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Abstract. Remote attestation allows a verifier to remotely check the
integrity of a trusted computing platform. In recent years a number
of attestation protocols based on Trusted Platform Modules (TPMs)
have been proposed. These protocols cryptographically verify a trusted
platform’s state by exchanging TPM-signed quotes. Some of them also
establish an encrypted channel to the trusted platform, which allows the
verifier to transmit information that only the attested software stack can
read. However, many existing attestation protocols are either vulnerable
against man-in-the-middle attacks, or depend on outdated TPM specifi-
cations. In this work we analyze a recently developed attestation proto-
col that is being actively used to interconnect highly distributed trusted
applications. We find this protocol to be vulnerable against a variant
of the classical relay attack. In response to this threat we develop a
lightweight remote attestation protocol based on the TPM 2.0 specifica-
tion that is not vulnerable to this attack. Unlike previous proposals, our
protocol relies solely on the TPM to establish a shared key on the attested
channel, which significantly reduces its attack surface. Our protocol sup-
ports mutual attestation, perfect forward secrecy and is independent of
the underlying network stack. We provide a reference implementation of
our protocol and compare its performance to previous proposals. We also
analyze its security properties using the Tamarin theorem prover.

Keywords: Trusted computing · Trusted Platform Modules · Remote
attestation · Key establishment · Secure channels · Attestation
protocols

1 Introduction

Trusted Platform Modules (TPMs) are tamper-resistant hardware chips that
extend computer systems with basic security related features. Similar in nature
to smart cards, TPMs provide a hardware implementation of cryptographic func-
tions and protected storage for cryptographic keys. Since they are included in
many motherboards, TPMs are arguably the most prevalent trusted computing
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technology today. One of the most interesting TPM capabilities is the remote
verification of a trusted platform’s software stack. For this the TPM uses volatile
platform configuration registers (PCRs) to measure the current hardware and
software configuration as an unforgeable fingerprint. A remote verifier can then
request proof of the platform configuration in form of a quote that has been
signed by the TPM. This quote contains a nonce generated by the verifier
as well as the trusted platform’s fingerprint, thereby attesting to the trusted
software stack. After comparing the fingerprint to expected values, the veri-
fier is convinced that the trusted platform indeed runs a legitimate software
stack. Remote attestation protocols define how the verification of a trusted plat-
form should be conducted over the network. Besides creating and transmitting
TPM-signed quotes, most protocols also establish encrypted channels between
the attested endpoints. Even though this has been a topic of comprehensive
research in the past, currently there are very few ready-to-use protocol imple-
mentations available. One of the few actively used remote attestation protocols
is the Industrial Data Space Communication Protocol (IDSCP) [10]. Introduced
by Lux and Brost in 2018, IDSCP has been developed specifically for the Fraun-
hofer Industrial Data Space (IDS) project [12], which provides secure virtual
data spaces for smart business ecosystems. The IDSCP protocol incorporates
the benefits of several earlier proposals, such as TLS integration as well as sup-
port for mutual attestation and perfect forward secrecy. Also its code is publicly
available on Github1. Because of these advantages, IDSCP is currently one of
the most advanced attestation protocol in productive use.

In this work we present an attack on the IDSCP protocol in scenarios where
multiple software components are providing an attestation endpoint on the
trusted platform. This scenario is especially relevant in applications where we
cannot predict what software will be considered trustworthy, but it applies to
other use cases as well. In response to this threat we also develop a lightweight
remote attestation protocol based on TPM 2.0 that is not vulnerable to this
attack, while still keeping the advantages of IDSCP over previous proposals.
Our protocol is easy to implement, supports mutual attestation and forward
secrecy, and is independent of the used network stack. In addition our protocol
keeps the secret parts of the shared keys used to encrypt the attested channel
inside the TPM at all times, which is a security advantage over previous pro-
posals. A reference implementation of our protocol as well as the formal model
used for security verification are publicly available2. The remainder of this paper
is structured as follows. In Sect. 2 we discuss the strengths and weaknesses of
existing remote attestation protocols, before briefly presenting IDSCP and the
vulnerabilities we found with it. In Sect. 3 we describe the design of our protocol
and its reference implementation. Finally, in Sect. 4 we evaluate the proposed
protocol in terms of functionality and security. We also verify the resilience of
our protocol against the presented attack using the Tamarin theorem prover [11].

