We are then in this situation: a certain
function u satisfies $u ≥ 0 in the interior of a domain (which is here {p > 0}) and
∂u/∂n ≤ 0 on a part of the boundary. By applying an easy maximum principle to
uε := u + εv where v is a fixed harmonic function with ∂v/∂n < 0 on the same
part of the boundary shows that the maximum of u is attained on the other part of
the boundary (we prefer not to evoke Hopf’s lemma as we do not want to discuss
the regularity of ∂", and we do not need the strong maximum principle). We then
deduce that the maximum of p + V is attained on {p = 0}.

This easily implies

max{p>0}p + min{p>0}V ≤ max{p>0}(p + V ) ≤ max{p=0}V,

which gives the claim. �	
Remark 2.8 The same proof actually shows the stronger inequality p+V ≤ maxV .

2.5.2 Optimality Conditions and Regularity of P

We look now at the optimality conditions satisfied by ρN . The situation is even
simple than the one in Sect. 2.5.1. Set ρ̄ := ρN and μ := ρN−1. We can see that ρ̄
is a minimizer, among all probability measures with density bounded by 1, of

ρ �→ W 2
2 (μ, ρ)

2τ
+
∫

"

# dρ + λ

∫

"

ρ log(ρ) dx.

This time, we will assume that # is smooth, but the estimates on P will not
depend on its smoothness. As most of the arguments are the same as in Sect. 2.5.1
we resume the results in just two statements.
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Proposition 2.5.5 The optimal ρ̄ is strictly positive a.e.. Denoting by ϕμ the
Kantorovich potential for the transport from ρ̄ to μ (which is unique up to additive
constants), there exists P ∈ L1("), positive, such that {p > 0} ⊂ {ρ̄ = 1} and a
constant C such that

ϕμ

τ
+# + P + λ log(ρ̄) = C a.e. (2.24)

Moreover ϕμ ∈ C2,α("̊) ∩ C1,α("), P and log(ρ̄) are Lipschitz continuous, and
P ∈ C2,α({P > 0}).
Proof The proof is just an adaptation of those of Lemma 2.5.1, Proposition 2.5.2,
and Lemma 2.5.3. �	
Theorem 2.5.6 We have the following L∞ estimate:

P ≤ max# −min#.

Proof The proof is just an adaptation of that of Theorem 2.5.4, defining now

D(x) := − log(μ(x −∇ϕμ(x)))− log(ρ̄(x))

τ
.

�	
Another useful result concerns the H 1 regularity of P . This results could have

also be obtained in the case of p, and improves the result of [13] (since it consists in
L∞t H 1

x regularity under the only assumption V ∈ H 1 compared to L2
t BVx for V ∈

C1,1, but in [13] more general cost functions (with non-quadratic Hamiltonians)
were also considered. Anyway, it is only for P that we will use it.

Theorem 2.5.7 Suppose# ∈ H 1("). We then have P ∈ H 1(") and

∫

"

|∇P |2 ≤
∫

"

|∇#|2.

Proof In the proof of Theorem 2.5.6, which is based on that of Theorem 2.5.4, we
also obtained $(# + P) ≥ 0 on {P > 0}. By multiplying times P and integrating
by parts, we obtain

∫

"

|∇P |2 ≤ −
∫

"

∇# · ∇P, (2.25)

from which the claim follows. �	
Remark 2.9 From the inequality (2.25) wa can also obtain

∫ |∇P |2 + ∫ |∇(P +
#)|2 ≤ ∫ |∇#|2, which is a stronger result.
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2.5.3 Approximation and Conclusions

We now want to explain how to deduce results on the continuous-time pressure p
from the estimates that we detailed in the discrete case. We fix a, integer number
N > 1 and take τ = T/N as a time step. We will build an approximate value
function φN together with an approximate pressure pN which will converge, as
N →+∞, to a pair which solves the (continuous) dual problem.

Let us start from the solution of the discrete problem ρ̄N := (ρ̄N0 , ρ̄
N
1 , . . . , ρ̄

N
N ).

For any k ∈ {0, 1, . . . , N −1}, we choose (ϕNk ,ψ
N
k ) a pair of Kantorovich potential

between ρ̄Nk and ρ̄Nk+1, such choice being unique up to an additive constant.We then
know that there exist a pressure pNk and PN , positive and Lipschitz, and constants
CN
k and CN such that

⎧
⎨

⎩

ψN
k−1+ϕNk
τ 2 + VN + pNk + λN log(ρ̄Nk ) = CN

k k ∈ {1, 2, . . . , N − 1},
ψN
k−1
τ

+#N + PN + λN log(ρ̄Nk ) = CN k = N.
(2.26)

We define the following value function, defined on the whole interval [0, T ]
which can be thought as a function which looks like a solution of what could be
called a discrete dual problem.

Definition 2.5.8 Let φN the function defined as follows. The “final” value is given
by

φN(T −, ·) := # + PN . (2.27)

Provided that the value φN((kτ)−, ·) is defined for some k ∈ {1, 2, . . . , N}, the
value of φN on ((k − 1)τ, kτ )×" is defined by

φN(t, x) := inf
y∈"

( |x − y|2
2(kτ − t)

+ φN((kτ)−, y)
)

. (2.28)

If k ∈ {1, 2, . . . , N − 1}, the function φN has a temporal jump at t = kτ defined by

φN((kτ)−, x) := φN((kτ)+, x)+ τ
(
VN + pNk

)
(x) (2.29)

We now also define a measure π ∈ M([0, T ] × ") which will play the role of
the continuous pressure.

Definition 2.5.9 Let πN be the positive measures on [0, T ] × " defined in the
following way: for any test function a ∈ C([0, 1] ×"), we set

∫

[0,1]×"
a dπN := τ

N−1∑

k=1

∫

"

a(kτ, ·)pNk +
∫

"

a(T , ·)PN .
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In other words, πN is a sum of singular measures corresponding to the jumps of the
value function φN .

Provided that we set φN(0−, ·) = φN(0+, ·) and φN(T +, ·) = #N , the following
equation holds in the sense of distributions on [0, 1] ×":

− ∂tφ
N + 1

2
|∇φN |2 � πN + V (2.30)

It is then possible to prove the following (see Section 4 in [27]).

Theorem 2.5.10 The sequence (φN, πN ) is bounded in
(
BV ([0, T ] ×") ∩ L2([0,

T ];H 1("))
) × M([0, T ] × ") and converges, up to subsequences, to a pair

(φ̄, π̄) ∈ D̃, the convergence being in the sense of distributions. This limit pair
(φ̄, π̄) ∈ D̃ is optimal in the relaxed dual problem. When the functions pNk and PN

are uniformly bounded in L∞ then the measure π̄ is the sum of an L∞ density (w.r.t.
the space-time Lebesgue measure Ld+1) p on [0, T ] ×" and of a singular part on
t = T with an L∞ density (with respect to the space Lebesgue measure Ld ) P , and
we can write System (2.19). Moreover, φ̄ is the value function of the value function
of an optimization problem of the form (2.1) for a running cost given by V̂ + p and
a final cost given by #̂ + P .

Remark 2.10 The reader can observe that we obtain here the existence of an optimal
pair (φ, π) ∈ D̃, as in Theorem 2.2.2. This was already proven in [13] without
passing through the discrete approximation.

It remains to be convinced that the optimal measure Q in the Lagrangian
problem, in the present case of density constraints, optimizes a functional of the
form J#,h. This was obtained in the density-penalized case by differentiating along
perturbations Qε but here the additional term in h is not obtained as a derivative of
G(ρ) but comes from the constraint and is in some sense a Lagrange multiplier (and
a similar term appears at t = T ). This makes the proof more difficult, but we can
obtain the desired result by using the duality.

Theorem 2.5.11 Suppose that (φ, π) is an optimal pair in the relaxed dual problem
and that π decomposes into a density p ∈ L1([0, T ] ×") and a singular measure
on {t = T } with a density P ∈ L1("). Then we have

• for every measureQ ∈ P(C) such that (et )#Q is uniformlyL∞ and (e0)#Q = ρ0,
we have J#+P,V+p(Q) ≥

∫
φ(0+)dρ0,

• if Q̄ is optimal in (2.8) for the density-constrained problem (i.e. whenG = I[0,1]),
then we have J#+P,V+p(Q̄) =

∫
φ(0+)dρ0,

In particular Q̄ optimizes J#+P,V+p among measures on curves such that (et )#Q
is uniformly L∞ and, when # + P and V + p are L∞, it is concentrated on curves
optimizingK#̂+P ,V̂+p .

Proof In order to prove the first statement, we consider a pairs of functions φ ∈
C1([0, T ] × ") and h ∈ C0([0, T ] × ") such that −∂tφ + 1

2 |∇φ|2 ≤ h. We then
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have

Jφ(T ),h(Q) =
∫

dQ(γ )

(∫ T

0

(
1

2
|γ ′(t)|2 + h(t, γ (t))

)

dt + φ(T , γ (T ))

)

and for every curve γ , using −∂tφ+ 1
2 |∇|2 ≤ h and 1

2 |γ ′(t)|2 + 1
2 |∇φ(t, γ (t))|2 ≥−∇φ(t, γ (t)) · γ ′(t), we have

∫ T

0

(
1

2
|γ ′(t)|2 + h(t, γ (t))

)

dt+φ(T , γ (T )) ≥
∫ T

0

d

dt
φ(t, γ (t)) dt+φ(T , γ (T )) = φ(0, γ (0)).

This would be sufficient to prove the desired inequality if we had enough regularity.
The same inequality in the case of the optimal relaxed function φ together with
h = V + p can be obtained if we regularize by space-time convolution. Let us
consider a convolution kernel η supported in [0, 1] ×B1, and use convolutions with
rescaled versions of this kernel ηδ(t, x) = δ−(d+1)η(t/δ, x/δ), so that we do not
need to look at times t < 0. On the other hand, this requires first to extend φ for
t > T , and it can be done by taking φ(t, x) = #(x)+ P(x) for every t > T . As a
consequence, one should also extend h := V +p, and in this case we use h(t, x) :=
1
2 |∇(# + P)|2, which belongs to L1 thanks to Theorem 2.5.7 (this explains why
we prefer to do an asymmetric convolution looking at the future and not at the past,
since we do not know whether φ0 ∈ H 1 or not). It is then necessary to extend φ and
h outside " as well, for space convolution. As we assumed that the boundary of "
is smooth, there exists a C1 map R, defined on a neighborhood of " and valued into
", such that its jacobian DR(x) has a determinant bounded from below and from
above close to ∂" and its operator norm ||DR(x)|| tends to 1 as d(x, ∂") → 0
(a typical example is the reflection map when " = {x1 > 0}, possibly composed
with a diffeomorphism which rectifies the boundary). Then, It is enough to define
φ̃ε(t, x) := φ((1 + ε)t, R(x)) and h̃ε(t, x) := (1 + ε)h((1 + ε)t, R(x)) and take
φε := ηδ ∗φ̃ε and hε := ηδ ∗h̃ε , for a suitable choice δ = δε , provided δε is such that
||DR(x)|| ≤ √

1 + ε for x such that d(x, ∂") ≤ δε. In this way we obtain smooth
functions (φε, hε) such that −∂φε + 1

2 |∇φε|2 ≤ hε . This allows to write

Jφε(T ),hε (Q) ≥
∫

φε(0) dρ0.

We then need to pass to the limit as ε → 0. We have hε → h in L1 which, together
with the L∞ bound on (et )#Q, allows to deal with the h-term. The kinetic term
does not depend on h, and we are only left to consider the terms with φε(T ) and
φε(0): since φ is a BV function, these functions converge in L1(") to φ(0+) and
φ(T +) = # + P , respectively, which provides the desired inequality.

We are now left to prove that we have equality if we choose Q = Q̄, the optimal
measure on curves. For this, we use the equality between the primal and the dual
problem (knowing that the value of the primal can be expressed either in its Eulerian
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formulation or in its Lagrangian one). We then have

∫

C
K#,V dQ̄ =

∫

φε(0) dρ0 −
∫

[0,T ]×"
dπ =

∫

φε(0)dρ0 −
∫

[0,T ]×"
p −

∫

"

P.

We then use the fact that we have, by primal-dual optimality conditions (which
can also be seen in System (2.19)), pt(1 − ρt ) = 0 and P(1 − ρT ) = 0, where
ρt = (et )#Q̄. Then we obtain

∫

C
K#,V dQ̄ =

∫

φε(0) dρ0

∫

[0,T ]×"
p d(et )#Q̄−

∫

"

P d(eT )#Q̄,

which can be re-written in terms of J#+P,V+p and gives the claim. �	
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Chapter 3
Master Equation for Finite State Mean
Field Games with Additive Common
Noise

François Delarue

Abstract The goal of these notes is to address the solvability of the master equation
for mean field games with a common noise. Whilst the methodology is mostly
inspired from earlier works in the field on continuous state mean field games, see
in particular the monograph (P. Cardaliaguet et al., The Master Equation and the
Convergence Problem in Mean Field Games. Annals of Mathematics Studies, vol.
201. Princeton University Press, Princeton, NJ, 2019), the text focuses on a specific
type of finite state mean field games subjected to a common noise. Although the
rationale for switching from continuous to discrete state spaces is mostly dictated
by pedagogical reasons, it turns out that not only the results in their own but also the
structure of the underpinning common noise are new in the literature on mean field
games.

3.1 Introduction

3.1.1 Mean Field Games with a Common Noise

In the theory of Mean Field Games (MFGs), the master equation was first introduced
by Lions in his seminal lectures at Collège de France on MFGs. Although we are
here at an early stage of the notes, we feel fair to refer the reader to [35] for the
whole collection of videos and also to [36] for a more specific seminar that Lions
gave on the solvability of this equation.

One of Lions’ motivation for reformulating MFGs through the master equation
was precisely to address games subjected to a common noise. This may be
easily understood: The usual characterization of MFGs comes through a forward-
backward system of two Partial Differential Equations (PDEs), one forward Fokker–
Planck (FP) equation describing the evolution of the statistical state of the popula-
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tion at equilibrium and one backward Hamilton–Jacobi–Bellman (HJB) equation
describing the evolution of the cost to one tagged player in the population when
all the others follow the equilibrium policy given by the forward equation. Without
any common noise, this system has been widely studied in the literature and in
various settings: For deterministic or stochastic games, for a finite or an infinite
time horizon, for a continuous or a finite state space. . . However, the story becomes
somewhat different whenever the game is subjected to a common (or systemic)
noise.

From a modelling prospect, MFGs with a common noise are designed to handle
large stochastic games in which all the players are subjected to a common source of
randomness. Obviously, such games with hence correlated noises come in contrast
to most of the stochastic models that have been treated in the MFG literature. Most
of the time, players, whenever there are finitely many of them, are indeed subjected
to idiosyncratic noises only—i.e., to noises that are independent—. However, as
demonstrated in earlier texts on MFGs, see for instance [9, 12, 24, 26, 30] for a tiny
example, MFGs with a common noise are of a great interest from the practical point
of view: Should we have to give one illustration, say that, in economics or in finance,
incorporating common sources of randomness might be especially important in
systemic risk analysis (see again [12]). On a more elaborated level, which we
however do not discuss in the rest of the paper, MFGs with major and minor players
form also an important class of examples where all the players are correlated, see
for instance [31, 39–41] for pioneering results in this direction together with the
more recent contributions [7, 10, 11]. One key fact with all the models featuring
some correlation is that equilibria—i.e., solutions of the corresponding MFG—
become random themselves under the action of the common noise. This feature
comes in fact as a by-product of earlier results on the asymptotic behavior of
large (but uncontrolled) systems of particles with mean field interaction that are
subjected to a common noise, see among others [17, 33, 34, 47]. Roughly speaking,
the standard property of propagation of chaos, which is at the roots of the mean field
formulation, then remains true, but at the price of conditioning upon the realization
of the common noise. Equivalently, propagation of chaos becomes conditional and,
accordingly, the mean field limit is random and reads (at least in simpler cases) as
a measurable function of the common noise. Recast in the framework of MFGs,
this says that equilibria can no longer be described by a standard FP equation.
Because of the common noise, the latter becomes stochastic and, in turn, the HJB
equation also becomes stochastic. At the end of the day, the whole MFG system
is stochastic, which makes it of a more intricate nature than in the standard case
without common noise. To wit, because it is set backwards in time, the stochastic
HJB equation popping up in the MFG system cannot be a mere randomization
of the standard deterministic HJB equation addressed in MFGs without common
noise. As we explain later on in the text, it must be understood as a Backward
Stochastic Differential Equation (BSDE) using the terminology from the seminal
work of Pardoux and Peng [43], see also on this subject the two recent monographs
[44, 48] together with Sect. 3.3 for the application to our framework.
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To the best of our knowledge, the first description of the MFG system for games
with a common noise is due to [6]. The framework therein is quite general and
addresses games with a continuous state space. Accordingly, both the FP and HJB
equations read in the form of two Stochastic Partial Differential Equations (SPDEs),
the HJB equation being in fact a Backward SPDE, namely a BSDE set on a space
of infinite dimension. Subsequently, the fact that the MFG system is both stochastic
and infinite dimensional makes the overall analysis rather difficult. Our aim below
is mostly to revisit the arguments developed in [6] but in the simpler case when
the MFG system is finite dimensional. To do so, we just work here on state spaces
that are finite. Similar to the content of [6], our first result in this framework is
to prove existence and uniqueness of a solution to the MFG system under the so-
called Lasry–Lions monotonicity condition. Although it is of course of a somewhat
limited scope from a practical point of view, the monotonous setting is in fact pretty
convenient for addressing the solvability of the related master equation (importantly,
this remark also applies when there is no common noise, see [6, 9, 16] together
with [2, 14] for finite state MFGs). Moreover, the reader must be also aware of
the fact that, as demonstrated in [13] and [9, Chapter 3], solutions to MFGs with
a common noise may be of a rather subtle nature: Similar to weak solutions of
Stochastic Differential Equations (SDEs), they may not be adapted to the filtration
generated by the common noise. Fortunately, there exists a version of the Yamada–
Watanabe theorem states that, whenever a strong form of uniqueness holds true, the
hence unique solution is necessarily strong, namely it must be an adapted function
of the common noise. In short, this is exactly what happens under the monotonicity
condition and this makes the overall analysis much simpler, which is another strong
case for restricting the entire analysis here to the monotonous setting. Even more, it
is fair to say that the monotonous setting is actually so robust that, in the end, there
is no need to invoke any Yamada–Watanabe argument in order to guarantee that the
solutions are indeed strong. Indeed, as we explain later on, existence and uniqueness
are shown to hold true by means of a continuation argument, which is the same as
the one used in [6] and which is in fact quite standard in the literature on forward-
backward SDEs (at least whenever the latter are in finite-dimension), see among
others [45]. Again, part of our objective here is to explain how this continuation
argument works in the presence of a common noise but in a simpler setting than the
one addressed in [6].

3.1.2 Master Equation

We already alluded to the master equation in the previous paragraph. Generally
speaking, the master equation is a nonlinear PDE set on an enlarged state space,
the latter being obtained by tensorizing the physical state space carrying a tagged
player with the probability space carrying the distributions of all the other players.
In particular, whenever the MFG is over a continuous state space, the master
equation is a PDE set on an infinite dimensional space. Obviously, the latter fact
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makes it rather difficult to study. This is all the more true that the underlying
infinite dimensional space is not flat, which requires some care when defining a
relevant form of derivatives. In this respect, several approaches are conceivable:
We may think of embedding the space of probability measures into the space of
(signed) measures, in which case the derivative is said to be flat; We may also
follow earlier works from optimal transportation theory and equip the so-called
Wasserstein space of probability measures with a finite second moment with a kind
of Riemannian structure (see for instance [1, 37, 42]); Lastly, we may also lift the
space of probability measures onto an L2 space of random variables and then use
Fréchet derivatives on this Hilbert space (see [5, 35] together with [8, Chapter 5]).
At the end of the day, all these notions of derivatives lead to the same form of master
equation: Compare for instance [6], in which the flat derivative is used, with [16] and
[9, Chapter 5], in which the L2 approach is preferred. In contrast, we just focus here
on a finite dimensional version of the master equation, which is consistent with the
fact that we restrict ourselves to a finite state space. Fortunately, there is no need in
this framework to introduce derivatives on the Wasserstein space, since probability
measures on the state space are then identified with elements of a finite-dimensional
simplex.

Whether the state space is finite or continuous, a common possible approach
to the master equation is to regard the underpinning MFG system as a system of
characteristics. This fits exactly the approach used in [6]. Unfortunately, the latter
remains rather complicated due to the fact that the state space therein is continuous,
hence our choice here to switch to a finite state space. Anyway, such an approach—
as it based upon characteristics—requires the MFG system to be uniquely solvable,
which is indeed the case whenever the Lasry–Lions monotonicity condition is in
force. In this regard, it is worth saying that, in the MFG folklore, very few is known
about the master equation when the MFG system is not uniquely solvable: We refer
to [15, 20] for two very specific instances when the master equation reduces to a
scalar conservation law and can hence be studied even though the characteristics are
not unique. Actually, one the main result of [6] is to show that, in the monotonous
setting and under sufficiently strong regularity assumptions on the coefficients, the
master equation has a unique classical solution. For sure, this requires much more
than proving that the MFG system is uniquely solvable. In a shell, the idea developed
in [6] (see also [25] but in short time and without common noise) is to prove that the
MFG system defines a flow that is differentiable with respect to the initial condition,
the latter being understood as the initial state of the population. The derivative of the
flow is then shown to solve a linearized version of the MFG system, which turns out
to be uniquely solvable in the monotonous setting. In this respect, it is fair to say
that the monotonous setting actually permits to kill two birds with one stone: Not
only this allows us to solve for the MFG system and for the linearized version of
it, but it also supplies us with sufficiently strong stability estimates to prove that the
linearized version is indeed the derivative of the flow and that it is itself regular with
respect to the underlying initial condition. A probabilistic variant of this approach
is used in [16] and [9, Chapter 5]: Therein, the point is to directly differentiate the
L2-valued flow generated by the (random) state of a tagged player in the population
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whenever the latter is at equilibrium (this is obviously different from the approach
used [6] which consists in differentiating the measure-valued flow generated by the
state of the population.) We here reproduce the approach used in [6], but again
we hope that the finite state framework makes it easier for the reader. For another
approach to the solvability of the master equation, we refer to the recent contribution
[7].

Generally speaking, one of the interest of the master equation is that it permits
to address the convergence of the equilibria of the corresponding N-player game
towards the solution of the MFG. This point was proved first in [6] and then extended
in different ways in other contributions: See [2, 14] for the analogue for finite state
MFGs, including as well the analysis of the fluctuations and of the large deviations;
See [21, 22] for the fluctuations and the large deviations for continuous state MFGs;
See [9] for MFGs with Hamiltonians of different growths. Our feeling is that this
aspect of the theory of MFGs has been well understood (to wit, the increasing
number of publications). Also, since the argument is pretty much the same whether
there is or not a common noise, we feel useless to address it in these notes, even
though this is certainly an important piece of the field. Instead, we feel better to
focus here on the construction of a classical solution to the master equation with a
common noise, which remains, to our point of view, relatively little addressed in the
literature (except in the aforementioned references).

Lastly, it is worth mentioning that there is a subtle difference between the master
equation for MFGs without common noise and the master equation for MFGs with
a common noise. In short, the master equation for MFGs with a common noise
features additional second-order terms in the direction of the measure. This is
exemplified in [6] for continuous state MFGs, but at the price of a relevant notion of
second-order derivatives for functions defined on the space of probability measures.
In the discrete setting addressed below, things are simpler since the common noise is
shown to manifest in the master equation through an additional Laplace operator, see
Eq. (3.25). However, we feel important to stress that, most of the time and whatever
the cardinality of the state space, the second-order structure induced by the common
noise is degenerate. This is the case in [6]: Therein, the common noise is finite-
dimensional only whilst the space of probability measures is of infinite dimension.
This is also the case in these notes: The additional Laplace operator that is here
generated by our choice of common noise just acts on the elements of the state space
and not on the weights of those elements under the distribution of the equilibrium.
To make the latter point clear, it might be welcome to give a flavor of the form of the
common noise used below. In a shell, we let the common noise act additively onto
the state space, namely the elements of the state space are shifted, with time, along
the realization of some Brownian motion. Our choice for an additive common noise
is hence completely consistent with the framework addressed in [6], which is also
additive. On a more prospective level, investigating more complex types of common
noise for which the master equation may be non-degenerate turns out to be a very
interesting question: We refer to [46] for a first example for linear-quadratic MFGs,
to [19] for a more general example with an infinite dimensional common noise, and
finally to [3] for another example but over a finite state space.
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3.1.3 Finite State MFGs with a Common Noise

MFGs with a finite state space were introduced in [27–29]. We also refer to [8,
Chapter 7] and to the references therein for more examples.

Generally speaking, and at least when there is no common noise, MFGs with a
finite state space are easier to handle than MFGs with a continuous state space. To
wit, the MFG system in that case becomes a mere forward-backward system of two
ODEs. Accordingly, the shape of the master equation becomes simpler since, as we
already alluded to, there is then no real need for a differential calculus on the infinite
dimensional space of probability measures. In short, it is indeed sufficient to use
mere derivatives on the finite dimensional simplex in order to formulate the master
equation, the latter reading in the end as a nonlinear system of first-order PDEs.
Existence of a classical solution to the finite state variant of the master equation is
addressed in the aforementioned two references [2, 14] provided that a convenient
form of monotonicity holds true.

Finite state MFGs with a common noise are more subtle. In [4], the authors
addressed a first systematic method to generate a common noise on a finite
state space: Back to the finite player approximation of MFGs, the idea is to
force a macroscopic fraction of the players to jump simultaneously from time to
time. For instance, all the players may switch, according to some deterministic
transformation, from one state to another whenever a common exponential clock
rings. This approach was revisited in the more recent contribution [3]. Therein, the
shape of the common noise is inspired from the so-called Wright-Fischer model
used in population genetics: When the common noise rings, all the players sample
their new state according to the current empirical distribution of the system.1 One
of the thrust of [3] is that the common noise forces the master equation to be non-
degenerate and hence to admit a classical solution even though the coefficients do
not satisfy the standard Lasry–Lions monotonicity conditions.

In the sequel of the notes, we do not address similar smoothing properties of
common noises. Instead, we provide a new form of common noise for finite state
MFGs. The main advantage of this new model is that it accommodates quite well
the method developed in [6] (as we already explained, things become even easier,
which is one of the reasons why we focus on this example below). The downside
(or, at least, the limitation) is that the common noise does not leave the state space
invariant. To make it clear, the state space has to be thought of as a collection of
d reals ς1, · · · , ςd , but those reals are allowed to depend on time, which means
that the state space evolves with time and hence has to be written in the form
ς1
t , · · · , ςdt , for t denoting the time variable. We then postulate that the common

noise acts additively, meaning that ςit expands in the form ςi0+ηWt , where (Wt )t≥0
is a standard Brownian motion and η accounts for the intensity of the common
noise. Besides the pedagogical interest of this model, we feel that it might be useful

1Actually, this picture is only true at equilibrium. For deviating players, it is no longer true and
another interpretation is needed. We refer to [3] for the details.
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in practice: Obviously, we may think of applications with a time-dependent state
space. To wit, this model is consistent with the model used in [6], where the common
noise also manifests in the form of a mere additive white noise.

We give a more detailed presentation of the model in Sect. 3.2. The stochastic
MFG system is formulated and then studied in Sect. 3.3 under a suitable version of
the Lasry–Lions monotonicity condition. In Sect. 3.4, we define the notion of master
field and then derive, at least informally, the shape of the master equation. The
existence of a classical solution is addressed in Sect. 3.5. As we already explained,
we feel better not to discuss the convergence problem in these notes. This would
increase the length significantly but the interest would remain rather limited. Indeed,
the approach developed in [6] and based upon the master equation has been revisited
in several articles, including two for finite state MFGs, see [2, 14]. Even though the
latter two contributions do not include a common noise, they make clear how the
underlying machinery works in the discrete setting. We refer the interested reader to
both of them.

3.2 Formulation of the Finite State MFG with a Common
Noise

Throughout the notes, we consider a state space indexed by the elements of
E = {1, · · · , d}, for an integer d ≥ 1. Accordingly, we write Sd for the simplex
{(p1, · · · , pd) ∈ [0, 1]d : p1 + · · · + pd = 1}; obviously, Sd identifies with the set
of probability measures on E. The space of probability measures on R is denoted
by P(R). Also, we denote by T the finite time horizon on which the MFG is defined
and by Leb1 the Lebesgue measure on R.

3.2.1 Finite State MFG Without Common Noise

Without common noise, the MFG addressed in the notes has a pretty simple form,
which is directly taken from [28] and [8, Chapter 7].

