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Foreword by Alex A. R. Webb

An oscillation is the repetitive variation in time of some measure, or between two
or more different states. Oscillations occur not only in mechanical systems, but also
in other kinds of dynamical system. To the non-specialist it might be a surprise that
biological systems can arrange into networks that form robust oscillating dynamical
systems, but this is a frequent property of biological networks. By biological
oscillators we mean any system with repeated cycles of activity or abundance of a
biological component (e.g., metabolite or protein). Biological oscillators include
community behaviors, such as seen in ecological studies; however in this book the
focus is on oscillations in cellular or physiological activities within a single
organism.

Broadly, biological oscillators can be divided into three categories. First, there
are those that oscillate for a short period before damping and arise from a pertur-
bation to the system, such as metabolic and homeostatic control mechanisms,
including the oscillatory dynamics in glycolysis. The second category of biological
oscillators involves stimulus-induced oscillatory behaviors including oscillatory
dynamics of signal relays within and between cells, oscillations of blood flow and
oscillations in firing of neurons in the brain. Lastly there are the self-sustaining
endogenous rhythms including the heart pacemaker, breathing and blood flow in
mammals, circadian oscillations, cell division cycles and developmental clocks.
These distinctions between the different types of biological oscillations are arbitrary
and the boundaries are blurred because all have some self-sustaining properties, and
all can have nonautonomous properties affected by other signals. These are some
of the complex issues discussed in the pages of this book.

Another level of complexity is introduced by the hierarchy of interactions
between oscillators. In both single- and multi-cellular organisms, oscillators often
can occur within a single cell, however, interactions between cells can reinforce,
amplify and make the oscillations more robust, such as found in the oscillations
between the neurons of the suprachiasmatic nucleus of the circadian pacemaker of
mammalian brains. In the mammalian circadian pacemaker, the oscillatory
dynamics are generated by transcriptional feedback loops of gene expression,
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protein synthesis and protein degradation in the individual cells, and are reinforced
by electrical coupling between the cells, resulting in a very robust multicellular
circadian oscillator.

Physics has developed powerful conceptual and mathematical tools to under-
stand the behavior of physical oscillators, such as pendula. Remarkably, the
analogies from the physical world have proven to be useful in describing, modeling
and understanding the behaviors and dynamics of biological oscillators. Physics
offers much to the biologist, providing formal descriptions of systems that are too
complex to be understood intuitively, and predictive power, which is required to
turn discovery into application. Whilst useful, there are challenges in applying
concepts from the physical world to biological oscillators. Physical descriptions of
oscillators are often applied to designed mechanical or electronic systems in which
the components and connections are known and well understood. Often, in studying
biological oscillators, the number of components, the nature of the components, the
network of interactions between the components and the mechanisms by which
these interactions occur are either assumed, or known for only a few of the com-
ponents that make up the oscillator.

Biological oscillators can be formed by very simple systems comprising only
two components, but are often formed of very complex networks that can be nearly
fully connected and therefore have a high degree of feedback. For example, the
mutual gene regulatory networks that are part of the 24-hour circadian oscillator of
plant cells involve mutual regulation between at least 30 genes in a nearly fully
connected network. This means it is often difficult to obtain a model of the inter-
actions in the network in which one can have full confidence. The nature of the
oscillatory dynamics in biological systems can be complex, involving many
changes in state, abundance and location of the components. In the plant circadian
oscillator as an example, feedback between components can occur through
protein-DNA interactions regulating the expression of component parts, phospho-
rylation to affect protein activity, ubiquitination to affect protein stability and
translocation between the cytoplasm and nucleus to regulate accessibility of tran-
scriptional regulators to DNA.

One of the most challenging features of biological oscillators, compared to those
designed by humans, is that at different times in the oscillatory cycle, the network of
regulatory connections in the oscillator can change. For example, in the circadian
oscillators that drive 24 hour rhythms in plants and humans, the proteins that form
the regulatory network vary greatly in their abundance over the cycle because of
oscillations in protein translation and breakdown, which are the basis of the
oscillatory dynamics. Thus, theoretical and mathematical descriptions of biological
oscillators must describe not only the dynamics and properties of the oscillator, but
also how those change through the oscillatory cycle. This is a particular challenge
when considering non-autonomous oscillators that respond to external inputs,
which probably represents most biological oscillators, because regulation by an
external signal can be affected by the state and availability of a component in the
oscillator, meaning that regulatory inputs are subject themselves to feedback control
from the oscillator.

vi Foreword by Alex A. R. Webb



It is these similarities and differences between physical and biological oscillators
which resulted in the Physics of Biological Oscillators (POBO) conference at
Chicheley Hall, UK in 2018, a meeting held in celebration of the 60th birthday of
Aneta Stefanovska who has contributed so much to the development of the subject.
This book captures the discussions and presentations during three wonderful days
of exciting science, in which experts in different disciplines grappled with the
immense intellectual challenges of finding the best ways to describe, analyze, model
and understand the properties, functions, behaviors and uses of biological oscilla-
tors. The chapters summarizing the presentations by researchers across the different
disciplines give an insight into the different biological systems being investigated
and the variety of Physics approaches being used. It was exhilarating to spend three
days in the company of researchers from different disciplines trying to bridge the
gaps between the experts in different fields to understand these fundamental bio-
logical behaviors. This seems an even more amazing experience looking back
through the lens of the COVID-19 pandemic which hit during the final stages of
production of this book. I hope you enjoy the invigorating intellectual stimulation
contained within these chapters as much as I have.

August 2020 Alex A. R. Webb
Department of Plant Sciences

University of Cambridge
Cambridge, UK
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Preface

This book derives mainly from a Research Workshop Physics of Biological
Oscillators: New Insights into Non-Equilibrium and Non-Autonomous Systems1

held in Chicheley Hall (27–30 November 2018): see photograph. It was a highly
interdisciplinary event that brought together some of the best international experts
working on the vexed problem of how best to treat the non-autonomous oscillatory
systems that crop up so often in biology. They included life scientists who inves-
tigate and measure the oscillations and the physicists, chemists, mathematicians,
information theorists, and engineers seeking to understand their fundamental nature
and origins and to devise useful applications of this knowledge. Thus, although
their work lies in seemingly very different scientific areas—ranging from mathe-
matics to the experimental recording and analysis of real data—they were all
addressing in one way or another the problem of time-variability in oscillatory
systems. They gave presentations about how to measure, analyze, model, and
understand such data as well as considering applications to medicine, both actual
and potential. Nearly all of the experts, assembled from 19 countries, kindly agreed
to write up their presentations for publication thereby providing the basis for the
book.

Lancaster, UK Aneta Stefanovska
Peter V. E. McClintock

1www.physicsoflife.org.uk/physics-of-biological-oscillators.html.
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Participants in the POBO Research Workshop Physics of Biological Oscillators:
New Insights into Non-Equilibrium and Non-Autonomous Systems, outside the front
door of Chicheley Hall, Buckinghamshire, UK, where the event took place.
Photograph by M. G. Rosenblum (University of Potsdam)
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Chapter 1
Introduction

Peter V. E. McClintock and Aneta Stefanovska

Abstract To set the subject of book in context, a short discussion of oscillatory
dynamical systems with non-constant frequencies is provided. Such oscillators are
widespread, especially (but not only) in biology. It is pointed out that they can be
considered as thermodynamically open (physics) or non-autonomous (mathematics).
The difficulty of treating and analysing data derived from such systems is that most
earlier work, and most of the well-established methods, refer to dynamics where
the natural frequencies remain constant. Recent progress is discussed in five sections
corresponding to Parts of the book. They cover respectively theory, model-driven and
data-driven approaches, biological oscillators, applications, and the future. Ways of
using the book are suggested.

There are numerousoscillatory systems that are not periodic. In striking contrast to the
simple pendulum, which so often introduces the physics student to oscillation theory,
their characteristic frequencies vary in time. Such oscillators are found universally in
biology, and they also appear in other contexts too. Understanding their dynamics is
challenging, not least because physicists new to the area must be willing to discard,
or modify, many cherished notions dating back to their schooldays.

The problem is non-trivial, because in practice the origin of the time variabil-
ity is often unknown (unlike e.g. heart-rate variability where respiration modulates
the heart rhythm, or the diurnal rhythm). In mathematical terms, the oscillations
are non-autonomous, reflecting the physics of open systems where the function of
each oscillator is affected by its environment. Time-frequency analysis is essential.
Recent approaches, including wavelet phase coherence analysis and nonlinear mode
decomposition, were described during the Workshop and form parts of several of
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the contributions that follow. These methods are not yet in widespread use, and one
purpose of the book (and of the Workshop before it) is to help to promulgate them.

Science is, of course, seamless and indivisible but, for the convenience of readers,
we have divided the book into four Parts covering: theory; model-driven and data-
driven approaches; biological oscillators; and applications. These are not rigidly
separated topics but, rather, an indication of emphasis. The applications chapters, for
example, draw freely on the ideas discussed in the first three Parts.

1.1 Theory

The theory Part opens with two chapters devoted to different aspects of phase reduc-
tion, applied to autonomous oscillatory systems, an approach that will be key to most
of what follows on non-autonomous oscillators. The underlying idea is to reduce a
multi-dimensional dynamical equation describing a nonlinear limit cycle oscillator
to a one-dimensional phase equation. Many rhythmic phenomena can in practice be
considered as nonlinear limit cycle oscillators, and hence described in terms of their
phase dynamics, usually amounting to an enormous simplification. This approach
is particularly useful in relation to the analysis of synchronising oscillators. In real-
world situations the oscillators are of course subject to external perturbations that
take the system away from its limit cycle temporarily, and much interest attaches
to what happens when two such systems interact with each other. Note however
that the core of the book involves consideration of the situation that arises when
one or more of the oscillators is non-autonomous, so that the frequency of the limit
cycle itself is being perturbed by external agency. Chapter 2 by Nakao makes use
of a recently-introduced extension of the classical phase reduction method that also
includes amplitude degrees of freedom. He considers phase-amplitude reduction in
a spatially-extended reaction-diffusion system exhibiting stable oscillatory patterns,
and its entrainment by optimized periodic forcing with additional stabilization by
feedback. Chapter 3 by Pietras and Daffertshofer shows how different reduction
techniques applied to a network of interacting neural oscillators can lead to differ-
ent dynamics of the reduced network, thereby identifying some delicate issues in
the application of the method. They demonstrate that an accurately-derived phase
model can properly capture the collective dynamics and they discuss the effect of
biologically plausible connectivity structures on the network behaviour.

In Chap.4, Kloeden and Yang outline relevant ideas from the mathematical
theory of non-autonomous attractors, explaining that the nature of time in a non-
autonomous dynamical system is very different from that in autonomous systems.
They point out that this difference has profound consequences in terms of the inter-
pretation of dynamical behaviour, and that many of the familiar concepts developed
for autonomous dynamical systems are either too restrictive, or invalid, in the non-
autonomous context. Chapter 5 by MacKay presents a view of a non-autonomous
oscillator as a mapping from input functions of time to a circle of possible solutions
(state functions of time). The author indicates how this view encompasses chrono-

http://dx.doi.org/10.1007/978-3-030-59805-1_2
http://dx.doi.org/10.1007/978-3-030-59805-1_3
http://dx.doi.org/10.1007/978-3-030-59805-1_4
http://dx.doi.org/10.1007/978-3-030-59805-1_5
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taxic systems and provides a picture of synchronisation in networks of oscillators,
whether autonomous or not.

In Chap.6, Lucas et al. start from the viewpoint that the concept of thermodynamic
openness is key to the functioning of living systems. The authors model openness
in coupled oscillators through an external driving force with time-varying parame-
ters. They consider a single, driven oscillator with a periodic, noisy frequency and
a time-varying driving frequency, followed by driven networks with time-varying
frequency and coupling. They characterise system stability by short- and long-time
Lyapunov exponents, both analytically and numerically, and they also describe the
different dynamical regimes in time-frequency representations. They show that time-
variation of parameters can enlarge the parameter space within which synchronous
behaviour is stable, as well as yielding additional phenomena such as intermittent
synchronisation. The authors also demonstrate that the stabilising effect of determin-
istic non-autonomous driving is similar to that of bounded noise over longer times,
although the short-time dynamics is very different.

Chapter7 by Newman et al. addresses the question of non-asymptotic-time
dynamics where the usual assumption of long-time-asymptotic properties like tradi-
tionally defined notions of stability and neutral stability, as well as asymptotic Lya-
punov exponents, are inapplicable. By consideration of the non-autonomous Adler
equation with slowly-varying forcing, they illustrate three limitations of the tradi-
tional approach. They then propose an alternative, “finite-time slow-fast” approach,
that is more suitable for slowly time-dependent one-dimensional phase dynamics,
and likely to be suitable for describing the dynamics of open systems involving two
or more timescales.

In the final chapter of the Theory Part, Yuvan and Bier discuss synchronisa-
tion phenomena from yet another point of view. They come to the topic through a
consideration of phase transitions in large systems of interacting units, leading to
a mathematical description of an order parameter’s power-law behaviour near the
critical temperature of the system. The authors also discuss the phenomenon from
an entropy point of view and indicate implications for real-life experiments on the
oscillatory behaviour of yeast cells (cf. Chap.13).

1.2 Model-Driven and Data-Driven Approaches

The relationship between (often idealised and abstract) mathematical theory and phe-
nomena measured in the real world almost invariably involves modelling, the usual
aim being to build the simplest possible model capable of encompassing the obser-
vations. Sometimes the model is created mainly on the basis of physical intuition,
and several may be considered before arriving at the seemingly optimal one. In other
cases, the model can emerge directly from the observations i.e. from the data that
are measured. Part II comprises four chapters in which modelling plays a key role.

In Chap.9 Kovac̆ic̆ et al. introduce a mechanics perspective by considering the
oscillations on a chain of masses connected by linear springs and focus, in partic-

http://dx.doi.org/10.1007/978-3-030-59805-1_6
http://dx.doi.org/10.1007/978-3-030-59805-1_7
http://dx.doi.org/10.1007/978-3-030-59805-1_13
http://dx.doi.org/10.1007/978-3-030-59805-1_9
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ular, on localised modes where only parts of the chain oscillate. They relate their
model to the mechanical oscillations of trees, where the branches move but usually
not the trunk. Chapter 10 by Ben-Tal presents some thoughts on the (sometimes
controversial) question of how non-autonomous model systems can be converted to
autonomous ones by application of an appropriate transformation. The author dis-
cusses the procedure, not only for periodic forcing, but also for other special cases.
In Chap.11, Stankovski offers an overview of the coupling functions that can be
used to model the interactions between oscillatory systems and which mediate the
non-autonomous effects seen in a particular system under examination. He focuses
on the use and suitability of coupling functions in neuroscience and their use in
accounting for neuronal oscillations and brain (EEG) waves. The final contribution
to Part II, Chap.12 by Gengel and Pikovsky, tackles one of the central questions
confronting an experimentalist making measurements on an oscillatory system, not
necessarily a biological one: how best can the recorded time series be analysed to
illuminate understanding of the underlying dynamics? The authors show that iterated
Hilbert transform embedding provides a good reconstruction of the phase dynamics,
provided that the amplitude variations are relatively small.

1.3 Biological Oscillations

Although the biological oscillators of Part III are not the only examples of non-
autonomous oscillatory systems, they are overwhelmingly the most widespread and
important. Living systems are inherently non-autonomous on account of the internal
interactions between their component parts, in addition to the influence of the external
environment. Each oscillator affects some of the other oscillators, thus giving rise
to the time-variations in frequency and amplitude that are observed. Furthermore,
living systems are never stationary but, rather, are in a state of continuous evolution
from birth until death, with corresponding evolution of their characteristic parameter
values.

Chapter13 by Folke Olsen and Lunding is devoted to oscillations in yeast glycoly-
sis. These have been known about for over six decades, but their mechanism remains
uncertain and their purpose is still a mystery. The authors present experimental evi-
dence that many variables, seemingly unrelated to glycolysis, oscillate in synchrony
with glycolytic intermediates. They suggest that the function of metabolic oscilla-
tions is to maintain the cell in a state of constant low entropy. In Chap.14 Lloyd
provides a general discussion of biological oscillations, including yeast cell oscil-
lations, and he too considers what their purpose may be. He discusses a model in
which ultradian (faster than circadian) rhythms are the synchronizing signatures that
organize the coherence of the living state. Chapter 15 by Amemiya et al. addresses
glycolytic oscillations in cancer cells. It reviews the first direct observation of gly-
colytic oscillations in HeLa cervical and DU145 prostate cancer cells. The authors
propose a mathematical model to account for the oscillation mechanism, show that
it can reproduce the experimental results, and consider the wider implications. They

http://dx.doi.org/10.1007/978-3-030-59805-1_10
http://dx.doi.org/10.1007/978-3-030-59805-1_11
http://dx.doi.org/10.1007/978-3-030-59805-1_12
http://dx.doi.org/10.1007/978-3-030-59805-1_13
http://dx.doi.org/10.1007/978-3-030-59805-1_14
http://dx.doi.org/10.1007/978-3-030-59805-1_15
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find that, the greater the malignancy of the cells, the more they tend to exhibit gly-
colytic oscillations and the higher the frequency becomes.

In Chap.16, Jacobsen and Aalkjaer provide a brief review of vasomotion. These
are oscillations that occur in the tone or diameter of arteries and lead to the phe-
nomenon of flowmotion, where the flow of blood into tissue occurs in an oscillatory
manner. They discuss the mechanisms and how these can be studied. The authors
hypothesise that vasomotion is beneficial because it ensures more efficient delivery
of oxygen and removal of waste products, but point out that there is still a need for
confirmatory experimental evidence. Chapter 17, by Colantuoni and Lapi provides
another succinct reviewof research on vasomotion, but fromanhistorical perspective,
focusing on the seminal contributions made by their own research group.

The next two chapters relate to oscillations observed in skin bloodflow.Chapter 18
by Tankanag et al. describes an investigation of paced and depth-controlled respira-
tion inwhich theymeasured the phase coherence between skin bloodflowoscillations
at the pacing frequency in the left and right index fingers. They find that pacing the
respiration results in a significant increase in phase coherence compared to sponta-
neous respiration. They attribute these results to the effect of the autonomic nervous
system on vascular tone regulation under controlled breathing. In Chap. 19, Thanaj et
al. review non-linear complexity-based approaches to the analysis of microvascular
blood flow oscillations, with a particular focus on the extent to which they are able
to identify changes in microvascular function. They conclude that, although such
approaches have utility in understanding the fundamental mechanistic contributors
to microvascular (dys)function, it has yet to be demonstrated that they can usefully
discriminate between different (patho)physiological states in order to inform treat-
ment regimens or to predict clinical outcomes.

Chapter20, by Penzel et al., examines the changes in cardiovascular and elec-
troencephalograph (EEG) oscillations that take place during sleep. The autonomous
nervous system is regulated in totally different ways during slow-wave (non-REM)
andREMsleep, so that analysis of instantaneous heart-rate variations allows for auto-
matic scoring of sleep stages. The authors also find it possible, to some extent, to
track transitions fromwakefulness to sleep solely by analysis of heart-rate variations.
ECG and heart rate analysis allow assessment of sleep disorders as well.

The final chapter in Part III, Chap. 21 by Vuksanović, reviews current knowledge
of the modular properties of brain networks, as derived from in vivo neuroimaging of
cortical morphology (e.g. thickness, surface area), and their relationship to function.
The focus is on the cross-level and cross-modal organisational units of the brain, and
the relationships to their modular topology. Recent approaches in network science
enable the formation of bridges across different scales and properties, and suggest
that cross-modal neuroimaging and analysis may provide a tool for understanding
brain disorders at the system level.

http://dx.doi.org/10.1007/978-3-030-59805-1_16
http://dx.doi.org/10.1007/978-3-030-59805-1_17
http://dx.doi.org/10.1007/978-3-030-59805-1_18
http://dx.doi.org/10.1007/978-3-030-59805-1_19
http://dx.doi.org/10.1007/978-3-030-59805-1_20
http://dx.doi.org/10.1007/978-3-030-59805-1_21
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1.4 Applications

One of the main impediments to widespread use of physiological oscillations
in diagnostics and medical instrumentation has, arguably, been their inherently
non-autonomous character and variability. Traditionally, these features have been
extremely hard to model. However, the substantial progress currently being made
towards an understanding of such processes—forming the main raison d’être of the
book—shows that this problem is being overcome so that faster progress in the devel-
opment of useful applications in medicine may now be anticipated. In Part IV we
consider some examples, both actual and potential.

In Chap.22, Lehnertz provides an update on the use of EEG oscillations to predict
epileptic seizures. These are usually associated with an overly-synchronized firing
of neurons, as detected from the observed EEG oscillations, which often appears
via a transformation of otherwise normal brain rhythms. The aim is therefore to
apply methods from nonlinear dynamics, statistical physics, synchronization and
network theory to identify precursor rhythms that can be used to warn the patient
of an impending seizure. It is a long-term project that has been running for more
than three decades. The author discusses progress to date and recent developments,
including implantable devices for seizure prediction and prevention, and considers
the remaining problems still to be solved.

The next two chapters both deal with anaesthesia and, in particular, exploitation
of the changes in physiological oscillations that occur between the awake and anaes-
thetised states to provide a quantitative measure of the depth of anaesthesia, i.e. how
close the patient is to becoming aware. There is obvious potential for preventing
the unintentional awareness that still occurs occasionally, and which can be very
distressing for everybody involved, not just the patient. In Chap.23, Raeder reports
on the European project BRACCIA (brain, respiration and cardiac causalities in
anaesthesia). Although publication of the results has not yet been completed, it has
already been shown that, even without inclusion of EEG data, measurements of the
oscillations in ECG, respiration, skin temperature, and skin conductivity, coupled
with the use of a classification analysis based on an optimal set of discriminatory
parameters, can distinguish with 95% success between the awake and anaesthetised
states. Chapter 24, by Martínez-Vázquez et al. describes an anaesthetic monitor that
is already on the market: the qCON™ from Quantium Medical (Barcelona). Like
the market leader BIS™, its operation is based on the analysis of EEG oscillations.
The authors describe themain EEG activity changes induced by hypnotic anaesthetic
agents, and the analysis perspectives. They also discuss the design principles, mini-
mal necessary validation requirements, current limitations and challenges yet to be
overcome.

In Chap.25, Thorn and Shore review medical products that have been developed
to enhance the oscillatory nature of blood circulation through the external application
of intermittent pneumatic compression (IPC). They remark that further research is
required, at amicrocirculatory level, to understand and optimise the observed clinical
benefits of IPC.

http://dx.doi.org/10.1007/978-3-030-59805-1_22
http://dx.doi.org/10.1007/978-3-030-59805-1_23
http://dx.doi.org/10.1007/978-3-030-59805-1_24
http://dx.doi.org/10.1007/978-3-030-59805-1_25
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Chapter26, by Abdulhameed et al. discusses recent work on cardiovascular oscil-
lations in malaria. In particular, the authors show how a non-autonomous dynam-
ics approach, using time-resolved analyses of power spectra and phase coherence,
reveals significant differences between malaria patients and a healthy control group.
These differences appear to be attributable to the specific effects of malaria on red
blood cells, which cause them to stiffen and to stick to the endothelial lining of the
blood vessels, markedly altering the flow properties of the blood. Following this
approach leads to a classification accuracy of 88% in distinguishing malaria patients
from healthy subjects, and may provide the basis for a new noninvasive diagnos-
tic test. Further work will, however, be needed to compare the physical findings in
malaria with those in other febrile infections.

1.5 Outlook

Finally, in Chap.27, MacKay et al. take note of the contributions made in the pre-
ceding chapters, and address the question of where the subject is going. It is now
well appreciated that understanding living systems requires more than just tradi-
tional dynamical systems theory. In taking account of the fact that they function far
from equilibrium, the authors comment that the minimum entropy production rate,
valid near equilibrium, needs to be replaced. They discuss other principles that are
potentially more relevant, and the possibility that a reformulation and mesoscopic
interpretation of thermodynamics itself may be needed.

1.6 Using the Book

As will be apparent from the summary remarks above, the chapters that follow are
highly diverse in character although they all, whether explicitly or implicitly, grap-
ple with aspects of non-autonomous dynamics. They range from relatively abstruse
mathematics, which will mean little to most biologists and many physicists, to the
practical details of physiological experiments which will mostly be lost on the theo-
retical physicists and mathematicians. Only a small minority of readers will start at
the beginning and peruse the entire book from beginning to end. Most readers will
probably prefer to pursue in detail topics that are of particular interest to them, in
just a few chapters, while remaining aware of the larger reality presented by the rest
of the book, and moving out into the latter when needed.