1 https://github.com/industrial-data-space.
2 https://gitlab-ext.iosb.fraunhofer.de/wagner/tpm20-attestation-protocol.

https://github.com/industrial-data-space
https://gitlab-ext.iosb.fraunhofer.de/wagner/tpm20-attestation-protocol


Establishing Secure Channels Using Remote Attestation with TPM 2.0 75

2 Discussion of Existing Protocols

In this section we first define requirements that attestation protocols should
adhere to. Then we discuss the most important remote attestation protocols
that have been proposed so far and point out their strengths and weaknesses.
Finally we present a still unpublished attack on IDSCP.

2.1 Protocol Requirements

We define three security requirements S1 to S3 for remote attestation protocols.

(S1) Authentication: The protocol verifier unambiguously identifies and
authenticates the attested platform. No attacker may forge the authentication.

(S2) Platform integrity verification: The protocol verifier is convinced that
the attested platform runs a certain trusted software stack, i.e. its PCRs are
set to specific values. No attacker is able to impersonate a trusted platform.

(S3) Secure key establishment: The protocol verifier establishes a shared
secret with the attested platform. No attacker is able to determine this secret.

Any successful attack against the three main security requirements breaches the
confidentiality and integrity of information transmitted over the secure channel.
In order to represent security properties of the discussed protocols in finer detail,
we distinguish four types of attacks with the additional requirements S4 to S7.
Our attacker model consists of adversaries who control the network as well as
any secret outside the TPM, including platform secrets such as TLS private keys.

(S4) No replay attacks: No attacker is able to break S1 to S3 by resending
previously intercepted legitimate messages.

(S5) No insider attacks: No attacker with knowledge of platform secrets that
are not protected by the TPM (e.g. TLS private keys) may break S1 to S3.

(S6) No relay attacks on protocol endpoint: No attacker is able to launch
a relay attack targeting the specific protocol’s attestation endpoint.

(S7) No relay attacks on non-protocol endpoint: No attacker is able to
launch a relay attack targeting any other available attestation endpoint.

In addition to the security goals we define four functional requirements F1
to F4. They deal with protocol properties necessary to apply the solution to a
wide range of dynamic and challenging tasks.

(F1) Mutual attestation: Establishing a secure channel through a single pro-
tocol handshake verifies the platform integrity of both peers.

(F2) Re-attestation: Any verifier can re-attest the trusted platform even after
the protocol has established a shared secret.

(F3) Forward secrecy: Disclosing a long-term secret must not corrupt previ-
ously intercepted protocol sessions.

(F4) Protocol overhead: The attestation protocol must not generate sub-
stantial overhead in performance, implementation complexity and code
base size.
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2.2 Related Work

In recent years several remote attestation protocols have been proposed. How-
ever, most of them are not suitable for large-scale remote attestation applica-
tions, or have already been identified as vulnerable.

No Key Establishment or Attestation. Some protocols such as [5,13] only focus
on conducting a remote attestation and do not include a shared key establish-
ment (requirement S3). Since these attestation protocols cannot establish secure
communication channels, they are unsuitable for scenarios where confidential
information should be transmitted to a remote trusted software stack. A more
recent project integrates the TPM 2.0 engine in OpenSSL3. However, this only
allows OpenSSL to use the TPM hardware for its cryptographic operations, but
does not provide a remotely attested secure channel (requirements S2 and S3).

Vulnerable Against Insider Attacks. Several protocols provide a secure channel
between the verifier and the attested platform by combining remote attestation
techniques with an underlying TLS protocol instance. When doing so it is vital
to properly bind the keys responsible for creating the encrypted TLS channel to
the attested trusted platform, because otherwise the protocols can become inse-
cure. Cheng et al. [4] propose to establish the link between remote attestation
and TLS by hashing the TLS pre-master secret into the quote. However, this
approach is insecure against attackers with insider knowledge, such as admin-
istrators of attested systems. We have to assume that system administrators
have access to long-term platform secrets, as long as they are not protected
by the TPM. Hence they can simply use the TLS private keys to decrypt the
pre-master secret that the legitimate trusted platform transmits during the TLS
handshake. As a result, they can passively intercept secrets that an unsuspecting
verifier sent across the trusted channel to the attested system. Remote attesta-
tion protocols susceptible to this kind of insider attack do not fulfill security
requirement S5. Similarly Goldman et al. [7] attempt to link remote attestation
with the SSL/TLS stack by adding an intermediate platform certificate signed by
a trusted CA. This method also does not protect against insider attacks, because
we have to assume that an insider attacker can obtain the unprotected private
key corresponding to this new platform certificate. Zhou and Zhang [16] base
their solution to this problem on pre-shared passwords. However, this approach
is also vulnerable against malicious administrators, because again we have to
assume that they know any pre-shared password. Furthermore a protocol based
on pre-shared passwords is unfeasible for highly distributed use cases where new
communication endpoints regularly join the network (requirement F4).