3.2.1.1 Optimal Control Problem

In words, a player may control the instantaneous rates α = ((α
i,j
t )i,j∈E)0≤t≤T at

which she may jump from one state to another. Obviously, α is required to take
values in the set A defined as

A =
{

(αi,j )i,j∈E : αi,j ≥ 0, j � i, i, j ∈ E

αi,i = −∑j∈E:j�i αi,j , i ∈ E

}

.
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Below, we ask any control α to be a square-integrable (measurable) mapping from
[0, T ] to A, in which case α is said to be admissible. For such an admissible control
and for a given initial statistical state pinit ∈ Sd , the marginal laws ((qit )i∈E)0≤t≤T
of the player then obey the following discrete FP equation, which is nothing but an
Ordinary Differential Equation (ODE):

q̇ it =
∑

j∈E
q
j
t α

j,i
t =

∑

j∈E:j�i
q
j
t α

j,i
t −

∑

j∈E:j�i
qit α

i,j
t , t ∈ [0, T ] ; q0 = pinit.

(3.1)

Whilst we may use (3.1) to describe the statistical state of the given tagged player
playing her own control α, we need another continuous path from [0, T ] into Sd ,
say p = (pt )0≤t≤T , to account for the statistical state of the population within
which the tagged player evolves. With a control α taking values in A and the related
solution q = (qt )0≤t≤T to (3.1), we hence associate the following cost functional in
environment p:

J(α;p) =
∑

i∈E
qiT G

i(pT )+
∑

i∈E

∫ T

0
qit

(
F i(t, pt )+ 1

2

∑

j∈E:j�i
|αi,jt − γ |2

)
dt,

(3.2)

where γ is a non-negative constant (the role of which is detailed later on) and where
the coefficients

F : E × [0, T ] × R→ R, G : E × R→ R,

are respectively called running and terminal costs of (3.2), both being obviously
required to be Borel measurable. Below, we take as typical instance for F and G

(the rationale for choosing such a form is justified in the sequel of the text):

F i
t (p) = f

(
t, ςi, μ

ς [p]), Gi(p) = g
(
ςi, μ

ς [p]), t ∈ [0, T ], i ∈ E, p ∈ Sd ,
(3.3)

where (ς1, · · · , ςd) are d fixed elements of R (we could replace R by Rm, for
some integer m ≥ 1, in the analysis below), μς [p] denotes the finitely supported
probability measure

μς [p] =
∑

i∈E
piδςi , (3.4)

and f and g are two Borel-measurable functions

f : [0, T ] × R× P(R)→ R, g : R× P(R)→ R, (3.5)
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the space P(R) being here equipped with the vague topology. From a practical point
of view, (3.3) should be understood as follows: Under (3.3), the elements of E are
regarded as mere labels while the true values that really make sense for computing
the costs are not those labels but the reals ς1, · · · , ςd ; equivalently, the true finite
state space is S = {ςi, i ∈ E}.
Remark 3.1 The role of the coefficient γ in (3.2) is to mollify the Hamiltonian
associated with the cost functional J( · ;p). Even though we have said nothing so
far on the methodology that may be used to minimize J( · ;p), it should not come
as a surprise for the reader that, in the end, part of the analysis relies on the structure
of the following Hamiltonian:

∀w ∈ R, H(w) = inf
a≥0

(
aw + 1

2a
2 − aγ

)+ 1
2γ

2. (3.6)

The minimizer in the definition of H is given by a�(w) = (γ − w)+ and,
accordingly, H(w) = − 1

2 (γ − w)2+ + 1
2γ

2. In particular, a� is smooth (and in fact
affine) on (−∞, γ ]: Later on in the text, we choose γ large enough with respect to
the coefficients F and G so that, in all our computations, the variable w is restricted
to this interval. Obviously, this is a way to force the Hamiltonian H to be smooth,
which plays a key role in the subsequent analysis.

3.2.1.2 Definition of an MFG Equilibrium and Monotonicity Condition
for Uniqueness

In this framework, the definition of an MFG equilibrium is given by:

Definition 3.1 For a given initial condition pinit ∈ Sd as before, we call an MFG
equilibrium a continuous function p = (pt )0≤t≤T from [0, T ] to Sd satisfying the
following two features:

• There exists an admissible control α such that p solves the FP equation (3.1)
with pinit as initial condition;

• For any other admissible control β, it holds that

J(α;p) ≤ J(β;p).

This definition is absolutely standard. We refer to the aforementioned references on
MFGs without common noise for more details if needed.

Before we introduce a common noise, we feel useful to recall the definition of
the Lasry–Lions monotonicity condition, which is the standard assumption to ensure
uniqueness (see for instance [8, Chapter 7]):
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Definition 3.2 The two running and terminal costs F and G are said to be
monotonous if, for any t ∈ [0, T ] and p, q ∈ Sd ,

∑

i∈E

(
pi − qi

)(
F i(t, p)− F i(t, q)

) ≥ 0 ;
∑

i∈E

(
pi − qi

)(
Gi(p)−Gi(q)

) ≥ 0.

(3.7)

In this respect, it is useful to reformulate (3.7) wheneverF andG are given by (3.3).
For instance, under (3.3), F is monotonous if, for any t ∈ [0, T ] and p, q ∈ Sd ,

∑

i∈E

(
pi − qi

)(
f (t, ςi, μ

ς [p])− f (t, ςi, μ
ς [q])) ≥ 0.

The monotonicity condition for F rewrites

∫

R

(
f
(
t, x, μς [p])− f

(
t, x, μς [q])

)(
μς [p] − μς [q])(dx) ≥ 0, (3.8)

and similarly for G. Above, we felt better to write (μς [p] − μς [q])(dx) instead of
d(μς [p] − μς [q])(x) to denote the measure underpinning the integration.

We thus understand that F and G are monotonous if f and g are monotonous
in the following sense, which fits in fact the definition of the standard Lasry–Lions
monotonicity condition for MFGs with a continuous state space:

Definition 3.3 The coefficients f and g lying above F and G are said to satisfy the
Lasry–Lions monotonicity condition if, for any t ∈ [0, T ] and μ, ν ∈ P(R),
∫

R

(
f (t, x, μ)− f (t, x, ν)

)
d
(
μ− ν

)
(x) ≥ 0 ;

∫

R

(
g(x, μ)− g(x, ν)

)
d
(
μ− ν

)
(x) ≥ 0,

(3.9)

at least whenever the above integrals make sense.

Obviously, the two integrals right above always make sense wheneverμ and ν have
a finite support, which is the case of μς [p] and μς [q] in (3.8). We refer to [8,
Chapter 3] for various instances of coefficients f and g that satisfy (3.9).

3.2.2 Common Noise

As we explained in introduction, there might be several ways to produce a common
noise in a finite state MFG. In [3] and [4], part of the difficulty in the construction of
the common noise is that the state space is required to be fixed, independently of the
choice of the common noise. We here proceed differently. Inspired by the additive
form of the common noise used in [6], we indeed design a common noise that
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directly acts on the state space itself. Assuming that the common noise manifests
(up to a multiplicative constant) in the form of a one-dimensional Brownian motion
W = (Wt )0≤t≤T and recalling that E, as introduced in the previous section, denotes
the labels of the elements ς1, · · · , ςd that show up in the cost coefficients (3.3),
we postulate that W acts additively on those elements ς1, · · · , ςd . Equivalently,
for some initial reals ς init

1 , · · · , ς init
d , we call true state space at initial time the set

S = {ς init
i , i ∈ E}; at any time t ∈ [0, T ], we then define the true state space at

time t as being the set

St = {ς init
i + ηWt, i ∈ E} = S+ ηWt,

where η > 0 denotes the intensity of the common noise. Below, we often use the
notation ςit = ς init

i + ηWt , for i ∈ E and t ∈ [0, T ]. Moreover, we merely write
(ς1, · · · , ςd) for (ς init

1 , · · · , ς init
d ).

With these definitions in hand, we may revisit the definitions of the state
dynamics (3.1) and of the cost functional (3.2). In this respect, the first point to
clarify is the notion of admissible controls. Indeed, in order to accommodate the
stochasticity of W , we must allow controls to be random, which leads us to set:

Definition 3.4 Denoting by (",F,P) the probability space carrying W and by
F = (Ft )0≤t≤T the completion of the natural filtration generated by W , we call
an admissible control an F-progressively measurable process α with values in A
such that

∑

i,j∈E:i�j
E

∫ T

0
|αi,jt |2dt <∞.

The state equation associated with α is still (3.1), but the latter is now an ODE with
random coefficients. In particular, for a given (deterministic) initial condition pinit

as before, the solution q is a continuous F-adapted process.

Accordingly, for a continuous and F-adapted process p with values in Sd , we
may define the following variant of J in (3.2):

Jη(α;p) = E
[
∑

i∈E
qiT g

(
ςiT , μ

ςT [pT ]
)

+
∑

i∈E

∫ T

0
qit

(
f
(
t, ς it , μ

ςt [pt ]
)+ 1

2

∑

j∈E:j�i
|αi,jt − γ |2

)
dt

]

,

(3.10)

where f and g are exactly as in (3.5). Of course, it must be clear for the reader
that the above cost functional depends on the common noise through the process
(ςt )0≤t≤T .
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We then have the analogue of Definition 3.1:

Definition 3.5 For a given initial condition pinit ∈ Sd as before, we call an MFG
equilibrium (of the MFG with common noise associated with (3.1) and (3.10)) a
continuous F-adapted process p = (pt )0≤t≤T with values in Sd satisfying the
following two features:

• There exists an admissible control α such that p solves, almost surely, the FP
equation (3.1) with pinit as initial condition;

• For any other admissible control β, it holds that

Jη(α;p) ≤ Jη(β;p).

3.2.3 Assumption

Throughout the paper, we assume that f and g satisfy the Lasry–Lions monotonicity
condition, as given by Definition 3.3. Also, we require them to be smooth enough
in the x and μ variables (x standing for the space variable and μ for the measure
argument) as specified below.

3.2.3.1 Differentiability in μ

While smoothness with respect to x may be defined in a pretty standard fashion,
regularity in the variable μ is more subtle. We here borrow the following material
from [6] and [8, Chapter 5].

Definition 3.6 A function h from P(R) to R is said to be flat continuously
differentiable if there exists a continuous function (the first factor being equipped
with the vague topology)

δh

δm
: P(R)× R  (μ, v) �→ δh

δm
(μ)(v)

such that:

• There exists ' > 0 such that, for any μ ∈ P(R),

∣
∣ δh

δm
(μ)(v)| ≤ ', v ∈ R ;

• For all μ, ν ∈ P(R), for any t ∈ [0, 1],

h
(
μ+ t (ν − μ)

)− h(μ) =
∫ t

0

(∫

R

δh

δm

(
μ+ s(ν − μ))(v)d

(
ν − μ

)
(v)

)

ds.
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Since the second condition remains true if we add a constant to the flat derivative,
we require the latter to satisfy

∫

R

δh

δm
(μ)(v)dμ(v) = 0.

Importantly, by choosing t = 1 in the second equation of Definition 3.6, we get:

∣
∣h(ν)− h(μ)| ≤ ' sup

�:‖�‖∞≤1

∫

R

�(v)d
(
ν − μ

)
(v), (3.11)

the supremum in the right-hand side being taken over all the Borel functions � from
R into itself with a supremum norm less than 1. In fact, the former supremum is
nothing but (up to a constant 2) the total variation distance between μ and ν, which
is defined by

dTV(μ, ν) = sup
A∈B(R)

∣
∣(μ− ν)(A)

∣
∣,

where B(R) denotes the Borel σ -field on R. In others words, requiring δh/δm to be
bounded implies that h is Lipschitz continuous with respect to dTV. Unfortunately,
assuming the various functions in hand to be Lipschitz continuous with respect to
dTV is not enough for our purpose. Instead, we will focus on functions h for which
δh/δm is not only bounded but is also (say ') Lipschitz continuous with respect to
the variable v, in which case the bound (3.11) becomes

∣
∣h(ν)− h(μ)| ≤ ' sup

�:‖�‖1,∞≤1

∫

R

�(v)d
(
ν − μ

)
(v), (3.12)

the supremum in the right-hand side being taken over all the Borel function � from
R into itself with a supremum norm less than 1 and with a Lipschitz constant that is
also less than 1. This prompts us to introduce the following distance on P(R):

dBL(μ, ν) = sup
�:‖�‖1,∞≤1

∫

R

�(v)d
(
ν − μ

)
(v).

The interested reader will observe that dBL is not only bounded by dTV but also by
the 1-Wasserstein metric. In fact, it is show in [23] that dBL metricizes the vague
topology on P(R). As far as we are concerned, we will make use of the following
lemma:

Lemma 3.1 Let p = (pi)i∈E and p′ = (p′i )i∈E be two elements of Sd and x =
(xi)i∈E and x ′ = (x ′i )i∈E be two elements of R. Then, using the same notation as in
(3.4),

dBL
(
μx [p], μx ′ [p′]) ≤

∑

i∈E

(|xi − x ′i | + |pi − p′i |
)
.
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Proof Take a function � that is bounded by 1 and that is 1-Lipschitz continuous on
R. Then,

∫

R

�(v)d
[
μx[p]−μx ′ [p′]](v) =

∑

i∈E
pi�(xi)−p′i�(x ′i ) ≤

∑

i∈E

(|pi−p′i |+|xi−x ′i |
)
,

which is the claim. �	

3.2.3.2 Detailed Regularity Assumptions

Throughout the notes, the space of probability measures P(R) is equipped with the
distance dBL and we require:

1. The function f is bounded; it is Lipschitz continuous in (x, μ), uniformly in
time; it is Hölder continuous in time, uniformly in (x, μ), for some given Hölder
exponent in (0, 1].

2. For any (t, x) ∈ [0, T ] × Rd , the function P(R)  m �→ f (t, x,m) is
flat continuously differentiable. The function δf/δm is bounded; it is Lipschitz
continuous in (x, v, μ), uniformly in time.

3. The function g is twice differentiable with respect to x. The functions g, ∂xg and
∂2
x g are bounded and Lipschitz continuous in (x, μ).

4. The function g is flat continuously differentiable with respect to m. The function
δg/δm is bounded; it is Lipschitz continuous in (x, v, μ).

3.3 Stochastic MFG System

The purpose of this section is to characterize the equilibria of the MFG with
common noise through a suitable version of the MFG system and then to address
the unique solvability of the latter.

3.3.1 Stochastic HJB Equation

Our first step towards a convenient formulation of the MFG system is to characterize
the minimizers of the cost functional Jη( · ;p) for a continuous F-adapted process
p with values in Sd . Recalling the definition of H from (3.6), we have the following
statement:

Proposition 3.1 For a given continuous F-adapted process p with values in Sd , the
cost functionalJη( · ;p) has a unique minimizer α. It is given by

α
i,j
t = (uit − u

j
t + γ

)

+, i, j ∈ E : i � j, t ∈ [0, T ], (3.13)



3 Master Equation for Mean Field Games with Common Noise 217

where ((uit )i∈E)0≤t≤T is the unique solution of the BSDE:

duit = −
[∑

j∈E
H
(
u
j
t − uit

)+ f
(
t, ς it , μ

ςt [pt ]
)]
dt + vit dWt , t ∈ [0, T ],

uiT = g
(
ςiT , μ

ςT [pT ]
)
, i ∈ E.

(3.14)

Moreover, ui0 coincides with the optimal cost infβ Jη(β;p) when q in (3.1) is
required to start from the Dirac mass at point i at time 0.

Remark 3.2 In the absence of common noise, the term vit in (3.14) should be
understood as 0. We then recover the standard MFG system for games without
common noise.

In this regard, the statement of Proposition 3.1 may look rather sloppy as we
said nothing about the process ((vit )i∈E)0≤t≤T . In fact, ((vit )i∈E)0≤t≤T is part of the
solution itself, which means in particular that there are two unknowns in Eq. (3.14).
This might seem rather strange at first sight but this feature is actually at the basic
roots of the theory of BSDEs. Indeed, the reader must remember that solutions to
(3.14) must be non-anticipative, as otherwise our candidate (3.13) for solving the
optimization problemJη( · ;p) would not be progressively-measurable. As a result,
(3.14) should not be read as a single equation, but as an equation plus a constraint
on the measurability properties of ((uit )i∈E)0≤t≤T . This makes two conditions for
two unknowns, which sounds fair in the end.

To make the case even stronger, we feel useful to emphasize that the process
((uit )i∈E)0≤t≤T is required to be a continuous F-adapted process satisfying the
integrability condition2

sup
i∈E
E
[

sup
t∈[0,T ]

|uit |2
]
<∞,

and that the process ((vit )i∈E)0≤t≤T is required to be an F-progressively measurable
process satisfying

sup
i∈E
E

∫ T

0
|vit |2dt <∞.

Taking conditional expectation in the first line of (3.14), we then get that

uit =E
[

g
(
ςiT , μ

ςT [pT ]
)+

∫ T

t

(∑

j∈E
H
(
u
j
s − uis

)+ f
(
s, ς is , μ

ςs [ps]
))
ds |Ft

]

,

(3.15)

2In fact, we will see in the next Remark 3.3 that solutions must be bounded.
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or equivalently, the process

(

uit +
∫ t

0

(∑

j∈E
H
(
u
j
s − uis

)+ f
(
s, ς is , μ

ςs [ps]
))
ds

)

0≤t≤T

is, for each i ∈ E, an F-martingale. Then, the construction of the stochastic integral
in (3.14) follows from the representation theorem for martingales with respect to
Brownian filtrations, see [32, Chapter 3, Theorem 4.15 and Problem 4.16].

Remark 3.3 As a corollary of the proof, we get that the process ((uit )i∈E)0≤t≤T is
bounded by M = ‖g‖∞ + T ‖f ‖∞. The latter constant plays a crucial role in the
sequel of the paper. In particular, we notice that the positive part in H and a�, see
(3.6), can be hence removed if γ ≥ 2M . This observation is consistent with the
discussion in Remark 3.1.

Remark 3.4 Imitating (3.3), we use the convenient notation:

F̃ i
t (p) = f

(
t, ς it , μ

ςt [p]),
G̃i (p) = g(ςiT , μ

ςT [p]), t ∈ [0, T ], i ∈ E, p ∈ Sd .

It must be paid attention that both F̃ and G̃ are hence random.

Remark 3.5 BSDE (3.14) should be regarded as a discrete Stochastic Hamilton-
Jacobi-Bellman (SHJB) equation. It is the discrete analogue of the SHJB equation
addressed in [6, Chapter 4].

Remark 3.6 In the literature on BSDEs, the term
∑

j∈E H(u
j
t − uit ) +

f (t, ς it , μ
ςt [pt ]) in (3.14) (which is nothing but the dt term, up to the sign minus

in front of the whole) is called the driver of the equation. We use quite often this
terminology in the sequel of the text.

Proof of Proposition 3.1 Our first step is to replace the HamiltonianH in the driver
of the BSDE by the following truncated version:

Hc(w) = inf
0≤a≤c

(
aw + 1

2a
2 − aγ

)+ 1
2γ

2

= − 1
2 (γ −w)2+1{γ−w≤c} −

(
c(γ −w)− 1

2c
2)1{γ−w>c} + 1

2γ
2, w ∈ R,

where c is a positive constant, the value of which is fixed later on. It is clear that
Hc is Lipschitz continuous and coincides with H on [γ − c,+∞). Importantly,
the minimizer in the definition of Hc(w) is a�c(w) = min((γ − w)+, c). By
[43], (3.14) with H replaced by Hc therein is uniquely solvable. We denote by
((uit , v

i
t )i∈E)0≤t≤T its solution.

We then observe that, for any admissible control β whose off-diagonal coeffi-
cients are bounded by c and for q = (qt)0≤t≤T the solution to (3.1) with β as
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control therein, we have

d

[
∑

i∈E
qit u

i
t +

∫ t

0

∑

i∈E
qis

(
F̃ i
s (ps)+ 1

2

∑

j∈E:j�i
|βi,jt − γ |2

)
ds

]

=
∑

i∈E
qit

[ ∑

j∈E:j�i

(
β
i,j
t

(
u
j
t − uit

)+ 1
2 |βi,jt − γ |2

)
−Hc

(
u
j
t − uit

)
]

dt +
∑

i∈E
qit v

i
t dWt .

Recalling the definition of Hc, integrating between 0 and T and then taking
expectation, we deduce that

E

[
∑

i∈E
qiT G̃

i(pT )+
∫ T

0

∑

i∈E
qis

(
F̃ i
s (ps)+ 1

2

∑

j∈E:j�i
|βi,js − γ |2

)
ds

]

≥
∑

i∈E
qi0u

i
0.

(3.16)

Equality is achieved by choosing β as ((βi,jt = a�c (u
j
t − uit ))i,j∈E:i�j )0≤t≤T , from

which we deduce that, whenever H is replaced by Hc in (3.14), ui0 is in fact the
minimum of Jη( · ;p) over admissible processes with off-diagonal entries that are
bounded by c and over processes q that start from the Dirac mass at point i at time 0.
Using the non-negativity of the Lagrangian, we get as trivial bound ui0 ≥ −M , see
Remark 3.3 for the definition of M . Choosing β ≡ 0 as control, we get the opposite
bound, namely ui0 ≤ M . In fact, by initializing the process q from the Dirac mass
at point i at any time t ∈ [0, T ] and then by working with conditional expectation
given Ft in (3.16), we get in a similar way that

P
(∀i ∈ E, ∀t ∈ [0, T ], |uit | ≤M

) = 1. (3.17)

Since M is independent of c, we can choose c large enough so that Hc(u
j
t − uit ) =

H(u
j
t − uit ) in the BSDE satisfied by ((uit )i∈E)0≤t≤T . This shows the existence of a

solution to (3.14).
By similar computations, we deduce that the hence constructed solution to (3.14)

satisfies (3.16) for any admissible control β (no need to assume the latter to be
bounded), with equality when β is chosen as in (3.13). In fact, this holds true for
any other solution to (3.14), hence proving that all the solutions to (3.14) satisfy
(3.17). As a result, there exists c > 0 such that all the solutions to (3.14) satisfy
(3.14) but with respect to the Hamiltonian Hc. We deduce that (3.14) is uniquely
solvable. �	

3.3.2 Formulation of the MFG System

We now have all the ingredients to characterize the equilibria of the MFG under
study through a suitable form of the MFG system.
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As a direct application of Proposition 3.1, we get:

Proposition 3.2 For a given initial condition pinit ∈ Sd , a continuous adapted
process p = (pt )0≤t≤T with values in the simplex is an equilibrium, as defined in
Definition 3.5, if and only if there exists a pair (((uit )i∈E)0≤t≤T , ((vit )i∈E)0≤t≤T )
satisfying

∀i ∈ E, E

[
sup

t∈[0,T ]
|uit |2 +

∫ T

0
|vit |2dt

]
<∞, (3.18)

together with the forward-backward system:

dpit =
[ ∑

j∈E:j�i
p
j
t

(
γ + u

j
t − uit

)

+ − pit

∑

j∈E:j�i

(
γ + uit − u

j
t

)

+
]
dt,

duit = −
[∑

j∈E
H
(
u
j
t − uit

)+ F̃ i
t (pt )

]
dt + vit dWt , t ∈ [0, T ],

uiT = G̃i(pT ), i ∈ E.

(3.19)

Remark 3.7 In probability literature, the system (3.19) is referred to as a forward-
backward SDE.

In comparison with [6], (3.19) is the analogue of (4.7) therein: Using the fact that
the common noise acts in an additive manner, we are indeed able to write the forward
equation as a random ODE and not as an SDE (which would be more complicated).
This observation is at the roots of the analysis provided in [6] and we here duplicate
it in the discrete setting.

Here is now our first main result:

Theorem 3.1 Under the assumption of Sect. 3.2.3 and under the condition γ ≥ 2M
(see Remark 3.3), for any initial condition pinit ∈ Sd , there exists a unique solution
to the MFG system (3.19).

In particular, the MFG with common noise has a unique equilibrium for any
given initial condition.

We prove Theorem 3.1 in the next section by means of a continuation argument.
This argument is similar to the one used in [6, Chapter 4], but, in fact, continuation
method for forward-backward SDEs goes back to the paper [45].

Remark 3.8 In the proofs below, we often remove, for simplicity, the superscript
init in the initial condition pinit.

3.3.3 Proof of the Solvability Result

This section is devoted to the proof of Theorem 3.1.
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In order to proceed, we introduce the following notation. For any λ ∈ [0, 1],
for any bounded F-progressively measurable process f̃ = ((f̃ it )i∈E)0≤t≤T and any
bounded FT -measurable random variable g̃ = (g̃iT )i∈E , we denote by E(λ, f̃ , g̃)
the forward-backward system:

dpit =
[ ∑

j∈E:j�i
p
j
t

(
γ + u

j
t − uit

)

+ − pit

∑

j∈E:j�i

(
γ + uit − u

j
t

)

+
]
dt,

duit = −
[∑

j∈E
H
(
u
j
t − uit

)+ λF̃ i
t (pt )+ f̃ it

]
dt + vit dWt , t ∈ [0, T ],

uiT = λG̃i(pT )+ g̃iT , i ∈ E,

(3.20)

with p0 = pinit as initial condition, for a fixed pinit ∈ Sd . Whenever E(λ, f̃ , g̃) has
a solution, we often denote it in the shorten forms (p,u, v) or (p,u).

With those notations in hand, we formulate the following lemma, which makes
clear the basic mechanism of the continuation method:

Lemma 3.2 There exists ε > 0 with the following property: If, for a given λ ∈
[0, 1) and for any ((f̃ i

t )i∈E)0≤t≤T and (g̃iT )i∈E as above with

∀i ∈ E,

⎧
⎨

⎩

P⊗ Leb1

({
(ω, t) : |f̃ it (ω)| > (1 − λ)‖f ‖∞

}) = 0,

P

({
ω : |g̃iT (ω)| > (1 − λ)‖g‖∞

}) = 0,
(3.21)

the system E(λ, f̃ , g̃) has a unique solution (satisfying the integrability conditions
(3.18)), then, for any λ′ ∈ [λ,min(1, λ + ε)] and for any ((f̃ it )i∈E)0≤t≤T and
(g̃iT )i∈E as above with

∀i ∈ E,

⎧
⎨

⎩

P⊗ Leb1

({
(ω, t) : |f̃ i

t (ω)| > (1 − λ′)‖f ‖∞
}) = 0,

P

({
ω : |g̃iT (ω)| > (1− λ′)‖g‖∞

}) = 0,
(3.22)

the system E(λ′, f̃ , g̃) is also uniquely solvable.

Remark 3.9 Condition (3.21) is really important. It says that the process
((λF̃ i

t (pt ) + f̃ i
t )i∈E)0≤t≤T is bounded by ‖f ‖∞ and that the variable (λG̃i(pt ) +

f̃ iT )i∈E is bounded by ‖g‖∞. Duplicating the proof of Proposition 3.1, this implies
that any solution (p,u, v) to E(λ, f̃ , g̃) satisfies the bound

∀i ∈ E, P
(∀t ∈ [0, T ], |uit | ≤ M

) = 1.

In particular, since γ ≥ 2M , the effective values that are inserted in the Hamiltonian
H in (3.20) are restricted to the interval whereH(w) is equal to − 1

2 (γ −w)2+ 1
2γ

2.



222 F. Delarue

Take Lemma 3.2 for granted. Then, observing that, whenever λ = 0 in (3.20),
the system E(0, f̃ , g̃) is decoupled, meaning that the backward equation may be
solved first and then the forward equation may be solved next by inserting therein the
solution of the backward equation, we deduce that the solvability of E(0, f̃ , g̃) can
be treated on the same model as the solvability of (3.14). Existence and uniqueness
of a solution to E(0, f̃ , g̃) easily follows. By iterating in Lemma 3.2 on the value
of λ (choosing λ = ε, and then λ = 2ε, . . . , up to λ = nε for n = $1/ε% and then
λ = 1), we deduce that E(1, 0, 0) is uniquely solvable, which is Theorem 3.1.

In fact, the proof of Lemma 3.2 is based upon the following stability lemma:

Lemma 3.3 For any λ ∈ [0, 1), consider f̃ = ((f̃ it )i∈E)0≤t≤T and f̃
′ =

((f̃
′,i
t )i∈E)0≤t≤T two F-progressively measurable processes that are bounded by

(1 − λ)‖f ‖∞ and g̃ = (g̃
′,i
T )i∈E and g̃′ = (g̃iT )i∈E two FT -measurable random

variables that are bounded by (1 − λ)‖g‖∞, see (3.21). Assume that (p,u) and

(p′,u′) solve respectively E(λ, f̃ , g̃) and E(λ, f̃ ′
, g̃′). Then, there exists a constant

C only depending on the underlying constants in the assumption stated in Sect. 3.2.3
(in particular, C is independent of λ) such that

E

[
∑

i∈E
sup

t∈[0,T ]

(
|pit − p

′,i
t |2 + |uit − u

′,i
t |2

)
+
∑

i∈E

∫ T

0
|vit − v

′,i
t |2dt

]

≤ CE

[
∑

i∈E
|g̃iT − g̃

′,i
T |2 +

∑

i∈E

∫ T

0
|f̃ it − f̃

′,i
t |2dt

]

.

Remark 3.10 Interestingly enough, the reader may double-check that the proof
easily extends to the case when the two processes p and p′ start from different
initial conditions at time 0, in which case we need to include

∑
i∈E |pi0 − p

′,i
0 |2 in

the right-hand side.

