
Kostantinos Markantonakis
Marinella Petrocchi (Eds.)

LN
CS

 1
23

86

16th International Workshop, STM 2020
Guildford, UK, September 17–18, 2020
Proceedings

Security
and Trust Management

Lecture Notes in Computer Science 12386

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Kostantinos Markantonakis •

Marinella Petrocchi (Eds.)

Security
and Trust Management
16th International Workshop, STM 2020
Guildford, UK, September 17–18, 2020
Proceedings

123

Editors
Kostantinos Markantonakis
Royal Holloway, University of London
Egham, UK

Marinella Petrocchi
National Research Council
Pisa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-59816-7 ISBN 978-3-030-59817-4 (eBook)
https://doi.org/10.1007/978-3-030-59817-4

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
Chapter “Reducing the Forensic Footprint with Android Accessibility Attacks” is licensed under the terms
of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0591-877X
https://doi.org/10.1007/978-3-030-59817-4
http://creativecommons.org/licenses/by/4.0/

Preface

These proceedings contain the papers selected for presentation at the 16th International
Workshop on Security and Trust Management (STM 2020) held as an online event
during September 17–18, 2020, in conjunction with the 25th European Symposium on
Research in Computer Security (ESORICS 2020). After evaluating the ongoing
COVID-19 situation, the decision was made to run ESORICS 2020 and the associated
workshops as an all-digital conference experience. Therefore, STM 2020 took place as
an entirely virtual event.

In response to the call for papers, 20 papers were submitted to the workshop. These
papers were evaluated based on their significance, novelty, and technical quality. As in
previous years, reviewing was double-blind: The identities of reviewers were not
revealed to the authors of the papers and identities of authors were not revealed to the
reviewers.

The Program Committee meeting was held electronically, yielding intensive dis-
cussion over two weeks.

Of the papers submitted, eight were selected for presentation at the conference (an
acceptance rate of 40%).

The workshop also included two invited talks, one by Professor Ernesto Damiani
and one by Jorge Luis Toro Pozo, the winner of the 2020 ERCIM WG STM Best PhD
Thesis Award.

An event like this does not just happen; it depends on the volunteer efforts of a host
of individuals. There is a long list of people who volunteered their time and energy to
put together the workshop and who deserve special recognition.

Thanks to all the members of the Program Committee and the external reviewers.
Their hard work in the paper evaluation is much appreciated.

We are also very grateful to all those people whose work ensured a smooth orga-
nization process: Pierangela Samarati, chair of the Security and Trust Management
Working Group, for her support and advice; Steve Schneider, for his support as general
chair of ESORICS 2020; Mark Manulis, for his help as workshop chair of ESORICS
2020; Darren Hurley-Smith, for taking care of publicity; and Michela Fazzolari, for
taking care of the workshop website.

Last, but certainly not least, thanks go to all the authors who submitted papers, and
to all the attendees who contributed to the workshop discussions. We hope all readers
and attendees find the proceedings stimulating and a source of inspiration for future
research and practical development work.

August 2020 Kostantinos Markantonakis
Marinella Petrocchi

Organization

Program Chairs

Kostantinos Markantonakis Royal Holloway, UK
Marinella Petrocchi CNR, Italy

Publicity Chair

Darren Hurley-Smith Royal Holloway, UK

Web Chair

Michela Fazzolari CNR, Italy

STM Steering Committee

Pierangela Samarati
(Chairperson)

University of Milan, Italy

Theo Dimitrakos British Telecom, UK
Javier Lopez University of Malaga, Spain
Fabio Martinelli CNR, Italy
Sjouke Mauw University of Luxembourg, Luxembourg
Stig F. Mjølsnes Norwegian University of Science and Technology,

Norway
Ulrich Ultes-Nitsche University of Fribourg, Switzerland

Program Committee

Sara Abugazalah King Khalid University, Saudi Arabia
Raja Naeem Akram Royal Holloway, UK
Cristina Alcaraz University of Malaga, Spain
Stefano Calzavara Università Ca’ Foscari, Italy
Lorenzo Cavallaro King’s College, UK
Madeline Cheah Horiba Mira, UK
Mauro Conti University of Padua, Italy
Gabriele Costa IMT Lucca, Italy
Haitham Cruickshank University of Surrey, UK
Jorge Cuellar Siemens AG, Germany
Sabrina De Capitani di

Vimercati
University of Milan, Italy

Rocco De Nicola IMT Lucca, Italy
Roberto Di Pietro Hamad Bin Khalifa University, Qatar

Michela Fazzolari CNR, Italy
Sara Foresti University of Milan, Italy
Letterio Galletta IMT Lucca, Italy
Olga Gadyatskaya Leiden University, The Netherlands
Gerhard Hancke City University of Hong Kong, Hong Kong
Thibaut Heckmann ISG Smart Card and IoT Security Centre, UK
Julio Hernandez University of Kent, UK
Darren Hurley-Smith Royal Holloway, UK
Christo Kaloniatis University of the Aegean, Greece
Ghassan Karame NEC Laboratories Europe, Germany
Niko Komninos City University, UK
Giovanni Livraga University of Milan, Italy
Eleonora Losiouk University of Padua, Italy
Emmanuel Magkos Ionian University, Greece
Luigi Mancini University of Rome La Sapienza, Italy
Fabio Martinelli CNR, Italy
Ilaria Matteucci CNR, Italy
Sjouke Mauw University of Luxembourg, Luxembourg
Keith Mayes Royal Holloway, UK
Nikolaos Petroulakis Foundation for Research and Technology-Hellas

(FORTH), Greece
Nikos Pitropakis Edinburgh Napier University, UK
Joachim Possega University of Passau, Germany
Kostantinos Rantos Eastern Macedonia and Thrace Institute of Technology,

Greece
Michael Rusinowitch LORIA, Inria Nancy, France
Pierangela Samarati University of Milan, Italy
Damien Sauveron University of Limoges, France
Daniele Sgandurra Royal Holloway, UK
Angelo Spognardi University of Rome La Sapienza, Italy
Mark Strembeck Vienna University of Economics and Business, Austria
Tom Van Goethem KU Leuven, Belgium
Mathy Vanhoef NYU Abu Dhabi, UAE
Chan Yeob Yeun Khalifa University, UAE
Chia-Mu Yu National Chung Hsing University, Taiwan

External Reviewers

Andreina, Sebastien
Bakiras, Spiridon
Casagrande, Marco
D’Arco, Paolo
Papadopoulos, Pavlos

viii Organization

Contents

Security Properties and Attacks

Modelling of 802.11 4-Way Handshake Attacks and Analysis
of Security Properties . 3

Rajiv Ranjan Singh, José Moreira, Tom Chothia, and Mark D. Ryan

Reducing the Forensic Footprint with Android Accessibility Attacks 22
Yonas Leguesse, Mark Vella, Christian Colombo,
and Julio Hernandez-Castro

A Novel Machine Learning Methodology for Detecting Phishing Attacks
in Real Time . 39

Vishal Arora and Manoj Misra

Confidentiality Schema

Revocable Access to Encrypted Message Boards. 57
Fabian Schillinger and Christian Schindelhauer

Establishing Secure Communication Channels Using Remote Attestation
with TPM 2.0 . 73

Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer

Security Processes

Improved Feature Engineering for Free-Text Keystroke Dynamics. 93
Eden Abadi and Itay Hazan

Subversion-Resistant Commitment Schemes: Definitions
and Constructions . 106

Karim Baghery

Challenges in IT Security Processes and Solution Approaches
with Process Mining . 123

Aynesh Sundararaj, Silvia Knittl, and Jens Grossklags

Author Index . 139

Security Properties and Attacks

Modelling of 802.11 4-Way Handshake
Attacks and Analysis of Security

Properties

Rajiv Ranjan Singh1,2(B) , José Moreira1 , Tom Chothia1,
and Mark D. Ryan1

1 School of Computer Science, University of Birmingham, Birmingham, UK
{r.r.singh,j.moreira-sanchez,t.p.chothia,m.d.ryan}@cs.bham.ac.uk

2 Department of Computer Science, Shyam Lal College (Eve.),
University of Delhi, Delhi, India
rrsingh@shyamlale.du.ac.in

Abstract. The IEEE 802.11 standard defines a 4-way handshake
between a supplicant and an authenticator for secure communication.
Many attacks such as KRACK, cipher downgrades, and key recovery
attacks have been recently discovered against it. These attacks raise the
question as to whether the implementation violates one of the required
security properties or whether the security properties are insufficient. To
the best of our knowledge, this is the first work that shows how to answer
this question using formal methods. We model and analyse a variety of
these attacks using the Tamarin prover against the security proper-
ties mandated by the standard for the 4-way handshake. This lets us
see which security properties are violated. We find that our Tamarin
models vulnerable to the KRACK attacks do not violate any of the
standard’s security properties, indicating that the properties, as spec-
ified by the standard, are insufficient. We propose an additional security
property and show that it is violated by systems vulnerable to KRACK
attacks, and that enforcing this property is successful in stopping them.
We demonstrate how to use Tamarin to automatically test the adequacy
of a set of security properties against attacks, and that the suggested
mitigations make 802.11 secure against these attacks.

Keywords: IEEE 802.11 · WPA2 · 4-way handshake · Group key
handshake · KRACK attack · Downgrade attack · Tamarin prover ·
SAPiC

1 Introduction

The IEEE 802.11 standard [3] defines a 4-way handshake as the key management
protocol. It involves exchanging four messages between an access point (AP) and
a client, or equivalently in 802.11 terminology, an authenticator and a supplicant.
These exchanges enables parties to compute and share session/group keys for
future unicast/multicast secure communication over the wireless medium. It also
provides mutual authentication and session-key agreement.

c© Springer Nature Switzerland AG 2020
K. Markantonakis and M. Petrocchi (Eds.): STM 2020, LNCS 12386, pp. 3–21, 2020.
https://doi.org/10.1007/978-3-030-59817-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_1&domain=pdf
http://orcid.org/0000-0003-1808-3433
http://orcid.org/0000-0002-3210-4504
https://doi.org/10.1007/978-3-030-59817-4_1

4 R. R. Singh et al.

The 4-way handshake was proven formally secure [13,14], and had no attacks
published on it until recently, when the so-called Key Reinstallation Attack
(KRACK) was uncovered by Vanhoef and Piessens in 2017 [22]. This attack
exploits design and/or implementation flaws in the 4-way handshake by rein-
stalling already in-use session or group keys. As a consequence, the adversary
can break the security guarantees, even with a secure protocol for data confi-
dentiality, such as the AES-based Counter Cipher Mode with Block Chaining
Message Authentication Code Protocol (AES-CCMP), and decrypt or replay
messages [22].

Moreover, various 4-way handshake implementations have been found to be
vulnerable to downgrade attacks in widely used routers [20], including models of
Cisco and TP-Link. These attacks mostly affect the AP, when both the AP and
the client support AES-CCMP and Temporal Key Integrity Protocol (TKIP)
cipher suites. Although the client is always likely to choose the stronger AES-
CCMP cipher suite over TKIP, an adversary can trick the AP into using TKIP.

We start our work by building models of 4-way handshake using the security
protocol verification tool Tamarin [18]. Our modelling focuses on the subset
of functionalities and messages for successful execution of the attacks on 4-way
handshake, and not building a complete model of the 802.11 state machines, thus
enabling a Dolev-Yao adversary [11] to exploit the vulnerabilities. We show that
Tamarin can find the attacks mentioned above, and our models can formally
verify that the suggested fixes to the vulnerabilities work as intended.

The IEEE 802.11 standard defines a list of security properties suggesting that
it will lead to a secure 4-way handshake (e.g., freshness of session keys, secrecy
of session/group keys, authentication). The existence of the attacks described
above raises serious questions about these security properties: Does the IEEE
802.11 specification or some implementation violate these properties, leading to
these attacks? Or are these security properties insufficient to guarantee security?
If so, what security properties would be sufficient to stop the attacks? In this
paper we show how these questions can be formally answered using Tamarin.

We encode the security properties from the standard using Tamarin, and use
the tool to see if any of these security properties are violated in the presence of
the attacks. We find that the weaknesses that lead to the KRACK attacks [22]
do not violate any of the required properties. This suggests that the security
properties, as defined in the standard, are insufficient. We then propose new
security properties, and by imposing them as restrictions in Tamarin, we show
that ensuring these new suggested properties is enough to stop these attacks.

We remark that our approach here is different from the normal use of formal
methods for checking security protocols, which consists in defining a model of a
protocol with its security properties to check for the existence of attacks. Instead,
we use our models and known attacks from previous works to check if the security
properties proposed in the standard are enough to ensure the security of the
protocol. Where they are not, we propose a new security property that could be
added to the standard, encode it in Tamarin, and use the tool to automatically
show that it would be enough to stop a class of attacks, such as KRACK.

Modelling of 802.11 4-Way Handshake Attacks, and Analysis of Secur. Prop. 5

Supplicant Authenticator

Generate PTK

Install PTK and GTK Install PTK

Install GTKInstall GTK

Beacon/Probing (Supported RSNEs)

802.11 Authentication + Association (Chosen RSNE)

Encrypted data
Refresh GTK

Generate PTK

Fig. 1. IEEE 802.11 standard 4-way handshake and group key handshake

The main contributions of this work are:

– Presenting Tamarin models of the 802.11 4-way handshake that exhibit sev-
eral attacks [20,22], and formally showing correctness of suggested fixes.

– Showing how to use Tamarin to encode the security properties defined in
the standard, in order to automatically check if the weaknesses that causes
any attack violate any of these properties. We show that for the KRACK
attacks they do not, indicating that the current list of security properties in
the standard is insufficient.

– Proposing a set of new security properties to be added to the standard, and
use Tamarin to show how systems with this security property are not vul-
nerable to the attacks.

2 Preliminaries

The IEEE 802.11 Standard. This standard defines protocols for data con-
fidentiality, mutual authentication, and key management, providing enhanced
security at the medium access control (MAC) layer in wireless networks [3].

The original version of the standard [1] appeared in 1997, and defined the
Wired Equivalent Privacy (WEP) security algorithm, based on the weak RC4
cipher. The vulnerable WEP was replaced with Wi-Fi Protected Access (WPA),
as an intermediate measure, before the IEEE 802.11i amendment (WPA2) [2]
was released in 2004. WPA includes the use of a message authentication code
algorithm, coined as Message Integrity Check (MIC), as well as the TKIP cipher
suite, which allows a more secure per-packet key system compared to the fixed
key system used by WEP. The 802.11i amendment [2] and the current version of
the standard [3] requires support of even more secure algorithm suites, discussed
below. We summarise here the four stages of the 802.11 key generation process.
We refer the reader to [3] for the full details.

6 R. R. Singh et al.

– Network Discovery. In this stage, the clients search for available networks
along with their parameters. Clients can either actively send and receive
probes, or just observe the broadcast beacons passively to learn the sup-
ported cipher suites (e.g., TKIP and/or AES-CCMP), and version of WPA.
This set of parameters is called a Robust Security Network Element (RSNE).

– Authentication and Association. In this step, the Pairwise Master Key
(PMK) is derived at both ends. In WPA2-Personal mode, the PMK is derived
using a Pre-Shared Key (PSK) with a length of 8 to 63 characters, the Service
Set Identifier (SSID), and the SSID length, while in WPA2-Enterprise mode,
it is derived from a key generated by an Extensible Authentication Protocol
(EAP), e.g., using 802.1X authentication [4]. The PMK is used later in the
temporal keys generation. However, the real authentication is carried out
during the 4-way handshake. The client and the AP accept or reject the
association request based on the AP agreeing to the client’s choice of RSNE.

– 4-Way Handshake. The 4-way handshake takes place to agree on a fresh ses-
sion key, namely the Pairwise Transient Key (PTK), and optionally the Group
Temporal Key (GTK); see Fig. 1. PTK derivation [3, Sec. 12.7.1.7.5] uses the
shared PMK, a supplicant nonce SNonce, an authenticator nonce ANonce, and
both MAC addresses. The PTK can be refreshed after a fixed time inter-
val, or at request from either party, by executing another 4-way handshake.
The PTK is split into a Key Confirmation Key (KCK), Key Encryption Key
(KEK), and Temporal Key (TK). The KCK and KEK protect handshake
messages, while the TK protects data frames through the data confidential-
ity protocol. The 4-way handshake also transports the current GTK to the
supplicant. Every message in the 4-way handshake follows the layout of EAP
over LAN Key frames (EAPOL-Key) [3], and we use Msgn to denote the
nth message in the handshake. The authenticator starts the handshake and
increments the replay counter on every message sent. The supplicant replies
to messages using the received replay counter.

– Group Key Handshake. The standard allows for refreshing the GTK reg-
ularly, using a group key handshake, to ensure that only active clients are in
possession of it. This process is initiated by the authenticator sending group
message 1, denoted GrMsg1, to all clients. The clients reply, in turn, with
group message 2, GrMsg2, with the received replay counter; see Fig. 1.

– Data Confidentiality and Integrity Support. The standard defines sev-
eral data confidentiality suites such as AES-CCMP and AES-GCMP as
mandatory, but also TKIP for backwards interoperability with WPA [3]. All
suites include message integrity of the data frames. For brevity, we use the
same notation as in [22] to denote an encrypted frame Encnk (), being n the
nonce (replay counter) in use, and k the key, i.e., PTK for unicast and GTK
for broadcast messages.

We note that our focus is mainly on the attacks to the 4-way handshake. There-
fore, the authentication and association stages are out of the scope of this paper,
and we will hereafter assume that the PMK is already available at both ends.

Modelling of 802.11 4-Way Handshake Attacks, and Analysis of Secur. Prop. 7

Analysing Security Properties. The IEEE 802.11 standard lists five proper-
ties, labelled from a) to e), for the 4-way handshake [3, Sec. 12.6.14]. He et al. [14]
aggregate four out of five of these security properties into session authentica-
tion, which can only be asserted when key secrecy is guaranteed. They formalise
authentication in the cryptographic model using the notion of matching conver-
sations [6], guaranteeing that the two entities have consistent views of the pro-
tocol runs. Using Protocol Composition Logic (PCL) [10], they verify that such
properties hold. However, PCL has been subject of criticism by some authors
such as [8], as it allows one to verify authentication protocols that rely on signing,
but not those relying on decryption. More disconcertingly, there are no means
to establish preceding actions in a thread. In contrast to matching conversations
used in [14], we use standard notions of authentication from Lowe [17], e.g.,
mutual, injective agreement, to verify the security properties. Moreover, in their
approach using PCL [14], the authors confirm that all their proofs were con-
structed manually. On the other hand, our verification using Tamarin is among
the first attempts to verify security properties of 802.11 automatically.

Concurrent to our work, Cremers et al. [9] have also developed a detailed
Tamarin model of the WPA2 protocol capable of detecting KRACK attacks,
among others. Though yet to appear their work, as ours, verifies the effectiveness
of the patched protocol, post-discovery of the KRACK attacks, in stopping all
the attacks, including the KRACK attacks. However, our goals are different; our
focus is on developing a framework to test the adequacy of the required security
properties in spotting the attacks. Therefore, we only model the functionalities
required to demonstrate the attacks (KRACK and downgrade), rather than the
whole protocol.

The Tamarin Prover and SAPiC. Tamarin is a state-of-the-art tool for
symbolic verification and automated analysis of security properties in protocols,
under the Dolev-Yao model [11], with respect to an unbounded number of ses-
sions. There are similar tools for symbolic verification, most notably ProVerif [7],
where protocols are specified using applied pi-calculus [5]. In our approach, we
have decided to implement our models with Tamarin, since it can handle pro-
tocols with unrestricted global states and unbounded sessions. Sometimes, how-
ever, the user may have to provide auxiliary lemmas for complex protocols in
order to help the tool terminate. Most importantly, Tamarin has the restric-
tion feature, which allows a property to be enforced on the traces. This feature is
essential for our work, to verify if enforcing particular security properties would
stop an attack. To the best of our knowledge, other tools such as ProVerif do
not offer this feature and hence are not suitable to our approach.

More concretely, we have developed our models using the SAPiC front-end,
which allows to specify Tamarin models using processes. We provide a brief
overview of these tools, but we refer the reader to [16,18] for further refer-
ence. SAPiC parses descriptions of protocols in an extension of the applied pi-
calculus [5], called stateful applied pi-calculus, and converts them into (labeled)
multiset rewriting rules (MSRs) to be analysed by Tamarin.

8 R. R. Singh et al.

Fig. 2. SAPiC syntax (a ∈ FN , x ∈ V, m, t ∈ T , F ∈ F)

Figure 2 describes the SAPiC syntax. The calculus comprises an order-sorted
term algebra with infinite sets of publicly known names PN , freshly generated
names FN , and variables V. It also comprises a signature Σ, i.e., a set of function
symbols, each with an arity. The messages are elements of a set of terms T over
PN , FN , and V, built by applying the function symbols in Σ.

The set of facts is defined as F = {F (t1, . . . , tn) | ti ∈ T , F ∈ Σ of arity k}.
The special fact K(m) states that the term m is known to the adversary. For
a set of roles, the Tamarin MSRs define how the system, i.e., protocol, can
make a transition to a new state. An MSR is a triple of the form [L] −[A]→ [R],
where L and R are the premise and conclusion of the rule, respectively, and A
is a set of action facts, modelled by SAPiC events. For a process P , its trace
Tr(P) = [F1, . . . , Fn] is an ordered sequence of action facts generated by firing
the rules in order.

Tamarin allows to express security properties as temporal, guarded first-
order formulas, modelled as trace properties. The construct F@i states the pres-
ence of the fact F at time point i. A property can be specified as a lemma to
be tested if it holds or not, and enforced as a restriction, while testing the other
lemmas in presence of this property [18].

3 Methodology for Analysing Security Properties

We summarise our process of analysing the security properties in Fig. 3. We start
by building a model of a protocol with known attacks in Sect. 4. Subsequently, we
verify all the security properties listed in the standard to see if they are satisfied
or violated in Sect. 5. A violated security property can then be enforced as a
restriction to check if it would stop the attacks, indicating an implementation
issue. Alternatively, if all the security properties are verified, but the attack still
exists, we can conclude that the security properties required by the standard are

Modelling of 802.11 4-Way Handshake Attacks, and Analysis of Secur. Prop. 9

All required
security properties

verified and
no attack

Security properties
required by the
protocol

Custom property to
identify attack

Model of protocol
vulnerable to

an attack

Verify:

+

All required security
properties verified,
but attack exists

Any required security
property falsified

Attack persists:
Insufficient security

properties

No Attack:
Security properties

sufficient.
Fix implementation

Enforce security
properties as
restrictions

Identify implementation bugs and perform model fixes

Identify and add additional required security properties

Fig. 3. Flow diagram for verifying security properties, identifying new ones, and fixing
the model against an attack

insufficient and need to be augmented. After analysing the attacks, we propose
a security property corresponding to the attack, shown below in Sect. 6. To test
that the new property is successful in stopping the attack, we first place it as a
lemma in the model and expect it to be falsified. Then, we enforce this property
as a restriction in the model, expecting that it stops the attack. This helps us to
verify if the attack corresponds to the new proposed security property. Finally,
we execute the protocol model after fixing the vulnerability, to verify the absence
of the attack. The verification of our newly proposed security properties and the
fixes proves both the adequacy of the final set of properties, and correctness of
the fixes in the protocol. We discuss this in Sects. 6 and 7.

4 Formal Models of the 802.11 4-Way Handshake Attacks

We present some variants of the KRACK attacks, exploiting nonce reuse [22],
and a downgrade attack from [20]. Along with the attack steps, we also highlight
some relevant details of our SAPiC models for the attacks and for the security
lemmas corresponding to each one. Some of the details, e.g., MIC, the usage
of cipher suites in encryption, or some events are omitted here due to space
constraints, but they can be easily understood from the context. The complete
source for the models and mechanised proofs are available at [19].

4.1 KRACK Attacks

The KRACK attacks exploit vulnerabilities in the 802.11 key management pro-
tocols [22]. An adversary tricks a victim into reinstalling an already used key
by dropping, delaying or altering the order of the 4-way handshake messages
between two honest principals. On every key installation, the standard mandates
that the replay counter (nonce) of the data confidentiality protocol be reset. The
adversary can collect different encrypted messages using the same key and nonce:
messages sent after the initial key installation, and messages sent after the key
reinstallation. The adversary can then use this information to attack the data
confidentiality protocol. The practical implications of the attack may enable the

10 R. R. Singh et al.

Supplicant AuthenticatorAdversary

Reinstall PTK and GTK

Install PTK and GTK

Install PTK ?
Nonce 1 reuse starts

Fig. 4. KRACK - plaintext retransmission of message 3 after PTK install

adversary to replay, decrypt or even forge the data packets, depending on the
choice of the cipher suite (e.g., TKIP, AES-CCMP,AES-GCMP). We refer the
reader to [15,22] for the detailed consequences of the attack.

The underlying causes of the attacks are the unclear standard specifications,
such as the authenticator accepting any replay counter previously used in the
4-way handshake, not only the latest one [3, Sec. 12.7.6.5]. However, in practice,
many APs fail to validate it, and imprudently accept an older replay counter.

We have successfully modelled several KRACK attacks exploiting the retrans-
mission of message 3 and forcing nonce reuse [22]. We remark that the goal of
our models is not to verify the compromise of the data confidentiality protocol.
Instead, we aim at detecting the sufficient conditions that allow an adversary to
exploit it, i.e., reinstallations of the same key.

Retransmission of Message 3 After PTK Install. This variant of KRACK
[22, Sec. 3.3] occurs when the supplicant accepts plaintext retransmission of mes-
sage 3, even after a PTK has been installed. The message flow of the attack is
shown in Fig. 4, and the outline of our model of the supplicant and authentica-
tor are in Fig. 5. Note that we prepend ‘S_’ and ‘A_’ to the events executed
at the supplicant and authenticator, respectively. The main process is defined
as ν pmk; (!Supplicant | Authenticator), instantiating an arbitrary number of
supplicant processes. Our model computes the PTK [3, Sec. 12.7.1.7.5] with the
identifiers Aid, Sid acting as the MAC addresses as follows:

ptk = CalcPtk(pmk,ANonce, SNonce, Aid, Sid).

The adversary sits between the supplicant and the authenticator to perform
a man-in-the-middle (MitM) attack, and forwards messages 1–3 normally. The
event S_InstallsPtk(Sid, ptk) captures an initial PTK install, after which the

Modelling of 802.11 4-Way Handshake Attacks, and Analysis of Secur. Prop. 11

Fig. 5. Model outline for supplicant and authenticator vulnerable to KRACK attack
based on plaintext retransmission of message 3

supplicant can send encrypted frames using the encryption key TK associated
to PTK. Message 4 is blocked from reaching the authenticator by the adversary.
The model uses the non-deterministic choice in the authenticator process via the
+ operator from the SAPiC calculus. Therefore, it captures either the reception
of message 4, and installs the PTK, or timeouts and retransmits message 3 with
an updated replay counter, and waits again for the confirmation.

Similarly, in order to capture the fact that the state machine of the supplicant
accepts plaintext retransmission of message 3, we also branch the supplicant
process, in order to capture traces completing a normal run of the protocol, and
traces with an adversary blocking message 4. This latter case matches the attack
scenario with the supplicant reinstalling an already in-use PTK (and GTK). It
follows that the next data frames sent by the supplicant will be encrypted with
a reused nonce. Our model, therefore, is aimed at capturing the traces with key
reinstallations on the supplicant side using the same PTK already installed.

Retransmission of Message 3 Before PTK Install. This KRACK attack
has two variants with the supplicant accepting either a plaintext or encrypted
retransmission of message 3 with the PTK yet to be installed [22, Sec. 3.4].

The first case is shown in Fig. 6. This attack assumes that the authentica-
tor performs its actions as expected. The first two messages are transmitted
normally. However, the original message 3 is blocked by the adversary while he
waits for retransmitted of message 3. Both messages are then forwarded to the
supplicant. This triggers a race condition between the CPU and the network

12 R. R. Singh et al.

(a) (b)

Fig. 6. KRACK - plaintext retransmission of message 3 before PTK install

interface controller (NIC), which causes that the same key be reinstalled. In our
model for this attack, Fig. 6b, the supplicant comprises both the NIC and the
CPU, and it considers two branches in order to capture an implementation vul-
nerable to the attack: one where the 4-way handshake follows the normal course,
and another where the attacker is able to cause key reinstallation.

The second case of this attack is presented in Fig. 7. The main difference is
that it can only be executed during the PTK rekey phase. After an initial suc-
cessful handshake, both principals install a PTK. During the PTK rekey process,
the adversary follows the same strategy as above: it waits for a retransmission
of message 3. This time, the messages are encrypted under the installed PTK,
but the adversary is able to identify what particular message is being sent (e.g.,
by timeouts or message lengths). By appropriately delaying and forwarding the
messages, the adversary causes a reinstall of the PTK being refreshed, ptk′. Our
model (Fig. 7b) captures an arbitrary number of PTK rekey negotiations, and,
again, it branches non-deterministically to capture the transitions of a supplicant
state machine vulnerable to the attack.

For all three cases above (Figs. 4, 6 and 7), we query for the absence of
KRACK attacks with lemma: “given an installation of PTK by the supplicant,
it is not the case that there exists an earlier installation with the same PTK,”

∀id, ptk, t1. S_InstallsPtk(id, ptk)@t1 ⇒
¬(∃t2. S_InstallsPtk(id, ptk)@t2 ∧ (t2 < t1)). (NoKrackPtk)

The events S_InstallsPtk are placed in the parts of the model where the prim-
itive MLME-SETKEYS.request [3] is called, which causes nonce reset.

Modelling of 802.11 4-Way Handshake Attacks, and Analysis of Secur. Prop. 13

(a) (b)

Fig. 7. KRACK - encrypted retransmission of message 3 before PTK install

As expected, our Tamarin models [19] falsify Lemma (NoKrackPtk), proving
the existence of KRACK, allowing an adversary to cause key reinstall, nonce
reuse and break the security guarantees of the data confidentiality protocol.

Attack Against the Group Key Handshake. This variant of the KRACK
attack targets the group key handshake, and tricks the supplicant into rein-
stalling a GTK, rather than a PTK [22, Sec. 4.1]. The attack is shown in Fig. 8.
Note that the group key handshake runs encrypted by the already installed
PTK. The standard requires that the supplicant install the GTK upon receipt
of group message 1, regardless of whether it is a retransmission or not, and reply
with group message 2. The adversary delays group message 2 from reaching the
authenticator, triggering retransmission of group message 1. Now, the adver-
sary forwards both versions of group message 1 to the supplicant, which causes
a GTK install and subsequent reinstall. This will allow the attacker to replay
group data frames to the supplicant [22].

To capture the reinstall of the GTK, Tamarin falsifies the following lemma
stating that “given an installation of GTK by the supplicant, it is not the case
that there exists an earlier installation with the same GTK,”

∀id, gtk, t1. S_InstallsGtk(id, gtk)@t1 ⇒
¬(∃t2. S_InstallsGtk(id, gtk)@t2 ∧ (t2 < t1)). (NoKrackGtk)

14 R. R. Singh et al.

(a) (b)

Fig. 8. KRACK against group key handshake

Our model (Fig. 8b) captures a scenario with a supplicant accepting arbitrary
number of executions of the group key handshake, as long as the group message 1
has an increased replay counter. We note that for this model we assume an initial
valid 4-way handshake without exhibiting PTK reinstall.

4.2 Cipher Suite Downgrade

The downgrade attack we consider [20] is limited to the authenticator-side only.
In a correct implementation, a client should be able to detect this attack easily
by observing inconsistencies in the RSNE information. Recall from Sect. 2 that
the RSNE information is selected in the association stage in plaintext, and sub-
sequently encrypted and transmitted as part of message 3, as shown in Fig. 1.
The supplicant must verify that the RSNE information observed in the associa-
tion stage matches with the authenticated contents of message 3, and it should
terminate the handshake otherwise.

In a downgrade attack, depicted in Fig. 9, the adversary forces GTK encryp-
tion with a weak cipher suite (RC4), rather than the intended strong cipher
suite (AES-CCMP). The attack was discovered on the access point TP-Link
WP841P [20, Sec. 5.2]. The authenticator advertises support for AES-CCMP
during the association stage. However, it will follow the supplicant in switching
the cipher suite in mid-handshake process, accepting the TKIP-based message 2.

An adversary acts as a MitM by negotiating the AES-CCMP suite with the
authenticator, and TKIP with the supplicant, as message 1 is in plain. The sup-
plicant calculates the PTK and replies with message 2 using the TKIP suite.
The authenticator accepts the message, overrides its initial AES-CCMP selec-
tion, and responds with a well-formed TKIP message 3 containing the GTK
encrypted with RC4. The adversary can now exploit the weakness of this cipher

Modelling of 802.11 4-Way Handshake Attacks, and Analysis of Secur. Prop. 15

(a) (b)

Fig. 9. Downgrade Attack on 802.11 (TP-Link WP841P)

to recover the GTK [21]. The RSNE mismatch can be easily detected on forward-
ing of message 3 to the supplicant, which can drop the connection. Unfortunately,
by this time, the adversary is already in possession of the RC4-encrypted GTK.

Encryption with different cipher suites can be modelled, e.g., with a signature
Enc′, Dec′ indicating the cipher suite cs as an additional parameter. Then,

∀m, k, cs. Dec′
k(Enc

′
k(m, cs), cs) = m.

Note, that this theory is semantically equivalent to the usual symmetric encryp-
tion using as key the tuple k′ = 〈cs, k〉, because Dec〈cs,k〉(Enc〈cs,k〉(m)) = m.

Our Tamarin model queries that “for each run of the protocol, the cipher
suites used by them will be the same,” implying that a change of the cipher suite
in between a run is impossible. As expected, the lemma below is falsified:

∀tid, cs1, cs2, t1, t2. A_SentMsg3(tid, cs1)@t1∧
A_Starts(tid, cs2)@t2 ⇒ (cs1 = cs2). (NoDowngrade)

5 Analysis of IEEE 802.11 Security Properties

In this section, we list the five properties a)-e) specified for the 4-way handshake
in the 802.11 standard [3, Sec. 12.6.14]. These properties overlap with each other
and cannot be easily encoded into conventional queries, e.g., secrecy or authen-
tication. Therefore, we sometimes define multiple security lemmas that jointly
satisfy a given property. Moreover, the standard is unclear about what properties
are satisfied by the group key handshake. In that case, we consider an extension
of property c) below for GTK. We recall that we prepend ‘S_’ and ‘A_’ to the
supplicant and authenticator events, respectively.

16 R. R. Singh et al.

a) Confirm the existence of the PMK at the peer. As stated in Sect. 2, our
model treats this property as a premise. However, to confirm this property,
we use the following lemma:

∀id1, id2, pmk1, pmk2, t1, t2. A_HasPmk(id1, pmk1)@t1∧
S_HasPmk(id2, pmk2)@t2 ⇒ (pmk1 = pmk2). (ConfPmk)

b) Ensure that the security association keys (PTK/GTK) are fresh.
This security property states that at every run (thread tid) of the protocol it
must generate a fresh PTK/GTK. We verify this property at the supplicant
side through lemma

∀id1, id2, ptk, t1,t2. S_ComputesPtk(id1, ptk)@t1∧
S_ComputesPtk(id2, ptk)@t2 ⇒ (tid1 = tid2). (FreshPtk)

Similarly, we define Lemma (FreshGtk) for the case of GTK (omitted).
c) Synchronise the installation of temporal keys into the MAC. We

consider the strongest authentication property from Lowe’s hierarchy [17],
namely, injective agreement. For the case of PTK, we verify that: “for each
S_CommitPtk event executed by the supplicant Sid, the associated authenti-
cator Aid executed the corresponding A_RunningPtk earlier, and for each run
of the protocol there is a unique S_CommitPtk for each A_RunningPtk,”

∀Sid, Aid, pars, t1. S_CommitPtk(Sid, Aid, pars)@t1 ⇒
((∃t2. A_RunningPtk(Aid, Sid, pars)@t2 ∧ (t2 < t1))
∧ ¬(∃S′

id, A
′
id, t3. S_CommitPtk(S′

id, A
′
id, pars)@t3 ∧ ¬(t3 = t1))).

(AgreePtk)

Obviously, the set of parameters pars must contain the value of the PTK.
S_CommitPtk events are placed as late as possible on the supplicant side.
A_RunningPtk events are executed as earlier as possible, when all the param-
eters to agree are available to the authenticator. In order to capture mutual
agreement, the lemma also needs to include the case when the roles of the
authenticator and supplicant are reversed. For brevity, we omit this case in
our exposition, but it can be found in the source of our models [19].
As customary, authentication requires key secrecy to be asserted. We verify
this using the following lemma for PTK:

∀id, ptk, t1. S_InstallsPtk(id, ptk)@t1 ⇒ ¬(∃t2. K(ptk)@t2). (SecretPtk)

Again, S_InstallsPtk models the primitive MLME-SETKEYS.request [3],
and we require that any installed PTK is unknown to the adversary.
For GTK, we define the Lemmas (AgreeGtk) and (SecretGtk) equivalently.
Moreover, we also need to capture weak agreement [17] of GTK in the group
key handshake, through the lemma

∀Sid, Aid, pars, t1. S_WCommitGtk(Sid, Aid, pars)@t1 ⇒
((∃t2. A_WRunningGtk(Aid, Sid, pars)@t2 ∧ (t2 < t1)),

(WeakAgreeGtk)

Modelling of 802.11 4-Way Handshake Attacks, and Analysis of Secur. Prop. 17

Table 1. Tamarin results of testing properties a)–e) from the 802.11 standard and
proposed property f) in Sect. 5. No[Attack] refers to (NoKrackPtk), (NoKrackGtk) or
(NoDowngrade) accordingly. (✓ verified; ✗ falsified; – n/a)

Security Property – a) ConfPmk b) FreshKeys c) SynchronisedKeys d) SameGTK e) ConfCiphers f) NoKeyReuse

Lemmas N
o
[A

tt
a
ck

]

(C
on

fP
m
k)

(F
re
sh
P
tk
)

(F
re
sh
G
tk
)

(A
gr
ee
P
tk
)

(A
gr
ee
G
tk
)

(W
ea
kA

gr
ee
G
tk
)

(S
ec
re
tP

tk
)

(S
ec
re
tG

tk
)

(S
am

eG
tk
)

(A
gr
ee
C
s)

(N
oP

tk
R
eu

se
)

(N
oG

tk
R
eu

se
)

PTK reinst. Figs. 4, 5 –
PTK reinst. Fig. 7 –
PTK reinst. Fig. 9 –
GTK reinst. Fig. 11 –
Downgrade Fig. 13 –

which includes the GTK in pars. As opposed to (AgreeGtk) in the 4-way
handshake, the agreement in the group key handshake is not injective, because
multiple retransmissions of the same GTK are allowed.

d) Transfer the GTK from the Authenticator to the Supplicant. We
verify if the GTK received by the supplicant is the same GTK calculated and
forwarded by the authenticator using lemma

∀id, gtk, t1. S_InstallsGtk(id, gtk)@t1 ⇒
(∃t2. A_GeneratesGtk(gtk)@t2 ∧ (t2 < t1)). (SameGtk)

e) Confirm the selection of cipher suites. We capture injective agreement
of the cipher suite with Lemma (AgreeCs), similar to (AgreePtk) above, by
using the cipher suite within the parameters pars.