Vulnerable Against Relay Attacks. Protocols are vulnerable against insider
attacks if they use long-term secrets to establish the secure channel. This attack
can be avoided by conducting an ephemeral key exchange during the attestation
process. Stumpf et al. [14] propose to link remote attestation with a Diffie-
Hellman key exchange by including the ephemeral public keys in the quote.
3 https://github.com/tpm2-software/tpm2-tss-engine.

https://github.com/tpm2-software/tpm2-tss-engine
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After the attestation is complete, both endpoints derive a symmetric key from
the established secret and use it to encrypt all subsequent communication. While
this thwarts the insider attack and provides forward secrecy (S5 and F3), includ-
ing ephemeral public keys in the quote can introduce vulnerabilities against relay
attacks (c.f. [6,16]). During this attack the adversary relays messages to the orig-
inal trusted system in order to answer another attestation challenge on his own.
Protocols directly based on Stumpf’s approach [1,8] are also susceptible to this
attack and do not fulfill requirement S6.

Other Protocols. Gasmi et al. [6] and Armknecht et al. [2] embed the remote
attestation process into a standard TLS handshake. While this fixes the vul-
nerability against relay attacks, there are drawbacks to this approach. Since
attestation data is included in the TLS handshake, a modified TLS implemen-
tation has to be used. Tying remote attestation to the TLS library conflates
protection goals and complicates code base updates (requirement F4). Further-
more, these protocols use the Secret Key Attestation Evidence (SKAE) feature
of the TPM 1.2 specification, which is not included in recent versions anymore.
In a similar fashion, Lan et al. [9] add direct anonymous attestation (DAA) to a
TLS handshake. This approach also uses a modified TLS stack, does not support
mutual attestation and requires fresh AIK re-enrollments for each handshake,
which is very costly in distributed environments (requirements F1 and F4). Also
neither of these proposals offer working code or usable libraries.

We provide a detailed comparison of the discussed protocols during the eval-
uation in Sect. 4 (c.f. Tables 2 and 3). All in all no existing protocol fulfills all
requirements we have for a remote attestation protocol.

2.3 Attacks on IDSCP

The Industrial Data Space Communication Protocol (IDSCP) is a remote attes-
tation protocol introduced by Lux and Brost in 2018 [10]. It relies on an under-
lying standard TLS connection to provide authentication and channel encryp-
tion. However, unlike with previous TLS-based proposals, the remote attesta-
tion is not directly included in the TLS handshake. Instead a mutual attesta-
tion is conducted as soon as the standard TLS connection has been established
between both trusted endpoints. During this attestation phase both sides draw
and exchange random nonces to protect against replay attacks. These nonces are
then used to generate a TPM-signed quote containing a selection of the current
PCR values on each trusted platform. Finally the quotes’ PCR values and signa-
tures are verified by each side, thereby mutually confirming the integrity of both
trusted software stacks. In order to link the underlying TLS session with the
conducted remote attestation, the quotes also contain a hash of the respective
TLS certificates that authenticated the initial TLS handshake. By comparing
this hash with his own TLS public key fingerprint, each verifier can check if
the attested remote endpoint operates on the “right” TLS channel. A complete
description of the IDSCP protocol is given in [10]. For convenience purposes we
include an overview of the protocol handshake in the appendix (c.f. Table 4).
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Instead of conducting a separate key agreement, IDSCP relies on the under-
lying TLS channel to encrypt transmitted data. Since no modified or enhanced
TLS handshake is necessary, IDSCP can be easily implemented using any stan-
dard TLS library. This is a clear advantage over previous TLS-based remote
attestation protocols such as [4] and [6]. However, conflating the security goals
of the encryption layer and the attestation protocol introduces new vulnera-
bilities. The attestation part of IDSCP simply presupposes the security of the
encrypted TLS channel without considering that the respective attacker models
differ. As a result, the protocol becomes vulnerable against an insider attack sim-
ilar to the previously mentioned one on Cheng’s proposal [4], if the underlying
TLS key establishment is performed by transmitting an encrypted pre-master
secret. An insider attacker, who has access to the TLS private keys of the trusted
platform, can intercept the pre-master secret and subsequently decrypt any com-
munication that should be decipherable solely by the trusted software stack of
the attested endpoint. Even though not explicitly mentioned by the IDSCP spec-
ification, this attack can be avoided by forcing both endpoints to agree on a TLS
cipher suite that features perfect forward secrecy (PFS).