Each chapter is written by an expert, or experts, in the relevant subfield and each
of them provides an extensive bibliography. So readers should have no difficulty in
following up topics that are important to them.

http://dx.doi.org/10.1007/978-3-030-59805-1_26
http://dx.doi.org/10.1007/978-3-030-59805-1_27
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Chapter 2
Phase and Amplitude Description
of Complex Oscillatory Patterns
in Reaction-Diffusion Systems

Hiroya Nakao

Abstract Spontaneous rhythmic oscillations are widely observed in various real-
world systems. In particular, biological rhythms, which typically arise via synchro-
nization of many self-oscillatory cells, often play important functional roles in liv-
ing systems. One of the standard theoretical methods for analyzing synchronization
dynamics of oscillatory systems is the phase reduction for weakly perturbed limit-
cycle oscillators, which allows us to simplify nonlinear dynamical models exhibiting
stable limit-cycle oscillations to a simple one-dimensional phase equation. Recently,
the classical phase reduction method has been generalized to infinite-dimensional
oscillatory systems such as spatially extended systems and time-delayed systems, and
also to include amplitude degrees of freedom representing deviations of the system
state from the unperturbed limit cycle. In this chapter,we discuss themethodof phase-
amplitude reduction for spatially extended reaction-diffusion systems exhibiting sta-
ble oscillatory patterns. As an application, we analyze entrainment of a reaction-
diffusion system exhibiting limit-cycle oscillations by an optimized periodic forcing
and additional feedback stabilization.

2.1 Introduction

There are abundant examples of spontaneous rhythmic oscillations in living sys-
tems, ranging from microscopic oscillations of cardiac cells and spiking neurons
to macroscopic oscillations of heartbeats and brainwaves [5, 6, 28, 32, 34, 39]. In
many cases, macroscopic oscillations result from synchronized collective dynamics
of many microscopic cells and play essentially important functional roles in the sur-
vival of living systems. Regular rhythmic dynamics of the cells are typically modeled
as limit-cycle oscillations in nonlinear dynamical systems. A representative example
of such dynamical systems is the Hodgkin-Huxley model of spiking neurons, which
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is a 4-dimensional ordinary differential equations (ODEs) with complex nonlinear
terms representing the dynamics of themembrane potential and channel variables [5].

Due to nonlinearity, analytical solutions of limit cycles are rarely available, requir-
ing approximate theoretical approaches to their synchronization dynamics. The phase
reduction [3–5, 7, 15, 16, 21, 24, 27, 31] is a classical and standard theoretical
method for analyzing weakly perturbed limit-cycle oscillators, which approximately
describes the oscillator state by using only a single phase value and simplifies themul-
tidimensional nonlinear dynamical equations of the oscillator to a one-dimensional
phase equation. It has been successfully used in analyzing, e.g., nonlinear waves and
collective oscillations in populations of weakly coupled limit-cycle oscillators.

Recently, the method of phase reduction has been extended in several ways. In
particular, (i) generalization to infinite-dimensional systems such as partial differen-
tial equations (PDEs) [25] and delay-differential equations [13, 26] and (ii) inclusion
of amplitude degrees of freedom representing deviations of the system state from
the unperturbed limit cycle [30, 35, 38] have been formulated. The first extension
is important in analyzing collective oscillations that arise e.g. in spatially extended
populations of dynamical units described by PDEs. The second extension, which
gives reduced amplitude equations in addition to the phase equation, is relatively
recent even for ODEs, but it is necessary for describing transient relaxation dynam-
ics of the perturbed system state to the limit cycle and can be used e.g. for stabilizing
the oscillations by introducing feedback control of the amplitudes.

In this chapter, we formulate the method of phase and amplitude reduction for
stable oscillatory patterns arising in spatially extended reaction-diffusion systems.

2.2 Phase-Amplitude Reduction of Limit-Cycle Oscillators

We first review the method of phase-amplitude reduction [30, 35, 38] for finite-
dimensional limit-cycle oscillators described by ODEs of the form

Ẋ(t) = F(X(t)), (2.1)

where X(t) ∈ R
n is a n-dimensional oscillator state at time t and F : Rn → R

n is a
sufficiently smooth vector field representing the system dynamics. We assume that
Eq. (2.1) has an exponentially stable limit-cycle solution X0(t) of natural period T
and frequency ω = 2π/T , satisfyingX0(t + T ) = X0(t). We denote this limit-cycle
attractor as χ and its basin of attraction as B ⊆ R

n .
In the conventionalmethodof phase reduction, the essential step is the introduction

of the asymptotic phase [39] (see Fig. 2.1 for a schematic diagram). Namely, we
assign a scalar phase value θ ∈ [0, 2π) to the oscillator stateX ∈ B which eventually
converges to the limit cycle χ. We denote this assignment as θ = �(X), where
� : B → [0, 2π) is a phase function, and require that the phase θ always increases
with a constant frequency ω as the oscillator state X evolves according to Eq. (2.1),
namely, the function � satisfies
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Fig. 2.1 Phase and
amplitude of a limit cycle.
Limit cycle χ (thick black
circle), isochrons (red dashed
curves), and isostables (thin
blue circles). The green dot
shows the oscillator state
X0(θ), red arrow the phase
sensitivity function Z(θ), and
the blue arrow the amplitude
sensitivity function I(θ) at
phase θ, respectively

X0(θ)

Z(θ)
I(θ)

ω

θ̇ = �̇(X) = ∇X�(X) · Ẋ = F(X) · ∇X�(X) = ω (2.2)

for X ∈ B, where ∇X�(X) ∈ R
n is the gradient vector of � and · represents the

ordinary dot product between two vectors. The level sets of � are called isochrons.
The phase function � satisfying Eq. (2.2) can be obtained as follows. For the

state X0(t) at time t started from a reference state XR at time 0 on χ, the phase
function can be taken as �(X0(t)) = ωt (mod 2π), where XR gives the origin of the
phase,�(XR) = 0. This assigns a phase value θ ∈ [0, 2π) to each point onχ. In what
follows, we denote the state onχ asX0(θ) as a function of θ. Note that θ = �(X0(θ))
holds. To the state X not on χ, we assign a phase value �(X) = θ if it converges
to the same state on χ as X0(θ), namely, if limτ→∞ ‖SτX − SτX0(θ)‖ → 0, where
‖ · ‖ is the Euclidean norm and Sτ represents the time-τ flow of Eq. (2.1), satisfying
SτX(t) = X(t + τ ). The phase function � defined as above satisfies Eq. (2.2) for
X ∈ B.

Next, we consider the amplitude degrees of freedom, representing deviations of
the state X from the limit cycle χ. The linear stability of χ is characterized by the
Floquet exponents, 0,λ2, . . . ,λn in decreasing order of their real parts, where 0 is
associated with the phase direction, namely, the neutral tangential direction along χ,
and the real parts of all other exponents λ2, . . . ,λn are negative. For n-dimensional
oscillators, there are generally n − 1 amplitudes associated with λ2, . . . ,λn , but we
focus only on the dominant, slowest-decaying amplitude associated with λ2 and
denote this exponent as λ (< 0), which we assume simple and real for simplicity.

In a similar way to the phase θ, it is useful to assign a scalar amplitude r = R(X)

to the state X ∈ B and assume that r obeys a simple equation, where R : B → R is
an amplitude function. A natural assumption is that r exponentially decays to 0 as
ṙ = λr whenX converges to χ. Here, the decay rate is given by the Floquet exponent
λ and r = 0 when X is on χ. Thus, we require R to satisfy R(X0(θ)) = 0 and

ṙ = Ṙ(X) = ∇XR(X) · Ẋ = F(X) · ∇XR(X) = λR(X) = λr. (2.3)
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Recent developments in the Koopman operator approach to nonlinear dynamical
systems [18–20] have shown that the above definition is actually natural in the sense
that R is given by an eigenfunction of the infinitesimal Koopman operator F(X) · ∇X

associated with the eigenvalue λ, and such R has been calculated e.g. for the van
der Pol oscillator. The level sets of R are called isostables, in a similar sense to
the isochrons for the asymptotic phase. In general, we have n − 1 amplitudes, or
principal Koopman eigenfunctions, associated with Floquet exponents λ2, . . . ,λn ,
which can take complex values. Accordingly, the range of the amplitudes should
be taken as C rather than R. It is easy to show that the exponential of the phase
function, � = ei�, is also an eigenfunction of F(X) · ∇X with eigenvalue iω. Thus,
the Koopman operator approach gives a unifying viewpoint on the phase-amplitude
description, or global linearization, of the flows around stable limit cycles.

Having defined the phase θ = �(X) and the amplitude r = R(X) for X ∈ B,
we can derive approximate phase and amplitude equations for a weakly perturbed
limit-cycle oscillator described by

Ẋ(t) = F(X(t)) + εp(X(t), t), (2.4)

where p ∈ R
n represents the perturbation applied to the oscillator and ε > 0 is a

small parameter. The equation for the phase can be expressed as θ̇ = ∇X�(X) ·
Ẋ = ∇X�(X) · F(X) + ε∇X�(X) · p = ω + ε∇X�(X) · p, which still depends on
X. To obtain an equation closed in θ, we use the fact that X is near X0(θ) on χ and
approximate X as X = X0(θ) + O(ε). Then, up to the lowest-order O(ε) in ε, the
phase θ obeys

θ̇(t) � ω + εZ(θ(t)) · p(X0(θ(t)), t), (2.5)

where we defined the phase sensitivity function Z(θ) = ∇X�(X)|X=X0(θ). Like-
wise, the amplitude obeys ṙ = ∇XR(X) · Ẋ = ∇XR(X) · F(X) + ε∇XR(X) · p =
λr + ε∇XR(X) · p and, by assuming that X is in the neighborhood of X0(θ), we
obtain

ṙ(t) � λr(t) + εI(θ(t)) · p(X0(θ(t)), t), (2.6)

which is again correct up to O(ε). We here defined I(θ) = ∇XR(X)|X=X0(θ), which
we call the amplitude sensitivity function.

It is difficult to fully determine the phase function�(X) and the amplitude function
R(X) for all X ∈ B even numerically in multidimensional systems. However, if we
are interested in the weakly perturbed case, Eq. (2.4), we only need the functions Z
and I. It can be shown that these quantities are given by 2π-periodic solutions to the
following adjoint linear ODEs [3, 5, 16, 24, 30, 38]:

ω
d

dθ
Z(θ) = −J (θ)	Z(θ), ω

d

dθ
I(θ) = −[J (θ)	 − λ]I(θ), (2.7)
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where J (θ) = DF(X)|X=X0(θ) ∈ R
n×n is a Jacobian matrix of F at X = X0(θ) on

χ and 	 denotes transpose. The matrix components of J (θ) are given by Ji j (θ) =
∂Fi/∂X j |X=X0(θ) for i, j = 1, . . . , n, where Fi and Xi are vector components of F
and X, respectively. To be consistent with the definition of the asymptotic phase, Z
should be normalized asZ(θ) · F(X0(θ)) = ω for ∀θ ∈ [0, 2π). The normalization of
I, which determines the scale of r , can be chosen arbitrarily. These adjoint equations
can be derived by expanding �(X) and R(X) around X0(θ) to the first order in
X − X0(θ) and plugging them into Eqs. (2.2) and (2.3) [3, 16, 30].

Equations (2.5) and (2.6) give the lowest-order phase-amplitude description of
the weakly perturbed limit-cycle oscillator Eq. (2.4), from which we can predict the
dynamics of the phase θ and amplitude r and in turn use them to predict the oscillator
state near χ.1 Note that θ is decoupled from r at the lowest-order approximation.
Higher-order approximations can also be developed, which yield coupling between
θ and r and more precisely describe the oscillator dynamics [14, 37]. In this chapter,
we consider the simplest nontrivial lowest-order case and generalize it to PDEs.

2.3 Phase-Amplitude Reduction of Reaction-Diffusion
Systems

We now consider spatially extended reaction-diffusion (RD) systems described by

∂X(x, t)

∂t
= F(X(x, t); x) + D∇2X(x, t), (2.8)

where X(x, t) ∈ R
n is a n-dimensional field variable at position x ∈ V ⊆ R

d in a
d-dimensional spatial domain V and at time t , representing e.g. concentrations of
chemical species involved in the reaction, F : Rn × R

d → R
n represents position-

dependent reaction dynamics of X(x, t), D ∈ R
n×n is a matrix of diffusion coeffi-

cients, and ∇2 is a Laplacian operator representing the diffusion of X. Appropriate
boundary conditions, e.g., periodic boundary conditions, are assumed for V . Note
that Eq. (2.8) is an infinite-dimensional dynamical system whose system state at t is
given byX(x, t) for x ∈ V , which we denote asX(·, t) ∈ C , where C is some appro-
priate space of smooth vector-valued functions.We assume that Eq. (2.8) possesses an
exponentially stable limit-cycle solution X0(·, t) of natural period T and frequency
ω = 2π/T , satisfying X0(x, t + T ) = X0(x, t) for ∀x ∈ V . We again denote this
limit-cycle attractor in C as χ and its basin of attraction as B ⊆ C . Note that this

1 The system state can be approximately represented as X � X0(θ) + εru(θ) up to O(ε), where
u(θ) is a 2π-periodic Floquet eigenfunction with Floquet exponent λ satisfying ω(d/dθ)u(θ) =
[J (θ) − λ]u(θ). See e.g. [16, 24] for details. This also holds true for the RD system discussed later
in Sect. 2.3, namely, X(x, t) � X0(x, θ) + εru(x, θ) where the Floquet eigenfunction u(x, θ) is
2π-periodic in θ and satisfies ω(∂/∂θ)u(x, θ) = [J (x; θ) − λ + D∇2]u(x, θ).
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Fig. 2.2 Oscillating-spot solution of the FitzHugh-Nagumo model. a, b Spatial profiles of the u
and v components, X(x, 0) = (u(x, 0), v(x, 0))	, at θ = 0. c, d One-period evolution of the u and
v components, X(x, θ) = (u(x, θ), v(x, θ))	, for 0 ≤ θ < 2π

assumption excludes continuous translational symmetries other than the temporal
one along the limit cycle. Thus, the system possesses only a single phase variable.

Typical examples of limit-cycle solutions of the RD systems are traveling pulses
on a ring, oscillating spots, target patterns, and spiral waves in spatially one or two-
dimensional systems [15, 25]. Figure2.2 shows the oscillating-spot solution of the
FitzHugh-Nagumo (FHN) model on a 1-dimensional interval, where x ∈ [0, L]with
L = 80 represents the spatial position instead of the vector x (see Sect. 2.5 for details).
Such complex oscillatory patterns in RD systems are difficult to analyze because of
their nonlinearity and infinite-dimensionality. However, if we are interested in the
vicinity of the limit cycle, namely, if we focus on the cases that the oscillatory patterns
are only weakly perturbed, we can approximately describe their infinite-dimensional
dynamics by simple finite-dimensional phase-amplitude equations in a similar way
to the case of ODEs. In what follows, generalizing the method of phase reduction
formulated in Ref. [25], we formulate a method of phase-amplitude reduction for
RD systems exhibiting stable limit-cycle oscillations.

To this end, we need to introduce the phase θ and amplitude r of the infinite-
dimensional state X(·, t) of the RD system. Because we map the field variable to
scalars, they should be given by functionals ofX(·, t). We thus define them as θ(t) =
�[X(·, t)] and r(t) = R[X(·, t)], where� : B → [0, 2π) is the phase functional and
R : B → R is the amplitude functional, respectively. Here, we again focus on the
slowest-decaying amplitude associated with the largest non-zero Floquet exponent
λ (< 0), which we assume simple, real, and distant from 0 with a finite spectral gap.

As in the ODE case, we require that these θ and r obey simple equations, i.e.,
θ̇ = ω and ṙ = λr . Then, from the chain rule of the derivative of functionals,
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θ̇(t) = �̇[X(·, t)] =
∫

V

δ�[X(·)]
δX(x)

∣∣∣∣
X(x)=X(x,t)

· ∂X(x, t)

∂t
dx = ω, (2.9)

ṙ(t) = Ṙ[X(·, t)] =
∫

V

δR[X(·)]
δX(x)

∣∣∣∣
X(x)=X(x,t)

· ∂X(x, t)

∂t
dx = λr(t) (2.10)

shouldhold.Here,∂X(x, t)/∂t is givenbyEq. (2.8) and δA[X(·)]/δX(x)|X(x)=X(x,t) ∈
R

n (A = �, R) represents the functional derivative of the functional A[X] with
respect to X(x) evaluated at X(x) = X(x, t). Such phase and amplitude functionals
can, in principle, be defined as in the ODE case. We denote the system state on χ
as X0(·, θ) as a function of the phase θ ∈ [0, 2π). Note that �[X0(·, θ)] = θ and
R[X0(·, θ)] = 0 hold.

Thus, Eqs. (2.2) and (2.3) for ODEs can formally be generalized to spatially
extended RD systems, where the vector gradient is replaced by the functional deriva-
tive. We can also interpret R and � = ei� as eigenfunctionals of the infinitesimal
Koopmanoperator forRDsystems [22, 23].Wenote here that the explicit forms of the
functionals � and R, which are difficult to obtain, are not necessary in the following
derivation of the phase and amplitude equations near the limit-cycle solution.

Let us now consider the case that the RD system Eq. (2.8) is weakly perturbed as

∂X(x, t)

∂t
= F(X(x, t); x) + D∇2X(x, t) + εp(X(·, t), x, t), (2.11)

where ε > 0 is a small parameter and p(X(·, t), x, t) ∈ R
n is the applied perturbation

that can depend on the state X, position x, and time t . In a similar way to the case of
ODEs, using the phase and amplitude functionals � and R satisfying Eqs. (2.9) and
(2.10), we can reduce Eq. (2.11) to a set of approximate phase-amplitude equations
as

θ̇ =
∫

V

δ�[X(·)]
δX(x)

∣∣∣∣
X(x)=X(x,t)

· ∂X(x, t)

∂t
dx � ω + ε

∫
V
Z(x, θ) · p(X0(·, θ), x, t)dx,

(2.12)

ṙ =
∫

V

δR[X(·)]
δX(x)

∣∣∣∣
X(x)=X(x,t)

· ∂X(x, t)

∂t
dx � λr + ε

∫
V
I(x, θ) · p(X0(·, θ), x, t)dx,

(2.13)

where ∂X(x, t)/∂t is given by Eq. (2.11). Here, in the last expression in each equa-
tion, we have approximately evaluated the functional derivatives and perturbations
in the integral at X0(x, θ) rather than at X(x, t), assuming that the system state is
sufficiently close to χ, and introduced the phase and amplitude sensitivity functions

Z(x, θ) = δ�[X(·)]
δX(x)

∣∣∣∣
X(x)=X0(x,θ)

, I(x, θ) = δR[X(·)]
δX(x)

∣∣∣∣
X(x)=X0(x,θ)

, (2.14)

which now depend also on the position x. The approximate equations (2.12) and
(2.13) are correct up to O(ε) like Eqs. (2.5) and (2.6) in the ODE case.
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Though it is difficult to obtain the functionals � and R explicitly, it can be shown
that the sensitivity functions Z and I are given by 2π-periodic solutions to the fol-
lowing adjoint linear PDEs [22, 25]:

ω
∂Z(x, θ)

∂θ
= −J (x; θ)	Z(x, θ) − D	∇2Z(x, θ),

ω
∂I(x, θ)

∂θ
= −[J (x; θ)	 − λ]I(x, θ) − D	∇2I(x, θ), (2.15)

where J (x; θ) = DF(X(x, t); x) ∈ R
n×n is the Jacobian matrix of F evaluated at

position x. The normalization for Z is now given by
∫

V Z(x, θ) · {F(X0(x, θ) +
D∇2X0(x, θ)}dx = ω for ∀θ ∈ [0, 2π). These equations are straightforward gen-
eralization of the adjoint equations (2.7) and the normalization condition for the

Fig. 2.3 Phase sensitivity
function of the
oscillating-spot solution of
the FitzHugh-Nagumo
model. a, b Spatial profiles
of the u and v components,
Z(x, 0) =
(Zu(x, 0), Zv(x, 0))	, at
θ = 0. c, d One-period
evolution of the u and v
components, Z(x, θ) =
(Zu(x, θ), Zv(x, θ))	, for
0 ≤ θ < 2π
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ODE case. Figures2.3 and 2.4 show the phase and amplitude sensitivity functions
of the oscillating-spot solution of the FHN model, respectively (see Sect. 2.5 for
details).

Thus, by defining the phase and amplitude functionals, we can reduce the weakly
perturbed RD system, Eq. (2.11), to a set of ODEs (2.12) and (2.13) for the phase
and amplitude. The reduced phase-amplitude equations are much simpler than the
original RD system and facilitate detailed analysis of the oscillatory patterns. In
Ref. [25], the phase equation has been used to analyze synchronization between a pair
ofmutually coupled RD systems. In the next section, we analyze optimal entrainment
with feedback stabilization of RD systems using the phase and amplitude equations.

2.4 Optimal Entrainment of Oscillatory Patterns with
Feedback

As an application of the reduced phase-amplitude equations, we analyze entrainment
of a RD system exhibiting oscillatory patterns by an optimized periodic forcing,
generalizing Ref. [40] for limit-cycle oscillators described by ODEs. The model is

∂X(x, t)

∂t
= F(X(x, t); x) + D∇2X(x, t) + εKq(x,�t), (2.16)

where q(x,�t) ∈ R
n represents a temporally periodic smooth forcing pattern of fre-

quency � satisfying q(x,�t + 2π) = q(x,�t) and K = diag{K1, . . . , Kn} ∈ R
n×n

is a constant diagonal matrix representing the effect of q on X (e.g., K1 �= 0 and
K2,...,n = 0 when only the 1st component of X is driven by the forcing). We assume
that the forcing frequency � is sufficiently close to the natural frequency ω of the
system, namely, the frequency mismatch ω − � is a small value of O(ε) and denote
it as ε� where � = O(1). The reduced approximate phase-amplitude equations are

θ̇(t) = ω + ε

∫
V
Z(x, θ(t)) · Kq(x,�t)dx,

ṙ(t) = λr(t) + ε

∫
V
I(x, θ(t)) · Kq(x,�t)dx. (2.17)

For the linear stability analysis of the entrained state, we only need the phase
equation. Following the standard procedure [15], we consider the phase difference
φ = θ − �t between the system and periodic forcing, which obeys

φ̇(t) = ε� + ε

∫
V
Z(x,φ(t) + �t) · Kq(x,�t)dx. (2.18)
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Because the right-hand side is O(ε), φ is a slowly varying quantity and the right-hand
side can be averaged over one period of the forcing with fixed φ. We thus obtain

φ̇(t) = ε[� + �(φ(t))], (2.19)

which is correct up to O(ε), where we defined a 2π-periodic phase coupling function

�(φ) = 1

2π

∫ 2π

0

∫
V
Z(x,φ + ψ) · Kq(x,ψ)dxdψ = 〈Z(x,φ + ψ) · Kq(x,ψ)〉.

(2.20)

Here, we introduced the abbreviation 〈A(x,ψ)〉 = (2π)−1
∫ 2π
0

{∫
V A(x,ψ)dx

}
dψ.

Equation (2.19) can possess a stable fixed pointφ∗ ∈ [0, 2π) satisfying� + �(φ∗) =
0 and �′(φ∗) < 0 when � is in an appropriate range, whose linear stability is given
by the slope �′(φ∗) = d�(φ)/dφ|φ=φ∗ of �(φ) at φ∗. The oscillatory pattern can be
entrained to the periodic forcing when such a stable fixed point φ∗ exists.

We seek the optimal periodic forcing q(x,ψ) for stable entrainment, which min-
imizes �′(φ∗) under the constraint that the power of q(x,ψ) is fixed at P > 0, i.e.,
〈‖q(x,ψ)‖2〉 = P, and also under the constraint that Eq. (2.19) has a fixed point at
given φ∗, i.e., � + �(φ∗) = 0 holds. Thus, we solve an optimization problem

maximize − �′(φ∗) subject to 〈‖q(x,ψ)‖2〉 = P, � + �(φ∗) = 0. (2.21)

To this end, we define an objective functional,

S[q(·,ψ)] = −�′(φ∗) + ζ
{〈‖q(x,ψ)‖2〉 − P

} + μ{� + �(φ∗)}, (2.22)

where ζ and μ are Lagrange multipliers. Solving the stationarity condition,
δS/δq(x,ψ) = 0, and eliminating μ by using the second constraint as well as the
2π-periodicity of Z(x, θ) in θ, the optimal periodic forcing can be obtained as

qopt(x,ψ) = 1

2ζ
K 	∂ψZ(φ∗ + ψ) − �

〈‖K 	Z(x,φ∗ + ψ)‖2〉 K 	Z(φ∗ + ψ) (2.23)

and the optimized stability exponent as

�′
opt(φ

∗) = 1

2ζ
〈‖K 	∂ψZ(φ∗ + ψ)‖2〉, (2.24)

where the multiplier ζ is calculated from the first constraint as

ζ = −1

2

( 〈‖K 	∂ψZ(x,φ∗ + ψ)‖2〉
P − �2/〈‖K 	Z(x,φ∗ + ψ)‖2〉

)1/2

. (2.25)
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Fig. 2.5 Forcing patterns and phase coupling functions. a, bOne-period evolution of the u compo-
nent of the a optimal forcing qopt(x, θ) and b sinusoidal forcing qsin(x, θ) for 0 ≤ θ < 2π. c Phase
coupling functions �(φ) for the optimal and sinusoidal forcing patterns

Figure2.5 shows the optimized forcing, together with a spatiotemporally sinusoidal
forcing for comparison, and the resulting phase coupling functions for the oscillating-
spot solution of the FHN model (see Sect. 2.5 for details).

As we demonstrate in the next section, the optimized forcing qopt gives higher
stability of the entrained state than the sinusoidal forcing pattern qsin of the same
power. However, it can also happen that the optimized pattern perturbs the system
too efficiently and kicks the system state far away from the limit cycle, where the
reduced equations are no longer accurate. If so, we may need to decrease the forcing
power and may not be able to improve the stability of the entrainment as desired.