We queried the lemmas defined for the above five properties in the Tamarin
models presented in Sect. 4, in order to verify them in presence of KRACK
and downgrade attacks. Unexpectedly, all of the lemmas were reported as ver-
ified when KRACK attacks were present, as shown in Table 1. In the case
of the downgrade attack, however, Tamarin reported expected violation of
Lemma (AgreeCs) only.

6 Proposing New Security Properties

Security Property for KRACK Attack. Section 5 clearly establishes the
inadequacy of set of security properties mandated by the IEEE 802.11 stan-
dard to capture security violation by KRACK attacks reviewed in Sect. 4.
Though IEEE has since addressed the issue of nonce reuse in 802.11 implemen-
tations [12], and the Wi-Fi Alliance tests the devices before certifying them for
WPA2/3 [23], there is no mention of security properties being added to the stan-
dard that could capture various KRACK variants such as the ones presented by

18 R. R. Singh et al.

Lemmas (NoKrackPtk) and (NoKrackGtk). Accordingly, we propose an addi-
tional security property to capture such vulnerabilities:

f) Ensure that the security association keys are not used more than once.

The security property f) is encoded, using the following lemma, in Tamarin.
All the KRACK attack models from Sect. 4 violate either one or both properties
(See Table 1), i.e., the KRACK attacks are now captured by property f):

∀id, ptk, t1, t2. S_InstallsPtk(id, ptk)@t1∧
S_InstallsPtk(id, ptk)@t2 ⇒ (t1 = t2). (NoPtkReuse)

Equivalently, we define the Lemma (NoGtkReuse) using GTK in place of PTK.

Security Property for Downgrade Attack. The downgrade attack from
Fig. 9 violates property e) through the Lemma (AgreeCs). Surprisingly, the
attack continue to exist even after enforcing this property as restriction. Since
enforcing the agreement property on cipher suite does not stop the attack, it is
violating a property not present in the standard. A detailed analysis of property
e) along with the downgrade attack suggests that though the standard guar-
antees authentication w.r.t. other party, it does not perform agreement with
itself. Accordingly, we suggest the following additional security property g), as
Lemma (ValidCipherSuite), to the model of Fig. 9b that captures this attack
(results omitted from Table 1 due to space constraints).

g) The cipher suite that the authenticator started with is the cipher suite that
the authenticator finishes with, and is the strongest one from the available
choices.

As expected, the downgrade attack from Sect. 4 is captured by property g), which
is encoded in Tamarin using lemma

∀tid, cs1, cs2, t1,t2. A_SentMsg3(tid, cs1)@t1∧
A_Starts(tid, cs2)@t2 ⇒ (cs1 = cs2). (ValidCipherSuite)

To verify that our proposed security properties f) and g) correspond to respec-
tive attacks, we fix the respective Tamarin models of Sect. 4 by enforcing (NoP-
tkReuse), (NoGtkReuse) and (ValidCipherSuite) as restrictions.

On testing the security properties from Sect. 4, i.e., Lemmas (NoKrackPtk),
(NoKrackGtk), and (NoDowngrade), Tamarin verifies them in the fixed model,
proving that the proposed security properties are successful in stopping these
attacks.

7 Verifying the Mitigations to the Models

Finally, we fix the KRACK models, from Sect. 4, making sure that they follow
the newly proposed security property f), i.e., disconnect if there is an attempt to

Modelling of 802.11 4-Way Handshake Attacks, and Analysis of Secur. Prop. 19

install with the same PTK or GTK, and then execute the model again. After the
fix, both of the attack lemmas, i.e., Lemmas (NoKrackPtk) and (NoKrackGtk),
along with the security properties (NoPtkReuse) and (NoGtkReuse) are verified.
The absence of the attack, with the new security properties verified, shows the
validity of the proposed fix. This result is also a verification of the proposed
countermeasure for KRACK by [22].

Similarly, the downgrade attack from Fig. 9 can be easily detected at the
supplicant side [20], and can be stopped if the authenticator implementation
disallows the change of cipher suites mid-handshake. Accordingly, we fix the
model ensuring that it rejects a connection where the authenticator does not
start and finish with the same cipher suite. After fixing it, Tamarin reports
the attack Lemma (NoDowngrade) as verified, i.e., the downgrade attack no
longer exists, and that the mitigation is valid. Both the fixed Tamarin models,
of KRACK and downgrade attacks, are publicly available at [19].

8 Conclusion and Further Work

We have presented formal models of various KRACK attacks on the IEEE
802.11 4-way handshake and group key handshake, and downgrade attacks on
implementations of the 4-way handshake. Using the automatic verification tool
Tamarin, we verify all the security properties of the 4-way handshake mandated
by the 802.11 standard, in the presence of KRACK and downgrade vulnerabil-
ities. We find that KRACK attacks do not violate any of the required security
properties. We conclude that the set of properties is inadequate to capture these
attacks. Using a novel approach, we propose additional security properties to be
added to the 802.11 standard, enabling it to capture them. We also demonstrate
that enforcing these security properties in our model successfully stops these
attacks. Accordingly, we fix the models with countermeasures to mitigate the
attacks and verify all the security properties, providing a formal proof of correct-
ness of the recommended countermeasures. Our novel technique can strengthen
protocol specifications, by testing the adequacy of the set of required security
properties against known or newly discovered attacks, and by augmenting them
with new properties, if required. For future work, we would like to extend it
to other use cases, i.e., to test the set of required security properties for other
protocols against known attacks on them.

Acknowledgements. We would like to thank Robert Künnemann, Chris McMahon
Stone and Mathy Vanhoef for useful discussions. We would also like to thank the
anonymous reviewers for their insightful comments and suggestions. This work was
partially supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 779391 (FutureTPM).

References

1. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications. IEEE Std. 802.11-1997, November 1997

20 R. R. Singh et al.

2. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations: Amendment 6. IEEE Std. 802.11i-2004, July 2004

3. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifi-
cations. IEEE Std. 802.11-2016, December 2016

4. IEEE Standard for Local and Metropolitan Area Networks-Port-Based Network
Access Control. IEEE Std. 802.1X-2020, February 2020

5. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
ACM SIGPLAN Not. 36(3), 104–115 (2001)

6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2_21

7. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.02: Automatic Cryp-
tographic Protocol Verifier, User Manual and Tutorial, July 2020

8. Cremers, C.: On the protocol composition logic PCL. In: ACM Symposium on
Information, Computer and Communications Security (ASIACCS), Tokyo, Japan,
pp. 66–76, March 2008

9. Cremers, C., Kiesl, B., Medinger, N.: A formal analysis of IEEE 802.11’s WPA2:
countering the kracks caused by cracking the counters. In: Proceedings of the
USENIX Security Symposium (USENIX Security), pp. 1–17. Virtual Event, August
2020 (to appear)

10. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL).
Electron. Notes Theor. Comput. Sci. 172, 311–358 (2007)

11. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

12. Harkins, D., Malinen, J.: Addressing the issue of nonce reuse in 802.11 implementa-
tions, October 2017. https://mentor.ieee.org/802.11/dcn/17/11-17-1602-03-000m-
nonce-reuse-prevention.docx

13. He, C., Mitchell, J.C.: Analysis of the 802.11i 4-way handshake. In: Proceedings
of the ACM Workshop on Wireless Security (WiSe), Philadelphia, PA, pp. 43–50,
October 2004

14. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular cor-
rectness proof of IEEE 802.11i and TLS. In: ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, pp. 2–15, November 2005

15. Joux, A.: Authentication failures in NIST version of GCM. Pub. C. to NIST (2006)
16. Kremer, S., Künnemann, R.: Automated analysis of security protocols with global

state. J. Comput. Secur. 24(5), 583–616 (2016)
17. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings of the IEEE

Computer Security Foundations Workshop (CSFW), Rockport, MA, pp. 31–43,
June 1997

18. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

19. Singh, R.R., Moreira, J., Chothia, T., Ryan, M.D.: TAMARIN prover models of
attacks on the 802.11 4-way handshake to verify security properties (source code
and proofs) (2020). http://people.du.ac.in/~rrsingh/wpa2models

20. McMahon Stone, C., Chothia, T., de Ruiter, J.: Extending automated protocol
state learning for the 802.11 4-way handshake. In: Lopez, J., Zhou, J., Soriano,
M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 325–345. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99073-6_16

https://doi.org/10.1007/3-540-48329-2_21
https://mentor.ieee.org/802.11/dcn/17/11-17-1602-03-000m-nonce-reuse-prevention.docx
https://mentor.ieee.org/802.11/dcn/17/11-17-1602-03-000m-nonce-reuse-prevention.docx
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
http://people.du.ac.in/~rrsingh/wpa2models
https://doi.org/10.1007/978-3-319-99073-6_16

Modelling of 802.11 4-Way Handshake Attacks, and Analysis of Secur. Prop. 21

21. Vanhoef, M., Piessens, F.: Predicting, decrypting, and abusing WPA2/802.11 group
keys. In: Proceedings of the USENIX Security Symposium, pp. 673–688 (2016)

22. Vanhoef, M., Piessens, F.: Key reinstallation attacks: forcing nonce reuse in WPA2.
In: Proceedings of the ACM Conference on Computer and Communications Secu-
rity (CSS), Dallas, TX, pp. 1313–1328 (2017)

23. Wi-Fi Alliance: Security update october 2017, October 2017. https://www.wi-fi.
org/security-update-october-2017

https://www.wi-fi.org/security-update-october-2017
https://www.wi-fi.org/security-update-october-2017

Reducing the Forensic Footprint with
Android Accessibility Attacks

Yonas Leguesse1(B) , Mark Vella1 , Christian Colombo1 ,
and Julio Hernandez-Castro2

1 Department of Computer Science, University of Malta, Msida, Malta
{yonas.leguesse.05,mark.vella,christian.colombo}@um.edu.mt

2 School of Computing, Cornwallis South, University of Kent, Canterbury, UK
jch27@kent.ac.uk

Abstract. Android accessibility features include a robust set of tools
allowing developers to create apps for assisting people with disabilities.
Unfortunately, this useful set of tools can also be abused and turned into
an attack vector, providing malware with the ability to interact and read
content from third-party apps.

In this work, we are the first to study the impact that the stealthy
exploitation of Android accessibility services can have on significantly
reducing the forensic footprint of malware attacks, thus hindering both
live and post-incident forensic investigations. We show that through Liv-
ing off the Land (LotL) tactics, or by offering a malware-only substi-
tute for attacks typically requiring more elaborate schemes, accessibility-
based malware can be rendered virtually undetectable.

In the LotL approach, we demonstrate accessibility-enabled SMS and
command and control (C2) capabilities. As for the latter, we show a
complete cryptocurrency wallet theft, whereby the accessibility trojan
can hijack the entire withdrawal process of a widely used app, including
two-factor authentication (2FA). In both cases, we demonstrate how the
attacks result in significantly diminished forensic evidence when com-
pared to similar attacks not employing accessibility tools, even to the
extent of maintaining device take-over without requiring malware per-
sistence.

Keywords: Android security · Android accessibility attacks ·
Anti-forensics · Malware detection

1 Introduction

Mobile devices have evolved significantly, both in sophistication and market
adoption, over the last decade. In 2019, Google announced that there were over
2.5 billion active Android devices [1], turning it into the largest operating system
in terms of existing users. From a cybercriminal’s perspective, this constitutes
a large and attractive target. Indeed, the increase in mobile device usage has
resulted in a steady rise in mobile malware over recent years [2].
c© The Author(s) 2020
K. Markantonakis and M. Petrocchi (Eds.): STM 2020, LNCS 12386, pp. 22–38, 2020.
https://doi.org/10.1007/978-3-030-59817-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_2&domain=pdf
http://orcid.org/0000-0002-7997-0063
http://orcid.org/0000-0002-6483-9054
http://orcid.org/0000-0002-2844-5728
http://orcid.org/0000-0002-6432-5328
https://doi.org/10.1007/978-3-030-59817-4_2

Reducing the Forensic Footprint with Android Accessibility Attacks 23

Moreover, financial services such as banking and cryptocurrency exchanges
are firmly moving towards mobile platforms, turning Android devices into an
appealing and potentially very profitable target. Malware detection on Android
devices follows a typical multi-stage approach, aiming for early detection and
removal. Google relies on automated malware analysis [3] to scan all apps
uploaded to their app store. This is complemented by on-device scans, where
additional information related to the actual operational environment becomes
available. Besides this, the user is continuously prompted by applications request-
ing sensitive permissions or engaging in potentially dangerous operations [4],
both aimed at quickly detecting, exposing and stopping app misdemeanour.

However, at times stealthy malware does still make it through all these pro-
tective layers, ultimately getting exposed during later infection stages through
indicators of compromise such as expensive mobile service bills or a severely
reduced battery life. At this point, and incident response investigation will try
to trace attack activity back to the enabler malware artefacts [5] and take the
necessary rectification steps. While current malware already uses a combina-
tion of emulation detection [6], code obfuscation and social engineering tricks [7]
for evading detection, we argue that the addition of lesser-known accessibility
services can significantly hamper malware detection and investigation.

The abuse of accessibility services can result in a significant reduction in the
number of malware-specific components, which can, in some cases, not be neces-
sary at all even while the device remains under full control of the attacker. The
net result is that the number of forensic artefacts or the overall forensic foot-
print, heavily relied upon by on-device malware detectors and incident response
tools is vastly reduced. It is also possible to not only diminish but also to manip-
ulate this footprint so that the artefacts left become misleading, so that the true
origins, causes and perpetrators of the attack remaining elusive.

Typical sources of forensic artefacts include the suspicious binary itself,
probes and logs generated during its execution, and memory artefacts left during
and after execution [8], to mention only a few. For example, when looking for an
SMS-sending malware, a detection/response tool may look for the SMS-sending
code within the app’s decompiled resources, as well as for the artefacts left
after the execution of the SMS-sending functionality. Android performs in the
background a sequence of events that allow for the SMS sending to take place.
These include data repository insertions, inter-app communications, and radio
communications. Remnants from all these activities could expose the malware
and therefore constitute valuable forensic artefacts. Any malware that attempts
to reduce this forensic footprint will, at the same time, benefit from a reduced
chance of detection.

In this work, we demonstrate that the deliberate misuse of the Android acces-
sibility service offers one such possible method of evasion. While initially con-
ceived to render all Android apps automatically accessible to all end-users, this
feature ended up being abused by app developers for all sorts of inter-app com-
munication [9], e.g. password managers. Eventually, malware authors aiming
to bypass Android’s security model also caught up with this feature. Since all

24 Y. Leguesse et al.

previous efforts to remove re-purposed accessibility apps or to render accessi-
bility safer have proven unsuccessful, accessibility has now become the Achilles
heel [10] of Android’s security. The misuse of accessibility services is increas-
ingly becoming a staple of Android malware, ranging from banking trojans, e.g.
Gustuff [11] and EventBot [12], to fully-fledged malware bots, e.g. Cerberus [11]
and DEFENSOR ID [10].

While previous work primarily focuses on the dangers of accessibility in terms
of malicious capabilities, in this paper we study for the first time the increased
stealth features of this attack strategy. We show that through Living off the
Land (LotL) tactics, which is already very popular in Windows malware [13],
accessibility malware can be rendered virtually undetectable, even by state-of-
the-art detection and recovery tools.

Our study confirms that accessibility attacks can significantly reduce the
forensic footprint when compared to more standard, non-accessibility attacks.
Specifically, we make use of a proof-of-concept malware that abuses SMS func-
tionality and breaks the two-factor authentication (2FA) of a widely used cryp-
towallet app. We are able to demonstrate a significantly reduced forensic foot-
print in the sources of evidence used by current malware detection and incident
response tools. In summary, we make the following contributions:

– We demonstrate that through the abuse of the accessibility service, LotL
tactics can be performed on Android (Subsects. 3.1–3.4).

– We then describe a novel way to implement a cryptocurrency wallet theft. The
accessibility malware hijacks the entire withdrawal process, including 2FA
authentication, thus providing a malware-only alternative to more elaborate
cybercrime schemes.

– This averts forensic evidence on other channels (Subsect. 3.5). Our research
confirms that accessibility attacks significantly reduce the forensic footprint
when compared to non-accessibility attacks (Sect. 4).

2 Background

2.1 Android Attack Vectors

Android malware typically consists of packed or embedded malicious code inside
seemingly or truly benign applications. The malicious code then performs malign
operations on the victim’s device by executing a series of commands either hard-
coded or received through the command and control (C2) channel [14]. However,
if this code requires the use of OS features deemed as dangerous, it must request
the appropriate permission or functionality. Examples of these are the SEND SMS
permission, or access to the camera. At this moment, malware must somehow
trick the victim into enabling the relevant permission.

A more advanced vector, known as capability leak, involves abusing privileged
components in third-party apps that do not adequately restrict access to their
functionality. It is usually made possible through non-secured inter-app compo-
nent communication channels [15]. It can result in a reduced forensic footprint

Reducing the Forensic Footprint with Android Accessibility Attacks 25

since malware can perform the malign operation without explicitly requesting
the associated permission or feature. However, the ability to carry out this capa-
bility leak attack is not very dependable as it usually relies on insecure coding
on the part of the third-party app developer and requires the vulnerable app to
be installed on the device at the point of malware execution.

One particularly sought-after attack vector comprises vulnerabilities inside
system code, whose exploitation result in device rooting [16]. However, while
extremely powerful, in terms of stealth, this approach can be very noisy.

2.2 The Accessibility Attack Vector

Android accessibility features are made available to any app request-
ing the BIND ACCESSIBILITY SERVICE permission. By simply sub-classing
AccessibilityService, along with component registration, the app gains
access to all GUI events of interest for any app. Its corresponding event handling
code receives an AccessibilityEvent through which the GUI of a third-party
app is abstracted as a tree of GUI elements along with all displayed informa-
tion (possibly including credentials or other sensitive information) which are not
protected by the importantForAccessibility mask. Apart from reading asso-
ciated data, through the AccessibilityNodeInfo class, the accessibility service,
in turn, can invoke further actions on the target app. While rendering every app
on an Android device accessible to alternative means of interaction, accessi-
bility services also introduced the nasty side-effect of potentially backdooring
Android’s security model.

This model is based on the principles of consent, isolation and containment
[17] and it is surprising that it can be bypassed with a single abused permission
[18] (Fig. 1). When compared to typical capability leaks, accessibility attacks
are way more practical, from an attacker’s point of view. This is, in large part,
due to the feature being available on all devices and supported by all apps
since UI elements have the isImportantForAccessibility flag set to auto by
default [19].

Furthermore, recent malware [10] has shown how to fool Google’s on-device
scanner, Play Protect, through the use of accessibility as an attack vector. Since
Play Protect was unable to detect the malicious code, this was therefore white-
listed as a trusted application on the Play Store.

The use of overlays [20] has been proposed to increase attack stealthiness by
reducing the visibility of any accessibility attack. However, this work primarily
focused on showing how overlays can be used to trick users into enabling accessi-
bility and hide any nefarious actions after that. That being said, recent malware
has shown that less sophisticated methods, such as using deceit in their user
prompts can suffice.

2.3 Living Off the Land (LotL)

Campbell et al. [13] first introduced and coined the concept of LotL, even though
several previous attacks already made use of this approach. Through their work,

26 Y. Leguesse et al.

Permission enforcement

Permitted
Functionality

App sandbox

Victim app

UI

Android API

Telephony Service Camera Service

App sandbox

Accessibility app

Accessibility
service

Sandbox isolation &
permission enforcement

Bypassing sandbox &
permissions

Fig. 1. The accessibility attack vector bypasses Android’s permission and isolation-
based security model.

they concluded that “using a few built-in tools and a healthy dose of Power-
shell, an attacker can greatly reduce their forensic footprint”. The underpinning
principle of LotL remains that of using white-listed system components through
which to attain the malign attack objectives, as opposed to introducing malware
components on the target system. To demonstrate the approach, they showed
how classical attacks such as keylogging, C2, and privilege escalation are carried
out on Windows systems. They then went on to compare these attack implemen-
tations to what they referred to as a minimalist approach, whereby only using
built-in system tools they managed to obtain the same malicious outcomes while
reducing their forensic footprint. In some cases they managed to obtain a fileless
posture whereby no malicious executables are placed on the file system.

Due to the nature of its target device install-base, Android lacks similar
administrative tools to allow an analogous tactic to work. However, Android’s
accessibility services seem like the ideal substitute to implement a comparable
strategy of providing access to all white-listed logic triggered via GUI actions.
Even though such malware has to be delivered to the device in the form of an
APK, subsequent attacks in this paper show that the APK may only be required
during the initial stages of the attack, whit the following stages only requiring
the white-listed apps.

2.4 Elaborate Cybercrime Schemes

Malware is not the only tool available to cybercriminals. There are more elabo-
rate schemes involving some other sort of deceit or impersonation. One example
made infamous in recent years due to its role in many attacks involving the
looting of cryptocurrency funds is that of SIM-swapping [21]. A SIM swap com-
prises an attacker successfully convincing a mobile operator to switch the vic-
tim’s phone number over to a different SIM card, one they own. By diverting the

Reducing the Forensic Footprint with Android Accessibility Attacks 27

victim’s incoming messages, scammers can easily complete the 2FA checks com-
monly needed for moving cryptocurrencies out of exchanges. While the implica-
tions of these attacks can be significant, they tend to leave a more extensive foren-
sic footprint across different sources. For example, in the case of SIM-swapping
forensic analysts can now also rely on evidence left at the mobile operator, from
simple audit entries down to CCTV footage from the mobile operator outlet
where the SIM-swapping request occurred.

2.5 Related Work

Obfuscation and anti-analysis [6] are popular approaches for achieving stealthi-
ness while eluding detection at a malware sandbox level. However, detection and
response tools can make use of deobfuscation [22] and other anti-anti-analysis
tools and techniques to counter them. Yet some obfuscation techniques go to
the extent of corrupting runtime structures to change the low-level semantics
of the code [23], e.g. switch the behaviour of the innocuous JSONObject with
that of LocationManager. While potentially bypassing app store and on-device
scanning, access to the device location services, in this case, would ultimately get
uncovered by any system API monitor. On the other hand, what would remain
below the radar, even at this level of observation, is if malware delegated all of its
location services misdemeanours to a benign app through accessibility services
access.

While LotL is a well known stealth-enhancing threat on traditional platforms
like MS Windows (with ongoing efforts towards novel LotL detection techniques
[24]), not much work has focused on the possibility of LotL on Android. As
a result, no LotL-specific analysis or forensic techniques have been studied or
developed for Android. In this work, we are demonstrating that LotL can indeed
be succesfully achieved on Android, through the abuse of accessibility services.
Accessibility is a known threat on Android, and researchers are developing tools
and techniques [19] aimed at mitigating some of these issues. However, the pro-
posed measures are far from a complete solution to the problem and only tackle
particular issues. Google developers have even tried to mitigate the threat by
placing more stringent controls on the app store concerning accessibility apps.
However, this decision had to be reverted [25] due to a backlash from the devel-
oper community.

Given the nature of accessibility, accessibility-enabled attacks can be found
across platforms [26]. However, when compared to the second most popular
mobile OS (iOS), Android attacks are much more prevalent due to the OS’s
accessibility design. As opposed to granting accessibility to any app requesting
the relevant permission, iOS takes a significantly more conservative approach
with its UIAutomation framework. This feature set is part of the private API
set, made available only to pre-packaged apps, and therefore its use is forbidden
to third-party apps uploaded to the Apple Store.

28 Y. Leguesse et al.

3 Accessibility Misuse

In this section, we will explain the general steps involved in a standalone acces-
sibility attack, as well as the steps required in a comprehensive accessibil-
ity attack scenario which consists of several standalone accessibility attacks.
We will then explain the different use cases of SMS abuse, C2-equipped mal-
ware, and crypto exchange theft, comparing implementations of a classical, non-
accessibility implementation to different accessibility-enabled implementations.

3.1 Threat Model

The relevant attacks for our work deal with hiding post-infection activity from
detection and response tools. We assume that a malicious accessibility app man-
aged to make its way to a user’s device undetected, and was subsequently granted
the necessary permissions by the end-user. Surveys about malware in the wild
have shown, time and again, that this scenario occurs way more frequently than
what one would hope [27]. In the following sub-sections we first describe the
attack steps common to any accessibility attacks aiming at transforming exist-
ing attacks into stealthier ones, we then present the specific use-cases of SMS
abuse, C2-equipped malware, and a crypto exchange theft.

3.2 Setting up Malicious Accessibility Services

Having a malicious accessibility service delegate functionality to a target victim
app, or else attacking it directly in a malware-only setting, proceeds as follows.
First, the app hosting the malicious accessibility service launches the victim
app. This can be done using an Intent object, which is a predominantly asyn-
chronous messaging component Android developers can use to request an action
from another app component. Next, the accessibility service idles, waiting for
the victim app to appear in the foreground. This event can be picked up by
the appropriate filter being set inside the overridden onAccessibilityEvent()
handler, at which point it can gain access to the relevant UI elements, e.g. but-
tons or edit texts. Subsequently, the accessibility service proceeds to traverse
the tree of AccessibilityNodeInfo elements, calling performAction() among
multiple other ways, to interact with the victim application.

For example, to exploit this flow for SMS abuse, the accessibility malware can
first launch the default SMS app, passing the destination number and message
text inside the Intent parameters. Next, the accessibility service starts moni-
toring the foreground activity, waiting for the SMS app to be in the foreground.
Once it is, the accessibility service looks for the “send” button. It automatically
completes the task by “clicking” on it through a performAction() call, without
having to bring it to the user’s attention.

A comprehensive accessibility attack scenario ultimately comprises an entire
sequence of such mimicked user actions, and with three main stages (see Fig. 2),
where each one encompasses one or more accessibility attacks. The first one is the

Reducing the Forensic Footprint with Android Accessibility Attacks 29

Configuration stage where the malware, once having tricked the user into grant-
ing the accessibility permission, proceeds to download the victim app, followed
by any required user registration and after disabling notifications for additional
stealth. All these steps can be carried out through accessibility services, and of
course, are only required if the app is not already available on the device. The
next Malicious Operation stage is victim-app-specific. It performs the interaction
mentioned above steps, multiple times, to leverage whatever app functionality
appeals to the attacker. The final Evidence Removal stage can optionally delete
all remnants belonging to the attack steps, for example deleting any compromis-
ing sent SMS text message from its corresponding chat. However, it may be the
case that the nature of the attack requires that the sent text message should be
left on the device in order to confuse incident response.

It is noteworthy that the final Evidence Removal stage may even proceed
to remove the malware app itself even before the attack is over. This could be
the case where the victim app is one that provides some form of remote control,
or else some kind of scheduled task, over the infected device. We refer to this
scenario as Full LotL, meaning that the attacker manages to attain a malware-
less posture on the device during an ongoing attack. In the upcoming use cases,
we demonstrate two examples that abuse SMSonPC apps such as the popular
Pushbullet app and remote administration apps such as the Teamviewer app for
a similar purpose.

Even though the underlying accessibility service initiating the attack is run-
ning in the background, the accessibility attacks often force the victim app to
run in the foreground. This can result in the victim seeing what is going on.
However, through the use of overlay and speed tactics, we were able to reduce
the impact of foreground activity further. The use of overlays to hide malicious
activity has been proven to be very effective in hiding accessibility attacks [20].

Accessibility (Acc) Attack

Launch victim app

Check that victim app is in
foreground

Find relevant UI element
(eg: button or edit text)

Perform action on UI element
(eg: click or fill text)

Attack Scenario

1) Configuration

2) Malicious Operation

3) Evidence removal

Acc Attack 1

Acc Attack l

Acc Attack 2

Acc Attack 1

Acc Attack m

Acc Attack 2

Acc Attack 1

Acc Attack n

Acc Attack 2

...

...

...

Fig. 2. Accessibility attack scenario stages.

30 Y. Leguesse et al.

3.3 SMS Abuse Attack

Non-accessibility Version. On Android, two approaches allow apps to send
SMSs. The first involves requesting the SEND SMS permission and calling
sendTextMessage() through SmsManager. The second involves using the default
SMS app and passing an intent with the appropriate message parameters. The
former is typically the preferred method since the latter requires user confirma-
tion upon every SMS sending. It is worth noting that, in more recent Android
versions, an SMS sending app is not allowed to delete an SMS unless the user
explicitly configures the app as the default SMS application.

LotL Version. Through accessibility, a LotL version of the same attack becomes
possible. The LotL SMS scenario in Table 1 describes the setup for each of the
accessibility attack scenario stages, with the attacker sending text messages over
SMS through the default messaging app. As opposed to the non-accessibility
approach, this version does not require SEND SMS permission or any of the asso-
ciated API methods.

Table 1. Accessibility attack scenarios (†= Accessibility attack)

Scenario Configuration Malicious operation Evidence removal

LotL SMS Targets default SMS app

No config required

Send SMS† Delete SMS†

Full LotL SMS Install SMSonPC

(Pushbullet)†
Enable Permissions†
Disable Notifications†
Login SMSonPC†

Send SMS through SMSonPC Remove trojan†
OR

Delete SMS†

LotL C2 Targets default web-browser

No config required

Navigate to white-listed

website†
Delete history†

Full LotL C2 Install Remote Admin app

(Teamviewer)†
Enable permissions†
Disable notifications†
Login to Teamviewer†

Exfiltrate files from storage

through Teamviewer remote

control functionality

Remove trojan†

Crypto

Exchange

Theft

Assumes that the victim apps

are already installed

No configuration is required

Obtain 2FA token from

2FA app†
Perform withdrawal (passing

2FA as params)†

Remove trojan†

Full LotL Version. The Full LotL SMS scenario in Table 1 describes an alterna-
tive SMS abuse attack scenario setup, with added stealth. This time a SMSonPC
app, e.g. Pushbullet, replaces the default messaging app. Once Pushbullet is
smuggled onto the device, the attacker obtains full control over the SMS func-
tionality on the victim device, and the malware is no longer required and thus
deleted. We use the term Full LotL to refer to the fact that at this point, the
attacker makes exclusive use of a benign app to successfully pull off the attack,
without the need for malware persistence.

Reducing the Forensic Footprint with Android Accessibility Attacks 31

3.4 C2-Equipped Malware

Non-accessibility C2. Widely deployed banking trojans typically come equipped
with a C2 channel, providing attackers remote control over infected devices, with
Android malware being no exception [10,11]. While C2 channels can be used for
all sorts of communication, exfiltration of stolen credentials as part of a phishing
attack is a frequent feature in banking trojans. On the other hand, in Android,
the shared storage location is used to store selfies, screenshots, and miscella-
neous multimedia files. The READ EXTERNAL STORAGE permission is required for
such operations. Transferring all stolen data back to the C2 server requires a
custom network protocol or, preferably leveraging widely-used cloud messaging
infrastructures, e.g. Firebase Cloud Messaging. HTTP tends to be the applica-
tion protocol of choice, due to its compatibility with firewall settings. Whatever
the approach, malware needs to request the INTERNET permission.

LotL C2. The LotL C2 scenario in Table 1 describes one possible setup for the
different accessibility attack scenario stages, in order to employ a stealthy LotL
C2 channel. In this case, the attacker uses the default web browser to send and
receive data from the victim’s device. An advantage of this approach is that it
does not require any extra permissions requests since they are already granted
to the browser. Furthermore, malware can circumvent even the strictest URL
black-list by connecting to a white-listed website rather than connecting directly
to the C2 server.

Full LotL C2 . Setting up a stealthy C2 can even be pushed further, for example,
not requiring any malware to be present on the device beyond the configuration
stage. As shown in the Full LotL C2 scenario shown in Table 1, the accessibility
malware can simply install a white-listed remote administration app to control
the device and exfiltrate user data.

3.5 Crypto Exchange Theft

SIM Swapping. A SIM swap is when someone convinces a mobile operator to
switch the victim’s phone number over to a SIM card they own. By diverting the
victim’s incoming messages, scammers can easily complete the text-based 2FA
checks that typically protect crypto exchange accounts. In combination with
stolen passwords from a phishing attack, this leaves the victim’s crypto wallet
up for grabs.

Malware-Only Attack. 2FA-bypassing malware is the holy grail of banking tro-
jans. An Android accessibility abuse makes this possible. The setup of this sce-
nario is shown in the Crypto Exchange Theft scenario in Table 1. In this case, it
is noteworthy that SMS 2FA tokens are gradually being replaced by more secure
alternatives [28], with 2FA apps being the most popular choice. However, even
these can be bypassed with accessibility attacks, in the same spirit. Perhaps
only hardware tokens or biometric-based ones present an exception, although

32 Y. Leguesse et al.

creative social engineering tricks can probably overcome these extra (and as yet
uncommon) security measures.

In this scenario, the accessibility trojan obtains the 2FA token from the 2FA
app or SMS and then passes the stolen token as a parameter in the withdrawal
process. Fig. 3 shows how after using an intent to launch the 2FA app (Google
Authenticator), the trojan reads the text value of the token by finding the text
value of the view com.google.android.apps.authenticator2:id/pin value
using the accessibility command findAccessibilityNodeInfosByViewId. After
obtaining the 2FA token, the malware then opens the victim’s exchange app and
clicks its way through the withdrawal process. Once the 2FA entry is prompted,
the trojan then passes the stolen value in the appropriate edit text.

Fig. 3. 2FA token theft and use.

4 Forensic Footprint Comparisons

Here we demonstrate the reduced forensic footprint in all of our attack exam-
ples, by comparing the artefacts left behind in each case. The forensic footprint
is compared across several analysis probes. Unless noted otherwise, all sources
of evidence are supplied by MobSF probes. All attacks were executed on actual
Android devices (Nexus 5x, Samsung Galaxy S8, and Samsung A30s) as well as
on Android emulators ranging from Android API levels 23 to 29. The artefacts
taken into consideration are as follows: APK-derived requested Permissions (P),
and API and Library classes/methods (ALc); Sandbox execution-derived API
and Library method calls invoked (ALe), Network traffic (N), non-Volatile Mem-
ory (nVM) data, Logcat (L) and Dumpsys (D) entries.

We ranked the outcome of the forensic footprint for each of the artefacts
between 0–2. A 0 label indicates that the malware does not leave any forensic
footprint behind. In contrast, a value of 2 indicates that there is enough forensic
footprint to attribute the malicious behaviour to the malware through clear

Reducing the Forensic Footprint with Android Accessibility Attacks 33

evidence. A value of 1 indicates that a forensic footprint exists, however it does
not suffice to attribute the malicious behaviour to the malware. In the cases
of probes P and ALc, attribution is determined through the binary on which
the analysis is occurring. Whereas the remaining probes depend on process IDs
for attribution. Additionally, N also makes use of process ID and src/dest port
correlation, and nVM makes use of the app’s local storage.

All attacks from Sect. 3 were implemented in the Metasploit pentest frame-
work, as part of the Android Meterpreter payload. The post-exploitation com-
mands used were send sms for SMS sending and commands from the stdapi
command set such as download for C2 data exfiltration. The accessibility attacks
required an alternative implementation for each of them, specifically target-
ing: Pushbullet (package: com.pushbullet.android, ver:18.2.35) and Google Mes-
sages (package: com.google.android.apps.messaging, ver:5.7.097) in the case of
SMS sending, and Teamviewer Host (package: com.teamviewer.host.market, ver:
15.6.51) and Google Chrome (package: com.android.chrome, ver:81.0.4044.117)
in the case of C2. Finally, the Crypto exchange theft was tested on Binance
(package: com.binance.dev, ver:1.21.1).

4.1 Results

SMS Abuse. Figure 4 shows the SMS abuse forensic footprint comparison results.
It reveals LotL’s reduced forensic footprint across the various probes. One
instance where the LotL approach leaves more forensic evidence than the non-
accessibility approach is the network activity during the Pushbullet attack. This
observation is due to Pushbullet having first to receive a network command
before it can send text messages. That said, the network activity is not attributed
to the malicious accessibility app, but rather to Pushbullet. In fact, in this Full
LotL attack version, the accessibility malware is not even on the device anymore
at the point when the text messages are sent.

Fig. 4. Forensic footprints - SMS abuse attacks.

34 Y. Leguesse et al.

C2-Equipped Malware. Figure 5 shows the C2 forensic footprint comparison,
clearly displaying LotL’s reduced forensic footprint across the various probes.

Fig. 5. Forensic footprints - C2-equipped malware attacks.