Scenario for a Relay Attack. However, even when IDSCP uses perfect for-
ward secrecy, in certain situations the protocol is still vulnerable against a vari-
ant of the classical relay attack. During a relay attack the adversary typically
conducts a legitimate remote attestation with the trusted platform and uses the
response to forge attestation evidence for his own platform. While relay attacks
on Stumpf’s protocol are performed this way (c.f. [6,16]), the attack on IDSCP
requires a modified approach. More concretely, we extend the classical relay attack
by using a legitimate third-party application on the trusted platform that also
offers an attestation endpoint. The key to this attack is that these two end-
points, while on the same platform, do not implement the same attestation proto-
col. Even though the security impact of multiple attestation endpoints is seldom
being considered, this is a very realistic attack vector for IDSCP. Since the Indus-
trial Data Space architecture supports distributed data processing across multi-
ple companies [12], third-party applications are deployed on trusted platforms.

Fig. 1. Scenario for the relay attack on IDSCP.
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As a result it is possible that – in addition to the general IDSCP endpoint – a sec-
ond remote attestation endpoint is provided by one of the legitimate data process-
ing applications. This scenario is depicted in Fig. 1. The communication is routed
through the IDSCP endpoints on both Alice’s and Bob’s system. In order to inter-
cept information intended for Bob’s trusted software stack, the attacker first estab-
lishes a TLS connection with Alice’s IDSCP endpoint. Then the attacker contacts
the additional attestation endpoint in Bob’s trusted software stack (in this case
app 3) to retrieve the quoting information he needs to complete the IDSCP hand-
shake. Note that app 3 is a legitimate data processing application and a valid part
of Bob’s trusted software stack (TSS), so the PCR fingerprints of the generated
quote are as Alice expects them to be. Hence Alice will trust this IDSCP channel,
even though it is controlled by the attacker.

Relay Attack on IDSCP. If the IDSCP protocol is executed properly, each
trusted platform first performs a TLS handshake, chooses the Diffie-Hellman
key pair and signs the public part with the TLS private key. In order to extract
information intended only for a trusted platform, the attacker has to perform
these steps on a different machine. Fig. 2 shows how an internal attacker can
intercept encrypted information from an IDSCP channel. In this example Alice
acts as honest verifier, who intends to establish an attested IDSCP connection
to Bob’s trusted platform. As before, we assume the strongest attacker to be an
administrator attempting to intercept information that should be decipherable
only by Bob’s unmodified trusted software stack. This attacker has access to
Bob’s TLS long-term secrets and can use them to conduct his own TLS hand-
shake with the remote verifier (Alice), thereby impersonating an endpoint on
Bob’s legitimate trusted system (1). The goal of the attack is to establish an
attested connection with a computer system that is not the trusted platform it
claims to be. Note that even though an insider attacker typically has access to
Bob’s legitimate trusted platform, he cannot use the original system to do this,
because that would change the PCRs and hence reveal the attack.

Fig. 2. Relay attack on the IDSCP protocol. Not all messages are shown.

After the TLS connection is established, the attacker needs to present a valid
quote during the subsequent attestation phase of the IDSCP protocol. This quote
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needs to be signed by Bob’s original TPM and has to contain both the correct
nonce and the remote TLS certificate. Clearly such a quote can only be created by
Bob’s original trusted platform. In a classical relay attack the adversary would
try to extract the quote by initiating another IDSCP handshake with Bob’s
trusted platform and relay Alice’s nonce as his own. However, this approach
does not work for IDSCP, because Alice expects the quote to contain both her
nonce and her TLS certificate. According to the protocol specification, Bob’s
unmodified IDSCP endpoint only generates quotes containing TLS certificates
that the remote party used for establishing the connection. Hence the attacker
would need to sign a key exchange with Alice’s TLS long-term secret, which he
does not know. Instead he contacts the additional attestation endpoint in Bob’s
trusted software stack and requests a quote from there. To make the quote look
as if generated by the IDSCP endpoint, the attacker calculates the hash of Alice’s
nonce and her TLS certificate – both values are known to him – and uses it as
his own nonce (2). Assuming that the additional attestation endpoint processes
the requested qualifying data unaltered, this generates a quote that convinces
Alice (3). Since the hash value is indistinguishable from a random nonce, neither
honest party can detect this interference. Once the handshake is completed, Alice
is confident that she can securely send information to Bob’s trusted platform,
even though the attacker intercepts them on a different machine.