Proof of Lemma 3.3 We call (p,u, v) and (p′,u′, v′) the two solutions considered
in the statement. The proof is then quite classical in MFG theory and consists in
expanding (

∑
i∈E(pit − p

′,i
t )(u

i
t − u

′,i
t ))0≤t≤T by Itô’s formula. We get

d
(∑

i∈E
(pit − p

′,i
t )(uit − u

′,i
t )
)

= −
∑

i,j∈E
(pit − p

′,i
t )
(
H
(
u
j
t − uit

)−H
(
u
′,j
t − u

′,i
t

))
dt

−
∑

i∈E
(pit − p

′,i
t )
(
λF̃ it (pt )− λF̃ it (p

′
t )+ f̃ it − f̃

′,i
t

)
dt +

∑

i∈E
(pit − p

′,i
t )(vit − v

′,i
t )dWt

+
∑

i,j∈E

(
p
j
t

(
γ + u

j
t − uit

)

+ − p
′,j
t

(
γ + u

′,j
t − u

′,i
t

)

+
)(
uit − u

j
t − (u

′,i
t − u

′,j
t )
)
dt.
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By monotonicity of f , the first term on the penultimate line is non-positive. As for
the first and last terms on the right-hand side, we have

−
∑

i,j∈E

[

pit

(
H
(
u
j
t − uit

)−H
(
u
′,j
t − u

′,i
t

))− p
j
t

(
γ + u

j
t − uit

)

+
(
uit − u

j
t − (u

′,i
t − u

′,j
t )
)
]

=
∑

i,j∈E
pit

(
H
(
u
′,j
t − u

′,i
t

)−H
(
u
j
t − uit

)− ∂wH(u
j
t − uit )

(
u
′,j
t − u

′,i
t − (u

j
t − uit )

))
.

Since γ ≥ 2M , we are here on the part whereH is strictly concave, see Remark 3.9.
We deduce that the last term right above is upper bounded by − 1

2

∑
i,j∈E pit [u′,jt −

u
′,i
t − (u

j
t − uit )]2. Exchanging the primes and the non-primes in the above identity

and then taking expectation in the expansion of (
∑

i∈E(pit −p
′,i
t )(u

i
t − u

′,i
t ))0≤t≤T ,

we deduce that

E

[∑

i∈E
(piT − p

′,i
T )(u

i
T − u

′,i
T )+ 1

2

∑

i,j∈E

(
pit + p

′,i
t

)[u′,jt − u
′,i
t − (u

j
t − uit )]2

]

≤ E
∫ T

0

∑

i∈E
|pit − p

′,i
t ||f̃ it − f̃

′,i
t |dt.

Replacing uiT and u′,iT by their expressions in the left-hand side and then using the
monotonicity of g, we finally obtain:

1
2E

∑

i,j∈E

(
pit + p

′,i
t

)[u′,jt − u
′,i
t − (u

j
t − uit )]2

≤ E
∑

i∈E
|piT − p

′,i
T ||g̃iT − g̃

′,i
T | + E

∫ T

0

∑

i∈E
|pit − p

′,i
t ||f̃ it − f̃

′,i
t |dt.

(3.23)

Back to the forward equation, we write, for any i ∈ E and t ∈ [0, T ],

|pit −p
′,i
t | ≤ (2M + γ )

∑

j∈E

∫ t

0
|pjs −p

′,j
s | +

∑

j∈E

∫ t

0
p
j
s

∣
∣u
′,j
s − u′,is − (u

j
s − uis)

∣
∣ds.

Summing over i ∈ E, applying Gronwall’s lemma and then taking the square, we
deduce that there exists a constant C, only depending on d , M and γ , such that

∑

i∈E
sup

t∈[0,T ]
|pit − p

′,i
t |2 ≤ C

∑

i,j∈E

∫ T

0
p
j
s

∣
∣u
′,j
s − u′,is − (u

j
s − uis)

∣
∣2ds.

Inserting the above bound in (3.23), we get the announced estimate for the term
E
∑

i∈E supt∈[0,T ] |pit − p
′,i
t |2. In order to complete the proof, we inject in turn
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this estimate in the backward equation. Using the fact that the argument in the
Hamiltonian H is bounded, we can easily apply standard estimates for BSDEs with
Lipschitz continuous coefficients, see [48, Chapter 3]. �	
Proof of Lemma 3.2 We prove Lemma 3.2 by a contraction argument. For λ ∈
(0, 1], λ′ ∈ (λ, 1] and ((f̃ i

t )i∈E)0≤t≤T and (g̃iT )i∈E as in (3.22), we create a mapping
+ that maps the set of continuous F-adapted and Sd -valued processes into itself. For
p a continuous and adapted process with values in Sd , we define +(p) as follows:
We solve for E(λ, f̃ +δF̃ (p), g̃+δG̃(p)) with δ = λ′ −λ, where F̃ (p) is a shorten
notation for ((F̃ i

t (pt ))i∈E)0≤t≤T and G̃(p) is a shorten notation for (G̃i(pT ))i∈E .
We call the solution ((+i

t (p))i∈E, (uit )i∈E, (vit )i∈E)0≤t≤T .
Now, for two inputs p and p′, Lemma 3.3 yields (for C independent of λ and δ)

E

[∑

i∈E
sup

t∈[0,T ]

(
|+i

t (p)−+i
t (p

′)|2
)]

≤ Cδ2
E

[
∑

i∈E
|G̃i(pT )− G̃i(p′T )|2 +

∑

i∈E

∫ T

0
|F̃ i

t (pt )− F̃ i
t (p

′
t )|2dt

]

.

Since G̃ and F̃ are Lipschitz continuous in the variable p, see the assumption in
Sect. 3.2.3 together with Lemma 3.1 therein, we easily deduce that+ is a contraction
for δ small enough, independently of the value of λ. The proof ends up by Banach
fixed point theorem. �	

3.4 Master Equation

We now address the form and the solvability of the master equation. In the whole
section, we assume that γ ≥ 2M .

3.4.1 Master Field

Our first step towards the master equation is to introduce the notion of master field.
In comparison with [6], it is here tailored-made to our choice of common noise.
In this regard, it is worth recalling that, in the MFG literature, the construction
of the master field has been almost exclusively addressed when equilibria are
unique (as quoted in introduction, see [15, 20] for a few examples when uniqueness
does not hold). Even more, the standard approach to the master field is in fact
intrinsically connected with a Markov property that the equilibria should satisfy
whenever uniqueness indeed holds true. Obviously, this Markov property especially
makes sense when the game is subjected to a common noise, since, as we already
mentioned several times, equilibria are then random.
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However, it is pretty easy to see that, in our case, equilibria, as defined by the
sole process p solving the forward equation in the MFG system (3.19), cannot be
Markovian on their own. This is here a subtlety that is due to the way the common
noise is assumed to act on the game. To make it clear, assume that the state of
the population at a given time t ∈ [0, T ] is given by some Ft -measurable random
variable with values in Sd . Obviously, this information is not enough to recompute
the future evolution of the equilibrium since the latter also depends on the new form
that the state space takes at time t . Recall indeed that the effective state space at
time t is given by St = S+ ηWt . So, here, the right candidate for being a Markov
process is the pair (ηW ,p). For sure, the reader might find it rather strange, but in
fact it is completely consistent with the approach taken in [6]: Therein the process
(m̃t )0≤t≤T that solves the forward equation in [6, (4.7)] is not a Markov process with
values in P(Rd ) (d being the dimension in [6]); the Markov process therein is made
of the image of m̃t by the (random) translation Rd  x �→ x+ ηWt . The situation is
absolutely similar here: Our true Markov process is in fact the P(R)-valued process:

(
μςt [pt ] =

∑

i∈E
pit δςi+ηWt

)

0≤t≤T .

However, to keep the whole discussion at a reasonable level, we feel better not to
consider general P(R)-valued processes (as otherwise we would face the same kind
of complexity as in [6]). Instead, we only focus on the locations of the Dirac masses
in μςt [pt ] through the position of ηWt and on the weights of each of those Dirac
masses through the element pt of Sd . As a by-product, we are able to write below
the master equation as a finite-dimensional PDE.

Clearly, our willingness to regard the pair (ηW ,p) as a Markov process (with
values in R × Sd) should prompt us to allow, as initial condition for the game, any
triplet (t, x, p) ∈ [0, T ] × R × Sd , meaning that ηW is then required to start from
x at time t and p to start from p at the same time t . It is absolutely obvious that
Theorem 3.1 extends to this new case. This allows us to let:

Definition 3.7 We call master field the function U : [0, T ] × R × Sd → R
d

that associates, with any (t, x, p) ∈ [0, T ] × R × Sd , the d-tuple U(t, x, p) =
(Ui(t, x, p))i∈E , where Ui(t, x, p) is equal to uit in the SHJB equation in (3.19)
when (ps)t≤s≤T therein starts from p (at time t) and (ςs)t≤s≤T from (ςj + x)j∈E
(in which case we have ςjs = ςj + x + η(Ws −Wt), for s ∈ [t, T ] and j ∈ E).

Remark 3.11 It is absolutely crucial to understand that, whenever the MFG system
(3.19) and the common noise are initialized at time t as in the statement, the random
variable uit is almost-surely constant. This is the cornerstone of the construction
of the master field for MFGs with common noise (and the additional substantial
difficulty in comparison with MFGs without common noise). To wit, the reader can
take t = 0. Then, ui0 is required to be F0-measurable, but the latter is nothing but
(recall that F is the completion of the filtration generated by W ) the completion of
the trivial σ -field, whence the fact that ui0 is almost-surely a constant.
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When t > 0, the same argument holds true, but then the common noise has to
be understood as (x + η(Ws −Wt))t≤s≤T , as suggested by the Markov property for
the Brownian motion. And, again, it makes sense to assume that the σ -field at time
t is almost-surely trivial. In other words, we then forget the past before t , which is
again consistent with the practical meaning of the Markov property.

Remark 3.12 The reader should not confuse the role of x here with the role of x
in [6]. In [6], the argument x in the master field is used to denote the state of the
tagged player in the population. Here, x is used to denote the initial location of the
common noise.

As a by-product of the stability estimate proven in Lemma 3.3, we get

Proposition 3.3 There exists a constant C, only depending on the underlying
constants in the assumption stated in Sect. 3.2.3, such that, for any (t, x, p) ∈
[0, T ] × R× Sd and (x ′, p′) ∈ [0, T ] × R× Sd ,

sup
i∈E

|Ui(t, x, p)− Ui(t, x ′, p′)| ≤ C
(|x − x ′| + |p − p′|).

Proof Whenever x = x ′, the result is a mere consequence of Lemma 3.3 and
Remark 3.10. When x � x ′, it is a formal application of Lemma 3.3 by choosing
f̃ = 0 and

f̃
′,i
s = f

(
s, ςi + x ′ + η(Ws −Wt),

∑

j∈E
p
′,j
s δςj+x ′+η(Ws−Wt )

)

− f
(
s, ςi + x + η(Ws −Wt),

∑

j∈E
p
′,j
s δςj+x+η(Ws−Wt )

)
,

which is to say that we handle the fact that x ′ is not equal to x by choosing a
convenient form for the additional term f̃

′
, and similarly for g̃ and g̃′. However,

this is not correct because this violates the condition in the statement of Lemma 3.3
that f̃

′
must be bounded by (1−λ)‖f ‖∞, and similarly for g̃′. Fortunately, the latter

is just needed to ensure that everything in the proof works as if the Hamiltonian were
strictly concave, see Remark 3.9. Here, there is no need to have this extra guarantee
since we already know that u and u′ (the respective solutions of the backward
equation) take indeed values in the domain where H is strictly concave. The proof
of Lemma 3.3 is hence easily adapted. �	
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3.4.2 Representation of the Value Function Through the
Master Field

The following property makes clear the role of the master field:

Proposition 3.4 For an initial condition pinit ∈ Sd , call (p,u, v) the unique
solution to the MFG system (3.19) (say to simplify with W0 = 0), as given by
Theorem 3.1. Then, for all i ∈ E and t ∈ [0, T ], with probability 1,

uit = Ui(t, ηWt , pt ). (3.24)

Proof For a given δ > 0, we consider a countable partition (A(n))n∈N of R×Sd , the
diameter of each A(n) being less than δ. For each n ∈ N, we then choose an element
(x(n), q(n)) ∈ A(n) and we denote by ((p

(n),i
s , u

(n),i
s , v

(n),i
s )i∈E)t≤s≤T the solution

to the MFG system (3.19) with p(n)t = q(n) and ηWt = x(n) as initialization.
By a generalization of Lemma 3.3 (the proof of which is absolutely similar), we

could get, for each n ∈ N,

∑

i∈E
E
[|uit − u

n,i
t |2 |Ft

] ≤ C
(|pt − q(n)|2 + |ηWt − x(n)|2).

The conditional expectation in the left-hand side is in fact purely useless. It is
here for pedagogical reasons only. Indeed, we know that uit − u

(n),i
t is Ft -adapted.

In fact, the rationale for adding the conditional expectation is just to emphasize
that, in the analogue of Lemma 3.3, we should replace expectations by conditional
expectations. Multiplying both sides by 1{(ηWt ,pt )∈A(n)} and then taking expectation,
we get

∑

i∈E
E
[|uit − u

(n),i
t |21{(Wt ,pt )∈A(n)}

] ≤ Cδ2
P
(
(ηWt , pt ) ∈ A(n)

)
.

Observe that u(n),it writes, by definition, as Ui(t, x(n), q(n)). Therefore, by modify-
ing the value of the constant C in Proposition 3.3, we finally obtain

∑

i∈E
E
[|uit − Ui(t, ηWt , pt )|21{(ηWt ,pt )∈A(n)}

] ≤ Cδ2
P
(
(ηWt , pt ) ∈ A(n)

)
.

Summing over n ∈ N and letting δ tend to 0, we complete the proof. �	
As a corollary, we obtain:

Corollary 3.1 The master field U is 1/2-Hölder continuous in time, uniformly in
the other variables. In particular, it is (jointly) continuous on [0, T ] × R× Sd and,
in the statement of Proposition 3.4, almost surely, for all i ∈ E and t ∈ [0, T ], the
representation property (3.24) holds true.
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Proof For a given (t, x, p) ∈ [0, T ] × R × Sd , we call (p,u, v) the solution to
(3.19) whenever (ηW ,p) starts from (x, p) at time t .

By taking expectation in (uis−uit )t≤s≤T , for any i ∈ E, we get, for a given h > 0
such that t + h ≤ T ,

E
[
uit+h − uit

] = −E
∫ t+h

t

(∑

j∈E
H
(
u
j
s − uis

)+ F̃ i
s (ps)

)
ds.

Since the driver of the backward equation in (3.19) is bounded, there exists a
constant C, only depending on the underlying constants in the assumption stated
in Sect. 3.2.3, such that

∀i ∈ E,
∣
∣E
[
uit+h − uit

]∣
∣ ≤ Ch.

By Proposition 3.4, the above inequality reads

∀i ∈ E,
∣
∣E
[
Ui(t + h, ηWt+h, pt+h)− Ui(t, x, p)

]∣
∣ ≤ Ch.

Using the Lipschitz property stated in Proposition 3.3 and then using the fact that
the time derivative of p is bounded, we finally obtain:

∀i ∈ E,
∣
∣Ui(t + h, x, p)− Ui(t, x, p)

]∣
∣ ≤ Ch1/2,

which, together with Proposition 3.3, permits to conclude. �	

3.4.3 Form of the Master Equation

We now have all the ingredients to derive, at least intuitively, the form of the master
equation.

3.4.3.1 Informal Derivation of the Equation

Assuming for a while that the master field U is smooth enough, we may expand
((Ui(t, ηWt , pt ))i∈E)0≤t≤T by means of Itô’s formula, for a solution (p,u) to
(3.19), and then compare the resulting expansion with the formula for (duit )0≤t≤T .
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We then get the following version the master equation:

∂tU
i(t, x, p)+ 1

2η
2∂2
xU

i(t, x, p)+
∑

j∈E
H
(
(Uj − Ui)(t, x, p)

)+ f
(
t, ςi + x, μς+x [p])

+
∑

j,k∈E
pk
(
γ + (Uk − Uj )(t, x, p)

)

+
(
∂pj U

i − ∂pkU
i
)
(t, x, p) = 0, (3.25)

Ui(T , x, p) = g
(
ςi + x, μς+x [p]),

for (t, x, p) ∈ [0, T ]×R×Sd , with the obvious notation ς+x = (ς1+x, · · · , ςd+
x).

In fact, it should be clear for the reader that (3.25) can only be a preliminary
unrigorous form of the master equation. Indeed, strictly speaking, it does not make
any sense to speak about the derivatives of U with respect to p1, · · · , pd , since the
variable p in U only belongs to the simplex Sd , which has empty interior in Rd .
Instead, we must see Sd as a (d−1)-dimensional manifold or, equivalently, identify
any d-tuple (p1, · · · , pd) of Sd with the (d − 1)-tuple (p1, · · · , pd−1), the latter
being regarded as an element of the subset of Rd−1 with a non-empty interior made
of vectors (q1, · · · , qd−1)with non-negative entries and with sum

∑d−1
i=1 qi less than

1. Instead of introducing a notation for the collection of such (q1, · · · , qd−1)’s, we
feel easier to use the same notation, whether we see the simplex as a collection
of d-tuples or as a collection of (d − 1)-tuples. This prompts us to let, for such a
(d − 1)-tuple (q1, · · · , qd−1):

Û i
(
t, x, (q1, · · · , qd−1)

) = Ui
(
t, x,

(
q1, · · · , qd−1, 1 − (q1 + · · · + qd−1)

))
.

It then makes sense to speak about the derivatives of Û i with respect to
(q1, · · · , qd−1). If U in the right-hand side were defined on [0, T ] × R × O,
for O an open subset of Rd containing Sd , we would get

∂qj Û
i(t, x, q) = (∂pj Ui − ∂pdU

i
)
(t, x, p),

for q = (ql)l=1,··· ,d−1 and p = (pl)l=1,··· ,d denoting the same element of Sd . This
is absolutely enough to give a rigorous meaning to the derivatives with respect to p
in (3.25), provided that we understand them as

(
∂pj U

i − ∂pkU
i
)
(t, x, p) =

{ (
∂qj Û

i − ∂qk Û
i
)
(t, x, q), j, k ∈ {1, · · · , d − 1}, j � k,

∂qj Û
i (t, x, q), j ∈ {1, · · · , d − 1}, k = d.

Observe that it makes sense to assume j � k, as otherwise the difference in the
left-hand side is obviously taken as 0.

We let the reader reformulate (3.25) in coordinates (t, x, q) instead of (t, x, p).
The key point here is that, whenever we invoke Itô’s formula as we did to derive
(3.25) and as we do quite often below, it is absolutely the same to expand (Ui(t, x+
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ηWt , pt ))0≤t≤T if U is defined on the same [0, T ] × R × O as before or to expand
(Û i(t, x + ηWt, qt ))0≤t≤T , for (qt = (p1

t , · · · , pd−1
t ))0≤t≤T . Obviously, the first

expansion leads exactly to Eq. (3.25), whilst the second one leads to the version
in coordinates (t, x, q), which is in fact the right-one when U is just defined on
[0, T ] × R × Sd . Anyway, we feel easier to stick to the version (3.25) and not to
rewrite the master equation in coordinates (t, x, q).

3.4.3.2 Solvability Result

Here is now the second main statement of this chapter:

Theorem 3.2 Under the standing assumption (including the condition γ ≥ 2M),
the master equation has a unique bounded classical solution with bounded deriva-
tives of order one in t , x and p and of order two in x.

The proof of Theorem 3.2 is mostly based on a linearization argument that is
taken from [6], except that it suffices here to linearize once (namely to get the
existence of (∂pj U

i)i,j∈E) instead of twice as done in [6]. The reason is that,
while the master equation in [6] is directly formulated in terms of the second order
derivatives with respect to the measure argument, we here avoid any second order
derivatives in the variable p as we handle separately the influence of the common
noise through the additional variable x. As we already explained in introduction of
Sect. 3.4.1, the latter x does not show up in [6] (or, at least, x has a different meaning
therein).

Actually, it must be implicitly understood from the previous paragraph that the
most difficult part in the proof of Theorem 3.2 is to show that the master field,
as given by Definition 3.7, is smooth. In this regard, the main difficulty is to get
the existence of the first-order derivatives (∂pj U

i)i,j∈E . As for the existence of the
derivatives in t and x, we give below a tailored-made argument (that is specific to
our form of MFG) based on the fact that the equation features a Laplace operator in
the direction x.

As for uniqueness of the solution to the master equation, this follows from
a standard argument in the theory of forward-backward SDEs. Once the master
field (which is called decoupling field in the theory of forward-backward SDEs)
is known to be smooth, it must be the unique classical solution of the nonlinear
PDE associated (through the method of stochastic characteristics) with the forward-
backward SDE. We here give a sketch of the proof. More details may be found in
[18, 38]. Assume indeed that V = (V i)i∈E is another solution of the master equation
and say that we want to identify V (0, 0, p) with U(0, 0, p) for a given p ∈ Sd
(obviously, the argument would be similar if we replaced (0, 0, p) by (t, x, p) for
t ∈ [0, T ] and x ∈ R, the choice of (0, 0) being here for convenience only). We then
consider the solution (p,u, v) to the MFG system (3.19), whenever p starts from p

at time 0 and ηW starts from 0 at time 0.
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For a given i ∈ E, we then apply Itô’s formula to ((V i(t, ηWt , pt ))i∈E)0≤t≤T .
We simply denote the latter by ((V i

t )i∈E)0≤t≤T . By using the PDE (3.25) satisfied
by V (replace U by V in (3.25)), we get

dV i
t =

∑

j,k∈E
pk

[(
γ + ukt − u

j
t

)

+ −
(
γ + V k

t − V
j
t

)

+
](
∂pj V

i
t − ∂pkV

i
t

)
dt

−
[∑

j∈E
H
(
V
j
t − V i

t

)+ f
(
t, ςi + ηWt , μ

ςt [pt ]
)]
dt + ∂xV

i
t dWt ,

for t ∈ [0, T ], with the simpler notation ∂pj V
i
t = ∂pj V

i(t, ηWt , pt ) and ∂xV
i
t =

∂xV
i(t, ηWt , pt ). We then subtract (uit )0≤t≤T to both sides. We obtain

d
[
V i
t − uit

] =
∑

j,k∈E
pk

[(
γ + ukt − u

j
t

)

+ −
(
γ + V k

t − V
j
t

)

+
](
∂pj V

i
t − ∂pkV

i
t

)
dt

+
∑

j∈E

[
H
(
u
j
t − uit

)−H
(
V
j
t − V i

t

)]
dt + (∂xV i

t − vit
)
dWt .

Observe now that V i
T − uiT = 0. Integrate from t to T , take conditional expectation

given Ft and deduce from the fact that V and its gradient in (x, p) are bounded that,
for some constant C ≥ 0, and for all i ∈ E and t ∈ [0, T ],

E
[∣
∣V i

t − uit

∣
∣
] ≤ C

∫ T

t

∑

j∈E
E
[∣
∣V

j
s − u

j
s

∣
∣
]
ds.

Summing over i ∈ E and then by applying Gronwall’s lemma, we get the announced
equality: V i

0 = ui0, that is V i(0, 0, p) = Ui(0, 0, p), for any i ∈ E.

3.5 Proof of the Smoothness of the Master Field

We now address the main part of the proof of Theorem 3.2, namely the proof of the
smoothness of the master field U . We proceed in two steps:

1. The first one is to show the differentiability of U with respect to p and then the
continuity of the derivative; to do so, we mostly follow the linearization approach
developed in [6], but, fortunately, it is easier to implement in our setting.

2. The second is to prove the differentiability of U with respect to t (at order 1) and
to x (at order 2); the argument is here tailored made to the form of the master
equation in our setting and relies on standard Schauder estimates for the heat
equation.
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3.5.1 Linearized System

Generally speaking, the strategy to prove the continuous differentiability of U with
respect to p is to linearize the system (3.19) with respect to the initial condition.
Equivalently, the system (3.19) is here regarded as the system of characteristics
of the master equation (3.25); in order to establish the regularity of the solution
to (3.25), we hence prove that the flow generated by (3.19) is differentiable with
respect to the parameter p (which stands for the initial condition of the forward
component).

3.5.1.1 Form of the Linearized System

Before we provide the form of the linearized system, we feel useful to emphasize
the following subtlety: In (3.19), the drift coefficient in the forward equation is not
differentiable because of the positive part therein; However, recalling that γ ≥ 2M
and that ui and uj therein are bounded byM , see Remark 3.3, we may easily remove
the positive part and hence reduce to the case when the drift is smooth. In fact, a
similar remark applies to the Hamiltonian in the backward equation: We may reduce
it to a mere quadratic function. As result, we get the following formal expression
for the linearized system:

dqit =
[ ∑

j∈E:j�i
q
j
t

(
γ + u

j
t − uit

)− qit

∑

j∈E:j�i

(
γ + uit − u

j
t

)]
dt

+
[ ∑

j∈E:j�i
p
j
t

(
y
j
t − yit

)− pit

∑

j∈E:j�i

(
yit − y

j
t

)]
dt

dyit =
[∑

j∈E

(
γ + uit − u

j
t

)(
yit − y

j
t

)−
∑

j∈E

δF̃ i
t

δm
(pt )(ς

j
t )q

j
t

]
dt + zit dWt ,

yiT =
∑

j∈E

δG̃i

δm
(pT )(ς

j

T )q
j

T ,

(3.26)

for t ∈ [0, T ] and i ∈ E. Above, (p,u) denotes the solution to (3.19) for some
initial condition. Also, we have used the notation (compare with Remark 3.4):

δF̃ i
t

δm
(p)(v) = δf

δm

(
t, ς it , μ

ςt [p])(v), δG̃i
t

δm
(p)(v) = δg

δm

(
ςiT , μ

ςT [p])(v),

for p ∈ Sd and v ∈ R.
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In order to study the solvability of (3.26) and then make the connection with
(3.19), we are to use the same method of continuation as in Sect. 3.3.3, which
prompts us to introduce similar notation. For any λ ∈ [0, 1], any bounded F-
progressively measurable processes b̃ = ((b̃it )i∈E)0≤t≤T and f̃ = ((f̃ i

t )i∈E)0≤t≤T ,
with

P⊗ Leb1

(
(ω, t) :

∑

i∈E
b̃it � 0

)
= 0, (3.27)

and any bounded FT -measurable random variable g̃ = (g̃iT )i∈E , we hence denote
by D(λ, b̃, f̃ , g̃), the forward-backward system:

dqit =
[ ∑

j∈E:j�i
q
j
t

(
γ + u

j
t − uit

)− qit

∑

j∈E:j�i

(
γ + uit − u

j
t

)]
dt

+
[ ∑

j∈E:j�i
p
j
t

(
y
j
t − yit

)− pit

∑

j∈E:j�i

(
yit − y

j
t

)]
dt + b̃it dt

dyit =
[∑

j∈E

(
γ + uit − u

j
t

)(
yit − y

j
t

)− λ
∑

j∈E

δF̃ i
t

δm
(pt )(ς

j
t )q

j
t − f̃ i

t

]
dt + zit dWt ,

yiT = λ
∑

j∈E

δG̃i
T

δm
(pT )(ς

j
T )q

j
T + g̃iT ,

(3.28)

for t ∈ [0, T ] and i ∈ E. Solutions are required to satisfy:

∑

i∈E
E

[
sup

0≤t≤T
(|qit |2 + |yit |2

)+
∫ T

0
|zit |2dt

]
<∞. (3.29)

They are denoted in the form (q, y, z) or (q, y).

Remark 3.13 In [6], the condition (3.27) manifests in the form of an additional
divergence in the dynamics, see for instance (4.37) therein. Since very few is said
about it in [6], we feel that it is worth saying more about its role here. Obviously,
the key point is that, whenever q solves the forward equation in (3.28), it satisfies,
P-almost surely,

∀t ∈ [0, T ],
∑

i∈E
qit =

∑

i∈E
qi0. (3.30)
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We make use of the above equality in (3.31), when invoking the Lasry–Lions
monotonicity condition.

3.5.1.2 Stability Lemma

Similar to the analysis of the MFG system (3.19) performed in Sect. 3.3.3, the
analysis of the linearized systems (3.26) and (3.28) goes through a stability lemma
of the same type as Lemma 3.3. This stability lemma is the main ingredient for
proving existence and uniqueness of a solution to (3.26) by a continuation method
very much like Lemma 3.2 and also for proving that (3.26) provides indeed the
derivative of the master field U with respect to the variable p. As for the latter
point, we refer to the next section for the details.

For the time being, we focus on the formulation and the proof of the stability
lemma. In our framework, we indeed have the following analogue of Lemma 3.3:

Lemma 3.4 For any λ ∈ [0, 1), consider b̃ = ((b̃it )i∈E)0≤t≤T , f̃ =
((f̃ it )i∈E)0≤t≤T , b̃

′ = ((b̃
′,i
t )i∈E)0≤t≤T and f̃

′ = ((f̃
′,i
t )i∈E)0≤t≤T four bounded

F-progressively measurable processes, with
∑

i∈E b̃it =
∑

i∈E b̃
′,i
t = 0 P ⊗ Leb1

almost everywhere, and g̃ = (g̃iT )i∈E and g̃′ = (g̃
′,i
T )i∈E two bounded FT -

measurable random variables. Assume that (q, y) and (q ′, y ′) solve respectively

D(λ, b̃, f̃ , g̃) and D(λ, b̃
′
, f̃

′
, g̃′) (with possibly two different initial conditions

but for the same pair (p,u)). Then, there exists a constant C only depending on the
assumption in Sect. 3.2.3 such that

E

[
∑

i∈E
sup

t∈[0,T ]

(
|qit − q

′,i
t |2 + |yit − y

′,i
t |2

)
+
∑

i∈E

∫ T

0
|zit − z

′,i
t |2dt

]

≤ CE

[
∑

i∈E
|qi0 − q

′,i
0 |2 +

∑

i∈E
|g̃iT − g̃

′,i
T |2 +

∑

i∈E

∫ T

0

(
|b̃it − b̃

′,i
t |2 + |f̃ it − f̃

′,i
t |2

)
dt

]

.