Crypto Exchange Theft. Had a SIM-swapping approach been followed for pulling
off this attack, the expected result is one where the attacker ample leaves forensic
evidence at the mobile provider, possibly including CCTV footage of the person
buying the SIM. Moreover, at the exchange site, new logs originating from the
attacker’s IP rather than the victim’s could also be observed. That is one of
the reasons why Binance triggers an alarm every time an authentication request
comes from new/unknown IP addresses. Once IP data is obtained, forensic ana-
lysts can even dig deeper and request service provider logs to identify the source
of the crime. Cybercriminals can make use of tools like anonymous proxies or
VPNs in order to cover their tracks, however, an alarm will still be triggered for
every new/unknown IP used.

On the other hand, the malware-only version of the exchange withdrawal
attack has the advantage that it only leaves forensic evidence on the device,
and even in this case, the forensic evidence on the device is already significantly
reduced. The only left artefact is network activity between the victim device and
the exchange. However, since the victim would have already been using the app,
this would seem like perfectly normal network activity. Proving in a forensically
sound manner that it was not the user who executed the withdrawal could be
quite tricky, especially if the accessibility trojan is removed afterwards. From
the ISP, crypto exchange, and mobile operator perspective, all of the forensic
artefacts point towards legitimate activity from the victim’s device. This could
be very problematic when dealing with cases of financial fraud. Figure 6 shows
the forensic footprint comparison results. In this case, we also consider external
sources, namely: ISP, crypto exchange (CE), and mobile operator (MO).

We have responsibly disclosed the possibility of these attacks to two of the
most popular crypto exchanges, and both acknowledged the issue. To their credit,

Reducing the Forensic Footprint with Android Accessibility Attacks 35

Fig. 6. Forensic footprints - Crypto exchange theft.

after our communication and only in a matter of days Binance took appropriate
measures by disabling the accessibility feature for critical UI elements involved
in the withdrawal process. We tested the attack against the updated version
of their application and confirmed that it was able to block our initial accessi-
bility withdrawal attack. The other exchange awarded us a bug bounty on the
Hackerone platform [29] and seems to be in the process of mitigating the issue.
It is important to note that this is not necessarily a bug or vulnerability from
the part of the exchanges, but rather an OS feature that can be easily misused
for stealing funds if no new countermeasures are implemented.

5 Discussion and Conclusion

Given the potential for stealthiness in accessibility attacks, their forensic anal-
ysis requires not only leveraging the state-of-the-art in mobile forensics but
also extending it further concerning ephemeral evidence inside volatile mem-
ory. Stealthy malware is unlikely to leave any traces on disk. However, it cannot
avoid leaving marks on volatile memory at one point or another. The likely brief
presence in memory of relevant artefacts, which could be indicators of compro-
mise, call for a just-in-time collection approach [30]. The challenges with this
strategy are, nevertheless, many. The memory collection has to be done in a
timely manner, and overheads have to be kept minimal while still being able to
locate and parse the required evidence. Additionally, the method employed must
ensure that it does not cause the app to crash nor allow the malware to detect
that the analysis is taking place. In terms of prevention, hardened authentication
mechanisms such as physical 2FA tokens and interactive CAPTCHAs can help
reduce the risk of malicious apps performing sensitive operations on the user’s
behalf.

Accessibility apps have become a “double-edged sword”, as they bring sig-
nificant security threats to users. Malicious accessibility apps are able to per-
form sensitive operations by hijacking trusted white-listed apps easily, and more

36 Y. Leguesse et al.

importantly, they can elude detection by leaving behind a significantly reduced
forensic footprint. In this paper, we first studied the security risks of accessibility
apps employing LotL tactics, and those that offer a malware-only substitute for
attacks typically requiring more elaborate schemes. To demonstrate the reduced
forensic footprint, we compared the analysis of accessibility malware with non-
accessibility variants. The experimental results showed that across several analy-
sis probes, accessibility malware could significantly reduce the forensic footprint
when performing malign operations. Our work exposes the severe security threats
and outlines the forensic implications of accessibility trojans. We have notably
responsibly disclosed the impact of our research on two major cryptocurrency
exchanges. Our work has led to one (Binance) immediately upgrading the secu-
rity of its mobile app while the other is currently working on it. Given the severity
of the threats posed, as well as the powerful stealth capabilities of accessibility
attacks, Google may need to reconsider the openness of its accessibility services
in the short term, before cybercriminals start exploiting them widely.

Acknowledgement. This work is supported by the LOCARD Project under Grant
H2020-SU-SEC-2018-832735.

References

1. Zdnet: Bigger than Windows, bigger than iOS (2019). https://www.zdnet.com/
article/bigger-than-windows-bigger-than-ios-google-now-has-2-5-billion-active-
android-devices-after-10-years/

2. Gdata: Cyber attacks on Android devices on the rise (2018). https://www.
gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-
the-rise

3. Hutchinson, S., Zhou, B., Karabiyik, U.: Are we really protected? An investigation
into the play protect service. In: 2019 IEEE BigData, pp. 4997–5004. IEEE (2019)

4. Alepis, E., Patsakis, C.: Hey doc, is this normal?: Exploring Android permissions
in the post Marshmallow era. In: Ali, S.S., Danger, J.-L., Eisenbarth, T. (eds.)
SPACE 2017. LNCS, vol. 10662, pp. 53–73. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71501-8 4

5. ENISA: Mobile Threats and Incident Handling (2015)
6. Petsas, T., et al.: Rage against the virtual machine: hindering dynamic analysis of

Android malware. In: EuroSec 2014, pp. 1–6 (2014)
7. Alepis, E., Patsakis, C.: Trapped by the UI: the Android case. In: Dacier, M.,

Bailey, M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol.
10453, pp. 334–354. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66332-6 15

8. Ahmad, M., Khan, M.N.A.: A review of forensic analysis techniques for Android
phones. JISR 15(1), 23–30 (2017)

9. Diao, W., et al.: Kindness is a risky business: on the usage of the accessibility APIs
in Android. In: 22nd RAID 2019, pp. 261–275 (2019)

10. Stefanko, L.: Insidious Android malware gives up all malicious features but
one to gain stealth (2020). https://www.welivesecurity.com/2020/05/22/insidious-
android-malware-gives-up-all-malicious-features-but-one-gain-stealth/

https://www.zdnet.com/article/bigger-than-windows-bigger-than-ios-google-now-has-2-5-billion-active-android-devices-after-10-years/
https://www.zdnet.com/article/bigger-than-windows-bigger-than-ios-google-now-has-2-5-billion-active-android-devices-after-10-years/
https://www.zdnet.com/article/bigger-than-windows-bigger-than-ios-google-now-has-2-5-billion-active-android-devices-after-10-years/
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://doi.org/10.1007/978-3-319-71501-8_4
https://doi.org/10.1007/978-3-319-71501-8_4
https://doi.org/10.1007/978-3-319-66332-6_15
https://doi.org/10.1007/978-3-319-66332-6_15
https://www.welivesecurity.com/2020/05/22/insidious-android-malware-gives-up-all-malicious-features-but-one-gain-stealth/
https://www.welivesecurity.com/2020/05/22/insidious-android-malware-gives-up-all-malicious-features-but-one-gain-stealth/

Reducing the Forensic Footprint with Android Accessibility Attacks 37

11. Threat Fabric: 2020 - Year of the RAT (2020). https://www.threatfabric.com/
blogs/2020 year of the rat.html

12. Techcrunch: Eventbot (2020). https://techcrunch.com/2020/04/29/eventbot-
android-malware-banking

13. Campbell, C., Graeber, M.: Living Off the Land: A Minimalist’s Guide
to Windows Post-Exploitation (2013). http://www.securitybsides.com/w/page/
67875719/BSidesAugusta

14. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: 2012 IEEE SSP, pp. 95–109. IEEE (2012)

15. Yang, K., et al.: IntentFuzzer: detecting capability leaks of android applications.
In: 9th ACM CCS, pp. 531–536 (2014)

16. Zhang, H., She, D., Qian, Z.: Android root and its providers: a double-edged sword.
In: 22nd ACM SIGSAC, pp. 1093–1104 (2015)

17. Mayrhofer, R., et al.: The Android platform security model. CoRR abs/1904.05572
(2019). arXiv: 1904.05572

18. Kalysch, A., Bove, D., Müller, T.: How Android’s UI security is undermined by
accessibility. In: Proceedings of the 2nd Reversing and Offensive-oriented Trends
Symposium, pp. 1–10 (2018)

19. Naseri, M., et al.: AccessiLeaks: investigating privacy leaks exposed by the Android
accessibility service. Proc. PETs 2019(2), 291–305 (2019)

20. Fratantonio, Y., et al.: Cloak and dagger: from two permissions to complete control
of the UI feedback loop. In: 2017 IEEE (SP), pp. 1041–1057. IEEE (2017)

21. Serapiglia, A.: Cybersecurity and cryptocurrencies: introducing ecosystem vulner-
abilities through current events. In: EDSIG ISSN, vol. 2473, p. 3857 (2019)

22. Kan, Z., et al.: Automated deobfuscation of Android native binary code. arXiv
preprint arXiv:1907.06828 (2019)

23. Yang, X., et al.: How to make information-flow analysis based defense ineffective:
an ART behavior-mask attack. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS,
vol. 10599, pp. 269–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69659-1 15

24. Velasco, L., Duijn, R.: Fileless-threats-analysis-and-detection. In: Dearbytes (2018)
25. Zdnet: Google pauses removal of apps that want to use accessibility services

(2017). https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-
api-apps/

26. Jang, Y., et al.: A11y attacks: exploiting accessibility in operating systems. In:
Proceedings of the 2014 ACM SIGSAC, pp. 103–115 (2014)

27. Faruki, P., et al.: Android security: a survey of issues, malware penetration, and
defenses. IEEE Commun. Surv. Tutor. 17(2), 998–1022 (2014)

28. Drozhzhin, A.: SMS-based two-factor authentication is not safe-consider these
alternative 2FA methods instead (2020). https://www.kaspersky.com/blog/2fa-
practical-guide/24219/

29. Hackerone: Hackerone. https://www.hackerone.com/
30. Vella, M., Rudramurthy, V.: Volatile memory-centric investigation of SMS-hijacked

phones: a Pushbullet case study. In: 2018 FedC- SIS, pp. 607–616. IEEE (2018)

https://www.threatfabric.com/blogs/2020_year_of_the_rat.html
https://www.threatfabric.com/blogs/2020_year_of_the_rat.html
https://techcrunch.com/2020/04/29/eventbot-android-malware-banking
https://techcrunch.com/2020/04/29/eventbot-android-malware-banking
http://www.securitybsides.com/w/page/67875719/BSidesAugusta
http://www.securitybsides.com/w/page/67875719/BSidesAugusta
http://arxiv.org/abs/1904.05572
http://arxiv.org/abs/1907.06828
https://doi.org/10.1007/978-3-319-69659-1_15
https://doi.org/10.1007/978-3-319-69659-1_15
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://www.kaspersky.com/blog/2fa-practical-guide/24219/
https://www.kaspersky.com/blog/2fa-practical-guide/24219/
https://www.hackerone.com/

38 Y. Leguesse et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Novel Machine Learning Methodology
for Detecting Phishing Attacks in Real

Time

Vishal Arora(B) and Manoj Misra

Indian Institute of Technology Roorkee, Roorkee 247667, India
arora.v.vishal032@gmail.com, manojfec@gmail.com

Abstract. Phishing is a cybercriminal activity where the criminal mas-
querades as a trusted entity and attacks the righteous users to gain
personal information illegally. Many phishing detection techniques have
been proposed in the past which use blacklist/whitelist, heuristic, search
engine, visual similarity and machine learning. The statistics say that the
average lifespan of any phishing website is 8–10 h which makes it strenu-
ous for most of the above-mentioned techniques to identify and detect it
accurately. Blacklist/whitelist and Search Engine based techniques work
in real time but may fail to handle zero day phishing attacks. To tackle
this problem, it is essential to have an approach that studies the dynamic
behavior of the websites and predicts the new phishing website accu-
rately. Machine Learning has been used in the past to handle dynamic
behavior of phishing websites. In this paper, we propose a method in
which a browser extension makes an API call to the pre-trained machine
learning model to fetch the results, thus making machine learning work
in real-time. Six machine learning classifiers have been rigorously trained
and tested on a dataset of 5430 legitimate URLs and 5147 phished URLs.
We have used a novel feature in which HTTPS URLs can be accurately
identified as phished or legitimate based on Certificate validation. This
method also detects the phishing websites hidden behind the short URLs
along with the normal URLs, thus making it more robust. This methodol-
ogy has a quick response time of 1.74 s along with an accuracy of 99.93%
which is better than the previous works.

Keywords: Phishing · Machine learning · Certificate validation ·
Decision Tree · Random Forest · Adaboost · Gradient Boost · KNN ·
Linear Discriminant Analysis

1 Introduction

With the growing use of the Internet in today’s world, personal information is
the key to providing the data of one’s interest. This vast availability of personal
information on the Internet acts as an opportunity to a cybercriminal, who
then uses this crucial information to convert an attack into a crime. Phishing

c© Springer Nature Switzerland AG 2020
K. Markantonakis and M. Petrocchi (Eds.): STM 2020, LNCS 12386, pp. 39–54, 2020.
https://doi.org/10.1007/978-3-030-59817-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_3&domain=pdf
http://orcid.org/0000-0002-7744-9047
https://doi.org/10.1007/978-3-030-59817-4_3

40 V. Arora and M. Misra

is a new age crime that employs social engineering to steal the unwary victim’s
personal data which includes financial company secrets, identity information,
account credentials. Righteous users are fooled in which the social engineering
schemes make them believe that they are being dealt with the original and
trusted legitimate party.

As per the report published by Anti Phishing Working Group (APWG) [4],
“Almost three-quarters of all phishing sites now use SSL protection, highest
recorded since early 2015, and an indicator that users can’t rely on SSL alone
to understand whether a site is safe or not”. APWG detected that the total
number of phishing sites in the fourth quarter for the year 2019 was 162,115.
The numbers indicate that it is the need of the hour to have a technique that
can detect HTTPS phishing websites accurately.

To tackle these phishing attacks various techniques have been proposed.
These techniques can be grouped into the following categorizations:

Blacklist and Whitelist Based Techniques: Blacklist contains URLs of the
phishing websites and Whitelist contains URLs of the legitimate websites. The
URL which is being visited is compared to the list of URLs. The webpage gets
downloaded only when its URL is found/not found in the whitelist/blacklist.
These techniques result in high false positives and false negatives and require
that these lists are updated frequently to tackle novel phishing attacks.

Heuristic Based Techniques: These techniques detect phishing attacks by
extracting various features such as logo extraction, URL length, etc from the
phishing websites. These techniques are low in terms of accuracy as all phishing
websites do not have common features. Additionally, it is easier to bypass these
techniques once the features used are known to the attacker.

Search Engine Based Techniques: The popularity of a website is determined
by the use of search engine based techniques. The popularity can be extracted
by the use of URLs, the text on the given page, and also by the images available
on the web page. Based on the popularity, a web page is identified as phished
or legitimate. If the right set of keywords are not fed to the search engine, then
this technique may result in high false positives.

Visual Similarity Based Techniques: These techniques compare phishing
website’s image with the legitimate website’s image stored in its database for
identification. These techniques have high time complexity as well as high storage
needs.

Machine Learning Based Techniques: A collection of features is extracted
from the website to form a dataset. Machine Learning algorithms are then trained
with the newly formed dataset to create a model. The model makes predictions
when fed with unseen data. These techniques can identify Zero-day phishing
attacks accurately.

The goal of this research is to propose a methodology to detect phishing
attacks using Machine Learning in real-time. Machine learning in real-time has
been implemented in the past but the proposed method is better when compared

Real Time Machine Learning Methodology to Detect Phishing Attacks 41

in terms of accuracy. In addition the paper makes the following other research
contributions.

The proposed method uses a novel feature in which certificate validation
level is considered to detect HTTPS phishing websites with a false positive rate
of 0.0024%. Our methodology also detects phishing websites hidden behind the
short URLs.

The proposed method makes use of 11 features which include URL based
features and third party based features. Six Machine Learning classifiers are
trained and tested on these features to evaluate the performance of the model.

This paper has been organized into seven sections. The first section gives a
brief introduction about the phishing attacks and the importance of phishing
detection solutions. The second section explores the basic terminologies that
have been used. The third section elaborates on the related work that has been
done in this field so far. The fourth section explains the proposed approach for
detecting phishing sites using machine learning algorithms. This section also
explains the feature vector and how the short URL is handled. The fifth section
deals with the experiments performed and the inference from the results of the
experiments. The sixth section concludes the paper and discusses the future
work. The seventh section emphasizes on the limitations of the proposed work.

2 Basic Terminologies

2.1 Machine Learning Algorithms

Decision Tree. A Decision tree [13] is a classification algorithm whose output
is generated as a binary tree structure. Each internal node in this decision tree
represents a test on the feature, each branch represents a specific outcome and
the class label is represented by every leaf node. The entire path set from root
to leaf is referred to as a classification rule set.

KNearest Neighbors (KNN). KNN [14] is a classification algorithm in which
the elementswith similar characteristics are clustered.The class of a testing sample
is predicted based upon the k neighbors which are closest to it. Euclidean distance
is used to calculate the proximity of a test data point from training data.

Linear Discriminant Analysis. A powerful tool that is used for classification
and dimensionality reduction is known as Linear Discriminant Analysis [12].
A linear transformation of the samples is found out from the given dataset of
search results. The performance of the LDA is good if the features are linearly
independent.

Random Forest. Random Forest [7] is an ensemble classification algorithm.
Decision trees are used to predict in this algorithm. Class prediction is achieved
by a number of decision trees that are constructed during the training phase.
The classes obtained as a result of all the individual trees are clustered and the
class having the highest vote is considered as an appropriate output.

42 V. Arora and M. Misra

Adaboost. In Adaboost [9], a number of weak algorithms(decision trees) with
a set of weights are combined and learned as a strong algorithm by adaptive
boost.

Each training set is assigned some weight when a classifier is trained at any
level. Higher weight is assigned to the wrongly classified item. Hence, it appears
with a higher probability in the next training set. When all the classifiers are
trained, it assigns weight to each classifier based on its accuracy. Higher weight
is assigned to the more accurate classifier.

Gradient Boost. Gradient Boost [15] is a regression and classification machine
learning technique in which a prediction model is produced where weak predic-
tion models (decision trees) are ensembled. Its working involves three stages.
First, optimization of differentiable loss functions like logarithmic loss, squared
error, etc. Second, choosing to constraint the weak learners based on nodes splits,
leaf nodes, or the number of levels. Third, constructing an additive model where
the addition of trees is done one at a time. To minimize the loss while adding
trees, a gradient descent procedure is used in which parameters are first assigned
to the tree, and then they are modified at every step to reduce residual loss. Once
the loss reaches an acceptable value or it no longer improves, the training process
stops.

2.2 Certificate Validation

To acquire a certificate [8], a user can opt for one of the three types of certificates
based on the level of background verification. There are three types of certificate
validations namely:

• Domain Validation
• Organization Validation
• Extended Validation

Domain Validation. If the purchaser can demonstrate to manage a domain
name, which fulfills important background criteria, then the domain validation
certificate will be issued by the certificate provider. It is the lowest level of
assurance issued by the certificate provider.

Organization Validation. Organization Validation is issued to the purchaser
by the certificate provider if the following two criteria are met. First, the pur-
chaser demonstrates to manage a domain name. Second, the organization exists
as a legal identity. It is an enhanced level of assurance issued by the certificate
provider.

Real Time Machine Learning Methodology to Detect Phishing Attacks 43

Extended Validation. In Extended Validation, the certificate provider con-
ducts the thorough background verification of the organizational entity and the
purchaser should also demonstrate to manage a domain name. It also includes
manual verification in which the checks are carried out by a human.

With the help of a policy identifier, these levels of validations can be uniquely
identified.

3 Related Work

Pan and Ding’s [19] anti-phishing model uses DOM objects to extract the web-
site’s identity. These elements are keyword description, Server form handler,
Abnormal URL, Abnormal DNS record, etc. They used Support Vector Machine
classifier by experimenting with multiple features. The addition of a search
engine to this anti-phishing approach could have made it a better option for
phishing detection.

CANTINA [24] technique uses the term frequency and inverse document
frequency algorithm. This algorithm operates on the website by using the tex-
tual content present on it. This algorithm extracts high TF-IDF score words.
These score words are then given to the search engine to identify a phishing
site. However, since this approach uses the textual content of the site, there is
a deterioration in the performance of this approach and this approach can fail
if the phished website textual content is replaced by the image of the snippet of
the legitimate website.

Miyamoto and Kadobayashi [16] used nine Machine Learning algorithms to
classify websites as legitimate or phished. Most of the features of the CANTINA
model were incorporated to detect these sites. Of the nine Machine Learning
algorithms, the best performance was given by the Adaboost algorithm with
the highest f1 measure of 0.8581 and an accuracy of 93.42%. It has the same
limitation as that of CANTINA i.e., if the textual content of the website is
replaced by the image, this approach fails.

CANTINA+ [23] is an extension of the previously proposed CANTINA tech-
nique. In this technique, the Machine Learning algorithm called Bayesian Net-
work is used to classify the phishing websites. This technique uses a two-level
detection approach. The first level being the Hash-based near-duplicate page
removal and login form detection. In the second level, they have fetched eight
features that are URL based, HTML based, and web-based. Even though this
technique is an extension to CANTINA, it still follows the same drawback i.e., if
the textual content of the website is replaced by the image, this approach fails.

PhishAri [5] is a technique in which phishing URLs were detected in the
tweets. The Random Forest classifier was used along with the URL based,
WHOIS based, Tweet based, and Network-based feature sets. It was observed
that the accuracy of the above phishing technique came down to 92.52% as
compared to other techniques.

Gowtham and Krishnamurthi [11] used URL based features. Before applying
heuristics they used two-level modules. In the first module, whitelist checks are

44 V. Arora and M. Misra

done and the second module checks the presence of login form. They used 15
features and Support Vector classifier. These features are then fed to the classifier
where the performance of the model is calculated. The accuracy observed by the
use of this model is 99.61%. The above approach fails if the textual content of
the website is replaced by the image.

Mohammad et al. [18] extracted website content and URL features. 17 fea-
tures from the URL were extracted which were then used as an input to the
neural network for classification. The model’s performance can be improved by
refreshing the training dataset frequently.

Moghimi and Varjani [17] extracted features from the website content. A
browser extension was developed and the vector machine algorithm was used
to detect phishing websites. This uses a rule-based technique. As this approach
focuses more on the website content, the chances of failure increases when the
website is modified or redesigned.

LPD [22] is a client-side search engine based approach. A query string is
prepared out of the page title and the domain name of the URL. It is then fed to
Google custom search and based on its presence in top ‘k’ results, it is classified
as phished or legitimate. This approach fails when newly created domains are
being inspected as they might not appear in the top list due to their short term
existence.

LPD+ [21] is an extension to LPD. This technique follows an additional
check on the already available technique LPD. The checks have been divided
into three categories which are HTTPS logic check, domain name starting with
a digit, and presence of URL in google’s blacklist.

Table 1. Table of comparison of our work with the previous works

Work Year HTTPS Short URLs Classifier Accuracy (%) Real time

Pan and Ding [19] 2006 Not handled No SVM 90.00 No

CANTINA [24] 2007 Not handled No – 95.00 No

Miyamoto et al. [16] 2008 Not handled No Adaboost 93.42 No

CANTINA+ [23] 2011 Not handled No Bayesian Network 99.61 No

PhishAri [5] 2012 Not handled No Random Forest 92.52 Yes

Gowtham and

Krishnamurthy [11]

2014 HTTPS & trusted

authority means

legitimate

No SVM 99.61 No

Mohammad et al. [18] 2014 HTTPS & trusted

authority means

legitimate

No Neural networks 92.48 No

Moghimi and Varjani

[17]

2016 HTTPS means

legitimate

No SVM 98.65 Yes

LPD [22] 2016 Not handled No – 99.75 Yes

LPD+ [21] 2016 HTTPS means

legitimate

No – 99.29 Yes

Srinivasa and Roshan

[20]

2018 HTTPS means

legitimate

No Random Forest 99.55 No

Proposed Work 2020 Certificate

Validation method

Yes Gradient Boost 99.93 Yes

Real Time Machine Learning Methodology to Detect Phishing Attacks 45

Srinivasa and Roshan [20] extracted heuristic features that are divided into
three categories namely URL based, HTML based, and the third party based.
Random forest classifier was used to detect phishing website. The extraction of
HTML based features degrades the performance of this method.

Table 1 summarizes the related work. It provides a comparison of previous
works with our work based on the following five parameters. Detection of HTTPS
phishing websites, detection of phishing websites hidden behind the short URLs,
classifier used, accuracy and real-time working of the models.

Fig. 1. System architecture

4 Proposed Work

4.1 System Architecture

Figure 1 represents the architecture of the proposed method. It comprises of
three modules. The first module represents the periodic training and testing of
the machine learning model. The second represents the server hosting the pre-
trained machine learning model which is then exposed as an API (Application
Programming Interface) and the third module represents the Chrome extension.
For the system to work in real-time, Chrome Extension communicates with the
server to get the predicted results and renders it onto the webpage.

• Periodic Training and Testing of ML model. At first, several phishing
and legitimate URLs are collected. An automatic feature extractor is devel-
oped to extract the respective features of URLs. The extracted features form

46 V. Arora and M. Misra

the dataset. The machine learning classifiers are then trained with the newly
formed dataset. The model is trained periodically with the new dataset to
ensure that the model is up to date. This trained model is then stored into
the server database. Here, the Python language is used to train and test the
model.

• Server. To make use of the classifier in real-time, a server is then created
which exposes the stored pre-trained machine learning model as an API to
give the predicted results.

• Chrome Extension. The necessity of Chrome extension arises as the user
interacts with the web world through a client i.e., browser. To create an
add on functionality on the existing browser, extensions can be used. Thus
we developed a Chrome extension that acts as a firewall on the very first
point of contact to the web world to detect phishing. When the URL is
entered on the browser, the Chrome extension fetches the features and creates
a feature vector using it. The feature vector is then passed to the REST
(Representational State Transfer) API. Once the decision is made by the
API, it returns the response as JSON (Javascript Object Notation) object
indicating the predicted results. This set of activity completes during the
time in which the page loads after the URL is entered onto the browser. The
extension is developed using a javascript. With the help of Document Object
Model, content scripts fetch the details of the webpage i.e., page title, URL,
etc which are then used to create a feature vector.
The Chrome extension code can be easily ported to other browsers such as
Microsoft Edge, Mozilla Firefox etc by replacing the browser specific APIs
provided by Chrome developers with the equivalent available APIs of other
browsers and by keeping the javascript APIs intact.

4.2 Feature Vector

Initially, several URL features were considered but based on their “feature impor-
tance” value [10], we finally considered the top 11 distinguishing features to cre-
ate a feature vector. These features have been classified into URL based features
and Third party based features.

URL Based Features. These features are extracted using Lexical analysis of
the URL. In particular, features UBF1 and UBF2 are adopted from CANTINA
[24]. Features UBF3, UBF4, UBF5 and UBF7 are adopted from [18]. Feature
UBF6 is adopted from [17]. Specifically, feature UBF8 is the novel feature pro-
posed by us in this research work.

• UBF1: Number of dots in host name: The hostname in the URL contains
Geographical domain, TLD domain, primary domain, subdomain, etc. The
domain of a legitimate website can be added as a subdomain of the phishing
website by the attacker to deceive the users. Using a high number of dots
hides the actual phished domain of the URL. This feature maintains the dot
count in the hostname to identify the website’s status.

Real Time Machine Learning Methodology to Detect Phishing Attacks 47

• UBF2: Presence of ‘@’ symbol: The presence of ‘@’ symbol in the URL
can be suspicious because whenever the web browser parses ‘@’ symbol, every-
thing before the symbol is ignored and address following ‘@’ symbol is used.
‘@’ symbol is added by the attackers after the legitimate domain and before
the phished domain.

• UBF3: Length of URL: The attackers use a lengthy URL to hide the actual
suspicious phishing domain. Many times they put the legitimate domain only
in the pathname of the URL to gain the trust of the user whereas the host-
name part contains the phishing domain. This feature calculates the length
of URL to detect the true identity of a website.

• UBF4: Presence of IP address: The attackers use the IP address in place
of a domain name in the URL to hide the suspicious phishing domain to trick
the users. This binary feature examines the presence of the IP address in the
URL.

• UBF5: Presence of ‘−’ symbol: The attackers use the ‘−’ symbol to
impersonate the legitimate domain by simply placing it in between the words.
This binary feature examines the presence of the ‘−’ symbol in the URL.

• UBF6: Length of domain: This feature specifically calculates the length
of the domain in the URL. As multiple subdomains can be used to a domain,
criminals add a legitimate domain as the subdomain of the phishing domain
to trick the users.

• UBF7: protocol used: HTTPS secured connections are used by most of the
legitimate websites in case a piece of sensitive information is communicated.
This feature examines the presence of protocol in the URL. If the protocol is
HTTP, it is termed as phishing. If the protocol is HTTPS, then the certificate
validation policy is checked.

• UBF8: Certificate Validation: As almost two-third of the phishing web-
sites uses HTTPS connection, we used certificate validation level using the
policy identifier present in the certificate. If the validation level is extended
then it is classified as legitimate else it is classified as phished. This feature
is significant as 77.5% of legitimate URLs use extended validation certificate
policy.

Third Party Based Features. These features are extracted by making an
API call to the third party server. In particular, TBF1 and TBF2 are adopted
from [18]. TBF3 is adopted from CANTINA+ [23].

• TBF1: Domain Age: Newly registered domains are used to host most of the
phishing domains. Phishing domains are either not present in the WHOIS [3]
database or its age is less. A WHOIS API call is made to extract this feature.

• TBF2: Alexa Ranking: Alexa is a page ranking service that ranks the
website based on its popularity, traffic, etc. As phishing websites have low
popularity as compared to legitimate websites, we use this feature to detect
the website’s identity.

• TBF3: Presence in Search Engine Results: As suggested in LPD, key-
words like page title, domain name are used to make a query string and are

48 V. Arora and M. Misra

given as input to the search engine. If the inspected domain is present in the
list of top 10 domain names returned by the search engine, then it is termed
as legitimate else phished.

4.3 Handling Short URLs

Shortening the URLs has become a popular trend as the breaking of the long
URLs have become the need of an hour when these long URLs simply do not
comply with the existing social networking trends. With the shortened URL, it
is difficult to identify where the browser is pointed. Shortening the URL comes
with its security risks which can be identified as follows:

• These urls can host a lot of malicious and malware programs.
• These short urls are a come home to a lot of phishing activity attempts that

try to steal valuable information.

In a URL shortener service [6], there exists a database where the short URLs
are stored and mapped to there related long URLs. When a browser communi-
cates with the webserver, it issues a GET request to that short URL. In response,
the URL shortener service looks up in its database. It returns a redirect response
to the browser with the response code as 301 (moved permanently) or 302 (moved
temporarily) along with the long URL in the location field of the response header.
Upon receiving the response, the browser looks up the location field automati-
cally and issues the GET request to the new long URL.

We have fetched the corresponding long URLs for the short URLs by inter-
rupting the automatic redirection of the connection and fetching the long URL
from the response header. Once the long URL is fetched, we then extracted the
corresponding features of the feature vector and worked on it.

5 Experiments and Discussions

5.1 Dataset Used

To construct the model, we collected 5430 legitimate URLs from Alexa [1]
database and 5147 phished URLs from phishtank [2] database. This dataset
was further divided into a 70% training set and a 30% test set to evaluate the
performance of our model.

5.2 Performance Metrics

For our experiments, we have considered positive as a situation when URL is
detected as phished and negative as a situation when URL is detected as legit-
imate. By using the standard information retrieval metrics, we have evaluated
the effectiveness of the method described. True Positive (TP) is the number of
phished URLs that were correctly detected among the given set of URLs. True
Negative (TN) is the number of benign URLs that were correctly detected as

Real Time Machine Learning Methodology to Detect Phishing Attacks 49

non-phished from the given set of URLs. False Positive (FP) is the number of
benign URLs that were incorrectly identified as phished. False Negative (FN)
is the number of phished URLs that were incorrectly identified as non-phished.
The metrics that have been considered for performance evaluation are as follows:

• Precision: It is the ratio of true positives to the sum of true positives and
false positives. The higher the precision the better the model.

Precision =
TP

TP + FP
(1)

• Recall: It is the ratio of true positives to the sum of true positives and false
negatives. The higher the recall the better the model.

Recall =
TP

TP + FN
(2)

• f1 measure: It is the harmonic mean of precision and recall.

f1 measure =
2*Precision*Recall
Precision + Recall

(3)

• Specificity: It is the ratio of true negatives to the sum of true negatives and
false positives.

Specificity =
TN

TN + FP
(4)

• Accuracy: It is the ratio of sum of true positives and true negatives to the
total number of websites.

Accuracy =
TP+TN

TP+TN+FP+FN
(5)

• Error rate: It is the ratio of sum of false positives and false negatives to the
total number of websites.

Error rate =
FP+FN

TP+TN+FP+FN
(6)

• Total time: It measures the total time taken by the proposed method to check
the authenticity of the website. It is the sum of the maximum of time taken
by whois API query, Alexa API query, google custom search API query, time
taken to resolve short URLs, and the time taken by machine learning API.

Ttotal = max(Twhois, Talexa, Tgoogle, Tshort) + Tml (7)

5.3 Experimental Evaluation and Results

We tested our feature set on several machine learning classifiers out of which we
have listed the top six classifiers based on their performance. Five experiments
were conducted in total, out of which the first three compares the results of six
machine learning classifiers over a common dataset to evaluate the performance
of the model. The fourth experiment gives the timing analysis of the proposed
method when it is tested on various URLs chosen randomly from the dataset.
The fifth experiment analyzes the average running time of the proposed model
with the average page load time when tested on a randomly chosen set of URLs.

50 V. Arora and M. Misra

Table 2. Evaluation of features without certificate validation feature

Classifier/metrics Precision Recall f1 measure Specificity Accuracy Error rate

Decision Tree 0.9981 0.9956 0.9968 0.9980 0.9968 0.0031

K Nearest Neighbours 0.9839 0.9821 0.9830 0.9818 0.9820 0.0179

Linear Discriminant Analysis 0.9914 0.9895 0.9904 0.9909 0.9902 0.0097

Random Forest 0.9975 0.9962 0.9968 0.9974 0.9968 0.0031

Adaboost 0.9962 0.9962 0.9962 0.9961 0.9962 0.0037

Gradient Boost 0.9993 0.9975 0.9984 0.9993 0.9984 0.0015

Experiment 1: Evaluation of Features Without Certificate Validation
Feature. The certificate validation feature (UBF8) was excluded from this
experiment. We analyzed the features with six machine learning classifiers to
find out the best performing classifier. Gradient Boost classifier performed the
best with an accuracy of 99.84%. The results are shown in Table 2.

Table 3. Evaluation of features without third party features

Classifer/metrics Precision Recall f1 measure Specificity Accuracy Error rate

Decision Tree 0.9754 0.9918 0.9836 0.9745 0.9832 0.0167

K Nearest Neighbours 0.9657 0.9816 0.9736 0.9629 0.9725 0.0274

Linear Discriminant Analysis 0.8428 0.9483 0.8925 0.8094 0.8815 0.1184

Random Forest 0.9760 0.9931 0.9845 0.9751 0.9842 0.0157

Adaboost 0.9449 0.9714 0.9580 0.9391 0.9558 0.0441

Gradient Boost 0.9777 0.9920 0.9848 0.9758 0.9842 0.0157

Experiment 2: Evaluation of Features Without Third Party Features.
In this experiment, we excluded third party features (TBF1,TBF2 and TBF3)
and analyzed the performance with different machine learning classifiers. When
compared, it was observed that the accuracy was degraded to 98.42% which is
why third party features are significant in our feature set. The results are shown
in Table 3.

Table 4. Evaluation of features including all the 11 features

Classifer/metrics Precision Recall f1 measure Specificity Accuracy Error rate

Decision Tree 0.9981 0.9981 0.9975 0.9980 0.9981 0.0018

K Nearest Neighbours 0.9791 0.9863 0.9835 0.9781 0.9823 0.0176

Linear Discriminant Analysis 0.9926 0.9919 0.9923 0.9922 0.9921 0.0078

Random Forest 0.9969 0.9981 0.9972 0.9967 0.9974 0.0025

Adaboost 0.9962 0.9987 0.9965 0.9961 0.9974 0.0025

Gradient Boost 0.9993 0.9993 0.9993 0.9993 0.9993 0.0006

Real Time Machine Learning Methodology to Detect Phishing Attacks 51

Experiment 3: Evaluation of Features Including All the 11 Features.
In this experiment, all of the discussed features were included and analyzed with
different machine learning classifiers. The results obtained were better than the
results of experiments 1 and 2. Gradient Boost classifier performed the best with
an accuracy of 99.93%. The results are shown in Table 4.

Experiment 4: Run Time Analysis. In this experiment, we recorded the
best, the average, and the worst total time (Ttotal) when the working model is
tested on various URLs. Table 5 represents the best, the average, and the worst
timings recorded. On average, what percentage of each API call contributes to
the total running time was also recorded in this experiment. The percentage
when combined according to the formula 7 results to the total of 100%. The
results can be seen in Table 6.

Table 5. Run time analysis of various urls from the dataset

Best time Average time Worst time

1.74 s 2.07 s 2.46 s

Table 6. Each API call’s contribution to the total average running time

Whois api(%) Alexa api(%) Google api(%) short url(%) ml api(%)

83.00 42.00 55.00 18.00 17.00

Experiment 5: Average Page Load Time Vs Average Running Time of
the Proposed Model. In this experiment, we compared the average running
time of the proposed model with the average time a web page takes to load on
the browser. When tested on a set of URLs, the average page load time recorded
was 2.80 s. Although, page load time depends on various factors like average
server delay, network latency, number of resources the standard web page loads,
size of a web page, etc. It may vary if tested on a larger set of URLs. As the
average running time of our model recorded was 2.07 s. It can be concluded that
our model gives results within 74% of the total page load time.