The IDSCP protocol is vulnerable because it includes public keys in the
quote. Attestation protocols using only randomly drawn nonces as qualifying
data, such as [2,6,9], are not vulnerable to this attack. However, these protocols
have drawbacks that make them unsuitable for use cases such as the Industrial
Data Space (c.f. Sect. 2.2). Hence there is still a need for a simple and easily
usable remote attestation protocol that is not susceptible to this type of attack.

3 A Secure Protocol

A secure protocol needs to conduct a remote attestation and establish encrypted
channels between the endpoints. On their own, both of these tasks have been
solved. The problem we face when designing an attestation protocol is how to
bind the keys responsible for the encrypted channel to the attested trusted plat-
form. Doing this right is vital for a secure attestation protocol, because it ensures
that only the legitimate trusted platform can read data transmitted over the
attested channel. As we showed in the previous section, IDSCP is vulnerable
to active man-in-the-middle attacks because it includes security relevant infor-
mation such as the public part of a Diffie-Hellman key in the quote. A possible
solution to this problem is to extend the PCRs with that information prior to
attestation, instead of using it directly as qualifying data for the quote. Doing
so shows a verifier that the Diffie-Hellman key pair used for key establishment
was in fact generated on the trusted platform itself, while avoiding the vulner-
ability against relay attacks. However, this solution is not feasible in practice.
Since each established channel requires a new key exchange, the legitimate PCR
values will change constantly. As a result the measurement logs that verifiers
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have to check become large and extremely cluttered. This makes it very difficult
to update and maintain a trusted software stack in a dynamic and distributed
environment. Another approach for binding the ephemeral public keys to the
trusted platform is to sign them with the attestation identity key (AIK). Since
only the TPM can sign with the AIK, this proves that the key originates from
the trusted platform. Also it prevents relay attacks, since the key exchange is
completely independent of the quote. However, the AIK is a restricted key and
cannot be used for signing external data. It can only sign data structures that
have been created by the TPM, such as quotes. This property of the AIK is
in fact very important for the remote attestation, since otherwise the platform
could use the TPM to certify a fake quote (e.g. with wrong PCRs). While this
makes an AIK-certified key exchange impossible with the now outdated TPM
version 1.2, there are more options available with a recent TPM in version 2.0.
By implementing a TPM-managed key exchange, we can sign ephemeral keys
with the AIK, thereby binding the key establishment to the trusted platform.

3.1 Protocol Design

A secure remote attestation protocol has to protect against internal attackers
with access to platform secrets. However, TLS by design does not consider this
type of adversary. As previously shown, combining the TLS-based encryption
with attestation conflates security goals and complicates protocol applications.
To avoid this we choose not to use TLS as underlying protocol. Instead we
concentrate on establishing a shared secret that is guaranteed to be available
only to the attested platform. This secret can then be used for manual encryption
or as a key for an independent TLS layer. We assume that prior to the start of
the protocol both participants have taken ownership of their TPM and created
a storage root key. Furthermore they should have performed the AIK enrollment
process and have their AIK certificates signed by a privacy CA. Our attestation
protocol consists of three phases, which are shown in Table 1. The semantic of
the functions as well as the parameter names follow the TPM 2.0 specification.

Initiation. During the initiation phase, both endpoints first create a TPM key
template for appropriate encryption keys, which will be used in a later phase.
Then random nonces are created and exchanged (steps 1 and 2). While the
size of the nonces is not specified, it is recommended to use at least 160 bits of
random data to ensure proper quote freshness. Furthermore, both sides transmit
a selection of PCR numbers that they expect to be included in the quote.