Remark 3.14 The reader should notice that, in comparison with the statement of
Lemma 3.3, there is here no constraint on the bounds of ((f̃ i

t )i∈E)0≤t≤T and of
(g̃iT )i∈E . This is due to the fact that, here, we directly work on the domain where
the Hamiltonian H is quadratic. Indeed, we already know that ui is bounded by M ,
for each i ∈ E. In particular, differently from Lemma 3.3, there is no need to prove
any a priori bound on the solution (q, y, z).

Proof We consider two solutions (q, y, z) and (q ′, y ′, z′) as in the statement.
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First Step Following the proof of Lemma 3.3, we compute d[∑i∈E(qit −q
′,i
t )(yit −

y
′,i
t )]. We get

d
(∑

i∈E

(
qit − q

′,i
t

)(
yit − y

′,i
t

))

=
∑

i,j∈E

[(
q
j
t

(
γ + u

j
t − uit

)− q
′,j
t

(
γ + u

j
t − uit

))(
yit − y

′,i
t − (y

j
t − y

′,j
t

))]
dt

+
∑

i,j∈E

[(
p
j
t

(
γ + y

j
t − yit

)− p
j
t

(
γ + y

′,j
t − y

′,i
t

))(
yit − y

′,i
t − (y

j
t − y

′,j
t

))]
dt

+
∑

i∈E

(
qit − q

′,i
t

)∑

j∈E

[(
γ + uit − u

j
t

)(
yit − y

j
t

)− (γ + uit − u
j
t

)(
y
′,i
t − y

′,j
t

)]
dt

− λ
∑

i∈E

(
qit − q

′,i
t

)∑

j∈E

δF̃ i
t

δm
(pt )(ς

j
t )
(
q
j
t − q

′,j
t

)
dt −

∑

i∈E

(
qit − q

′,i
t

)(
f̃ it − f̃

′,i
t

)
dt

+
∑

i∈E

(
b̃it − b̃

′,i
t

)(
yit − y

′,i
t

)
dt +

∑

i∈E

(
qit − q

′,i
t

)(
zit − z

′,i
t

)
dWt .

It is easy to see that the first and third terms in the right-hand side cancel. Integrating
from 0 to T and taking expectation (by (3.29), observe that the stochastic integral is
a true martingale), we get

E

∑

i∈E

(
qiT − q

′,i
T

)(
yiT − y

′,i
T

)+ λE

∫ T

0

∑

i∈E

(
qit − q

′,i
t

)∑

j∈E

δF̃ i
t

δm
(pt )(ς

j
t )
(
q
j
t − q

′,j
t

)
dt

+ E
∫ T

0

∑

i,j∈E
p
j
t

(
yit − y

′,i
t − (y

j
t − y

′,j
t

))2
dt

≤ E
∑

i∈E

[

|qi0 − q
′,i
0 ||yi0 − y

′,i
0 | +

∫ T

0

(
|qit − q

′,i
t ||f̃ i

t − f̃
′,i
t | + |yit − y

′,i
t ||b̃it − b̃

′,i
t |
)
dt

]

.

Now, the monotonicity of f together with identity (3.30) yield (see for instance [6,
Subsection 2.3], paying attention that the measure μ therein must be centred, which
is here the rationale for subtracting the initial conditions of q and q ′)

E

∫ T

0

∑

i∈E

(
qit −qi0− (q

′,i
t −q

′,i
0 )
)∑

j∈E

δF̃ i
t

δm
(pt )(ς

j
t )
(
q
j
t −q

j

0 − (q
′,j
t −q

′,j
0 )
)
dt ≥ 0,
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which can be reformulated as3

E

∫ T

0

∑

i∈E

(
qit − q

′,i
t

)∑

j∈E

δF̃ i
t

δm
(pt )(ς

j
t )
(
q
j
t − q

′,j
t

)
dt

≥ −CE
(
∑

i∈E
|qi0 − q

′,i
0 |2 +

∑

i,j∈E
|qi0 − q

′,i
0 |
∫ T

0
|qjt − q

′,j
t |dt

)

,

(3.31)

for a constant C that only depends on the details of the assumption in Sect. 3.2.3.
Similarly, we have

E

∑

i∈E

(
qiT − q

′,i
T

)(
yiT − y

′,i
T

)

= λE
∑

i∈E

(
qiT − q

′,i
T

)∑

j∈E

δG̃i
T

δm
(pt )(ς

j

T )
(
q
j

T − q
′,j
T

)+ E
∑

i∈E

(
qiT − q

′,i
T

)(
g̃iT − g̃

′,i
T

)

≥ E
∑

i∈E

(
qiT − q

′,i
T

)(
g̃iT − g̃

′,i
T

)− CE

(
∑

i∈E
|qi0 − q

′,i
0 |2 +

∑

i,j∈E
|qi0 − q

′,i
0 ||qjT − q

′,j
T |
)

.

So, we end up this first step with

E

∫ T

0

∑

i,j∈E
p
j
t

(
yit − y

′,i
t − (y

j
t − y

′,j
t

))2
dt

≤ E
∑

i∈E

[

|qi0 − q
′,i
0 |2 + |qi0 − q

′,i
0 ||yi0 − y

′,i
0 | + |qiT − q

′,i
T |
(
|g̃iT − g̃

′,i
T | + |qi0 − q

′,i
0 |
)

+
∫ T

0

[
|qit − q

′,i
t |
(
|qi0 − q

′,i
0 | + |f̃ it − f̃

′,i
t |
)
+ |yit − y

′,i
t ||b̃it − b̃

′,i
t |
]
dt

]

.

Second Step Returning to the forward equation in (3.28) and allowing the value of
the constant C to vary from line to line below, we now observe that

E

∑

i∈E
sup

t∈[0,T ]
|qit − q

′,i
t |2

≤ C
∑

i∈E

[

|qi0 − q
′,i
0 |2 + E

∫ T

0

[∑

j∈E
p
j
t

(
y
j
t − y

′,j
t − (yit − y

′,i
t

))2 + |b̃it − b̃
′,i
t |2

]
dt

]

.

3The reader who is willing to compare with [6] may observe that, in pages 119 and 120 therein,
the square of the norm of the difference of the two initial conditions of the forward equation is
missing; obviously, this does not change the final result of the proof of [6, Proposition 4.4.5] since
this square is injected in the computations that come next.



3 Master Equation for Mean Field Games with Common Noise 237

In fact, we can proceed in a similar way with the backward equation in (3.28).
Forming the difference (yit − y

′,i
t )0≤t≤T , applying Itô’s formula to the square of it

and then taking expectation, we get

E
(|yit − y

′,i
t |2

) ≤ C

(∑

j∈E
E
(|qjT − q

′,j
T |2)+ E(|g̃iT − g̃

′,i
T |2

)

+ E
∫ T

t

[∑

j∈E

(
|qjs − q

′,j
s |2 + |yjs − y

′,j
s |2

)
+ |f̃ i

s − f̃ ′,is |2
]
ds

)

.

By Gronwall’s lemma, we get

sup
0≤t≤T

∑

i∈E
E
(|yit − y

′,i
t |2

)

≤ CE
∑

i∈E

(

sup
t∈[0,T ]

|qit − q
′,i
t |2 + |g̃iT − g̃

′,i
T |2 +

∫ T

0
|f̃ it − f̃

′,i
t |2dt

)

.

Conclusion By collecting the last inequality in the first step and the first and third
inequalities in the second step and then by using Young’s inequality 2ab ≤ εa2 +
ε−1b2, for ε > 0 small enough, we derive the announced bound.

�	

3.5.1.3 Existence and Uniqueness

By arguing as in Lemma 3.2, we can increase step by step the value of λ in (3.28)
and then prove existence and uniqueness for any value of λ ∈ [0, 1]. We end up with
the following statement:

Proposition 3.5 Consider an initial condition p ∈ Sd for the forward component
p at time 0 in (3.19), namely p0 = p, and call (p,u) the corresponding solution.
Then, for any initial condition q ∈ Rd , for any bounded F-progressively measurable
processes b̃ = ((b̃it )i∈E)0≤t≤T and f̃ = ((f̃ it )i∈E)0≤t≤T , with b̃ satisfying (3.27),
and any bounded FT -measurable random variable g̃ = (g̃iT )i∈E , the system

D(1, b̃, f̃ , g̃) with q0 = q as initial condition at time 0 is uniquely solvable among
the class of triples (q, y, z) satisfying the integrability constraint (3.29).

Remark 3.15 Implicitly, the initial condition of the common noise is understood
as 0 in the above proposition, namely W0 = 0. In fact, this choice is for
convenience only, as it permits to make the statement consistent with the framework
of Proposition 3.2.

However, it must be clear for the reader that, on the model of Definition 3.7,
we could allow the system (3.19) to be initialized at any time t ∈ [0, T ] and,
accordingly, the common noise to start from any x ∈ R (which means that ηW
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has to be replaced by (x + η(Ws − Wt))t≤s≤T . Obviously, both Lemma 3.4 and
Proposition 3.5 remain true in this more general setting.

3.5.2 Differentiability in p

We now come back to our original objective, which is to prove that the master field
is continuously differentiable with respect to p. In this respect, the reader could
object that, so far, we have not made clear the connection between the linearized
system (3.26) and the original MFG system (3.19). This is precisely the purpose of
the following statement to clarify the latter fact:

Proposition 3.6 For given x ∈ R and p,p′ ∈ Sd and for any ε ∈ [0, 1], denote
by (p(ε),u(ε)) the solution to (3.19) whenever the forward component therein starts
from (1 − ε)p + εp′ at time 0 and the common noise ηW starts from x (also at
time 0). Merely writing (p,u) for (p(0),u(0)), call then (q, y) the solution to the
linearized system (3.26) when q therein starts from p′ − p at time 0 and again the
common noise ηW starts from x (also at time 0). Then,

lim
ε↘0
E

[

sup
t∈[0,T ]

(∣
∣
p
(ε)
t − pt

ε
− qt

∣
∣2 + ∣∣u

(ε)
t − ut

ε
− yt

∣
∣2
)]

= 0.

Remark 3.16 We could also address the asymptotic behaviour of the martingale
representation term v(ε) (with obvious notation) as ε tends to 0. We would have

lim
ε↘0
E

∫ T

0

∣
∣v

(ε)
t − vt

ε
− zt

∣
∣2dt = 0,

but there would not be any specific interest for us to do so.

Proof First Step We introduce the following useful notation:

q
(ε)
t = p

(ε)
t − pt

ε
, y

(ε)
t = u

(ε)
t − ut

ε
, t ∈ [0, T ],

for ε ∈ [0, 1]. The key point in the proof is to write (q(ε), y(ε)) = (qεt , y
ε
t )0≤t≤T

as a solution to D(1, b̃(ε), f̃ (ε)
, g̃(ε)) for well chosen b̃

(ε)
, f̃

(ε)
and g̃(ε). To this

end, it is worth recalling that, in (3.19), we can remove the positive parts in the
forward equation and restrict H in the backward equation to the domain where it is
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quadratic. It is plain to see that a natural choice for b̃
(ε)

, f̃
(ε)

and g̃(ε) is

b̃
(ε),i
t = ε

[ ∑

j∈E:j�i
q
(ε),j
t

(
y
(ε),j
t − y

(ε),i
t

)− q
(ε),i
t

∑

j∈E:j�i

(
y
(ε),i
t − y

(ε),j
t

)]
,

f̃
(ε),i
t = − 1

2ε
∑

j∈E

∣
∣y
(ε),i
t − y

(ε),j
t

∣
∣2

+
∑

j∈E
q
(ε),j
t

∫ 1

0

( δf

δm

(
t, ς it , μ

ςt
[
σp

(ε)
t + (1 − σ)pt

])− δf

δm

(
t, ς it , μ

ςt [pt ]
))(

ς
j
t

)
dσ,

g̃
(ε),i
T

=
∑

j∈E
q
(ε),j
T

∫ 1

0

( δg

δm

(
ςiT , μ

ςT
[
σp

(ε)
T + (1 − σ)pT

])− δg

δm

(
ςiT , μ

ςT [pT ]
))(

ς
j
T

)
dσ,

where ςt is here equal to (ςi + x + ηWt )i∈E . Since δf/δm and δg/δm are Lipschitz
continuous with respect to dBL, we deduce that there exists a constant C, only
depending on the details of the assumption in Sect. 3.2.3, such that

∑

i∈E

(∣
∣b̃
(ε),i
t

∣
∣+ ∣∣f̃ (ε),i

t

∣
∣
)
≤ Cε

∑

i∈E

(∣
∣y
(ε),i
t

∣
∣2 + ∣∣q(ε),it

∣
∣2
)
, t ∈ [0, T ],

∑

i∈E

∣
∣g̃
(ε),i
T

∣
∣ ≤ Cε

∑

i∈E

∣
∣q

(ε),i
T

∣
∣2.

Observing that q(ε)0 = q0 and recalling that (q, y) is here a solution of D(1, 0, 0, 0)
(for the prescribed choice of initial conditions), we deduce from Lemma 3.4 that

∑

i∈E
E

[
sup

t∈[0,T ]

(∣
∣q

(ε),i
t − qit

∣
∣2 + ∣∣y(ε),it − yit

∣
∣2
)]

≤ Cε2
∑

i∈E
E

[
∣
∣q

(ε),i
T

∣
∣4 +

∫ T

0

(∣
∣q

(ε),i
t

∣
∣4 + ∣∣y(ε),it

∣
∣4
)
dt

]

.

Second Step The difficulty here is to sort out the fourth moment in the above
inequality. Obviously, we could think of making use of Lemma 3.3, but the problem
is precisely that the estimate therein is just for the second moment.

In order to bypass this difficulty, we use the definition of the master field and
its regularity properties. Indeed, we know that p solves the following ODE (with
random coefficients):

ṗit =
∑

j∈E
p
j
t

(
γ + (Uj − Ui)

(
t, x + ηWt, pt

))

+

−
∑

j∈E
pit

(
γ + (Ui − Uj )

(
t, x + ηWt , pt

))

+,
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for t ∈ [0, T ] and i ∈ E, with p0 = p as initial condition and similarly for p(ε) but
with p

(ε)
0 = (1 − ε)p + εp′ as initial condition. Since we know from Proposition

3.3 that U is Lipschitz continuous in the last argument, we get

sup
t∈[0,T ]

∑

i∈E
|p(ε),it − pit | ≤ Cε

∑

i∈E
|p′i − pi |, (3.32)

with probability 1, for a new value of the constant C, which is allowed to vary from
line to line below. In turn, by composing by U(t, x + ηWt, ·) on both sides and by
using Proposition 3.3, we obtain, P almost-surely,

sup
t∈[0,T ]

∑

i∈E
|u(ε),it − uit | ≤ Cε

∑

i∈E
|p′i − pi |. (3.33)

Hence, by dividing by ε in both (3.32) and (3.33), we finally have

P

(

sup
t∈[0,T ]

∑

i∈E

(
|q(ε),it | + |y(ε),it |

)
≤ C

)

= 1. (3.34)

Inserting the above bound in the conclusion of the first step, we complete the proof.
�	

The following corollary is a key step in the proof of Theorem 3.2.

Corollary 3.2 The master U field is continuously differentiable in p (when p is
regarded as an element of the (d − 1)-dimensional simplex) and the (d − 1)-
dimensional gradient is Lipschitz continuous with respect to (x, p) and 1/2-Hölder
continuous in time.

Proof First Step We first prove differentiability of U at t = 0, the more general
case t ∈ [0, T ] being treated in the same way. To do so, it is worth pointing out, see
Remark 3.11, that yi0 in (3.26) is almost surely constant. Therefore, we deduce from
Proposition 3.6 that, for any i ∈ E,

lim
ε→0

Ui(o, x, (1− ε)p + εp′)− Ui(o, x, p)

ε
= yi0, (3.35)

which proves the existence of a directional derivative. The fact that the direction is
given by p′−p, the coordinates of which have a sum equal to 0 (namely

∑
i∈E(p′i−

pi) = 0), is consistent with the fact the above derivative has to be regarded in
dimension d−1. Also, it is worth emphasizing that yi0 in the right-hand side depends
on x, p and the difference p′ − p, but, since (3.26) is a linear, it should be in fact
a linear function of p′ − p. To make it clear, we may call (q[j, x, p], y[j, x, p]),
for j ∈ E \ {d}, the solution to (3.26) when qk0 = δk,j − δk,d (with δk,j being the
standard Kronecker symbol) and when, as before, the forward component in (3.19)
starts from p and the common noise starts from x at time 0. Then, observing that
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p′ − p =∑j∈E:j�d (p′j − pj )q0[j, x, p], (3.35) may be written in the form

lim
ε↘0

Ui(o, x, (1 − ε)p + εp′)− Ui(o, x, p)

ε
=

∑

j∈E:j�d

(
p′j − pj

)
yi0[j, x, p].

(3.36)

Second Step We now prove that the mapping (x, p) �→ y0[j, x, p] =
(yi0[j, x, p])i∈E is Lipschitz continuous in (x, p) ∈ R × Sd for any j ∈ E \ {d}.
In order to proceed, we consider two points (x, p) and (x ′, p′) in R × Sd . We
then denote by (p,u) and (p′,u′) the two solutions of (3.19), the first one being
initialized from p at time 0 and the common noise therein being initialized from x,
and the second one being initialized from p′ at time 0 and the common noise therein
being initialized from x ′. With (p,u) (and with the same initial condition x for the
common noise), we associate (q, y) the solution to (3.26) with qk0 = δk,j − δk,d , for
k ∈ E. Similarly, we call (q ′, y ′) the solution to (3.26) that is associated to (p′,u′)
(and with the initial condition x ′ for the common noise and with q ′,k0 = δk,j − δk,d ,
for k ∈ E). We then make use of Lemma 3.4 to compare the two of them, it being
understood that we write both systems with respect to (p,u) and then with some

remainders (b̃, f̃ , g̃) and (b̃
′
, f̃

′
, g̃′). Obviously, it is plain to see that (b̃, f̃ , g̃) is

in fact equal to (0, 0, 0). As for (b̃
′
, f̃

′
, g̃′), we here follow the same argument as in

the proof of Proposition 3.6 and then choose it as

b̃
′,i
t =

∑

k∈E:k�i
q
′,k
t

(
δukt − δuit

)− q
′,i
t

∑

k∈E:k�i

(
δuit − δukt

)

+
∑

k∈E:k�i
δp

′,k
t

(
y
′,k
t − y

′,i
t

)− δp
′,i
t

∑

k∈E:k�i

(
y
′,i
t − y

′,k
t

)
,

f̃
′,i
t = −

∑

k∈E:k�i

(
δuit − δukt

)(
yit − ykt

)

+
∑

k∈E
q
′,k
t

δf

δm

(
t, ςi + x ′ + ηWt ,

∑

�∈E
p
′,�
t δς�+x ′+ηWt

)(
ςk + x ′ + ηWt

)

−
∑

k∈E
q
′,k
t

δf

δm

(
t, ςi + x + ηWt ,

∑

�∈E
p�t δς�+x+ηWt

)(
ςk + x + ηWt

)
,

g̃
′,i
T =

∑

k∈E
q
′,k
T

δg

δm

(
ςi + x ′ + ηWT ,

∑

�∈E
p
′,�
T δς�+x ′+ηWT

)(
ςk + x ′ + ηWT

)

−
∑

k∈E
q
′,k
T

δg

δm

(
ςi + x + ηWT ,

∑

�∈E
p�T δς�+x+ηWT

)(
ςk + x + ηWT

)
,
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where

δuit = u
′,i
t − uit , δpit = p

′,i
t − pit .

We deduce that, for any i ∈ E and t ∈ [0, T ],

|b̃it | + |f̃ it | ≤
∑

�∈E

(|q ′,�t | + |y ′,�t |)
∑

k∈E

(|x ′k − xk| + |δpkt | + |δukt |
)
,

|g̃iT | ≤
∑

�∈E
|q ′,�T |

∑

k∈E

(|x ′k − xk| + |δpkT |
)
.

Following the proofs of (3.32) and (3.33), we have

sup
t∈[0,T ]

∑

i∈E

(|δp′,it | + |δu′,it |
) ≤ C

(|x − x ′| + |p − p′|),

with probability 1, for a constant C only depending on the details of the assumption
in Sect. 3.2.3. Also, returning to (3.34) and letting ε tend to 0 therein (with p′ − p

in the statement of Proposition 3.6 being given by q0, which is licit since the sum
of the latter is 0), it clear that q ′ and y′ are bounded by C, for a possibly new
value of C. By invoking Lemma 3.4, this shows that, for j ∈ E \ {d}, the mapping
(x, p) �→ y0[j, x, p] is Lipschitz continuous in (x, p) ∈ R× Sd .

Returning to the conclusion of the first step, we deduce that U is differentiable
with respect to p in Sd in the sense explained in Sect. 3.4.3 and that ∂pU(0, ·, ·)
(with the same meaning as therein) is Lipschitz continuous in (x, p). To make it
clear, if, for some i ∈ E, j ∈ E \ {d}, p ∈ Sd such that pj , pd ∈ (0, 1) and
- ∈ R such that |-| ≤ min(pj , pd), we choose p′j − pj = -, p′d − pd = −-
and p′k − pk = 0 if k ∈ E \ {j, d}, we get in (3.36), using the same notation as in
Sect. 3.4.3,

lim
ε→0

1

ε

Û i(t, x, (p1, · · · , pj + ε, · · · , pd−1))− Û i (t, x, (p1, · · · , pd−1))

ε
= yi0[j, x, p].

This permits to identify yi0[j, x, p] with ∂qj Û
i(0, x, (p1, · · · , pd−1)) whenever

pj , pd ∈ (0, 1). By continuity of yi0[j, x, p] with respect to p, we deduce that

Û i(0, x, ·) is differentiable on the interior of the (d−1)-dimensional simplex; since
the derivative is Lipschitz continuous up to the boundary of the simplex, differentia-
bility holds on the entire (d − 1)-dimensional simplex (obviously, differentiability
at the boundary holds true along admissible directions only).

We let the reader verify that we can proceed similarly at any time t ∈ [0, T ] and
then check that the Lipschitz constant of ∂pU(t, ·, ·) is uniform in time.

Third Step It then remains to show that ∂pU is 1/2-Hölder continuous in time. The
proof is very much in the spirit of Corollary 3.1. Indeed, as we explained in the
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second step, we have deterministic bounds for q and p when qk0 = δk,j − δk,d for
any k ∈ E and for some j ∈ E \ {d}. Then, it is easy to see that, for any i ∈ E,

∣
∣E
[
yih[j, x, p]

]− yi0[j, x, p]
∣
∣2 ≤ Ch,

for a constant C only depending on the various parameters in the assumption in
Sect. 3.2.3. Now, by arguing as in the construction of the master field, yih[j, x, p]
must be equal to ∂qj Û

i (h, x + ηWh, (p
1
h, · · · , pd−1

h )), where p is the forward
component of (3.19) when starting from p at time 0 (and when the common noise
starts from x). By the second step, we then have, for any i ∈ E,

∣
∣E
[
yih[j, x, p]

]− ∂qj Û
i
(
h, x, (p1, · · · , pd−1)

)∣
∣2 ≤ Ch,

which proves that

∣
∣∂qj Û

i
(
h, x, (p1, · · · , pd−1)

)− ∂qj Û
i
(
0, x, (p1, · · · , pd−1)

)∣
∣ ≤ Ch1/2.

The argument holds in fact at any starting time t ∈ [0, T ] instead of 0, which suffices
to conclude.

�	

3.5.3 Heat Kernel and Differentiability in x

It now remains to address the regularity in x. Whilst we could perform a similar
analysis as before by means of the characteristics, we feel better to use here the
finite-dimensional character of the PDE. In comparison with the approach used
in [6], this permits to simplify the argument. In this respect, the key point is the
following proposition:

Proposition 3.7 Denote by %(t, x) = (2πη2t)−1/2 exp(−x2/(2η2t)) the η-
rescaled Gaussian kernel. Then, for any (t, x, p) ∈ [0, T ] × R× Sd ,

Ui(t, x, p)

=
∫

R

%(T − t, x − y)g(ςi + y, p)dy +
∫ T

t

∫

R

#i(s, y, p)%(s − t, x − y)dsdy,

(3.37)
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where

#i(t, x, p) =
∑

j∈E
H
(
(Uj − Ui)(t, x, p)

)+ f
(
t, ςi + x,μς+x [p])

+
∑

j,k∈E
pk
(
γ + (Uk − Uj)(t, x, p)

)

+
(
∂pj U

i − ∂pkU
i
)
(t, x, p).

Proof First Step By combining the representation formula (3.24) with the back-
ward equation in (3.19) and by initializing the latter from (t, x, p) as in the
statement, we get, for any time S ∈ [t, T ],

Ui(t, x, p) = E
[

Ui
(
S, x + η(WS −Wt), pS

)

+
∑

j∈E

∫ S

t

H
(
(Uj − Ui)

(
s, x + η(Ws −Wt), ps

))
ds

+
∫ S

t

f
(
s, ςi + x + η(Ws −Wt), μ

ς+x+η(Ws−Wt )[ps]
)
ds

]

,

(3.38)

where p = (ps)t≤s≤T here solves the forward equation in (3.19) when the latter is
initialized from (t, x, p). In words, p solves the SDE

ṗis =
∑

j∈E
p
j
s

(
γ + (Uj − Ui)

(
s, x + η(Ws −Wt), ps

))

+

−
∑

j∈E
pis

(
γ + (Ui − Uj )

(
s, x + η(Ws −Wt), ps

))

+.

We now expand the first term in the right-hand side in (3.38), but with respect to
the last component only, by taking benefit of the regularity result established in the
previous section. We get

Ui(t, x, p) = E
[

Ui
(
S, x + η(WS −Wt), p

)+
∑

j∈E

∫ S

t

#i
0

(
S, x + η(WS −Wt), ps

)
ds

+
∑

j∈E

∫ S

t

H
(
(Uj − Ui)

(
s, x + η(Ws −Wt), ps

))
ds

+
∫ S

t

f
(
s, ςi + x + η(Ws −Wt), μ

ς+x+η(Ws−Wt)[ps]
)
ds

]

,
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where, for simplicity, we have let

#i
0(t, x, p) =

∑

j,k∈E
pk
(
γ + (Uk − Uj)(t, x, p)

)

+
(
∂pj U

i − ∂pkU
i
)
(t, x, p).

We then observe that, there exists a constant C ≥ 0, only depending on the various
parameters in the assumption in Sect. 3.2.3, such that all the three terms below

E

[∣
∣#i

0
(
S, x + η(WS −Wt ), ps

)−#i
0
(
s, x + η(Ws −Wt ), p

)∣
∣
]
,

E

[∣
∣
∣H
(
(Uj − Ui)

(
s, x + η(Ws −Wt ), ps

))−H
(
(Uj − Ui)

(
s, x + η(Ws −Wt), p

))∣∣
∣

]
,

E

[∣
∣
∣f
(
s, ςi + x + η(Ws −Wt ), μ

ς+x+η(Ws−Wt )[ps]
)

− f
(
s, ςi + x + η(Ws−Wt ), μ

ς+x+η(Ws−Wt )[p]
)∣
∣
∣

]
,

are bounded by C(S − t)1/2, from which we obtain that

Ui(t, x, p) = E
[

Ui
(
S, x + η(WS −Wt), p

) +
∫ S

t

#i
(
s, x + η(Ws −Wt), p

)
ds

]

+O
(
(S − t)3/2), (3.39)

where |O((S − t)3/2)| ≤ C(S − t)3/2.

Second Step We now choose a subdivision π = {t = t0 < t1 < · · · < tN = T }
of the interval [t, T ] with |π | as step size. We then consider a given (t, x, p) as in
the first step, but we are to apply (3.39) for several possible values of the first two
arguments in Ui .

To make it clear, for any k ∈ {0, · · · , N − 1}, we apply (3.39) to Ui(tk, x +
η(Wtk −Wt), p) on the interval [tk, tk+1]. Obviously, this requires some care since
the starting point is then random. We may get a similar conclusion to (3.39) by
replacing the expectation in the right-hand side by a conditional expectation given
Ft . Another way is to take an additional expectation in left-hand side, namely

E
[
Ui
(
tk, x + η(Wtk −Wt), p

)]

= E
[

Ui
(
tk+1, x + η(Wtk+1 −Wt), p

) +
∫ tk+1

tk

#i
(
s, x + η(Ws −Wt), p

)
ds

]

+O
(|π |3/2).