Figure 2 represents the plot of accuracy obtained from different classifiers
trained with all the 11 features.

52 V. Arora and M. Misra

Fig. 2. A plot of accuracy obtained from six machine learning classifiers

6 Conclusions and Future Work

In this research, a novel real-time machine learning methodology to detect phish-
ing websites has been proposed. A novel feature is proposed in which the certifi-
cate validation level is considered to detect HTTPS phishing websites. Also when
the proposed method is compared to the previous works, it gives an accuracy of
99.93%. Along with this, short URLs are also considered for classification which
is often neglected. Considering the need of an hour, this model also functions in
real-time. A comparison of our work with the previous works based on accuracy,
handling of short URLs, handling HTTPS URLs is shown in Table 1.

The proposed work also handles phishing websites in which the textual con-
tent is replaced by the snippet of the legitimate website. The list-based anti-
phishing solutions fail to detect the zero hour phishing attacks whereas our
approach detects these attacks. Any given Web page contains static as well as
dynamic content, previous works that use source code of a webpage as a feature
to identify its status fails in case of dynamic content. But this approach handles
webpages with both static as well as dynamic content.

In the future, we aim to propose more URL based features so that the
dependency on third party features is reduced. Also, javascript machine learning
libraries which are still under development can be used instead of creating a
dedicated server to improve the response time.

7 LIMITATIONS

The accuracy of the proposed method depends on the proper selection of features.
Phishers may come up with different methods of phishing which may require

Real Time Machine Learning Methodology to Detect Phishing Attacks 53

reselection of features. For instance, earlier phishing websites were not using
HTTPS but now most of them use HTTPS.

References

1. Alexa: The top 500 sites on the web (2020). https://www.alexa.com/topsites/.
Accessed 12 March 2020

2. Phishtank: Developer information (2020). https://www.phishtank.com/developer
info.php/. Accessed 12 March 2020

3. WHOIS API: Unified and Consistent WHOIS Data (2020). https://whois.
whoisxmlapi.com/. Accessed 20 March 2020

4. APWG: Phishing attack trends reports (2020). https://apwg.org/trendsreports/.
Accessed 1 May 2020

5. Aggarwal, A., Rajadesingan, A., Kumaraguru, P.: PhishAri: automatic realtime
phishing detection on Twitter. In: 2012 eCrime Researchers Summit, pp. 1–12.
IEEE (2012)

6. Antoniades, D., et al.: we.b: the web of short urls. In: Proceedings of the 20th
International Conference on World Wide Web, pp. 715–724 (2011)

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/a:1010933404324

8. Cooper, D., et al.: Internet X. 509 public key infrastructure certificate and certifi-
cate revocation list (CRL) profile. RFC 5280, pp. 1–151 (2008)

9. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning
and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol.
904, pp. 23–37. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59119-
2 166

10. Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media
(2019)

11. Gowtham, R., Krishnamurthi, I.: A comprehensive and efficacious architecture for
detecting phishing webpages. Comput. Secur. 40, 23–37 (2014)

12. Huh, J.H., Kim, H.: Phishing detection with popular search engines: simple
and effective. In: Garcia-Alfaro, J., Lafourcade, P. (eds.) FPS 2011. LNCS, vol.
6888, pp. 194–207. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27901-0 15

13. Kamiński, B., Jakubczyk, M., Szufel, P.: A framework for sensitivity analysis of
decision trees. CEJOR 26(1), 135–159 (2017). https://doi.org/10.1007/s10100-
017-0479-6

14. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE
Trans. Syst. Man Cybern. 4, 580–585 (1985)

15. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradi-
ent descent. In: Advances in Neural Information Processing Systems, pp. 512–518
(2000)

16. Miyamoto, D., Hazeyama, H., Kadobayashi, Y.: An evaluation of machine learning-
based methods for detection of phishing sites. In: Köppen, M., Kasabov, N.,
Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 539–546. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02490-0 66

17. Moghimi, M., Varjani, A.Y.: New rule-based phishing detection method. Expert
Syst. Appl. 53, 231–242 (2016)

https://www.alexa.com/topsites/
https://www.phishtank.com/developer_info.php/
https://www.phishtank.com/developer_info.php/
https://whois.whoisxmlapi.com/
https://whois.whoisxmlapi.com/
https://apwg.org/trendsreports/
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1007/3-540-59119-2_166
https://doi.org/10.1007/3-540-59119-2_166
https://doi.org/10.1007/978-3-642-27901-0_15
https://doi.org/10.1007/978-3-642-27901-0_15
https://doi.org/10.1007/s10100-017-0479-6
https://doi.org/10.1007/s10100-017-0479-6
https://doi.org/10.1007/978-3-642-02490-0_66

54 V. Arora and M. Misra

18. Mohammad, R.M., Thabtah, F., McCluskey, L.: Predicting phishing websites based
on self-structuring neural network. Neural Comput. Appl. 25(2), 443–458 (2013).
https://doi.org/10.1007/s00521-013-1490-z

19. Pan, Y., Ding, X.: Anomaly based web phishing page detection. In: 2006 22nd
Annual Computer Security Applications Conference (ACSAC 2006), pp. 381–392.
IEEE (2006)

20. Rao, R.S., Pais, A.R.: Detection of phishing websites using an efficient feature-
based machine learning framework. Neural Comput. Appl. 31(8), 3851–3873
(2018). https://doi.org/10.1007/s00521-017-3305-0

21. Varshney, G., Misra, M., Atrey, P.K.: Improving the accuracy of search engine
based anti-phishing solutions using lightweight features. In: 2016 11th International
Conference for Internet Technology and Secured Transactions (ICITST), pp. 365–
370. IEEE (2016)

22. Varshney, G., Misra, M., Atrey, P.K.: A phish detector using lightweight search
features. Comput. Secur. 62, 213–228 (2016)

23. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: Cantina+ a feature-rich machine
learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur.
(TISSEC) 14(2), 1–28 (2011)

24. Zhang, Y., Hong, J.I., Cranor, L.F.: Cantina: a content-based approach to detecting
phishing web sites. In: Proceedings of the 16th International Conference on World
Wide Web, pp. 639–648 (2007)

https://doi.org/10.1007/s00521-013-1490-z
https://doi.org/10.1007/s00521-017-3305-0

Confidentiality Schema

Revocable Access to Encrypted Message
Boards

Fabian Schillinger(B) and Christian Schindelhauer

Computer Networks and Telematics, Department of Computer Science,
University of Freiburg, Freiburg im Breisgau, Germany

{schillfa,schindel}@tf.uni-freiburg.de

Abstract. Online Social Networks are popular and play an important
role in communication. In such networks, privacy is becoming increas-
ingly important. Providers start to implement encryption procedures to
ensure the privacy of users. Protocols for end-to-end encryption between
two or multiple parties allow granting access to resources. However,
access cannot easily be revoked, and negotiated keys cannot be with-
drawn, using these protocols. They rely on re-encryption, using new keys
and redistribution of content to ensure that undesired access is revoked.
This paper aims to present protocols where distributed keys can be made
unusable, such that re-encryption of ciphertexts is not needed. The pro-
tocols allow us to distribute and revoke symmetric and asymmetric keys.
They are applicable for any content, that can be structured like a tree,
like message boards, wikis, or online chats.

Keywords: End-to-end encryption · Message board · Online social
network · Quorum · Proxy encryption

1 Introduction

The number of active Social Media users was more than 3.7 billion per month
in October 2019 [6]. Facebook, as one of the largest Online Social Networks
(OSNs) has over 1.6 billion daily active users [4]. Users of these networks can
communicate through direct messages or by sharing content, like images, videos,
websites, and others, with other users. For many of these communication chan-
nels, approaches to safeguard the privacy of users exist. These approaches often
include encryption algorithms. Another way of communicating in OSNs is by
creating groups or circles. Users can join a group if they think that the content
of the group is interesting. These groups can be used comparable to message
boards: different topics can be created, questions and answers can be posted.
Websites, videos, images, and even collaborative wikis can be stored and shared
in these groups. Sometimes they can be modified by other users in the group.
Some groups are open to all users, others have restricted access. Especially in
restricted groups, encryption can be used to protect the content and the pri-
vacy of the participants. However most approaches, using end-to-end encryption
c© Springer Nature Switzerland AG 2020
K. Markantonakis and M. Petrocchi (Eds.): STM 2020, LNCS 12386, pp. 57–72, 2020.
https://doi.org/10.1007/978-3-030-59817-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_4&domain=pdf
http://orcid.org/0000-0001-8771-8290
http://orcid.org/0000-0002-8320-8581
https://doi.org/10.1007/978-3-030-59817-4_4

58 F. Schillinger and C. Schindelhauer

leave outside the possibilities on the one hand to allow end-to-end encryption
between multiple parties, and on the other hand to revoke the access to these
contents. The latter is an important property, especially in social groups with
a fast-changing composition of participants. Every time someone leaves such a
group the encryption has to change if keys cannot be revoked. If the keys are
derived from each other, all content has to be re-encrypted using new keys.

Our Contribution

Our contribution consists of protocols to organize access to end-to-end encrypted
message boards. The protocols can be used to grant and revoke access to groups,
which are used in Online Social Networks. The protocols allow sharing encrypted
data, as long as it can be organized in a tree-like structure. The protocols allow
creating branches within the tree. Additionally, some branches can be private,
or encrypted, whereas other branches might be publicly accessible.

The main advantage compared to other protocols is the possibility to easily
revoke access. Decryption keys for the content are given to legitimate users.
These keys can be made unusable. No explicit re-encryption of all content is
needed to revoke the access. The revocable access can be used for specific users,
or for multiple users. Another advantage is that access to encrypted content can
be organized by a quorum of multiple users. Then, a user seeking access has
to contact multiple users. This reduces the chance, that a vicious administrator
denies all access requests.

Organization of the Paper

The paper is structured as follows: In Sect. 2 related work, regarding encrypted
Online Social Networks, Quorum-based access structures, and Proxy-encryption
are discussed. In Sect. 3 the backgrounds and model of the message board and
the used cryptographic methods are described. In Sect. 4 our proposed protocols
are described and analyzed in detail. The necessary discussions, regarding the
security of our protocols, are given in Sect. 5. Finally, Sect. 6 concludes the work
and gives an outlook on possible extensions.

2 Related Work

Different schemes are used for end-to-end encryption of messages between users.
Often, asymmetric encryption protocols are used to exchange keys between users.
These keys are used for symmetric encryption. Some of these protocols and
approaches are discussed in the following. Off-the-record (OTR) [12] is a protocol
which ensures end-to-end encrypted messaging. OTR can be used in instant
messaging (IM) services, where messages are delivered in-order. Two senders X
and Y each generate private keys x1, x2, . . . and y1, y2, Two of the keys xi

and yi then are used to find a shared secret s via Diffie-Hellman key exchange
(DH). From s two keys for AES encryption and Message Authentication Code

Revocable Access to Encrypted Message Boards 59

(MAC) are derived. Messages then are encrypted using AES. Authentication
is ensured with MAC. Each time a message is sent, a new key xi+1 or yi+1 is
generated, a new secret s′ is calculated and the old key deleted.

Silent Circle Instant Messaging Protocol (SCIMP) [11] is another end-to-
end encrypted IM protocol, which ensures perfect forward secrecy and message
authentication. A sender X generates an Elliptic Curve Diffie-Hellman (ECDH)
key pair and sends a hash commitment to the receiver Y . Then, Y generates
another ECDH key pair and sends a hash commitment to X. X checks, whether
the shared secret and the commitment match, and the validity of the public key
of Y . Then, X calculates a master and session key and sends another message,
containing a MAC to Y . Similarly, Y checks, whether the shared secrets match
and the public key of X is valid. Now Y can calculate the same master and
session keys. Y then verifies the confirmation code and sends a confirmation
code itself. Afterward, messages can be exchanged using AES encryption. New
keys are derived by a hash-based key derivation function for every message using
the last key, which then is deleted.

In [8] another secure IM protocol is described. It uses a modified DH to find
a common key within a group of users. The initiator of a new communication
generates a random number and computes a message from it. The message is
sent to the server. The server modifies it, such that every new participant can
perform DH with the public key of the initiator. This allows, to get a common
shared secret within a group of participants. To achieve this, the server gen-
erates a unique secret ai ∈ Zq for each user ui at the registration procedure.
This secret is fixed by a certificate gai mod p, which is sent to the ui. This
certificate is accepted by sending gxiai mod p to the server, where xi ∈ Zq

is a random secret. User ui gets a common key with user uj by, first, picking
a random r ∈ Zq and sending z = gr mod p to the server. The server cal-
culates bj = zaj mod p and sends it to uj . ui calculates k = h(yr

j mod p),
where yj = gxjaj is the public key of uj . uj gets the same key k by comput-
ing k = h(bxj

j mod p) = h(grajxj mod p). p and q are secure primes, such that
q|p−1 and Z

∗
p is a multiplicative group of order q. The common key then is used

for symmetric encryption.
Another secure IM protocol is described in [20]. It is based on elliptic curve

cryptography and uses three phases: registration, client-server communication,
and client-client communication. In the registration phase, a public key point
yS = xS • G is used by the server. xS is a randomly selected large integer and
G is the base point. A client generates a random secret xA and a public key
yA = xA • G. It further calculates a master key KA = xA • yS . yA is sent to the
server. The server calculates the same master key through KA = xS • yA. Using
KA, a random string RS is encrypted together with a hash of the previously
received message. This is sent to the client, which decrypts it and compares the
hash of its own sent message with the one it received from the server. Then, RS is
signed by the client and sent to the server. Using the established master key KA

between client and server they can find a session key KAS . The user generates a
symmetric key KAS , encrypts it, using KA, and sends it to the server. The server

60 F. Schillinger and C. Schindelhauer

generates a random string RS and again, calculates a hash of the previously
received message. Both parts are encrypted, using KA and sent to the client. The
client decrypts the message, compares the hash values, and encrypts a hash value
of the whole message, using KAS . For the communication between two clients
A and B, they receive each other’s public key from the server. Both generate
random integers xA, and xB and calculate GA = xA •G and GB = xB •G. Both
messages are signed and sent to the other client. After signature verification the
clients use ECDH to calculate the common point KAB = xA • GB = xB • GA

which then is used to encrypt messages between A and B.
The Signal protocol [10] uses a system called double ratchet to manage com-

mon keys between two peers. It uses key chains for sending and receiving, where
each key is used as an input for a new key. Both sending and receiving chains are
derived from a root chain. The root chain itself has a DH ratchet as an input.
Sent or received messages are used for the key derivation in the corresponding
chain. The inputs for this ratchet are renewed as often as possible: when a client
sends a message, it always includes key material for a key exchange. When the
client receives key material it calculates a new key on the ratchet. Further, a
new key on the root chain is derived from it. Additionally, it is used as an input
for new keys on the sending and receiving chains. The Signal protocol is used in
variations in other protocols, like OMEMO [15] or WhatsApp [3].

Threema [16] is another system for end-to-end encrypted messages. Each user
creates a key pair for EC cryptography. Public keys are stored on the server.
Three different verification levels for keys exist. On the lowest level keys are not
verified. On the next level, a matching phone number or email address is found.
By scanning a 2D code from the mobile phone of a peer, a key can be verified
for the highest level. Two peers can find a shared key by using DH. Messages
are encrypted using a random nonce and the shared key using the XSalsa20
stream cipher. With Poly1305 a MAC is calculated for an encrypted message.
MAC, ciphertext, and nonce are sent together. Messages for groups of more than
two peers are encrypted for each peer individually, except for larger files, like
images, videos, or audio. These are encrypted using a random symmetric key and
uploaded to the server, the key is encrypted using the keys within the group.

Pretty Good Privacy (PGP) [5] and S/MIME [13] are two protocols for the
encryption of emails. Both protocols use public-key cryptography to encrypt a
symmetric key, which is used to encrypt the contents of the emails. The public
keys are used for signatures, as well. This allows, to encrypt the contents once,
whereas the symmetric key is encrypted for each recipient of the email. In both
protocols, a symmetric key is used for the whole conversation, which may contain
multiple emails and answers from different participants. PGP uses a trust system,
whereas in S/MIME a system using X.509 certificates is used. FlyByNight [9]
is a protocol to ensure privacy within Facebook. It uses JavaScript for client-
side encryption. All sensitive messages are encrypted before sending them to the
server. Keys are managed by the Facebook interfaces, but users need an addi-
tional password for flyByNight. Messages between users are encrypted using the
public keys of the recipients. Proxy cryptography is used, whenever messages or

Revocable Access to Encrypted Message Boards 61

information is shared between multiple users. For proxy cryptography, each par-
ticipant has multiple keys. With one key, the information is encrypted once and
then stored on the server. When a participant wants to access the information
the server uses the proxy key to modify the encrypted information. Then, the
participant can use the third key to decrypt it.

In [14] another system for end-to-end encryption of messages is proposed. The
system works in web browsers, running JavaScript. Comparable to S/MIME and
PGP, public keys of peers are used to encrypt symmetric keys for conversations.
The symmetric keys are used to encrypt messages between two or multiple par-
ticipants. All messages are signed, using another key. Public keys can be verified
by users comparable to Threema by exchanging QR codes.

A scheme for quorum controlled asymmetric proxy re-encryption is presented
in [7]. In the scheme, the server modifies ciphertexts using verifiable translation
certificates. In contrast to our approach, the ciphertexts are re-encrypted espe-
cially for a specific user, using transformations defined by the user. Therefore,
access cannot be revoked in the scheme, in contrast to our approach.

An approach to reduce the amount of re-keying messages when users join
or leave encrypted groups is presented in [18]. Here, a directed acyclic graph is
constructed. This graph contains u-nodes for users and k-nodes for keys. Each
u-node has outgoing edges to at least one k-node. k-nodes have one or more
incoming edge and can have none, one, or more outgoing edges. When users
join or leave a group, new keys are distributed to all users of the group and
all parent k-nodes and their parents. The amount of these messages is reduced
because some of the keys can be sent to the parent groups of users. E.g. in a
tree containing six u-nodes u0, u1, . . . u5, where the first three nodes are in a
group g1 and connected to k1 and the others are in g2 and connected to k2. Both
k-nodes are in g0 and connected to k0. When user u6 joins g1 the keys k1 and k0
are updated to k′

1 and k′
0. u6 receives keys k′

0 and k′
1. The old group g1 receives

k′
1 and the old group g0 receives k′

0, instead of sending them to all members
individually. In contrast to our scheme, all prior messages to a joining (leaving)
member have to be re-encrypted, when access should be possible (revoked).

3 Background and Model

A message board is a collection of topics. A topic can consist of different mes-
sages. Each message can have answers or comments by the same or other users.
Some message boards allow having topics inside topics. In contrast to online
chats, most message boards are not used for live interaction between users. Mes-
sages are written and can be answered or commented on later. Often, those
messages are long, when compared to messages of online chats. They can con-
tain images or files. Message boards can contain public and private topics. Any
user may read or write messages in public topics, whereas in private topics the
contents are protected and can only be read by persons with granted access.
Message boards not only can contain messages with answers and comments, but
interactive maps with annotations, surveys and polls, link collections, wiki pages,
blogs, and files.

62 F. Schillinger and C. Schindelhauer

3.1 Background

For a better understanding, in the following a user u, is a general user of an
OSN. If a user is allowed to access the private content of the message board
he is called a participant. Whereas, if the user is not allowed he is called non-
participant. An administrator in the following is a special participant, who has
privileged rights. An administrator can delete, modify, or move content, as well
as, change access rights, re-encrypt content, or change the quorum. A quorum
is a set of participants and administrators, called members. The term head of
content is used for the first stored content in a content chain. I.e. a new topic
with a question is the head, every answer to this topic is in the content chain.
This means, that beginning from the first content a chain of subsequent content
is constructed, allowing to retrieve content one part after another. A content
chain can contain a single topic, or multiple topics, or even a sub-message board.
h(x) is a secure key derivation function like PBKDF2, or another secure hashing
function. The function calculates a value y = h(x), such that calculating x
from y is computationally infeasible. The term h[n](x) denotes that the function
h(x) is applied n times, e.g. h[3](x) = h(h(h(x))). Note, that h(x) itself can use
key stretching methods, like multiple iterations. Private content in the message
board is encrypted using the homomorphic encryption scheme of Elgamal [2].
In the scheme, a ciphertext of a message m can be computed by a sender A
in the following way: A choses a number r uniformly between 0 and p − 1,
where p is a large prime and p − 1 has at least one large prime factor. Then A
computes c1 ≡ gxBr · m mod p, and c0 ≡ gr mod p where g is a public value,
known to A and B and gxB mod p is the public key of B. The ciphertext then
is the tuple (c0, c1). B can decrypt m by first, computing gxBr ≡ cxB

0 mod p

and second, computing c1
gxBr ≡ gxBr·m

gxBr ≡ m mod p. The security of the Elgamal
encryption scheme is related to the Decisional Diffie-Hellman Problem [1]. Given
a cyclic group G of finite order q, with generator g and a, b, c ∈ Zq are randomly
chosen. Then there exist no efficient algorithm, which can distinguish between
the two distributions 〈ga, gb, gab〉 and 〈ga, gb, gc〉. For the Elgamal encryption this
implies, that given ga and gb the key gab cannot be distinguished from a random
group element. Therefore, the encryption gab · m of m cannot be distinguished
from a random group element. In the following all operations using the Elgamal
scheme are calculated modulo p, where p meets the requirements for secure
Elgamal encryption.

3.2 Model

We assume a Client-Server Model, where all users of the OSN connect to the
server. The server stores all necessary data, including the webpages containing
the message board. Every user owns a key pair for public-key encryption and
signatures. The public keys of users are exchanged through the server and can
be verified in a way comparable to Threema, where users verify their keys in
person. Therefore, we assume that all public keys are verified. This allows, for
example, to safely exchange a key via Diffie-Hellman without further measures.

Revocable Access to Encrypted Message Boards 63

Additionally, all messages are signed and the correct senders are ensured. In this
model, the message board is a tree-like structure, where each node is either, a
sub-message board, a collection of topics, or a topic. Each topic can be a leaf
node if no message was appended to the topic. I.e. no answer or comment to a
message was posted. If one or more messages to a topic exist, these are child
nodes and connected to the topic node without any branches. Every node can
be the head of a content chain. When such a node is not public, all child nodes
are private, as well.

3.3 Private Content and Quorums

Private content is end-to-end encrypted. All participants, that know a key of a
node in the content chain can derive the next key via a key derivation function
or a secure hash function. This allows accessing all content, starting from the
head of content serially, when access to the head of content was granted. Further,
this allows a user to get access to a node within the content chain, such that
all following messages, topics, and sub-message boards can be accessed. The
parent nodes remain encrypted and therefore inaccessible. Each participant can
derive the next key from the last known key. Therefore, it is easy to append
new messages to the content chain. As the derivation function is the same for all
participants, any other participant then can decrypt appended messages without
further measures. To access the private content, a user has to ask a quorum for
permission. A quorum is a group of participants with special rights. The quorum
is determined by the administrator and can contain one or many members. They
can have access to the encrypted content, but this is not necessary. On the other
hand, a participant with access is not necessarily a member of the quorum.
Quorum participants are users selected by the administrator whom he believes
to be trustworthy. They are trustworthy enough, such that the administrator
grants them access to the private keys of the content. Every user asking for access
to the private content then has to ask the single quorum member. Whenever this
member cannot answer, the access is denied, until the member answers. Every
member of the quorum has to receive the private keys for the encrypted content
from another member. Additionally, the administrator chooses a counter value
c and encrypts it as c1, using the scheme of Elgamal. The server delivers c1 to
each user asking for the content. Every quorum member who is asked for access
by the user then reduces this value, until it reaches zero. Then the last quorum
member can decrypt the content for the user. The encryption paramenters for
c1 are shared within the quorum. The counter value should be smaller than the
size of the quorum. This leads to the fact, that a user does not have to ask every
member for access, but only some of them.

4 Proposed Protocols

The following protocols allow storing encrypted content on a server. They enable
symmetric or asymmetric encryption. This allows to choose the appropriate pro-
tocols for different scenarios, where small or large contents are exchanged, and

64 F. Schillinger and C. Schindelhauer

the speed of encryption and decryption matters or is negligible. Note that the cal-
culations in the protocols are modulo p, where p meets the properties required for
secure Elgamal encryption (see Sect. 3.1). The additional mod p will be omitted
for brevity.

4.1 Content Chain

Content has to be organized in a tree-like structure. Every node can be the start
of a content chain. At every node branches are allowed. This means, that a node
n has more than one child. When a user has access to n it can access all other
branches, as well. In a message board, the tree-like structure is given: Every sub-
message board allows to branch. Each new topic, then, is the start of a branch.
In other applications, comparable, the creation time can be used to construct a
path, branches can be created by the given content. The content chain contains
not only content in plaintext. Private content is encrypted and sent to the server
as ciphertext. The server stores the encrypted content. For every user access-
ing the content, it generates additional encryption parameters. This allows the
server to deliver a unique version of the encrypted content to every user. This
works by encrypting the content using the scheme of Elgamal. However, in the
symmetric version of the proposed protocols the content is encrypted using AES
and then stored on the server. Here, only the keys are encrypted using the asym-
metric protocol of Elgamal. Therefore, only the keys are encrypted using unique
encryption parameters per user, not the content. An example of a content chain
is displayed in Fig. 1.

Fig. 1. A private content chain. In the symmetric version the actual content m,m1, . . .
is never delivered to the server. Instead, for every mn a ciphertext is stored on the
server. The server generates an additional random parameter r for a user. Using r, the
encrypted content is modified, such that different users receive different versions. In
the symmetric version mi is not the content, but a key for a symmetric encryption of
the content {content i}mi .

Revocable Access to Encrypted Message Boards 65

4.2 Accessing Private Content

Each head of private content m is stored on the server as a ciphertext gaq ·m. A
user that wants to access the data sends a request to the server. The server first
checks, whether the respective user has non-revoked access to the contents. In
this case, the precomputed and stored values are sent. If the user is not allowed to
access the content chain the server aborts. Otherwise, a tuple (tpk , tctr , trnd , tc) is
calculated by the server. tpk = gs, where s is a unique random number serves as
a public key. The second value trnd = (ga)s · r contains another unique random
number r and the public key ga, where a is the private key of the head of
content. a is selected by the adminstrator, when the head of content is created.
The administrator has to provided a to all quorum members. The third value
is tctr = ga+sr · c1 · h(r + c1). It is calculated, using the counter value c1 of
the quorum, the public key ga, and both random values r and s. The actual
content is in tc = gaq+r · m. It is calculated by the server as tc = gaq · m · gr.
The values s and r are stored for the next access of the user. The user sends
the first three values tpk , tctr , and trnd of the tuple t to the first member of
the quorum. If access to the content has to be granted the member calculates
r = (tpk)−a · trnd = g−as · gas · r, where a is the private key for the content.
Then, the member calculates c1 ·h(r+ c1) = tctr ·g−a · (tpk)−r and tries different
values c′

1 until c1 · h(r + c1) = c′
1 · h(r + c′

1) is satisfied. The counter value
c = c1 = c′

1, then, is compared to the access restrictions. If c = 0, the member
answers (g−(aq+r), h(aq), h(r)), where h(x) is a secure key derivation function
or hash function. g−(aq+r) can be calculated from the public value gaq and r. If
c > 0, A new unique value s′ is randomly chosen by the member. Then, c2 = c−1
is calculated and encrypted by the member as t′ctr = ga+s′r ·c2 ·h(r+c2). Further,
t′pk = gs

′
and t′rnd = (ga)s

′ · r are calculated. The member sends (t′pk , t′ctr , t
′
rnd)

back to the user. Based on the response of the member, the user either can
decrypt the content or he has to send the tuple to another member. To decrypt
the content the user calculates m = tc · g−(aq+r) · m = gaq+r · g−(aq+r) · m.
The values h(aq), h(r) are known, because the user received them from the last
quorum member. They can be used to access the other private content of the
content chain. If m1,m2, . . . ,mn is the following private content in the chain,
it is encrypted using the keys h(gaq), h[2](gaq), . . . , h[n](gaq). The server chooses
the encryption parameters as h(r), h[2](r), . . . , h[n](r), as long as access for the
user was not revoked by a quorum member. The procedure to access private
content is displayed in Algorithm1 and Algorithm 2.

The proposed algorithms may not be suitable for all usages, as public-
key cryptography is not as fast as symmetric cryptography (see Sect. 4.4 for
comparisons). Therefore, the protocols may be used for short messages, only.
With slight modifications, the protocols can be used together with symmetric
encryption, like AES. The changes are the following: 1) The encrypted compo-
nents m,m1,m2, . . . ,mn are keys used for symmetric encryption of the content
content , content1, content2, . . . , contentn. 2) In Algorithm 1, Step 3b the server
has to store the value h(r) for the user as an authentication code. Therefore, in
Step 4 the user has to send h(r), which he gets from the quorum. In Step 5, the

66 F. Schillinger and C. Schindelhauer

server then checks, whether h(r) is the correct authentication code. In Step 4.2,
additionally the server has to send {content i}mi

. The user then decrypts content i
in Step 9, after calculating the key mi. For Protocol 2 no modifications are
needed. The modifications in the following are called symmetric versions. The
symmetric version is an extension to the asymmetric version.

Algorithm 1. The user wants to access the private content chain, starting at
gaq ·m. The calculations of Step 9 are possible when the user received the message
in Step 4a of Algorithm 2, from the quorum.

User u Server (knows g, ga, gaq ·m, c1)

1. wants to access m, sends idm

2. checks if there is access for u
If access is forbidden:

3a. sends error message, terminates
If there is no access:

3b. chooses random r, s
stores r, s for u

Else:
3c. takes stored values r, s

calculates tpk = gs

calculates tctr = ga+sr · c1 ·h(r+ c1)
calculates trnd = (ga)s · r
calculates tc = gaq+r ·m
sends t = (tpk , tctr , trnd , tc)

...
4. wants to access mi, sends idmi

5. takes stored value r

calculates tmi = gh
[i](aq)+h[i](r) ·mi

sends tmi

9. calculates mi = tmi · g−(h[i](aq)+h[i](r))
...

4.3 Changing Access

The additional encryption parameter r allows the administrators to quickly
change the encryption of the stored content. Further, access for different users
is easy to manage with the proposed protocols.

Granting and Revoking Access. To allow a user to access the content is
easy. The user ID is sent to the server and all quorum members. When the user
wants to access the content it contacts the server and the quorum, like described
in Protocols 1 and 2. For the revocation of access the user ID is sent to the
server and the quorum. Then, every quorum member knows that requests of

Revocable Access to Encrypted Message Boards 67

Algorithm 2. The user wants to access private content. Tuple t is received
from the server. The values (tpk , tctr , trnd) are sent to the quorum members.
They can check with the decrypted counter value, whether enough members
granted access. A quorum member provides either another tuple, that has to be
sent to another quorum member, or a tuple, which allows decrypting the content.

User Quorum member (knows g, a, q, and
encryption parameters for counter values)

1. sends (tpk , tctr , trnd)
2. calculates r = trnd · (tpk)−a = gas · g−as · r

calculates c1 ·h(r+ c1) = tctr · g−a · (tpk)−r

tries different values c′
1 until the equation

c1 · h(r + c1) = c′
1 · h(r + c′

1) is satisfied
sets c = c′

1

If c = 0:

3a. calculates t′ = (g−(aq+r), h(r), h(aq))
sends t′

4a. calculates m as

m = g−(aq+r) · g(aq+r) ·m
Else:

3b. sets c′ = c − 1, encrypts it as c2 using the
same parameters, chooses random s′

calculates t′pk = gs
′

calculates t′ctr = ga+s′r · c2 · h(r + c2)

calculates t′rnd = (ga)s
′ · r

sends t′ = (t′pk , t
′
ctr , t

′
rnd)

4b. sends t′ to the next member
...

the user can be ignored. The server deletes the parameters r and s for the user.
This prevents the server from being able to compute the same encrypted content
again. Knowledge of the user about the decryption keys then is worthless. In the
symmetric version, the authentication code h(r) for the user is deleted, as well.

Removing Encryption. Private contents can be made public by publishing
the encryption parameters. The administrator sends a and q to the server. The
server can forward them to all users that want to access the content chain.

Encrypting Public Contents. Public content can be stored in two ways on
the server. Either, it is not encrypted or the necessary keys are published. In the
first case, content is stored as m, in the second case, it is stored as m′ = gaq ·m,
where ga is the public key and q is an encryption parameter. By multiplying m
or m′ with some gb it can be encrypted or re-encrypted. The problem is that
knowledge of gb undermines the encryption. Therefore, public content should be
removed from the server and stored again as encrypted ciphertexts.

68 F. Schillinger and C. Schindelhauer

Re-encryption of Contents. Re-encryption of encrypted content is possible in
contrast to the encryption of public contents. All content in the content chain can
be multiplied with another secure random parameter b. A user u with knowledge
of the previous decryption keys g−(aq+r), h(r), and h(aq) can compute mi ·b from
gh

[i](aq)h[i](r) ·mi ·b. mi can only be computed by u if b is known. In the symmetric
protocol, the keys can be re-encrypted using the same procedure. To modify a
ciphertext {content i}mi

, such that a new key m′
i instead of mi is used, the

fraction Δ = {content i}m′
i
/{content i}mi

, of both ciphertexts can be computed
and sent to the server. The server does not know anything about m or mi. Thus,
it cannot compute content i from the information it knows.

4.4 Performance

To asses the performance of the discussed approach, some tests were performed.
For the tests, a laptop with an Intel R© CoreTM i7-8550U CPU and 16 GB of RAM
was used. Because the message board is a web application two encryptions using
JavaScript were implemented. Using the jsbn library [19] procedures were writ-
ten to encrypt and decrypt messages of different sizes using Elgamal. As a com-
parison, the AES-256 encryption and decryption procedures of the Webcrypto
API [17] were used to encrypt messages of the same sizes. The messages were
512, 1024, 1536 and 2048 bits long. The primes for the Elgamal groups had
lengths of 1072, 1543 and 2051 bits. As expected, AES always performed better,
especially with longer messages. For smaller messages and the smallest prime,
the run-time of encryption was on average below 800 ms and for decryption, it
was below 650 ms. These values are acceptable and can be used in the context
of OSNs, where interaction can be asynchronous. The run-times are displayed
in Table 1.

Table 1. Encryption and decryption run-times with AES-256 and Elgamal.

Message length AES-256 Elgamal

Encryption Decryption Prime length Encryption Decryption

512 bit 23.6 ms 13.9 ms 1072 bit 796.4 ms 599.4 ms

1024 bit 22.7 ms 17.0 ms 1072 bit 720.0 ms 627.8 ms

1536 bit 26.1 ms 15.3 ms 1543 bit 1357.4 ms 1832.3 ms

2048 bit 28.9 ms 23.3 ms 2051 bit 3452.3 ms 4425.9 ms

5 Security Analysis

The security of the presented protocols relies on the security of Elgamal. In
the following, different scenarios on how users or the server could try to read
encrypted private content are discussed.

Revocable Access to Encrypted Message Boards 69

5.1 The Server Cannot Access Private Content

In the asymmetric version, the server receives the following data from administra-
tors and users for a content chain: The public key ga, the encrypted counter value
c1, the encrypted content gaq ·m, gh(aq) ·m1, . . . , g

h[n]
(aq) ·mn, and requests, con-

taining the ID of the data idm, idm1 , . . . , idmn
. Using IDs or encrypted counter

values, no knowledge about the content is gained. In fact, IDs and the quorum
requirements may be known by any user. Using ga and any encrypted content,
e.g. gaq · m no knowledge can be gained. From any two ciphertexts, e.g. gaq · m
and gh(aq) · m1 the server is not able to compute m or m1.

The content is saved as ciphertexts {content}m, {content1}m1 , . . . ,
{contentn}mn

in the symmetric version. The corresponding keys m,m1, . . . ,mn

are not known to the server. As the server is not able to compute any m in the
asymmetric model, it is not possible for the server to decrypt any content, when
a secure symmetric encryption scheme is used.

5.2 Received Tuples Do Not Break the Encryption

A user u receives different tuples from the server: tinit = (tpk , tctr , trnd , tc)
and tci = (gh

[i](aq))h
[i](r) · mi. From the quorum members u receives different

tn = (tnpk , tnctr , t
n
rnd) and tsuccess = (g−(aq+r), h(r), h(aq)). The tuples tinit and

tn have the same structure, except for the last component, which is not present
in the tuples tn. The components are: tpk = gs, tctr = ga+sr · c1 · h(r + c1),
trnd = (ga)s · r, and tc = gaq+r · m. For these tuples, any user receives different
components, because all r, r′, r′′, . . . and s, s′, s′′, . . . are drawn uniquely at ran-
dom per user. Therefore, knowing multiple of these tuples gives no exploitable
advantage. The tuple tsuccess , of course, allows u to compute any m or mi from
tc and tci , respectively. Knowledge of m allows u to compute gaq+r from tc, but
as no other component uses the same factor, u gains no additional knowledge.
The same holds for mi and tci . Knowledge of h(r) and h(aq) allows u to compute
any mi, but as h(x) meets the requirements of a cryptographic hash function,
it is infeasible to calculate r or aq. Therefore, u cannot use the tuples to exploit
the asymmetric protocols and gain access to any additional content.

Regarding the symmetric protocols, the same arguments hold. Additionally,
any two contents {content i}mi

and {contentj}mj
are encrypted with different

keys mi �= mj . Knowledge of one key, i.e. mi does not allow to decrypt another
ciphertext where another key was used.