Attestation. Afterwards the attestation phase is responsible for exchanging and
verifying quotes. This is done in accordance with the TCG trusted attestation
protocol [15]. For the sake of simplicity Table 1 only shows the explicit attes-
tation. Nevertheless the other specified attestation types may be used as well.
Since this affects only the TPM function calls and the contents of the quote, but
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Table 1. Our proposed attestation protocol

not the transmitted messages, our protocol is agnostic about the concrete attes-
tation type. With explicit attestation, both participants execute TPM2 Quote in
order to create a quote that is signed by the TPM with the attestation identity
key. Only the previously received nonce is included as qualifying data. After-
wards the quote, its signature, the values of the requested PCRs and the AIK
certificate are transmitted to the verifier (steps 3 and 4). Once the attestation
information has been passed to the remote side, the AIK certificate, quote sig-
nature and quote information are being verified in that order. Since the protocol
supports mutual attestation, both parties have to perform these protocol steps.
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If any of the verification steps fail, either of the endpoints terminates the pro-
tocol handshake. After the attestation phase has been completed successfully,
both endpoints have verified the integrity of the other trusted platform.

Key Establishment. Finally the key establishment phase establishes a shared
secret between the two endpoints that is bound to the attested trusted platforms.
For this we conduct a TPM-managed Elliptic Curve Diffie-Hellman (ECDH)
key exchange. The TPM 2.0 specification conveniently offers functions for one-
pass and two-pass key exchange protocols. Since we only want to conduct an
ephemeral key exchange, the one-pass version is sufficient. Usually the one-pass
key exchange is conducted asymmetrically using TPM2 ECDH KeyGen. How-
ever, this is not feasible for our protocol, because we need to sign both ephemeral
public keys with the restricted AIK. Because the TPM2 ECDH KeyGen func-
tion directly outputs the generated ephemeral public point without proof of
TPM ownership, we cannot use the AIK to sign this key. Also, in order to keep
the protocol implementation as simple as possible, it is beneficial to perform a
symmetric key establishment where both sides execute the same steps.

To solve these problems we conduct the key exchange by creating both
ephemeral keys with TPM2 Create and invoking the TPM2 ECDH ZGen func-
tion twice (c.f. Table 1). At first Alice creates a new ephemeral ECDH key pair
by invoking the TPM2 Create method with the ECDH key template created
earlier. It is important that this key is generated as a wrapped sub key instead
of a root key using TPM2 Create Primary. This is because primary keys are
derived from the seldom changing platform secrets, while the ephemeral keys
need to be randomly drawn for each handshake. After the ephemeral key pair
has been created, it needs to be loaded into the TPM using TPM2 Load. Since
the key pair has been generated in the TPM instead of the CPU, its public part
can then be signed by the AIK using the TPM2 Certify function It is important
to include the previously exchanged nonces into this signature, because other-
wise the key exchange may be vulnerable to replay attacks. Finally Alice sends
the public part of the ephemeral key, as well as the certification information
and the signature to Bob (step 5). Bob can check if the received ephemeral
key was in fact generated by the trusted system by verifying the signature with
Alice’s AIK certificate. He also checks if his nonce is included in the certifica-
tion information. Then Bob uses TPM2 Create and TPM2 Certify to generate
his own ephemeral ECDH key and AIK signature in the same way. By invoking
TPM2 ECDH ZGen with a handle on his own ECDH key and Alice’s public
key, Bob uses his TPM to calculate the shared secret Z. Finally he transmits
his ephemeral public key and the corresponding signature back to Alice (step 6).
After receiving Bob’s public key and signature, Alice performs the same steps to
verify the key and calculate the shared secret on her end. If any of the verification
steps fail, either of the endpoints terminates the protocol handshake. Otherwise
the protocol handshake completes with the establishment of the shared secret.
Usually a symmetric encryption key is derived from the shared secret via a key
derivation function (KDF), which protects the established channel. The nature
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of the KDF and the subsequent encryption is not specified in the protocol hand-
shake. We furthermore do not have any specific requirements for the network
protocol that is used to send and receive the messages shown in Table 1.

3.2 Protocol Implementation

A reference implementation of our protocol is available (see footnote 2). To
access TPM 2.0 devices we use Microsoft’s TPM Software Stack. Since this
software stack interfaces both physical TPM devices and a TPM 2.0 simulator,
it is suitable for development purposes as well as productive use. As there are
bindings for other programming languages, the protocol can be adopted easily
for other platforms. We create the ephemeral ECDH keys using the NIST P-256
elliptic curve and SHA-256 message digests. The attestation handshake and all
subsequent communication is conducted over the standard WebSocket protocol.
After a successful handshake the symmetric channel encryption is achieved using
the Java Crypto API and an AES-256 encryption with PKCS#7 padding.