In order to cope with this problem, we consider a simple feedback stabilization
of the oscillatory pattern, which suppresses the deviation of the system state from
the unperturbed limit cycle χ. To this end, we evaluate the phase θ = �[X(·, t)] of
the system stateX(·, t), calculate the difference vector y(x, t) = X(x, t) − X0(x, θ),
and apply a feedback forcing of the form −αy(x, t) to the RD system, Eq. (2.16), as

∂X(x, t)

∂t
= F(X(x, t); x) + D∇2X(x, t) + εKq(x,�t) − εαy(x, t), (2.26)

where α > 0 is the feedback gain.2

When X is sufficiently close to χ, we can show that this y is (bi-)orthogonal to
the phase sensitivity function Z. Indeed, we can express the phase of X as

θ = �[X(·, t)] = �[X0(·, θ) + y(x, t)] � �[X0(·, θ)] +
∫

V
Z(x, θ) · y(x, t)dx

(2.27)

by retaining the lowest-order functional Taylor expansion of � in y. Therefore,∫
V Z(x, θ) · y(t)dx = 0 holds at the lowest order because θ = �[X0(·, θ)]. Thus,

2We here simply assume that the whole spatial pattern can be directly observed. This may not be
realistic in practical control problems and some approximate methods may have to be devised.
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the reduced phase equation of Eq. (2.26) is the same as that for Eq. (2.16) and the
feedback forcing term −εαy(x, t) does not affect the phase dynamics of the system
at the lowest order. On the other hand, the amplitude r of X(·, t) is expressed as

r = R[X(·, t)] = R[X0(·, θ) + y(x, t)] �
∫

V
I(x, θ) · y(x, t)dx (2.28)

where R[X0(·, θ)] = 0 by definition. Therefore, at the lowest order, the amplitude
equation for Eq. (2.26) is given by

ṙ(t) = (λ − εα)r(t) +
∫

V
I(x, θ(t)) · Kq(x,�t)dx. (2.29)

Thus, by introducing the feedback term−αy(x, t), we can improve the linear stability
of χ from λ to λ − εα and keep the system state closer to χ while not affecting the
phase dynamics, which allows us to apply periodic forcing with larger power.

2.5 Example: Oscillating Spot in the FitzHugh-Nagumo
Model

As an example of the RD system possessing a stable limit cycle, we consider the
FitzHugh-Nagumo model in one dimension, which exhibits a localized oscillating-
spot pattern (see Ref. [25] for details). The model is given by Eq. (2.16) with

X(x, t) =
(

u
v

)
, F(X; x) =

(
u(u − β(x))(1 − u) − v

ε(u − γv)

)
, D =

(
κ 0
0 δ

)
,

(2.30)

where u(x, t) and v(x, t) are the activator and inhibitor field variables at time t and
position x (0 ≤ x ≤ L), respectively, β(x), ε, and τ are parameters, and κ and δ are
diffusion coefficients of u and v. We consider a system of length L = 80 and assume
no-flux boundary conditions ∂X(0, t)/∂x = ∂X(L , t)/∂x = 0 at x = 0 and L . In
order to pin the spot to the center x = L/2 of the system, we assume that β(x) is
position-dependent and is given by β(x) = β0 + (β1 − β0)(x/L − 1/2)2 with β0 =
−1.1 and β1 = −1.6. The other parameters are γ = 2 and ε = 0.0295, and the diffu-
sion coefficients are κ = 1 and δ = 2.5. By choosing an appropriate initial condition,
this system converges to a stable limit cycle χ : X0(x, θ) = (u0(x, θ), v0(x, θ))	
(0 ≤ x ≤ L , 0 ≤ θ < 2π) with natural period T � 196.5 and frequency ω � 0.032
corresponding to the oscillating spot. The second Floquet exponent of χ is real and
evaluated as λ � −0.387. Using the adjoint equations (2.15), we can calculate the
phase and amplitude sensitivity functions Z and I of χ.

Figure2.2 shows the snapshot and one period evolution of the limit-cycle solution
X0, and Figs. 2.3 and 2.4 show the snapshot and one-period evolution of the phase
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Fig. 2.6 Entrainment by the a optimized and b sinusoidal forcing. Evolution of the phase difference
φ = θ − �t between the system and the periodic forcing, started from different initial conditions

and amplitude sensitivity functions Z and I, respectively. It can be seen that both
sensitivity functions take large values near the domain walls of the oscillating spot,
indicating that perturbations given to the domain walls have strong influence on
the phase and amplitude of the system. Reflecting the difference in the diffusion
coefficients, the patterns of the u component are sharper than those of v.

Weconsider entrainment of this oscillating-spot solution by the optimizedperiodic
forcing. For simplicity, we assume that the forcing frequency� is equal to the natural
frequency ω of the system, i.e., � = 0. In this case, we can set the value of φ∗
arbitrarily by shifting the origin of the phase, and we fix it as φ∗ = 0.We set ε = 0.01
and K = diag{K1, K2} = diag{0.05, 0}, namely, we apply the periodic forcing only
to the u component of the system. We calculate the optimal forcing qopt(x,ψ) =
(qu

opt(x,ψ), 0)	 of power P = 1 byEq. (2.23), and also a spatiotemporally sinusoidal
forcingqsin(x,ψ) ∝ (cos(2πx/L) sinψ, 0)	 of the same power, and drive the system
periodically with these forcing patterns.

Figures2.5a, b show the u component of the forcing patterns qopt(x,ψ) and
qsin(x,ψ) for one period of oscillation, respectively, and Fig. 2.5c shows the result-
ing phase coupling functions �(φ). It can be seen that the optimal forcing pattern
selectively perturbs the domain walls where the system’s phase sensitivity is high,
and the slope �′(0) determining the linear stability of the entrained state φ∗ = 0 is
much larger in the optimized case than in the sinusoidal case.

Figure2.6 shows the actual convergence of the phase difference φ = θ − �t
between the system and periodic forcing to φ∗ = 0 from several different initial
conditions, obtained by direct numerical simulations of Eq. (2.16). It can be con-
firmed that the asymptotic convergence to the fixed point at φ∗ = 0 is faster and the
entrainment is established earlier in the optimized case.

Now, as we discussed in the previous section, when the periodic forcing is not
sufficiently small, it may kick the system state far away from the unperturbed limit
cycle and can lead to breakdown of the lowest-order phase-amplitude description. By
introducing the feedback stabilization, we may be able to keep the system state close
to the limit cycle and apply stronger forcing. In order to confirm this, we numerically
simulate Eq. (2.26) with the feedback forcing term. In the numerical calculation, the
phase θ of the system state X is evaluated by using the procedure described below
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Fig. 2.7 Effect of strong forcing and feedback. a Trajectories of the system state (u(x, t), v(x, t))	
at x = L/3 for the cases with (i) no forcing, (ii) strong forcing without feedback (K1 = 0.5,α = 0),
and (iii) strong forcing with feedback (K1 = 0.5, α = 10). b Convergence of the phase difference
φ = θ − �t for the case only with weak forcing, K1 = 0.05, and for the cases (ii) and (iii)

Eq. (2.2) in Sect. 2.2, which also applies to the RD case, and then the amplitude r
of X is evaluated using Eq. (2.28) with y(x, t) = X(x, t) − X0(x, θ) within linear
approximation (note that X is in the neighborhood of X0(·, θ) when the perturbation
is weak).

Figure2.7a shows the trajectory of the field variable (u, v)	 at x = L/3 obtained
by direct numerical simulations of Eq. (2.26) for the cases with (i) no forcing (black),
(ii) strong forcing K1 = 0.5 without feedback, α = 0 (light blue), and (iii) strong
forcing K1 = 0.5 with feedback gain α = 10 (red, overlaps with the black curve).
The curve for the case (i) corresponds to the unperturbed limit cycle χ. We can
observe that the strong forcing without feedback drives the system state away from
χ in the case (ii), but the introduction of the feedback keeps the system state close
to χ in the case (iii). Figure2.7b shows the convergence of the phase difference φ
for the cases (ii) and (iii). For comparison, the evolution of φ under weak forcing
K1 = 0.05 without feedback is also shown. In the case (ii) without feedback, the
final phase difference is considerably different from the target value φ∗ = 0 because
of the large deviation of the system state from χ.3 In contrast, in the case (iii) with
feedback, φ converges to the correct target value φ∗ = 0 even though the forcing is
10 times stronger. Thus, the feedback stabilization allows us to apply much stronger
periodic forcing and realize faster entrainment.

2.6 Summary

We have formulated the method of phase and amplitude description for limit-cycle
oscillations in spatially extended RD systems subjected to weak perturbations.
Though the RD systems are infinite-dimensional dynamical systems, we can still

3In this case, the system state converges to a spurious periodic orbit after initial transient, which is
induced by the effect of the strong periodic forcing and larger than the original limit cycle χ.
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approximately describe them by a set of phase and amplitude equations in the vicin-
ity of the unperturbed limit cycle, which can be used for the analysis and control
of complex oscillatory dynamics in RD systems. As an application, we have con-
sidered entrainment of the oscillatory pattern with optimized periodic forcing and
feedback stabilization, which allows us to apply stronger forcing while keeping the
approximate phase-amplitude description valid and thereby realizing more stable
entrainment.

The method of phase reduction for infinite-dimensional dynamical systems has
also been developed for delay-differential equations exhibiting limit-cycle oscilla-
tions [13, 26], for nonlinear Fokker-Planck (integro-differential) equation describing
populations of coupled oscillators and excitable elements [11, 12], and also for fluid
systems exhibiting stable oscillatory convection [8–10, 33]. As we have formulated
for the RD systems, we can derive the amplitude equation also for such systems,
which can be used for analyzing their transient relaxation properties.

In this chapter, we have presented the theory only for a single oscillatory system in
the simplest lowest-order approximation with a single phase and a single amplitude.
Generalization to more complex cases is also possible along the lines presented
in this chapter. In general, even a single system may possess two or more phase
variables when it has additional continuous translational symmetries e.g. in spatial
directions [2, 10] and possesses a torus solution rather than a limit-cycle solution.
We may also need to consider two or more amplitude variables and consider the
case of complex Floquet eigenvalues. Moreover, although the phase is decoupled
from the amplitude at the lowest-order phase-amplitude description considered in
this chapter, this is not the case if we proceed to the next order; nonlinear phase-
amplitude interactions can arise within a single system and, if coupled systems are
considered, phase and amplitude interactions of three- or more systems can generally
arise. Such higher-order interactions can be a source of intriguing complex dynamics
in nonlinear oscillatory systems; see, e.g., Refs. [1, 4, 14, 17, 29, 36, 37] for various
types of higher-order descriptions and their consequences.

Macroscopic oscillatory systems in the real world are often made up of spatially
distributed populations of interacting microsystems and modeled by PDEs includ-
ing the RD equations. Development of the phase-amplitude framework for such
systems, together with the recent advance in the Koopman operator approach to non-
linear dynamical systems [23], will provide us with a unified viewpoint and practical
methods for the analysis, control, and design of such complex oscillatory systems.

Acknowledgements The author is grateful to A. Stefanovska and P. V. E.McClintock for invitation
towrite this chapter and for their kind advice. Thiswork is financially supported by JSPSKAKENHI
Grants JP17H03279, 18K03471, JP18H03287, and JST CREST JPMJCR1913.



26 H. Nakao

References

1. P. Ashwin, A. Rodrigues, Hopf normal form with SN symmetry and reduction to systems of
nonlinearly coupled phase oscillators. Phys. D 325, 14–24 (2016)

2. I.V. Biktasheva, D. Barkley, V.N. Biktashev, G.V. Bordyugov, A.J. Foulkes, Computation of
the response functions of spiral waves in active media Phys. Rev. E 79, 056702 (2009)

3. E. Brown, J. Moehlis, P. Holmes, On the phase reduction and response dynamics of neural
oscillator populations. Neural Comput. 16, 673 (2004)

4. B. Ermentrout, Y. Park, D. Wilson, Recent advances in coupled oscillator theory. Phil. Trans.
Roy. Soc. A 377, 20190092 (2019)

5. G.B. Ermentrout, D.H. Terman, Mathematical Foundations of Neuroscience (Springer, New
York, 2010)

6. L. Glass, M.C. Mackey, From Clocks to Chaos—The Rhythms of Life (Princeton University
Press, Princeton, 1988)

7. F.C. Hoppensteadt, E.M. Izhikevich,Weakly Connected Neural Networks (Springer, NewYork,
1997)

8. M. Iima, Jacobian-free algorithm to calculate the phase sensitivity function in the phase reduc-
tion theory and its applications to Kármán’s vortex street. Phys. Rev. E 99, 062203 (2019)

9. Y. Kawamura, H. Nakao, Collective phase description of oscillatory convection. Chaos 23,
043129 (2013)

10. Y. Kawamura, H. Nakao, Phase description of oscillatory convection with a spatially transla-
tional mode. Phys. D 295–296, 11–29 (2015)

11. Y. Kawamura, H. Nakao, K. Arai, H. Kori, Y. Kuramoto, Collective phase sensitivity. Phys.
Rev. Lett. 101, 024101 (2008)

12. Y. Kawamura, H. Nakao, Y. Kuramoto, Collective phase description of globally coupled
excitable elements. Phys. Rev. E 84, 046211 (2011)

13. K. Kotani, I. Yamaguchi, Y. Ogawa, Y. Jimbo, H. Nakao, G.B. Ermentrout, Adjoint method
provides phase response functions for delay-induced oscillations. Phys. Rev. Lett. 109, 044101
(2012)

14. K. Kotani, Y. Ogawa, S. Shirasaka, A. Akao, Y. Jimbo, H. Nakao, Nonlinear phase-amplitude
reduction of delay-induced oscillations. Phys. Rev. Res. 2, 033106 (2020)

15. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Dover, New York, 2003)
16. Y. Kuramoto, H. Nakao, On the concept of dynamical reduction—the case of coupled oscilla-

tors. Phil. Trans. Roy. Soc. A 377, 20190041 (2019)
17. I. León, D. Pazó, Phase reduction beyond the first order: The case of the mean-field complex

Ginzburg-Landau equation. Phys. Rev. E 100, 012211 (2019)
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20. A. Mauroy, I. Mezić, Global computation of phase-amplitude reduction for limit-cycle dynam-

ics. Chaos 28, 073108 (2018)
21. B.Monga, D.Wilson, T.Matchen, J.Moehlis, Phase reduction and phase-based optimal control

for biological systems: a tutorial. Biol. Cybern. 113, 11–46 (2019)
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Chapter 3
Reduced Phase Models of Oscillatory
Neural Networks

Bastian Pietras and Andreas Daffertshofer

Abstract Phase reduction facilitates the analysis of networks of (weakly) cou-
pled oscillators. Synchronization regions can be uncovered and also non-trivial net-
work behavior can be foreseen via the reduced phase dynamics. Phase models have
become an essential tool for describing and analyzing rhythmic neural activity. It is
widely accepted that in oscillatory neural networks, phase synchronization is crucial
for information processing and information routing. Accurately deriving the phase
dynamics of interacting neural oscillators is far from trivial.We demonstrate how dif-
ferent reduction techniques of a network of interactingWilson-Cowan neural masses
can lead to different dynamics of the reduced networks of phase oscillators. We pin-
point caveats and sensitive issues in the derivation of the phase dynamics and show
that an accurately derived phase model properly captures the collective dynamics.
We finally investigate the influence of strong interactions and biologically plausible
connectivity structures on the network behavior.

3.1 Introduction

Oscillatory behavior abounds across many different scales of the human brain
[17, 18, 80]. To trace and describe these neural oscillations, the development and
design of recording techniques and models have benefitted from mutual interaction
between experimental and theoretical neuroscientists. Still, linking recordings of
brain activity to the underlying neuronal mechanisms remains an urgent challenge.
A promising approach to model large-scale brain dynamics builds on networks of
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interacting neural oscillators. By focusing on the corresponding phase dynamics, it
is possible to analyze synchronization properties of the network.

As revealed by a plethora of experimental studies relying on both invasive and non-
invasive neuroimaging techniques, information processing in the brain is intrinsically
linked to synchronization phenomena of oscillatory dynamics [37, 55]. Non-invasive
EEG and MEG studies typically depict distributed cortical activity as of large-scale
brain networks. Although M/EEG recordings have high temporal resolution, they
reflect activity on rather coarse spatial scales given that signals to be perceivable
require synchronous neuronal currents of a large number of neurons, commonly of
the order of 104 to 105 cells. The resulting time series of the recordings are duly and
extensively analyzed for their extracted phase and amplitude dynamics. Emerging
synchronization patterns in the data are then assigned to particular brain functions
corresponding to the underlying hypothesis or the behavioral observations. Research
on the phase dynamics of cortical oscillatory activity is rather recent compared to
amplitude modulations in the M/EEG. However, there are several reports indicating
that the phase dynamics play a crucial role for information processing and inter-
cortical communication [22, 64, 74, 75, 82, 84].

Phase synchronization also plays an integral part in defining functional connec-
tivity structures of the brain. The technological advance of modern brain imaging
methods has led to elucidate the interplay of structural and functional brain connec-
tivity. The structure of anatomical connections between brain areas iswidely believed
to facilitate temporal synchronization of neural activity, and can lead to spatial pat-
terns of functional connectivity [9, 15, 24, 48]. Yet, the extent to which structure
shapes function is still unclear [36, 44]. To unveil functional brain connectivity and
communication pathways [10, 33, 54], it is crucial to identify functional modules
consisting of remote but synchronized neuronal populations. This can be achieved
by analyzing the phase dynamics of the different brain areas.

While extensive data analysis may establish important synchronization properties
across the human brain, a comprehensive understanding of the underlying neural
mechanisms also requires theoretical models that can be validated and tested against
experimental data. Often, heuristic phase models are used as guidelines for inferring
neural network dynamics fromdata. Butwithout a proper derivation of these heuristic
models, the results may become questionable. Phase reduction [32, 35, 45, 46, 51,
60, 67, 77] provides a powerful tool to derive phase models from biophysiologically
realistic models and to link parameters from the more complex with those from the
simplermodel in order to identify the key factors for a particular behavioral paradigm.
Unfortunately, there is not “the” phase reduction, but one has to choose from a
variety of techniques – a recent review can be found in [67]. Even worse, different
phase reductions can lead to qualitatively different phase models, that is, reduced
phase models may predict different network behavior. For an accurate derivation of
a phase model, reduction techniques have to be tailored to the targeted macroscopic
observable and the parameter regime under study. Only then one can exploit the full
strengths of the reduced phase model. Finally, a word of caution is in order. Phase
reduction is strictly valid only for a number of necessary assumptions. Therefore,
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one always ought to keep in mind the limitations and range of applicability of an
accurately reduced phase model.

In the following, we will demonstrate these aspects in more detail. We will guide
our presentation along the example of a network of interactingWilson-Cowan neural
masses, which will be introduced in Sect. 3.2. We will present different phase reduc-
tion techniques for a network of weakly coupled oscillators in Sect. 3.3 and show
that they may indeed result in different predictions about the collective dynamics.
We reported these results previously in an extensive review on network dynamics
and phase reduction techniques [67]. Here we add to this by highlighting possible
limitations of phase reduction for oscillatory networks in Sects. 3.4 and 3.5. Partic-
ular focus lies on network topologies, especially when considering a realistic brain
network connectivity structure, and on coupling strengths beyond the weakly per-
turbed paradigm. We demonstrate why in these cases a reduced phase model may
(not) provide valuable information about the actual network dynamics.

3.2 Networks of Wilson-Cowan Neural Masses

Considering large-scale oscillatory brain networks, the elementary network compo-
nents, or nodes, can be assumed to be neural populations consisting of a large number
of neurons. From the variety of neural population, or neural mass, models, the sem-
inal Wilson-Cowan neural mass model [88] serves as an exquisite example to derive
the phase dynamics in great detail. The Wilson-Cowan model describes the dynam-
ics of the mean firing rates of neuronal populations. At every node k = 1, . . . , N of
the network, we placed properly balanced pairs of excitatory and inhibitory popu-
lations with mean firing rates Ek = Ek(t) and Ik = Ik(t), respectively. The nodes
are coupled to other nodes through the connections between their excitatory popula-
tions [21, 23, 76]. The connection weigths are typically given by a coupling matrix
C = {C jk} j,k=1,...,N . We illustrate the basic structure of this network in Fig. 3.1.

The dynamics at node k takes on the form

Ėk = −Ek + S
⎡
⎣aE

⎛
⎝cEE Ek − cE I Ik − �E + κ

N

N∑
j=1

Ckj g(E j )

⎞
⎠

⎤
⎦

İk = −Ik + S [aI (cI E Ek − cI I Ik − �I )] .

(3.1)

The function S[x] = (1 + e−x )−1 is a sigmoid function with thresholds �E and
�I that need to be exceeded by the total input into neural mass k to elicit fir-
ing; the parameters aE and aI describe the slopes of the sigmoids. The constants
cEE , cE I , cI E , cI I quantify the coupling strengthswithin each (E/I ) node andκ � 1
scales the coupling between different nodes. Pairwise interaction between differ-
ent nodes is mediated through the coupling function g(E), which we choose as
g(E) = E(t) − E0. By subtracting an average E0 (typically, the unstable fixed point
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Fig. 3.1 Network of three
coupled Wilson-Cowan
neural masses. Each node
contains excitatory and
inhibitory populations, Ek
and Ik , that are internally
coupled with strengths ci j ,
i, j ∈ {E, I }. Interaction
between two neural masses
k �= j occurs via their
respective excitatory
populations, where Ckj
denotes the connectivity
whether node k receives
input from node j

within a stable limit cycle) from the actual firing rate E = E(t), we avoid spurious
contributions from other neural masses when they are all synchronized. In gen-
eral, the interaction within and between different nodes may be time-delayed due
to finite signal transmission of, in particular, long-range connections. Allowing for
time delays between nodes, or for spatial interaction kernels, yields more intricate
coupling dynamics, see, e.g., [47, 73]. For the sake of legibility we here restrict our
analysis to instantaneous interactions. We note, however, that phase reduction can
also be employed in face of time delays [67, Sect. 10.3.2].

Depending on the choice of parameters, the Wilson-Cowan model Eq. (3.1) can
exhibit rich dynamics such as self-sustained oscillations and multi-stability, see,
e.g., [14, 45, 67, 88]. Here, we restrict the parameter values (see Appendix) to the
dynamical regime in which every isolated (κ = 0) node displays stable limit cycle
oscillations. Each point on this stable limit cycle can, in general, be described in terms
of a phase and an amplitude. If the attraction towards the limit cycle is sufficiently
fast, it is possible to ignore the amplitude dynamics so that the one-dimensional phase
variable φk reliably describes the state of the oscillator not only on the limit cycle,
but also in its close vicinity. Moreover, assuming weak coupling between nodes, we
can then capitalize on the theory of weakly coupled oscillators [32, 45, 67] to extract
the phase dynamics of each node k = 1, . . . , N in form of

φ̇k = ωk + κ

N

N∑
j=1

Ckj�(φk − φ j ) (3.2)

with a natural frequency term ωk and a phase interaction function �(ψ) that depends
on the phase difference φk − φ j between two nodes k �= j . The phase interaction
function �(ψ) is typically periodic in ψ and can thus be expanded in a Fourier series:

�(ψ) = a0 + a1 cos(ψ) + b1 sin(ψ) + a2 cos(2ψ) + b2 sin(2ψ) + · · · (3.3)
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The phase dynamics Eqs. (3.2 and 3.3) can subsequently be analyzed with respect
to the synchronization behavior of the network. A useful macroscopic observable to
describe the network dynamics is the Kuramoto order parameter [51]

z = Rei� = 1

N

N∑
k=1

eiφk , (3.4)

whose absolute value R = |z| takes on values between 0 and 1. R = 0 indicates
an incoherent state, whereas R = 1 indicates a fully synchronized state. Values
0 < R < 1 indicate partially synchronous collective dynamics. Furthermore, the
Fourier coefficients an, bn of the phase interaction function Eq. (3.3) are indica-
tive for particular network behavior. For example, if we consider only the first two
harmonics in �(ψ), i.e. an = bn = 0 for n > 2, and global coupling, Ckj = 1 for all
k �= j , then it can be shown [20, 49, 67] that the phase model exhibits

• a fully synchronized state for κb1 > 0,
• a balanced two-cluster state for κb1 < 0 and κb2 > 0, and
• slow switching behavior of oscillators between two unbalanced clusters for κb1 <

0,κb2 < 0 and b1 is comparable in size to b2.

There may exist additional attractors such as, e.g., three-cluster states or the so-
called self-consistent partially synchronous state [20], but general conditions for
their existence in terms of the Fourier coefficients b1,2 are elusive, so that we rather
concentrate on the three regimes above as well as on the incoherent state for κb1 < 0.
One can use these insights to predict the collective dynamics of the full network. An
accurately reduced phase model is capable of forecasting the transition between
synchronous and asynchronous network behavior. Moreover, when focussing on
higher harmonics of the phase interaction function �(ψ), also non-trivial collective
dynamics in the original model can be explained with the help of a reduced phase
model.