5.3 No Access with Colluding Users

In the asymmetric version, two users u and u′ receive two different initial tuples
t = (tpk , tctr , trnd , tc) and t′ = (t′pk , t′ctr , t

′
rnd , t′c) from the server. These tuples

differ at every component. The server uses two random numbers r, s for u,
whereas, for u′ the numbers r′ and s′ are independently chosen. This results in
the following distinctions: tpk = gs for u and t′pk = gs

′
for u′ where g is pub-

lic and s, s′ are not related. u receives tctr = ga+sr · c1 · h(r + c1), u′ receives

70 F. Schillinger and C. Schindelhauer

t′ctr = ga+s′r′ · c1 · h(r′ + c1). c1 is an encrypted counter. Combining this knowl-
edge eliminates this factor from the tuples, but ga+sr, h(r + c1), ga+s′r′

and
h(r′ + c1) are not determined by this. Finding the correct h(r + c1) or h(r′ + c1),
even with known c1 means u and u′ have to try all possible values for r or r′.
The components trnd = (ga)s · r and t′rnd = (ga)s

′ · r′, again, have the non-
related factors (ga)s, (ga)s

′
, and r, r′. The last components tc = gaq+r · m and

t′c = gaq+r′ · m have the common factor m, but again gaq+r and gaq+r′
are not

related, because of the random factors r, r′. Therefore, users u and u′ do not learn
anything from combining their server tuples. All intermediate tuples from the
quorum members have the same structure as the initial server tuples. They differ
in the random encryption parameters r and s, and the counter value ci. There-
fore, their knowledge is not exploitable by u and u′, as well. The last tuple from
the quorum members is (g−(aq+r), h(r), h(aq)) for u and (g−(aq+r′), h(r′), h(aq))
for u′. h(aq) is the same for both u and u′. Again, h(r) and h(r′) are two ran-
dom numbers without any relation. The same statement holds for g−(aq+r) and
g−(aq+r′). Therefore, two users u and u′ cannot collude and use their tuples to
attack the protocol.

In the symmetric version, two users u and u′ use the same symmetric key
mi for content content i. Therefore, a user u can send the key to another user
u′. The server stores different authentication codes h(r) and h(r′) for the same
content chain for users u and u′. These are not related and cannot be computed
without knowledge of r and r′.

5.4 Removed User Has No Access

A user u that was removed from a content chain may have received all tuples from
the server and from the quorum members. To gain access to content content i,
u has to send idmi

to the server (see Protocol 1, Step 4). As the server already
deleted r for u it cannot calculate tci for u. This prevents u from accessing
content in the asymmetric version.

In the symmetric protocol, in addition, the user has to send an authentication
code h(r), which cannot be verified by the server, because r and h(r) were
deleted. This prevents u from accessing the content in the symmetric protocol.

5.5 No Access Between Different Content Chains

Two content chains chain = m,m1, . . . ,mn and chain′ = m′,m′
1, . . . ,m

′
o may be

maintained by the same administrators and share the same quorum. Then, on
the one hand, it is possible, that they share the same public key ga. On the other
hand, the additional encryption parameters, q and q′ differ. Therefore, even if
the content is the same, i.e. m = m′, the server receives two different ciphertexts
gaq ·m �= gaq

′ ·m. q, q′ are uniformly chosen secure random numbers. This results
in not related tuples from the server, between chain and chain′. The tuples, sent
by the quorum members are not related, as well. Therefore, having access to one
content chain does not give access to another content chain, even if ga is the
same for different chains.

The same arguments hold for the symmetric protocols, as well.

Revocable Access to Encrypted Message Boards 71

6 Conclusion

In this work, we presented protocols for access management in end-to-end
encrypted message boards for Online Social Networks. The protocols allow us
to distribute keys and content and to revoke access to these contents. For appli-
cations where communication happens asynchronously or the content is small,
like short text messages, the asymmetric protocols can be used. Additionally, we
discussed extensions to the protocols to utilize the advantages of faster encryp-
tion and decryption in symmetric encryption protocols. This allows using the
protocols whenever large amounts of data have to be encrypted, transmitted,
and decrypted. The protocols are applicable for any type of content, that can be
organized in a tree-like structure. This includes message boards, wikis, or groups
that are used in different OSNs. We have shown that the protocols meet the nec-
essary security requirements and cannot be exploited by the server or users, or
by multiple colluding users. Further, access to the encrypted contents is man-
aged by different quorums, where different trustworthy users have to accept the
request of a user. This helps in mitigating the effect, that quorum members are
not able to answer.

Yet, the most important limitation of our protocols lies in the fact that
all quorum members need to know the encryption keys, which gives them the
possibility to attack the protocols, like in not handing out the correct keys or
even encrypting the contents again, with a new key. Therefore, further research
has to be made, to utilize the properties of secret sharing schemes, such that no
quorum member has to know all keys.

Acknowledgements. The authors acknowledge the financial support by the Federal
Ministry of Education and Research of Germany in the framework of SoNaTe (project
number 16SV7405).

References

1. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054851

2. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

3. Evans, J.: Whatsapp partners with open whispersystems to end-to-end encrypt
billions of messages a day, November 2014. https://techcrunch.com/2014/11/18/
end-to-end-for-everyone/

4. Facebook Inc.: Facebook Q3 2019 Results, October 2019. https://s21.q4cdn.com/
399680738/files/doc financials/2019/q3/Q3-2019-Earnings-Presentation.pdf

5. Finney, H., Donnerhacke, L., Callas, J., Thayer, R.L., Shaw, D.: OpenPGP Message
Format. RFC 4880, November 2007. https://doi.org/10.17487/RFC4880. https://
rfc-editor.org/rfc/rfc4880.txt

6. Hootsuite & We Are Social: Digital 2019 Q4 Global Digital Statshot (2019).
https://datareportal.com/reports/digital-2019-q4-global-digital-statshot

https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://techcrunch.com/2014/11/18/end-to-end-for-everyone/
https://techcrunch.com/2014/11/18/end-to-end-for-everyone/
https://s21.q4cdn.com/399680738/files/doc_financials/2019/q3/Q3-2019-Earnings-Presentation.pdf
https://s21.q4cdn.com/399680738/files/doc_financials/2019/q3/Q3-2019-Earnings-Presentation.pdf
https://doi.org/10.17487/RFC4880
https://rfc-editor.org/rfc/rfc4880.txt
https://rfc-editor.org/rfc/rfc4880.txt
https://datareportal.com/reports/digital-2019-q4-global-digital-statshot

72 F. Schillinger and C. Schindelhauer

7. Jakobsson, M.: On quorum controlled asymmetric proxy re-encryption. In: Imai,
H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 112–121. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49162-7 9

8. Kikuchi, H., Tada, M., Nakanishi, S.: Secure instant messaging protocol preserving
confidentiality against administrator. In: 2014 18th International Conference on
Advanced Information Networking and Applications (AINA 2004), vol. 2, pp. 27–
30. IEEE (2004)

9. Lucas, M.M., Borisov, N.: FlyByNight: mitigating the privacy risks of social net-
working. In: Proceedings of the 7th ACM Workshop on Privacy in the Electronic
Society (WPES 2008), pp. 1–8. ACM, New York (2008). https://doi.org/10.1145/
1456403.1456405. http://doi.acm.org/10.1145/1456403.1456405

10. Marlinspike, M.: The Double Ratchet Algorithm, November 2016. https://signal.
org/docs/specifications/doubleratchet/

11. Moscaritolo, V., Belvin, G., Zimmermann, P.: Silent Circle Instant Messaging
Protocol - Protocol Specification, December 2012. https://web.archive.org/
web/20150402122917/silentcircle.com/sites/default/themes/silentcircle/assets/
downloads/SCIMP paper.pdf

12. OTR Development Team: Off-the-Record Messaging Protocol version 3 (2012).
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html

13. Schaad, J., Ramsdell, B., Turner, S.: Secure/Multipurpose Internet Mail Exten-
sions (S/MIME) Version 4.0 Message Specification. RFC 8551, April 2019. https://
doi.org/10.17487/RFC8551. https://rfc-editor.org/rfc/rfc8551.txt

14. Schillinger, F., Schindelhauer, C.: End-to-end encryption schemes for online social
networks. In: Wang, G., Feng, J., Bhuiyan, M.Z.A., Lu, R. (eds.) SpaCCS 2019.
LNCS, vol. 11611, pp. 133–146. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-24907-6 11

15. Straub, A.: XEP-0384: OMEMO encryption (1999–2018). https://xmpp.org/
extensions/xep-0384.html

16. Threema: Threema Cryptography Whitepaper, January 2019. https://threema.ch/
press-files/cryptography whitepaper.pdf

17. Web Cryptography API - W3C Recommendation 26 January 2017, January 2017.
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126/

18. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Trans. Netw. 8(1), 16–30 (2000)

19. Wu, T.: JSBN library, September 2009. http://www-cs-students.stanford.edu/
∼tjw/jsbn/

20. Yang, C.H., Kuo, T.Y., Ahn, T., Lee, C.P.: Design and implementation of a secure
instant messaging service based on elliptic-curve cryptography. J. Comput. 18(4),
31–38 (2008)

https://doi.org/10.1007/3-540-49162-7_9
https://doi.org/10.1145/1456403.1456405
https://doi.org/10.1145/1456403.1456405
http://doi.acm.org/10.1145/1456403.1456405
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://web.archive.org/web/20150402122917/silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://web.archive.org/web/20150402122917/silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://web.archive.org/web/20150402122917/silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://doi.org/10.17487/RFC8551
https://doi.org/10.17487/RFC8551
https://rfc-editor.org/rfc/rfc8551.txt
https://doi.org/10.1007/978-3-030-24907-6_11
https://doi.org/10.1007/978-3-030-24907-6_11
https://xmpp.org/extensions/xep-0384.html
https://xmpp.org/extensions/xep-0384.html
https://threema.ch/press-files/cryptography_whitepaper.pdf
https://threema.ch/press-files/cryptography_whitepaper.pdf
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126/
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www-cs-students.stanford.edu/~tjw/jsbn/

Establishing Secure Communication
Channels Using Remote Attestation with

TPM 2.0

Paul Georg Wagner1(B), Pascal Birnstill2, and Jürgen Beyerer1,2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
paul.wagner@kit.edu

2 Fraunhofer Institute of Optronics, System Technologies and Image Exploitation
IOSB, Karlsruhe, Germany

Abstract. Remote attestation allows a verifier to remotely check the
integrity of a trusted computing platform. In recent years a number
of attestation protocols based on Trusted Platform Modules (TPMs)
have been proposed. These protocols cryptographically verify a trusted
platform’s state by exchanging TPM-signed quotes. Some of them also
establish an encrypted channel to the trusted platform, which allows the
verifier to transmit information that only the attested software stack can
read. However, many existing attestation protocols are either vulnerable
against man-in-the-middle attacks, or depend on outdated TPM specifi-
cations. In this work we analyze a recently developed attestation proto-
col that is being actively used to interconnect highly distributed trusted
applications. We find this protocol to be vulnerable against a variant
of the classical relay attack. In response to this threat we develop a
lightweight remote attestation protocol based on the TPM 2.0 specifica-
tion that is not vulnerable to this attack. Unlike previous proposals, our
protocol relies solely on the TPM to establish a shared key on the attested
channel, which significantly reduces its attack surface. Our protocol sup-
ports mutual attestation, perfect forward secrecy and is independent of
the underlying network stack. We provide a reference implementation of
our protocol and compare its performance to previous proposals. We also
analyze its security properties using the Tamarin theorem prover.

Keywords: Trusted computing · Trusted Platform Modules · Remote
attestation · Key establishment · Secure channels · Attestation
protocols

1 Introduction

Trusted Platform Modules (TPMs) are tamper-resistant hardware chips that
extend computer systems with basic security related features. Similar in nature
to smart cards, TPMs provide a hardware implementation of cryptographic func-
tions and protected storage for cryptographic keys. Since they are included in
many motherboards, TPMs are arguably the most prevalent trusted computing

c© Springer Nature Switzerland AG 2020
K. Markantonakis and M. Petrocchi (Eds.): STM 2020, LNCS 12386, pp. 73–89, 2020.
https://doi.org/10.1007/978-3-030-59817-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-59817-4_5

74 P. G. Wagner et al.

technology today. One of the most interesting TPM capabilities is the remote
verification of a trusted platform’s software stack. For this the TPM uses volatile
platform configuration registers (PCRs) to measure the current hardware and
software configuration as an unforgeable fingerprint. A remote verifier can then
request proof of the platform configuration in form of a quote that has been
signed by the TPM. This quote contains a nonce generated by the verifier
as well as the trusted platform’s fingerprint, thereby attesting to the trusted
software stack. After comparing the fingerprint to expected values, the veri-
fier is convinced that the trusted platform indeed runs a legitimate software
stack. Remote attestation protocols define how the verification of a trusted plat-
form should be conducted over the network. Besides creating and transmitting
TPM-signed quotes, most protocols also establish encrypted channels between
the attested endpoints. Even though this has been a topic of comprehensive
research in the past, currently there are very few ready-to-use protocol imple-
mentations available. One of the few actively used remote attestation protocols
is the Industrial Data Space Communication Protocol (IDSCP) [10]. Introduced
by Lux and Brost in 2018, IDSCP has been developed specifically for the Fraun-
hofer Industrial Data Space (IDS) project [12], which provides secure virtual
data spaces for smart business ecosystems. The IDSCP protocol incorporates
the benefits of several earlier proposals, such as TLS integration as well as sup-
port for mutual attestation and perfect forward secrecy. Also its code is publicly
available on Github1. Because of these advantages, IDSCP is currently one of
the most advanced attestation protocol in productive use.

In this work we present an attack on the IDSCP protocol in scenarios where
multiple software components are providing an attestation endpoint on the
trusted platform. This scenario is especially relevant in applications where we
cannot predict what software will be considered trustworthy, but it applies to
other use cases as well. In response to this threat we also develop a lightweight
remote attestation protocol based on TPM 2.0 that is not vulnerable to this
attack, while still keeping the advantages of IDSCP over previous proposals.
Our protocol is easy to implement, supports mutual attestation and forward
secrecy, and is independent of the used network stack. In addition our protocol
keeps the secret parts of the shared keys used to encrypt the attested channel
inside the TPM at all times, which is a security advantage over previous pro-
posals. A reference implementation of our protocol as well as the formal model
used for security verification are publicly available2. The remainder of this paper
is structured as follows. In Sect. 2 we discuss the strengths and weaknesses of
existing remote attestation protocols, before briefly presenting IDSCP and the
vulnerabilities we found with it. In Sect. 3 we describe the design of our protocol
and its reference implementation. Finally, in Sect. 4 we evaluate the proposed
protocol in terms of functionality and security. We also verify the resilience of
our protocol against the presented attack using the Tamarin theorem prover [11].

1 https://github.com/industrial-data-space.
2 https://gitlab-ext.iosb.fraunhofer.de/wagner/tpm20-attestation-protocol.

https://github.com/industrial-data-space
https://gitlab-ext.iosb.fraunhofer.de/wagner/tpm20-attestation-protocol

Establishing Secure Channels Using Remote Attestation with TPM 2.0 75

2 Discussion of Existing Protocols

In this section we first define requirements that attestation protocols should
adhere to. Then we discuss the most important remote attestation protocols
that have been proposed so far and point out their strengths and weaknesses.
Finally we present a still unpublished attack on IDSCP.

2.1 Protocol Requirements

We define three security requirements S1 to S3 for remote attestation protocols.

(S1) Authentication: The protocol verifier unambiguously identifies and
authenticates the attested platform. No attacker may forge the authentication.

(S2) Platform integrity verification: The protocol verifier is convinced that
the attested platform runs a certain trusted software stack, i.e. its PCRs are
set to specific values. No attacker is able to impersonate a trusted platform.

(S3) Secure key establishment: The protocol verifier establishes a shared
secret with the attested platform. No attacker is able to determine this secret.

Any successful attack against the three main security requirements breaches the
confidentiality and integrity of information transmitted over the secure channel.
In order to represent security properties of the discussed protocols in finer detail,
we distinguish four types of attacks with the additional requirements S4 to S7.
Our attacker model consists of adversaries who control the network as well as
any secret outside the TPM, including platform secrets such as TLS private keys.

(S4) No replay attacks: No attacker is able to break S1 to S3 by resending
previously intercepted legitimate messages.

(S5) No insider attacks: No attacker with knowledge of platform secrets that
are not protected by the TPM (e.g. TLS private keys) may break S1 to S3.

(S6) No relay attacks on protocol endpoint: No attacker is able to launch
a relay attack targeting the specific protocol’s attestation endpoint.

(S7) No relay attacks on non-protocol endpoint: No attacker is able to
launch a relay attack targeting any other available attestation endpoint.

In addition to the security goals we define four functional requirements F1
to F4. They deal with protocol properties necessary to apply the solution to a
wide range of dynamic and challenging tasks.

(F1) Mutual attestation: Establishing a secure channel through a single pro-
tocol handshake verifies the platform integrity of both peers.

(F2) Re-attestation: Any verifier can re-attest the trusted platform even after
the protocol has established a shared secret.

(F3) Forward secrecy: Disclosing a long-term secret must not corrupt previ-
ously intercepted protocol sessions.

(F4) Protocol overhead: The attestation protocol must not generate sub-
stantial overhead in performance, implementation complexity and code
base size.

76 P. G. Wagner et al.

2.2 Related Work

In recent years several remote attestation protocols have been proposed. How-
ever, most of them are not suitable for large-scale remote attestation applica-
tions, or have already been identified as vulnerable.

No Key Establishment or Attestation. Some protocols such as [5,13] only focus
on conducting a remote attestation and do not include a shared key establish-
ment (requirement S3). Since these attestation protocols cannot establish secure
communication channels, they are unsuitable for scenarios where confidential
information should be transmitted to a remote trusted software stack. A more
recent project integrates the TPM 2.0 engine in OpenSSL3. However, this only
allows OpenSSL to use the TPM hardware for its cryptographic operations, but
does not provide a remotely attested secure channel (requirements S2 and S3).

Vulnerable Against Insider Attacks. Several protocols provide a secure channel
between the verifier and the attested platform by combining remote attestation
techniques with an underlying TLS protocol instance. When doing so it is vital
to properly bind the keys responsible for creating the encrypted TLS channel to
the attested trusted platform, because otherwise the protocols can become inse-
cure. Cheng et al. [4] propose to establish the link between remote attestation
and TLS by hashing the TLS pre-master secret into the quote. However, this
approach is insecure against attackers with insider knowledge, such as admin-
istrators of attested systems. We have to assume that system administrators
have access to long-term platform secrets, as long as they are not protected
by the TPM. Hence they can simply use the TLS private keys to decrypt the
pre-master secret that the legitimate trusted platform transmits during the TLS
handshake. As a result, they can passively intercept secrets that an unsuspecting
verifier sent across the trusted channel to the attested system. Remote attesta-
tion protocols susceptible to this kind of insider attack do not fulfill security
requirement S5. Similarly Goldman et al. [7] attempt to link remote attestation
with the SSL/TLS stack by adding an intermediate platform certificate signed by
a trusted CA. This method also does not protect against insider attacks, because
we have to assume that an insider attacker can obtain the unprotected private
key corresponding to this new platform certificate. Zhou and Zhang [16] base
their solution to this problem on pre-shared passwords. However, this approach
is also vulnerable against malicious administrators, because again we have to
assume that they know any pre-shared password. Furthermore a protocol based
on pre-shared passwords is unfeasible for highly distributed use cases where new
communication endpoints regularly join the network (requirement F4).

Vulnerable Against Relay Attacks. Protocols are vulnerable against insider
attacks if they use long-term secrets to establish the secure channel. This attack
can be avoided by conducting an ephemeral key exchange during the attestation
process. Stumpf et al. [14] propose to link remote attestation with a Diffie-
Hellman key exchange by including the ephemeral public keys in the quote.
3 https://github.com/tpm2-software/tpm2-tss-engine.

https://github.com/tpm2-software/tpm2-tss-engine

Establishing Secure Channels Using Remote Attestation with TPM 2.0 77

After the attestation is complete, both endpoints derive a symmetric key from
the established secret and use it to encrypt all subsequent communication. While
this thwarts the insider attack and provides forward secrecy (S5 and F3), includ-
ing ephemeral public keys in the quote can introduce vulnerabilities against relay
attacks (c.f. [6,16]). During this attack the adversary relays messages to the orig-
inal trusted system in order to answer another attestation challenge on his own.
Protocols directly based on Stumpf’s approach [1,8] are also susceptible to this
attack and do not fulfill requirement S6.

Other Protocols. Gasmi et al. [6] and Armknecht et al. [2] embed the remote
attestation process into a standard TLS handshake. While this fixes the vul-
nerability against relay attacks, there are drawbacks to this approach. Since
attestation data is included in the TLS handshake, a modified TLS implemen-
tation has to be used. Tying remote attestation to the TLS library conflates
protection goals and complicates code base updates (requirement F4). Further-
more, these protocols use the Secret Key Attestation Evidence (SKAE) feature
of the TPM 1.2 specification, which is not included in recent versions anymore.
In a similar fashion, Lan et al. [9] add direct anonymous attestation (DAA) to a
TLS handshake. This approach also uses a modified TLS stack, does not support
mutual attestation and requires fresh AIK re-enrollments for each handshake,
which is very costly in distributed environments (requirements F1 and F4). Also
neither of these proposals offer working code or usable libraries.

We provide a detailed comparison of the discussed protocols during the eval-
uation in Sect. 4 (c.f. Tables 2 and 3). All in all no existing protocol fulfills all
requirements we have for a remote attestation protocol.

2.3 Attacks on IDSCP

The Industrial Data Space Communication Protocol (IDSCP) is a remote attes-
tation protocol introduced by Lux and Brost in 2018 [10]. It relies on an under-
lying standard TLS connection to provide authentication and channel encryp-
tion. However, unlike with previous TLS-based proposals, the remote attesta-
tion is not directly included in the TLS handshake. Instead a mutual attesta-
tion is conducted as soon as the standard TLS connection has been established
between both trusted endpoints. During this attestation phase both sides draw
and exchange random nonces to protect against replay attacks. These nonces are
then used to generate a TPM-signed quote containing a selection of the current
PCR values on each trusted platform. Finally the quotes’ PCR values and signa-
tures are verified by each side, thereby mutually confirming the integrity of both
trusted software stacks. In order to link the underlying TLS session with the
conducted remote attestation, the quotes also contain a hash of the respective
TLS certificates that authenticated the initial TLS handshake. By comparing
this hash with his own TLS public key fingerprint, each verifier can check if
the attested remote endpoint operates on the “right” TLS channel. A complete
description of the IDSCP protocol is given in [10]. For convenience purposes we
include an overview of the protocol handshake in the appendix (c.f. Table 4).

78 P. G. Wagner et al.

Instead of conducting a separate key agreement, IDSCP relies on the under-
lying TLS channel to encrypt transmitted data. Since no modified or enhanced
TLS handshake is necessary, IDSCP can be easily implemented using any stan-
dard TLS library. This is a clear advantage over previous TLS-based remote
attestation protocols such as [4] and [6]. However, conflating the security goals
of the encryption layer and the attestation protocol introduces new vulnera-
bilities. The attestation part of IDSCP simply presupposes the security of the
encrypted TLS channel without considering that the respective attacker models
differ. As a result, the protocol becomes vulnerable against an insider attack sim-
ilar to the previously mentioned one on Cheng’s proposal [4], if the underlying
TLS key establishment is performed by transmitting an encrypted pre-master
secret. An insider attacker, who has access to the TLS private keys of the trusted
platform, can intercept the pre-master secret and subsequently decrypt any com-
munication that should be decipherable solely by the trusted software stack of
the attested endpoint. Even though not explicitly mentioned by the IDSCP spec-
ification, this attack can be avoided by forcing both endpoints to agree on a TLS
cipher suite that features perfect forward secrecy (PFS).

Scenario for a Relay Attack. However, even when IDSCP uses perfect for-
ward secrecy, in certain situations the protocol is still vulnerable against a vari-
ant of the classical relay attack. During a relay attack the adversary typically
conducts a legitimate remote attestation with the trusted platform and uses the
response to forge attestation evidence for his own platform. While relay attacks
on Stumpf’s protocol are performed this way (c.f. [6,16]), the attack on IDSCP
requires a modified approach. More concretely, we extend the classical relay attack
by using a legitimate third-party application on the trusted platform that also
offers an attestation endpoint. The key to this attack is that these two end-
points, while on the same platform, do not implement the same attestation proto-
col. Even though the security impact of multiple attestation endpoints is seldom
being considered, this is a very realistic attack vector for IDSCP. Since the Indus-
trial Data Space architecture supports distributed data processing across multi-
ple companies [12], third-party applications are deployed on trusted platforms.

Fig. 1. Scenario for the relay attack on IDSCP.

Establishing Secure Channels Using Remote Attestation with TPM 2.0 79

As a result it is possible that – in addition to the general IDSCP endpoint – a sec-
ond remote attestation endpoint is provided by one of the legitimate data process-
ing applications. This scenario is depicted in Fig. 1. The communication is routed
through the IDSCP endpoints on both Alice’s and Bob’s system. In order to inter-
cept information intended for Bob’s trusted software stack, the attacker first estab-
lishes a TLS connection with Alice’s IDSCP endpoint. Then the attacker contacts
the additional attestation endpoint in Bob’s trusted software stack (in this case
app 3) to retrieve the quoting information he needs to complete the IDSCP hand-
shake. Note that app 3 is a legitimate data processing application and a valid part
of Bob’s trusted software stack (TSS), so the PCR fingerprints of the generated
quote are as Alice expects them to be. Hence Alice will trust this IDSCP channel,
even though it is controlled by the attacker.

Relay Attack on IDSCP. If the IDSCP protocol is executed properly, each
trusted platform first performs a TLS handshake, chooses the Diffie-Hellman
key pair and signs the public part with the TLS private key. In order to extract
information intended only for a trusted platform, the attacker has to perform
these steps on a different machine. Fig. 2 shows how an internal attacker can
intercept encrypted information from an IDSCP channel. In this example Alice
acts as honest verifier, who intends to establish an attested IDSCP connection
to Bob’s trusted platform. As before, we assume the strongest attacker to be an
administrator attempting to intercept information that should be decipherable
only by Bob’s unmodified trusted software stack. This attacker has access to
Bob’s TLS long-term secrets and can use them to conduct his own TLS hand-
shake with the remote verifier (Alice), thereby impersonating an endpoint on
Bob’s legitimate trusted system (1). The goal of the attack is to establish an
attested connection with a computer system that is not the trusted platform it
claims to be. Note that even though an insider attacker typically has access to
Bob’s legitimate trusted platform, he cannot use the original system to do this,
because that would change the PCRs and hence reveal the attack.

Fig. 2. Relay attack on the IDSCP protocol. Not all messages are shown.

After the TLS connection is established, the attacker needs to present a valid
quote during the subsequent attestation phase of the IDSCP protocol. This quote

80 P. G. Wagner et al.

needs to be signed by Bob’s original TPM and has to contain both the correct
nonce and the remote TLS certificate. Clearly such a quote can only be created by
Bob’s original trusted platform. In a classical relay attack the adversary would
try to extract the quote by initiating another IDSCP handshake with Bob’s
trusted platform and relay Alice’s nonce as his own. However, this approach
does not work for IDSCP, because Alice expects the quote to contain both her
nonce and her TLS certificate. According to the protocol specification, Bob’s
unmodified IDSCP endpoint only generates quotes containing TLS certificates
that the remote party used for establishing the connection. Hence the attacker
would need to sign a key exchange with Alice’s TLS long-term secret, which he
does not know. Instead he contacts the additional attestation endpoint in Bob’s
trusted software stack and requests a quote from there. To make the quote look
as if generated by the IDSCP endpoint, the attacker calculates the hash of Alice’s
nonce and her TLS certificate – both values are known to him – and uses it as
his own nonce (2). Assuming that the additional attestation endpoint processes
the requested qualifying data unaltered, this generates a quote that convinces
Alice (3). Since the hash value is indistinguishable from a random nonce, neither
honest party can detect this interference. Once the handshake is completed, Alice
is confident that she can securely send information to Bob’s trusted platform,
even though the attacker intercepts them on a different machine.

The IDSCP protocol is vulnerable because it includes public keys in the
quote. Attestation protocols using only randomly drawn nonces as qualifying
data, such as [2,6,9], are not vulnerable to this attack. However, these protocols
have drawbacks that make them unsuitable for use cases such as the Industrial
Data Space (c.f. Sect. 2.2). Hence there is still a need for a simple and easily
usable remote attestation protocol that is not susceptible to this type of attack.

3 A Secure Protocol

A secure protocol needs to conduct a remote attestation and establish encrypted
channels between the endpoints. On their own, both of these tasks have been
solved. The problem we face when designing an attestation protocol is how to
bind the keys responsible for the encrypted channel to the attested trusted plat-
form. Doing this right is vital for a secure attestation protocol, because it ensures
that only the legitimate trusted platform can read data transmitted over the
attested channel. As we showed in the previous section, IDSCP is vulnerable
to active man-in-the-middle attacks because it includes security relevant infor-
mation such as the public part of a Diffie-Hellman key in the quote. A possible
solution to this problem is to extend the PCRs with that information prior to
attestation, instead of using it directly as qualifying data for the quote. Doing
so shows a verifier that the Diffie-Hellman key pair used for key establishment
was in fact generated on the trusted platform itself, while avoiding the vulner-
ability against relay attacks. However, this solution is not feasible in practice.
Since each established channel requires a new key exchange, the legitimate PCR
values will change constantly. As a result the measurement logs that verifiers

Establishing Secure Channels Using Remote Attestation with TPM 2.0 81

have to check become large and extremely cluttered. This makes it very difficult
to update and maintain a trusted software stack in a dynamic and distributed
environment. Another approach for binding the ephemeral public keys to the
trusted platform is to sign them with the attestation identity key (AIK). Since
only the TPM can sign with the AIK, this proves that the key originates from
the trusted platform. Also it prevents relay attacks, since the key exchange is
completely independent of the quote. However, the AIK is a restricted key and
cannot be used for signing external data. It can only sign data structures that
have been created by the TPM, such as quotes. This property of the AIK is
in fact very important for the remote attestation, since otherwise the platform
could use the TPM to certify a fake quote (e.g. with wrong PCRs). While this
makes an AIK-certified key exchange impossible with the now outdated TPM
version 1.2, there are more options available with a recent TPM in version 2.0.
By implementing a TPM-managed key exchange, we can sign ephemeral keys
with the AIK, thereby binding the key establishment to the trusted platform.

3.1 Protocol Design

A secure remote attestation protocol has to protect against internal attackers
with access to platform secrets. However, TLS by design does not consider this
type of adversary. As previously shown, combining the TLS-based encryption
with attestation conflates security goals and complicates protocol applications.
To avoid this we choose not to use TLS as underlying protocol. Instead we
concentrate on establishing a shared secret that is guaranteed to be available
only to the attested platform. This secret can then be used for manual encryption
or as a key for an independent TLS layer. We assume that prior to the start of
the protocol both participants have taken ownership of their TPM and created
a storage root key. Furthermore they should have performed the AIK enrollment
process and have their AIK certificates signed by a privacy CA. Our attestation
protocol consists of three phases, which are shown in Table 1. The semantic of
the functions as well as the parameter names follow the TPM 2.0 specification.

Initiation. During the initiation phase, both endpoints first create a TPM key
template for appropriate encryption keys, which will be used in a later phase.
Then random nonces are created and exchanged (steps 1 and 2). While the
size of the nonces is not specified, it is recommended to use at least 160 bits of
random data to ensure proper quote freshness. Furthermore, both sides transmit
a selection of PCR numbers that they expect to be included in the quote.

Attestation. Afterwards the attestation phase is responsible for exchanging and
verifying quotes. This is done in accordance with the TCG trusted attestation
protocol [15]. For the sake of simplicity Table 1 only shows the explicit attes-
tation. Nevertheless the other specified attestation types may be used as well.
Since this affects only the TPM function calls and the contents of the quote, but

82 P. G. Wagner et al.

Table 1. Our proposed attestation protocol

not the transmitted messages, our protocol is agnostic about the concrete attes-
tation type. With explicit attestation, both participants execute TPM2 Quote in
order to create a quote that is signed by the TPM with the attestation identity
key. Only the previously received nonce is included as qualifying data. After-
wards the quote, its signature, the values of the requested PCRs and the AIK
certificate are transmitted to the verifier (steps 3 and 4). Once the attestation
information has been passed to the remote side, the AIK certificate, quote sig-
nature and quote information are being verified in that order. Since the protocol
supports mutual attestation, both parties have to perform these protocol steps.

Establishing Secure Channels Using Remote Attestation with TPM 2.0 83

If any of the verification steps fail, either of the endpoints terminates the pro-
tocol handshake. After the attestation phase has been completed successfully,
both endpoints have verified the integrity of the other trusted platform.

Key Establishment. Finally the key establishment phase establishes a shared
secret between the two endpoints that is bound to the attested trusted platforms.
For this we conduct a TPM-managed Elliptic Curve Diffie-Hellman (ECDH)
key exchange. The TPM 2.0 specification conveniently offers functions for one-
pass and two-pass key exchange protocols. Since we only want to conduct an
ephemeral key exchange, the one-pass version is sufficient. Usually the one-pass
key exchange is conducted asymmetrically using TPM2 ECDH KeyGen. How-
ever, this is not feasible for our protocol, because we need to sign both ephemeral
public keys with the restricted AIK. Because the TPM2 ECDH KeyGen func-
tion directly outputs the generated ephemeral public point without proof of
TPM ownership, we cannot use the AIK to sign this key. Also, in order to keep
the protocol implementation as simple as possible, it is beneficial to perform a
symmetric key establishment where both sides execute the same steps.

To solve these problems we conduct the key exchange by creating both
ephemeral keys with TPM2 Create and invoking the TPM2 ECDH ZGen func-
tion twice (c.f. Table 1). At first Alice creates a new ephemeral ECDH key pair
by invoking the TPM2 Create method with the ECDH key template created
earlier. It is important that this key is generated as a wrapped sub key instead
of a root key using TPM2 Create Primary. This is because primary keys are
derived from the seldom changing platform secrets, while the ephemeral keys
need to be randomly drawn for each handshake. After the ephemeral key pair
has been created, it needs to be loaded into the TPM using TPM2 Load. Since
the key pair has been generated in the TPM instead of the CPU, its public part
can then be signed by the AIK using the TPM2 Certify function It is important
to include the previously exchanged nonces into this signature, because other-
wise the key exchange may be vulnerable to replay attacks. Finally Alice sends
the public part of the ephemeral key, as well as the certification information
and the signature to Bob (step 5). Bob can check if the received ephemeral
key was in fact generated by the trusted system by verifying the signature with
Alice’s AIK certificate. He also checks if his nonce is included in the certifica-
tion information. Then Bob uses TPM2 Create and TPM2 Certify to generate
his own ephemeral ECDH key and AIK signature in the same way. By invoking
TPM2 ECDH ZGen with a handle on his own ECDH key and Alice’s public
key, Bob uses his TPM to calculate the shared secret Z. Finally he transmits
his ephemeral public key and the corresponding signature back to Alice (step 6).
After receiving Bob’s public key and signature, Alice performs the same steps to
verify the key and calculate the shared secret on her end. If any of the verification
steps fail, either of the endpoints terminates the protocol handshake. Otherwise
the protocol handshake completes with the establishment of the shared secret.
Usually a symmetric encryption key is derived from the shared secret via a key
derivation function (KDF), which protects the established channel. The nature

84 P. G. Wagner et al.

of the KDF and the subsequent encryption is not specified in the protocol hand-
shake. We furthermore do not have any specific requirements for the network
protocol that is used to send and receive the messages shown in Table 1.

3.2 Protocol Implementation

A reference implementation of our protocol is available (see footnote 2). To
access TPM 2.0 devices we use Microsoft’s TPM Software Stack. Since this
software stack interfaces both physical TPM devices and a TPM 2.0 simulator,
it is suitable for development purposes as well as productive use. As there are
bindings for other programming languages, the protocol can be adopted easily
for other platforms. We create the ephemeral ECDH keys using the NIST P-256
elliptic curve and SHA-256 message digests. The attestation handshake and all
subsequent communication is conducted over the standard WebSocket protocol.
After a successful handshake the symmetric channel encryption is achieved using
the Java Crypto API and an AES-256 encryption with PKCS#7 padding.

4 Evaluation

In this section we analyze the presented protocol in terms of the previously
defined security and functional requirements. We also compare our approach
to previously proposed attestation protocols. Finally show how we verify our
protocol using the Tamarin protocol verifier.

4.1 Security Analysis

In Sect. 2.1 we defined seven security goals S1 to S7. Now we show that our pro-
posal fulfills all of these requirements. The security goals of authentication (S1)
and platform integrity verification (S2) are satisfied by the attestation phase of
the protocol. This phase performs a standard remote attestation of both end-
points by exchanging quotes that are signed with the platforms’ attestation iden-
tity keys (AIK). Even an insider attacker with access to long-term secrets cannot
forge an AIK signature, because the private key is only accessible to the TPM.
Hence the AIK signature ensures that the verifier actually communicates with
the correct platform, which fulfills the authentication requirement (S1). Natu-
rally the exchanged quotes also attest to the integrity of the trusted platforms
(S2), because they contain the requested selection of PCR values for the veri-
fiers to check. Furthermore our protocol offers a secure key establishment (S3)
by performing a Diffie-Hellman key exchange in the final phase of the handshake.
Unlike with the proposal of Stumpf [14] and its variants, our key establishment is
authenticated by the AIK. This enables the verifier to check that the ephemeral
keys have in fact been generated on the authenticated trusted platform in the
already attested state. As a result, our protocol is not vulnerable against the
attacks defined by S4 to S7. The nonces that are exchanged during the initiation
phase protect against replay attacks (S4). The protocol is also not vulnerable

Establishing Secure Channels Using Remote Attestation with TPM 2.0 85

against insider attacks (S5), because nothing is signed or encrypted with a non-
TPM key that an insider attacker could use to his advantage. Especially the
ephemeral keys are not signed with external long-term secrets, but are instead
authenticated by the AIK, which is not available to the insider attacker. The
main advantage of our protocol over IDSCP is its resilience against relay attacks
even with a second attestation endpoint (S6 and S7). The key difference is that
our protocol uses only nonces as qualifying data for the quote, not the hash of
other security critical information. This prevents the presented relay attack with
an additional attestation endpoint. A further advantage of our protocol is that
the private ephemeral keys are generated by the TPM and never leave it. There-
fore our protocol is not vulnerable against side-channel attacks on the CPU.
Protocols that generate the ephemeral keys on the processor need to trust that
they are not being disclosed, which is a severe disadvantage over creating them in
the TPM. Table 2 compares the security properties of our protocol with previous
proposals discussed in Sect. 2.2. For better comparison of vulnerable protocols,
the second column shows the weakest attacker that successfully breaks one of
the security requirements. We distinguish between an insider attacker (I), who
knows non-TPM secrets, and an external adversary (E). Also the adversary can
either be passive (P) or an active Dolev-Yao attacker (A). This notation gives
an active insider attacker (IA) as strongest adversary, while a passive external
attacker (EP) is the weakest adversary. The checkmark after the attacker prop-
erties shows if the attack is transparent (✓) or detectable by one of the protocol
participants (✗). In summary, our protocol as well as the proposals of Armknecht
and Lan are secure against all presented attacks. However, as already discussed
in Sect. 2.2, in practice the latter protocols have disadvantages both in terms of
security and functionality.