By summing over k and then by letting |π | tend to 0, we complete the proof.
�	
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Corollary 3.3 The function U is twice differentiable in x and once in t and the
functions ∂tU and ∂2

xU are continuous on [0, T ] × R× Sd .

Proof We recall that, for any i ∈ E, the functions [0, T ] × R  (t, x) �→
#i(t, x, p), R  x �→ g(ςi + x, p), R  x �→ ∂xg(ςi + x, p), R  x �→ ∂2

x g(ςi +
x, p) are bounded and Hölder continuous (for some Hölder exponent which we do
not specify here), uniformly in p ∈ Sd . It is then a standard fact from Schauder’s
theory for the heat equation that the left-hand side in (3.37) is once differentiable in
t and twice in space and that the derivatives [0, T ] × R  (t, x) �→ ∂xU

i(t, x, p),
[0, T ] × R  (t, x) �→ ∂2

xU
i(t, x, p) and [0, T ] × R  (t, x) �→ ∂tU

i(t, x, p) are
bounded and Hölder continuous (for some Hölder exponent), uniformly in p.

Take now a sequence (pn)n∈N with values in Sd converging to some p ∈ Sd .
Then, the functions ([0, T ] × R  (t, x) �→ ∂xU

i(t, x, pn))n∈N, ([0, T ] × R  
(t, x) �→ ∂2

xU
i(t, x, pn))n∈N and ([0, T ] × R  (t, x) �→ ∂tU

i(t, x, pn))n∈N are
uniformly bounded and uniformly continuous. Up to a subsequence, they have a
limit, but passing to the limit in (3.37) (replacing p by pn therein, taking the first
and second-order derivatives in x, removing the singularity of the second-order
derivative of % by using the regularity of #i and then letting n tend to ∞), we
deduce there should be only one possible limit for each of the two first sequences
and that those limits should be the functions [0, T ]×R  (t, x) �→ ∂xU

i(t, x, p) and
[0, T ]×R  (t, x) �→ ∂2

xU
i(t, x, p). In turn, noticing from the representation (3.37)

that Eq. (3.25) must hold true, we get that ([0, T ]×R  (t, x) �→ ∂tU
i(t, x, pn))n∈N

converges to [0, T ] × R  (t, x) �→ ∂tU
i(t, x, p). We deduce that ∂xU , ∂2

xU and
∂tU are continuous on [0, T ] × R× Sd . �	
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Chapter 4
Mean Field Games and Applications:
Numerical Aspects

Yves Achdou and Mathieu Laurière

Abstract The theory of mean field games aims at studying deterministic or
stochastic differential games (Nash equilibria) as the number of agents tends to
infinity. Since very few mean field games have explicit or semi-explicit solutions,
numerical simulations play a crucial role in obtaining quantitative information from
this class of models. They may lead to systems of evolutive partial differential
equations coupling a backward Bellman equation and a forward Fokker–Planck
equation. In the present survey, we focus on such systems. The forward-backward
structure is an important feature of this system, which makes it necessary to
design unusual strategies for mathematical analysis and numerical approximation.
In this survey, several aspects of a finite difference method used to approximate
the previously mentioned system of PDEs are discussed, including convergence,
variational aspects and algorithms for solving the resulting systems of nonlinear
equations. Finally, we discuss in details two applications of mean field games to the
study of crowd motion and to macroeconomics, a comparison with mean field type
control, and present numerical simulations.

4.1 Introduction

The theory of mean field games (MFGs for short), has been introduced in the
pioneering works of J.-M. Lasry and P.-L. Lions [1–3], and aims at studying
deterministic or stochastic differential games (Nash equilibria) as the number of
agents tends to infinity. It supposes that the rational agents are indistinguishable
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and individually have a negligible influence on the game, and that each individual
strategy is influenced by some averages of quantities depending on the states (or
the controls) of the other agents. The applications of MFGs are numerous, from
economics to the study of crowd motion. On the other hand, very few MFG
problems have explicit or semi-explicit solutions. Therefore, numerical simulations
of MFGs play a crucial role in obtaining quantitative information from this class of
models.

The paper is organized as follows: in Sect. 4.2, we discuss finite difference
schemes for the system of forward-backward PDEs. In Sect. 4.3, we focus on the
case when the latter system can be interpreted as the system of optimality of a
convex control problem driven by a linear PDE (in this case, the terminology
variational MFG is often used), and put the stress on primal-dual optimization
methods that may be used in this case. Section 4.4 is devoted to multigrid
preconditioners that prove to be very important in particular as ingredients of the
latter primal-dual methods for stochastic variational MFGs (when the volatility
is positive). In Sect. 4.5, we address numerical algorithms that may be used also
for non-variational MFGs. Sections 4.6, 4.7, and 4.8 are devoted to examples of
applications of mean field games and their numerical simulations. Successively, we
consider a model for a pedestrian flow with two populations, a comparison between
mean field games and mean field control still for a model of pedestrian flow, and
applications of MFGs to the field of macroeconomics.

In what follows, we suppose for simplicity that the state space is the d-
dimensional torus Td , and we fix a finite time horizon T > 0. The periodic setting
makes it possible to avoid the discussion on non periodic boundary conditions which
always bring additional difficulties. The results stated below may be generalized to
other boundary conditions, but this would lead us too far. Yet, Sects. 4.6, 4.7, and 4.8
below, which are devoted to some applications of MFGs and to numerical simula-
tions, deal with realistic boundary conditions. In particular, boundary conditions
linked to state constraints play a key role in Sect. 4.8.

We will use the notation QT = [0, T ] × Td , and 〈·, ·〉 for the inner product of
two vectors (of compatible sizes).

Let f : Td × R × Rd → R, (x,m, γ ) �→ f (x,m, γ ) and φ : Td × R →
R, (x,m) �→ φ(x,m) be respectively a running cost and a terminal cost, on which
assumptions will be made later on. Let ν > 0 be a constant parameter linked to the
volatility. Let b : Td × R× Rd → Rd , (x,m, γ ) �→ b(x,m, γ ) be a drift function.

We consider the following MFG: find a flow of probability densities m̂ : QT →
R and a feedback control v̂ : QT → Rd satisfying the following two conditions:

1. v̂ minimizes

Jm̂ : v �→ Jm̂(v) = E
[∫ T

0
f (Xv

t , m̂(t,X
v
t ), v(t,X

v
t ))dt + φ(Xv

T , m̂(T ,X
v
T ))

]



4 Mean Field Games and Applications: Numerical Aspects 251

under the constraint that the process Xv = (Xv
t )t≥0 solves the stochastic

differential equation (SDE)

dXv
t = b(Xv

t , m̂(t,X
v
t ), v(t,X

v
t ))dt +

√
2νdWt, t ≥ 0, (4.1)

and Xv
0 has distribution with density m0;

2. For all t ∈ [0, T ], m̂(t, ·) is the law of Xv̂
t .

It is useful to note that for a given feedback control v, the density mv
t of the law

of Xv
t following (4.1) solves the Kolmogorov–Fokker–Planck (KFP) equation:

⎧
⎨

⎩

∂mv

∂t
(t, x) − ν$mv(t, x) + div

(
mv(t, ·)b(·, m̂(t, ·), v(t, ·))) (x) = 0, in (0, T ] × Td ,

mv(0, x) = m0(x), in Td .
(4.2)

Let H : Td × R × Rd  (x,m, p) �→ H(x,m, p) ∈ R be the Hamiltonian of
the control problem faced by an infinitesimal agent in the first point above, which is
defined by

H : Td × R× Rd  (x,m, p) �→ H(x,m, p) = max
γ∈Rd

−L(x,m, γ, p) ∈ R,

where L is the Lagrangian, defined by

L : Td×R×Rd×Rd  (x, m, γ, p) �→ L(x,m, γ,p) = f (x,m, γ )+〈b(x, m, γ ), p〉 ∈ R.

In the sequel, we will assume that the running cost f and the drift b are such that H
is well-defined, C1 with respect to (x, p), and strictly convex with respect to p.

From standard optimal control theory, one can characterize the best strategy
through the value function u of the above optimal control problem for a typical
agent, which satisfies a Hamilton–Jacobi–Bellman (HJB) equation. Together with
the equilibrium condition on the distribution, we obtain that the equilibrium best
response v̂ is characterized by

v̂(t, x) = arg max
a∈Rd

{− f (x,m(t, x), a)− 〈b(x,m(t, x), a),∇u(t, x)〉},

where (u,m) solves the following forward-backward PDE system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ∂u

∂t
(t, x)− ν$u(t, x) +H(x,m(t, x),∇u(t, x)) = 0, in [0, T )× Td ,

∂m

∂t
(t, x)− ν$m(t, x) − div

(
m(t, ·)Hp(·, m(t, ·),∇u(t, ·))

)
(x) = 0, in (0, T ] × Td ,

u(T , x) = φ(x,m(T , x)), m(0, x) = m0(x), in Td .

(4.3a)

(4.3b)

(4.3c)
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Example 1 (f Depends Separately on γ and m) Consider the case where the
drift is the control, i.e. b(x,m, γ ) = γ , and the running cost is of the form
f (x,m, γ ) = L0(x, γ ) + f0(x,m) where L0(x, ·) : Rd  γ �→ L0(x, γ ) ∈ R is
strictly convex and such that lim|γ |→∞ minx∈Td

L0(x,γ )|γ | = +∞. We set H0(x, p) =
maxγ∈Rd 〈−p, γ 〉 − L0(x, γ ), which is convex with respect to p. Then

H(x,m, p) = max
γ∈Rd

{−L0(x, γ )− 〈γ, p〉} − f0(x,m) = H0(x, p)− f0(x,m).

In particular, if H0(x, ·) = H ∗
0 (x, ·) = 1

2 | · |2, then the maximizer in the above
expression is γ̂ (p) = −p, the Hamiltonian reads H(x,m, p) = 1

2 |p|2 − f0(x,m)

and the equilibrium best response is v̂(t, x) = −∇u(t, x) where (u,m) solves the
PDE system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− ∂u

∂t
(t, x)− ν$u(t, x)+ 1

2
|∇u(t, x)|2 = f0(x,m(t, x)), in [0, T )× Td,

∂m

∂t
(t, x)− ν$m(t, x)− div (m(t, ·)∇u(t, ·)) (x) = 0, in (0, T ] × Td,

u(T , x) = φ(x,m(T , x)), m(0, x) = m0(x), in Td .

Remark 1 The setting presented above is somewhat restrictive and does not cover
the case when the Hamiltonian depends non locally on m. Nevertheless, the latter
situation makes a lot of sense from the modeling viewpoint. The case when the
Hamiltonian depends in a separate manner on ∇u and m and when the coupling
cost continuously maps probability measures on Td to smooth functions plays an
important role in the theory of mean field games, because it permits to obtain the
most elementary existence results of strong solutions of the system of PDEs, see [3].
Concerning the numerical aspects, all what follows may be easily adapted to the
latter case, see the numerical simulations at the end of Sect. 4.2. Similarly, the case
when the volatility

√
2ν is a function of the state variable x can also be dealt with

by finite difference schemes.

Remark 2 Deterministic mean field games (i.e. for ν = 0) are also quite meaning-
ful. One may also consider volatilities as functions of the state variable that may
vanish. When the Hamiltonian depends separately on ∇u and m and the coupling
cost is a smoothing map, see Remark 1, the Hamilton–Jacobi equation (respectively
the Fokker–Planck equation) should be understood in viscosity sense (respectively
in the sense of distributions), see the notes of P. Cardaliaguet [4]. When the coupling
costs depends locally on m, then under some assumptions on the growth at infinity
of the coupling cost as a function of m, it is possible to propose a notion of weak
solutions to the system of PDEs, see [3, 5, 6]. The numerical schemes discussed
below can also be applied to these situations, even if the convergence results in
the available literature are obtained under the hypothesis that ν is bounded from
below by a positive constant. The results and methods presented in Sect. 4.3 below
for variational MFGs, i.e. when the system of PDEs can be seen as the optimality
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conditions of an optimal control problem driven by a PDE, hold if ν vanishes. In
Sect. 4.8 below, we present some applications and numerical simulations for which
the viscosity is zero.

Remark 3 The study of the so-called master equation plays a key role in the theory
of MFGs, see [7, 8]: the mean field game is described by a single first or second
order time dependent partial differential equation in the set of probability measures,
thus in an infinite dimensional space in general. When the state space is finite (with
say N admissible states), the distribution of states is a linear combination of N
Dirac masses, and the master equation is posed in RN ; numerical simulations are
then possible, at least if N is not too large. We will not discuss this aspect in the
present notes.

4.2 Finite Difference Schemes

In this section, we present a finite-difference scheme first introduced in [9]. We
consider the special case described in Example 1, with H(x,m, p) = H0(x, p) −
f0(x,m), although similar methods have been proposed, applied and at least
partially analyzed in situations when the Hamiltonian does not depend separately
on m and p, for example models addressing congestion, see for example [10].

To alleviate the notation, we present the scheme in the one-dimensional setting,
i.e. d = 1 and the domain is T.

Remark 4 Although we focus on the time dependent problem, a similar scheme has
also been studied for the ergodic MFG system, see [9].

Discretization
LetNT andNh be two positive integers. We consider (NT +1) and (Nh+1) points in
time and space respectively. Let $t = T/NT and h = 1/Nh, and tn = n×$t, xi =
i × h for (n, i) ∈ {0, . . . , NT } × {0, . . . , Nh}.

We approximate u and m respectively by vectors U and M ∈ R(NT+1)×(Nh+1),
that is, u(tn, xi) ≈ Un

i and m(tn, xi) ≈ Mn
i for each (n, i) ∈ {0, . . . , NT } ×

{0, . . . , Nh}. We use a superscript and a subscript respectively for the time and space
indices. Since we consider periodic boundary conditions, we slightly abuse notation
and for W ∈ RNh+1, we identify WNh+1 with W1, and W−1 with WNh−1.

We introduce the finite difference operators

(DtW)n = 1

$t
(Wn+1 −Wn), n ∈ {0, . . . NT − 1}, W ∈ RNT+1,

(DW)i = 1

h
(Wi+1 −Wi), i ∈ {0, . . . Nh}, W ∈ RNh+1,

($hW)i = − 1

h2

(
2Wi −Wi+1 −Wi−1

)
, i ∈ {0, . . . Nh}, W ∈ RNh+1,

[∇hW ]i =
(
(DW)i , (DW)i−1

)'
, i ∈ {0, . . . Nh}, W ∈ RNh+1.
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Discrete Hamiltonian
Let H̃ : T × R × R → R, (x, p1, p2) �→ H̃ (x, p1, p2) be a discrete Hamiltonian,
assumed to satisfy the following properties:

1. (H̃1) Monotonicity: for every x ∈ T, H̃ is nonincreasing in p1 and nondecreasing
in p2.

2. (H̃2) Consistency: for every x ∈ T, p ∈ R, H̃ (x, p, p) = H0(x, p).
3. (H̃3) Differentiability: for every x ∈ T, H̃ is of class C1 in p1, p2
4. (H̃4) Convexity: for every x ∈ T, (p1, p2) �→ H̃ (x, p1, p2) is convex.

Example 2 For instance, if H0(x, p) = 1
2 |p|2, then one can take H̃ (x, p1, p2) =

1
2 |PK(p1, p2)|2 where PK denotes the projection on K = R− × R+.

Remark 5 Similarly, for d-dimensional problems, the discrete Hamiltonians that we
consider are real valued functions defined on Td × (R2)d .

Discrete HJB Equation
We consider the following discrete version of the HJB equation (4.3a):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (DtUi )
n − ν($hU

n)i + H̃ (xi , [∇hUn]i ) = f0(xi ,M
n+1
i

) , i ∈ {0, . . . ,Nh} , n ∈ {0, . . . ,NT − 1} ,

Un0 = Un
Nh

, n ∈ {0, . . . ,NT − 1} ,

U
NT
i

= φ(M
NT
i

) , i ∈ {0, . . . ,Nh} .

(4.4a)

(4.4b)

(4.4c)

Note that it is an implicit scheme since the equation is backward in time.

Discrete KFP Equation
To define an appropriate discretization of the KFP equation (4.3b), we consider the
weak form. For a smooth test function w ∈ C∞([0, T ] × T), it involves, among
other terms, the expression

−
∫

T

∂x
(
Hp(x, ∂xu(t, x))m(t, x)

)
w(t, x)dx =

∫

T

Hp(x, ∂xu(t, x))m(t, x) ∂xw(t, x)dx ,

(4.5)

where we used an integration by parts and the periodic boundary conditions. In view
of what precedes, it is quite natural to propose the following discrete version of the
right hand side of (4.5):

h

Nh−1∑

i=0

Mn+1
i

(

H̃p1(xi, [∇hUn]i )
Wn
i+1 −Wn

i

h
+ H̃p2(xi, [∇hUn]i )

Wn
i −Wn

i−1

h

)

,

and performing a discrete integration by parts, we obtain the discrete counterpart of

the left hand side of (4.5) as follows: −h
Nh−1∑

i=0

Ti (Un,Mn+1)Wn
i , where Ti is the
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following discrete transport operator:

Ti (U,M) = 1

h

(
MiH̃p1(xi, [∇hU ]i )−Mi−1H̃p1(xi−1, [∇hU ]i−1)

+Mi+1H̃p2(xi+1, [∇hU ]i+1)−MiH̃p2(xi, [∇hU ]i )
)
.

Then, for the discrete version of (4.3b), we consider

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(DtMi)
n − ν($hM

n+1)i − Ti (Un,Mn+1) = 0 , i ∈ {0, . . . , Nh}, n ∈ {0, . . . , NT − 1} ,

Mn
0 =Mn

Nh
, n ∈ {1, . . . , NT } ,

M0
i = m̄0(xi ) , i ∈ {0, . . . , Nh} ,

(4.6a)

(4.6b)

(4.6c)

where, for example,

m̄0(xi) =
∫

|x−xi |≤h/2
m0(x)dx. (4.7)

Here again, the scheme is implicit since the equation is forward in time.

Remark 6 (Structure of the Discrete System) The finite difference system (4.4)–
(4.6) preserves the structure of the PDE system (4.3) in the following sense: The
operator M �→ −ν($hM)i − Ti (U,M) is the adjoint of the linearization of the
operator U �→ −ν($hU)i + H̃ (xi, [∇hU ]i ) since

∑

i

Ti (U,M)Wi = −
∑

i

Mi

〈
H̃p(xi, [∇hU ]i ), [∇hW ]i

〉
.

Convergence Results
Existence and uniqueness for the discrete system has been proved in [9, Theorems 6
and 7]. The monotonicity properties ensure that the grid functionM is nonnegative.
By construction of T, the scheme preserves the total mass h

∑Nh−1
i=0 Mn

i . Note that
there is no restriction on the time step since the scheme is implicit. Thus, this method
may be used for long horizons and the scheme can be very naturally adapted to
ergodic MFGs, see [9].

Furthermore, convergence results are available. A first type of convergence
theorems see [9, 11, 12] (in particular [9, Theorem 8] for finite horizon problems)
make the assumption that the MFG system of PDEs has a unique classical solution
and strong versions of Lasry-Lions monotonicity assumptions, see [1–3]. Under
such assumptions, the solution to the discrete system converges towards the classical
solution as the grid parameters tend to zero.

In what follows, we discuss a second type of results that were obtained in [13],
namely, the convergence of the solution of the discrete problem to weak solutions
of the system of forward-backward PDEs.
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Theorem 1 ([13, Theorem 3.1]) We make the following assumptions:

• ν > 0;
• φ(x,m) = uT (x) where uT is a continuous function on Td ;
• m0 is a nonnegative function in L∞(Td ) such that

∫

Td
m0(x)dx = 1;

• f0 is a continuous function on Td × R+, which is bounded from below;
• The Hamiltonian (x, p) �→ H0(x, p) is assumed to be continuous, convex and

C1 regular w.r.t. p;
• The discrete Hamiltonian H̃ satisfies (H̃1)–(H̃4) and the following further

assumption:

(H̃5) growth conditions: there exist positive constants c1, c2, c3, c4 such that

〈H̃q(x, q), q〉 − H̃ (x, q) ≥ c1|H̃q(x, q)|2 − c2, (4.8)

|H̃q(x, q)| ≤ c3|q| + c4. (4.9)

Let (Un), (Mn) be a solution of the discrete system (4.6a)–(4.6c) (more precisely of
its d-dimensional counterpart). Let uh,$t ,mh,$t be the piecewise constant functions
which take the valuesUn+1

I andMn
I , respectively, in (tn, tn+1)×ωI , where ωI is the

d-dimensional cube centered at xI of side h and I is any multi-index in {0, . . . , Nh−
1}d .

Under the assumptions above, there exists a subsequence of h and $t (not
relabeled) and functions ũ, m̃, which belong to Lα(0, T ;W 1,α(Td)) for any α ∈
[1, d+2

d+1 ), such that uh,$t → ũ and mh,$t → m̃ in Lβ(QT ) for all β ∈ [1, d+2
d
),

and (ũ, m̃) is a weak solution to the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ∂ũ

∂t
(t, x)− ν$ũ(t, x)+H0 (x,∇ũ(t, x)) = f0(x, m̃(t, x)), in [0, T ) × Td ,

∂m̃

∂t
(t, x) − ν$m̃(t, x) − div

(
m̃(t, ·)DpH0∇ũ(t, ·)

)
(x) = 0, in (0, T ] × Td ,

ũ(T , x) = uT (x), m̃(0, x) = m0(x), in Td ,

(4.10a)

(4.10b)

(4.10c)

in the following sense:

(i) H0(·,∇ũ) ∈ L1(QT ), m̃f0(·, m̃) ∈ L1(QT ), m̃[DpH0(·,∇ũ) · ∇ũ −
H0(·,∇ũ)] ∈ L1(QT )

(ii) (ũ, m̃) satisfies (4.10a)–(4.10b) in the sense of distributions
(iii) ũ, m̃ ∈ C0([0, T ];L1(Td)) and ũ|t=T = uT , m̃|t=0 = m0 .

Remark 7

• Theorem 1 does not suppose the existence of a (weak) solution to (4.10a)–
(4.10c), nor Lasry-Lions monotonicity assumptions, see [1–3]. It can thus be
seen as an alternative proof of existence of weak solutions of (4.10a)–(4.10c).

• The assumption made on the coupling cost f0 is very general.
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• If uniqueness holds for the weak solutions of (4.10a)–(4.10c), which is the case if
Lasry-Lions monotonicity assumptions hold, then the whole sequence of discrete
solutions converges.

• It would not be difficult to generalize Theorem 1 to the case when the terminal
condition at T is of the form (4.3c).

• Similarly, non-local coupling cost of the typeF [m](x) could be addressed, where
for instance, F maps bounded measures on Td to functions in C0(Td).

An Example Illustrating the Robustness of the Scheme in the Deterministic
Limit
To illustrate the robustness of the finite difference scheme described above, let us
consider the following ergodic problem

⎧
⎨

⎩

ρ − ν$u+H(x,∇u) = F [m](x), in T2,

−ν$m− div

(

m
∂H

∂p
(x,∇u)

)

= 0, in T2,

where the ergodic constant ρ ∈ R is also an unknown of the problem, and

ν = 0.001, H(x, p) = sin(2πx2)+ sin(2πx1)+ cos(4πx1)+ |p|3/2,

F [m](x) = ((1 −$)−1(1 −$)−1m
)
(x).

Note the very small value of the viscosity parameter ν. Since the coupling term is
a smoothing nonlocal operator, nothing prevents m from becoming singular in the
deterministic limit when ν → 0. In Fig. 4.1, we display the solution. We see that the
value function tends to be singular (only Lipschitz continuous) and that the density
of the distribution of states tends to be the sum of two Dirac masses located at the
minima of the value function. The monotonicity of the scheme has made it possible
to capture the singularities of the solution.

"u.gp" "m.gp"

Fig. 4.1 Left: the value function. Right: the distribution of states
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4.3 Variational Aspects of Some MFGs and Numerical
Applications

In this section, we restrict our attention to the setting described in the Example 1.
We assume that L0 is smooth, strictly convex in the variable γ and such that there
exists positive constants c and C, and r > 1 such that

− c + 1

C
|γ |r ≤ L0(x, γ ) ≤ c + C|γ |r , ∀x ∈ Td, γ ∈ Rd , (4.11)

and that H0 is smooth and has a superlinear growth in the gradient variable. We also
assume that the function f0 is smooth and non-decreasing with respect to m. We
make the same assumption on φ.

4.3.1 An Optimal Control Problem Driven by a PDE

Let us consider the functions

F : Td × R→ R, (x,m) �→ F(x,m) =
⎧
⎨

⎩

∫ m

0
f0(x, s)ds, if m ≥ 0,

+∞, if m < 0,
(4.12)

and

+ : Td × R→ R, (x,m) �→ +(x,m) =
⎧
⎨

⎩

∫ m

0
φ(x, s)ds, if m ≥ 0,

+∞, if m < 0.
(4.13)

Let us also introduce

L : Td × R× Rd → R ∪ {+∞}, (x,m,w) �→ L(x,m,w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mL0

(
x,

w

m

)
, if m > 0,

0, if m = 0, and w = 0,

+∞, otherwise.
(4.14)

Note that since f0(x, ·) is non-decreasing,F(x, ·) is convex and l.s.c. with respect to
m. Likewise, since φ(x, ·) is non-decreasing, then +(x, ·) is convex and l.s.c. with
respect to m. Moreover, it can be checked that the assumptions made on L0 imply
that L(x, ·, ·) is convex and l.s.c. with respect to (m,w).
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We now consider the following minimization problem expressed in a formal way:
Minimize, when it is possible, J defined by

(m,w) �→ J(m,w) =
∫ T

0

∫

Td
[L(x,m(t, x), w(t, x))+ F(x, m(t, x))] dxdt +

∫

Td
+(x,m(T , x))dx

(4.15)

on pairs (m,w) such that m ≥ 0 and

⎧
⎨

⎩

∂m

∂t
− ν$m+ divxw = 0, in (0, T ] × Td,

m|t=0 = m0,

(4.16)

holds in the sense of distributions.
Note that, thanks to our assumptions and to the structure in terms of the variables

(m,w), this problem is the minimization of a convex functional under a linear
constraint. The key insight is that the optimality conditions of this minimization
problem yield a weak version of the MFG system of PDEs (4.3).

Remark 8 If (m,w) ∈ L1(QT ) × L1(QT ;Rd) is such that
∫ T

0

∫

Td
L(x,m(t, x),

w(t, x))dxdt < +∞, then it is possible to write that w = mγ with
∫ T

0

∫

Td
m(t, x)|γ (t, x)|rdxdt < +∞ thanks to the assumptions on L0. From

this piece of information and (4.16), we deduce that t �→ m(t) for t < 0 is Hölder
continuous a.e. for the weak∗ topology of P(Td ), see [5, Lemma 3.1]. This gives a
meaning to

∫

Td
+(x,m(T , x))dx in the case when +(x,m(T , x)) = uT (x)m(T , x)

for a smooth function uT (x). Therefore, at least in this case, the minimization
problem is defined rigorously in L1(QT )× L1(QT ;Rd).
Remark 9 Although we consider here the case of a non-degenerate diffusion,
similar problems have been considered in the first-order case or with degenerate
diffusion in [5, 14].

Remark 10 Note that, in general, the system of forward-backward PDEs cannot be
seen as the optimality conditions of a minimization problem. This is never the case
if the Hamiltonian does not depend separately on m and ∇u.

4.3.2 Discrete Version of the PDE Driven Optimal Control
Problem

We turn our attention to a discrete version of the minimization problem introduced
above. To alleviate notation, we restrict our attention to the one dimensional case,
i.e., d = 1. Let us introduce the following spaces, respectively for the discrete
counterpart of m,w, and u:

M = R(NT+1)×Nh, W = (R2)NT×Nh, U = RNT×Nh .
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Note that at each space-time grid point, we will have two variables for the value of
w, which will be useful to define an upwind scheme.

We consider a discrete Hamiltonian H̃ satisfying the assumptions (H̃1)–(H̃4),
and introduce its convex conjugate w.r.t. the p variable:

H̃ ∗ : Td × (R2)d → R ∪ {+∞}, (x, γ ) �→ H̃ ∗(x, γ ) = max
p∈R2

{
〈γ, p〉 − H̃ (x, p)

}
.

(4.17)

Example 3 If H̃ (x, p1, p2) = 1
2 |PK(p1, p2)|2 with K = R− × R+, then

H̃ ∗(x, γ1, γ2) =
{

1
2 |γ |2, if γ ∈ K,

+∞, otherwise.