3.3 Phase Reduction of Oscillatory Neural Networks

The ultimate goal of phase reduction is to rigorously establish the mapping between
the full dynamics Eq. (3.1) and the reduced phase model Eq. (3.2) by expressing the
natural frequency and the phase interaction function in terms of the parameters of
the original model Eq. (3.1). Central to phase reductions of weakly coupled neural
oscillators is Malkin’s theorem [45, 56, 77], which provides a recipe to reduce a
dynamical system of the form

ẋk = f (xk) + κgk(x1, . . . , xN ), xk ∈ R
n, k = 1, . . . , N , (3.5)
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into a phase model Eq. (3.2). As the form of the Wilson-Cowan model Eq. (3.1)
does not comply with that of Eq. (3.5), it is compulsory to first transform the orig-
inal dynamics appropriately. Only then we can employ standard methods [67] to
retrieve the phase model Eq. (3.2). We note that the “pre-processing” step can be
achieved either numerically or analytically [67, Sects. 4 and 6], giving rise to classi-
fying different phase reduction approaches as either analytic or numerical reduction
techniques.

Numerical approaches tend to be more accurate. But their software implementa-
tion often computes the necessary properties for phase reduction internally, which
leaves the link between the original and the phase model parameters unclear. By con-
trast, analytic approaches build on subsequent algebraic transformations that yield a
rigorous representation of the phasemodel parameters in terms of the original param-
eters, although such a representation may become convoluted. The pre-processing of
the full dynamics Eq. (3.1) into Eq. (3.5) is based on the idea that close to a particular
bifurcation, different models exhibit similar dynamics. Given that theWilson-Cowan
model Eq. (3.1) exhibits oscillatory behavior close to a Hopf bifurcation, we thus
aim at transforming Eq. (3.1) into the simplest model that captures the essence of
the dynamics close to a Hopf bifurcation point. This simplest model is called Hopf
normal form and we can obtain it with a so-called normal form, or center mani-
fold, reduction [45, 59, 67]. There is, however, a caveat. Since we consider not only
a single isolated neural oscillator but a network of coupled neural oscillators, we
require a network Hopf normal form: That is, not only the uncoupled part f (x) in
Eq. (3.5) has to be brought into Hopf normal form, but also the coupling function
gk(x1, . . . , xN ) has to be identified accordingly subject to all symmetry constraints
that are inherent to multiple Hopf bifurcations. Although there is a mathematical
proof for such a network Hopf normal form, to the best of our knowledge, no general
and exact algorithm for deriving it is at hand. Instead, two approximative schemes
have proven fruitful to retain the simplified network Hopf normal form: Kuramoto’s
reductive perturbation approach and Poincaré’s nonlinear transform approach, for
details we refer to [67].

Stepping over these often laborious algebraic transforms, there is an alternative
analytic approach which becomes exact for weakly coupled oscillators that follow a
circular limit cycle: Haken’s reduction via averaging [41, 67], see also [13, 40]. For
planar oscillatory dynamics close to aHopf bifurcation, the Jacobian of the uncoupled
Wilson-Cowan dynamics Eq. (3.1) evaluated at the unstable fixed point (E0

k , I
0
k ) has

a pair of complex conjugate eigenvalues λ± = μ ± iω with positive real part, μ > 0,
which corresponds to the distance to the Hopf bifurcation point.1 We then express
the dynamics in terms of the deviations xk = (

Ek − E0
k (μ), Ik − I 0k (μ)

)
around the

unstable fixed points. Approximating the sigmoidal activation function S up to third
order and applying some laborious algebraic transforms [67], one can derive a fairly
generic form of the dynamics Eq. (3.1) that reads

1Typically, one measures this distance in parameter space, e.g., in parameter �E such that μ =
�E − �H

E , where the Hopf bifurcation occurs at �E = �H
E .
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ẋk = Lxk + T−1 f (Txk;μ) + κT−1
N∑
j=1

g
(
Txk, Tx j

)
. (3.6)

Here, L is the Jordan real form of the dynamics’ Jacobian J , T the matrix con-
taining the eigenvectors of J . The function f includes all components within node k
that contribute to its dynamical change and g covers all the between-node interaction,
i.e. the last term of the right-hand side of the Ėk dynamics in Eq. (3.1) now given as
coupling between the nodes xk and x j . The dynamics Eq. (3.6) exhibits qualitatively
the same behaviour as Eq. (3.1), but due to the Jordan real form, a circular symmetry
of the limit cycle is imposed on the full dynamics.

In the immediate vicinity of the Hopf bifurcation point, one can exploit the separa-
tion of time scales of phase and amplitude dynamics and readily transform Eq. (3.6)
into xk = (xk, yk) = (rk cos(φk), rk sin(φk)), where rk and φk = �t + θk are ampli-
tude and phase (deviations) of the oscillations at node k, which are slowly varying
with respect to the (mean) frequency � [42], here defined over the eigenvalues at
the Hopf point, � = ω(μ = 0). Near the onset of oscillations through a supercritical
Hopf bifurcation, rk � 1 is small and, thus, the right-hand side of Eq. (3.6) is at
least of order O(rk). Given the slower time scales of rk and θk = φk − �t , one can
average over one cycle T = 2π/�. In line with [21], this direct averaging of the
dynamics Eq. (3.6) yields the drastically reduced phase model Eq. (3.2 and 3.3)

φ̇k = ωk + κ

N

N∑
k=1

Ckja1 sin(φk − φ j ) (3.7)

with natural frequency ωk = aEaI cI EcE I S′
E S

′
I − 1

4 (aEcEE S′
E + aI cI I S′

I )
2, first

Fourier amplitude a1 = 1
2aE S

′
E�kCkj (R j/Rk), and all other amplitudes vanish:

a0 = an = 0 for n > 1 as well as bn = 0 for all n ≥ 1. We abbreviated �2
k = 1 + ρ2k

with ρk = 1
ωk

(aEcEE S′
E + aI cI I S′

I ) and S′
E/I denotes the first derivative of the sig-

moid S evaluated at the fixed points E0
k /I

0
k of Eq. (3.1).

In summary, we have four different phase reduction techniques:

1. Reductive perturbation approach
2. Nonlinear transform approach
3. Direct averaging
4. Numerical/adjoint.

The first two are the analytic approaches that build on a pre-processing step to bring
the dynamics in network Hopf normal form. Then, there is Haken’s approach that
circumvents a rigorous normal form reduction by applying averaging directly to
presumably circular dynamics close to the Hopf bifurcation. And finally, one can
employ a numerical approach, which capitalizes on Malkin’s theorem and provides
numerical values for the reduced phase model by solving an associated adjoint prob-
lem [16, 29, 31, 32, 45], which has, e.g., been automatized in the software packages
XPPAUT [28] orMatCont [26]. In order to compare the different approaches, wewill

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.scholarpedia.org/article/MATCONT
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apply the four different phase reduction techniques to the network of Wilson-Cowan
neural masses Eq. (3.1). In the resulting phase models Eq. (3.2), we will concentrate
on the reduced natural frequency term ωk and the first two Fourier harmonics in the
phase interaction function Eq. (3.3). Their amplitudes will serve as a quantitative
measure of how accurate the phase models are, whereas their relationships with one
another provide a qualitative measure indicating whether the reduced phase models
result in the correctly predicted collective dynamics; see the end of Sect. 3.2 for a
classification of the network’s phase dynamics in terms of the Fourier coefficients.

Phase reduction is highly parameter-sensitive

A first litmus test concerns the accuracy of the different phase reduction techniques
close to a bifurcation boundary. Center manifold and normal form theory prescribe
the exact form of the phase interaction function �(ψ), see [16]. For the regime near
a supercritical Hopf bifurcation, the topological normal form [53] of the dynamics
yields a purely sinusoidal phase interaction function, that is, all Fourier coefficients
but b1 in Eq. (3.3) will vanish. The topological Hopf normal form requires further
algebraic transformations than the conventional (Poincaré) Hopf normal form, but
its essence remains the same: the first Fourier harmonics dominates and higher har-
monics tend to zero. In Table 3.1 we show the results of the different phase reduction
techniques when the distance to the Hopf bifurcation is as small as μ = 0.0003;
here, we chose �E as the bifurcation parameter so that μ := �E − �H

E with �H
E the

parameter value where the supercritical Hopf bifurcation occurs. All four reduction
techniques can reliably retrieve the correct shape of the phase interaction function
with dominant first harmonics and a positive first odd Fourier coefficient b1 > 0,
which indicates a fully synchronized state. Moreover, the natural frequency terms
coincide for all reduction techniques. Note that the quantitative differences do not
influence the qualitative predictions of the network behavior.

When increasing the distance to the Hopf bifurcation point, however, the phase
models start to diverge. In Table 3.2, we show exemplary results of the phase model
parameters for μ = 0.1663. Only the numerical/adjoint method captures the change
of slope of the phase interaction function (whose derivative atψ = 0 is dominated by
b1) and predicts that the fully synchronized state becomes unstable in this parameter
region. The other three reduction techniques still predict the synchronous solution,

Table 3.1 Phase models derived with different reduction techniques infinitesimally close to the
Hopf bifurcation (μ = 0.0003). The oscillators’ natural frequency isω, and an, bn are the amplitudes
of the Fourier components of the phase interaction function �

Approach ω a1 b1 a2 b2
Reductive perturba-
tion

0.701 –0.9505 1.1555 –0.0001 0.0013

Nonlinear transform 0.701 –0.9457 1.1382 –0.0009 0.0013

Direct averaging 0.701 –0.6940 0.2140 – –

Numerical/adjoint 0.701 –0.0472 0.3843 –0.0001 0.0002
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Table 3.2 Phasemodels derivedwith different reduction techniques away from theHopf bifurcation
(μ = 0.1663). The oscillators’ natural frequency is ω, and an, bn are the amplitudes of the Fourier
components of the phase interaction function �

Approach ω a1 b1 a2 b2
Reductive perturbation 0.728 –0.9505 1.1555 –0.2470 0.3657

Nonlinear transform 1.023 –0.4905 0.1383 –0.0604 0.0503

Direct averaging 1.330 –0.4733 0.2390 – –

Numerical/adjoint 0.939 –0.4447 –0.2668 –0.0635 –0.0451

although the reduced phase models differ with respect to the amplitude of the har-
monics. Compared to the numerical/adjoint method, Poincaré’s reduction via nonlin-
ear transforms yields the same orders of magnitude, whereas Kuramoto’s reductive
perturbation overestimates the second harmonics and the direct averaging by con-
struction does not contain any higher harmonics at all. Strong first harmonics of the
phase interaction function will amplify the coupling and thus result in faster (de-
)synchronization, depending on the sign of the sinusoidal component. Second and
higher harmonics may play a crucial role for clustering. An over- or underestimation
of the amplitudes of higher harmonics may hence lead to erroneous predictions of
multiple- or one-cluster states.

Accurate phase models capture the true collective dynamics

The farther one moves away from particular bifurcation boundaries, the more the
reduced phase models will diverge. Naturally, one seeks a phase reduction technique
that reliably recovers the (collective) behavior of the original (network) dynamics.
While the accuracy of analytic phase reduction techniques scales with the distance
to the bifurcation point (due to the normal form reduction inherent to these two-step
reduction approaches [67]), numerical phase reduction techniques, in general, do not
suffer this shortcoming and can retain the accuracy across parameter space. For this
reason, we will probe the numerical phase reduction and test whether it captures the
collective dynamics of the Wilson-Cowan network, indeed.

Following the literature [43, 45], we choose�E and�I as bifurcation parameters
and, first, investigate the transition to synchrony as predicted by the slope �′(0)
of the phase interaction function changing from positive (fully synchronous state)
to negative values (synchrony becomes unstable). In line with previous results,2

our findings confirm the general picture that for large parameter regions the fully
synchronous state is stable, see the yellow/red regions in Fig. 3.2. In particular,
synchrony is stable close to the Hopf bifurcation boundaries of the isolated Wilson-
Cowan dynamics (dashed lines in Fig. 3.2).

Second, we try to elucidate the dynamics in parameter regions where the fully
synchronized state is no longer stable, see the blue regions and the inset in Fig. 3.2,

2Hlinka and Coombes [43] showed that the predictions based on the derivative of the numerically
reduced phase interaction function agreed almost perfectly with the synchronization properties of
the original network, cf. their Figs. 3.6 and 3.7.
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Fig. 3.2 Oscillatory regime of the Wilson-Cowan neural mass model Eq. (3.1) with parameters
Eq. (3.8). The colored region of oscillatory behavior lies within the Hopf bifurcation boundaries
(black dashed curves) for a single isolated Wilson-Cowan neural mass. The color coding indicates
the derivative of the phase interaction function � at ψ = 0 determining the stability of the fully
synchronized state: if �′(0) > 0 the fully synchronized state is stable, and unstable otherwise.We
used the numerical/adjoint reduction method to generate this figure

and where previous results did not predict the actual dynamics correctly. Close to the
Hopf bifurcation boundary the slope �′(0) ≈ b1 of the phase interaction function is
positive and correctly predicts synchronization. Moving upwards in parameter space
by increasing �I leads to a change of signs in �′(0), and we are in the deep blue
region in Fig. 3.2, where the fully synchronous state is no longer stable. We fix the
parameter�E = −3 and analyze the numerically reduced phase interaction function
with respect to higher harmonics for different values of �I . At �I = −9.3, we find
that b1 > 0 (stable fully synchronous solution). At �I = −8.9, b1 < 0 and b2 < 0,
predicting that the oscillators are evenly spread along the limit cycle, which is also
called a stable anti-cluster state. For larger �I = −8.7, the balanced two-cluster
state becomes stable (b1 < 0 and b2 > 0); for the exact numerical values see the
Appendix. To test the predictions of the reduced phasemodel, we simulated a network
of N = 30Wilson–Cowan neuralmasseswith global coupling,Ckj = 1 for all k �= j ,
and coupling strengthκ = 0.15. As can be seen in Fig. 3.3, the simulations confirmed
the predicted (a) fully synchronized state, (b) an anti-cluster state, i.e. incoherence,
and (c) a stable two-cluster state, respectively. The other phase reduction techniques
did not only fail to predict the existence of two-cluster states, but they also missed
the transition from synchrony to incoherence; cf. Table 3.2.

We can thus conclude that an accurately reduced phase model within its range of
applicability can correctly predict collective dynamics of a network of neural oscilla-
tors across parameter space. Numerical techniques outperform analytical approaches
with respect to accuracy. Still, analytical approaches can yield a direct link between
original model parameters and the constituents of the reduced phasemodel that allow
for an immediate prediction of the network state. It is, however, crucial to verify the
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Fig. 3.3 Non-trivial network dynamics of N = 30 coupled Wilson-Cowan neural masses. The
different network states a global synchronization, b incoherence, and c a balanced two-cluster state
were predicted by the reduced phase model using the numerical/adjoint method. Displayed are
final (Tend = 1000 seconds) conditions (‘o’) on the uncoupled limit cycle (left column) and the
extracted phases (right) for the last 15 seconds. We fixed the coupling strength at κ = 0.15 and the
simulations started from uniformly distributed initial conditions along the uncoupled limit cycle.
Parameter values of (�E ,�I ) are a (−3,−9.3), b (−3,−8.9) and c (−3,−8.7)

parameter region where the analytical approaches are applicable. For this reason, we
advocate a combination of numerical and analytical phase reduction techniques to
provide an accurate picture of the network dynamics and its phase synchronization
properties by means of a reduced phase model.

3.4 Phase Reduction in Face of Strong Coupling

The reduction of phase dynamics from a network of coupled oscillators retains its
mathematical justification as long as the theory of weakly coupled oscillators applies.
However, no rigorous definition of weak coupling exists, nor a concrete limit of
the coupling strength at which the character of interaction switches from weak to
strong. Usually, phase reduction is achieved with the tacit understanding that each
isolated dynamical system already displays stable limit cycle oscillations, which is
a necessary condition for the theory of weakly coupled oscillators to hold [5, 45].
However, in some cases it is the coupling between systems that induces oscillations.
Smale was among the first to investigate the emergence of oscillations via a Hopf
bifurcation due to diffusive coupling [79]. On the other hand, coupling between
systems can also make oscillations cease. Ermentrout and Kopell reported this kind
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of oscillation death for a chain of Wilson-Cowan neural masses [30], see also the
work by Daffertshofer and vanWijk on a (heterogeneous) network ofWilson-Cowan
neural masses [23]. Those coupling-induced effects only occur for reasonably large
coupling strengths, and a straightforward identification of the phase dynamics as
within the theory of weak coupling is not possible. While sufficiently weak coupling
ensures that the shape and the frequency of the limit-cycle orbits remain almost
unchanged, strong coupling leads to non-negligible amplitude effects. These can
destabilize synchronized states, quench oscillations, or cause collective chaos, and
a phase reduction has only been proposed for quite restrictive assumptions; see [52]
and the references therein. Hence, phase-amplitude reductions [19, 78, 87], see also
[57, 67] for reviews, have to be employed that also take interactions between phase
and amplitude dynamics into account. The theory of weakly coupled oscillators
additionally requires that the actual trajectories of the oscillators are always close to
the isolated limit-cycle solution.While reductionmethods exist that allow for a phase
reduction farther away from the underlying periodic orbit, see, e.g., [57, 67, 89], we
here try to answer the question whether appropriate conventional phase models can
still capture coupling-induced collective dynamics.

Oscillation birth and clustering

To investigate coupling-induced behavior, it appears illustrative to start with two
coupled identical Wilson-Cowan neural masses. In Fig. 3.4 we show the bifurcation
diagram with respect to the coupling strength. Without coupling, κ = 0, the dynam-
ics Eq. (3.1) feature only one stable stationary solution (black solid line). Increasing
the coupling strength induces oscillations through a (double) Hopf bifurcation (red
dot). The critical coupling strength κH can also be determined analytically, see the
Appendix but also [4]. In our example, it is considerably small with κH = 0.00531
(note that we did not rescale the coupling by a factor 1/N ). In this coupling-induced
oscillatory regime, the initial conditions can have a major impact on the resulting
dynamics. For small coupling strengths κ < 0.6 (see green dot), the two Wilson-
Cowan neural masses evolve from any initial conditions either into the same limit
cycles or into the low activity resting state (blue solid curve). For larger coupling
strengths, however, only identical initial conditions result into the same (red) limit
cycles. Different initial conditions for the two coupled neural masses may still lead
to stable oscillations, but the respective limit cycles of each neural mass can differ
in amplitude and shape (cf. the green curves in Fig. 3.4). Moreover, these distinct
oscillations that resulted from distinct initial conditions are stable beyond a critical
coupling strength at which those oscillations from identical initial conditions have
ceased to exist (through a fold bifurcation of limit cycles, see the inset in Fig. 3.4).
From the point of view of oscillation quenching mechanisms [50], the onset of (iden-
tical) limit-cycle oscillations of the twoWilson-Cowan neural masses for small cou-
pling strengths is a mechanism inverse to amplitude death. Larger coupling induces
a symmetry breaking from two identical to two distinct limit cycles, and thus drives
the system into an oscillation death-related regime. Note, however, that the Wilson-
Cowan neural masses keep oscillating around the same, spatially uniform center,
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Fig. 3.4 Bifurcation diagram of two coupled identical Wilson-Cowan neural masses with parame-
ters (�E ,�I ) = (−3,−9.4). At low coupling, the units are at rest (black solid curve). Oscillations
emerge at a double Hopf bifurcation (red dot), where the resting state becomes unstable (black
dashed). The red curves display upper and lower limit of the limit cycles. Beyond the green dot,
identical initial conditions of the two units evolve towards identical limit cycles (red curve) that are
destroyed through a fold bifurcation of limit cycles (second red dot), whereas non-identical initial
conditions lead to two distinct oscillatory solutions (with upper/lower limits on either the outer or
inner branches of the green curves) that remain stable for large coupling strengths, for which iden-
tical initial conditions lead into a low-activity resting state (blue solid).The yellow dot represents a
homoclinic bifurcation, induced through the unstable saddle (blue dashed) that emerged through a
saddle-node bifurcation of fixed points (blue dot)

and that beyond a critical coupling strength, oscillations cease and give rise to a
homogeneous steady state, which is coined amplitude death in the literature [50].

Based on the brief analytic insights concerning two coupled oscillators, we antic-
ipate that coupling-induced effects will increase the intricacy of larger networks of
strongly coupled oscillators. To illustrate this, we simulated a fully connected net-
work of 30 identical Wilson-Cowan neural masses with random initial conditions.
Figure 3.5 displays the network behavior for different coupling strengths. Without
coupling, the dynamics evolve from random initial conditions towards the stationary
solution given by the fixed point in Fig. 3.5 (top left panel). The dynamics of the
(absolute value of the) Kuramoto order parameter R reflects the transient oscillatory
dynamics from the initial conditions into the fixed point solution, where the phases of
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Fig. 3.5 Coupling-induced behavior of N = 30 globally coupled identical Wilson-Cowan neural
masses with parameters (�E ,�I ) = (−3,−9.4). Without coupling (top row), only the resting state
is stable. At low coupling strength κ = 0.05 (middle row), all neural masses synchronize on the
same limit cycle. At high coupling strength κ = 0.81 (bottom row), the neural masses form three
clusters on distinct limit cycles and show intermittent synchronization. Left: dynamics of all neural
masses in the Ek − Ik plane for the last t = 15 seconds. Middle: extracted phases of all neural
masses. Right: absolute value of the Kuramoto order parameter displaying phase synchronization
of the network. See the Appendix for details about the network simulation and analysis.

the oscillators stay constant (after t ≈ 2500s). For κ = 0.05, the coupling is already
strong enough to lead to maintained oscillatory dynamics. TheWilson-Cowan neural
masses become fully synchronized and oscillate on identical limit cycles (middle row
in Fig. 3.5). For even stronger coupling, the coupling-induced oscillations become
more complex. Clusters of oscillators emerge, which evolve on distinct oscillatory
trajectories. In Fig. 3.5 (bottom row), the oscillatory neural masses have formed
three groups that consist of different numbers of oscillators. Within each group, all
oscillators are perfectly synchronized and follow the same (quasiperiodic) dynam-
ics (see the middle and left panel, respectively). These dynamics differ, however,
across groups. Note that although the Kuramoto order parameter exhibits complex
oscillatory dynamics around a value that may indicate some partially synchronous
state, it is impossible to infer from it the correct network behavior of three oscillating
clusters.

Quenching of oscillations and quasiperiodic dynamics

To investigate the quenching of oscillations, we chose parameters such that (a) a
single isolatedWilson-Cowan neuralmass exhibits stable limit-cycle oscillations and
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Fig. 3.6 Amplitude death and quasiperiodic behavior of two coupled identical Wilson-Cowan neu-
ral masses. a Bifurcation diagram similar to Fig. 3.4, but starting with stable limit cycle oscillations
without coupling. Oscillation death occurs via a homoclinic bifurcation (yellow dot) for identical
initial conditions. The red dots denote the emergence of quasiperiodic behavior for distinct initial
conditions. In b quasiperiodic behavior of the two Wilson-Cowan neural masses (final condition
of the two limit cycles shown as ‘o’) is depicted for coupling strength κ = 0.475. c The phase
difference ψ(t) = θ1(t) − θ2(t) (blue line) fluctuates around the mean ψ̄(t) = −π (orange), which
indicates an incoherent state.

(b) weak global coupling leads to an incoherent, that is, asynchronous solution. The
bifurcation diagram for two coupled identical oscillators with respect to the coupling
strength is shown in Fig. 3.6. For identical initial conditions, the red curves represent
the upper and lower limit of the amplitude of identical limit cycles, on which the two
oscillators are phase-locked with a constant phase difference of |θ1(t) − θ2(t)| = π,
as expected for weak coupling. The oscillations cease via a homoclinic bifurcation
(yellowdot), in contrast to the fold bifurcation of limit cycles in the previous example.
For distinct initial conditions, we find again two different oscillatory regimes: at low
coupling strengths, the anti-phase periodic solutions evolve on the same limit cycle.
However, for coupling strengths larger than κ ≈ 0.45 (red dot) each neural mass
exhibits quasiperiodic behavior (Fig. 3.6b). Remarkably, the mean phase difference
ψ̄(t) = limT→∞

∫ T
0 |θ1(t) − θ2(t)|dt = π stays constant, see orange line inFig. 3.6c,

which underlines that the oscillators remain incoherent.
As before, we simulated the network dynamics and confirmed the analytic pre-

dictions extrapolated from two coupled Wilson-Cowan neural masses to a larger
network. Results are shown in Fig. 3.7. The parameters �E ,�I are chosen such that
the reduced phase model predicts asynchronous network dynamics for low cou-
pling strengths, as is demonstrated by the simulations (top row). Increasing the
coupling strength leads, first, to a general increase in network synchronization as
indicated by the Kuramoto order parameter and, then, to quasiperiodic dynamics
(middle row). The oscillators follow the same quasiperiodic trajectories spanning an
annulus-shaped region in state space (similar to the behavior as shown in Fig. 3.6b).
Note that although the phases of the oscillators tend to get closer to each other, the
coupling is not strong enough to completely synchronize them also with respect
to their amplitudes. Increasing the coupling strength even more, eventually results
in destroying the network oscillations: the oscillatory dynamics of the individual
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Fig. 3.7 Coupling-induced behavior of N = 30 globally coupled identical Wilson-Cowan neural
masses with parameters (�E ,�I ) = (−3,−9). At low coupling strength κ = 0.15 (top row), all
neural masses desynchronize on the same limit cycle as predicted by the phase model. At intermedi-
ate coupling strength κ = 0.75 (middle row), oscillators move along quasiperiodic trajectories and
tend to synchronize. At very high coupling strength κ = 0.81 (bottom row), oscillation death occurs
and the neural masses run into a low activity resting state. Left: dynamics of all neural masses in
the Ek − Ik plane for the last t = 15 seconds. Middle: extracted phases of all neural masses. Right:
absolute value of the Kuramoto order parameter displaying phase synchronization of the network.
See the Appendix for details about the network simulation and analysis.