Table 2. Comparison of security properties.

Proposal Attacker S1 S2 S3 S4 S5 S6 S7 Remarks

Sailer [13] EA (✗) ✗ ✓ – ✓ – – – No key exchange

Coker [5] – ✓ ✓ – ✓ – – – No key exchange

Goldman [7] IP (✓) ✓ ✓ ✗ ✓ ✗ ✗ ✗ PFS not mentioned

Cheng [4] IP (✓) ✓ ✓ ✗ ✓ ✗ ✗ ✗

IDSCP IP (✓) ✓ ✓ ✗ ✓ ✗ ✗ ✗

Aziz [3] IA (✗) ✓ ✓ ✗ ✓ ✗ ✗ ✗ PFS not mentioned

Stumpf [14] EA (✓) ✓ ✓ ✗ ✓ ✓ ✗ ✗

IDSCP (PFS) IA (✗) ✓ ✓ ✗ ✓ ✓ ✓ ✗

Zhou [16] IA (✗) ✓ ✓ ✗ ✓ ✗ ✓ ✗

Armknecht [2] – ✓ ✓ ✓ ✓ ✓ ✓ ✓ Only TPM 1.2

Lan [9] – ✓ ✓ ✓ ✓ ✓ ✓ ✓

Our protocol – ✓ ✓ ✓ ✓ ✓ ✓ ✓ Only TPM 2.0

86 P. G. Wagner et al.

4.2 Protocol Properties

Considering the functional requirements, our protocol clearly supports mutual
attestation (F1). Since the protocol explicitly separates attestation from key
establishment, re-attestation is possible without a key change (F2). Finally, con-
ducting a new ephemeral key exchange for each protocol handshake gives the
forward secrecy property (F3). In terms of overhead our approach is of a similar
complexity as IDSCP (F4). Our reference implementation has about 1700 lines
of code, while IDSCP has about 2000. Furthermore, we have no link with a TLS
protocol instance and are independent of the network stack. On the other hand,
since our protocol calculates the key exchange directly on the TPM hardware
instead of the much faster CPU, a performance impact is to be expected. Table 3
compares the functional properties of our protocol to the previous proposals.

Table 3. Comparison of functional properties.

Proposal F1 F2 F3 F4 Remarks

Sailer [13] ✗ – ✗ Low

Coker [5] ✗ – ✗ Medium

Goldman [7] ✗ ✓ (✓) High

Cheng [4] ✗ – ✗ Low

IDSCP ✓ ✗ ✗ Low

Aziz [3] ✓ ✗ (✓) Medium

Stumpf [14] ✗ ✗ ✓ Low

IDSCP (PFS) ✓ ✗ ✓ Low

Zhou [16] ✓ ✗ ✓ Medium

Armknecht [2] ✓ ✓ ✓ High Only TPM 1.2

Lan [9] ✗ ✗ ✓ High

Our protocol ✓ ✓ ✓ Medium Only TPM 2.0

4.3 Formal Verification

In addition to the informal security analysis, we also verified our protocol
using the Tamarin prover [11]. Our main goal in doing so is to show that
– unlike IDSCP – our protocol is secure even with an additional attestation
endpoint (security goal S7). First we modeled both our protocol and IDSCP
with Tamarin’s Diffie-Hellman equational theory. Then we defined the security
requirements as Tamarin trace properties quantifying over the attacker’s knowl-
edge. These trace properties determine that for a secure protocol the attacker
must not learn the established shared secret. We also added an additional rule
that allows the attacker to retrieve signed quotes with any qualifying data.

Establishing Secure Channels Using Remote Attestation with TPM 2.0 87

This models the additional attestation endpoint on the trusted platform. If the
rule is active, Tamarin in fact finds the man-in-the-middle attack on IDSCP we
presented in Sect. 2.3. In contrast, Tamarin correctly verifies all security prop-
erties on our protocol, even with the additional attestation endpoint available
to the attacker. All theorem definitions of both IDSCP and our protocol are
available for verification (see footnote 2).

5 Conclusion

In this work we evaluated existing attestation protocols in terms of security
and functionality. We found that many existing protocols are either vulnerable
against insider or relay attacks, or depend on outdated TPM specifications. Fur-
thermore we showed that an actively used remote attestation protocol (IDSCP)
is vulnerable against a variant of relay attacks that assumes the existence of addi-
tional attestation endpoints. In response to this threat we proposed and analyzed
a lightweight remote attestation protocol that is not vulnerable against this type
of attack. Our protocol is based on the TPM 2.0 specification and offers mutual
attestation, re-attestation and shared key establishment with perfect forward
secrecy. Unlike previous proposals, our protocol generates secret keys exclusively
inside the TPM, which protects against side-channel attacks on the CPU. Keep-
ing our protocol completely independent of the underlying network stack makes
it very flexible and easy to adapt for any use case specific requirements. Finally
we analyzed the security of our protocol both informally as well as by modeling
its security properties with the Tamarin theorem prover. A ready-to-use protocol
implementation is publicly available as well (see footnote 2).

As future work we plan to implement our protocol for other platforms and
more TPM software stacks. We also intend to evaluate the performance of our
protocol more rigorously in the Industrial Data Space as an actual productive
use case. Furthermore our protocol can be extended to also support direct anony-
mous attestation (DAA).

A The Industrial Data Space Communication Protocol

Table 4 illustrates the messages sent during an IDSCP handshake. A complete
description of the IDSCP protocol is given in [10]. The reference implementation
of IDSCP is available on Github (see footnote 1).

88 P. G. Wagner et al.

Table 4. IDSCP remote attestation protocol

References

1. Akram, R.N., Markantonakis, K., Mayes, K., Bonnefoi, P.F., Sauveron, D.,
Chaumette, S.: An efficient, secure and trusted channel protocol for avionics wire-
less networks. In: 35th Digital Avionics Systems Conference, pp. 1–10. IEEE (2016)

2. Armknecht, F., et al.: An efficient implementation of trusted channels based on
OpenSSL. In: 3rd ACM Workshop on Scalable Trusted Computing, pp. 41–50
(2008)

3. Aziz, N., Udzir, N., Mahmod, R.: Extending TLS with mutual attestation for
platform integrity assurance. J. Commun. 9(1), 63–72 (2014)

4. Cheng, S., Bing, L., Yang, X., Yixian, Y., Li, Z., Han, Y.: A security-enhanced
remote platform integrity attestation scheme. In: 5th Conference on Wireless Com-
munications, Networking and Mobile Computing, pp. 1–4. IEEE (2009)

5. Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Secur. 10(2), 63–81
(2011). https://doi.org/10.1007/s10207-011-0124-7

6. Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Asokan, N.: Beyond secure chan-
nels. In: 2007 ACM workshop on Scalable trusted computing, pp. 30–40 (2007)

7. Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel
endpoints. In: 1st ACM workshop on Scalable trusted computing, pp. 21–24 (2006)

8. Greveler, U., Justus, B., Löhr, D.: Mutual remote attestation: enabling system
cloning for TPM based platforms. In: Meadows, C., Fernandez-Gago, C. (eds.)
STM 2011. LNCS, vol. 7170, pp. 193–206. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29963-6 14

9. Lan, A., Han, Z., Zhang, D., Jiang, Y., Liu, T., Li, M.: An anonymous remote attes-
tation protocol to prevent masquerading attack. In: 11th International Conference
on Autonomic and Trusted Computing, pp. 590–595. IEEE (2014)

https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1007/978-3-642-29963-6_14
https://doi.org/10.1007/978-3-642-29963-6_14

Establishing Secure Channels Using Remote Attestation with TPM 2.0 89

10. Lux, M., Brost, G.: The industrial dataspace communication protocol. A protocol
for remote attestation and secure data exchange (2018)

11. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

12. Otto, B., Lohmann, S., Steinbuß, S., Teuscher, A.: IDS reference architecture
model. Technical report, International Data Spaces Association (2018)

13. Sailer, R., Zhang, X., Jaeger, T., Van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. In: USENIX Security symposium,
vol. 13, pp. 223–238 (2004)

14. Stumpf, F., Tafreschi, O., Röder, P., Eckert, C., et al.: A robust integrity reporting
protocol for remote attestation. In: Proceedings of the Workshop on Advances in
Trusted Computing (WATC), p. 65. Citeseer (2006)

15. TCG: Trusted attestation protocol (TAP) information model. Technical report
(2019)

16. Zhou, L., Zhang, Z.: Trusted channels with password-based authentication and
TPM-based attestation. In: 2010 International Conference on Communications and
Mobile Computing, vol. 1, pp. 223–227. IEEE (2010)

https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Security Processes

Improved Feature Engineering for Free-Text
Keystroke Dynamics

Eden Abadi and Itay Hazan(&)

IBM Cybersecurity Center of Excellence, Beer Sheva, Israel
edena@ibm.com, itayha@il.ibm.com

Abstract. Free-text keystroke dynamics is a method of verifying users’ identity
based on their unique pattern of typing a spontaneous text on a keyboard. When
applied in remote systems, it can add an additional layer of security that can
detect compromised accounts. Therefore, service providers can be more certain
that remote systems accounts would not be compromised by malicious attackers.
Free-text keystroke dynamics usually involve the extraction of n-graphs, which
represent the latency between n consecutive events. These n-graphs are then
integrated with one of the various existing machine learning algorithms. To the
best of our knowledge, n-graphs are the most widely used feature engineering
for free text keystroke dynamics. We present extended-n-graphs, an improved
version of the commonly used n-graphs, based on several extended metrics that
outperform the traditionally used basic n-graphs. Our technique was evaluated
on top of the gradient boosting algorithm, best performing algorithm on basic
n-graphs and several additional algorithms such as random forest, K-NN, SVM
and MLP. Our empirical results show encouraging 4% improvement in the Area
Under the Curve (AUC) when evaluated on a publicly used benchmark.

Keywords: Keystroke dynamics � Free text � Feature engineering

1 Introduction

Remotely accessing sensitive systems such as governmental, financial, and healthcare
systems via the Internet has become a normal routine in our everyday life. Through
these systems, service providers give users the ability to view sensitive information and
easily perform actions when at home or in remote locations. However, the ever-
growing dependence on these systems to store valuable information and perform
actions has made users increasingly vulnerable to attacks. But, while technology
advances rapidly, so do the hazardous in it. Ultimately, today’s online hackers pose
threats not only to individuals, but also to large companies and governments that due to
the recent worldwide pandemic events increased the number of employees that are
working from home.

Password is still one of the most used authentication methods to detect attacks and
prevent unauthorized access. Nevertheless, this method has weak spots that attackers
can use to gain unauthorized access and perform actions on other users’ behalf. One
such weak spot is that they only verify the user in the beginning of the session. If
attackers managed to hijack the authenticated session, they can remotely control the

© Springer Nature Switzerland AG 2020
K. Markantonakis and M. Petrocchi (Eds.): STM 2020, LNCS 12386, pp. 93–105, 2020.
https://doi.org/10.1007/978-3-030-59817-4_6

http://orcid.org/0000-0001-7464-056X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-59817-4_6

entire account. Another weak spot is that if attackers somehow managed to steal the
password without the user knowing, they can access the user account and even lock
him out. Stealing users’ credentials can be done using various techniques such as
shoulder surfing, keyloggers, brute force engines, etc. In another scenario the user can
cooperate with the attackers to fool the service provider for example in online exams,
that became more popular during the worldwide pandemic events that forced people to
stay home. In that case the user shares unrightfully his credentials with the attackers so
they will perform his tasks instead of him. One way to avoid that is using continuous
authentication to continuously verify the user’s identity and prevent such attacks during
the session.

Keystroke dynamics (KD), which relies on the user’s specific keyboard typing
patterns, is one of the most emerging mechanisms for continuous authentication.
Similar to handwriting and walking, keyboard typing often contains unique user
behavior patterns. The main advantages of this method are that it is cost-effective,
seamless, and is relatively easy to implement [11].

KD techniques are usually divided to two different approaches: (i) Fixed-text,
which refers to verifying the users’ identity by short and structured texts (e.g., user-
name and password), and (ii) Free-text, which refers to verifying the users identity
based on unstructured and spontaneous texts (e.g., email messages). Fixed text KD is
often applied to the username and password that are typed during the initial authen-
tication phase. In this case, the typing rhythm is checked alongside the correctness of
the username and password. However, this does not prevent attacks later throughout
the session and is usually not referred to as continuous authentication. Free-text KD, on
the other hand, can prevent attacks throughout a user’s session, as long as he/she keep
typing text. This method is generally carried out by analyzing the individual’s unique
typing rhythm when the text is longer, unseen previously and does not necessarily
entered only at the beginning of the session. Therefore, due to its ability to verify the
users throughout the session, it is usually referred as continuous authentication and it is
the main focus of our research.

As in many other machine-learning-based solutions, free-text KD solutions are
assembled from a learning algorithm and feature engineering phase. The most well-
known and used features for free-text KD are n-graphs on top of the extracted n-grams.
An n-gram is a text substring of size n. An n-graph is usually considered the latency
between the first and the last event of a certain n-gram with n events (which is not
necessarily the same n as the n-gram’s). Among n-graphs are di-graph and tri-graphs,
which are private cases of it. Di-graphs use the latency of exactly two consecutive
events and tri-graphs use the latency of exactly three consecutive events. To the best of
our knowledge, di-graphs, on all of its forms (i.e. press-to-release, press-to-press,
release-to-release, release-to-press) are the most widely used feature extraction in free-
text KD [1–6].

The main problem with n-graphs is that their implementation can cause the data to
not be represented correctly according to the natural distribution of it. This problem
occurs when an n-gram recurs several times within a segment of the data which, causes
a list of latencies for one n-graph feature instead of just one latency. As previously
seen, in such cases researchers tend to take the mean [3, 16]. However, by doing so
they implicitly assume that the data has a certain distribution which is not necessarily

94 E. Abadi and I. Hazan

true. Another option is taking the first or the last latency; but doing so eliminates some
of the information as well. Another problem with n-graphs, as shown by Sim et al. [17]
is that when used in different contexts, i.e. longer n-grams, the importance/impact of
the n-graph to the algorithms decision can vary. For example the di-gram ‘in’ as a word
or as part of the word ‘thing’ will have different importance. For that reason Sim et al.
suggested to use di-graphs in the context of words (which are basically longer or same
size n-grams) as part of the feature space.

To solve the first problem we suggest the use of several different metrics instead of
just mean. In addition, to extend the solution given by Sim et al. to the second problem,
we suggest to derive much more features from each n-gram and not just the end-to-end
latency or the di-graphs within the n-gram.

This work focuses on a novel feature extraction method for free-text KD. Our
method consists of four steps: finding common n-grams for each user; splitting text into
different windows (i.e. segments), where each window is evaluated independently;
collecting relevant data for each n-gram; and calculating an extended feature set for
each n-gram, which consists of its recurring list of n-graphs. We refer to this feature
extraction method as extended n-graphs.

We evaluated our method, using set of different algorithms such as gradient
boosting, random forest, K-NN, SVM and MLP, which were previously used in the
field of keystroke dynamics (elaborated in Sect. 2) and applied them on the Perez
keystroke dataset [15]. Our focus was on the best performing algorithm among them,
which was gradient boosting, in which we demonstrate a 4% improvement using the
extended n-graphs method on top of the basic existing n-graphs method with mean
combination of recurring n-grams.

The structure of our paper is as follows. Section 2 depicts the related work in
continuous authentication using free-text analysis. Section 3 presents the tested dataset.
Section 4 elaborates on our method’s feature extraction process. Section 5 includes the
findings of our experiments with a comparison to different methods and Sect. 6 con-
cludes the research.

2 Related Work

Research on keystroke dynamics started back in 1980 when Gaines et al. [6] investi-
gated the relationship between user typing rhythms and identity. They found that it is
possible to distinguish between users by using only several selected di-graphs. Later, in
1995, Shepherd et al. [1] showed even better results when measuring only latencies
between keystrokes and durations of keystrokes and calculating the averages and
variances globally. Their study tested only four different individuals, where even this
very simple feature engineering was a good start in identifying the users.

Dowland et al. [2] attempted to use a more complex feature set including di-graphs,
tri-graphs, and word latency as features, together with a distance-based classifier for
classification. The authors achieved a False Acceptance Rate (FAR) of 4.9% with a 0%
False Rejection Rate (FRR) over 35 users. More research on the subject was done by
Gunetti et al. [3, 4]. They used free-text keystroke dynamics for authentication with di-
graph latency with what they refer as disorder of the features and a distance-based

Improved Feature Engineering for Free-Text Keystroke Dynamics 95

classifier. Disorder is defined as the sum of differences between two arrays of the same
length, or in other words the L1 loss between them. Eventually, they attained a FAR of
3.16% for an FRR of 0.02% for a full session prediction on 40 legitimate users and 62
impostors.

Messerman et al. [5] presented a non-intrusive verification scheme that continu-
ously verifies the user identity using free-text KD. Their solution is an extension of the
results presented by Gunetti et al. [3, 4]. They used n-graphs and a distance-based
classifier that achieved an internal FAR of 2.02% and an external FAR of 2.61%, while
the FRR was 1.84%. Similarly, Alsultan et al. [7] used timing features with Euclidian
distance to find the level of similarity. Their main purpose was to reduce the number of
training samples required by the system to identify the user therefore they use a unique
key-pairs approach based on their keyboard adjacency dividing them into five groups.
Eventually they achieved a FAR of 21% and an FRR of 17% but with a much lower
number of training samples compared to others.

Ahmed et al. [8] evaluated deep learning architecture instead of classical machine
learning algorithms. In their paper, they presented an analysis of keystrokes di-graphs
and used a neural network to predict missing di-graphs based on the relation of the
monitored keys. Their experiment, which consisted of 53 participants in a heteroge-
neous environment, yielded an FRR of 4.82% with FAR of 0.015%,

Kang et al. [9] evaluated the connection between the type of keyboard and the
effectiveness of free-text user authentication. The authors used several well-known
classification algorithms such as K-NN, Parzen, and SVDD. They found that the best
results for free-text keystroke authentication were achieved with a standard PC key-
board, followed by a soft keyboard, and lastly a touch keyboard. The lowest equal error
rate (EER) of 5%, which is FAR = FRR, was achieved by the PC keyboard with a long
training set and test set (1000 characters). Their feature extraction was based on group
division of the keyboard and calculating the press-to-release and release-to-press time
between keyboard events.

Blomqvist [15] used gradient boosting, specifically XGBoost implementation [14]
for keystroke dynamics. The author extracted a subset of the di-graphs: dwell time and
flight time and managed to show an EER of 11.5% at the best case after tuning the
algorithm. The author showed the results for fixed text keystroke dynamics, however
we figured out that this algorithm could work well with free text keystroke dynamics as
well.

Mondal et al. [13] introduced two new schemes to classify multiple users using
continuous authentication. Their first scheme, which presented better or similar per-
formance in most of the cases, called “pairwise user coupling” and is based on the idea
of a tournament. The tournament is organized as a binary tree such that at the lower
layer, each node contains exactly two random users. Using a trained model, the
algorithm decides which user is more likely to be the test instance. The user with the
higher likelihood moves to the upper layer. At each layer exactly half of the users are
eliminated, and eventually the user who “won” the tournament is identified as the test
instance. The extracted features are press-to-release and press-to-press. As for the
classifiers, they created a multi-classifier fusion technique that includes the scores from
an artificial neural network, decision tree, and SVM classifier. The best results achieved
had an Accuracy of 89.7%.

96 E. Abadi and I. Hazan

Pin et al. [11] published in 2013 a survey of methods for keystroke dynamics. In
this survey the authors presented a review of the many existing algorithms in field.
They showed that the algorithms vary from basic machine learning algorithms such as
SVM, K-NN, random forest, and neural network-based algorithms like back propa-
gation such as MLP and Fast ANN and also discussed different research opportunities
in the field. Ali et al. [10] published in 2015 a similar survey for keystroke dynamics on
an updated list of methods, particularly more neural network-based algorithms and also
discussed limitations and recommendations in the field. We refer the readers that would
like to deepen in the different methods and their compartments to those two surveys.
Both surveys summarized the results over different features and models since 1980 on
both free-text and fixed-text keystroke dynamics.

In most of the literature addressing free-text keystroke dynamics, feature engi-
neering is in the form of di-graph, tri-graph, or other types of n-graphs. In our method
we chose to extend this feature engineering using several different methods of calcu-
lation and aggregation flow. We used several of the algorithms presented in this section
to evaluate our method.

3 Suggested Method

To present our method, let us formally define the n-graphs on which our method is based
on and extends. An n-graph is the delta time (i.e. latency) of an n-gram first and last
events of presses and releases sequence. For example, below there is a sequence of two
events, marking # as press and " as release: (#, ‘t’, 623450), (", ‘t’, 623548). This
sequence of events generates the n-gram ‘t’ from which we obtain the feature p2r (i.e.
press-to-release) with the delta time 98 ms: {p2r, “t”: 98}. In our new method of feature
extraction, that we refer to as extended-n-graphs, instead of extracting the same features
for each specific n-graph, we calculate extended list of features on each one of the
n-grams.

3.1 Extended n-graphs Overview

Usually in continuous authentication methods, one must first determine a segmentation
method on the raw data such that the feature extraction and evaluation is done on each
segment. Each segment would then be associated with exactly one feature vector, and
when testing, the final score will be an aggregation of all the segmentations. In free-text
keystroke dynamics it is common to use a fixed-size sliding windowswith an overlapping
window interval, such that each window is a segment. In our method we tried different
window sizes and when tested, we used the mean to aggregate the windows scores.

After the division to segments, we move to extraction of a feature vector for each
segment. The extraction has three main steps: First, for each common n-gram in the
segment, we aggregate all its n-graph occurrences to a delta time list; Second, for each
aggregated n-graph delta time list we apply the seven list extraction methods we
defined (explained next), and extract list of values generated by this method. Third, for
each list of values we calculate statistical features to describe their distribution (e.g.
mean). Each of these statistical features will be a feature in our final feature vector.

Improved Feature Engineering for Free-Text Keystroke Dynamics 97

3.2 Extracting List of Methods and Statistical Features

In the second step, we use a list of methods for every given n-gram inside the current
window. This step is composed of the following methods on the lists of aggregated
delta time lists:

• End-to-end delta time (E2E): calculates the list of delta time between the first press
and the last release, in the entire n-gram.

• Each char press-to-release (EC): calculates for each char press-to-release delta times
with respect to their location in the n-gram. For example, if we consider the n-gram
‘meet’, for each occurrence of this n-gram, the second letter - ‘e’ and the third letter
‘e’ will be calculated separately due to the fact they possess different location in the
n-gram.

• Regular delta time (RDT): calculates for each consecutive pair of chars in the
n-gram the press-to-release delta time with respect to their location in the n-gram.

• All combinations (AC): calculates all possible combinations of both press-to-release
and release-to-press time (one list for all values) in the n-gram.

• All char delta time (ACDT): calculates a list of all chars delta times. As opposed to
the AC, this one extracts the delta time for each individual key. Unlike the EC
method, if we observe the previous example of the n-gram ‘meet’, in the ACDT
method the second and the third occurrence of the letter ‘e’ will be calculated
together regardless of their location in the n-gram.

• First delta time (FDT): calculates the list of first press-to-release or first release-to-
press in the n-gram.

• Last delta time (LDT): calculates the list of last press-to-release or release-to-press
in the n-gram.

We then calculate the following statistical features for every list of values: mean,
standard deviation, minimum and maximum values. Thus, for each of those methods
(for a given n-gram), we obtain four features describing their distribution.

3.3 Most Common n-grams

To somewhat reduce the number of sparse features and the very high dimensionality in
the data, that happened due to short text on many different calculated n-grams, we
focus only on a set of the most common n-grams. To do that we first query the most
frequent n-grams from the training data. When dealing with fixed-text KD, for
example, the features dimension is constant and constrained to the length of the typed
text. This is not the case in free-text KD, where the text is unknown, and the feature
dimension should handle every possible letter and number combination on the key-
board. Therefore, we use a limited size of the most common n-grams. The use of only a
common set of n-grams speed up the algorithm work and decrease the needed memory
and reduces the possibility of overfit.

98 E. Abadi and I. Hazan

3.4 Feature Extraction Example

To explain the final stage of the feature extraction, let’s look at a simple example of the
n-gram ‘the’, which appears twice in the text “The fast-paced athlete jumped over the
hurdles effortlessly”. The sequence of events for this n-gram is represented with # for
press and " for release:

Occurrence 1: [(#, “t”, 6200), (", “t”, 6224), (#, “h”, 6235), (", “h”, 6240), (#, “e”,
6255), (", “e”, 6265)]
Occurrence 2: [(#, “t”, 7100), (", “t”, 7120), (#, “h”, 7127), (", “h”, 7138), (#, “e”,
7148), (", “e”, 7160)]

Now we aggregate each one of our lists and perform our seven extraction methods
on each one of them. Hence, our feature vector for each n-gram in the example is as in
Table 1. Finally, the statistical features are extracted on each one of the lists of
extraction and we receive a feature table we can vectorize such as in Table 2.

Table 1. Example’s feature lists

Method List

E2E [65, 60]
EC ‘t’: [24, 20]
– ‘h’: [5, 11]
– ‘e’: [10, 12]
RDT ‘p_1’: [24, 20]
– ‘p_2’: [5, 11]
– ‘p_3’: [10, 12]
AC ‘p2r’: [24, 5, 10, 20, 11, 12]
– ‘r2p’: [7, 10, 11, 15]
ACDT [24, 5, 20, 10, 11, 12]
FDT ‘p2r’: [24, 20]
– ‘r2p’: [7, 11]
LD ‘p2r’: [10, 12]
– ‘r2p’: [10, 15]

Improved Feature Engineering for Free-Text Keystroke Dynamics 99

3.5 Classifier

When dealing with free-text keystroke dynamics, one must take all possible desired
features into consideration; even with the pick of the most common n-grams this
creates many empty entries in each feature vector. Therefore, for the task of classifi-
cation, we need a learning algorithm that can handle the relatively high dimensionality
and sparsity of our feature space, as we had relatively low number of training samples
for each user. For algorithms such as SVM and K-NN, this task might be difficult,
however we tried them as well. Usually the number of features in free-text KD is
relatively high. After testing several algorithms that were previously used, such as
K-NN, SVM, MLP and tree-based algorithms such as random forest and gradient
boosting, we decided to use the latter which gave the best results, specifically the
XGBoost implementation [14].

Gradient boosting is a gradient descent-based algorithm that works with an
ensemble of decision trees. The trees are built in a sequential way to find patterns in the
residuals of the training data [12]. We chose XGBoost for the implementation because
of its ability to handle missing values, which are often seen in high dimensionality
feature spaces such as seen in free-text problems. One more advantage of XGBoost is
its efficient implementation, which improves the computational time of the prediction
and model creation.

4 Dataset

We used a public keystroke dynamics dataset called the Perez keystroke dataset, which
is a superset of the “One-handed Keystroke Biometric Identification Competition”
(OhKBIC) data [15]. The data collection was performed using three online exams taken

Table 2. Example’s full feature table

Name Mean Std Min Max

E2E 62.5 2.5 60 65
EC_t 22 2 20 24
EC_h 8 3 5 11
EC_e 11 1 10 12
RDT_p_1 22 2 20 24
RDT_p_2 8 3 5 11
RDT_p_3 11 1 10 12
AC_p2r 13.66 6.39 5 24
AC_r2p 10.75 2.86 7 15
ACDT 13.66 6.39 5 24
FDT_p2r 22 2 20 24
FDT_r2p 9 2 7 11
LD_p2r 11 1 10 12
LD_r2p 12.5 2.5 10 15

100 E. Abadi and I. Hazan

by computer science bachelor’s students on a web platform called Moodle, which is
commonly used in universities. Each exam was composed from five essay questions.
During the exam the students keystroke events were collected and sent to a server using
JavaScript event logging framework. At the first exam the participants were instructed
to use both hands to answer the questions (as they usually do), while at the second and
third exams they were instructed to use only the left and right hand respectively.

In order to enforce the constraints of the second and third exams, approximately
third of the exams conducted in classroom using standard desktop computers, where
the rest of the students completed the exams on their personal devices which were a
mix of desktop and laptop computers. To simulate real life usage as best as we could,
we used only the two-handed exams subset of the dataset.

Eventually the dataset consists of data from 81 students, with at least 500 key-
strokes on each exam for every student. We used the 66 out of the 81 that had relatively
higher amount of data for our experiments. We used this dataset as it well represent the
scenario of an attacker victim cooperation in cheating in remote exams.

5 Experiments and Results

The experiments were conducted based on an idea of active and passive users. The
active users are used for building models and training them, and the passive users are
only used for fraud testing purposes. We chose the 21 users with the highest amount of
data to be the active users and the rest 45 to be the passive. We start by splitting the
data of each active user into two: benign train and benign test with equally balanced
size. For each active user we built a supervised model using his benign train data and
fraud data which is randomly selected from the other active users training data. We
tried to maintain a ratio of 1:10 in the training data for each user; each model was
trained approximately on 35 user benign feature vectors and 350 fraud feature vectors.
The passive users are then used in the evaluation of the models of the active users as
test fraud sessions. The test set for each user is a combination of the user benign test
data and the data of the passive users. For each user, the set-up of active users chosen
for training and the passive users used for test were randomly changed to introduce
variability in the experiments. The n-gram size used were of size 2� n� 6 as done by
Sim et al. [17].

We performed several experiments on the dataset and evaluated the method with
different algorithms and parameters. To evaluate the advantage of our method, we
tested both our method (referred as extended n-graphs) and the current state of the art
(referred as basic n-graphs) on known classifiers such as gradient boosting, random
forest, SVM, K-NN and MLP.

An examination of the empirical results presented on Table 3 shows, as expected,
when dealing with high dimensionality, K-NN and SVM did not perform well. We
used K-NN in our experiment of with K = 5 which achieved AUC of 0.753, with an
EER of 28% and SVM achieved almost random classification with an AUC of 0.58.
Nevertheless, both algorithms performed better, with respect to AUC, using our
method. Another algorithm previously used in the literature is MLP, the best result
achieved with our method are 0.626 AUC and 37.3% EER while without it the results

Improved Feature Engineering for Free-Text Keystroke Dynamics 101

were much worse with 0.49 AUC and 50.7% EER. However, the ensemble tree-based
algorithms performed much better. Random Forest (RF) with 100 trees produced an
AUC of 0.83 with an EER of 22% using our method, in comparison to 0.787 AUC and
25.3% EER using the basic n-graphs. But the best performing algorithm was gradient
boosting (XGB) used with 60 trees and learning rate of 0.15 gave the best classification
results using our method with an AUC of 0.967 and an EER of 7.5%, and only 0.921
AUC and 12.4% EER using the basic-n-graphs.

As gradient boosting performed best, we deepen the examination in it. We started
with researching the connection between the AUC and window size of feature vectors,
comparing both basic n-graphs and our method.

As showed in Fig. 1, for both methods the AUC is monotonically increasing as the
size of the window grow, where its maximum lies at around 150 characters.
Throughout the range of tested window sizes, our method performed better than the
basic n-graphs, with an average AUC gap of 0.06.

Table 3. Classifiers EER and AUC of our method compared to the basic n-graphs

Classifier AUC – basic n-
graphs

AUC – extended
n-graphs

EER – basic n-
graphs

EER – extended
n-graphs

XGB 0.921 0.967 12.4% 7.5%
RF 0.787 0.83 25.3% 22%
K-NN 0.5 0.753 50% 28%
MLP 0.492 0.626 50.7% 37.3%
SVM 0.463 0.58 53% 43%

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

50 100 150 200

AU
C

Window size

basic n-graphs extended n-grahps

Fig. 1. Average AUC with respect to the window size

102 E. Abadi and I. Hazan

Another interesting question we examined is what is the optimal number of common
n-grams we need to include in our method. We performed an experiment with different
numbers of common n-grams and compared the AUC results from our method.

Figure 2 shows the AUC scores with respect to the number of common n-grams.
Similar to the window size argument, the common n-grams also converged to a max-
imum point (from the range tested): around 80 common n-grams, with an AUC of 0.97.

In order to check the limitations of our method in terms of the size of the ensemble,
we compared both methods AUC performance using gradient boosting with respect to
the number of estimators.

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

20 40 60 80 100 120

AU
C

Number of N-Grams

basic n-graphs extended n-graphs

Fig. 2. Average AUC with respect to the number of selected n-grams

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

20 40 60 80 100

AU
C

Number of Estimators

basic n-graphs extended n-graphs

Fig. 3. Average AUC with respect to the number of estimators

Improved Feature Engineering for Free-Text Keystroke Dynamics 103

As can be seen in Fig. 3. We have found that even with a relatively low number of
only 20 estimators, the algorithm maintains almost the same performance level (which
was not the case when we used the basic n-graphs) and remained superior given any
tested number of estimators.

6 Conclusions

In this paper we presented an extended method for keystroke dynamics free text feature
extraction and examined its performance over several different algorithms. The results
throughout the experimentation phase showed a constant favor for the extended
n-graphs over the commonly used feature extraction today. Even with a short window
size, lower number of common n-grams and limited number of estimators we have
achieved a relatively high AUC and low EER. All things considered, we successfully
created a better feature engineering method for free-text analysis, which is superior
given all the tested decision algorithms.

Although our empirical results are very encouraging, there is much more that can
be done in the field of continuous authentication with free-text analysis. Possible future
work can address the empty features using improved feature reduction or different
sparsity oriented/resilient learning techniques. Additional research should also strive to
obtain a larger dataset to test the improvements on a larger scale.

References

1. Shepherd, S.J.: Continuous authentication by analysis of keyboard typing characteristics.
(1995)

2. Dowland, P.S., Furnell, S.M.: A long-term trial of keystroke profiling using digraph, trigraph
and keyword latencies. In: Deswarte, Y., Cuppens, F., Jajodia, S., Wang, L. (eds.) SEC
2004. ITIFIP, vol. 147, pp. 275–289. Springer, Boston, MA (2004). https://doi.org/10.1007/
1-4020-8143-X_18

3. Gunetti, D., Picardi, C.: Keystroke analysis of free text. ACM Trans. Inf. Syst. Secur.
(TISSEC) 8(3), 312–347 (2005)

4. Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystroke dynamics.
ACM Trans. Inf. Syst. Secur. (TISSEC) 5(4), 367–397 (2002)

5. Messerman, A., Mustafić, T., Camtepe, S.A., Albayrak, S.: Continuous and non-intrusive
identity verification in real-time environments based on free-text keystroke dynamics. In:
2011 International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE, October 2011

6. Gaines, R.S., Lisowski, W., Press, S.J., Shapiro, N.: Authentication by keystroke timing:
Some preliminary results (No. RAND-R-2526-NSF). Rand Corp, Santa Monica (1980)

7. Alsultan, A., Warwick, K.: User-friendly free-text keystroke dynamics authentication for
practical applications. In: 2013 IEEE International Conference on Systems, Man, and
Cybernetics, pp. 4658–4663. IEEE, October 2013

8. Ahmed, A.A., Traore, I.: Biometric recognition based on free-text keystroke dynamics. IEEE
Trans. Cybern. 44(4), 458–472 (2013)

9. Kang, P., Cho, S.: Keystroke dynamics-based user authentication using long and free text
strings from various input devices. Inf. Sci. 308, 72–93 (2015)

104 E. Abadi and I. Hazan

https://doi.org/10.1007/1-4020-8143-X_18
https://doi.org/10.1007/1-4020-8143-X_18

10. Ali, M.L., Tappert, C.C., Qiu, M., Monaco, J.V.: Authentication and identification methods
used in keystroke biometric systems. In: 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems, pp. 1424–1429. IEEE, August 2015

11. Teh, P.S., Teoh, A.B.J., Yue, S.: A survey of keystroke dynamics biometrics. Sci.
World J. (2013)

12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29,
1189–1232 (2001)

13. Mondal, S., Bours, P.: Person identification by keystroke dynamics using pairwise user
coupling. IEEE Trans. Inf. Forensics Secur. 12(6), 1319–1329 (2017)

14. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 785–794. ACM, August 2016

15. Monaco, J.V., et al.: One-handed keystroke biometric identification competition. In: 2015
International Conference on Biometrics (ICB), pp. 58–64. IEEE, May 2015

16. Shimshon, T., Moskovitch, R., Rokach, L., Elovici, Y.: Continuous verification using
keystroke dynamics. In: 2010 International Conference on Computational Intelligence and
Security, pp. 411–415. IEEE, December 2010

17. Sim, T., Janakiraman, R.: Are digraphs good for free-text keystroke dynamics? In: 2007
IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2007)

Improved Feature Engineering for Free-Text Keystroke Dynamics 105

Subversion-Resistant Commitment
Schemes: Definitions and Constructions

Karim Baghery1,2(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
karim.baghery@kuleuven.be

2 University of Tartu, Tartu, Estonia

Abstract. Recently, various news is reported about the subversion
of trusted setup phase in mass-surveillance activities; strictly speak-
ing about commitment schemes, recently it was discovered that the
SwissPost-Scytl mix-net uses a trapdoor commitment scheme, that
allows undetectably altering the votes and breaking users’ privacy, given
the trapdoor [Hae19,LPT19]. Motivated by such news and recent stud-
ies on subversion-resistance of various cryptographic primitives, this
research studies the security of commitment schemes in the presence of a
maliciously chosen commitment key. To attain a clear understanding of
achievable security, we define a variety of current definitions called sub-
version hiding, subversion equivocality, and subversion binding. Then we
provide both negative and positive results on constructing subversion-
resistant commitment schemes, by showing that some combinations of
notions are not compatible while presenting subversion-resistant con-
structions that can achieve other combinations.