4 Evaluation

In this section we analyze the presented protocol in terms of the previously
defined security and functional requirements. We also compare our approach
to previously proposed attestation protocols. Finally show how we verify our
protocol using the Tamarin protocol verifier.

4.1 Security Analysis

In Sect. 2.1 we defined seven security goals S1 to S7. Now we show that our pro-
posal fulfills all of these requirements. The security goals of authentication (S1)
and platform integrity verification (S2) are satisfied by the attestation phase of
the protocol. This phase performs a standard remote attestation of both end-
points by exchanging quotes that are signed with the platforms’ attestation iden-
tity keys (AIK). Even an insider attacker with access to long-term secrets cannot
forge an AIK signature, because the private key is only accessible to the TPM.
Hence the AIK signature ensures that the verifier actually communicates with
the correct platform, which fulfills the authentication requirement (S1). Natu-
rally the exchanged quotes also attest to the integrity of the trusted platforms
(S2), because they contain the requested selection of PCR values for the veri-
fiers to check. Furthermore our protocol offers a secure key establishment (S3)
by performing a Diffie-Hellman key exchange in the final phase of the handshake.
Unlike with the proposal of Stumpf [14] and its variants, our key establishment is
authenticated by the AIK. This enables the verifier to check that the ephemeral
keys have in fact been generated on the authenticated trusted platform in the
already attested state. As a result, our protocol is not vulnerable against the
attacks defined by S4 to S7. The nonces that are exchanged during the initiation
phase protect against replay attacks (S4). The protocol is also not vulnerable
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against insider attacks (S5), because nothing is signed or encrypted with a non-
TPM key that an insider attacker could use to his advantage. Especially the
ephemeral keys are not signed with external long-term secrets, but are instead
authenticated by the AIK, which is not available to the insider attacker. The
main advantage of our protocol over IDSCP is its resilience against relay attacks
even with a second attestation endpoint (S6 and S7). The key difference is that
our protocol uses only nonces as qualifying data for the quote, not the hash of
other security critical information. This prevents the presented relay attack with
an additional attestation endpoint. A further advantage of our protocol is that
the private ephemeral keys are generated by the TPM and never leave it. There-
fore our protocol is not vulnerable against side-channel attacks on the CPU.
Protocols that generate the ephemeral keys on the processor need to trust that
they are not being disclosed, which is a severe disadvantage over creating them in
the TPM. Table 2 compares the security properties of our protocol with previous
proposals discussed in Sect. 2.2. For better comparison of vulnerable protocols,
the second column shows the weakest attacker that successfully breaks one of
the security requirements. We distinguish between an insider attacker (I), who
knows non-TPM secrets, and an external adversary (E). Also the adversary can
either be passive (P) or an active Dolev-Yao attacker (A). This notation gives
an active insider attacker (IA) as strongest adversary, while a passive external
attacker (EP) is the weakest adversary. The checkmark after the attacker prop-
erties shows if the attack is transparent (✓) or detectable by one of the protocol
participants (✗). In summary, our protocol as well as the proposals of Armknecht
and Lan are secure against all presented attacks. However, as already discussed
in Sect. 2.2, in practice the latter protocols have disadvantages both in terms of
security and functionality.

Table 2. Comparison of security properties.

Proposal Attacker S1 S2 S3 S4 S5 S6 S7 Remarks

Sailer [13] EA (✗) ✗ ✓ – ✓ – – – No key exchange

Coker [5] – ✓ ✓ – ✓ – – – No key exchange

Goldman [7] IP (✓) ✓ ✓ ✗ ✓ ✗ ✗ ✗ PFS not mentioned

Cheng [4] IP (✓) ✓ ✓ ✗ ✓ ✗ ✗ ✗

IDSCP IP (✓) ✓ ✓ ✗ ✓ ✗ ✗ ✗

Aziz [3] IA (✗) ✓ ✓ ✗ ✓ ✗ ✗ ✗ PFS not mentioned

Stumpf [14] EA (✓) ✓ ✓ ✗ ✓ ✓ ✗ ✗

IDSCP (PFS) IA (✗) ✓ ✓ ✗ ✓ ✓ ✓ ✗

Zhou [16] IA (✗) ✓ ✓ ✗ ✓ ✗ ✓ ✗

Armknecht [2] – ✓ ✓ ✓ ✓ ✓ ✓ ✓ Only TPM 1.2

Lan [9] – ✓ ✓ ✓ ✓ ✓ ✓ ✓

Our protocol – ✓ ✓ ✓ ✓ ✓ ✓ ✓ Only TPM 2.0
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4.2 Protocol Properties