Wilson-Cowan neural masses collapse into the same low activity state (bottom row
in Fig. 3.7). As before, the oscillation quenching mechanism is amplitude death [50].
Time-delayed interactions can also induce amplitude death, typically by stabilizing
a specific homogeneous state [50]. Incorporating time delays in our setup will affect
the bifurcation structure and may lead to interesting new phenomena, especially for
large coupling strengths. For weak coupling, we hypothesize that the predictions on
network synchronization based on a properly reduced phase model remain valid—
given that time delays are taken into account during the phase reduction as, e.g., in
[67, Sect. 10.3.2].

3.5 Phase Reduction in Face of Complex Structural
Connectivity

Up to now, we have only considered globally coupled Wilson-Cowan neural masses
with a trivial connectivity matrix, Ckj = 1 for all k �= j . A realistic connectivity
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structure in neural networks can have significant consequences for the collective
dynamics, see, e.g., [1–3, 7, 11, 12, 27, 38, 61, 62, 68, 71, 72, 81]. A network
topology, i.e. how the nodes of the network are connected, that deviates from global,
all-to-all coupling, may render many results about predicted network behavior no
longer valid. In some cases, the reduced phase interaction function � in combina-
tion with the connectivity matrix can still provide important information about the
collective dynamics of a realistically connected network, e.g., about (remote) syn-
chronization, see [25, 34, 58, 63, 69]. The Kuramoto model of phase oscillators
where �(ψ) = sin(ψ) has been extensively studied on complex networks, see, e.g.,
the review by Rodrigues et al. [70]. More recently, it could also be shown how time
delays shape the phase relationships in oscillatory networks with realistic connectiv-
ity structure [65, 66]. Some questions, however, still remain unanswered, e.g., how
structure shapes function, what the constituents for synchrony are, or what drives a
network into a chaotic state.

To illustrate how realistic structural connectivity—as derived, e.g., from diffu-
sion tensor imaging (DTI)—adds to the complexity of the dynamics of neural net-
works, we compared the dynamics of the full Wilson-Cowan model Eq. (3.1) with
the reduced phase model Eq. (3.2) for three different coupling topologies: a fully
connected homogeneous network, an anatomical network reported by Hagmann and
co-workers [39], and a network with small-world topology generated by the Watts-
Strogatz model [86]. For the fully connected homogeneous network (i.e. global con-
nectivity), we considered the adjacency valuesCkj = 1 for all k �= j , but setCkk = 0
to exclude self-connections. For theHagmannnetwork,weused aDTI dataset to build
a realistic network topology of the human cerebral cortex as described by Hagmann
et al. [39]. To extract the “structural core” of anatomical connections, the original 998
cortical regions were assigned to a 66-node parcellation scheme and averaged over
five subjects. The binary coupling matrix C = {Ckj } was obtained by subsequently
thresholding the weighted and undirected network gained through parcellation and

(a) Hagmann network (b) Small-world network

Fig. 3.8 Coupling matrices C = {Ckj } for a the Hagmann dataset and b the small-world topology
with N = 66 nodes. We generated the small-world network by using the same graph-theoretical
properties as of the Hagmann network (average degree = 10, rewiring probability = 0.2). White
pixels denote a link between nodes k and j , Ckj = 1
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Fig. 3.9 Simulation of the Wilson-Cowan dynamics at coupling strength κ = 0.15 for regimes as
predicted by the numerically reduced phase model: synchronization (top row), asynchrony (middle)
and two-cluster state (bottom); see Tables 3.3, 3.4 and 3.5 in the Appendix. Left: final (T = 2000)
position of all N = 66Wilson-Cowan oscillators on the unperturbed limit cycle (green)with random
initial conditions (black dots). Middle: histogram of the phases extracted from the final positions
of the oscillators. Right: phase synchronization of the network measured in terms of the absolute
value of the Kuramoto order parameter with a moving average of 20 seconds. Colors indicate full
connectivity (black, circles), small world (blue, diamonds), and Hagmann (red, squares)

averaging, see Fig. 3.8 (panel a) [23, 83]. Analyzing the coupling matrix C further
showed that the Hagmann network featured characteristics of a small-world network
with average node-degree 10. For comparison, we thus generated a small-world net-
work artificially by employing the procedure as introduced by Watts and Strogatz
[86]: starting from an ordered network on a ring lattice with nodes connected to only
a few direct neighbors, we subsequently rewired connections to random nodes with a
certain probability (in our case 0.2) until we obtained a small-world network with the
same average node-degree, see Fig. 3.8 (panel b). In otherwords, by adding a few ran-
dom nodes in an ordered network, we thus created a small-world network featuring
high clustering and low path length, which yields particular dynamical and synchro-
nization properties that are appealing for their use in neuroscience [3, 6, 8, 85].

We then simulated the Wilson-Cowan networks with the three different coupling
matrices. We chose parameter sets for which the reduced phase model (with global
coupling) predicted synchronization, incoherence and cluster states. In Fig. 3.9 we
show the network simulations for each of the three parameter regimes (top row: syn-
chronization, middle: incoherence, bottom: balanced two-cluster state) and for each
of the three coupling matrices (black: homogeneous coupling, blue: small-word, red:
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Fig. 3.10 Simulation of the reduced phase models as given in Tables 3.3, 3.4 and 3.5 at coupling
strength κ = 0.25 with full (left column), small-world (middle) and Hagmann network connectivity
(right) for parameter regimes where the numerically reduced phase model with global coupling
predicts synchronization (top row), asynchrony (middle) and two-cluster state (bottom) Insets show
histograms at final (T = 2000 for full connectivity, and T = 10000 otherwise) phase distribution for
N = 200 oscillators (N = 66 for Hagmann network). Colors correspond to numerical reduction
approach (black), direct averaging (green), reductive perturbation approach (red), and nonlinear
transform approach (blue)

Hagmann). Themore complex connectivity structures lead to macroscopic dynamics
that become indistinguishable from one another; cf. the red and blue graphs corre-
sponding to small-world and Hagmann networks, respectively. Only in the case of a
fully connected homogeneous network (black graphs), the actual dynamicsmatch the
predictions of the (numerically) reduced phase model. Furthermore, we simulated
the different phase models as derived with each of the four reduction techniques. The
numerically reduced phase dynamics (black graphs) correctly captures the original
Wilson-Cowan dynamics for full connectivity, see the left column in Fig. 3.10. For
non-trivial connectivity structures, however, none of the phase models can follow the
predictions based on the phase interaction function �. While for the small-world net-
work (middle column) the simulations hint slightly at the synchronous, asynchronous
and two-cluster regimes, respectively from top to bottom, the observed dynamics on
the Hagmann network appear arbitrary. Note that the direct averaging technique
(green graphs) leads to synchronous collective dynamics for almost all parameter
settings and connectivity structures. The two analytic techniques diverge for full
connectivity: the reductive perturbation approach (red) leads to a fully synchronized
state, whereas the nonlinear transform approach (blue) results in a two-cluster state,



48 B. Pietras and A. Daffertshofer

cf. the phase histograms of the final conditions (insets in Fig. 3.10). But for the small-
world and Hagmann networks, these two techniques converge to the same resulting
behavior. For details about the simulations see the Appendix.

In a nutshell, we can conclude that topology effects overcome otherwise precise
predictions of the phase model such that even the least accurate direct averaging
method does not perform worse than the other techniques.

3.6 Conclusion

Phase reduction is a powerful tool to simplify the dynamics of complex networks of
neural oscillators. The reduced phase model allows a reliable prediction of various
network behavior. Not only the transition between an incoherent state and a fully
synchronized state can be revealed, but, by taking higher harmonics of the reduced
phase interaction function into account, also non-trivial collective behavior can be
forecast such as cluster states or slow-switching between clusters.

There does not, however, exist “the” phase reduction, but one has to choose from
a variety of phase reduction techniques. The different reduction methods can broadly
be classified as numerical and analytical phase reduction techniques. We compared
different phase reduction techniques of oscillatory neural networks and showed that
close to a particular bifurcation boundary, all reduction techniques retrieve the same
qualitative results. Further away from bifurcation boundaries, different techniques
start to diverge and one has to pay careful attention to whether, e.g., an analytically
reduced phase model indeed captures the correct network behavior. We advocate a
combination of numerical and analytical approaches to ensure the sought-for accu-
racy of the phase model while, at the same time, allowing for a direct mapping
between the parameters of the neural network model with those of the reduced phase
model. By this, one can identify key parameters of the neural network that havemajor
influence on the synchronization properties of the network.

Furthermore, we showed that phase reduction has important limitations when fac-
ing strong coupling and realistic connectivity structure. Although augmented phase
reduction and phase-amplitude reduction techniques for single oscillators have seen
strong advances in recent years [57, 67], their extension to oscillatory networks has
yet to be achieved. We illustrated some peculiar characteristics of coupling-induced
behavior, such as birth and death of oscillations, and highlighted how insights about
the dynamics of two strongly-coupled oscillators can be used to explain network
effects such as clustering into groups of various sizes and quasiperiodic dynamics
on a network level. For small coupling strengths, predictions by the reduced phase
model remain valid. For stronger coupling, the validity of the reduced phase model
breaks down. A reasonably good proxy for a critical coupling strength beyond which
the phase model loses validity, can be obtained from the dynamics of two coupled
identical systems. We hypothesize that this critical coupling strength is exceeded
once the coupling-induced behavior becomes more complex, that is, when identical
initial conditions result in distinct oscillatory dynamics of the two oscillators.
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As to connectivity effects, we have to conclude that a reduced phase model cannot
account for changes in the underlying network topology. Realistic structural connec-
tivity has devastating impact on the network dynamics in that the collective behavior
drastically differs from that for homogeneous connectivity. Even the numerically
reduced phase model was no longer capable of capturing the actual network dynam-
ics and could also no longer outperform the other reduction techniques. All phase
reduction techniques performed equally well. Neither the Kuramoto order parame-
ter dynamics nor the phase diagrams were informative for the network states with
realistic structural connectivity. It may hence be helpful to first identify meaningful
observables that link structure and dynamics of the network. Once this has been
achieved for networks of general oscillators vis-á-vis networks of phase oscillators,
we may be able to answer the question whether a reduced phase model retains the
same structural-dynamical properties of the full network and can thus be used to
predict also exotic network effects that arise due to complex structural connectivity.

Appendix

Following the literature [43, 45], we considered�E and�I as bifurcation parameters
and fixed the other parameters of the Wilson-Cowan neural mass model Eq. (3.1) as

aE = 1, aI = 1, cEE = cE I = cI E = 10, cI I = −2. (3.8)

The numerical phase reduction technique correctly predicts the stability of the
globally synchronized state for parameters (�E ,�I ) = (−3,−9.38), of the inco-
herent state for (�E ,�I ) = (−3,−8.9), and of the balanced two-cluster state for
(�E ,�I ) = (−3,−8.7). Tables 3.3, 3.4 and 3.5 provide the numerical values of
the Fourier coefficients of the numerically reduced phase interaction function �(ψ),
Eq. (3.3), together with those derived along the analytic phase reduction techniques.

Coupling induced behavior
We investigated the birth and death of oscillations due to the strength of coupling
between oscillators. The bifurcation diagrams in Figs. 3.4 and 3.6 were created with
MatCont [26] for two identicalWilson-Cowan neural masses following the dynamics

Table 3.3 Phase models derived for different approaches at �E = −3,�I = −9.38

Approach ω a1 b1 a2 b2
Reductive perturba-
tion

1.800 –0.3666 0.0251 –0.0006 0.0015

Nonlinear transform 1.800 –0.3675 0.0260 –0.0006 0.0015

Direct averaging 1.800 –0.1280 0.5739 – –

Numerical/adjoint 1.800 –0.0413 0.0339 –0.0002 –0.0001

http://www.scholarpedia.org/article/MATCONT
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Eq. (3.1). The coupling-induced Hopf bifurcation can be determined analytically by
inspecting the eigenvalues of the Jacobian of the (high-activity) resting state (E0, I 0).
The Jacobian has the form

J =

⎛
⎜⎜⎝

−1 + cEE SE1 −cE I SE1 κSE1 0
cI E SI1 −1 − cI I SI1 0 0
κSE1 0 −1 + cEE SE1 −cE I Sx1
0 0 cI E SI1 −1 − cI I SI1

⎞
⎟⎟⎠

where we introduced the abbreviations SE1 = aE S′ [aE
(
cEE E0 − cE I I 0 − �x

)]
and SI1 = aI S′ [aI

(
cI E E0 − cI I I 0 − �y

)]
and (E0, I 0) denotes the fixed point

solution. The eigenvalues λ1,2,3,4 of J can readily be found and the Hopf bifur-
cation point at Re(λ1,2) = 0, Re(λ3,4) < 0 identified. The critical coupling strength
is κH ≈ 0.053, in perfect agreement with our computations using MatCont [26].

Network simulations
The network simulations for Fig. 3.3 of N = 30 globally coupled, identical Wilson-
Cowan neural masses have been initialized by choosing initial conditions on the
uncoupled limit cycle such that the phase synchronization (real-valued Kuramoto
order-parameter) was R = 0.15. The dynamics Eq. (3.1) have then been run with
parameter values given by Eq. (3.8) and coupling strength κ = 0.15 using an Euler-
Mayurama scheme over T = 1000s (T = 5000s for panels b and c) with stepsize
dt = 0.001s and noise strength σ = 10−8.

For the network simulations in Figs. 3.5 and 3.7, we used again N = 30 glob-
ally coupled identical Wilson-Cowan neural masses and set the coupling strength as
indicated in the captions. We chose random initial conditions in the basin of attrac-

Table 3.4 Phase models derived for different approaches at �E = −3,�I = −8.9

Approach ω a1 b1 a2 b2
Reductive perturba-
tion

1.276 –0.3666 0.0251 –0.0381 0.0868

Nonlinear transform 1.263 –0.4592 0.0908 –0.0194 0.0562

Direct averaging 1.276 –0.2283 0.4600 – –

Numerical/adjoint 1.267 –0.4436 –0.1244 –0.0077 -0.0184

Table 3.5 Phase models derived for different approaches at �E = −3,�I = −8.7

Approach ω a1 b1 a2 b2
Reductive perturba-
tion

1.078 –0.3666 0.0251 –0.0522 0.1187

Nonlinear transform 1.079 –0.4945 0.1217 –0.0191 0.0574

Direct averaging 1.078 –0.2649 0.4245 – –

Numerical/adjoint 1.062 –0.5877 –0.2324 –0.0304 0.0135

http://www.scholarpedia.org/article/MATCONT
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tion of the attracting high-activity resting state, and of the attracting limit-cycles,
respectively, and found the same behavior for a range of different random selec-
tions of initial conditions. We simulated Eq. (3.1) over T = 1000s with a time-step
dt = 0.0005s using an Euler-forward scheme. Simulations using a Runge-Kutta
fourth order scheme resulted in the same dynamics. We extracted the phases from
each Wilson-Cowan node (Ek, Ik) using the function θk = atan2(xk, yk), where
xk = Ek − E0 and yk = Ik − I 0 denote the deviations from the unstable fixed point.
The degree of synchronization is measured as phase coherence in terms of the real-
valued Kuramoto order parameter, |z(t)| = |∑k exp(iθk(t))|. Both the phase values
as well as the Kuramoto order parameter have been extracted on a coarser time scale
with dt = 0.1s.

For the network simulations in Fig. 3.9, we simulated the dynamics Eq. (3.1) for
N = 66 identicalWilson-Cowan neuralmasseswith coupling strengthκ = 0.15 over
T = 2000s with a time step of dt = 0.0005s using an Euler-forward scheme, and
extracted the phases and the Kuramoto order parameter as described above. We used
amoving average of 20s to better compare the evolution of the degree of synchroniza-
tion for the different networks. We also simulated the corresponding phase dynamics
Eq. (3.2) of the reduced phase models on the different network structures and in the
three dynamical regimes. The Fourier coefficients for the respective phase models
are listed in Tables 3.3, 3.4 and 3.5. Since amplitude effects cannot occur in the phase
model, we set the coupling strength to κ = 0.25, to accelerate possible synchroniza-
tion transitions and to better identify transient dynamics. Moreover, we increased the
network size for full and small-world network connectivity to N = 200 to reduce
finite-size effects. The phase dynamics were simulated for T = 10000s with a time
step dt = 0.001s using an Euler-forward scheme. We computed the Kuramoto order
parameter for each time step dt = 0.1s and showed the final phase distribution in a
histogram plot with 31 bins.
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Chapter 4
Nonautonomous Attractors

Peter E. Kloeden and Meihua Yang

Abstract The nature of time in a nonautonomous dynamical system is very different
from that in autonomous systems, which depend on the time that has elapsed since
starting rather on the actual time. This requires new concepts of invariant sets and
attractors. Pullback and forward attractors as well as forward omega-limit sets will
be reviewed here in the simpler setting of nonautonomous difference equations. Both
two-parameter semi-group and skew product flow formulations of nonautonomous
dynamical systems are considered.

Keywords Nonautonomous difference equations · Process · Two-parameter
semi-group · Skew product flows · Pullback attractor · Forward attractor · Omega
limit points

4.1 Introduction

Autonomous dynamical systems are now a very well established area of mathemat-
ics. Although nonautonomous systems have been investigated in an ad hoc way for
many years, a mathematical theory of nonautonomous dynamical systems has only
been developed systematically in recent decades. Time has a very different role in
nonautonomous dynamical systems than in autonomous systems, which depend only
on the time that has elapsed since starting rather on the actual time. This has some
profound consequences in terms of definitions and the interpretation of dynamical
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behaviour, so many of the concepts that have been developed and extensively investi-
gated for autonomous dynamical systems are either too restrictive or no longer valid
or meaningful in the nonautonomous context [2, 4, 17].

A new feature of nonautonomous dynamical systems is that invariant sets are in
fact families of sets that are invariant in the sense that they mapped onto each other
as time evolves. Another important new feature is that limiting temporal behaviour
must now be characterised in two ways. For a discrete time autonomous dynamical
system, the elapsed time n − n0 → ∞ if either n → ∞with n0 fixed or if n0 → −∞
with n fixed. In the nonautonomous case the limits obtained may be different, if they
exist.

The former, called forward convergence, involves information about the future of
the system, whereas the latter, called pullback convergence, uses information from
the past. Two types of nonautonomous attractors arise from these convergences, a
forward and a pullback attractor. These consist of families of nonempty compact
subsets that are invariant in the above generalised sense and attract other sets (or
even families of sets) with respect to the corresponding convergence.

The results given below have appeared in published papers over the past twenty
years. They are developed systematically in monographs Kloeden and Rasmussen
[15] and Kloeden and Yang [17] as well as [19] which focuses on nonautonomous
difference equations. See also the monographs [2, 4].

Nonautonomous dynamical systems havemany applications, especially in the bio-
logical sciences [14]. Aneta Stefanovska has been a pioneer in their use in cardiology
and physics, see [1, 5, 22, 23, 28, 29].

4.2 Nonautonomous Difference Equations

A nonautonomous difference equation on R
d has the form

xn+1 = fn (xn) (4.1)

with mappings fn : Rd → R
d which may vary with time n. They are assumed to be

continuous here. Define

Z
2
≥ := {(n, n0) ∈ Z

2 : n ≥ n0},

The nonautonomous difference equation (4.1) generates a solution mapping

φ : Z2
≥ × R

d → R
d

through iteration, i.e.,

φ(n, n0, x0) := fn−1 ◦ · · · ◦ fn0(x0)
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for all n > n0 with n0 ∈ Z, and each x0 ∈ R
d with the initial value φ(n0, n0, x0) :=

x0.
These solution mappings of nonautonomous difference equations (4.1) gener-

ate an abstract discrete time nonautonomous dynamical system formulated as a 2-
parameter semigroup or process [7, 8] on the state state space Rd and time set Z.

Definition 4.1 A (discrete time) process on the state space R
d is a mapping φ :

Z
2≥ × R

d → R
d which satisfies the following initial value, 2-parameter evolution

and continuity properties:

(i) φ(n0, n0, x0) = x0 for all n0 ∈ Z and x0 ∈ R
d ,

(ii) φ(n2, n0, x0) = φ (n2, n1,φ(n1, n0, x0)) for all n0 ≤ n1 ≤ n2 in Z and x0 ∈ R
d ,

(iii) the mapping x0 �→ φ(n, n0, x0) of Rd into itself is continuous for all (n, n0) ∈
Z
2≥.

Entire solutions, which are defined for all n ∈Z, play an important role in dynam-
ical systems. An entire solution solution χ∗ of a process satisfies

φ(n, n0,χ
∗
n0) = χ∗

n for all (n, n0) ∈ Z
2
≥.

The obvious idea of convergence of other solutions to an entire solution χ∗ reads
∥
∥φ (n, n0, x0) − χ∗

n

∥
∥ → 0 as n → ∞ (n0 fixed). (4.2)

It involves a moving target and is called forward convergence (Fig. 4.1).
To obtain convergence to the point χ∗

n for a particular time n one has to start
progressively earlier, i.e.,

∥
∥φ (n, n0, x0) − χ∗

n

) ‖ → 0 as n0 → −∞ (n fixed). (4.3)

It is called pullback convergence.
Note that pullback convergence does not involve the system running backwards in

time, rather it runs forwards from an ever earlier starting time. Pullback convergence
has long been used under other names, e.g., to construct entire solutions [20], prob-
ability measures, e.g., [6], or by Kolmogorov under the name absolute probability
(Fig. 4.2).

Fig. 4.1 Forward
convergence as t → ∞



58 P. E. Kloeden and M. Yang

Fig. 4.2 Pullback attraction
as t0 → −∞

Forward and pullback convergence coincide in an autonomous system, but are
independent of each other in a nonautonomous one. Consequently, two types of
nonautonomous attractors arise from these convergences, a forward attractor and a
pullback attractor.

4.3 Invariant Sets and Attractors of Processes

The nonautonomous case differs crucially from the autonomous one and requires the
introduction of new concepts The following definitions and results are taken from
the monographs [15, 17], see also the papers [3, 19, 24, 25].

Definition 4.2 A family A = {An : n ∈ Z} of nonempty subsets of R
d is φ-

invariant if
φ

(

n, n0, An0

) = An, for all (n, n0) ∈ Z
2
≥,

or, equivalently, if fn(An) = An+1 for all n ∈ Z. It is said to be uniformly bounded
if there exists a bounded subset B of Rd such that An ⊂ B for all n ∈ Z.

A uniformly bounded φ-invariant family is characterised by the bounded entire solu-
tions.

Proposition 4.1 A uniformly bounded family A = {An : n ∈ Z} is φ-invariant if
and only if for every pair n0 ∈ Z and x0 ∈ An0 there exists a bounded entire solution
χ such that χn0 = x0 and χn ∈ An for all n ∈ Z.

Forward and pullback convergences can be used to define two distinct types of
nonautonomous attractors for a process φ. Define

distRd (x, B) := inf
b∈B ‖x − b‖, distRd (A, B) := sup

a∈A
distRd (a, B)

for nonempty subsets A, B of Rd .

Definition 4.3 A φ-invariant familyA = {An : n ∈ Z} of nonempty compact sub-
sets of Rd is called a forward attractor if it forward attracts bounded subsets D of
R

d , i.e.,
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distRd (φ (n, n0, D), An) → 0 as n → ∞ (n0 fixed) (4.4)

and a pullback attractor if it pullback attracts bounded subsets D of Rd , i.e.,

distRd (φ (n, n0, D), An) → 0 as n0 → −∞ (n fixed). (4.5)

Random attractors [6] of random dynamical systems and snapshot attractors in
physics [26] are essentially pullback attractors.

The existence of a pullback attractor follows from that of a pullback absorbing
family.

Definition 4.4 A family B = {Bn : n ∈ Z} of nonempty compact subsets of Rd is
called pullback absorbing if for every bounded subset D ofRd and n ∈Z there exists
an N (n, D) ∈ N such that

φ (n, n0, D) ⊆ Bn for all n0 ≤ n − N (n, D).

It is said to be φ-positively invariant if φ
(

n, n0, Bn0

) ⊆ Bn for all (n, n0) ∈ Z
2≥.

The following theoremgeneralises of awell-known theoremon the existence of an
autonomous global attractor. The assumption about a φ-positively invariant pullback
absorbing family is not a serious restriction, since one can always be constructed
given a general pullback absorbing family [19].

Theorem 4.1 Suppose that a processφ has aφ-positively invariant pullback absorb-
ing familyB = {Bn : n ∈ Z}.

Then there exists a global pullback attractorA = {An : n ∈ Z} with component
sets determined by

An =
⋂

j≥0

φ
(

n, n − j, Bn− j
)

for all n ∈ Z. (4.6)

Moreover, if A is uniformly bounded, then it is unique.

4.4 Construction of Forward Attractors

The situation is somewhat more complicated for forward attractors than for pullback
attractors due to some peculiarities of forward attractors [25], e.g., they need not be
unique.