Keywords: Commitment schemes ⋅ Subversion security ⋅ Reducing
trust ⋅ CRS model

1 Introduction

The notion of commitment [Blu81] is one of the fundamental and widely used
concepts in cryptography. A commitment scheme allows a committer to create a
commitment c to a secret value of m, and later open the commitment c in a veri-
fiable manner [GQ88,Ped92]. The procedure of generating c is called committing
phase, and revealing or giving a proof-of-knowledge of message m and some secret
information used in committing phase (precisely, randomnesses) called opening.
In the Common Reference String (CRS) model, commitment schemes require a
setup phase that is done by a trusted third party [CIO98], and it is shown that
when we have a trusted setup phase, one-way functions are sufficient to construct
Non-Interactive (NI) commitment schemes [Nao91,CIO98]. During last decades,
we have seen various elegant NI commitment schemes that are deployed as a
sub-protocol in wide range of cryptographic applications, to refer some, such as
contract signing [EGL85], multi-party computation [GMW87], zero-knowledge
c© Springer Nature Switzerland AG 2020
K. Markantonakis and M. Petrocchi (Eds.): STM 2020, LNCS 12386, pp. 106–122, 2020.
https://doi.org/10.1007/978-3-030-59817-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_7&domain=pdf
http://orcid.org/0000-0001-7213-8496
https://doi.org/10.1007/978-3-030-59817-4_7

Subversion-Resistant Commitment Schemes: Definitions and Constructions 107

proofs [GMW91,Dam90], e-voting [Gro05,Wik09], shuffle arguments [GL07]
blockchains and their by-products (e.g. cryptocurrencies [BCG+14] and smart
contracts [KMS+16]), and many other sensitive practical applications.

On the Security of Setup Phase. Along with developing various crypto-
graphic primitives in sensitive applications, recently there have been various
attacks or flaw reports on setup phase of cryptographic systems that rely on
public parameters supposed to be generated honestly. In some cases, attacks are
caused by maliciously (or incorrectly) generated public parameters or modifying
cryptographic protocol specifications to embed backdoors, with intent to violate
the security of the main system [BBG+13,PLS13,Gre14,Gab19,LPT19,Hae19].
Particularly about commitment schemes, recently two research [Hae19,LPT19]
independently discovered that the implementation of shuffle argument in the
SwissPost-Scytl mix-net uses a trapdoor commitment, which allows breaking
security of the system without being detected. Indeed, the used commitment
scheme has a trapdoor that having access to that, one can alter the votes or
can break voters’ privacy. So, given such a trapdoor, a malicious party can do
an undetectable vote manipulation by an authority who sets up the mixing net-
work1.

Initiated by Bellare et al. [BPR14], recently subversion security has gotten
considerable attention with focus on different cryptographic primitives includ-
ing symmetric encryption schemes [BPR14], signature schemes [AMV15], non-
interactive zero-knowledge proofs [BFS16,Bag19b], and public-key encryption
schemes [ABK18]. Each of them considers achievable security in a particu-
lar family of primitives under subverted parameters. NI commitment schemes
in the CRS model are another prominent family of primitives that require a
trusted setup phase [Ped92,DF02,GOS06,Gro09,Gro10,Lip12]. As such com-
mitment schemes are deployed in various areas of cryptography, so their security
is not only important on itself but also security of other practical systems relies
on it (e.g. guaranteeing the security of shuffling in mix-net of SwissPost-Scytl).
Thus, their security under subverting public commitment key can have a crucial
effect on the security of the bigger systems.

Our Contribution. We study the resistance of NI commitment schemes in
the case of subverting commitment key and present definitions, negative results,
along with some Subversion-Resistant (Sub-R) constructions as positive results.
To get a clear understanding of achievable security, we first present new varia-
tions of current definitions, that are defined to guarantee the security of commit-
ters and verifiers even if the setup phase of a commitment scheme is subverted.

Recall that in the CRS model, an equivocal NI commitment scheme Πcom

(e.g. [Gro10,Lip12]) is expected to satisfy, 1) Hiding: It is hard for any PPT
adversary A, given an honestly generated commitment key ck, to generate two
messages m0 ≠m1 from message space M such that A can distinguish between
their corresponding commitments c0 and c1 2) Binding: It is hard for any PPT

1 More details in https://people.eng.unimelb.edu.au/vjteague/SwissVote and https://
e-voting.bfh.ch/publications/2019/.

https://people.eng.unimelb.edu.au/vjteague/SwissVote
https://e-voting.bfh.ch/publications/2019/
https://e-voting.bfh.ch/publications/2019/

108 K. Baghery

Table 1. Summary of results. Each row refers to achievability of selected notions.

Standard Subversion resistant
Hiding Equivocal Binding Sub-hiding Sub-equivocal Sub-binding Result in

Negative ✓ ✓ Theorem1

Positive 1 ✓ ✓ ✓ ✓ ✓ Theorem2

Positive 2 ✓ ✓ ✓ ✓ Theorem3

Positive 3 ✓ ✓ ✓ ✓ Theorem4

adversary A, given an honestly generated commitment key ck, to come up with
a collision (c,m0,op0,m1,op1), such that op0 and op1 are valid opening values of
two different pre-images m0 ≠ m1 for c, 3) Equivocality: Given the trapdoor tk
associated with ck, it is possible to create a fake commitment that can be opened
successfully. Equivocality implies hiding, as a commitment is indistinguishable
from an equivocal commitment which can be opened to any message.

Commitment Schemes with Subverted Parameters. We modify original
definitions of commitments in [Gro09,Gro10,Lip12] and present a variation of
them for Sub-R equivocal commitments. The key change in new definitions is
that the adversary generates ck. When A generates ck, it can retain some trap-
doors tk as a “backdoor” associated with ck. In Sect. 3.1, we formalize the fol-
lowing requirements for Sub-R commitments: 1) Sub-hiding: (subversion hiding)
Even if a PPT A generates ck, if the ck is well-formed2, it is hard for A to gener-
ate m0,m1 ∈M s.t. A can distinguish between their corresponding commitments
c0 and c1 where (c0,op0) ← Com(ck,m0; r) and (c1,op1) ← Com(ck,m1; r). 2)
Sub-binding: (subversion binding) Even if a PPT A generates ck, if the ck is
well-formed, it is hard for A to come up with a collision (c,m0,op0,m1,op1),
s.t. op0 and op1 are valid opening values of two different pre-images m0 ≠m1 for
c. 3) Sub-equivocality: (subversion equivocality) Even if a PPT A generates ck,
the scheme still should satisfy equivocality.

The relations between standard and new notions are shown in Fig. 1.
Subversion-resistant variations imply the standard ones.

Fig. 1. Relation between current and new defined subversion-resistant notions.

Next, we consider how much subversion security is achievable in NI commit-
ments. Our key results are summarized in Table 1. Each row considers construct-
ing schemes that simultaneously can achieve the indicated notions (by ✓).

2 Intuitively, the generated commitment key ck should have a well-defined structure.

Subversion-Resistant Commitment Schemes: Definitions and Constructions 109

Negative Result. We first consider whether we can achieve sub-binding along
with the current notions, namely sub-binding, binding, hiding, and equivocality.
The negative result in Table 1, indicates that we cannot achieve even standard
equivocality and sub-binding at the same time. In Sect. 4, we show that achieving
equivocality is in contradiction with achieving sub-binding.

Positive Results. Positive 1: By considering the negative result, the next best
scenario would be the case that one can achieve all notions but sub-binding. In
Theorem 2, we show that this case is possible, and we present a Sub-R commit-
ment scheme that can achieve the notions indicated in the first positive result
in Table 1. This result is established under the Bilinear Diffie-Hellman Knowl-
edge of Exponents (BDH-KE) assumption, defined in Definition 2, and Γ -Power
Symmetric Discrete Logarithm Assumption (Γ -PSDL), defined in Definition 1,
assumptions in a group equipped with bilinear map. Positive 2: Next, we con-
sider if there exists any practical commitment scheme that can achieve sub-
binding. We already know from the negative result which sub-binding cannot
be achieved by equivocality. Second positive result in Table 1 which is estab-
lished in Theorem 3, shows that we can construct such commitment schemes.
We show that basically this includes already known results that one can con-
struct a hiding and binding commitment in the standard model. Positive 3: The
third scenario is a commonly used case in practice. The scheme already satisfies
hiding, equivocality, and binding and when we consider the case that keys are
generated maliciously, it does not break completely, and indeed it still achieves
hiding. In Sect. 5.3, we show that with minimal checks, Pedersen [Ped92] com-
mitment scheme can achieve sub-hiding. This result might look redundant, as
it is a restricted form of Positive 1, but this result is established entirely under
standard assumptions.

In many cryptographic systems, it is shown the deployed commitment
require equivocality, especially in minimizing the round complexity of zero-
knowledge proofs [BFM88], or even constructing efficient NI zero-knowledge
proofs [GS08,Gro10,Lip12]. A direct observation of the first positive result is that
sub-equivocality can decrease the needed trust in such proof systems [Lip12].

On the Achievability of all Combinations. The main under focus question in
this paper is for X ∈ {hiding, binding, equivocality}, which combinations of X
and sub-X are achievable at the same time. In Table 1, we only talked about
four popular cases from 26 cases which one may think of. But one may notice
that these four cases cover many of those cases. For instance, by considering
relations between variations in Table 1, one may notice several trivial cases, and
more importantly, the negative result covers a set of cases that are impossible
to achieve. However, still, one can use a similar approach and go through over
other cases and evaluate achievability of each one.

2 Preliminaries

Let λ ∈ N be the security parameter, and 1λ denotes its unary representation; say
λ = 128. s←$ S denotes picking s uniformly random from S. The empty string is

110 K. Baghery

shown with {}, e.g. ck = {}. For an algorithm A, let im(A) be the image of A, i.e.,
the set of valid outputs of A, let RND(A) denote the random tape of A, and let
r ←$RND(A) denote sampling of a randomizer r of sufficient length forA’s needs.
By y ← A(x; r) we denote the fact that A, given an input x and a randomizer
r, outputs y. Note that ExtA and A use internally the same randomness r. We
denote by negl(λ) an arbitrary negligible function, and by poly(λ) an arbitrary
polynomial function. For a tuple of integers Γ = (γ1, . . . , γn) with γi ≤ γi+1,
let (ai)i∈Γ = (aγ1 , . . . , aγn

). We sometimes denote (ai)i∈[n] as a. We say that
Γ = (γ1, . . . , γn) ∈ Z

n is an (n,λ)-nice tuple, if 0 ≤ γ1 ≤ ⋅ ⋅ ⋅ ≤ γi ≤ γn = poly(λ). In
games, Pr[G ∶ y] shows the probability that y happens for the game G.

In pairing-based groups, we use additive notation together with the bracket
notation, i.e., in group Gμ, [a]μ = a [1]μ, where [1]μ is a fixed generator of Gμ. A
bilinear group generator BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2), where
p (a large prime) is the order of cyclic abelian groups G1, G2, and GT . Finally,
ê ∶ G1×G2 → GT is an efficient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) =
[ab]T . Denote [a]1 ● [b]2 = ê([a]1 , [b]2).

Definition 1 (Γ -Power (Symmetric) Discrete Logarithm Assumption).
Let Γ be an (n,λ)-nice tuple for some n = poly(λ). We say a bilinear group
generator BGgen is (n,λ)-PDL secure in group Gt for t ∈ {1,2}, if for any
PPT adversary A, Pr[gk ∶= (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ), [1]t ←
Gt/{1}, x← Zp ∶ A(gk; ([xl]

t
)∈Γ)] is negligible in λ. Similarly, we say a bilinear

group generator BGgen is Γ -PSDL secure, if for any PPT adversary A,

Pr
⎡
⎢
⎢
⎢
⎢
⎣

gk ∶= (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ
),

x← Zp ∶ A(gk, ([x
l
]
1
, [xl
]
2
)l∈Γ) = x

⎤
⎥
⎥
⎥
⎥
⎦

= negl(λ).

Lipmaa [Lip12] has proven that the Γ -PSDL assumption holds in the generic
group model for any (n,λ)-nice tuple Γ given n = poly(λ).

Definition 2 (BDH-KE Assumption). We say BGgen is BDH-KE secure
for R if for any λ, (R, ξR) ∈ im(R(1λ)), and PPT adversary A there exists a
PPT extractor ExtA, such that

AdvBDH−KE
BGgen,A,ExtA = Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ
), r ←$RND(A),

([α1]1 , [α2]2 ∥a) ← (A∥ExtA)(R, ξR; r) ∶
[α1]1 ● [1]2 = [1]1 ● [α2]2 ∧ a ≠ α1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is negligible in λ. In above assumption, ξR is the auxiliary information related
to the underlying group. This is an asymmetric-pairing version of the original
knowledge assumption [Dam92].

3 Security of Commitments Under Parameters
Subversion

Let Setup be a setup algorithm that takes as input λ and outputs some setup
information gk← Setup(1λ). In the basic form, a NI commitment scheme consists

Subversion-Resistant Commitment Schemes: Definitions and Constructions 111

of a tuple of polynomial-time algorithms (KGen,Com,Ver). We consider equiv-
ocal commitments (a.k.a. trapdoor commitments) that consists of algorithms
(KGen,Com,Ver,KGen∗,Com∗,Equiv). KGen is a PPT algorithm that given gk
generates a ck and a trapdoor key tk. As in [Gro09], the gk can describe a finite
group over which we are working, or simply the security parameter. We assume
all parties have access to gk. Com takes ck, a message m, a randomizer r and
outputs c and an opening op. Given ck, c, m and op, Ver returns either 1 or 0. In
equivocal commitments, given tk, it is possible to open a c to any message. This
property is formalized by PPT algorithms Com∗ and Equiv, where Com∗ takes
tk (generated by KGen∗) and outputs an equivocal commitment c and an equiv-
ocation key ek. Then, Equiv on inputs ek, c and a message m creates an opening
op ∶= r of c, so that (c,op) = Com(ck,m; r). Here, we define Sub-R equivocal
commitment schemes and add a new algorithm CKVer to the scheme that will
be used to verify the well-formedness of ck.

Definition 3 (Subversion-resistant Equivocal Commitments). A Sub-R
equivocal commitment scheme consists of eight algorithms defined as below,

Key Generation, ck ← KGen(gk): Generates a commitment key ck and asso-
ciated trapdoor tk. It also specifies a message space M, a randomness space
R, and a commitment space C.

Commitment Key Verification, 0/1← CKVer(gk, ck) : CKVer is a determin-
istic algorithm that given gk and ck, returns either 1 or 0;

Committing, (c,op) ← Com(ck,m; r): Outputs a c and an opening op. It spec-
ifies a function Com ∶ M ×R → C. Given a m ∈ M, the committer picks an
r ∈ R and computes the (c,op) = Com(ck,m; r).

Opening Verification, 0/1 ← Ver(ck, c,m,op): Outputs 1 if m ∈ M is the
committed message in c with opening op, and returns 0 otherwise.

Simulation of Key Generation, (ck, tk) ← KGen∗(gk): Generates a key ck
and associated trapdoor tk. It also specifies spacesM, R, and C.

Trapdoor Committing, (c, ek) ← Com∗(ck, tk): Given ck and tk as input,
outputs an equivocal commitment c and an equivocation key ek.

Trapdoor Opening, op← Equiv(ek, c,m, ek): On inputs ek, c and an m creates
an opening op ∶= r of c, s.t. (c,op) = Com(ck,m; r) and returns op.

A (subversion-resistant) commitment scheme satisfies completeness if for
ck ← KGen(gk) and any honestly generated commitment of m ∈ M, it suc-
cessfully passes the verification, i.e., Ver(ck,Com(ck,m;op),m,op) = 1.

3.1 Notions for Commitments with Subverted Parameters

Due to the lack of space, definitions of standard notions for equivocal commit-
ments are provided in the full version [Bag19a]. In the standard notions, the
commitment key ck is honestly generated by a trusted third party. But as our
goal is to consider achievable security when the setup phase is compromised, so
we cannot assume such assumption and instead we define subversion-resistance
analogues sub-hiding, sub-equivocality and sub-binding of the notions hiding,

112 K. Baghery

equivocality and binding. In new notions, the key difference is that the setup is
compromised and ck is generated by an adversary (or a subverter) rather than
via the honest algorithm KGen prescribed by Πcom. Also, in Sub-R commitments
there is a new algorithm CKVer to verify well-formedness of ck.

In the following definitions, let Setup be an algorithm that takes as input the
security parameter λ and outputs some setup information gk← Setup(1λ).

Definition 4 (Subversion Hiding (Sub-Hiding)). A commitment scheme
Πcom satisfies computationally subversion hiding if for any PPT adversary A,

∣2Pr [
(ck, (m0,m1)) ← A(gk) , b←${0,1}, CKVer(gk, ck) = 1 ,

rb ←$R, (cb,opb) ← Com(ck,mb; rb), b
′
←A(cb) ∶ b

′
= b
] − 1∣ = negl(λ).

The scheme is perfectly subversion hiding if the above probability is equal to 0.

By well-formedness of ck we mean the CKVer will verify ck successfully.

Definition 5 (Subversion Binding (Sub-Binding)). A commitment
scheme Πcom satisfies computationally subversion binding if for any PPT A,

Pr [
(ck, c, (m0,op0), (m1,op1)) ← A(gk) ∶ CKVer(gk, ck) = 1∧
(m0 ≠m1) ∧ (Ver(ck, c,m0,op0) = 1) ∧ (Ver(ck, c,m1,op1) = 1)

] = negl(λ).

The commitment is perfectly subversion binding if the probability is equal to 0.

Intuitively, subversion binding states that an adversary A will not be able to
do double open a commitment c, even if it generates the (well-formed) key ck.

Definition 6 (Subversion Equivocality (Sub-Equivocality)). A commit-
ment scheme Πcom satisfies subversion equivocalability if for any PPT A,
����������������������������

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ck,m) ← A(gk) , r ←$R,

(c,op) ← Com(ck,m; r) ∶
A(ck, c,op) = 1∧
CKVer(gk, ck) = 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ck, tk) ← KGen∗(gk),m←M

(c, ek) ← Com∗(ck, tk),

op← Equiv(ek, c,m) ∶

A(ck, c,op) = 1∧

CKVer(gk, ck) = 1 ,

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

����������������������������

≤ negl(λ),

where A outputs m ∈ M and KGen∗ is a key generator which also returns tk.

Intuitively, subversion equivocality states that even if A (a malicious key
generator) generates the ck, still the scheme satisfies equivocality. One may notice
that sub-equivocality implies sub-hiding and standard equivocality.

Lemma 1. A commitment scheme that satisfies a security notion with subvert-
ible setup also satisfies the security notion with honest setup.

Proof. To prove the lemma, we show that an adversary A against an honest
setup can be used to construct an adversary B against a subvertible setup.

Adversary B first samples a ck honestly, i.e., ck← KGen(gk) and checks that
CKVer(gk, ck) = 1. Next, sends ck to A and gets the answer and sends it to
the challenger. Similarly, follows the rest of experiment and wins the game of
subversion security with the same probability as A wins the standard game. ⊓⊔

Subversion-Resistant Commitment Schemes: Definitions and Constructions 113

4 Sub-binding with Equivocability Are Not Compatible

In this section, we consider if we can achieve sub-binding without degrading hid-
ing, binding, equivocality. Achieving sub-binding individually is possible (e.g. by
sending a plain message) but such a scheme will not guarantee equivocality. Here
we consider the practically-interested cases. We first consider the achievability
of sub-binding and (sub-)equivocality at the same time. We show that achieving
simultaneously sub-binding and (even) standard equivocality is impossible.

Theorem 1 (Impossibility of Sub-binding along with Equivocality).
There cannot exists a CRS-based commitment scheme Πcom = (KGen,CKVer,
Com,Ver,KGen∗,Com∗,Equiv) which can satisfy equivocality and sub-binding at
the same time.

Proof. Sketch. The definition of equivocality (in the full version [Bag19a]) states
that there exists KGen∗ that given gk returns (ck, tk), and given trapdoor tk
there exist two algorithms Com∗ and Equiv that allow one to create a fake
commitment and a valid opening which are indistinguishable from an honestly
generated commitment and opening. So, given those algorithms, an adversary
of sub-binding can first generate ck and tk honestly. Then, it gives ck and tk
as input to Com∗ and calculates (c, ek) ← Com∗(ck, tk). After that, it samples
(m0,m1) ∈M, where m0 ≠m1 and invokes the algorithm Equiv twice for two dif-
ferent messages, and generates op0 ← Equiv(ek, c,m0) and op1 ← Equiv(ek, c,m1)

and sends (c, (m0,op0), (m1,op1)) to the challenger of sub-binding game and
wins with probability 1, as each of the tuples (m0,op0) and (m1,op1) are a
(distinct) valid opening for c. On the other hand, sub-binding requires that A
should not be able to double open even if he generates the ck. But, one can
observe that achieving equivocality implies that given tk one can use Com∗ and
Equiv and generate two valid opening with different messages which will break
sub-binding.

That was the key idea behind the proof, and the full proof is provided in the
full version [Bag19a]. ⊓⊔

5 Positive Results

Next, we consider if we can construct subversion-resistant commitment schemes
in the CRS model, which without losing current security guarantees will achieve
some of the subversion-resistant notions defined in Sect. 3.1. For instance, can
we achieve sub-equivocality without losing the initial properties? We answer
this question positively in Subsect. 5.1, by introducing a commitment scheme in
the CRS model that can achieve sub-equivocality and binding. By considering
the negative result, this is the best case one can achieve if they want to retain
equivocality when commitment key is subverted. In the second scenario, we
consider if we can construct commitment schemes that will satisfy sub-binding?
In Subsect. 5.2, we show the best we can achieve while retaining sub-binding
is sub-hiding; by introducing some already known schemes that simultaneously

114 K. Baghery

achieving sub-binding and sub-hiding. The first positive result provides sub-
equivocality and binding under a knowledge assumption. One may ask, can we
relax the requirement of sub-equivocality and aim to retain sub-hiding but from
weaker assumptions? This is answered positively in Subsect. 5.3.

5.1 Sub-equivocality and Binding

By considering the definition of sub-equivocality (given in Definition 6), to
achieve sub-equivocality in a commitment scheme, there must be algorithms
KGen∗, Com∗ and Equiv, where KGen∗ simulates malicious setup phase, and
Com∗ and Equiv output a fake commitment and the associated valid opening,
consequently. In this case, the algorithms Com∗ and Equiv cannot get honestly
generated trapdoors of ck, and they cannot extract the trapdoors from the mali-
cious key generator A by rewinding, as they do not have any interaction with
A. So instead, we will rely on a knowledge assumption, which allows extracting
trapdoors of ck from a malicious key generator in a non-black-box way. Once
we extracted the tk, it will be provided to algorithms Com∗ and Equiv to gen-
erate a pair of fake but acceptable commitment and opening. Moreover, in the
case of a malicious key generator, there is an issue with the setup information
gk, e.g. groups description. They cannot be generated as before, as they can be
subverted. Similar to subversion-resistant NIZK arguments [BFS16], this issue
is addressed by considering the gk as a part of the scheme specification. More
precisely, since group generation is a deterministic and public procedure, so in
subversion-resistant commitment schemes, all parties will re-execute group gen-
eration themselves to obtain gk. To guarantee binding, the minimal requirement
is that an adversary cannot obtain the tk of ck from a honestly generated ck.

Theorem 2 (A Sub-equivocal and Binding Commitment). Let BGgen
be a bilinear group generator. Then the commitment scheme Πcom described
in Fig. 2 which is a variation of knowledge commitment scheme introduced
in [Gro10,Lip12], is binding in Gt for t ∈ {1,2}, under the Γ -PDL assumption
and also satisfies sub-equivocality under the BDH-KE knowledge assumption.

Proof. Our proposed variation has the same ck as the original scheme, so the
proof of (knowledge) binding can be shown straightforwardly from the original
scheme, which is done in [Lip12] under the Γ -PSDL assumption in the group Gt

for t ∈ {1,2}.
To prove sub-equivocality, it was shown that the original scheme is equivocal

under a trusted setup, namely the setup phase is simulatable, and the algorithms
Com∗ and Equiv that can generate a fake commitment and valid opening are
shown in Fig. 2. In the original scheme, the algorithms Com∗ and Equiv get the
honestly generated trapdoor tk, but in our case the tk is not trustable anymore.

Let A be a malicious key generator. To prove sub-equivocality, we first need
to show that the setup phase is simulatable. Namely, there exists KGen∗ which
can produce the full view of key generation by A. Second, we need to describe

Subversion-Resistant Commitment Schemes: Definitions and Constructions 115

Fig. 2. A variation of the commitment scheme of Groth [Gro10] defined by Lip-
maa [Lip12] that achieves sub-equivocality and binding. We note that in this setting,
gk ∶= (p,G1,G2,GT , ê, [1]1 , [1]2) is part of the scheme specification, and in practice
each party can run deterministic algorithm BGgen and re-obtain gk.

two algorithms Com∗ and Equiv which given the extracted trapdoor they can
produce a fake commitment and a valid opening which are indistinguishable
from the real ones. To address the first issue, we construct a non-black-box
extraction algorithm ExtA that can extract the trapdoor tk from a malicious key
generator A and simulate the setup phase. Recall that the BDH-KE assumption
for bilinear groups G1 and G2 generated by [1]1 and [1]2, respectively, states that

116 K. Baghery

Fig. 3. A BDH-KE assumption based extraction algorithm ExtA for the sub-equivocal
commitment scheme described in Fig. 2

Fig. 4. Simulation of the setup phase in the knowledge commitment scheme described
in Fig. 2.

from any algorithm, given the group description and generators, which returns
a pair ([a]1 , [a]2), one can efficiently extracts a. In the rest of the proof, we
construct an efficient extractor under BDH-KE assumption which allows us to
extract the trapdoor td from A.

Let A outputs ck = (ck1, ck2), where ckt ← {[x
i]

t
, [âxi]

t
} for i ∈ [0 .. n]

and t ∈ {1,2}, as described in Fig. 2. By considering BDH-KE assumption, and
verifications done in CKVer, one can observe that if a malicious key generator
A manages to output a well-formed ck, it must know x and â. By well-formed
ck, we mean it must pass all checks in CKVer3. So it implies that there exists a
polynomial time extractor ExtA that if all the verifications in CKVer pass for some
â and x, then the ExtA can extracts x and â; as AdvBDH−KE

BGgen,A,ExtA is negligible. A
high-level description of the extraction procedure is shown in Fig. 3. After using
the extractor ExtA, one can simulate a malicious key generation using algorithm
SimA described in Fig. 4.

3 Note that verifications such as [â]1 ● [1]2 = [1]1 ● [â]2 inside CKVer comes from
the definition of the BDH-KE. So to check the well-formedness of commitment key
ck, depending on the underlying knowledge assumption in different commitment
schemes, one may construct a CKVer algorithm with different verification equations.

Subversion-Resistant Commitment Schemes: Definitions and Constructions 117

Fig. 5. Batched CKVer algorithm for sub-equivocal commitment scheme in Fig. 2

Finally, using the extracted trapdoor tk, one can consider the rest of proof as
the proof of equivocality given in the original scheme [Lip12], by showing that
given the (extracted) trapdoors one can use two algorithms Com∗ and Equiv
(described in Fig. 2) and generate a fake commitment and the corresponding
valid opening that will be successfully verified by Ver. ⊓⊔

Remark 1. In practice, executing the CKVer algorithm on long commitment keys
might take considerable time. In such cases, to make CKVer more efficient, one
can use batching techniques [BGR98,HHK+17] to speed up the verification.

Below, we proposed a batched version of the proposed CKVer. For the sub-
equivocal commitment scheme given in Fig. 2, to execute CKVer, one needs to
compute 6n + 2 parings (note that right hand of some verifications are the same).
But with batched CKVer algorithm in Fig. 5, one can verify ck with only 4 parings
and 8n exponentiations, that for large values of n, this takes considerably less
time. This can also be optimized by using the same randomness for the different
equations, that would allow to save 2n exponentiations.

5.2 Sub-binding and Sub-hiding

Next, we discuss the second positive result. Let Π2−party
com = (KGen,Com,Ver) be

a commitment that does not require a particular setup and the output of KGen
can be ignored. This includes all classical commitments that guarantee hiding
and binding and do not require a setup. In other words, all the commitments
that only need to choose some public parameters that can be agreed between
both parties, e.g., agreeing on the order and generator of the underlying group
or a particular secure and collision resistant hash function family.

We show that such hiding and binding commitment schemes also guarantee
sub-hiding and sub-binding. Intuitively, one can see that in such case (e.g. ck =
{}) there is no risk of subverting ck.

118 K. Baghery

Lemma 2. Let Π2−party
com = (KGen,Com,Ver) be a commitment scheme that does

not require a particular setup phase. If Π2−party
com satisfies binding and hiding, it

also guarantees sub-binding and sub-hiding.

Proof. Let A be a sub-binding adversary, meaning that

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gk← Setup(1λ
), (ck, c, (m0,op0), (m1,op1)) ← A(gk) ∶

CKVer(gk, ck) = 1 ∧ (m0 ≠m1)

∧ (Ver(ck, c,m0,op0) = 1) ∧ (Ver(ck, c,m1,op1) = 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1 − negl(λ).

By considering the fact that in a Π2−party
com commitment, so its commitment key

can be generated by either A or the honest KGen. So in above game, one can
substitute malicious key generator A with an honest KGen, meaning that

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

gk← Setup(1λ
), ck← KGen(gk) ,

(c, (m0,op0), (m1,op1)) ← A(gk, ck) ∶ CKVer(gk, ck) = 1∧

(m0 ≠m1) ∧ (Ver(ck, c,m0,op0) = 1) ∧ (Ver(ck, c,m1,op1) = 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1 − negl(λ).

which gives us a new successful adversary for binding of the commitment scheme
Π2−party

com . As a result, if Π2−party
com guarantees binding, so it is also sub-binding.

Similarly, let A be a sub-hiding adversary, meaning that
����������������

2Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gk← Setup(1λ
), (ck, (m0,m1)) ← A(gk),

b←${0,1},CKVer(gk, ck) = 1, rb ←$R,

(cb,opb) ← Com(ck,mb; rb), b
′
←A(cb) ∶ b

′
= b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

����������������

= 1 − negl(λ).

Again, by considering the property of a Π2−party
com commitment, one can substitute

malicious key generatorA in the setup phase with an honest KGen, which results,
����������������

2Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gk← Setup(1λ
), ck← KGen(gk) , (m0,m1) ← A(gk),

b←${0,1},CKVer(gk, ck) = 1, rb ←$R,

(cb,opb) ← Com(ck,mb; rb), b
′
←A(cb) ∶ b

′
= b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

����������������

= 1 − negl(λ).

that gives us a new successful adversary for hiding of the commitment scheme
Π2−party

com . Hence, if Π2−party
com guarantees binding, so it is also sub-binding. Note

that when the key generation is done honestly, CKVer always returns 1. ⊓⊔

Theorem 3 (Sub-hiding and Sub-binding Commitment Schemes). In
the CRS model, under some standard assumptions, there exist commitment
schemes that achieve sub-hiding and sub-binding.

Proof. Basically all classic commitment schemes that do not require a particu-
lar setup phase and guarantee hiding and binding are a Π2−party

com commitment
scheme. For instance, a commitment scheme built using a family of collision-
resistant hash functions4. As a result, by considering the result of Lemma 2, all
of them can also guarantee sub-hiding and sub-binding. ⊓⊔

4 A sample construction is available on https://cs.nyu.edu/courses/fall08/G22.3210-
001/lect/lecture14.pdf.

https://cs.nyu.edu/courses/fall08/G22.3210-001/lect/lecture14.pdf
https://cs.nyu.edu/courses/fall08/G22.3210-001/lect/lecture14.pdf

Subversion-Resistant Commitment Schemes: Definitions and Constructions 119

5.3 Binding, Equivocality and Sub-hiding

Finally, we consider the last positive result in Table 1 which states that we can
have a commitment to achieving hiding, equivocality, binding, and sub-hiding
at the same time. In this result, we show that one can still achieve sub-hiding
under standard assumptions by requiring that there exist hiding, binding, and
equivocal commitment schemes.

Pedersen Commitment Scheme Achieves Sub-hiding. The Pedersen commitment
scheme [Ped92] can guarantee sub-hiding property with minimal checking. The
committer only needs to run the CKVer algorithm to verify ck before using the
key for committing, and the check for this scheme is quite simple. Basically a
committer needs to check whether both g ≠ 0 and h ≠ 0 before using ck = (g, h).

Theorem 4 (Subversion-Resistant Pedersen Commitment). The Peder-
sen commitment scheme with checking g ≠ 0 and h ≠ 0, satisfies hiding, equivocal,
binding and sub-hiding under the discrete logarithm assumption in G.

Proof. For the sub-hiding property, once CKVer(gk, ck) returned 1, we conclude
that both g and h are non-zero group elements, so one can notice that upon
random choice of r ∈ Zp, for any m ∈ Zp, c = gmhr is uniformly distributed over
G. For the binding property, as the non-subversion resistant version, one can
observe that given openings (r0, r1) for a commitment c to distinct messages
(m0,m1), the relation gm0hr0 = gm1hr1 leads to h = g

m0−m1
r1−r0 , which gives the

discrete logarithm of h in base g. Intuitively, if the discrete logarithm problem
is hard, the commitment scheme is (computationally) binding. For equivocality,
as the original scheme, given trapdoor tk of the commitment key ck, one can
generate a fake commitment and the corresponding valid opening. ⊓⊔

Acknowledgment. This work was supported in part by the Estonian Research Coun-
cil grant PRG49, by the Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR001120C0085, and by Cyber Security Research Flanders with refer-
ence number VR20192203. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the ERC, DARPA, the US Government or Cyber Security Research Flanders.
The U.S. Government is authorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright annotation therein.

References

[ABK18] Auerbach, B., Bellare, M., Kiltz, E.: Public-key encryption resistant
to parameter subversion and its realization from efficiently-embeddable
groups. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769,
pp. 348–377. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76578-5_12

[AMV15] Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signatures: Defi-
nitions, constructions and applications. Cryptology ePrint Archive, Report
2015/517 (2015). http://eprint.iacr.org/2015/517

https://doi.org/10.1007/978-3-319-76578-5_12
https://doi.org/10.1007/978-3-319-76578-5_12
http://eprint.iacr.org/2015/517

120 K. Baghery

[Bag19a] Baghery, K.: Subversion-resistant commitment schemes: definitions and
constructions. Cryptology ePrint Archive, Report 2019/1065 (2019).
https://eprint.iacr.org/2019/1065

[Bag19b] Baghery, K.: Subversion-resistant simulation (knowledge) sound NIZKs. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 42–63. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-35199-1_3

[BBG+13] Ball, J., Borger, J., Greenwald, G., et al.: Revealed: how US and UK spy
agencies defeat internet privacy and security. Guard. 6, 2–8 (2013)

[BCG+14] Ben-Sasson, E., et al.: ZeroCash: decentralized anonymous payments from
bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474.
IEEE Computer Society Press, May 2014

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: STOC 1988, Chicago, Illinois, USA, 2–4 May 1988, pp.
103–112. ACM Press (1988)

[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 777–804. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6_26

[BGR98] Bellare, M., Garay, J.A., Rabin, T.: Batch verification with applications to
cryptography and checking. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN
1998. LNCS, vol. 1380, pp. 170–191. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054320

[Blu81] Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO 1981,
volume ECE Report 82–04, pp. 11–15. U.C. Santa Barbara, Department of
Electronic and Computer Engineering (1981)

[BPR14] Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption
against mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2_1

[CIO98] Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-
malleable commitment. In: Vitter, J.S. (ed.) STOC 1998, Dallas, Texas,
USA, 23–26 May, pp. 141–150 (1998)

[Dam90] Damgård, I.B.: On the existence of bit commitment schemes and zero-
knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol.
435, pp. 17–27. Springer, New York (1990). https://doi.org/10.1007/0-387-
34805-0_3

[Dam92] Damgård, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-
540-46766-1_36

[DF02] Damgård, I., et al.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-36178-2_8

[EGL85] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

[Gab19] Gabizon, A.: On the security of the BCTV pinocchio ZK-snark variant.
IACR Cryptology ePrint Archive 2019, 119 (2019)

[GL07] Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto,
T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_25

https://eprint.iacr.org/2019/1065
https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/BFb0054320
https://doi.org/10.1007/BFb0054320
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/0-387-34805-0_3
https://doi.org/10.1007/0-387-34805-0_3
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/978-3-540-71677-8_25

Subversion-Resistant Commitment Schemes: Definitions and Constructions 121

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC 1987,
New York City, 25–27 May 1987, pp. 218–229 (1987)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM
38(3), 691–729 (1991)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6

[GQ88] Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted
to security microprocessor minimizing both transmission and memory. In:
Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_11

[Gre14] Greenwald, G.: No place to hide: Edward Snowden, the NSA, and the US
surveillance state. Macmillan (2014)

[Gro05] Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioan-
nidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol.
3531, pp. 467–482. Springer, Heidelberg (2005). https://doi.org/10.1007/
11496137_32

[Gro09] Groth, J.: Homomorphic trapdoor commitments to group elements. Cryp-
tology ePrint Archive, Report 2009/007 (2009). http://eprint.iacr.org/
2009/007

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8_19

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3_24

[Hae19] Haenni, R.: Swiss post public intrusion test: Undetectable attack against
vote integrity and secrecy (2019). https://e-voting.bfh.ch/app/download/
7833162361/PIT2.pdf?t=1552395691

[HHK+17] Herold, G., Hoffmann, M., Klooß, M., Ràfols, C., Rupp, A.: New tech-
niques for structural batch verification in bilinear groups with applications
to groth-sahai proofs. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017, pp.1547–1564. ACM Press, October/November
2017

[KMS+16] Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the
blockchain model of cryptography and privacy-preserving smart contracts.
In: 2016 IEEE Symposium on Security and Privacy, pp. 839–858. IEEE
Computer Society Press, May 2016

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28914-9_10

[LPT19] Lewis, S.J., Pereira, O., Teague, V.: Trapdoor commitments in the swis-
spost e-voting shuffle proof (2019). https://people.eng.unimelb.edu.au/
vjteague/SwissVote

[Nao91] Naor, M.: Bit commitment using pseudorandom generators. J. Cryptology
4(2), 151–158 (1991)

https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/11496137_32
http://eprint.iacr.org/2009/007
http://eprint.iacr.org/2009/007
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://people.eng.unimelb.edu.au/vjteague/SwissVote
https://people.eng.unimelb.edu.au/vjteague/SwissVote

122 K. Baghery

[Ped92] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
46766-1_9

[PLS13] Perlroth, N., Larson, J., Shane, S.: NSA able to foil basic safeguards of
privacy on web. The New York Times, 5 (2013)

[Wik09] Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd,
C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp.
407–421. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02620-1_28

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-642-02620-1_28
https://doi.org/10.1007/978-3-642-02620-1_28

Challenges in IT Security Processes
and Solution Approaches

with Process Mining

Aynesh Sundararaj1, Silvia Knittl2(B) , and Jens Grossklags1

1 Technical University of Munich, Munich, Germany
sundararaj@tum.de, jens.grossklags@in.tum.de

2 PricewaterhouseCoopers GmbH WPG, Munich, Germany
silvia.knittl@pwc.com

Abstract. Process mining is a rapidly developing field of data science
currently focusing on business processes. The approach involves many
techniques that may contribute to cyber security analysis as well. In
particular, the measurement of deviations from a defined process is a
central topic in process mining, and could find application in the context
of IT security.