A discrete counterpart 0 to the functional J introduced in (4.15) can be defined as

0 :M×W→ R, (M,W) �→
NT∑

n=1

Nh−1
∑

i=0

[
L̃(xi ,M

n
i ,W

n−1
i

)+ F(xi ,M
n
i )
]
+ 1

$t

Nh−1
∑

i=0

+(xi ,M
NT
i

),

(4.18)

where L̃ is a discrete version of L introduced in (4.14) defined as

L̃ : T× R× R2 → R ∪ {+∞}, (x, m,w) �→ L̃(x, m,w) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mH̃∗ (x,−w

m

)
, if m > 0 and w ∈ K,

0, if m = 0, and w = 0,

+∞, otherwise.
(4.19)

Furthermore, a discrete version of the linear constraint (4.16) can be written as

1(M,W) = (0U, M̄0) (4.20)

where 0U ∈ U is the vector with 0 on all coordinates, M̄0 = (m̄0(x0), . . . , m̄0

(xNh−1)) ∈ RNh , see (4.7) for the definition of m̄0, and

1 :M×W→ U× RNh, (M,W) �→ 1(M,W) = ('(M,W),M0),

(4.21)

with '(M,W) = AM + BW , A and B being discrete versions of respectively the
heat operator and the divergence operator, defined as follows:

A :M→ U, (AM)ni =
Mn+1
i

−Mn
i

$t
− ν($hM

n+1)i , 0 ≤ n < NT , 0 ≤ i < Nh,

(4.22)
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and

B :W → U, (BW)ni =
Wn
i+1,2 −Wn

i,2

h
+ Wn

i,1 −Wn
i−1,1

h
0 ≤ n ≤ NT , 0 ≤ i < Nh.

(4.23)

We define the transposed operators A∗ : U →M and B∗ : U →W, i.e. such that

〈M,A∗U〉 = 〈AM,U〉, 〈W,B∗U〉 = 〈BW,U〉.

This yields

(A∗U)ni =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−U0
i

$t
, n = 0, 0 ≤ i < Nh,

Un−1
i − Un

i

$t
− ν($hU

n−1)i, 0 < n < NT − 1, 0 ≤ i < Nh,

U
NT−1
i

$t
− ν($hU

NT−1)i, n = NT − 1, 0 ≤ i < Nh,

(4.24)

and

(B∗U)ni = −[∇hUn]i = −
(
Un
i+1 − Un

i

h
,
Un
i − Un

i−1

h

)

, 0 ≤ n < NT , 0 ≤ i < Nh.

(4.25)

This implies that

Im(B) = Ker(B∗)⊥ =
{

U ∈ U : ∀ 0 ≤ n < NT ,
∑

i

Un
i = 0

}

. (4.26)

The discrete counterpart of the variational problem (4.15)–(4.16) is therefore

inf
(M,W)∈M×W,

1(M,W)=(0U,M̄0)

0(M,W). (4.27)

The following results provide a constraint qualification property and the exis-
tence of a minimizer. See e.g. [15, Theorem 3.1] for more details on a special case
(see also [16, Section 6] and [17, Theorem 2.1] for similar results respectively in the
context of the planning problem and in the context of an ergodic MFG).
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Proposition 1 (Constraint Qualification) There exists a pair (M̃, W̃ ) ∈ M×W
such that

0(M̃, W̃ ) <∞, and 1(M̃, W̃ ) = (0U, M̄0).

Theorem 2 There exists a minimizer (M,W) ∈ M × W of (4.27). Moreover, if
ν > 0,Mn

i > 0 for all i ∈ {0, . . . , Nh} and all n > 0.

4.3.3 Recovery of the Finite Difference Scheme by Convex
Duality

We will now show that the finite difference scheme introduced in the previous
section corresponds to the optimality conditions of the discrete minimization
problem (4.27) introduced above. To this end, we first rewrite the discrete problem
by embedding the constraint in the cost functional as follows:

min
(M,W)∈M×W

{0(M,W)+ χ0(1(M,W))} , (4.28)

where χ0 : U × RNh → R ∪ {+∞} is the characteristic function (in the convex
analytical sense) of the singleton {(0U, M̄0)}, i.e., χ0(U, ϕ) vanishes if (U, ϕ) =
(0U, M̄0) and otherwise it takes the value +∞.

By Fenchel-Rockafellar duality theorem, see [18], we obtain that

min
(M,W)∈M×W

{0(M,W)+ χ0(1(M,W))} = − min
(U,ϕ)∈U×RNh

{
0∗(1∗(U, ϕ))+ χ∗0 (−U,−ϕ)

}
,

(4.29)

where 1∗ is the adjoint operator of 1, and χ∗0 and 0∗ are the convex conjugates of
χ0 and 0 respectively, to wit,

〈
1∗(U, ϕ), (M,W)

〉
= 〈A∗U,M〉 + 〈B∗U,W 〉 +

Nh−1∑

i=0

ϕiM
0
i (4.30)

and

χ∗0 (−U,−ϕ) = −
Nh−1∑

i=0

M̄0
i ϕi . (4.31)
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Therefore

0∗(1∗ (U, ϕ))

= max
(M,W)∈M×W

(
〈A∗U,M〉 + 〈B∗U,W 〉 +

Nh−1∑

i=0

ϕiM
0
i −

NT∑

n=1

Nh−1∑

i=0

[
L̃(xi ,M

n
i ,W

n−1
i )+ F(xi ,M

n
i )
]
− 1

$t

Nh−1∑

i=0

+(xi ,M
NT

i )
)

We use the fact that

max
W∈W

⎛

⎝〈B∗U,W 〉 −
NT∑

n=1

Nh−1∑

i=0

L̃(xi ,M
n
i ,W

n−1
i )

⎞

⎠ =

⎧
⎪⎪⎨

⎪⎪⎩

NT∑

n=1

Nh−1∑

i=0

Mn
i H̃

(
xi ,−(B∗U)n−1

i

)
, if Mn ≥ 0 for all n ≥ 1,

−∞, otherwise.

We deduce the following:

0∗(1∗(U, ϕ))

= max
M∈M

(
〈A∗U,M〉 −

Nh−1∑

i=0

ϕiM
0
i +

NT∑

n=1

Nh−1∑

i=0

[
Mn

i H̃
(
xi ,−(B∗U)n−1

i

)
− F(xi ,M

n
i )
]
− 1

$t

Nh−1∑

i=0

+(xi,M
NT

i
)
)

=
NT −1∑

n=1

Nh−1∑

i=0

F ∗(xi , (A∗U)ni + H̃
(
xi , [∇hUn−1]i

))
+

Nh−1∑

i=0

(

F + 1

$t
+

)∗ (
xi , (A

∗U)NT

i + H̃
(
xi , [∇hUNT −1]i

))

+ max
M∈M

M0
i

(
(A∗U)0i + ϕi

)
,

(4.32)

where for every x ∈ T, F ∗(x, ·) and
(
F + 1

$t
+
)∗
(x, ·) are the convex conjugate of

F(x, ·) and F(x, ·) + 1
$t
+(x, ·) respectively. Note that from the definition of F , it

has not been not necessary to impose the constraint Mn ≥ 0 for all n ≥ 1 in (4.32).

Note also that the last term in (4.32) can be written maxM∈MM0
i

(
− 1

$t
U0
i + ϕi

)
.

Using (4.32), in the dual minimization problem given in the right hand side of (4.29),
we see that the minimization with respect to ϕ yields that M0

i = M̃0
i . Therefore, the

the dual problem can be rewritten as

− min
U∈U

{∑

i

(

F + 1

$t
+

)∗
⎛

⎝xi ,
U
NT −1
i

$t
− ν($hU

NT −1)i + H̃ (xi , [∇hUNT −1]i )
⎞

⎠

+
NT −2∑

n=0

∑

i

F ∗
(

xi ,
Un
i
− Un+1

i

$t
− ν($hU

n)i + H̃ (xi , [∇hUn]i )
)

− 1

$t

∑

i

M̄0
i U

0
i

}

,

(4.33)

which is the discrete version of

−min
u

{∫ T

0

∫

T

F ∗(x,−∂t u(t, x) − ν$u(t, x) +H0(x,∇u(t, x))
)
dxdt +

∫

T

+∗(x, u(T , x))dx −
∫

T

m0(x)u(0, x)dx
}

.

The arguments above lead to the following:
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Theorem 3 The solutions (M,W) ∈ M × W and U ∈ U of the primal/dual
problems are such that:

• if ν > 0,Mn
i > 0 for all 0 ≤ i ≤ Nh − 1 and 0 < n ≤ NT ;

• Wn
i = Mn+1

i PK([∇hUn]i ) for all 0 ≤ i ≤ Nh − 1 and 0 ≤ n < NT ;
• (U,M) satisfies the discrete MFG system (4.4)–(4.6) obtained by the finite

difference scheme.

Furthermore, the solution is unique if f0 and φ are strictly increasing.

Proof The proof follows naturally for the arguments given above. See e.g. [11]
in the case of planning problems, [15, Theorem 3.1], or [17, Theorem 2.1] in the
stationary case. �	

In the rest of this section, we describe two numerical methods to solve the
discrete optimization problem.

4.3.4 Alternating Direction Method of Multipliers

Here we describe the Alternating Direction Method of Multipliers (ADMM) based
on an Augmented Lagrangian approach for the dual problem. The interested reader
is referred to e.g. the monograph [19] by Fortin and Glowinski and the references
therein for more details. This idea was made popular by Benamou and Brenier for
optimal transport, see [20], and first used in the context of MFGs by Benamou and
Carlier in [21]; see also [22] for an application to second order MFG using multilevel
preconditioners and [23] for an application to mean field type control.

The dual problem (4.33) can be rewritten as

min
U∈U

{
#('∗U)+ %(U)

}

where

'∗ : U→M×W, '∗U = (A∗U,B∗U),

#(M,W) =
∑

i

(

F + 1

$t
+

)∗ (
xi ,M

NT

i + H̃ (xi ,W
NT−1
i )

)
+

NT−2∑

n=0

∑

i

F ∗ (xi ,Mn
i + H̃ (xi ,W

n−1
i )

)

and

%(U) = − 1

$t

∑

i

M̄0
i U

0
i .

Note that # is convex and l.s.c., and % is linear. Moreover, # depend in a separate
manner on the pairs (Mn

i ,W
n−1
i )n,i , and a similar observation can be made for '.
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We can artificially introduce an extra variable Q ∈ M ×W playing the role of
'∗U . Introducing a Lagrange multiplier σ = (M,W) for the constraint Q = '∗U ,
we obtain the following equivalent problem:

min
U∈U,Q∈M×W

sup
σ∈M×W

L(U,Q, σ), (4.34)

where the Lagrangian L : U×M×W×M×W→ R is defined as

L(U,Q, σ) = #(Q)+ %(U) − 〈σ,Q−'∗U〉.

Given a parameter r > 0, it is convenient to introduce an equivalent problem
involving the augmented LagrangianLr obtained by adding to L a quadratic penalty
term in order to obtain strong convexity:

Lr (U,Q, σ) = L(U,Q, σ)+ r

2
‖Q−'∗U‖2

2.

Since the saddle-points of L and Lr coincide, equivalently to (4.34), we will seek
to solve

min
U∈U,Q∈M×W

sup
σ∈M×W

Lr (U,Q, σ).

In this context, the Alternating Direction Method of Multipliers (see e.g. the method
called ALG2 in [19]) is described in Algorithm 1 below. We use ∂% and ∂# to
denote the subgradients of % and # respectively.

Algorithm 1 Alternating Direction Method of Multipliers
function ADMM(U,Q, σ )

Initialize (U(0),Q(0), σ (0))← (U,Q, σ)

for k = 0, . . . , K − 1 do

Find U(k+1) ∈ arg minU∈ULr (U,Q
(k), σ (k)); the first order optimality condition

yields:

−r'
(
'∗U(k+1) −Q(k)

)
−'σ(k) ∈ ∂%

(
U(k+1)

)
.

Find Q(k+1) ∈ arg min
Q∈M×WLr

(
U(k+1),Q, σ (k+1)

)
; the first order optimality

condition yields:

σ (k) + r
(
'∗U(k+1) −Q(k+1)

)
∈ ∂#

(
Q(k+1)

)
.

Perform a gradient step: σ (k+1) = σ (k) + r
(
'∗U(k+1) −Q(k+1)

)
.

return (U(K),Q(K), σ (K))
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Remark 11 (Preservation of the Sign) An important consequence of this method
is that, thanks to the second and third steps above, the non-negativity of the
discrete approximations to the density is preserved. Indeed, σ (k+1) ∈ ∂#

(
Q(k+1)

)

and #
(
Q(k+1)

)
< +∞, hence #∗ (σ (k+1)

) = 〈σ (k+1),Q(k+1)〉 − #
(
Q(k+1)

)
,

which yields #∗ (σ (k+1)
)
< +∞. In particular, denoting (M(k+1),W(k+1)) =

σ (k+1) ∈ M × W, this implies that we have (M(k+1))ni ≥ 0 for every 0 ≤ i <

Nh, 0 ≤ n ≤ NT , and (W(k+1))ni ∈ K vanishes if (M(k+1))n+1
i = 0 for every

0 ≤ i < Nh, 0 ≤ n < NT .

Let us provide more details on the numerical solution of the first and second
steps in the above method. For the first step, since % only acts on U0, the first order
optimality condition amounts to solving the discrete version of a boundary value
problem on (0, T )×T or more generally (0, T )×Td when the state is in dimension
d , with a degenerate fourth order linear elliptic operator (of order four in the state
variable if ν is positive and two in time), and with a Dirichlet condition at t = T

and a Neumann like condition at t = 0. If d > 1, it is generally not possible to
use direct solvers; instead, one has to use iterative methods such as the conjugate
gradient algorithm. An important difficulty is that, since the equation is fourth order
with respect to the state variable if ν > 0, the condition number grows like h−4,
and a careful preconditionning is mandatory (we will come back to this point in
the next section). In the deterministic case, i.e. if ν = 0, the first step consists of
solving the discrete version of a second order d + 1 dimensional elliptic equation
and preconditioning is also useful for reducing the computational complexity.

As for the second step, the first order optimality condition amounts to solving,
at each space-time grid node (i, n), a non-linear minimization problem in R1+2d of
the form

min
a∈R,b∈R2

F ∗(xi, a + H̃ (xi, b))− 〈σ, (a, b)〉 + r

2
‖(a, b)− (ā, b̄)‖2

2,

where (a, b) plays the role of (Mn
i ,W

n−1
i ), whereas (ā, b̄) plays the role of ('∗U)ni .

Note that the quadratic term, which comes from the fact that we consider the
augmented Lagrangian Lr instead of the original Lagrangian L, provides coercivity
and strict convexity. The two main difficulties in this step are the following. First,
in general, F ∗ does not admit an explicit formula and is itself obtained by solving
a maximization problem. Second, for general F and H̃ , computing the minimizer
explicitly may be impossible. In the latter case, Newton iterations may be used, see
e.g. [23].

The following result ensures convergence of the numerical method; see [24,
Theorem 8] for more details.

Theorem 4 (Eckstein and Bertsekas [24]) Assume that r > 0, that ''∗ is
symmetric and positive definite and that there exists a solution to the primal-dual
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extremality. Then the sequence (U(k),Q(k), σ (k)) converges as k →∞ and

lim
k→+∞(U

(k),Q(k), σ (k)) = (Ū ,'∗Ū , σ̄ ),

where Ū solves the dual problem and σ̄ solves the primal problem.

4.3.5 Chambolle and Pock’s Algorithm

We now consider a primal-dual algorithm introduced by Chambolle and Pock
in [25]. The application to stationary MFGs was first investigated by Briceño-Arias,
Kalise and Silva in [17]; see also [15] for an extension to the dynamic setting.

Introducing the notation 2 = χ0 ◦ 1 : M×W  (M,W) �→ χ0(1(M,W)) ∈
R ∪ {+∞}, the primal problem (4.28) can be written as

min
σ∈M×W

{0(σ)+2(σ)} ,

and the dual problem can be written as

min
Q∈M×W

{
0∗(−Q)+2∗(Q)

}
.

For r, s > 0, the first order optimality conditions at σ̂ and Q̂ can be equivalently
written as

⎧
⎪⎪⎨

⎪⎪⎩

−Q̂ ∈ ∂0(σ̂ )

σ̂ ∈ ∂2∗(Q̂)
⇔

⎧
⎪⎪⎨

⎪⎪⎩

σ̂ − rQ̂ ∈ σ̂ + r∂0(σ̂ )

Q̂+ sσ̂ ∈ Q̂ + s∂2∗(Q̂)
⇔

⎧
⎪⎪⎨

⎪⎪⎩

σ̂ ∈ arg minσ
{
0(σ)+ 1

2r ‖σ − (σ̂ − rQ̂)‖2
}

Q̂ ∈ arg minQ

{
2∗(Q)+ 1

2s ‖Q− (Q̂+ sσ̂ )‖2
}
.

Given some parameters r > 0, s > 0, τ ∈ [0, 1], the Chambolle-Pock method is
described in Algorithm 2. The algorithm has been proved to converge if rs < 1.

Note that the first step is similar to the first step in the ADMM method described
in Sect. 4.3.4 and amounts to solving a linear fourth order PDE. The second step is
easier than in ADMM because 0 admits an explicit formula.

4.4 Multigrid Preconditioners

4.4.1 General Considerations on Multigrid Methods

Before explaining how multigrid methods can be applied in the context of numerical
solutions for MFG, let us recall the main ideas. We refer to [26] for an introduction
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Algorithm 2 Chambolle-Pock Method
function CHAMBOLLEPOCK(σ, σ̃ ,Q)

Initialize (σ (0), σ̃ (0),Q(0))← (σ, σ̃ ,Q)

for k = 0, . . . , K − 1 do

Find

Q(k+1) ∈ arg min
Q

{

2∗(Q)+ 1

2s
‖Q− (Q(k) + sσ̃ (k))‖2

}

(4.35)

Find

σ (k+1) ∈ arg min
σ

{

0(σ)+ 1

2r
‖σ − (σ (k) − rQ(k+1))‖2

}

(4.36)

Set

σ̃ (k+1) = σ (k+1) + τ
(
σ (k+1) − σ (k)

)
.

return (σ (K), σ̃ (K),Q(K))

to multigrid methods and more details. In order to solve a linear system which
corresponds to the discretisation of an equation on a given grid, we can use coarser
grids in order to get approximate solutions. Intuitively, a multigrid scheme should be
efficient because solving the system on a coarser grid is computationally easier and
the solution on this coarser grid should provide a good approximation of the solution
on the original grid. Indeed, using a coarser grid should help capturing quickly the
low frequency modes (i.e., the modes corresponding to the smallest eigenvalues of
the differential operator from which the linear system comes), which takes more
iterations on a finer grid.

When the linear system stems from a well behaved second order elliptic operator
for example, one can find simple iterative methods (e.g. Jacobi or Gauss–Seidel
algorithms) such that a few iterations of these methods are enough to damp
the higher frequency components of the residual, i.e. to make the error smooth.
Typically, these iterative methods have bad convergence properties, but they have
good smoothing properties and are hence called smoothers. The produced residual
is smooth on the grid under consideration (i.e., it has small fast Fourier components
on the given grid), so it is well represented on the next coarser grid. This suggests to
transfer the residual to the next coarser grid (in doing so, half of the low frequency
components on the finer grid become high frequency components on the coarser
one, so they will be damped by the smoother on the coarser grid). These principles
are the basis for a recursive algorithm. Note that in such an algorithm, using a direct
method for solving systems of linear equations is required only on the coarsest grid,
which contains much fewer nodes than the initial grid. On the grids of intermediate
sizes, one only needs to perform matrix multiplications.



4 Mean Field Games and Applications: Numerical Aspects 269

To be more precise, let us consider a sequence of nested grids (G�)�=0,...,L, i.e.
such that G� ⊆ G�+1, � = 0, . . . , L−1. Denote the corresponding number of points
by Ñ� = Ñ2d�, � = 0, . . . , L, where Ñ is a positive integer representing the number
of points in the coarsest grid. Assume that the linear system to be solved is

MLxL = bL (4.37)

where the unknown is xL ∈ RÑL and with bL ∈ RÑL , ML ∈ RÑL×ÑL . In order to
perform intergrid communications, we introduce

• Prolongation operators, which represent a grid function on the next finer grid:
P�+1
� : G� → G�+1.

• Restriction operators, which interpolate a grid function on the next coarser grid:
R�−1
� : G� → G�−1.

Using these operators, we can define on each grid G� a matrix corresponding to an
approximate version of the linear system to be solved:

M� = R�
�+1M�+1P

�+1
� .

Then, in order to solve M�x� = b�, the method is decomposed into three main
steps. First, a pre-smoothing step is performed: starting from an initial guess x̃(0)� , a
few smoothing iterations, say η1, i.e. Jacobi or Gauss–Seidel iterations for example.
This produces an estimate x̃� = x̃

(η1)
� . Second, an (approximate) solution x�−1 on

the next coarser grid is computed for the equation M�−1x�−1 = R�−1
� (b� −M�x̃�).

This is performed either by calling recursively the same function, or by means of a
direct solver (using Gaussian elimination) if it is on the coarsest grid. Third, a post-
smoothing step is performed: x̃� + P�

�−1x�−1 is used as an initial guess, from which
η2 iterations of the smoother are applied, for the problem with right-hand side b�.
To understand the rationale behind this method, it is important to note that

R�−1
� M�

(
x̃� + P�

�−1x�−1

)
= R�−1

� M�x̃� +M�−1x�−1

≈ R�−1
� M�x̃� + R�−1

� (b� −M�x̃�)

= R�−1
� b�.

In words, the initial guess (namely, x̃� + P�
�−1x�−1) for the third step above is a

good candidate for a solution to the equationM�x� = b�, at least on the coarser grid
G�−1.

Algorithm 3 provides a pseudo-code for the method described above. Here,
S�(x, b, η) can be implemented by performing η steps of Gauss–Seidel algorithm
starting with x and with b as right-hand side. The method as presented uses once the
multigrid scheme on the coarser grid, which is called a V-cycle. Other approaches
are possible, such as W-cycle (in which the multigrid scheme is called twice) or
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F-cycle (which is intermediate between the V-cycle and the W-cycle). See e.g. [26]
for more details.

Algorithm 3 Multigrid Method for MLxL = bL with V-cycle

function MULTIGRIDSOLVER(�, x̃(0)� , b�)
if � = 0 then

x0 ← M−1
0 b0 // exact solver at level 0

else
x̃� ← S�

(
x̃
(0)
� , b�, η1

)
// pre-smoothing with η1 steps of smoothing

x̃
(0)
�−1 ← 0

x�−1 ← MultigridSolver
(
�− 1, x̃(0)�−1, R

�−1
� (b� −M�x̃�)

)
// coarser grid

correction
x� ← S�

(
x� + P �

�−1x�−1, b�, η2

)
// post-smoothing with η2 steps of smoothing

return x�

4.4.2 Applications in the Context of Mean Field Games

Multigrid methods can be used for a linearized version of the MFG PDE system,
see [27], or as a key ingredient of the ADDM or the primal-dual algorithms,
see [17, 22]. In the latter case, it corresponds to taking ML = ''∗ in (4.37).
A straightforward application of the multigrid scheme described above leads to
coarsening the space-time grid which does not distinguish between the space and
time dimensions. This is called full coarsening. However, in the context of second-
order MFG, this approach leads to poor performance. See e.g. [27]. We reproduce
here one table contained in [27]: the multigrid method is used as a preconditioner
in a preconditioned BiCGStab iterative method, see [28], in order to solve a
linearized version of the MFG system of PDEs. In Table 4.1, we display the number
of iterations of the preconditioned BiCGStab method: we see that the number of
iterations grows significantly as the number of nodes is increased.

The reason for this poor behavior can be explained by the fact that the usual
smoothers actually make the error smooth in the hyperplanes t = n$t , i.e. with
respect to the variable x, but not with respect to the variable t . Indeed, the unknowns

Table 4.1 Full coarsening multigrid preconditioner with 4 levels and several values of the
viscosity ν: average number of preconditioned BiCGStab iterations to decrease the residual
by a factor 0.01

ν\ grid 32 × 32 × 32 64 × 64 × 64 128 × 128 × 64

0.6 40 92 Fail

0.36 24 61 Fail

0.2 21 45 Fail
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are more strongly coupled in the hyperplanes {(t, x) : t = n$t}, n = 0, . . . , NT

(fourth order operator w.r.t. x) than on the lines {(t, x) : x = i h}, i = 0, . . . , Nh

(second order operator w.r.t. t). This leads to the idea of using semi-coarsening:
the hierarchy of nested grids should be obtained by coarsening the grids in the x
directions only, but not in the t direction. We refer the reader to [26] for semi-
coarsening multigrid methods in the context of anisotropic operators.

In the context of the primal-dual method discussed in Sect. 4.3.5, the first
step (4.35) amounts to solving a discrete version of the PDE with operator −∂2

t t +
ν2$2 − $ where $2 denotes the bi-Laplacian operator. In other words, one needs
to solve a system of the form (4.37) where ML corresponds to the discretization of
this operator on the (finest) grid under consideration. One can thus use one cycle of
the multigrid algorithm, which is a linear operator as a function of the residual on
the finest grid, as a preconditioner for solving (4.37) with the BiCGStab method.

We now give details on the restriction and prolongation operators when d = 1.
Using the notations introduced above, we consider that Nh is of the form Nh =
n02L for some integer n0. Remember that $t = T/NT and h = 1/Nh since we
are using the one-dimensional torus as the spatial domain. The number of points
on the coarsest grid G0 is Ñ = (NT + 1) × n0 while on the �-th grid G�, it is
Ñ� = (NT + 1)× n0 × 2�.

For the restriction operator R�−1
� : G� → G�−1, following [27], we can use the

second-order full-weighting operator defined by

(R�−1
� x)ni :=

1

4

(
2Xn

2i +Xn
2i+1 +Xn

2i−1

)
,

for n = 0, . . . , NT , i = 1, . . . , 2�−1n0.
As for the prolongation operator P�+1

� : G� → G�+1, one can take the standard
linear interpolation which is second order accurate. An important aspect in the
analysis of multigrid methods is that the sum of the accuracy orders of the two
intergrid transfer operators should be not smaller than the order of the partial
differential operator. Here, both are 4. In this case, multigrid theory states that
convergence holds even with a single smoothing step, i.e. it suffices to take η1, η2
such that η1 + η2 = 1.

4.4.3 Numerical Illustration

In this paragraph, we borrow a numerical example from [15]. We assume that d = 2
and that given q > 1, with conjugate exponent denoted by q ′ = q/(q − 1), the
Hamiltonian H0 : T2 × R2 → R has the form

H0(x, p) = 1

q ′
|p|q ′ , ∀ x ∈ T2, p ∈ R2.
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In this case the function L defined in (4.14) takes the form

L(x,m,w) =

⎧
⎪⎪⎨

⎪⎪⎩

|w|q
qmq−1 , if m > 0,

0, if (m,w) = (0, 0),

+∞, otherwise.

Furthermore, recalling the notation (4.12)–(4.13), we consider φ ≡ 0 and

f (x,m) = m2 −H(x), H(x) = sin(2πx2)+ sin(2πx1)+ cos(2πx1),

for all x = (x1, x2) ∈ T2 andm ∈ R+. This means that in the underlying differential
game, a typical agent aims to get closer to the maxima of H̄ and, at the same time,
she is adverse to crowded regions (because of the presence of the m2 term in f ).

Figure 4.2 shows the evolution of the mass at four different time steps. Starting
from a constant initial density, the mass converges to a steady state, and then, when
t gets close to the final time T , the mass is influenced by the final cost and converges
to a final state. This behavior is referred to as turnpike phenomenon in the literature

Fig. 4.2 Evolution of the density m obtained with the multi-grid preconditioner for ν = 0.5, T =
1, NT = 200 and Nh = 128. At t = 0.12 the solution is close to the solution of the associated
stationary MFG. (a) t = 0. (b) t = 0.1. (c) t = 0.5. (d) t = 1
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Fig. 4.3 Distance to the stationary solution at each time t ∈ [0, T ], for ν = 0.5, T = 2, NT =
200 and Nh = 128. The distance is computed using the �2 norm as explained in the text. The
turnpike phenomenon is observed as for a long time frame the time-dependent mass approaches
the solution of the stationary MFG

on optimal control [29]. Theoretical results on the long time behavior of MFGs can
be found in [30, 31]. It is illustrated by Fig. 4.3, which displays as a function of time t
the distance of the mass at time t to the stationary state computed as in [17]. In other
words, denoting by M∞ ∈ RNh×Nh the solution to the discrete stationary problem
and by M ∈ M the solution to the discrete evolutive problem, Fig. 4.3 displays the

graph of n �→ ‖M∞ −Mn‖�2 =
(
h2∑

i,j (M
∞
i,j −Mn

i,j )
2
)1/2

, n ∈ {0, . . . , NT }.
For the multigrid preconditioner, Table 4.2 shows the computation times for

different discretizations (i.e. different values of Nh and NT in the coarsest grid).
It has been observed in [15, 17] that finer meshes with 1283 degrees of freedom
are solvable within CPU times which outperfom several other methods such
as Conjugate Gradient or BiCGStab unpreconditioned or preconditioned with
modified incomplete Cholesky factorization. Furthermore, the method is robust with
respect to different viscosities.

From Table 4.2 we observe that most of the computational time is used for
solving (4.36), which does not use a multigrid strategy but which is a pointwise
operator (see [17, Proposition 3.1]) and thus could be fully parallelizable.