Example 4.1 For each r ≥ 0 the process generated by

xn+1 = fn(xn) :=
{

xn, n ≤ 0,
1
2 xn, n > 0

(4.7)
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has a forward attractor A (r) with component subsets

A(r)
n =

{

r [−1, 1], n ≤ 0,
1
2n r [−1, 1], n > 0.

(4.8)

These forward attractors are not pullback attractors.
For a long time there was no counterpart of Theorem 4.1 for nonautonomous

forward attractors. In fact, such construction (4.6) was shown byKloeden and Lorenz
[12, 13] to hold within any positively invariant family, but provides only a candidate
for a forward attractor; other conditions must also hold. A key observation for the
construction of a forward attractor is provided by the next theorem [13]. It is based
on the following important property of forward attractors [13], which requires the
following definition of a forward absorbing family. See also [12].

Definition 4.5 A family B = {Bn : n ∈ Z} of nonempty compact subsets of Rd is
called forward absorbing if for every bounded subset D ofRd and n ∈ Z there exists
an N (n, D) ∈ N such that

φ (n, n0, D) ⊆ Bn for all n ≥ n0 + N (n, D).

Proposition 4.2 A uniformly bounded forward attractor A = {An : n ∈ Z} in R
d

has a φ-positively invariant family B = {Bn : n ∈ Z} of nonempty compact subsets
with An ⊂ Bn for n ∈ Z, which is forward absorbing.

Theorem 4.2 Suppose that a process φ on R
d has a φ-positively invariant family

B = {Bn : n ∈ Z} of nonempty compact subsets of Rd .
Then φ has a maximal φ-invariant family A = {An : n ∈ Z} in B of nonempty

compact subsets determined by

An =
⋂

n0≤n

φ
(

n, n0, Bn0

)

for each n ∈ Z. (4.9)

In view of Proposition 4.2, the components sets of any forward attractor can
be constructed in this way. Note that nothing is assumed here about the dynamics
outside of the familyB.

4.4.1 A Counterexample

Consider the piecewise autonomous equation

xn+1 = λn xn
1 + |xn| , λn :=

{

λ, n ≥ 0,

λ−1, n < 0
(4.10)
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Fig. 4.3 Trajectories of the
piecewise autonomous
equation (4.10) with λ = 1.5

−1

5

2

0

10−5

1

−10 15
−2

0

for some λ > 1, which corresponds to a switch between the two autonomous prob-
lems at n = 0. Its pullback attractor A of the resulting nonautonomous system has
component sets An ≡ {0} for all n ∈ Z corresponding to the zero entire solution
(Fig. 4.3).

The pullback attractor is not a forward attractor in this example. In fact, this
example does not even have a bounded forward attractor. This is not surprising
since pullback attraction depends on the past behaviour of the system and not on its
behaviour in the distant future. See [18].

4.4.2 A Condition Ensuring Forward Convergence

The above counterexample shows that a φ-invariant family A = {An, n ∈ Z} con-
structed in Theorem 4.2 need not be a forward attractor, even when the φ-positively
invariant familyB = {Bn, n ∈ Z} is a forward absorbing family. Another important
observation is that there should be no ω-limit points from inside the family B that
are not ω-limit points from inside the family A .

For each n0 ∈ Z, the forward ω-limit set with respect to B is defined by

ωB (n0) :=
⋂

m≥n0

⋃

n≥m

φ(n, n0, Bn0).

Suppose that the Bn are uniformly bounded in a compact set B, i.e., Bn ⊂ B. Then
ωB (n0) is nonempty and compact as the intersection of nonempty nested compact
subsets and

lim
n→∞ distRd

(

φ(n, n0, Bn0), ωB (n0)
) = 0 (fixed n0).
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Since An0 ⊂ Bn0 and An = φ(n, n0, An0) ⊂ φ(n, n0, Bn0)

lim
n→∞ distRd (An, ωB (n0)) = 0 (fixed n0). (4.11)

Moreover, ωB (n0) ⊂ ωB (n′
0) ⊂ B for n0 ≤ n′

0. Hence the set

ω∞
B :=

⋃

n0∈Z
ωB (n0)

is a nonempty and compact subset of B. From (4.11) it is clear that

lim
n→∞ distRd

(

An, ω∞
B

) = 0. (4.12)

The ω-limit points for dynamics starting inside the family of sets A are defined by

ω∞
A :=

⋂

n0∈Z

⋃

n≥n0

An =
⋂

n0∈Z

⋃

n≥n0

φ(n, n0, An0) ⊂ B,

which is nonempty and compact as a family of nested compact sets. Obviously, ω∞
A⊂ ω∞

B ⊂ B. The example below shows that the inclusions may be strict.
The following result was proved in [13].

Theorem 4.3 A is forward attracting from withinB if and only if ω∞
A = ω∞

B .
IfB is forward absorbing, then A will then be a forward attractor.

4.5 Forward Attracting Sets

Forward attraction (4.4) is very different conceptually from pullback attraction (4.5)
in that it is about what happens in the distant future and not in actual time, i.e., current
time. Pullback convergence, is in this sense the natural generalisation of convergence
in autonomous systems, which depends only on the elapsed time since starting, so
its limit sets exist, in fact, in actual time. Moreover, as seen in system (4.7) above,
forward attractors need not be unique.

A curious feature of forward attractors in the sense of Definition 4.3 is that they
require the entire past history of the system to be known. Indeed, its construction
in Theorem 4.2 is based on pullback convergence, although forward convergence
is about the distant future and should be independent of the past. In fact, forward
convergence should not even require the system to be defined in the past.

The future limiting dynamics in (4.10) is contained in the omega limit set ω∞
B . It

includes what Haraux [9] and Vishik [30] called a uniform attractor, i.e., a compact
set which attracts the forward dynamics of the system uniformly in the initial time
and is minimal in the sense that it is contained in all sets with this property.
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Fig. 4.4 Solutions of xn+1
= 1

2 xn + e−n with different
initial conditions. The set {0}
is not invariant but looks
more and more more
invariant for later starting
times n0, i.e., asymptotically
invariant
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However the definition of ω∞
B does not require the system to be defined in the

distant past or for the attraction to be uniform in the initial time. Moreover, nothing
is said about invariance in this definition. For this reason (4.10), ω∞

B will be called
the forward attracting set.

In the piecewise autonomous system, (4.10), ω∞
B = [1 − λ,λ − 1] is positively

invariant for all time, but only invariant for negative time. The situation can be more
complicated (Fig. 4.4).

4.5.1 Asymptotic Invariance

Asymptotic invariance means that a set becomes more and more invariant the later
one starts, [10, 11, 16, 21].

Definition 4.6 A set A is said to be asymptotically positively invariant if for any
monotonic decreasing sequence εp → 0 as p → ∞ there exists a monotonic increas-
ing sequence Np → ∞ as p → ∞ such that

φ (n, n0, A) ⊂ Bεp (A) , n ≥ n0,

for each n0 ≥ Np, where

Bεp (A) := {x ∈ R
d : distRd (x, A) < ε}.

Definition 4.7 A set A is said to be asymptotically negatively invariant if for every
a ∈ A, ε > 0 and N > 0, there exist nε and aε ∈ A such that

‖ϕ (nε, nε − N , aε) − a‖ < ε.
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Some additional assumptions about the future behaviour of the system are needed
to ensure asymptotical positive or negative invariance.

Assumption 4.1 There exists a φ-positive invariant compact subset B in R
d such

that for any bounded subset D of Rd and every n0 ≥ N ∗ there exists a ND ≥ 0 for
which

φ(n, n0, x0) ∈ B ∀n ≥ n0 + ND, x0 ∈ D.

Assumption 4.2 The process is Lipschitz continuous in initial conditions in B on
finite time integer intervals [n0, n0 + N ] uniformly in n0 ≥ N ∗, i.e., there exists a
constant LB > 0 independent of n0 ≥ N ∗ such that

‖ϕ(n, τ , x0) − ϕ(n, τ , y0)‖ ≤ ‖x0 − y0‖ eLB (n−τ ) ≤ ‖x0 − y0‖ eLB N

for all x0, y0 ∈ B and N ∗ ≤ τ < n ≤ τ + N .

Theorem 4.4 Let Assumption 4.1 hold, then ω∞
B is asymptotically positively invari-

ant. If, in addition, Assumptions 4.2 holds, then ω∞
B is also asymptotically negatively

invariant.

Assumption 4.2 holds for a nonautonomous difference equation if the functions
the fn : Rd → R

d are Lipschitz continuous on B uniformly in n ≥ N ∗, i.e., only in
the distant future.

4.6 Skew Product Flows

The formulation of a skewproduct flow ismore complicated than that of a process, but
it includes more information about how the system changes in time [11]. It consists
of an autonomous dynamical system θ (full group) on a base space P , which is the
source of the nonautonomity in a cocycle mapping ϕ acting on the state space Rd .
The autonomous dynamical system here is often called the driving system.

Definition 4.8 A discrete time skew product flow (θ,ϕ) on P × R
d consists of a

discrete time autonomous dynamical system θ = {θn}n∈Z acting on a metric space
(P, dP), which is called the base space, i.e.,

(i) θ0(p) = p, (i i) θn+m(p) = θn ◦ θm(p), (i i i) (n, p) �→ θn(p) continuous

for all p ∈ P and s, t ∈ Z, and a cocycle mapping ϕ : Z+ × P × R
d → R

d acting
on a metric space (Rd , dd

R
), which is called the state space, i.e.,
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(1) initial condition: ϕ(0, p, x) = x for all p ∈ P and x ∈ R
d ,

(2) cocycle property: ϕ(n + m, p, x) = ϕ(s, θm(p),ϕ(m, p, x)) for all n,m ∈
Z

+, p ∈ P and x ∈ R
d ,

(3) continuity: (p, x) �→ ϕ(n, p, x) is continuous for each n ∈Z+.

The cocycle property is a generalisation of both the semi-group property and the
2-parameter semi-group property.

Remark 4.1 Note thatwehaveusedφ to denote a process andϕ to denote the cocycle
mapping of a skew product flow. A process φ can be written as a skew product flow
with the driving system given by the left shift operator θ(n0) = n0 + 1 on the base
space P = Z and the cocycle mapping defined by ϕ(n, n0, x0) = φ(n + n0, n0, x0).

Remark 4.2 The base system θ serves as a driving system which makes the cocycle
mapping nonautonomous. It is like a clock which keeps track of time.

Skew product flows often have very nice properties when the base space P is
compact. This occurs when the driving system is, for example, periodic or almost
periodic. It provides more detailed information about the dynamical behaviour of the
system. George Sell, a pioneering researcher in the area, e.g., see [27], described the
effect of a compact base space as being equivalent to compactifying time.

4.6.1 An Example

Consider a nonautonomous difference equation on R
d = R given by

xn+1 = f jn (xn) , n ∈ Z,

where the functions f1, . . ., fN are continuous and the jn are the components of a bi-
infinite sequence s = (. . . , j−1, j0, j1, j2, . . .). Let P = {1, . . . , N }Z be the totality
of all such bi-infinite sequences. Then

dP
(

s, s′
) :=

∞
∑

n=−∞
2−|n| ∣∣ jn − j ′n

∣
∣

defines a metric on P and(P, dP) is a compact metric space.
Let θ be the left shift operator on P , i.e., (θs)n = jn+1 for n ∈ Z. Define θn = θn ,

the n-fold composition of θ when n > 0 and of its inverse θ−1 when n < 0. Then
{θn}n∈Z is a group under composition on P and the θn : P → P are continuous in
(P, dP).

Moreover, the mapping ϕ : Z+ × P × R
d → P defined by

ϕ (n, s, x0) = f jn−1 ◦ · · · ◦ f j0 (x0)
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for n ≥ 1 is a discrete-time cocycle mapping. It is clear that the mapping x0 �→
ϕ (n, s, x0) is continuous due to the continuity of the composition of continuous
functions. One can also show that the mappings s �→ ϕ (n, s, x0) are continuous
on P , see [15].

4.6.2 Attractors of Skew Product Flows

Then definition of invariance and pullback and attractors for attractors generalise
to skew product flows. Essentially, θn(p0) replaces the actual time n + n0 and p0
replaces the initial time n0.

Definition 4.9 A family A = {Ap : p ∈ P} of nonempty subsets of Rd is called
ϕ-invariant for a skew-product system (θ,ϕ) on P × X if

ϕ(n, p, Ap) = Aθn(p) for all n ∈ Z
+, p ∈ P.

It is called ϕ- positively invariant if

ϕ(n, p, Ap) ⊆ Aθn(p) for all n ∈ Z
+, p ∈ P.

Definition 4.10 A family A = {Ap : p ∈ P} of nonempty compact subsets of Rd

is called pullback attractor of a skew-product system (θ,ϕ) on P × R
d if it is ϕ-

invariant and pullback attracts bounded sets, i.e.,

distRd

(

ϕ( j, θ− j (p), D), Ap
) = 0 for j → ∞ (4.13)

for all p ∈ P and all bounded subsets D of Rd .
It is called a forward attractor if it is ϕ-invariant and forward attracts bounded

sets, i.e.,
distRd

(

ϕ( j, p, D), Aθ j (p)
) = 0 for j → ∞. (4.14)

As with processes, the existence of a pullback for skew-product systems ensured by
that of a pullback absorbing system.

Definition 4.11 A family B = {Bp : p ∈ P} of nonempty compact subsets of Rd

is called a pullback absorbing family for a skew-product system (θ,ϕ) on P × R
d

if for each p ∈ P and every bounded subset D of Rd there exists an Np,D ∈ Z
+ such

that

ϕ
(

j, θ− j (p), D
) ⊆ Bp for all j ≥ Np,D, p ∈ P.

The following result generalises the theorem for autonomous semidynamical sys-
tems and Theorem 4.1 for processes. The proof is similar in the latter case, essentially
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with n and θ−n(p) changed to n0 and n0 − n, respectively, but additional complica-
tions due to the fact that the pullback absorbing family is no longer assumed to be
ϕ-positively invariant here.

Theorem 4.5 Let (P, dP) be a complete metric space and suppose that a skew-
product system (θ,ϕ) on P × R

d has a pullback absorbing set family B = {Bp :
p ∈ P}. Then there exists a pullback attractor A = {Ap : p ∈ P} with component
sets determined by

Ap =
⋂

n≥0

⋃

j≥n

ϕ
(

j, θ− j (p), Bθ− j (p)
)

. (4.15)

This pullback attractor is unique if its component sets are uniformly bounded.

The pullback attractor of a skew-product system (θ,ϕ) has some nice properties
when its component subsets are contained in a common compact subset or if the
state space P of the driving system is compact. See [31].

Proposition 4.3 Suppose that A(P) :=⋃

p∈P Ap is compact for a pullback attractor
A = {Ap : p ∈ P}. Then the set-valued mapping p �→ Ap is upper semi-continuous
in the sense that

distRd

(

Aq , Ap
) → 0 as q → p.

On the other hand, if P is compact and the set-valued mapping p �→ Ap is upper
semi-continuous, then A(P) is compact.

Pullback attractors are in general not forward attractors. However, when the state
space P of the driving system is compact, then one has the following partial forward
convergence result for the pullback attractor [31].

Theorem 4.6 In addition to the assumptions of Theorem 4.5, suppose that P is
compact and suppose that the pullback absorbing familyB is uniformly bounded by
a compact subset C of X. Then

lim
n→∞ sup

p∈P
distRd (ϕ(n, p, D), A(P)) = 0 (4.16)

for every bounded subset D of X, where A(P) := ⋃

p∈P Ap, which is compact.

If the pullback attractor here consists of singleton sets corresponding to a periodic
entire trajectory, then A(P) represents the limit cycle and the convergence (4.16)
corresponds to orbital stability.
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4.6.3 Skew Product Flows as Semi-dynamical Autonomous
Systems

A skew product flow (θ,ϕ) on P × R
d is an autonomous semi-dynamical system Π

on the extended state space X := P × R
dwith the metric

distX ((p1, x1), (p2, x2)) = dP(p1, p2) + ‖(x1 − x2‖,

where Π : T+ × R
d → R

d is defined by

Π (t, (p0, x0)) = (θt (p0),ϕ(t, p0, x0)) .

The initial condition and continuity properties of Π are straightforward. The
semi-group property follows from that of θ and the cocycle property of ϕ:

Π (s + t, (p0, x0)) = (θs+t (p0),ϕ(s + t, p0, x0))

= (θs ◦ θt (p0),ϕ(s, θt (p0),ϕ(t, p0, x0)))

= Π (s, (θt (p0),ϕ(t, p0, x0))) = Π (s,Π (t, (p0, x0))) .

This representation as an autonomous semi-dynamical system is useful since it pro-
vides insights into how one could define invariant sets and attractors for nonau-
tonomous systems.

Proposition 4.4 Suppose that A is a uniform attractor (i.e., uniformly attracting
in both the forward and pullback senses) of a skew-product system (θ,ϕ) and that
⋃

p∈P Ap is precompact in Rd .
Then the union A := ⋃

p∈P{p} × Ap is the global attractor of the autonomous
semidynamical system Π .

Without uniform attraction as in Proposition 4.4 a pullback attractor need not give a
global attractor, but the following result does hold.

Proposition 4.5 If A is a pullback attractor for a skew-product system (θ,ϕ) and
⋃

p∈P Ap is precompact in R
d , then A := ⋃

p∈P{p} × Ap is the maximal invariant
compact set of the autonomous semidynamical system Π .

The setA here need not be the global attractor of Π . In the opposite direction, the
global attractor of the associated autonomous semidynamical system always forms
a pullback attractor of the skew-product system.

Proposition 4.6 If the autonomous semidynamical system Π has a global attractor

A =
⋃

p∈P

{p} × Ap,

then A = {Ap : p ∈ P} is a pullback attractor for the skew-product system (θ,ϕ).
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4.7 Concluding Remark

The asymptotic behaviour of nonautonomous dynamical systems is muchmore com-
plicated than for autonomous dynamical systems. Pullback attractors have attracted
a lot of attention in the past three decades and play an important role, but they do not
not completely characterize the asymptotic behaviour of nonautonomous dynamical
systems. They are just part of the picture.

When a pullback attractor is also forward attracting, then we have the ideal situa-
tion. But this situation usually does not hold. Then we still have the forward omega
limit sets, which are more general than the Vishik uniform attractor since they do not
require a rate of attraction that is uniform in the initial time, which is unrealistic in
many contexts. Each of these concepts provides us with useful information about the
asymptotic behaviour of a nonautonomous dynamical system. Taken together they
give us the complete picture.
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Chapter 5
Normal Hyperbolicity for
Non-autonomous Oscillators
and Oscillator Networks

Robert S. MacKay

Abstract In this chapter, non-autonomous oscillators are considered as mappings
from input functions of time to a circle’s worth of functions giving the state as
a function of time. This view is justified using the theory of normally hyperbolic
submanifolds of dynamical systems. It illuminates the phenomena of phase-locking,
synchronisation and chimera; it allows an extension of the concept of coupling;
and it allows a hierarchical aggregation treatment of synchronisation in networks of
oscillators. The view extends to excitable and chaotic oscillators.

5.1 Introduction

Aneta Stefanovska expressed a vision “to build a self-consistent theory of non-
autonomous oscillators” (June 2014). In this direction she introduced the class of
“chronotaxic” systems [27], defined as “oscillatory systems with time-varying, but
stable, amplitudes and frequencies”.

This chapter presents a view of a non-autonomous oscillator as a mapping from
input functions of time to a circle of possible solutions (state functions of time). It
indicates how this view encompasses chronotaxic systems and enables one, at least
conceptually, to understand the extent of synchronisation in networks of oscilla-
tors, whether autonomous or not. For the latter a hierarchical aggregation scheme is
introduced.

The approach is based on the theory of normal hyperbolicity [10, 15]. This the-
ory is the mathematical expression of Haken’s slaving principle [13], the idea that
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some variables for a dynamical system might contract relatively rapidly onto some
invariant submanifold in the state space, and then it suffices to study the dynamics
on the submanifold. Two key results of normal hyperbolicity theory are: (i) condi-
tions guaranteeing existence of such a submanifold, called a normally hyperbolic
(NH) submanifold, and (ii) their smooth persistence of normally hyperbolic (NH)
submanifolds as parameters are varied smoothly. It was developed before Haken’s
slaving principle and deserves to be better known in the physics community. It is a
generalisation of centre manifold theory, which is the main mathematical tool Haken
used, but has much wider scope. An obstacle is that it demands considerable techni-
cal expertise in mathematical analysis. Yet the obstacles are genuine: it turns out that
NH submanifolds are differentiable some number r times, depending on the ratio
between normal and tangential contraction rates, but typically not more than r times.
This is important to recognise, as there is a tendency in physics to consider such
functions as pathologies (though physicists do understand that there can be fractal
functions).

It is a project on which I have been working for many years, notably with Ph.D.
student Stephen Gin (2006–13). It was prompted initially by Mohammad Ghaffari
Saadat in 2003, who had formulated a limit-cycle model for a bipedal robot walking
down a slope [28] and asked me how much non-uniformity of slope it could cope
with. I proposed to tackle this problem by fitting it into the framework of the non-
autonomous version of the theory of NH submanifolds, where the result of a not too
large forcing function on an oscillator is a circle of possible trajectories. Gin and
I attempted to develop good versions of the proofs of normal hyperbolicity results
to produce realistic conditions guaranteeing the outcome [12]. Our approach is still
incomplete, but I present here the key ideas.

In the world of conservative dynamics, an oscillator is considered to be a Hamilto-
nian systemwith an elliptic equilibrium point; this view has fundamental importance
but is not the appropriate one for present purposes.

Outside the world of conservative dynamics, an oscillator is usually considered to
be an autonomous dynamical system with an attracting periodic orbit. The concept
has been extended to cater for chaotic oscillators, but I will postpone treating that
extension until near the end of this chapter.

This concept of oscillator as a systemwith an attracting limit-cycle, however, fails
to include themany situationswhere it is subject to time-dependent forcing. Also, in a
network of oscillators, each is subject to input fromothers, in general time-dependent,
so even if the network is autonomous it is useful to consider time-dependent forcing
on each of its oscillators.

So I propose a view of an oscillator as a mapping from input functions f of time to
a circle’s worth of solutions for its state x as a function of time. Each input function
f (possibly with more than one component) causes a response xθ (a function of time)
with a phase θ ∈ S1 labelling the different possible responses. This view is justified
by the theory of normal hyperbolicity, at least for not too strong forcing. It is also
my interpretation of chronotaxic systems.

The idea is to consider a non-autonomous system ẋ = v(x, t) on a state space X
as an autonomous system in the extended state space X × R, with the real line R
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representing time. The dynamics has the form

ẋ = v(x, s) (5.1)

ṡ = 1.

First suppose the vector field v = v0 is independent of s and ẋ = v0(x) has a limit
cycle γ (in the strong sense of a periodic orbit with no Floquet multipliers1 on the
unit circle). The most relevant case for applications might be the attracting case
(all Floquet multipliers inside the unit circle), but one can allow the more general
situation. Then in X × R, the extended system (5.1) has an extended version of γ,
namely an invariant cylinder γ × R. The trajectories form helices on the cylinder,
representing the same periodic solution but shifted in s.

This cylinder is an example of aNHsubmanifold. In general, aNHsubmanifold for
aC1 dynamical system is an invariantC1 submanifold forwhich the linearised normal
dynamics decomposes into components which contract exponentially in forward or
backward time respectively, and faster than the linearised tangential dynamics. Note
that the use of the word “normal” might suggest perpendicular, but actually, a normal
vector to a submanifold is defined to be an equivalence class of vectors at a point
modulo vectors tangent to the submanifold at that point. In the above case, the
linearised tangential dynamics neither contracts nor expands on average, because
the phase difference between any pair of the helices remains constant. The linearised
normal dynamics decomposes into exponentially contracting components in forward
and backward time, corresponding to the Floquet multipliers inside and outside the
unit circle, respectively.

Now allow v to depend weakly on s. The key result for NH submanifolds is that
they persist underC1-small perturbation. Thus the perturbed system has aC1-nearby
invariant cylinder, no longer in general of product form but diffeomorphic to S1 × R.
Furthermore, the vector field on it is close to that on the unperturbed cylinder, and
the normal dynamics is close to that for the unperturbed case. The solutions on the
perturbed cylinder are not in general just a family of periodic solutions differing
by phase. In particular, there may be solutions on the cylinder to which all nearby
ones converge in forward time. There may also be solutions to which all nearby ones
converge in backward time. Or neither may happen. In any case, there is a circle’s
worth of solutions on the cylinder, which one could label by the intersections of the
cylinder with s = 0 for example.

In particular, if v(x, t) = v0(x) + f (t) then the forcing function f produces a
circle’s worth of state functions x of time on the cylinder. In general a forcing
function f should be allowed to depend on the state x too, so v = v0(x) + f (x, t),
and by normal hyperbolicity theory, the same conclusion holds.

As an illustration, consider a model of a quasiperiodically forced limit-cycle
oscillator from [6]:

1The Floquet multipliers of a periodic orbit are the eigenvalues of the derivative of the return map
to a transverse section.
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ẋ = −qx − ωy (5.2)

ẏ = ωx − qy + γ f (t),

with q = α(
√
x2 + y2 − a), f (t) = sin 2πt + sin 4t , α, a > 0, γ ≥ 0 (more natural

would be q = α(x2 + y2 − a2) because it makes the dynamics smooth at the origin,
but the interest is in the behaviour for r = √

x2 + y2 near a). In polar coordinates
(r, θ) and extended state-space, this is

ṙ = −αr(r − a) + γ f (s) sin θ (5.3)

θ̇ = ω − γ

r
f (s) cos θ

ṡ = 1.