In this paper, we present a solution approach for IT security with
process mining, which is based on experiments that we conducted on
an Identity and Access Management (IAM) scenario. We have designed
and implemented an appropriate lifelike environment and use cases to
demonstrate both the suitability and limitations of process mining for
cyber security processes. While process mining can detect deviations
from cyber processes very well, not all deviations are relevant for security.
Thus, more research on how to incorporate threat analysis into process
mining will be necessary in the future.

Keywords: IT Security Process · Process mining · Conformance
checking

1 Introduction

A comprehensive Enterprise Security Architecture consists of several coherent
layers, including security domains, security services, or security products and
tools [19]. In the ISO/IEC 27001 standard, information security is defined via
the IT protection goals availability, integrity and confidentiality. Further factors
of information security can be authenticity, accountability, non-repudiation and
reliability [10]. To contextualize the IT protection goals, the standard considers
security domains such as physical and environmental security, access control
(Identity and Access Management, IAM) or business continuity management.
Each security domain consists of different capabilities, such as identity, account
or credential life cycle management in the IAM context. Those capabilities are
implemented by one or more tools to support the underlying processes. The usage
of these tools leaves traces in the form of log files. To achieve the protection goals,
c© Springer Nature Switzerland AG 2020
K. Markantonakis and M. Petrocchi (Eds.): STM 2020, LNCS 12386, pp. 123–138, 2020.
https://doi.org/10.1007/978-3-030-59817-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59817-4_8&domain=pdf
http://orcid.org/0000-0001-9507-8713
http://orcid.org/0000-0003-1093-1282
https://doi.org/10.1007/978-3-030-59817-4_8

124 A. Sundararaj et al.

organizations usually use security information and event management (SIEM)
systems that collect and examine these log files. This examination should identify
deviations from the norm and trigger appropriate actions. Patterns are used for
this purpose, recently supported by artificial intelligence. Very often this analysis
happens within an isolated security domain or tool view. While the processes
span several tool boundaries, there are hardly any end-to-end process views of
the different security domains considered. However, deviations can be indicative
of harmful behavior in these scenarios.

In business process management, the topic of process mining has seen a
steady increase of popularity (see, e.g., [4]). Primary use cases of using process
mining are finding process bottlenecks, process optimization, compliance and
auditing. Therefore, commercial tools such as Celonis [5] integrate already by
default the analysis of business processes like procurement or order processes
that are implemented by standard business software (e.g., SAP systems). Both
in business processes and in IT security processes, the human perspective is
taken into account in the design for interaction, collaboration, coordination, or
cooperation [14]. However, in the field of information security, humans are not
only characterized as users and defenders, but also as potential attackers [11].
Both intentional (attacker) and unintentional (user, defender) misconduct can,
therefore, lead to cyber incidents and must be considered in the analysis.

While many non-security business processes are standardized to the extent
that they can be implemented using off-the-shelf software, there are hardly any
such standardized IT security processes developed and established in different
companies in a comparable way. Further, related academic work is sparse. One
exception is Haufe et al. [8] who propose a high-level process framework for
an Information Security Management System (ISMS) which could be a starting
point for process implementation. One key reason for having such a high-level
approach during security process implementations is, as we will show using the
example of IAM, that in practice several tools are used for implementing one
capability and the cyber processes go beyond tool boundaries. Further, the imple-
mentation characteristics depend on the respective compliance requirements and
risk appetite of the organization. For example, access to applications can be
granted without or with approval steps or even with a 4-eyes or 6-eyes principle.

Applying process mining in the security context also matches a broader trend.
For example, according to Schinagl and Shahim [18], it is only recently that
security shifts “from a narrow-focused isolated issue towards a strategic busi-
ness issue.” The authors conclude in their study that traditional IT security
approaches based on rather static security controls and common practices will
be insufficient in the future due to the fast and agile changes in IT. Compliance
checking and auditing are already an integral part of cyber security analysis,
thus process mining can be considered as a natural choice as one of the methods
for the future. But the application in the field of cyber security related problems
is not yet common. This observation fosters our motivation to study how we can
use process mining in the context of a specific but highly relevant cyber security
scenario.

Process Mining in IT Security 125

On a high level, process mining can be summarized as follows: Event logs
describing the events and activities happening in a (business) process are
required by the process mining algorithm. Both the input and output here are
process models, which can be represented by a Petri net, a tree or graph describ-
ing the process flow. However, there is no clear definition or methodology on how
to use process mining techniques in the context of cyber security processes.

One of the main goals is, therefore, to identify techniques of process min-
ing that are suitable for cyber security process analysis and to study how to
effectively use them. We address the following guiding research questions:

1. What aspects of the process mining technique are usable for cyber security
process analysis?

2. What kind of problems related to cyber security processes can be solved
using process mining? How can those problems be solved and what are the
requirements and execution steps?

3. What are the metrics that measure the execution and results? How to use
the results from a cyber security viewpoint for further analysis?

Keeping these research questions in mind, we formulate a case study with a
scientific approach based on the guidelines from Runeson and Höst [16]. More
specifically, in Sect. 2, we describe an example cyber process scenario within the
IAM domain and outline the associated security requirements. This process sce-
nario will be the foundation for our case that we prepare using an experimental
approach. Section 3 outlines an overview of related work. In Sect. 4, we explain
how process mining can be used to tackle the requirements retrieved from our
IAM process and we show results based on our experiments. We conclude with
a summary and discussion of limitations of our approach in Sect. 5.

2 Background: Cyber Process Scenario

In order to identify what aspects of process mining are suitable for cyber security
process analysis and what kind of problems it can solve, a subset of processes
in the domain of IAM is selected as an example scenario for the sake of brevity.
We had no real user data available for our research in which we could test our
approaches. Therefore, we built an adequate demo environment ourselves. We
equipped this environment with a typical tool set, which can be found in a real
company environment as well, and which also depicts processes that go beyond
several tool boundaries (see Sect. 4.1). By designing the environment in this way,
we have ensured that our test cases correspond to real cases.

IAM can be described as a collection of methods, tools and processes to
allocate, manage and revert identity and accesses to the resources of an organi-
zation [20]. According to Damon and Coetzee [6], IAM should fulfill the following
requirements in order to be effective and useful: legal and regulatory compliance,
information access everywhere, access protection/accountability, operational effi-
ciency, cross organization integration, cost reduction, risk management, end-user
experience. In the scope of cyber security, any activity which deviates from a

126 A. Sundararaj et al.

standard process should be considered a candidate for malicious behavior. Our
purpose was to identify process mining methodologies and solutions for detecting
such malicious and inefficient workflows.

Figure 1 shows in a highly simplified fashion the IAM capabilities such as
identity, account and credential life cycle management and possible applications
for the technical implementation of these capabilities (such as an IAM system),
or an account store (such as a directory service). A selection of IAM process
activities are shown, such as ‘New Joiner’, ‘Leaver’ or ‘New Account’. The pro-
cess activities are interconnected. A new joiner in the HR-System triggers the
creation of a new identity in the IAM tool. This in turn triggers the creation of
a new account combined with the generation of a new credential in the account
or credential store.

Fig. 1. IAM capabilities, applications and process activities (excerpt, simplified)

Figure 2 depicts a high level reference IAM process which was used in our
case study. The reference process distinguishes users broadly as managers and
other users, like employees. It also shows various sub-process flows indicating
which actions of an employee or a manager can proceed. We can also see that
some of the process flows can involve the same request processed by multiple
applications. We define process slip as an activity where the set of operations
will continue from one software setup to another. For example, any access request
will be raised at the IAM tool. Once it is approved, the IAM tool will forward the
action to the account store to enable access to the specific request. Since this
process is highly complex and may have lapses, which could be misused, this
should be recognized by mining the system-wide process of the organization.

The message even from such a simple process diagram is that processes can
be highly complex, may involve multiple heterogeneous communications, actions
and various applications.

3 Related Work

The state of the art of IT security anomaly detection solutions can be mainly cat-
egorized into vulnerability scanners, intrusion prevention systems and intrusion
detection systems [15]. Most of these solutions are protecting systems against
network level threats and offer only very limited applicability against application

Process Mining in IT Security 127

Fig. 2. IAM Reference Process used for this work

or business process level threats. Cyber security analysis of business processes
using process mining can be one such perspective to look at application level
threats, to understand possible threats, and to establish strict event execution
patterns within the process flows.

Recent work by Sarno et al. [17] fits in this area. The authors propose a hybrid
of process mining and data mining techniques to detect fraud in ERP systems.
The authors use a simulated credit application process dataset from previous
research. Our approach is different from their work. We consider the idea of
a reference process and use of conformance checking to validate the security
of the processes. We make use of our data aggregator program to generate a
dataset for process mining such that process mining techniques can pinpoint
these anomalies. We also heavily focus on security related processes within a
real life demo environment and consider the concept of process slip.

Accorsi and Stocker [2] discuss how process mining can be used for secu-
rity investigations if structured and meaningful logs are available. The authors
put forward a simulated case study from security audits in the financial sector.
However, a real life environment and security related processes need a different
approach. Because the event logs extracted out of these systems provide very
minimal details, the methodology and the analysis provided by the authors can-
not be used for these kinds of event logs due to a lack of information for the
proposed method. Also the idea of process slip was not considered. Complex sys-
tems have processes flowing across multiple applications to complete one request.
Therefore, it is important to be able to analyze these complex processes in the
form of process graphs to see if there any possible security issues and efficiency
shortcomings. This can be visualized by mining the system-wide process within

128 A. Sundararaj et al.

an organization. The simulation of process slip is important for our case study
and more relevant for security analysis because the chances of security issues
with respect to processes is higher in a distributed (multi-tool) environment
compared to isolated software environments.

Van der Aalst and de Medeiros illustrate the usage of process mining to
detect anomalies [1]. The authors discuss how to use an alpha-algorithm to mine
process graphs from financial data and to subsequently conduct security audit
analysis with conformance checking. Using a real life case study from a Dutch
municipality, they show that the traces having a trace fitness below 0.80 can be
considered anomalous. However, substantial uncertainties and unknowns remain,
which is not fully adequate for security applications. We propose a process mining
algorithm and conformance checking with a different approach to avoid these
uncertainties.

The limited past research primarily focuses on anomaly detection and fails to
capture difficulties in process mining, specifically in real-life-like software envi-
ronments. First, modern software environments consist of multiple independent
tools and applications. The logs generated by modern applications are indepen-
dent and they necessitate methods to consolidate and generate a single event
log for process mining analysis. Second, there is only limited analysis to evalu-
ate core process mining techniques as a key solution for cyber security process
mining. Considering these factors, we propose a systematic method to use pro-
cess mining for cyber security analysis. In the case of cyber security, this can be
understood as a new class of defense and forensic methods. For our work, we use
existing process mining and conformance checking algorithms from the scientific
literature, and apply them to the security context.

Taking a step away from the process mining literature, the classical event
log-based intrusion detection typically follows text pattern analysis using var-
ious methods that typically do not consider the control flow of systems. For
example, the research from Yang and Jie [12] describes one such system. The
intrusion detection system collects real-time event data logs from various com-
puters present in the system and analyzes the collected logs for malicious activity
using data mining techniques. The fundamental difference between these tech-
niques and process mining methods are that process mining follows a strict
control flow based analysis.

Finally, we apply the concept of cost-based analysis for conformance checking,
which was used for conformance checking of process models [3]. Based on the
cost-based replay of event logs against process models and assigning a cost to
tasks in the process, we can quantitatively say how significantly an event log
deviates from the reference process. The algorithm uses the A* shortest path-
finding algorithm from graph theory, and gives a detailed explanation of the
cost-based Petri net conformance checking algorithm. The technique penalizes
traces for skipping or inserting activities and is also based on the costs of the
activities. The method is useful in the security context, because it acknowledges
that some tasks are more important than others. In particular, the concept of
‘weight’ can be very useful because the impact of skipping or inserting specific

Process Mining in IT Security 129

activities may vary from activity to activity. The algorithm selects the best
matching (i.e., lowest cost) instance in case of skipping or inserting tasks based
on weights.

The above introduced concepts partially build the basis for the concept,
experimentation and results described in the following.

4 Process Mining in Cyber Security

We describe the demo environment in Sect. 4.1 and our experimental approach
in Sect. 4.2. The execution of the experiments and results are shown in Sect. 4.3.

4.1 Demo Environment Setup

Figure 3 outlines the architecture of the demo environment with the goal to
simulate an IAM environment. It consists of two applications: one IAM tool and
one directory service, which closely matches real life IAM deployments. More
specifically, we used one off-the-shelf IAM software and a directory service that
acts both as an account and credential store. The IAM software communicates
with the directory and other subsystems using its own Windows services, RPC
calls or web services.

Fig. 3. Demo environment architecture

We specifically developed a user simulator and a data aggregator for this
research. The user simulator is a component allowing to simulate user behavior;
since there exist (to the best of our knowledge) no suitable publicly available
IAM audit logs. The main idea is to create a test infrastructure that simulates
the IAM process with this setup. The core functionality and configuration of the
demo environment:

a) consists of a defined number of internal artificial users of an organization,
b) simulates IAM related activities like creation of a new identity or account,
c) focuses on internal users and violation of the policy of internal users,
d) simulates approval of access to resources, account creation and deletion, and
e) simulates several business workflows of internal work items of an organization.

130 A. Sundararaj et al.

The dataset generation for this case study focused on simulating an end-to-end
IAM process using dummy users. Later, the suspicious malicious behaviors were
manually embedded into the system in order to demonstrate the effectiveness of
the conformance checking step. The dataset with no malicious behavior is clas-
sified as a training dataset, and the dataset with embedded malicious behavior
is classified as a test dataset.

The data aggregation program was developed to collect and consolidate event
logs for process mining purposes. There are several things to consider when
trying to combine multiple log files from different applications into one event
log. Briefly, they are filtering and converting the columns of each log entry into
an event log trace and finding mapping fields for case identifiers across these logs,
in order to see the process control flow from one software system to another. We
also generate the task names from the individual logs by appending role names
to tasks. This way, we can also see if the tasks are executed by the right roles
during conformance checking. We present only the results related to inserted or
skipped activities in this paper.

4.2 Experimentation Overview

We take up the previously mentioned goals of IAM in our design of the exper-
iments, e.g., the IAM process allows cross-organization integration and access
protection/accountability. Process models can be also considered as a solution
for associated challenges such as silo view, missing business focus and lack of
overview of the system. The techniques and ideas used in this work are mainly
conformance checking and STRIDE1 threat modelling at an activity level of
each process [9]. Below are some of the techniques that can be used to verify
and secure security-related processes.

– By using conformance checking, we can verify if the process complies to the
desired process or not. Any deviations from the desired process can be taken
up for the investigation and explored further.

– By using threat modeling techniques at each activity in a process, we can tell
if a process is secure or not. This will still involve manual work.

– Additionally, it can be checked if the process conforms to process standards
defined by security standards such as ISO:IEC 27001.

In our work, we primarily demonstrate the viability of conformance based
process security checking, which already provides some level of automation in
analyzing process security. Follow-up analysis tasks, i.e., STRIDE analysis and
ISO standard related techniques, remain manual analysis. As outlined in Fig. 4,
the following steps are performed in the experiment:

1 The acronym STRIDE stands for the following six threat categories: Spoofing iden-
tity, Tampering with data, Repudiation (Non-repudiation), Information disclosure,
Denial of service and Elevation of privilege.

Process Mining in IT Security 131

Fig. 4. The steps of the experiment

– Event Log Generation: We generate the event log by using the User Simulator
created for the demo environment that we had installed and configured for
this experiment.

– Process Mining and Task Mining: To develop a reference process, we use
process and task mining to identify existing process flows and tasks/activities
in the system.

– Conformance Checking: Once we have a reference process, we embed mali-
cious situations and simulate the demo environment. Then, we conduct con-
formance checking of event logs against the reference process.

– Non-compliant Trace Extraction: After conformance checking, we extract the
non-compliant traces from the test event log, performing conformance check-
ing against our reference process model.

– Security Analysis: We analyze the non-compliant traces for security and pro-
cess flaws.

4.3 Experiment Execution and Results

The primary output of the process and task mining is a process graph which is
represented as a Petri net. In our case, the Petri net shows the multiple paths
of process flows as per the real system. The graphic is too large to be displayed
here. Therefore we have divided it into three parts and show them in Fig. 5 in
the Appendix. The graph shows the different paths and process steps that can
occur in the IAM process. The most common example is the account creation
process which starts from the IAM tool and continues through the directory
tool. The Petri net also shows the mandatory tasks that need to be initiated for
successful progress on each step. The tasks represented in the Petri net, which
are prefixed with ‘SP’, are tasks related to the IAM tool and the tasks prefixed
with ‘AD’ are tasks related to the directory services tool.

132 A. Sundararaj et al.

As mentioned earlier, we begin by forming our event logs, which is the first
step of the experiment. Using simulation data from the demo environment, we
extract audit logs from the different systems. Then, using the data aggregator we
combine these extracted audit logs into one single event log. As a first step, we
develop a reference process model using tools and tasks extracted from the event
log. The reference process model creation is a mixture of both automatic process
mining and manual alteration. The generated event logs are then evaluated for
execution compliance against the reference process model. The reference process
model is represented using Petri nets. Then, we need to run a conformance
analysis using the event logs generated against the reference process model. We
applied the ‘conformance checking using cost-based fitness analysis’ for this by
using two datasets. One named training dataset that was used to extract the
process model. The other dataset is called the test dataset, which contains the
inserted malicious situations.

Depending on the context, skipping or inserting a particular activity in a pro-
cess execution can be very dangerous compared to others. For example, a newly
found ‘delete’ activity can be more dangerous compared to an activity such as
‘save again’. For distinguishing such executions based on the varied severity of
the nature of the activities/events, we used the weight-based approach. We con-
figured weights for each activity transition based on the severity of the activity.
These values are used by the algorithm to calculate fitness. For each activity or
task, corresponding weights for log move or model move are shown here. The
algorithm takes care of penalizing based on inserting or skipping activities. The
technique cost based replay analysis is applied for the conformance checking.
As mentioned earlier, we configured weights for transition of activities based on
the severity of the activity. The activities that have higher significance on non-
compliance scenarios are assigned higher weights compared to other activities.
Based on the weights of the activities, we can also understand the severity of
the compliance quantitatively.

In order to simulate the capturing of malicious activities, some accounts in
the directory were manually deleted. Then, we ran a conformance check against
the test data cases and reference model. The output were cases, i.e., the corre-
sponding set of event logs, and their trace fitness to the given reference model.
The traces containing the activities related to these deletions are included in
the test dataset. In terms of conformance checking this is an inserted behavior,
because the new set of activities are inserted into the control flow of the process
model. However, the corresponding reference model does not exhibit a control
flow containing these newly inserted activities in any sub process flow.

All the traces which contain the directory account deletion fall below a trace
fitness value of 1 as expected. Based on the behavior of the inserted variations,
the trace value changed according to the basis of the weights we had previously
assigned to the activities. After execution of the conformance checking algorithm,
we found 40 cases failing to meet a trace fitness of 1.00. Breaking down those 40
out of 121 cases, the following technical issues were found:

Process Mining in IT Security 133

6 (out of 40) failed directory provisions, 29 (out of 40) bugs in process execu-
tion, 5 (out of 40) manual deletions of accounts. Further exploring them, we can
see that 6 out of 11 of them got deleted at the same timestamp as the accounts
were created. A cross check for provisioning failure records in the IAM software
showed, that the accounts which were deleted automatically by the IAM soft-
ware have a provisioning failure record and accounts that are assumed to be
manually deleted do not have any provisioning failure record. This experiment
showed that by applying the above mentioned steps it is possible to capture
the deletion scenario. But still additional information is needed to distinguish
between software driven deletion and manual deletion.

We enhanced our experiment to automate if the tasks are security related
or not using the task name attribute. This helps us to focus on security related
tasks extracted from these logs and exclude other tasks or unimportant process
flows. This enhancement could be also used for automatic weight allocation for
tasks in the future. We started by applying a natural language processing (NLP)
technique as an initial strategy (see, e.g., Word2Vec in [13]). NLP techniques can
be used to identify similarity between 2 words if trained using the right kind of
documents. We can use Word2Vec for identifying if a word is related to security
or not using similarity analysis. To automate the malicious process execution
detection, we can also use some of the NLP techniques. As an extension part
for the above experimentation, a word similarity check was tried using word2vec
and a pre-trained model from Google. We evaluated the tasks mined against the
word ‘security’ for word similarity, and could see that as anticipated the words
related to security were showing higher similarity scores compared to words not
related to security. Reporting the results of this effort is, however, beyond the
scope of this paper.

5 Summary

In this section, we briefly summarize the application of process mining techniques
on cyber security processes using the results of the case study presented above
and also discuss challenges and limitations as well as future research questions.
We addressed the main questions of this case study:

1) The capabilities and effectiveness of process mining methods for
cyber security processes: In this article, we demonstrated based on an exper-
imental approach that process mining and conformance checking techniques can
be applied in the context of cyber security processes based on the example of
IAM. It was demonstrated that it is very much suited for process control flow
conformance checking. We also showed how to use cost-based replay of the log for

134 A. Sundararaj et al.

conformance checking using our case study. When applying conformance check-
ing techniques on a structured event log based on a very well designed process
model of a security process, the occurrence of different and therefore potentially
harmful behaviors can be discovered. Such differences can be due to inefficiency
in the process or security lapses, hence process mining can be helpful in discov-
ering these lapses. What we can do is understand the current business process
and mine tasks. Using the mined tasks and sub-process control flows, we can
design a process, utilizing conformance analysis based on replay to evaluate if
the system is performing as per expectation or not. Any traces which are not
compliant can be analyzed for malicious process executions. The reference pro-
cess needs to be designed carefully and involves human participation. We have
to develop guidelines in future work for aspects to be considered while designing
a reference process to reduce errors.

2) The limitations of process mining for cyber security processes: Our
research is at the starting point for reasoning on the subject of process mining
in cyber security processes. For the experiments, we generated data sets that
are based on a demo environment instead of real life data sets. When designing
our demo environment, we ensured that it has a setup that is typically used in a
corporate context. Thus, our case study suggests that they indeed can be helpful
in cyber security analysis. In the future, applying these techniques on real life
data is recommended.

Some limitations to these techniques exist for applying them in cyber security
processes. One is that some of the analysis of these lapses is still manual. Another
limitation of conformance checking is that an additional analysis of the original
log files is needed to identify the actual issue; process mining can only tell if there
is an issue or not. A further expansion of the demo environment by adding more
suitable security analysis tools can reduce the amount of manual work. The
extent to which SIEM tools interact appropriately with process mining tools
could be investigated for this purpose in the future.

In our approach, we used a reference process model that was generated by
using process mining. In case such a reference process model is extracted from a
compromised log, the security analysis could fail. Further, process mining cannot
cover all software vulnerabilities. It can only cover process flaws or events that
are logged. In case an attacker can fit her attack within a process flow, this can
currently not be detected by conformance checking of process mining. According
to the STRIDE model, there are various attack possibilities to intervene in a
process in a damaging way. The isolated tampering with data, such as changing
data in one place without utilizing the intended process tools and sequences,
can be detected by process mining as shown above. Intentional or unintentional
malicious behavior of a user or a hacker might be detected by process mining.
For this purpose, future research in the field of real time process mining should
be undertaken.

Process Mining in IT Security 135

In our example, a denial of service attack by a malicious user who can fit
her attack within a process flow would be possible, for example, through mass
deletion of access rights in the IAM tool. In addition to the implementation of
counter measures directly in the process or within the IAM tool, real time process
mining could also be useful to detect such malicious behavior. This was beyond
the scope of our study. To investigate if other types of attacks like spoofing an
identity or elevation of privileges can be identified by process mining, further
studies about how to integrate process mining with current security methods
should be conducted.

3) The metrics that measure the execution and results and how to use
the results from a cyber security viewpoint for further analysis and
research: To measure the detection of mismatches between the process spec-
ification and the execution of a particular process instance, trace fitness is an
appropriate instrument. While we see the outcomes of our study quite promis-
ing, future work could enhance the automation to select the traces that need to
be analyzed in order to reduce human effort and potential error. New techniques
in the areas of conformance checking, such as multi-perspective conformance
checking [7], could be worth to explore for cyber security process analysis. These
techniques can consider additional information apart from event logs to do con-
formance checking. Also the application of threat modelling on processes for each
activity can be overwhelming suggesting a need for automation.

With our approach, we have laid a first foundation on the applicability of
process mining in the area of cyber security processes. We consider the approach
to be a promising addition to established security methods. Our case study leads
to several additional future research questions that need to be answered like
performing a comparative study of conformance checking techniques on cyber
security processes and work on the automation of processing identified malicious
audits.

Acknowledgements. We thank the anonymous reviewers for their helpful comments.

A Appendix

In the Appendix, we show the three parts of the graphs of the Petri net in
Figure 5.

136 A. Sundararaj et al.

Fig. 5. Petri net output

Process Mining in IT Security 137

References

1. van der Aalst, W., de Medeiros, A.: Process mining and security: detecting anoma-
lous process executions and checking process conformance. In: Proceedings of the
2nd International Workshop on Security Issues with Petri Nets and other Compu-
tational Models (WISP 2004), pp. 3–21 (2005)

2. Accorsi, R., Stocker, T.: On the exploitation of process mining for security audits:
the conformance checking case. In: Proceedings of the 27th Annual ACM Sympo-
sium on Applied Computing, SAC 2012, pp. 1709–1716. ACM, New York (2012).
https://doi.org/10.1145/2245276.2232051

3. Adriansyah, A., van Dongen, B., van der Aalst, W.: Conformance checking using
cost-based fitness analysis. In: Proceedings of the IEEE 15th International Enter-
prise Distributed Object Computing Conference, pp. 55–64 (2011). https://doi.
org/10.1109/EDOC.2011.12

4. Ailenei, I., Rozinat, A., Eckert, A., van der Aalst, W.M.P.: Definition and validation
of process mining use cases. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM
2011. LNBIP, vol. 99, pp. 75–86. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28108-2 7

5. Celonis SE: Celonis (2020). www.celonis.com. Accessed 07 May 2020
6. Damon, F., Coetzee, M.: Towards a generic identity and access assurance model

by component analysis - A conceptual review. In: Proceedings of the First Inter-
national Conference on Enterprise Systems: ES 2013, pp. 1–11, Nov 2013. https://
doi.org/10.1109/ES.2013.6690086

7. Dunzer, S., Stierle, M., Matzner, M., Baier, S.: Conformance checking: a state-of-
the-art literature review. In: Proceedings of the 11th International Conference on
Subject-Oriented Business Process Management. S-BPM ONE 2019. Association
for Computing Machinery, New York (2019). https://doi.org/10.1145/3329007.
3329014

8. Haufe, K., Colomo-Palacios, R., Dzombeta, S., Brandis, K., Stantchev, V.: A pro-
cess framework for information security management. Int. J. Inf. Syst. Project
Manage. 04, 27–47 (2016)

9. Hernan, S., Lambert, S., Ostwald, T., Shostack, A.: Threat modeling - uncover
security design flaws using the stride approach. MSDN Magazine, Novem-
ber 2009. https://web.archive.org/web/20070303103639/, http://msdn.microsoft.
com/msdnmag/issues/06/11/ThreatModeling/default.aspx

10. ISO: ISO/IEC 27001:2013: Standard, International Organization for Standardiza-
tion, Geneva, CH, October 2013

11. King, Z., Henshel, D., Flora, L., Cains, M.G., Hoffman, B., Sample, C.: Char-
acterizing and measuring maliciousness for cybersecurity risk assessment. Front.
Psychol. (2018), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807417/

12. Li, Y., Li, J.: Study of cloud computing security and application in safe city. Appl.
Mech. Mater. 738–739, 299–303 (2015). https://doi.org/10.4028/www.scientific.
net/AMM.738-739.299

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Nurcan, S., Schmidt, R.: Theme section of BPMDS 2014: the human perspective
in business processes. Softw. Syst. Model. 16(3), 627–629 (2016). https://doi.org/
10.1007/s10270-016-0570-9

https://doi.org/10.1145/2245276.2232051
https://doi.org/10.1109/EDOC.2011.12
https://doi.org/10.1109/EDOC.2011.12
https://doi.org/10.1007/978-3-642-28108-2_7
https://doi.org/10.1007/978-3-642-28108-2_7
www.celonis.com
https://doi.org/10.1109/ES.2013.6690086
https://doi.org/10.1109/ES.2013.6690086
https://doi.org/10.1145/3329007.3329014
https://doi.org/10.1145/3329007.3329014
https://web.archive.org/web/20070303103639/
http://msdn.microsoft.com/msdnmag/issues/06/11/ThreatModeling/default.aspx
http://msdn.microsoft.com/msdnmag/issues/06/11/ThreatModeling/default.aspx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807417/
https://doi.org/10.4028/www.scientific.net/AMM.738-739.299
https://doi.org/10.4028/www.scientific.net/AMM.738-739.299
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/s10270-016-0570-9
https://doi.org/10.1007/s10270-016-0570-9

138 A. Sundararaj et al.

15. Razzaq, A., Hur, A., Ahmad, H.F., Masood, M.: Cyber security: threats, reasons,
challenges, methodologies and state of the art solutions for industrial applications.
In: IEEE Eleventh International Symposium on Autonomous Decentralized Sys-
tems (ISADS), pp. 1–6 (2013)

16. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Software Eng. 14, 131–164 (2009). https://doi.org/
10.1007/s10664-008-9102-8

17. Sarno, R., Sinaga, F., Sungkono, K.R.: Anomaly detection in business processes
using process mining and fuzzy association rule learning. J. Big Data 7(1), 1–19
(2020). https://doi.org/10.1186/s40537-019-0277-1

18. Schinagl, S., Shahim, A.: What do we know about information security governance?
“From the basement to the boardroom”: towards digital security governance. Inf.
Comput. Secur. (2020). https://www.emerald.com/insight/content/doi/10.1108/
ICS-02-2019-0033/full/html

19. Sherwood, J., Clark, A., Lynas, D.: Enterprise Security Architecture: A Business-
Driven Approach. CMP Books (2005)

20. Thakur, M.A., Gaikwad, R.: User identity and access management trends in IT
infrastructure - an overview. In: International Conference on Pervasive Comput-
ing (ICPC), pp. 1–4, January 2015. https://doi.org/10.1109/PERVASIVE.2015.
7086972

https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1186/s40537-019-0277-1
https://www.emerald.com/insight/content/doi/10.1108/ICS-02-2019-0033/full/html
https://www.emerald.com/insight/content/doi/10.1108/ICS-02-2019-0033/full/html
https://doi.org/10.1109/PERVASIVE.2015.7086972
https://doi.org/10.1109/PERVASIVE.2015.7086972

Author Index

Abadi, Eden 93
Arora, Vishal 39

Baghery, Karim 106
Beyerer, Jürgen 73
Birnstill, Pascal 73

Chothia, Tom 3
Colombo, Christian 22

Grossklags, Jens 123

Hazan, Itay 93
Hernandez-Castro, Julio 22

Knittl, Silvia 123

Leguesse, Yonas 22

Misra, Manoj 39
Moreira, José 3

Ryan, Mark D. 3

Schillinger, Fabian 57
Schindelhauer, Christian 57
Singh, Rajiv Ranjan 3
Sundararaj, Aynesh 123

Vella, Mark 22

Wagner, Paul Georg 73

	Preface
	Organization
	Contents
	Security Properties and Attacks
	Modelling of 802.11 4-Way Handshake Attacks and Analysis of Security Properties
	1 Introduction
	2 Preliminaries
	3 Methodology for Analysing Security Properties
	4 Formal Models of the 802.11 4-Way Handshake Attacks
	4.1 KRACK Attacks
	4.2 Cipher Suite Downgrade

	5 Analysis of IEEE 802.11 Security Properties
	6 Proposing New Security Properties
	7 Verifying the Mitigations to the Models
	8 Conclusion and Further Work
	References

	Reducing the Forensic Footprint with Android Accessibility Attacks
	1 Introduction
	2 Background
	2.1 Android Attack Vectors
	2.2 The Accessibility Attack Vector
	2.3 Living Off the Land (LotL)
	2.4 Elaborate Cybercrime Schemes
	2.5 Related Work

	3 Accessibility Misuse
	3.1 Threat Model
	3.2 Setting up Malicious Accessibility Services
	3.3 SMS Abuse Attack
	3.4 C2-Equipped Malware
	3.5 Crypto Exchange Theft

	4 Forensic Footprint Comparisons
	4.1 Results

	5 Discussion and Conclusion
	References

	A Novel Machine Learning Methodology for Detecting Phishing Attacks in Real Time
	1 Introduction
	2 Basic Terminologies
	2.1 Machine Learning Algorithms
	2.2 Certificate Validation

	3 Related Work
	4 Proposed Work
	4.1 System Architecture
	4.2 Feature Vector
	4.3 Handling Short URLs

	5 Experiments and Discussions
	5.1 Dataset Used
	5.2 Performance Metrics
	5.3 Experimental Evaluation and Results

	6 Conclusions and Future Work
	7 LIMITATIONS
	References

	Confidentiality Schema
	Revocable Access to Encrypted Message Boards
	1 Introduction
	2 Related Work
	3 Background and Model
	3.1 Background
	3.2 Model
	3.3 Private Content and Quorums

	4 Proposed Protocols
	4.1 Content Chain
	4.2 Accessing Private Content
	4.3 Changing Access
	4.4 Performance

	5 Security Analysis
	5.1 The Server Cannot Access Private Content
	5.2 Received Tuples Do Not Break the Encryption
	5.3 No Access with Colluding Users
	5.4 Removed User Has No Access
	5.5 No Access Between Different Content Chains

	6 Conclusion
	References

	Establishing Secure Communication Channels Using Remote Attestation with TPM 2.0
	1 Introduction
	2 Discussion of Existing Protocols
	2.1 Protocol Requirements
	2.2 Related Work
	2.3 Attacks on IDSCP

	3 A Secure Protocol
	3.1 Protocol Design
	3.2 Protocol Implementation

	4 Evaluation
	4.1 Security Analysis
	4.2 Protocol Properties
	4.3 Formal Verification

	5 Conclusion
	A The Industrial Data Space Communication Protocol
	References

	Security Processes
	Improved Feature Engineering for Free-Text Keystroke Dynamics
	Abstract
	1 Introduction
	2 Related Work
	3 Suggested Method
	3.1 Extended n-graphs Overview
	3.2 Extracting List of Methods and Statistical Features
	3.3 Most Common n-grams
	3.4 Feature Extraction Example
	3.5 Classifier

	4 Dataset
	5 Experiments and Results
	6 Conclusions
	References

	Subversion-Resistant Commitment Schemes: Definitions and Constructions
	1 Introduction
	2 Preliminaries
	3 Security of Commitments Under Parameters Subversion
	3.1 Notions for Commitments with Subverted Parameters

	4 Sub-binding with Equivocability Are Not Compatible
	5 Positive Results
	5.1 Sub-equivocality and Binding
	5.2 Sub-binding and Sub-hiding
	5.3 Binding, Equivocality and Sub-hiding

	References

	Challenges in IT Security Processes and Solution Approaches with Process Mining
	1 Introduction
	2 Background: Cyber Process Scenario
	3 Related Work
	4 Process Mining in Cyber Security
	4.1 Demo Environment Setup
	4.2 Experimentation Overview
	4.3 Experiment Execution and Results

	5 Summary
	A Appendix
	References

	Author Index