Table 4.3 shows that the method is robust with respect to the viscosity since the
average number of iterations of BiCGStab does not increase much as the viscosity
decreases. For instance, as shown in Table 4.3b for a grid of size 128× 128× 128,
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Table 4.2 Time (in seconds) for the convergence of the Chambolle-Pock algorithm, cumulative
time of the first proximal operator with the multigrid preconditioner, and number of iterations in
the Chambolle-Pock algorithm, for different viscosity values ν and two types of grids

(a) Grid with 64 × 64 × 64 points

ν Total time Time first prox Iterations

0.6 116.3 [s] 11.50 [s] 20

0.36 120.4 [s] 11.40 [s] 21

0.2 119.0 [s] 11.26 [s] 22

0.12 129.1 [s] 14.11 [s] 22

0.046 225.0 [s] 23.28 [s] 39

(b) Grid with 128 × 128 × 128 points

ν Total time Time first prox Iterations

0.6 921.1 [s] 107.2 [s] 20

0.36 952.3 [s] 118.0 [s] 21

0.2 1028.8 [s] 127.6 [s] 22

0.12 1036.4 [s] 135.5 [s] 23

0.046 1982.2 [s] 260.0 [s] 42

Here we used η1 = η2 = 2 in the multigrid methods, T = 1. Instead of using a number of
iterationsK fixed a priori, the iterations have been stopped when the quantity ‖M(k+1)−M(k)‖�2 =(
$th2∑NT

n=0

∑
i,j (M

(k+1),n
i,j −M

(k),n
i,j )2

)1/2
became smaller than 10−6, where M(k) denotes the

approximation of M at iteration k, which is given by the first component of σ (k) in the notation
used in Algorithm 2

the average number of iterations increases from 3.38 to 4.67 when ν is decreased
from 0.6 to 0.046. On the other hand, Table 4.2 shows that the average number of
Chambolle-Pock iterations depends on the viscosity parameter, but this is not related
to the use of the multigrid preconditioner.

4.5 Algorithms for Solving the System of Non-Linear
Equations

4.5.1 Combining Continuation Methods with Newton
Iterations

Following previous works of the first author, see e.g. [16], one may use a
continuation method (for example with respect to the viscosity parameter ν) in
which every system of nonlinear equations (given the parameter of the continuation
method) is solved by means of Newton iterations. With Newton algorithm, it is
important to have a good initial guess of the solution; for that, it is possible to take
advantage of the continuation method by choosing the initial guess as the solution
obtained with the previous value of the parameter. Alternatively, the initial guess
can be obtained from the simulation of the same problem on a coarser grid, using
interpolation. It is also important to implement the Newton algorithm on a “well
conditioned” system. Consider for example the system (4.4)–(4.6): in this case, it

proves more convenient to introduce auxiliary unknowns, namely
(
(f n

i , )i,n, (+)i

)
,

and see (4.4)–(4.6) as a fixed point problem for the map 3 :
(
(f n

i , )i,n, (+)i

)
�→

(
(gni , )i,n, (#)i

)
defined as follows: one solves first the discrete Bellman equation
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with data
(
(f ni , )i,n, (+)i

)
:

−(DtUi)
n − ν($hU

n)i + H̃ (xi , [∇hUn]i ) = f ni i ∈ {0, . . . , Nh} , n ∈ {0, . . . , NT − 1} ,
Un

0 = Un
Nh

, n ∈ {0, . . . , NT − 1} ,
U
NT
i

= +i i ∈ {0, . . . , Nh}

then the discrete Fokker–Planck equation

(DtMi)
n − ν($hM

n+1)i − Ti (Un,Mn+1) = 0 , i ∈ {0, . . . , Nh}, n ∈ {0, . . . , NT − 1} ,
Mn

0 = Mn
Nh

, n ∈ {1, . . . , NT } ,
M0
i = m̄0(xi ) , i ∈ {0, . . . , Nh} ,

and finally sets

gni = f0(xi,M
n+1
i ), i ∈ {0, . . . , Nh} , n ∈ {0, . . . , NT − 1} ,

#i = φ(M
NT

i ) , i ∈ {0, . . . , Nh}.

The Newton iterations are applied to the fixed point problem (Id − 3)
(
(f ni , )i,n,

(+)i

)
= 0. Solving the discrete Fokker–Planck guarantees that at each Newton

iteration, the grid functions Mn are non negative and have the same mass, which
is not be the case if the Newton iterations are applied directly to (4.4)–(4.6).
Note also that Newton iterations consist of solving systems of linear equations
involving the Jacobian of 3: for that, we use a nested iterative method (BiCGStab
for example), which only requires a function that returns the matrix-vector product
by the Jacobian, and not the construction of the Jacobian, which is a huge and dense
matrix.

The strategy consisting in combining the continuation method with Newton
iterations has the advantage to be very general: it requires neither a variational
structure nor monotonicity: it has been successfully applied in many simulations,
for example for MFGs including congestion models, MFGs with two populations,
see paragraph Sect. 4.6 or MFGs in which the coupling is through the control. It is
generally much faster than the methods presented in paragraph Sect. 4.3, when the
latter can be used.

On the other hand, to the best of our knowledge, there is no general proof of
convergence. Having these methods work efficiently is part of the know-how of the
numerical analyst.

Since the strategy has been described in several articles of the first author, and
since it is discussed thoroughly in the paragraph Sect. 4.6 devoted to pedestrian
flows, we shall not give any further detail here.
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4.5.2 A Recursive Algorithm Based on Elementary Solvers
on Small Time Intervals

In this paragraph, we consider a recursive method introduced by Chassagneux,
Crisan and Delarue in [32] and further studied in [33]. It is based on the following
idea. When the time horizon is small enough, mild assumptions allow one to
apply Banach fixed point theorem and give a constructive proof of existence
and uniqueness for system (4.3). The unique solution can be obtained by Picard
iterations, i.e., by updating iteratively the flow of distributions and the value
function. Then, when the time horizon T is large, one can partition the time interval
into intervals of duration τ , with τ small enough. Let us consider the two adjacent
intervals [0, T − τ ] and [T − τ, T ]. The solutions in [0, T − τ ] × Td and in
[T − τ, T ] × Td are coupled through their initial or terminal conditions: for the
former interval [0, T − τ ], the initial condition for the distribution of states is given,
but the terminal condition on the value function will come from the solution in
[T − τ, T ]. The principle of the global solver is to use the elementary solver on
[T − τ, T ] (because τ is small enough) and recursive calls of the global solver on
[0, T − τ ], (which will in turn call the elementary solver on [T − 2τ, T − τ ] and
recursively the global solver on [0, T − 2τ ], and so on so forth).

We present a version of this algorithm based on PDEs (the original version in [32]
is based on forward-backward stochastic differential equations (FBSDEs for short)
but the principle is the same). Recall that T > 0 is the time horizon,m0 is the initial
density, φ is the terminal condition, and that we want to solve system (4.3).

Let K be a positive integer such that τ = T/K is small enough. Let

ESolver : (τ, m̃, φ̃) �→ (m, u)

be an elementary solver which, given τ , an initial probability density m̃ defined on
T
d and a terminal condition φ̃ : Td → R, returns the solution (u(t),m(t))t∈[0,τ ] to

the MFG system of forward-backward PDEs corresponding to these data, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− ∂u

∂t
(t, x)− ν$u(t, x) = H(x,m(t, x),∇u(t, x)), in [0, τ ) × Td ,

∂m

∂t
(t, x)− ν$m(t, x) − div

(
m(t, ·)Hp(·,m(t, ·),∇u(t, ·))

)
(x) = 0, in (0, τ ] × Td ,

u(τ, x) = φ̃(x), m(0, x) = m̃(x), in Td .

The solver ESolver may for instance consist of Picard or Newton iterations.
We then define the following recursive function, which takes as inputs the level of

recursion k, the maximum recursion depth K , and an initial distribution m̃ : Td →
R, and returns an approximate solution of the system of PDEs in [kT /K, T ] ×
T
d with initial condition m(t, x) = m̃(x) and terminal condition u(T , x) =

φ(m(T , x), x). Calling RSolver(0,K,m0) then returns an approximate solution
(u(t),m(t))t∈[0,T ] to system (4.3) in [0, T ] × Td , as desired.
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To compute the approximate solution on [kT /K, T ] × Td , the following is
repeated J times, say from j = 0 to J − 1, after some initialization step (see
Algorithm 4 for a pseudo code):

1. Compute the approximate solution on [(k + 1)T /K, T ] × Td by a recursive call
of the algorithm, given the current approximation of m((k + 1)T /K, ·) (it will
come from the next point if j > 0).

2. Call the elementary solver on [kT /K, (k+1)T /K]×Td given u((k+1)T /K, ·)
coming from the previous point.

Algorithm 4 Recursive Solver for the system of forward-backward PDEs
function RSOLVER(k,K, m̃)

if k = K then

(u(t, ·),m(t, ·))t=T = (φ(m̃(·), ·), m̃(·)) // last level of recursion

else

(u(t, ·),m(t, ·))t∈[kT /K,(k+1)T /K)] ← (0, m̃(·)) // initialization

for j = 0, . . . , J do

(u(t, ·),m(t, ·))t∈[(k+1)T /K,T ] ← RSolver
(
k + 1,K,m((k + 1)T /K, ·))

// interval [(k + 1)T /K, T ]
(u(t, ·),m(t, ·))t∈[kT /K,(k+1)T /K] ← ESolver

(
T /K,m(kT /K, ·),

u((k + 1)T /K, ·)) // interval [kT /K, (k + 1)T /K]
return (u(t, ·),m(t, ·))t∈[kT /K,T ]

In [32], Chassagneux et al. introduced a version based on FBSDEs and proved,
under suitable regularity assumptions on the decoupling field, the convergence of
the algorithm, with a complexity that is exponential in K . The method has been
further tested in [33] with implementations relying on trees and grids to discretize
the evolution of the state process.

4.6 An Application to Pedestrian Flows

4.6.1 An Example with Two Populations, Congestion Effects
and Various Boundary Conditions

The numerical simulations discussed in this paragraphs somehow stand at the state
of the art because they combine the following difficulties:

• The MFG models includes congestion effects. Hence the Hamiltonian does
not depend separately on Du and m. In such cases, the MFG can never be
interpreted as an optimal control problem driven by a PDE; in other words, there
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is no variational interpretation, which makes it impossible to apply the methods
discussed in Sect. 4.3.

• There are two populations of agents which interact with each other, which adds
a further layer of complexity. The now well known arguments due to Lasry and
Lions and leading to uniqueness do not apply

• The model will include different kinds of boundary conditions corresponding to
walls, entrances and exits, which need careful discretizations.

• We are going to look for stationary equilibria, despite the fact that there is no
underlying ergodicity: there should be a balance between exit and entry fluxes. A
special numerical algorithm is necessary in order to capture such situations

We consider a two-population mean field game in a complex geometry. It models
situations in which two crowds of pedestrians have to share a confined area. In this
case, the state space is a domain of R2. The agents belonging to a given population
are all identical, and differ from the agents belonging to the other population because
they have for instance different objectives, and also because they feel uncomfortable
in the regions where their own population is in minority (xenophobia). In the present
example, there are several exit doors and the agents aim at reaching some of these
doors, depending on which population they belong to. To reach their targets, the
agents may have to cross regions in which their own population is in minority. More
precisely, the running cost of each individual is made of different terms:

• a first term only depends of the state variable: it models the fact that a given agent
more or less wishes to reach one or several exit doors. There is an exit cost or
reward at each doors, which depends on which population the agents belong to.
This translates the fact that the agents belonging to different populations have
different objectives

• the second term is a cost of motion. In order to model congestion effects, it
depends on the velocity and on the distributions of states for both populations

• the third term models xenophobia and aversion to highly crowded regions.

4.6.1.1 The System of Partial Differential Equations

Labelling the two populations with the indexes 0 and 1, the model leads to a system
of four forward-backward partial differential equations as follows:

∂u0

∂t
+ ν$u0 −H0(∇u0;m0,m1) = −+0(x,m0,m1), (4.38)

∂m0

∂t
− ν$m0 − div

(

m0
∂H0

∂p
(∇u0;m0,m1)

)

= 0, (4.39)

∂u1

∂t
+ ν$u1 −H1(∇u1;m1,m0) = −+1(x,m1,m0), (4.40)

∂m1

∂t
− ν$m1 − div

(

m1
∂H1

∂p
(∇u1;m1,m0)

)

= 0. (4.41)
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In the numerical simulations discussed below, we have chosen

Hi(x, p;mi,mj ) = |p|2
1 +mi + 5mj

, (4.42)

and

+i(x,mi,mj ) = 0.5+ 0.5

(
mi

mi +mj + ε
− 0.5

)

−
+ (mi +mj − 4)+, (4.43)

where ε is a small parameter and j = 1 − i. Note that we may replace (4.43) by
a smooth function obtained by a regularization involving another small parameter
ε2.

• The choice of Hi aims at modelling the fact that motion gets costly in the highly
populated regions of the state space. The different factors in front of mi and mj

in (4.42) aim at modelling the fact that the cost of motion of an agent of a given
type, say i, is more sensitive to the density of agents of the different type, say j ;
indeed, since the agents of different types have different objectives, their optimal
controls are unlikely to be aligned, which makes motion even more difficult.

• The coupling cost in (4.43) is made of three terms: the first term, namely 0.5, is

the instantaneous cost for staying in the domain; the term 0.5
(

mi

mi+mj+ε − 0.5
)

−
translates the fact that an agent in population i feels uncomfortable if its
population is locally in minority. The last term, namely (mi +mj − 4)+, models
aversion to highly crowded regions.

4.6.1.2 The Domain and the Boundary Conditions

The domain" is displayed in Fig. 4.4. The solid lines stand for walls, i.e. parts of the
boundaries that cannot be crossed by the agents. The colored arrows indicate entries
or exits depending if they are pointing inward or outward. The two different colors
correspond to the two different populations, green for population 0 and orange for
population 1. The length of the northern wall is 5, and the north-south diameter is
2.5. The width of the southern exit is 1. The widths of the other exits and entrances
are 0.33. The width of the outward arrows stands for the reward for exiting.

• The boundary conditions at walls are as follows:

∂ui

∂n
(x) = 0, and

∂mi

∂n
(x) = 0. (4.44)

The first condition in (4.44) comes from the fact that the stochastic process
describing the state of a given agent in population i is reflected on walls. The
second condition in (4.44) is in fact −ν ∂mi

∂n
− mi n · ∂Hi

∂p
(∇ui;mi,mj ) = 0,

where we have taken into account the Neumann condition on ui .
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Fig. 4.4 The domain". The colored arrows indicate entries or exits depending if they are pointing
inward or outward. The two different colors correspond to the two different populations. The width
of the outward arrows stands for the reward for exiting

• At an exit door for population i, the boundary conditions are as follow

ui = exit cost, and mi = 0. (4.45)

A negative exit cost means that the agents are rewarded for exiting the domain
through this door. The homogeneous Dirichlet condition on mi in (4.45) can be
explained by saying that the agents stop taking part to the game as soon as they
reach the exit.

• At an entrance for population i, the boundary conditions are as follows:

ui = exit cost, and ν
∂mi

∂n
+mi n · ∂Hi

∂p
(∇ui;mi,mj ) = entry flux.

(4.46)

Setting a high exit cost prevents the agents from exiting though the entrance
doors.

In our simulations, the exit costs of population 0 are as follows:

1. North-West entrance : 0
2. South-West exit : −8.5
3. North-East exit : −4
4. South-East exit : 0
5. South exit : −7

and the exit costs of population 1 are

1. North-West exit : 0
2. South-West exit : −7
3. North-East exit : −4



282 Y. Achdou and M. Laurière

4. South-East entrance : 0
5. South exit: −4.

The entry fluxes are as follows:

1. Population 0: at the North-West entrance, the entry flux is 1
2. Population 1: at the South-East entrance, the entry flux is 1.

For equilibria in finite horizon T , the system should be supplemented with an
initial Dirichlet condition for m0,m1 since the laws of the initial distributions are
known, and a terminal Dirichlet-like condition for u0, u1 accounting for the terminal
costs.

4.6.2 Stationary Equilibria

We look for a stationary equilibrium. For that, we solve numerically (4.38)–
(4.41) with a finite horizon T , and with the boundary conditions described in
paragraph Sect. 4.6.1.2, see paragraph Sect. 4.6.5 below and use an iterative method
in order to progressively diminish the effects of the initial and terminal conditions:
starting from (u0

i , m
0
i )i=0,1, the numerical solution of the finite horizon problem

described above, we construct a sequence of approximate solutions (u�i ,m
�
i )�≥1 by

the following induction: (u�+1
i , m�+1

i ) is the solution of the finite horizon problem
with the same system of PDEs in (0, T ) × ", the same boundary conditions on
(0, T )× ∂", and the new initial and terminal conditions as follows:

u�+1
i (T , x) = u�i

(
T

2
, x

)

, x ∈ ", i = 0, 1, (4.47)

m�+1
i (0, x) = m�

i

(
T

2
, x

)

, x ∈ ", i = 0, 1. (4.48)

As � tends to +∞, we observe that (u�i ,m
�
i ) converge to time-independent

functions. At the limit, we obtain a steady solution of

ν$u0 −H0(∇u0;m0,m1) = −+0(x,m0,m1), (4.49)

−ν$m0 − div

(

m0
∂H0

∂p
(∇u0;m0,m1)

)

= 0, (4.50)

ν$u1 −H1(∇u1;m1,m0) = −+1(x,m1,m0), (4.51)

−ν$m1 − div

(

m1
∂H1

∂p
(∇u1;m1,m0)

)

= 0, (4.52)

with the boundary conditions on ∂" described in paragraph Sect. 4.6.1.2.
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4.6.3 A Stationary Equilibrium with ν = 0.30

We first take a relatively large viscosity coefficient namely ν = 0.30. In Fig. 4.5, we
display the distributions of states for the two populations, see Fig. 4.5a, the value
functions for both populations, see Fig. 4.5b, and the optimal feedback controls
of population 0 (respectively 1) in Fig. 4.5c (respectively Fig. 4.5d). We see that
population 0 enters the domain via the north-west entrance, and most probably
exits by the south-west exit door. Population 1 enters the domain via the south-east
entrance, and exits by two doors, the south-west and the southern ones. The effect
of viscosity is large enough to prevent complete segregation of the two populations.

4.6.4 A Stationary Equilibrium with ν = 0.16

We decrease the viscosity coefficient to the value ν = 0.16. We are going to see
that the solution is quite different from the one obtained for ν = 0.3, because the

(a) Distributions of the two populations (b) Value functions of the two populations

(c) Optimal feedback forpopulation 0 (d) Optimal feedback for population1

Fig. 4.5 Numerical Solution to Stationary Equilibrium with ν ∼ 0.3. (a) Distributions of the two
populations. (b) Value functions of the two populations. (c) Optimal feedback for population 0. (d)
Optimal feedback for population 1
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(a) Distributions of the two populations (b) Value functions of the two populations

(c) Optimal feedback for population0 (d) Optimal feedback for population 1

Fig. 4.6 Numerical Solution to Stationary Equilibrium with ν ∼ 0.16. (a) Distributions of the two
populations. (b) Value functions of the two populations. (c) Optimal feedback for population 0. (d)
Optimal feedback for population 1

populations now occupy separate regions. In Fig. 4.6, we display the distributions of
states for the two populations, see Fig. 4.6a, the value functions for both populations,
see Fig. 4.6b, and the optimal feedback controls of population 0 (respectively 1) in
Fig. 4.6c (respectively Fig. 4.6d). We see that population 0 enters the domain via the
north-west entrance, and most probably exits by the south-west exit door. Population
1 enters the domain via the south-east entrance, and most probably exits the domain
by the southern door. The populations occupy almost separate regions. We have
made simulations with smaller viscosities, up to ν = 10−3, and we have observed
that the results are qualitatively similar to the ones displayed on Fig. 4.6, i.e. the
distribution of the populations overlap less and less and the optimal strategies are
similar. As ν is decreased, the gradients of the distributions of states increase in the
transition regions between the two populations.
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4.6.5 Algorithm for Solving the System of Nonlinear
Equations

We briefly describe the iterative method used in order to solve the system of non-
linear equations arising from the discretization of the finite horizon problem. Since
the latter system couples forward and backward (nonlinear) equations, it cannot be
solved by merely marching in time. Assuming that the discrete Hamiltonians are
C2 and the coupling functions are C1 (this is true after a regularization procedure
involving a small regularization parameter) allows us to use a Newton–Raphson
method for the whole system of nonlinear equations (which can be huge if d ≥ 2).

Disregarding the boundary conditions for simplicity, the discrete version of the
MFG system reads

U
k,n+1
i,j − U

k,n
i,j

$t
− ν($hU

k,n+1)i,j + g
(
[∇hUk,n+1]i,j , Zk,n+1

i,j

)
= Y

k,n+1
i,j (4.53)

M
k,n+1
i,j −M

k,n
i,j

$t
− ν($hM

k,n+1)i,j − Ti,j
(
Uk,n+1,Mk,n+1, Zk,n+1

)
= 0, (4.54)

Y
k,n+1
i,j = −+k

(
xi,j ,M

k,n+1
i,j ,M

1−k,n+1
i,j

)
, (4.55)

Z
k,n+1
i,j =

(
1 +M

k,n+1
i,j + 5M1−k,n+1

i,j

)−1
, (4.56)

for k = 0, 1. The system above is satisfied for internal points of the grid, i.e.
2 ≤ i, j ≤ Nh − 1, and is supplemented with suitable boundary conditions. The
ingredients in (4.53)–(4.56) are as follows:

[∇hU ]i,j = ((D+
1 U)i,j , (D

+
1 U)i−1,j , (D

+
2 U)i,j , (D

+
2 U)i,j−1) ∈ R4,

and the Godunov discrete Hamiltonian is

H̃ (q1, q2, q3, q4, z) = z
(
[(q1)

−]2 + [(q3)
−]2 + [(q2)

+]2 + [(q4)
+]2
)
.

The transport operator in the discrete Fokker–Planck equation is given by

Ti,j (U,M,Z) = 1

h

⎛

⎜
⎜
⎜
⎜
⎝

Mi,j ∂q1 H̃ [∇hU ]i,j , Zi,j )−Mi−1,j ∂q1 H̃ [∇hU ]i−1,j , Zi−1,j )

+Mi+1,j ∂q2 H̃ [∇hU ]i+1,j , Zi+1,j )−Mi,j ∂q2 H̃ [∇hU ]i,j , Zi,j )
+Mi,j ∂q3 H̃ [∇hU ]i,j , Zi,j )−Mi,j−1∂q3 H̃ x, [∇hU ]i,j−1, Zi,j−1)

+Mi,j+1∂q4 H̃ [∇hU ]i,j+1, Zi,j+1)−Mi,j ∂q4 H̃ [∇hU ]i,j , Zi,j )

⎞

⎟
⎟
⎟
⎟
⎠
,

We define the map 0 :

0 :
(
Y

0,n
i,j , Y

1,n
i,j , Z

0,n
i,j , Z

1,n
i,j

)

i,j,n
�→
(
M

0,n
i,j ,M

1,n
i,j

)

i,j,n
,
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by solving first the discrete HJB equation (4.53) (supplemented with boundary
conditions) then the discrete Fokker–Planck equation (4.54) (supplemented with
boundary conditions). We then summarize (4.55) and (4.56) by writing

(
Y

0,n
i,j , Y

1,n
i,j , Z

0,n
i,j , Z

1,n
i,j

)

i,j,n
= #

((
M

0,n
i,j ,M

1,n
i,j

)

i,j,n

)

. (4.57)

Here n takes its values in {1 . . . , N} and i, j take their values in {1 . . . , Nh}. We
then see the full system (4.53)–(4.56) (supplemented with boundary conditions) as
a fixed point problem for the map 3 = # ◦0.

Note that in (4.53) the two discrete Bellman equations are decoupled and do not
involve Mk,n+1. Therefore, one can first obtain Uk,n 0 ≤ n ≤ N , k = 0, 1 by
marching backward in time (i.e. performing a backward loop with respect to the
index n). For every time index n, the two systems of nonlinear equations for Uk,n,
k = 0, 1 are themselves solved by means of a nested Newton–Raphson method.
Once an approximate solution of (4.53) has been found, one can solve the (linear)
Fokker–Planck equations (4.54) for Mk,n 0 ≤ n ≤ N , k = 0, 1, by marching
forward in time (i.e. performing a forward loop with respect to the index n). The
solutions of (4.53)–(4.54) are such that Mk,n are nonnegative.

The fixed point equation for3 is solved numerically by using a Newton–Raphson
method. This requires the differentiation of both the Bellman and Kolmogorov
equations in (4.53)–(4.54), which may be done either analytically (as in the present
simulations) or via automatic differentiation of computer codes (to the best of
our knowledge, no computer code for MFGs based on automatic differentiation is
available yet, but developing such codes seems doable and interesting).

A good choice of an initial guess is important, as always for Newton methods.
To address this matter, we first observe that the above mentioned iterative method
generally quickly converges to a solution when the value of ν is large. This leads us
to use a continuation method in the variable ν: we start solving (4.53)–(4.56) with
a rather high value of the parameter ν (of the order of 1), then gradually decrease ν
down to the desired value, the solution found for a value of ν being used as an initial
guess for the iterative solution with the next and smaller value of ν.

4.7 Mean Field Type Control

As mentioned in the introduction, the theory of mean field games allows one to
study Nash equilibria in games with a number of players tending to infinity. In
such models, the players are selfish and try to minimize their own individual cost.
Another kind of asymptotic regime is obtained by assuming that all the agents use
the same distributed feedback strategy and by passing to the limit as N → ∞
before optimizing the common feedback. For a fixed common feedback strategy, the
asymptotic behavior is given by the McKean-Vlasov theory, [34, 35]: the dynamics
of a representative agent is found by solving a stochastic differential equation with
coefficients depending on a mean field, namely the statistical distribution of the
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states, which may also affect the objective function. Since the feedback strategy
is common to all agents, perturbations of the latter affect the mean field (whereas
in a mean field game, the other players’ strategies are fixed when a given player
optimizes). Then, having each agent optimize her objective function amounts to
solving a control problem driven by the McKean-Vlasov dynamics. The latter is
named control of McKean-Vlasov dynamics by R. Carmona and F. Delarue [36–
38] and mean field type control by A. Bensoussan et al. [39, 40]. Besides the
aforementioned interpretation as a social optima in collaborative games with a
number of agents growing to infinity, mean field type control problems have also
found applications in finance and risk management for problems in which the
distribution of states is naturally involved in the dynamics or the cost function.
Mean field type control problems lead to a system of forward-backward PDEs
which has some features similar to the MFG system, but which can always be seen
as the optimality conditions of a minimization problem. These problems can be
tackled using the methods presented in this survey, see e.g. [23, 41]. For the sake
of comparison with mean field games, we provide in this section an example of
crowd motion (with a single population) taking into account congestion effects. The
material of this section is taken from [42].

4.7.1 Definition of the Problem

Before focusing a specific example, let us present the generic form of a mean field
type control problem. To be consistent with the notation used in the MFG setting,
we consider the same form of dynamics and the same running and terminal costs
functions f and φ. However, we focus on a different notion of solution: Instead
of looking for a fixed point, we look for a minimizer when the control directly
influences the evolution of the population distribution. More precisely, the goal is to
find a feedback control v∗ : QT → Rd minimizing the following functional:

J : v �→ J (v) = E
[∫ T

0
f (Xv

t ,m
v(t,Xv

t ), v(t,X
v
t ))dt + φ(Xv

T ,m
v(T ,Xv

T ))

]

under the constraint that the processXv = (Xv
t )t≥0 solves the stochastic differential

equation (SDE)

dXv
t = b(Xv

t ,m
v(t,Xv

t ), v(t,X
v
t ))dt +

√
2νdWt, t ≥ 0, (4.58)

and Xv
0 has distribution with density m0. Here mv

t is the probability density of the
law of Xv

t , so the dynamics of the stochastic process is of McKean-Vlasov type.
For a given feedback control v, mv

t solves the same Kolmogorov–Fokker–Planck
(KFP) equation (4.2) as in the MFG, but the key difference between the two
problems lies in the optimality condition. For the mean field type control problem,
one cannot rely on standard optimal control theory because the distribution of the
controlled process is involved in a potentially non-linear way.
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In [40], A. Bensoussan, J. Frehse and P. Yam have proved that a necessary
condition for the existence of a smooth feedback function v∗ achieving J (v∗) =
min J (v) is that

v∗(t, x) = arg max
a∈Rd

{− f (x,m(t, x), a)− 〈b(x,m(t, x), a),∇u(t, x)〉},

where (m, u) solve the following system of partial differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂u

∂t
(t, x)− ν$u(t, x) +H(x,m(t, x),∇u(t, x)) +

∫

Td

∂H

∂m
(ξ,m(T , ξ ),∇u(t, ξ ))m(T , ξ )dξ = 0, in [0, T )× Td ,

∂m

∂t
(t, x) − ν$m(t, x)− div

(
m(t, ·)Hp(·,m(t, ·),∇u(t, ·))

)
(x) = 0, in (0, T ] × Td ,

u(T , x) = φ(x,m(T , x))+
∫

Td

∂φ

∂m
(ξ,m(T , ξ ))m(T , ξ )dξ, m(0, x) = m0(x), in Td .

Here, ∂
∂m

denotes a derivative with respect to the argumentm, which is a real number
because the dependence on the distribution is purely local in the setting considered
here. When the Hamiltonian depends on the distribution m in a non-local way, one
needs to use a suitable notion of derivative with respect to a probability density or a
probability measure, see e.g. [4, 38, 40] for detailed explanations.