For γ = 0 there is an invariant cylinder r = a. It attracts exponentially with exponent
−αa and the motion on the cylinder is θ̇ = ω, ṡ = 1, which has Lyapunov exponents
0. So the cylinder isNHand persists to a deformed invariant cylinder for small enough
γ. A rough estimate of the range of γ for which persistence is guaranteed is given by
the range for which tangential contraction is weaker than normal contraction on the
unperturbed cylinder. The normal contraction rate (onto the unperturbed cylinder) is
still αa. The tangential contraction (or expansion if negative) − ∂θ̇

∂θ
= − γ

r f (s) sin θ.
This is smaller thanαa for all s, θ iff 2γ < αa2. Thus one can expect the NH cylinder
to persist for γ up to something of the order of αa2/2.

When γ exceeds αa2/2 one can not expect the invariant cylinder to persist. It is
shown numerically in [6] that the cylinder is replaced by a (non-autonomous) chaotic
attractor with one unstable Lyapunov exponent (coming from the s, θ for which the
tangential dynamics is expanding). For a class of examples where a NH submanifold
(in fact two 2-tori) can be proved to break up, see [2]. In this chapter, however, I will
concentrate on regimes of weak enough coupling that NH submanifolds persist.

As an aside, this view of an oscillator fits in Willems’ “behavioural approach” to
systems and control [29]. His view was that the description of a dynamical system
should be considered to be the restrictions on the set of possible functions of time for
all variables. Normal hyperbolicity strikes me a key tool for delivering his approach.
On the other hand, he also proposed that one should go beyond the idealisation of
inputs and outputs by treating all coupling as two-way, a line that I shall not follow
consistently.

In this chapter I will explain how this view of an oscillator illuminates the phe-
nomena of phase-locking, synchronisation and chimera [1], allows to extend the
concept of coupling, and allows a hierarchical reduction treatment of synchronisa-
tion in networks of oscillators. I will extend the results to allow excitable oscillators
and chaotic oscillators. I will outline how the theory of normal hyperbolicity under-
lies the results. There is a huge literature on synchronisation, e.g. [22], and much of
what I will say will be familiar but the important emphasis here is on synchronisation
in aperiodically forced systems, which has been treated much less.
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Perhaps this direction is not what Aneta had in mind, but I believe it provides
a self-consistent theory for non-autonomous oscillators and I hope that it will be
useful.

5.2 Phase-Locking

It is well-known that an oscillator may phase-lock to some features of its inputs.
Indeed, this is the principle of phase-locked loops in electronic engineering [5] and
of synchronous generators and motors in AC electrical networks.

My definition of phase-locking of an oscillator to forcing is that the NH cylinder
(assumed attracting) has an attracting trajectory on it and the initial condition is in
its basin of attraction.

Any discussion of attractors for non-autonomous systems requires care because
the dynamics is unbounded in the time-direction of extended state-space, so there
are inequivalent choices of neighbourhoods of a trajectory. For example, for the
2D system ẋ = x, ṡ = 1, any trajectory has a neighbourhood of attraction, despite
looking unstable, e.g. for the solution x = 0 just take neighbourhood of the form
|x | < εe2s . So I make precise here that by “attracting trajectory” I mean the case
with zero unstable space of a uniformly hyperbolic trajectory in the non-autonomous
sense. To explain what this means would take some space, so I refer the reader to
[4] (with my Ph.D. student Zahir Bishnani), but the important feature is to choose a
notion of distance in extended state-space that is uniform in time (so that one does
not allow neighbourhoods like that in the above example). There might be a bundle
of trajectories which all converge together in forward time, but in general there
is only one trajectory in the bundle that has a uniform-in-time neighbourhood of
attraction. It is a pullback attractor (for this concept, see the contribution by Kloeden
in this volume). My concept of attracting trajectory is distinct, however, from that of
pullback attractor, because it can also occur that a pullback attractor is not uniformly
hyperbolic (it may be repelling after some time).

An alternative way to describe phase-locking is that the oscillator is synchronised
to its inputs. I use “synchronise” in a weak sense: that to a given input function of
time there is a locally unique forwards asymptotic solution (the strong sense applies
to systems of identical oscillators with a symmetry of the coupling that maps any
oscillator to any other, and consists in all oscillators doing the same; for an example,
see [31]). Note that a forced oscillator may have more than one such attracting
trajectory; this would allow different synchronisations to the same input.

This is in contrast to non-synchronisation, where there is a circle’s worth of solu-
tions that do not converge asymptotically to a discrete subset. The strongest version
of non-synchronisation is when there is a time-dependent choice of C1 coordinate φ
around the cylinder, replacing an initial coordinate θ, such that φ̇ = ω(t), a positive
function of t only, and ∂φ

∂θ
and its inverse are bounded. Then with a new time τ

defined by dτ/dt = ω(t), we obtain dφ/dτ = 1. It would be interesting to investi-
gate the probability of this case with respect to a distribution of oscillator frequencies
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for given weak forcing, perhaps obtaining a sort of non-autonomous KAM result,2

extending the theory of reducibility of cocycles (see [7] for an early example).
The main conclusion of this section is that synchronisation of an oscillator to its

inputs is dimension-reduction. In particular, if there is no immediate feedback from
the oscillator to any of its inputs, then one could delete that oscillator, replacing its
outputs by some modifications of the outputs from its inputs.

5.3 Synchronisation of Two Oscillators

Let us start with two autonomous oscillators xi = vi (xi ), i = 1, 2, meaning each has
a limit cycle γi , and couple them in the standard sense of a modification to the vector
field of the product system, depending on the state of each but not too strongly, so

ẋi = vi (xi ) + gi (x1, x2), (5.4)

with gi C1-small. Then the product system has a NH 2-torus, being a small pertur-
bation of γ1 × γ2.

If the difference of the frequencies of the uncoupled limit cycles is smaller in a
suitable dimensionless sense than the coupling then the NH torus has an attracting
limit cycle on it, which makes one turn in the γ2 direction for each turn in the
γ1 direction. I say the two oscillators have gone into 1 : 1 synchronisation. Recall
Huygens’ clocks. The torus may have more than one attracting limit cycle on it, in
which case several synchronised solutions are possible. It may also have unstable
limit cycles on it.

Similarly, if the frequencies are close to being in (coprime) integer ratio m : n
then coupling might produce an attracting m : n limit cycle on the NH torus, which
makes m revolutions in the γ1 direction and n in the γ2 direction per period. On the
other hand, for weak coupling and smooth enough dynamics, the non-synchronised
situation occurs with high probability. More precisely, if one adds a free parameter
varying the unperturbed frequency ratio, then KAM theory gives a set of parameter
values of nearly full measure for which the dynamics is conjugate to a constant vector
field on a 2-torus with irrational frequency ratio (e.g. [17] for a version by my Ph.D.
student João Lopes Dias). Thus synchronisation does not always result.

Now consider the non-autonomous situation, where one or both of the oscillators
is subject to external forcing. If the forcing is not too strong then the resulting system
has a NH submanifold in extended state space, diffeomorphic to γ1 × γ2 × R, which
I call a torus-cylinder. More generally, for any manifold M I define an M-cylinder
to be a manifold diffeomorphic to M × R. Thus an ordinary cylinder can be called
a circle-cylinder. If the unperturbed frequencies are close to integer ratio m : n then
the NH submanifold might contain a NH attracting submanifold diffeomorphic to a

2The original KAM theory gives a set of invariant tori for near-integrable Hamiltonian systems, the
measure of whose complement goes to zero as the perturbation from integrability goes to zero.
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circle cross time, being a perturbation of the product of a m : n synchronised limit
cycle for the autonomous system and time. In this situation the non-autonomous pair
of oscillators can be replaced by a single one.

So again, synchronisation of two oscillators is a dimension-reduction.

5.4 What is Coupling?

In the previous section I used the standard dynamical systems notion for coupling
as a perturbation of the product of two vector fields. One might want, however, to
allow more general forms of coupling, for example incorporating time-delays or
coupling via an intermediate dynamical system. Furthermore, suppose one achieved
a dimension-reduction as in Sect. 5.2 or 5.3 and then wants to consider how the new
effective oscillator is coupled to others that originally were coupled to one or both
of the pair of oscillators. This is no longer describable as a standard perturbation of
the product of vector fields.

So I generalise the notion of coupling of two non-autonomous oscillators. As
already defined, a non-autonomous oscillator is a non-autonomous system with NH
cylinder on which the dynamics can be described by one phase θ with θ̇ = f (θ, t). A
coupling of two non-autonomous oscillators is a non-autonomous system with a NH
torus-cylinder on which the dynamics can be described by two phases θ = (θ1, θ2)
with θ̇i = f̃i (θ, t) and f̃i (θ, t) close to fi (θi , t) for some fi .

Then the dynamics on the NH torus-cylinder may contain a NH attracting circle-
cylinder, as in the more restricted case of the previous section. If the trajectory is in
its basin of attraction, I say the two oscillators synchronise.

5.5 Synchronisation of N Oscillators

Not too strong coupling of N non-autonomous oscillators produces a NH N -torus-
cylinder. The dynamics on it might contain an attracting NH d-torus-cylinder for
some d < N . If d = 1 the whole group is synchronised and can be replaced by a
single effective non-autonomous oscillator. If d = 0 the whole group is phase-locked
to its inputs and can be eliminated.

Once again, synchronisation, whether partial or complete, means dimension-
reduction.

5.6 Hierarchical Aggregation

In a network of oscillators, the above dimension-reductions can in principle be iter-
ated. First one identifies groups of oscillators which synchronise or phase-lock to
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their inputs. One reduces to a new network of effective oscillators. Then one repeats,
if possible. The end result is a decomposition into synchronised clusters.

Although I did not find out about his work until after I’d proposed this, it is a
direct example of Willems’ “tearing, zooming, linking” approach [29].

One should note that the end result is not necessarily complete synchronisation.
Indeed, it could well be a chimera [1], meaning a system in which some of the
oscillators are synchronised but others behave chaotically. The chaotic ones force
the synchronised ones and the synchronised ones force the chaotic ones, but our
approach of non-autonomous oscillators caters for both of these. There is now a
huge literature on chimera. To me the phenomenon was not a surprise because it
fits in my framework, but without the framework it can admittedly be considered
surprising.

5.7 Normal Hyperbolicity Estimates

To achieve the above dimension-reductions requires good normal hyperbolicity esti-
mates, i.e. results guaranteeing existence of NH submanifolds.

The easiest case, namely, 1D submanifolds, which are just uniformly hyperbolic
trajectories of non-autonomous systems, was already treated in [4] (incidentally, it
was formulated with attracting trajectories in mind, but another application would
be to the unstable trajectories of geophysical flows that form boundaries between
trajectories of different classes, e.g. [11]). So that takes care of the case of phase-
locking.

Higher-dimensional NH submanifolds, however, require more theory. The classic
references are [10, 15]. They are not particularly well adapted to producing practical
estimates. Thus I set Stephen Gin onto developing a better way. His Ph.D. thesis [12]
gives the outcome, but it is not a complete treatment. So here, I sketch an approach
to NH estimates that I believe will be useful. It is in the classic dynamical systems
setting of a vector field on the product of state space and time, but hopefully could
be extended to take care of the more general forms of coupling that I have described
here.

I restrict attention to submanifolds that are torus-cylinders, but of arbitrary dimen-
sion m + 1. So suppose

θ̇ = �(θ, r, t) (5.5)

ṙ = R(θ, r, t),

for θ ∈ T
m , r ∈ U , a neighbourhood of 0 ∈ R

p. I suppose that the product |Rθ||�r |
is small (where subscript denotes derivatives), the r -dynamics is hyperbolic, and the
Green function for linearised normal dynamics decays faster than any contraction
that may occur in θ-dynamics.
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Given a Lipschitz graph r = ρ(θ, t), a candidate for an invariant submanifold,
construct a new one, Tρ, by the following steps:

(1) For all (θ0, t0), let θ() be the trajectory of θ̇(t) = �(θ, ρ(θ, t), t) from θ(t0) = θ0.
(2) Solve ṙ(t) = R(θ(t), r(t), t) for the unique function r() such that r(t) is near

ρ(θ(t), t) for all t .
(3) Set (Tρ)(θ0, t0) = r(t0).

To achieve the second step, I assume that L : C1(R,Rp) → C0(R,Rp) defined by

L[x](t) = ẋ(t) − Rr (θ(t), r(t), t)x(t)

on infinitesimal displacements x in r has bounded inverse. This is equivalent to
the first part of the NH condition, namely a splitting of the normal bundle into
exponentially contracting backwards and forwards subspaces.

Having thus constructed the “graph transform” T , I want to prove that it is a
contraction on a suitable space of graphs and hence has a unique fixed point there,
whichwill be an invariant graph. In the direction of achieving this, define a slope to be
a linear map σ from displacements in θ to displacements in r . For an approximation
σ̃ to the expected derivative ρθ, define Mσ̃ : W 1,∞(R,Rmp) → W 0,∞(R,Rmp) by

Mσ̃[σ] = σ̇ − Rrσ + σ(�θ + �r σ̃)

on slope functions σ of t , where Ws,∞ are the spaces of functions with essentially
bounded sth derivative. Suppose that Mσ̃ has bounded inverse. This is the second part
of the NH condition, namely faster normal contraction than tangential contraction.

Then T should be a contraction in the space of C0 functions with an a priori
Lipschitz constant. So it would have a unique fixed point ρ. Any fixed point is
invariant and actually C1 with slope ρθ being the fixed point of the contraction map
σ �→ M−1

σ [Rθ].
To complete this programme requires detailed estimates. Formulated in terms

of contraction maps as here, it should be possible to obtain excellent estimates,
along the lines of the uniformly hyperbolic case in [4]. We might do best to follow
the approach of [14] (cf. [8]), but replacing their exponential hypotheses by our
hypotheses of invertibility of L and M and modifying their exponentially weighted
norm to use the linearised tangential flow. I would like to finish this one day.

5.8 Extension to Class 1 Neurons

So far, I have considered the simplest type of oscillator, namely limit cycles, but
the treatment can be extended to class I neurons (or excitable oscillators). These are
dynamical systems with an attracting invariant cylinder in the autonomous case and
dynamics on it in simplest form given by
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θ̇ = μ + 1 − cos θ (5.6)

μ̇ = 0.

Since μ is constant, one could think of it as an external parameter, but I wish to
consider it as a state variable because coupling from another neuron can make μ
change in time. It is best to think of μ as bounded, so the attracting cylinder can be
considered an invariant annulus.

They arise in modelling of “excitable neurons” whose frequency goes to zero as a
parameter (μ) is varied and then settle at a μ-dependent resting state, or in reverse go
from a resting state to large amplitude periodic spiking. An example is the Morris-
Lecar model [21], but it was [9] who identified the phenomenon as the unfolding of
a saddle-node on a cycle (I proposed this independently to physiologist H.Barlow in
the same year and then in 1991 proposed to C. Koch the extension to allow crossover
at a “saddle-node loop” [25] to the unfolding of a homoclinic orbit to a saddle). Thus
the non-autonomous version has an attracting NH annulus-cylinder.

I had an undergraduate student study networks of such neurons in 1989/90, with
the state μ of each neuron driven by the spiking of some others (with time-delay
kernels), which produced periodic bursting [19].

Two class I neurons coupled not too strongly have a NH attracting annulus×
annulus-cylinder. Generic bifurcation diagrams in the autonomous case were given
in [3]. The dynamics on it has attracting submanifolds of various types. The non-
autonomous case has non-autonomous versions of them.

The theory of this paper applies just as well to class I neurons as to ordinary
oscillators, with the addition of the μ-direction for each class I neuron.

5.9 Extension to Chaotic Oscillators

The approach can also be extended to chaotic oscillators if they have an attracting
NH submanifold containing the attractor. For example, think of a Rössler attractor
[24], which is contained in a solid torus inR3. Then the non-autonomous system has
a solid-torus-cylinder. A Rössler attractor can be phase-locked to forcing, meaning
that the dynamics is attracted onto a disk-cylinder (a solid torus is the product of
a disk and a circle). This should be quite easy because the Rössler attractor was
observed to be nearly phase-coherent. I interpret that as meaning that there is a
cross-section with nearly constant return time (equivalently, for a given cross-section
� there is a constant c > 0 and a function b : � → R such that the return time
τ (x) = c + b( f (x)) − b(x), where f : � → � is the return map).

Synchronisation of chaotic attractors with NH cylinders of dimensions N1 +
1, N2 + 1 means there is a NH cylinder for the coupled system with dimension
less than N1 + N2 + 1.

Even better, the theory of NH submanifolds extends to NH laminations [15]. A
lamination is a topological space in which each point has a neighbourhood home-
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omorphic to the product of a Euclidean space with a general topological space. It
decomposes into leaves, which are locally submanifolds but in general only injec-
tively immersed, so a leaf may accumulate onto itself. The theory of NH laminations
requires aC1-structure in addition, but is basically the same as for NH submanifolds.
In particular, a NH lamination persists under C1-small perturbation.

This means one can treat some chaotic attractors in greater detail. In particular,
imagine we start with a non-trivial uniformly hyperbolic attractor of an autonomous
system, for example a suspension of a Plykin attractor [23]. This is perhaps less
familiar than Rössler’s attractor but deserves to be better known, as the simplest uni-
formly hyperbolic attractor after equilibria and periodic orbits. The Plykin attractor
was constructed for a discrete-time system, but the map is isotopic to the identity so
one can realise it as the first return map of an associated continuous-time system.
My Ph.D. student Tim Hunt showed an explicit way to realise it in a system of three
ODEs, extended by another Ph.D. student Linling Ru, and less cumbersome ways
have been proposed (though not yet with rigorous justification) [16]. It is a NH lam-
ination, whose leaves are its unstable manifolds (of dimension two: one expanding
dimension and one time-dimension) and they form a Cantor set transversally. Under
time-dependent forcing, it persists to a Cantor set of 3D leaves whose tangent space
is spanned by one expanding dimension and two near-neutral dimensions. The per-
sistence is highly robust, requiring only that any tangential contraction be slower
than any transverse contraction. Then one can ask what happens on the leaves. The
dynamics might collapse onto a 2D subleaf with the same expanding dimension-one
neutral dimension. I would say the attractor has synchronised to the forcing.

Similarly, one could couple a suspended Plykin attractor to a limit-cycle oscillator.
It produces an attractor with a Cantor set of 3D leaves (the product of the 2D leaves of
the chaotic attractor with the limit cycle). The dynamics of each leaf might collapse
onto 2D subleaves. I would say the Plykin attractor and limit cycle synchronise
together.

Moregenerally, one could couple a continuous-timeautonomousuniformlyhyper-
bolic attractor with M unstable dimensions to N limit cycle oscillators and obtain an
attractor with a mixture of chaos and nearly quasiperiodic behaviour. It would have
M unstable dimensions, N nearly quasiperiodic dimensions, and the flow dimension,
with the remaining dimensions contracting onto the leaves. By the theory ofNH lami-
nations, such attractors persist for small smoothperturbations, though the dynamics in
the quasiperiodic dimensions cannot be expected to remain quasiperiodic. Nonethe-
less, it will have small Lyapunov exponents for those dimensions and perhaps there
is a non-autonomous KAM theory that would even give truly quasiperiodic motion
for a set of nearly full measure of parameters. I propose this as an explanation of the
scenario reported recently by [30].

As a final note, onemight ask about physical realisation of attractors likeRössler’s.
I designed an electronic oscillator back in 1981, principally to demonstrate period-
doubling sequences [18], but moving the parameter further it exhibited a Rössler
type of attractor. Model equations for the voltages at three points have the form
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ẋ = ax − by (5.7)

ẏ = cx − ez

ż = − f y − g(z),

with a, b, c, e, f positive constants of which a was adjustable by a 10-turn poten-
tiometer, and g an approximately odd cubic nonlinearity produced with a pair of
transistors. Interestingly, as I increased a further, the Rössler attractor turned into
what Chua later called a double-scroll attractor [20]. Indeed, Chua’s equations turn
out to be equivalent to mine after minor changes of variable.

5.10 Conclusion

I have shown that the behaviour of networks of oscillators, autonomous or not, can be
aided by identifying normally hyperbolic submanifolds. This allows a deeper under-
standing of synchronisation of oscillators to forcing and to each other, especially
in the aperiodic case. There are many studies on synchronisation in autonomous or
periodically forced systems (for one example, see [26]) but relatively few on the
aperiodically forced case. The fundamental feature of synchronisation is dimension-
reduction of an associated normally hyperbolic submanifold. In a network of oscil-
lators, even if autonomous, the inputs that an individual oscillator sees are in general
aperiodic. This motivates a hierarchical aggregation scheme for understanding the
dynamics of a network of oscillators: oscillators that synchronise to their inputs can
be eliminated, groups of oscillators that synchronise together can be replaced by a
single effective oscillator. All this depends on generalising the notion of oscillator
from a limit cycle of an autonomous dynamical systems to a mapping from input
functions of time to a circle of solutions and generalising the notion of coupling.
Finally, I extended the treatment from limit-cycle oscillators to excitable oscillators
and chaotic oscillators.
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Chapter 6
Synchronisation and Non-autonomicity

Maxime Lucas, Julian M. I. Newman, and Aneta Stefanovska

Abstract Thermodynamic openness is key to the long-term stability of living sys-
tems and can yield rich dynamical behaviours. Here, we model openness in coupled
oscillator systems by introducing an external driving with time-varying parame-
ters. Five systems of increasing complexity are considered: three cases of single
driven oscillators followed by two cases of driven networks. We show how the time-
varying parameters can enlarge the range of other parameters for which synchronous
behaviour is stable. In addition, it can yield additional behaviours such as intermittent
synchronisation. The stability of these systems is analysed via short- and long-time
Lyapunov exponents, both analytically and numerically. The different dynamical
regimes are also described via time-frequency representation. Finally, we compare
the stabilising effect of deterministic non-autonomous driving to that of bounded
noise. All in all, we give an overview of some effects time-varying parameters can
have on synchronisation. These effects could be a key to understand how living
systems maintain stability in the face of their ever-changing environment.

6.1 Introduction

Many systems in nature are thermodynamically open, i.e. they exchange energy and
matterwith their environment. In fact, their openness is often key to theirmaintenance
of life. How could an organism survive isolated from its environment? Without
external supplies of nutrients and the ability to get rid ofwaste products ofmetabolism
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and internal toxins, there would be no sustained life. The idea that one needs to
model living systems as open has indeed been expressed by E. Schrödinger in his
book “What is life?” [51].

Traditionally, the effect of external influences on a system is modelled either by
a very simple deterministic input—i.e. constant or strictly periodic—or for more
complicated-looking cases, by noise defined in terms of stochastic processes. Some-
times, external influences are themselves modelled by an autonomous dynamical
system, such that the system with its external influence can be modelled together
as one autonomous dynamical system. However, here, we demonstrate what can be
achieved by using deterministic non-autonomous models [25] to describe a system
subject to external influences. Such models have been argued to be especially useful
to describe living systems [24, 30], but have been used in other areas such as climate
dynamics [11, 16, 17].

Living systems exhibit two properties of particular interest. Firstly, they maintain
overall stability over long timescales (their lives) despite the input from their environ-
ment that is ever-changing in a non-trivial fashion. Secondly, due to this input, their
shorter-timescale macroscopic properties, e.g. the moment-by-moment characteris-
tics of the response to perturbation, vary in time. An example of such time-variability
can be seen when the heartbeat is recorded over time—even for healthy subjects in
repose. The frequency of the heartbeat varies continuously, modulated by the oscil-
lations corresponding to breathing [8] and other low-frequency oscillatory processes
resulting from neurovascular regulation of the heartbeat [52]. We emphasise that, in
fact, dynamics on such shorter timescales can play a crucial role in the functioning
of the system. For example, it has been shown that transitions in cardio-respiratory
synchronization occur during anaesthesia [53], and it has been proposed that, in the
brain, transient synchrony between neurons can improve information routing [43].

Here, we focus on systems of coupled oscillators. Such systems can exhibit syn-
chronisation [49], where all oscillators in the system behave mutually coherently.
The study of synchronisation gained interest with the works of Winfree [61] and
Kuramoto [26] and the many extensions of the Kuramoto model, in particular to
complex network topologies [4].

The effect of non-autonomicity on coupled oscillatory systems has started to
attract attention in recent years. Low-dimensional examples include studies [56,
57], motivated by the cardiovascular system, which coined the term chronotaxicity
to define a class of non-autonomous systems with time-varying frequencies, able to
maintain stability against generic external perturbation. Inversemethods for detection
of chronotaxic dynamics in experimental data were also developed [29]? and applied
successfully to real biological systems [30]. Theoretical phase reduction for non-
autonomous oscillators has also been developed [27, 28, 44].