Considering the functional requirements, our protocol clearly supports mutual
attestation (F1). Since the protocol explicitly separates attestation from key
establishment, re-attestation is possible without a key change (F2). Finally, con-
ducting a new ephemeral key exchange for each protocol handshake gives the
forward secrecy property (F3). In terms of overhead our approach is of a similar
complexity as IDSCP (F4). Our reference implementation has about 1700 lines
of code, while IDSCP has about 2000. Furthermore, we have no link with a TLS
protocol instance and are independent of the network stack. On the other hand,
since our protocol calculates the key exchange directly on the TPM hardware
instead of the much faster CPU, a performance impact is to be expected. Table 3
compares the functional properties of our protocol to the previous proposals.

Table 3. Comparison of functional properties.

Proposal F1 F2 F3 F4 Remarks

Sailer [13] ✗ – ✗ Low

Coker [5] ✗ – ✗ Medium

Goldman [7] ✗ ✓ (✓) High

Cheng [4] ✗ – ✗ Low

IDSCP ✓ ✗ ✗ Low

Aziz [3] ✓ ✗ (✓) Medium

Stumpf [14] ✗ ✗ ✓ Low

IDSCP (PFS) ✓ ✗ ✓ Low

Zhou [16] ✓ ✗ ✓ Medium

Armknecht [2] ✓ ✓ ✓ High Only TPM 1.2

Lan [9] ✗ ✗ ✓ High

Our protocol ✓ ✓ ✓ Medium Only TPM 2.0

4.3 Formal Verification

In addition to the informal security analysis, we also verified our protocol
using the Tamarin prover [11]. Our main goal in doing so is to show that
– unlike IDSCP – our protocol is secure even with an additional attestation
endpoint (security goal S7). First we modeled both our protocol and IDSCP
with Tamarin’s Diffie-Hellman equational theory. Then we defined the security
requirements as Tamarin trace properties quantifying over the attacker’s knowl-
edge. These trace properties determine that for a secure protocol the attacker
must not learn the established shared secret. We also added an additional rule
that allows the attacker to retrieve signed quotes with any qualifying data.
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This models the additional attestation endpoint on the trusted platform. If the
rule is active, Tamarin in fact finds the man-in-the-middle attack on IDSCP we
presented in Sect. 2.3. In contrast, Tamarin correctly verifies all security prop-
erties on our protocol, even with the additional attestation endpoint available
to the attacker. All theorem definitions of both IDSCP and our protocol are
available for verification (see footnote 2).

5 Conclusion

In this work we evaluated existing attestation protocols in terms of security
and functionality. We found that many existing protocols are either vulnerable
against insider or relay attacks, or depend on outdated TPM specifications. Fur-
thermore we showed that an actively used remote attestation protocol (IDSCP)
is vulnerable against a variant of relay attacks that assumes the existence of addi-
tional attestation endpoints. In response to this threat we proposed and analyzed
a lightweight remote attestation protocol that is not vulnerable against this type
of attack. Our protocol is based on the TPM 2.0 specification and offers mutual
attestation, re-attestation and shared key establishment with perfect forward
secrecy. Unlike previous proposals, our protocol generates secret keys exclusively
inside the TPM, which protects against side-channel attacks on the CPU. Keep-
ing our protocol completely independent of the underlying network stack makes
it very flexible and easy to adapt for any use case specific requirements. Finally
we analyzed the security of our protocol both informally as well as by modeling
its security properties with the Tamarin theorem prover. A ready-to-use protocol
implementation is publicly available as well (see footnote 2).

As future work we plan to implement our protocol for other platforms and
more TPM software stacks. We also intend to evaluate the performance of our
protocol more rigorously in the Industrial Data Space as an actual productive
use case. Furthermore our protocol can be extended to also support direct anony-
mous attestation (DAA).

A The Industrial Data Space Communication Protocol

Table 4 illustrates the messages sent during an IDSCP handshake. A complete
description of the IDSCP protocol is given in [10]. The reference implementation
of IDSCP is available on Github (see footnote 1).
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Table 4. IDSCP remote attestation protocol
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