4.7.2 Numerical Simulations

Here we model a situation in which a crowd of pedestrians is driven to leave a
given square hall (whose side is 50 m long) containing rectangular obstacles: one
can imagine for example a situation of panic in a closed building, in which the
population tries to reach the exit doors. The chosen geometry is represented on
Fig. 4.7.
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Fig. 4.7 Left: the geometry (obstacles are in red). Right: the density at t = 0
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The aim is to compare the evolution of the density in two models:

1. Mean field games: we choose ν = 0.05 and the Hamiltonian takes congestion
effects into account and depends locally on m; more precisely:

H(x,m, p) = − 8|p|2
(1 +m)

3
4

+ 1

3200
.

The MFG system of PDEs (4.3) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
+ 0.05 $u− 8

(1 +m)
3
4

|∇u|2 = − 1

3200
,

∂m

∂t
− 0.05 $m− 16 div

(
m∇u

(1 +m)
3
4

)

= 0 .

(4.59a)

(4.59b)

The horizon T is T = 50 min. There is no terminal cost, i.e. φ ≡ 0.
There are two exit doors, see Fig. 4.7. The part of the boundary corresponding

to the doors is called %D . The boundary conditions at the exit doors are chosen
as follows: there is a Dirichlet condition for u on %D , corresponding to an exit
cost; in our simulations, we have chosen u = 0 on %D . For m, we may assume
that m = 0 outside the domain, so we also get the Dirichlet condition m = 0 on
%D .

The boundary %N corresponds to the solid walls of the hall and of the
obstacles. A natural boundary condition for u on %N is a homogeneous Neumann
boundary condition, i.e. ∂u

∂n
= 0 which says that the velocity of the pedestrians

is tangential to the walls. The natural condition for the density m is that

ν ∂m
∂n
+m∂H̃

∂p
(·,m,∇u) · n = 0, therefore ∂m

∂n
= 0 on %N .

2. Mean field type control: this is the situation where pedestrians or robots use the
same feedback law (we may imagine that they follow the strategy decided by a
leader); we keep the same Hamiltonian, and the HJB equation becomes

∂u

∂t
+ 0.05 $u−

(
2

(1 +m)
3
4

+ 6

(1 +m)
7
4

)

|∇u|2 = − 1

3200
. (4.60)

while (4.59b) and the boundary conditions are unchanged.

The initial densitym0 is piecewise constant and takes two values 0 and 4 people/m2,
see Fig. 4.7. At t = 0, there are 3300 people in the hall.

We use the method described in Sect. 4.5.1, i.e., Newton iterations with the
finite difference scheme originally proposed in [9], see [16] for some details on
the implementation.

On Fig. 4.8, we plot the densitym obtained by the simulations for the two models,
at t = 1, 2, 5, and 15 min. With both models, we see that the pedestrians rush
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Fig. 4.8 The density computed with the two models at different dates, t = 1, 5 and 15 min. (from
top to bottom). Left: Mean field game. Right: Mean field type control

towards the narrow corridors leading to the exits, at the left and right sides of the
hall, and that the density reaches high values at the intersections of corridors; then
congestion effects explain why the velocity is low (the gradient of u) in the regions
where the density is high, see Fig. 4.9. We see on Fig. 4.8 that the mean field type
control leads to lower peaks of density, and on Fig. 4.10 that it leads to a faster exit
of the room. We can hence infer that the mean field type control performs better
than the mean field game, leading to a positive price of anarchy.

4.8 MFGs in Macroeconomics

The material of this section is taken from a work of the first author with Jiequn Han,
Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll, see [43], see also [44].
In economics, the ideas underlying MFGs have been investigated in the so-called
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Fig. 4.9 The velocity (v(t, x) = −16∇u(t, x)(1 +m(t, x))−3/4) computed with the two models
at different dates, t = 1, 2, 5 and t = 15 min. (from top-left to bottom-right). Red: Mean field
game. Blue: Mean field type control

Fig. 4.10 Evolution of the total remaining number of people in the room for the mean field game
(red line) and the mean field type control (dashed blue line)
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heterogeneous agents models, see for example [45–48], for a long time before the
mathematical formalization of Lasry and Lions. The latter models mostly involve
discrete in time optimal control problems, because the economists who proposed
them felt more comfortable with the related mathematics. The connection between
heterogeneous agents models and MFGs is discussed in [44].

We will first describe the simple yet prototypical Huggett model, see [45, 46], in
which the constraints on the state variable play a key role. We will then discuss the
finite difference scheme for the related system of differential equations, putting the
stress on the boundary conditions. Finally, we will present numerical simulations of
the richer Aiyagari model, see [47].

Concerning HJB equations, state constraints and related numerical schemes have
been much studied in the literature since the pioneering works of Soner and Capuzzo
Dolcetta-Lions, see [49–51]. On the contrary, the boundary conditions for the related
invariant measure had not been addressed before [43, 44]. The recent references [52,
53] contain a rigorous study of MFGs with state constraints in a different setting
from the economic models considered below.

4.8.1 A Prototypical Model with Heterogeneous Agents:
The Huggett Model

4.8.1.1 The Optimal Control Problem Solved by an Agent

We consider households which are heterogeneous in wealth x and income y. The
dynamics of the wealth of a household is given by

dxt = (rxt − ct + yt )dt,

where r is an interest rate and ct is the consumption (the control variable). The
income yt is a two-state Poisson process with intensities λ1 and λ2, i.e. yt ∈ {y1, y2}
with y1 < y2, and

P (yt+$t = y1| yt = y1) = 1 − λ1$t + o($t), P (yt+$t = y2| yt = y1) = λ1$t + o($t),

P (yt+$t = y2| yt = y2) = 1 − λ2$t + o($t), P (yt+$t = y1| yt = y2) = λ2$t + o($t).

Recall that a negative wealth means debts; there is a borrowing constraint : the
wealth of a given household cannot be less than a given borrowing limit x. In the
terminology of control theory, xt ≥ x is a constraint on the state variable.

A household solves the optimal control problem

max{ct }
E

∫ ∞

0
e−ρtu(ct )dt subject to

{
dxt = (yt + rxt − ct )dt,

xt ≥ x,
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where

• ρ is a positive discount factor
• u is a utility function, strictly increasing and strictly concave, e.g. the CRRA

(constant relative risk aversion) utility:

u(c) = c1−γ /(1 − γ ), γ > 0.

For i = 1, 2, let vi(x) be the value of the optimal control problem solved by an
agent when her wealth is x and her income yi . The value functions (v1(x), v2(x))

satisfy the system of differential equations:

− ρv1 +H(x, y1, ∂xv1)+ λ1v2(x)− λ1v1(x) = 0, x > x, (4.61)

−ρv2 +H(x, y2, ∂xv2)+ λ2v1(x)− λ2v2(x) = 0, x > x, (4.62)

where the Hamiltonian H is given by

H(x, y, p) = max
c≥0

(
(y + rx − c)p + u(c)

)
.

The system of differential equations (4.61)–(4.62) must be supplemented with
boundary conditions connected to the state constraints x ≥ x. Viscosity solutions
of Hamilton–Jacobi equations with such boundary conditions have been studied
in [49–51]. It is convenient to introduce the non-decreasing and non-increasing
envelopes H↑ and H↓ of H :

H↑(x, y, p) = max
0≤c≤y+rx

(
(y + rx − c)p + u(c)

)
,

H↓(x, y, p) = max
max(0,y+rx)≤c

(
(y + rx − c)p + u(c)

)
.

It can be seen that

H(x, y, p) = H↑(x, y, p)+H↓(x, y, p)−min
p∈RH(x, y, p).

The boundary conditions associated to the state constraint can be written

− ρv1(x)+H↑(x, y1, ∂xv1)+ λ1v2(x)− λ1v1(x) = 0, (4.63)

−ρv2(x)+H↑(x, y2, ∂xv2)+ λ2v1(x)− λ2v2(x) = 0. (4.64)
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p

negative optimal drift
i.e. negative optimal savings

positive optimal drift
i.e. positive optimal savings

H (x, y, p)

•
pmin = (y + r x)−g

Fig. 4.11 The bold line is the graph of the function p �→ H(x, y, p). The dashed and bold blue
lines form the graph of p �→ H↓(x, y, p). The dashed and bold red lines form the graph of
p �→ H↑(x, y, p)

Consider for example the prototypical case when u(c) = 1
1−γ c

1−γ with γ > 0.
Then

H(x, y, p) = max
0≤c

(
(y + rx − c)p + 1

1 − γ
c1−γ) = (y + rx)p + γ

1 − γ
p

1− 1
γ .

In Fig. 4.11, we plot the graphs of the functionsp �→ H(x, y, p), p �→ H↑(x, y, p)
and p �→ H↓(x, y, p) for γ = 2.

4.8.1.2 The Ergodic Measure and the Coupling Condition

In Huggett model, the interest rate r is an unknown which is found from the fact that
the considered economy neither creates nor destroys wealth: the aggregate wealth !
can be fixed to 0.

On the other hand, the latter quantity can be deduced from the ergodic measure of
the process, i.e. m1 and m2, the wealth distributions of households with respective
income y1 and y2, defined by

lim
t→+∞E(φ(xt )|yt = yi) = 〈mi, φ〉, ∀φ ∈ Cb([x,+∞)).

The measures m1 and m2 are defined on [x,+∞) and obviously satisfy the
following property:

∫

x≥x
dm1(x)+

∫

x≥x
dm2(x) = 1. (4.65)
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Prescribing the aggregate wealth amounts to writing that

∫

x≥x
xdm1(x)+

∫

x≥x
xdm2(x) = 0. (4.66)

In fact (4.66) plays the role of the coupling condition in MFGs. We will discuss this
point after having characterized the measures m1 and m2: it is well known that they
satisfy the Fokker–Planck equations

−∂x
(
m1Hp(·, y1, ∂xv1)

)+ λ1m1 − λ2m2 = 0,

−∂x
(
m2Hp(·, y2, ∂xv2)

)+ λ2m2 − λ1m1 = 0,

in the sense of distributions in (x,+∞).
Note that even if m1 and m2 are regular in the open interval (x,+∞), it may

happen that the optimal strategy of a representative agent (with income y1 or y2)
consists of reaching the borrowing limit x = x in finite time and staying there; in
such a case, the ergodic measure has a singular part supported on {x = x}, and its
absolutely continuous part (with respect to Lebesgue measure) may blow up near
the boundary.

For this reason, we decomposemi as the sum of a measure absolutely continuous
with respect to Lebesgue measure on (x,+∞) with density gi and possibly of a
Dirac mass at x = x: for each Borel set A ⊂ [x,+∞),

mi(A) =
∫

A

gi(x)dx + μiδx(A), i = 1, 2. (4.67)

Here, gi is a measurable and nonnegative function.
Assuming that ∂xvi(x) have limits when x → x+ (this can be justified rigorously

for suitable choices of u), we see by definition of the ergodic measure, that for all

test-functions (φ1, φ2) ∈
(
C1
c ([x,+∞))

)2
,

0 =
∫

x>x

g1(x)
(
λ1φ2(x)− λ1φ1(x)+Hp(x, y1, ∂xv1(x))∂xφ1(x)

)
dx

+
∫

x>x

g2(x)
(
λ2φ1(x)− λ2φ2(x)+Hp(x, y2, ∂xv2(x))∂xφ2(x)

)
dx

+ μ1

(
λ1φ2(x)− λ1φ1(x)+H↑

p (x, y1, ∂xv1(x+))∂xφ1(x)
)

+ μ2

(
λ2φ1(x)− λ2φ2(x)+H↑

p (x, y2, ∂xv2(x+))∂xφ2(x)
)
.
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It is also possible to use φ1 = 1 and φ2 = 0 as test-functions in the equation above.
This yields

λ1

∫

x≥x
dm1(x) = λ2

∫

x≥x
dm2(x).

Hence
∫

x≥x
dm1(x) = λ2

λ1 + λ2
,

∫

x≥x
dm2(x) = λ1

λ1 + λ2
. (4.68)

4.8.1.3 Summary

To summarize, finding an equilibrium in the Huggett model given that the aggregate
wealth is 0 consists in looking for (r, v1, v2,m1,m2) such that

• the functions v1 and v2 are viscosity solutions to (4.61), (4.62), (4.63), and (4.64)
• the measures m1 and m2 satisfy (4.68), mi = giL + μiδx=x , where L is

the Lebesgue measure on (x,+∞), gi is a measurable nonnegative function
(x,+∞) and for all i = 1, 2, for all test function φ:

∫

x>x

(
λjgj (x)− λigi(x)

)
φ(x)dx +

∫

x>x

Hp(x, yi, ∂xvi(x))∂xφ(x)dx

+μi
(
−λiφ(x)+H↑

p (x, yi, ∂xvi(x+))∂xφ(x)
)
+ μjλjφ(x)

⎫
⎪⎬

⎪⎭
= 0,

(4.69)

where j = 2 if i = 1 and j = 1 if i = 2.
• the aggregate wealth is fixed, i.e. (4.66). By contrast with the previously

considered MFG models, the coupling in the Bellman equation does not come
from a coupling cost, but from the implicit relation (4.66) which can be seen as
an equation for r . Since the latter coupling is only through the constant value r ,
it can be said to be weak.

4.8.1.4 Theoretical Results

The following theorem, proved in [43], gives quite accurate information on the
equilibria for which r < ρ:

Theorem 5 Let c∗i (x) be the optimal consumption of an agent with income yi and
wealth x.
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1. If r < ρ, then the optimal drift (whose economical interpretation is the optimal
saving policy) corresponding to income y1, namely rx + y1 − c∗1(x), is negative
for all x > x.

2. If r < ρ and−u′′(y1+rx)
u′(y1+rx) < +∞, then there exists a positive number ν1 (that can

be written explicitly) such that for x close to x,

rx + y1 − c∗1(x) ∼ −√2ν1
√
x − x < 0,

so the agents for which the income stays at the lower value y1 hit the borrowing
limit in finite time, and

μ1 > 0, g1(x) ∼ γ1√
x − x

,

for some positive value γ1 (that can be written explicitly).

3. If r < ρ and supc
(
− cu′′(c)

u′(c)

)
< +∞, then there exists x ≤ x < +∞ such that

rx + y2 − c∗2(x) < 0, for all x > x,

rx + y2 − c∗2(x) > 0, for all x < x < x.

Moreover μ2 = 0 and if x > x, then for some positive constant ζ2, rx + y2 −
c∗2(x) ∼ ζ2(x − x) for x close to x.

From Theorem 5, we see in particular that agents whose income remains at the lower
value are drifted toward the borrowing limit and get stuck there, while agents whose
income remains at the higher value get richer if their wealth is small enough. In
other words, the only way for an agent in the low income state to avoid being drifted
to the borrowing limit is to draw the high income state. Reference [43] also contains
existence and uniqueness results.

4.8.2 A Finite Difference Method for the Huggett Model

4.8.2.1 The numerical scheme

We wish to simulate the Huggett model in the interval [x, x̃]. Consider a uniform

grid on [x, x̃] with step h = x̃−x
Nh

: we set xi = x + ih, i = 0, . . . , Nh. The discrete
approximation of vj (xi) is named vi,j . The discrete version of the Hamiltonian H
involves the function H : R4 → R,

H(x, y, ξr , ξ�) = H↑(x, y, ξr)+H↓(x, y, ξ�)−min
p∈RH(x, y, p).

We do not discuss the boundary conditions at x = x̃ in order to focus on the
difficulties coming from the state constraint xt ≥ x. In fact, if x̃ is large enough,
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state constraint boundary conditions can also be chosen at x = x̃. The numerical
monotone scheme for (4.61), (4.62), (4.63), and (4.64) is

− ρvi,j +H
(

xi , yj ,
vi+1,j − vi,j

h
,
vi,j − vi−1,j

h

)

+ λi
(
vi,k − vi,j

) = 0, for 0 < i < Nh, (4.70)

−ρv0,j +H↑
(

x, yj ,
v1,j − v0,j

h

)

+ λi
(
v0,k − v0,j

) = 0, for i = 0, (4.71)

where k = 2 if j = 1 and k = 1 if j = 2. In order to find the discrete version of the
Fokker–Planck equation, we start by writing (4.70)–(4.71) in the following compact
form:

− ρV + F(V ) = 0, (4.72)

with self-explanatory notations. The differential of F at V maps W to the grid
functions whose (i, j)-th components is:

• if 0 < i < Nh:

H
↑
p

(

xi , yj ,
vi+1,j − vi,j

h

)
wi+1,j −wi,j

h
+H

↓
p

(

xi , yj ,
vi,j − vi−1,j

h

)
wi,j − wi−1,j

h
+ λi

(
wi,k −wi,j

)
,

(4.73)

• If i = 0:

H↑
p

(

x, yj ,
v1,j − v0,j

h

)
w1,j − w0,j

h
+ λi

(
w0,k −w0,j

)
. (4.74)

We get the discrete Fokker–Planck equation by requiring that 〈DF(V )W,M〉 = 0
for all W , where M = (mi,j )0≤i≤Nh,j=1,2; more explicitly, we obtain:

0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λkmi,k − λjmi,j

+ 1

h

(

mi,jH
↓
p

(

xi , yj ,
vi,j − vi−1,j

h

)

−mi+1,jH
↓
p

(

xi+1, yj ,
vi+1,j − vi,j

h

))

− 1

h

(

mi,jH
↑
p

(

xi , yj ,
vi+1,j − vi,j

h

)

−mi−1,jH
↑
p

(

xi−1, yj ,
vi,j − vi−1,j

h

))

,

(4.75)

for 0 < i < Nh, and

0 = λkm0,k − λjm0,j − 1

h

(

m0,jH
↑
p

(

x, yj ,
v1,j − v0,j

h

)

+m1,jH
↓
p

(

x1, yj ,
v1,j − v0,j

h

))

.

(4.76)

Assuming for simplicity that in (4.67), (gj )j=1,2 are absolutely continuous with
respect to the Lebesgue measure, equations (4.75) and (4.76) provide a consistent
discrete scheme for (4.69) if hm0,j is seen as the discrete version of μj and ifmi,j is
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the discrete version of gj (xi). If we do not suppose that gj is absolutely continuous
with respect to the Lebesgue measure, then mi,j may be seen as a discrete version

of 1
h

∫ xi+h/2
xi−h/2 dgj (x).

The consistency of (4.75) for i > 0 is obtained as usual. Let us focus on (4.76):
assume that the following convergence holds:

lim
h→0

max
i,j

|vi,j − v(xi, yj )| = 0 and lim
h→0

max
j

∣
∣
∣
∣
v1,j − v0,j

h
− ∂xvj (x)

∣
∣
∣
∣ = 0.

Assume that Hp(x, ∂xvj (x)) > ε for a fixed positive number ε > 0. Then for h
small enough,

H↑
p

(

xi, yj ,
v1,j − v0,j

h

)

> 0 and H↓
p

(

xi, yj ,
v1,j − v0,j

h

)

= 0,

for i = 0, 1. Plugging this information in (4.76) yields that m0,j is of the same order
as hm0,k, in agreement with the fact that since the optimal drift is positive, there is
no Dirac mass at x = x. In the opposite case, we see that (4.76) is consistent with
the asymptotic expansions found in Theorem 5.

4.8.2.2 Numerical Simulations

On Fig. 4.12, we plot the densities g1 and g2 and the cumulative distributions∫ x
x dm1 and

∫ x
x dm2, computed by two methods: the first one is the finite difference

descrived above. The second one consists of coupling the finite difference scheme
described above for the HJB equation and a closed formula for the Fokker–Planck
equation. Two different grids are used with Nh = 500 and Nh = 30. We see that for
Nh = 500, it is not possible to distinguish the graphs obtained by the two methods.
The density g1 blows up at x = x while g2 remains bounded. From the graphs of
the cumulative distributions, we also see that μ1 > 0 while μ2 = 0.

4.8.3 The Model of Aiyagari

There is a continuum of agents which are heterogeneous in wealth x and productiv-
ity y. The dynamics of the wealth of a household is given by

dxt = (wyt + rxt − ct )dt,

where r is the interest rate, w is the level of wages, and ct is the consumption (the
control variable). The dynamics of the productivity yt is given by the stochastic
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Fig. 4.12 Huggett model: Left: the measures gi obtained by an explicit formula and by the finite
difference method for two grid resolutions with 500 nodes (Top) and 30 nodes (Bottom). Right:
the cumulative distributions

∫ x
x
dmi . Top: (a) Densities. (b) Cumulative Distribution. Bottom: (a)

Densities. (b) Cumulative Distribution

differential equation in R+:

dyt = μ(yt)dt + σ(yt )dWt ,

where Wt is a standard one dimensional Brownian motion. Note that this models
situations in which the noises in the productivity of the agents are all independent
(idiosyncratic noise). Common noise will be briefly discussed below.

As for the Huggett model, there is a borrowing constraint xt ≥ x, a household
tries to maximize the utility E

∫∞
0 e−ρtu(ct )dt . To determine the interest rate r and

the level of wagesw, Aiyagari considers that the production of the economy is given
by the following Cobb-Douglas law:

F(X, Y ) = AXαY 1−α,
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for some α ∈ (0, 1), where, if m(·, ·) is the ergodic measure,

• A is a productivity factor
• X = ∫x≥x

∫

y∈R+ xdm(x, y) is the aggregate capital

• Y = ∫x≥x
∫

y∈R+ ydm(x, y) is the aggregate labor.

The level of wages w and interest rate r are obtained by the equilibrium relation

(X, Y ) = argmax
(
F(X, Y )− (r + δ)X − wY

)
,

where δ is the rate of depreciation of the capital. This implies that

r = ∂XF(X, Y )− δ, w = ∂Y F (X, Y ).

Remark 12 Tackling a common noise is possible in the non-stationary version of the
model, by letting the productivity factor become a random process At (for example
At may be a piecewise constant process with random shocks): this leads to a more
complex setting which is the continuous-time version of the famous Krusell-Smith
model, see [48]. Numerical simulations of Krusell-Smith models have been carried
out by the authors of [43], but, in order to keep the survey reasonnably short, we
will not discuss this topic.

The Hamiltonian of the problem is H(x, y, p) = maxc
(
u(c) + p(wy + rx − c)

)

and the mean field equilibrium is found by solving the system of partial differential
equations:

0 = σ 2(y)

2
∂yyv + μ(y)∂yv +H(x, y, ∂xv)− ρv, (4.77)

0 = −1

2
∂yy

(
σ 2(y)m

)
+ ∂y

(
μ(y)m

)
+ ∂x

(
mHp(x, y, ∂xv)

)
, (4.78)

in (x,+∞) × R+ with suitable boundary conditions on the line {x = x} linked to
the state constraints,

∫

x≥x
∫

y∈R+ dm(x, y) = 1, and the equilibrium condition

r = ∂XF(X, Y )− δ, w = ∂YF (X, Y ),

X =
∫

x≥x

∫

y∈R+
xdm(x, y) Y =

∫

x≥x

∫

y∈R+
ydm(x, y).

(4.79)

The boundary condition for the value function can be written

0 = σ 2(y)

2
∂yyv + μ(y)∂yv +H↑(x, y, ∂xv)− ρv, (4.80)

where p �→ H↑(x, y, p) is the non-decreasing envelope of p �→ H(x, y, p).
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We are going to look for m as the sum of a measure which is absolutely
continuous with respect to the two dimensional Lebesgue measure on (x,+∞)×R+
with density g and of a measure η supported in the line {x = x}:

dm(x, y) = g(x, y)dxdy + dη(y), (4.81)

and for all test function φ:

∫

x>x

∫

y∈R+
g(x, y)

(
σ 2(y)

2
∂yyφ(x, y)+Hp(x, y, ∂xv(x, y))∂xφ(x, y)+ μ(y)∂yφ(x, y)

)

dxdy

+
∫

y∈R+

(
σ 2(y)

2
∂yyφ(x, y)+H↑

p (x, y, ∂xv(x+, y))∂xφ(x, y)+ μ(y)∂yφ(x, y)

)

dη(y)

⎫
⎪⎪⎬

⎪⎪⎭

= 0.

(4.82)

Note that it is not possible to find a partial differential equation for η on the line
x = x, nor a local boundary condition for g, because it is not possible to express

the term
∫

y∈R+
H↑
p (x, y, ∂xv(x+, y))∂xφ(x, y)dη(x, y) as a distribution acting on

φ(x, ·).
The finite difference scheme for (4.77), (4.80), (4.81), (4.82), and (4.79) is found

exactly in the same spirit as for Huggett model and we omit the details. In Fig. 4.13,
we display the optimal saving policy (x, y) �→ wy + rx − c∗(x, y) and the ergodic
measure obtained by the above-mentioned finite difference scheme for Aiyagari
model with u(c) = −c−1. We see that the ergodic measurem (right part of Fig. 4.13)
has a singularity on the line x = x for small values of the productivity y, and for
the same values of y, the density of the absolutely continuous part ofm with respect
to the two-dimensional Lebesgue measure blows up when x → x. The economic
interpretation is that the agents with low productivity are drifted to the borrowing
limit. The singular part of the ergodic measure is of the same nature as the Dirac
mass that was obtained for y = y1 in the Huggett model. It corresponds to the
zone where the optimal drift is negative near the borrowing limit (see the left part of
Fig. 4.13).

4.9 Conclusion

In this survey, we have put stress on finite difference schemes for the systems
of forward-backward PDEs that may stem from the theory of mean field games,
and have discussed in particular some variational aspects and numerical algorithms
that may be used for solving the related systems of nonlinear equations. We
have also addressed in details two applications of MFGs to crowd motion and
macroeconomics, and a comparison of MFGs with mean field control: we hope
that these examples show well on the one hand, that the theory of MFGs is quite
relevant for modeling the behavior of a large number of rational agents, and on the
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Fig. 4.13 Numerical simulations of Aiyagari model with u(c) = −c−1. Left: the optimal drift
(optimal saving policy) wy + rx − c∗(x, y). Right: the part of the ergodic measure which is
absolutely continuous with respect to Lebesgue measure

other hand, that several difficulties must be addressed in order to tackle realistic
problems.

To keep the survey short, we have not addressed the following interesting aspects:

• Semi-Lagrangian schemes for the system of forward-backward PDEs. While
semi-Lagrangian schemes for optimal control problems have been extensively
studied, much less has been done regarding the Fokker–Planck equation. In the
context of MFGs, semi-Lagrangian schemes have been investigated by F. Camilli
and F. Silva, E. Carlini and F. Silva, see the references [54–57]. Arguably, the
advantage of such methods is their direct connection to the underlying optimal
control problems, and a possible drawback may be the difficulty to address
realistic boundary conditions.

• An efficient algorithm for ergodic MFGs has been proposed by in [58, 59]. The
approach relies on a finite difference scheme and a least squares formulation,
which is then solved using Gauss-Newton iterations.

• D. Gomes and his coauthors have proposed gradient flow methods for solving
deterministic mean field games in infinite horizon, see [60, 61], under a
monotonicity assumption. Their main idea is that the solution to the system of
PDEs can be recast as a zero of a monotone operator, an can thus be found by
following the related gradient flow. They focus on the following example:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ+H0(·,∇u)− log(m) = 0, in T,

− div
(
m∂pH0(·,m,∇u)

) = 0, in T,
∫

T

m = 1,
∫

T

u = 0, m > 0 in T,

(4.83a)

(4.83b)

(4.83c)
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where the ergodic constant λ is an unknown. They consider the following
monotone map :

A

(
u

m

)

=
(−div

(
m(·)∂pH0(·,m(·),∇u(·))

)

−H0(·,∇u)+ log(m)

)

.

Thanks to the special choice of the coupling cost log(m), a gradient flow method
applied to A, i.e.

d

dτ

(
uτ

mτ

)

= −A
(
uτ

mτ

)

−
(

0
λτ

)

,

preserves the positivity of m (this may not be true with other coupling costs, in
which case additional projections may be needed). The real number λτ is used to
enforce the constraint

∫

T
mτ = 1.

This idea has been studied on the aforementioned example and some variants
but needs to be tested in the stochastic case (i.e., second order MFGs) and with
general boundary conditions. The generalization to finite horizon is not obvious.

• Mean field games related to impulse control and optimal exit time have been
studied by C. Bertucci, both from a theoretical and a numerical viewpoint,
see [62]. In particular for MFGs related to impulse control problems, there
remains a lot of difficult open issues.

• High dimensional problems. Finite difference schemes can only be used if the
dimension d of the state space is not too large, say d ≤ 4. Very recently, there
have been attempts to use machine learning methods in order to solve problems in
higher dimension or with common noise, see e.g. [63–66]. The main difference
with the methods discussed in the present survey is that these methods do not
rely on a finite-difference scheme but instead use neural networks to approximate
functions with a relatively small number of parameters. Further studies remain
necessary before it is possible to really evaluate these methods.

• Numerical methods for the master equation when the state space is finite, see
works in progress by the first author and co-workers.

To conclude, acknowledging the fact that the theory of mean field games have
attracted a lot of interest in the past decade, the authors think that some of the most
interesting open problems arise in the actual applications of this theory. Amongst
the most fascinating aspects of mean field games are their interactions with social
sciences and economics. A few examples of such interactions have been discussed
in the present survey, and many more applications remain to be investigated.
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