Apart from the chronotaxicity studies [56, 57], a few other theoretical works have
looked into non-autonomous oscillatory systems. In [22], Jensen considered one-
dimensional non-autonomous Adler equations and described their changing dynam-
ics in the limit of slow variation, and determined how slow themodulation needs to be
for the analysis to hold. In [13], the same system was studied specifically in the case
of periodic forcing, with particular focus on the existence and properties of periodic
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orbits. More recently, Hagos and coworkers investigated the effect of time-variability
of coupling functions when the total coupling strength is kept constant [18]. At the
network level, the solution of the Kuramoto model with slow frequency and cou-
pling modulations was obtained analytically in [45], and the Ott-Antonsen theory
was then extended for time-varying parameters in [46]. Recent work on synchroni-
sation in temporal networks includes [12, 33].

Bifurcation in non-autonomous systems has been considered from amathematical
viewpoint [2], including in finite-time dynamical systems [50]. In [5, 31], non-
autonomicity in the formof a parameter-shift that can pass through critical bifurcation
values is considered, and it is shown that the rate and the actual shape of the parameter-
shift can have a dramatic impact on the resulting dynamics.

Building on the aforementioned studies, especially [22, 56], we have shown for a
low-dimensional system that the non-autonomicity can enlarge the region of stability
in parameter space [35, 40]. The results were then extended to driven networks of
identical oscillators [34]. In the present chapter, we provide a synthesis of this recent
work, and also build on this with a new result on time-varying coupling in networks.

The chapter is organised as follows. In Sect. 6.2, we define non-autonomous
systems and discuss their relation to thermodynamically open systems. In Sect. 6.3,
we review some methods of analysing the behaviour of dynamical systems on both
short and long timescales. In Sect. 6.4, we present an analysis of five theoretical
systems of increasing complexity. Finally, in Sect. 6.5, we summarise the results and
discuss potential future directions.

6.2 Non-autonomicity

In this section, we discuss the relation between the thermodynamic classification of
a system and the types of dynamical systems to model it.

6.2.1 Thermodynamically Open Versus Isolated

From the perspective of thermodynamics, the universe is the sum of two things: the
system under consideration, and its environment, i.e. everything else [9]. The system
can be of one of three classes, based on the nature of the system-environment interac-
tions: open, closed, and isolated. A system is called isolated if it does not exchange
anything with its environment—neither energy, nor matter. An open system, on the
contrary, exchanges both energy and matter with its environment. Finally, a closed
systemexchanges only energy and notmatterwith its environment. Figure 6.1a shows
a sketch of an isolated system whereas Fig. 6.1b, c depict an open one.

Isolated systems have proven useful as an idealised concept, but truly isolated
systems are virtually non-existent in nature. Living systems are an example that, by
nature, cannot be seen as isolated, and need to be modelled as open, as argued above.
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Fig. 6.1 Three typical
approaches to model systems
that interact with their
environment

Open
non-autonomous

Open
autonomous + noise

Isolated
autonomous

: dynamics

Their exchanges of energy and matter with their environment is crucial to their sur-
vival: without the ability to feed and waste, any living systemwould quickly die. The
distinction between isolated and non-isolated systems manifests in an important way
for dynamical systems, namely in the distinction between autonomous dynamical
systems and dynamical systems that are either noise-driven or nonautonomous. We
now discuss these different types of dynamical systems.

6.2.2 Autonomous Versus Non-autonomous

Anautonomousdynamical system is one that evolves according to a time-independent
law [55]. The evolution of its state x(t) over time can be written in general as

ẋ = f (x), (6.1)

where the function f encodes the time-independent evolution law. By definition,
autonomous dynamical systems are well-defined over infinite time.

Autonomous systems are conceptually related to isolated systems: as illustrated
in Fig. 6.1a, the system’s evolution is independent of any external influence from its
environment, as reflected in Eq. (6.1) where the evolution of x only depends on itself.
How can we include external influences in the description of a dynamical system?
Twomain choices exist: describe the external influence as deterministic, or as a noisy
process. We start with the deterministic case.

A non-autonomous dynamical system is one that evolves according to a time-
dependent law [25]. The evolution of its state x(t) over time can be written in general
as

ẋ = f (x, t), (6.2)

where the deterministic function f now explicitly depends on time.
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Thus, non-autonomous systems are conceptually related to non-isolated systems
such as open systems: as illustrated in Fig. 6.1c, the system’s evolution depends on
its own internal dynamics but also on external influences, which can come in many
forms, as reflected in Eq. (6.2) by the explicit dependence of the evolution of x on t .

The formal study of non-autonomous dynamical systems started in the math-
ematical community [25] with early works on their stability including [1, 32,
38] and more recently [21]. Even though it is a much younger field than that of
autonomous dynamical systems, it started being used sparingly in other disciplines
such as physics [56] and biology [30]. In parallel, more and more researchers have
included time-variability in recent years, without necessarily using the word “non-
autonomous” or its associated formalisms and methods. As an example, temporal
networks, i.e. networks with links that are time-dependent, have been applied suc-
cessfully to diverse areas [19, 20].

Noisy processes are a second way to describe the external influence of the envi-
ronment on the system. For example, as

ẋ = f (x) + ξ(t), (6.3)

where the internal (autonomous) dynamics is determined by the deterministic func-
tion f , and the external time-dependent influence is modelled as noise ξ(t).

By construction, such noisy models are also conceptually related to non-isolated
systems such as open systems, as illustrated in Fig. 6.1b. The difference from non-
autonomous systems is that the external influence is heremodelled as a noisy process.
Such stochastic models have been studied and used successfully for decades [47],
and an arsenal of methods is available to treat them.

The noise term in Eq. (6.3) can arise as the result of a mesoscale description in
terms of a few slow degrees of freedom, of a system containing many fast degrees
of freedom [15]. The original Langevin equation to describe Brownian motion is a
good example of this: the collective effect of the microscopic motion of the many
independent fluid molecules can be described as a noise term that acts on the macro-
scopic movement of a bigger particle. More details about the assumptions needed
for such a description to hold can be found in [14].

We have presented three types of models: autonomous, non-autonomous, and
autonomous plus noise. Each type ofmodel has strengths andweaknesses, and is best
suited to describe a given system or to answer a given question. Autonomous models
can be used in many cases as a useful approximation, when the interaction with the
environment is negligible. Their relative simplicity oftenmakes themmathematically
tractable, and decades of research have provided us with a good understanding of the
appropriate methods to study them. However, autonomous models are ill-suited to
describe open systems in which the external influence of the environment is crucial,
such as living systems. That influence can be modelled by noise, for which we also
have many methods available. Noisy processes are useful, for example, as a meso-
scopic description, when we do not have enough information about the underlying
microscopic mechanisms. When possible, non-autonomous models of open systems
provide us with a more time-resolved description of the systems. They are however
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harder to treat analytically in general. Before closing this section, we mention that
we consider, in this chapter, cases where the nonautonomicity comes from either
time-varying frequencies or coupling strength.

6.3 Methods

We now briefly present existing methods for the analysis of non-autonomous dynam-
ical systems. We discuss the assumptions made in each case, and describe their
strengths and limitations when dealing with time-varying systems.

6.3.1 Asymptotic

First, we present traditional time-asymptotic methods that were historically devel-
oped for autonomous dynamical systems. For these methods, it is assumed that the
model considered is defined over infinite time. We restrict ourselves to methods rel-
evant for the rest of the present work. Other methods can be found e.g. in [54] for a
theoretical approach, and in [10] for a signal processing approach.

6.3.1.1 Lyapunov Exponents

The stability of a trajectory x(t) of a dynamical system (which could be autonomous,
noise-diven, or nonautonomous) is often assessed in terms of the asymptotic Lya-
punov exponents (ALEs) associated to it [48]. For a trajectory x(t) and a unit vector
v0 corresponding to a direction of initial perturbation at time 0, we define the corre-
sponding ALE as follows: letting xδ(t) denote the solution starting at x(0) + δv0 for
each δ ∈ R, the ALE λ(∞) is given by

λ(∞) = lim
t→∞ lim

δ→0

1

t
ln

(‖xδ(t) − x(t)‖
|δ|

)
(6.4)

if this limit exists. This measures the exponential separation rate between x(t) and a
nearby trajectory: a positive value corresponds to exponentially growing separation,
while a negative value corresponds to exponential attraction between the trajectories.
This heuristic notion of “infinitely close trajectories” can be made mathematically
rigorous in terms of suitable calculus notions. If the dynamical system has a d-
dimensional state space, we define a spectrum of d ALEs associated to a trajectory
x(t), typically ordered as λmax = λ1 ≥ λ2 ≥ · · · ≥ λd , each one corresponding to a
different direction of the initial infinitesimal separation δx(0). Assuming the system
is sufficiently well behaved, the maximal ALE λmax is obtained in Eq. (6.4) for a
generic v0. ThemaximalALE indicates the stability of the trajectory x(t): ifλmax > 0
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then the trajectory is unstable, i.e. exhibits sensitive dependence to changes in initial
condition; if λmax < 0 then the trajectory is stable against small perturbations; in the
intermediate case λmax = 0, the trajectory is said neutrally stable. The presence of
positive ALEs for the trajectories of a dynamical system is commonly accepted as
an indicator of chaos.

Two key assumptions of Definition (6.4) are that (i) the dynamical system being
analysed must be defined over infinite time and (ii) the formal limit t → ∞ in
Definition (6.4) exists. The first assumption can be satisfied by either an autonomous
system, or a non-autonomous system. Not all non-autonomous systems need be
defined over infinite time, however, as discussed in chapter [40] of this volume and
references therein. As for the second condition, Oseledets’ multiplicative ergodic
theorem [41] provides conditions for the existence of the limit, and hence of the
spectrum of ALEs described above. For an autonomous system, ALEs are typically
well-defined, but with some exceptions [42]. The same holds for non-autonomous
systems with simple forms of non-autonomicity such as periodic variation; but for
arbitrary aperiodic variation, the limit in Eq. (6.4) will typically not exist.

The ALE has the important property of being coordinate-invariant: it does not
depend on the choice of coordinates for the state space of the dynamical system.

6.3.1.2 Fourier Spectrum

The realisation of a physical process can be represented in the time domain, by a
time series, or in the frequency domain, e.g. by the Fourier spectrum of this time
series. The two representations give different insight into the underlying system, and
the frequency content of a time series is a precious tool to understand the system,
especially if it is oscillatory. A typical frequency domain representation is the discrete
Fourier transform (DFT) of a time series {xk}where the index k = 1, . . . , n represents
time. The DFT is defined as the function

Fω =
n−1∑
k=0

xke
i2πωk/n. (6.5)

This formula allows one to go from the time domain to a frequency domain
representation for a given process. If the time series includes a prominent component
with a given frequency ω, the DFT will then exhibit a peak around that frequency ω.
For example, a sine function with frequency ω will exhibit a single peak in its DFT
at ω. The coefficients are often plotted as either the amplitude of the spectrum |Fω|
or the power |Fω|2.
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6.3.2 Finite-Time

In this section, we present methods that are time-resolved counterparts of the ones
described above. Here, the output of the methods is the evolution of measured prop-
erties over time, allowing one to observe the time-variable dynamics.

6.3.2.1 Finite-Time Lyapunov Exponents

Stability can be considered over finite time. In particular, given a time-window
[t, t + T ], for a trajectory x(·) and a unit vector vt corresponding to a direction
of perturbation at time t , we define the corresponding FTLE as follows: letting xδ(·)
denote the solution coinciding with x(t) + δvt at time t for each δ ∈ R, the FTLE
λT (t) is given by

λT (t) = lim
δ→0

1

T
ln

(‖xδ(t) − x(t)‖
|δ|

)
. (6.6)

The length T of the time-window is of crucial importance, as different lengths
will reveal features of the dynamics over different timescales. The choice of window-
length thus depends on the system at hand and the timescale of interest; a longer time-
window will average out faster-timescale variations of time-localised stability. For
T → ∞, one recovers the ALE; for T → 0, one obtains an instantaneous Lyapunov
exponent (ILE). In numerical computation of an ALE via direct simulation, one is
really just computing a FTLE over a very long time-window.

Contrary to ALEs, FTLEs are not coordinate-invariant. The FTLE has the advan-
tage that it does not rely on the aforementioned assumptions (i) and (ii) relative to
the definition of the model and the existence of the limit t → ∞. The FTLE can be
applied to any model, autonomous or non-autonomous, defined over finite or infinite
time.

Note that anALE for a direction of initial perturbationv0 is an infinite-time average
of the ILE λ(t) in the direction vt := limδ→0+ xδ(t)−x(t)

‖xδ(t)−x(t)‖ where xδ(0) = x(0) + δv0.
(In one dimension, this simply means that the single ALE is the infinite-time average
of the ILE.) Therefore, the maximal ALE only measures the average stability of a
trajectory, but does not give any indication about how it might change over time.
Often, in real-world systems, and especially in living systems, finite-time properties
are of crucial importance to their maintaining of vital functions and of life itself. For
the heart to keep beating, the mutual synchrony of its cells must be stable at all times,
not just on average.
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6.3.2.2 Wavelet Transform

Just as the ALE only gives an average measure of stability without time resolution,
the DFT only shows a static picture of the frequency content of a time series. To
overcome this limitation, one can use time-frequency representation which gives
how the frequency content of a trajectory evolves over time.

The continuous wavelet transform (CWT) is a time-frequency representation that
was developed to obtain a good time-frequency resolution simultaneously across
a broad range of timescales. The idea is to perform frequency analysis in a time-
window whose width is scaled in proportion with the timescale being investigated
The CWT of a signal x(t) is given by

W (s, t) = 1

s p

∫ ∞

−∞
�

(
u − t

s

)
x(u) du, (6.7)

where s is a scaling factor, p is number typically chosen as either 1 or 1
2 , and � is

the “wavelet function” which represents mathematically the time-localisation used
for the frequency analysis. Different types of wavelet function can be used. In this
chapter, the Morlet wavelet is used, which has good time-frequency resolution [10].
Taking the scaling factor s as reciprocally proportional to frequencyω, we can obtain
the power in a frequency interval [ω − δω

2 , ω + δω
2 ] around each frequency ω at time

t as

PW (ω, t) =
∫ ω+ δω

2

ω− δω
2

|W (ω, t)|2 dω (6.8)

for p = 1
2 . A more detailed presentation of the CWT can be found in [10] and

references therein. The wavelet transform has been used e.g. in [10, 29, 30].

6.4 Systems Analysis

In this section, we present a succession of coupled oscillators models, in increasing
order of complexity. Figure 6.2 illustrates the different systems considered and the
relationship between them. In Sect. 6.4.1, we start with the simplest case: a period-
ically driven phase oscillator. Then, we present two models in which the driving is
made aperiodic: noisy, in Sect. 6.4.2, and deterministic with a time-varying driving
frequency, in Sect. 6.4.3. Finally, we present results of the former case generalised
to networks, in Sect. 6.4.4, for which we also present the case of a deterministic
time-varying coupling strength. For each model, we apply the methods described in
the previous section, and report results about the stability of the system.
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Numerical integration of the systems is performed with a Runge-Kutta 4 scheme
with a timestep of 0.01 s. The time-frequency representations are computed according
to the Morlet wavelet transform (p = 1) from the PyMODA package [7].

6.4.1 Single Oscillator: Periodic Driving

We start with the following driven phase oscillator system

θ̇1 = ω + γ sin[θ1 − θ0(t)], (6.9)

where the driving has strength γ , phase θ0(t), and a constant frequency

θ̇0 = ω0. (6.10)

System (6.9)–(6.10) is well known in the literature, see for example [49], and it
is schematically shown in Fig. 6.2a. We nonetheless present the parts of its analysis
that are relevant for the remainder of the present chapter.

System (6.9) with its driving given by Eq. (6.10) is more conveniently studied
in the reference frame of the driving. The phase difference ψ = θ1 − ω0t evolves
according to what is known as the Adler equation

ψ̇ = �ω + γ sinψ, (6.11)

where �ω = ω − ω0 is called the frequency mismatch. The frequency mismatch
and the driving strength determine the dynamics of the system, and in particular the
stability of the driven oscillator. There are two scenarios: either Eq. (6.11) has a

Fig. 6.2 Synchronisation in
coupled oscillators with
time-varying parameters:
hierarchy of systems
presented, in increasing
complexity. a Single
oscillator with periodic
driving. b Single oscillator
with noisy driving. c Single
oscillator driven at a
time-varying frequency. The
last of these is generalised to
d a driven network and e a
driven network with
time-varying driving strength
in place of time-varying
driving frequency
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Fig. 6.3 Synchronisation versus no synchronisation, for the periodic driving case given by
Eq. (6.11). a Region of neutral stability (region I) and region of stability (region II, also called
the Arnold tongue). b Asymptotic Lyapunov exponent and c beat frequency for a fixed value of
γ = 1. To help visualise how the plots in b and crelate to the two regions shown in a, a point is
chosen from region II (with γ = 1) and marked by the red star in all three plots, and likewise a
point is chosen from region I (again with γ = 1) and marked by the red plus sign in all three plots.
In this periodic driving case, the region of negative Lyapunov exponent coincides with the plateau
of vanishing beat frequency

stable fixed point at whichψ stays constant, or it does not and all solutionsψ exhibit
unbounded monotonic growth.

The first scenario corresponds to synchronisation, and happens if the driving is
strong enough, γ > |�ω|. This condition determines the region of synchronisation
in parameter space, also called the Arnold tongue, which is illustrated as Region II
in Fig. 6.3a. When the condition is fulfilled, the Adler equation has a pair of fixed
points, one of which is stable, ψs = π − arcsin(−�ω/γ ), and attracts all initial
conditions apart from the unstable fixed point, see Fig. 6.4a. The phase difference ψ

thus settles on the constant valueψs, as shown in Fig. 6.4b, and the driven oscillator is
thus phase-locked to the driving, with the instantaneous Lyapunov exponent always
being negative (and thus so is the asymptotic Lyapunov exponent), see Fig. 6.4c. Both
oscillators have the same frequency (as also seen in Fig. 6.4d discussed shortly): the
frequency of the driven one is entrained by the driving one. In this simple periodic
driving case, phase-locking and frequency entrainment are equivalent, but not in
other cases, as will be discussed later on.

The second scenario corresponds to there being no synchronisation, and occurs for
γ < |�ω|. This is illustrated asRegion I in Fig. 6.3a. In this case, the phase difference
grows indefinitely as shown in Fig. 6.4f. So the oscillators are not phase-locked, as
shown in Fig. 6.4e.

We now analyse the linear stability of solutions in these two cases, denoted in
both cases by ψ̃(t). An infinitesimal perturbation δψ obeys the linearised equation

δψ̇ = γ δψ cos ψ̃(t), (6.12)
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Fig. 6.4 Dynamical regimes of the single oscillator with time-varying frequency driving: syn-
chronisation (top row, γ = 3.5 rad/s), and no synchronisation (bottom row, γ = 0.5 rad/s). For
each regime, we show a sin θ over time for two random initial conditions, b the phase difference
over time, c the instantaneous Lyapunov exponent (black) and the asymptotic Lyapunov exponent
(dashed grey), as well as a time-frequency representation of the time series sin θ(t). Other param-
eters are set to ωm = 0.02 rad/s, k = 0.5, ω0 = 2 rad/s, and ω = 4 rad/s. The time-frequency
representation are computed with the Morlet wavelet transform (p = 1) with central frequency
f0 = 3

so that it grows or decays as δψ(t) = δψ(0) exp[∫ t
0 λ(t)dt]with instantaneous expo-

nential rate, i.e. instantaneous LE

λ(t) = γ cos ψ̃(t). (6.13)

In the synchronised case, we take the constant solution ψ̃(t) = ψS to which all
solutions (other than the repelling fixed point) settle. In this case, the ILE is a constant
λ(t) = −√

γ 2 − �ω2, just as seen in Fig. 6.4c in black. In the non-synchronised case,
however, ψ̃(t) increases or decreases monotonically and unboundedly, such that the
ILE λ(t) oscillates around 0 as shown in Fig. 6.4d, also in black.

Now, the ALE can be obtained as the temporal average of the ILE

λ = γ 〈cos ψ̃(t)〉, (6.14)

which yields for both cases

λ =
{−√

γ 2 − �ω2 if γ ≥ |�ω|,
0 else.

(6.15)

In the synchronised case γ > |�ω|, the asymptotic and instantaneous LE are
identical and negative, as shown in Fig. 6.4c in dashed grey and black respectively.
So the phase of the driven oscillator θ1 is stable by virtue of the driving from θ0.
However, in the non-synchronised case γ < |�ω|, averaging λ(t) over each cycle
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of ψ̃(t) gives λ = 0 as shown in Fig. 6.4g in dashed grey, and so the phase of θ1 is
only neutrally stable.

The Lyapunov exponents tells us about the stability of the solution. We comple-
ment this information with a measure about the motion of the solution itself: the
mean frequency difference, often called beat frequency, which is defined as

�ψ = 2π

[∫ 2π

0

dψ

�ω + γ sinψ

]−1

, (6.16)

and is related to the other frequencies of the system by

〈θ̇1〉 = ω0 + �ψ. (6.17)

In the synchronised case, the driven oscillator rotates with the frequency of the
driving, and hence �ψ = 0, otherwise it is non-zero. So, here, the region of syn-
chronisation is equivalently characterised by the plateau �ψ = 0 and a negative
ALE λ < 0, as illustrated in Fig. 6.3b, c by the solid black curves. This equivalence
between a negative LE and a zero beat frequency no longer holds in more compli-
cated cases, as we shall discuss in the next sections, and is illustrated by the other
curves in Fig. 6.5.

One can obtain further information about the frequency content of solutions by
applying a Fourier transform, for a static picture, or a wavelet transform, for a time-
resolved picture. In this periodic driving case, however, bothmethods yield equivalent
results, as shown in by the constant content of the time-frequency representation in
Fig. 6.4d–h). In the synchronised case shown inFig. 6.4d,we see only one component,
namely at ω0

2π , indicating that the driven frequency is entrained to that of the driver.
The non-synchronised case is shown in Fig. 6.4h. In this case, we do not have
frequency entrainment; instead, the driven oscillator is quasi-periodic, containing
natural frequencies of both ω0

2π (coming from the driving) and �ψ

2π .
Now that we have presented the simplest case, that of a periodic (fixed-frequency)

driving, we consider more complicated driving scenarios.

6.4.2 Single Oscillator: Noisy Periodic Driving

Time-variability due to external perturbations is often modelled in the literature with
noisy processes, as described in the Introduction. For the purpose of comparison
with the deterministic autonomous and non-autonomous settings (the latter presented
shortly), we now describe such a case where the driving in system (6.9) has a time-
variable frequency modelled as

θ̇0 = ω0 − ξ(t), (6.18)
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where ξ(t) is a noise process. This system is schematically shown in Fig. 6.2b. The
phase difference ψ = θ1 − ω0t now evolves as

ψ̇ = �ω + γ sinψ + ξ(t). (6.19)

Analysis of this equation can be found in [49], and we present here only what is
relevant to the comparison with the other systems of this chapter.

When γ > |�ω|, the effect of the noise term in Eq. (6.19) is to push the trajectory
away from the stable fixed point ψS. If at any time this noisy perturbation becomes
too strong, it can push the trajectory ψ all the way to the other side of the unstable
fixed point, inducing a phase slip where ψ makes a quick full 2π revolution before
returning to the vicinity of the stable fixed point. We now consider separately the
case of unbounded noise and bounded noise.

If ξ is an unbounded noise process such as stationary Gaussian white noise, then
phase slips will always take place, and so overall we do not have phase-locking
between the driven and driving oscillators, regardless of the values of γ and �ω.
Defining the mean frequency difference �ψ according to Eq. (6.17), the phase slips
induced by unbounded noise will completely destroy the �ψ = 0 plateau that was
observed in Fig. 6.3c to correspond to γ > |�ω| in the case of strictly periodic
driving. However, the λ < 0 region which also corresponded to γ > |�ω| as seen
in Fig. 6.3b is not destroyed; instead, the extreme opposite happens, namely that
the λ < 0 region becomes the entire (γ,�ω)-parameter space (see the analytical
derivation in [49]). In other words, regardless of the parameter values the trajectories
ψ ofEq. (6.19) have negativeALE. Physically, this indicates that different trajectories
of the driven oscillator θ1 evolving under a common noise realisation of ξ(t) but
starting at different initial phases θ1(0) will mutually converge towards each other.
Synchronisation of oscillators by common noise is a well-studied phenomenon, see
for example [3, 37, 39, 47].

Now suppose ξ is a bounded noise process (e.g. dichotomousMarkov noise [23]),
meaning that ξ(t) canonly take values in a bounded interval. Then the�ψ = 0 plateau
is decreased in width compared to the scenario without noise, as shown in Fig. 6.5b,
and the λ < 0 region is widened compared to the scenario without noise, as shown in
Fig. 6.5a. However, if the bound on the noise strength |ξ(t)| is less than the coupling
strength γ , then phase slips cannot occur when |�ω| is small enough, and so the
�ψ = 0 plateau is not completely destroyed.

Sowehave seen that in contrast to the deterministic case of strictly periodic driving
considered inSect. 6.4.1, now for bothbounded andunboundednoise, having�ψ = 0
is not equivalent to havingλ < 0. Indeed, they have different physical interpretations:
having�ψ = 0 indicates that the frequency of the driven oscillator is entrained to that
of the driving; but having a negative ALE λ < 0 indicates that the driven oscillator
loses memory of its initial phase (i.e. solutions starting at different initial phases
mutually converge) due to the influence of the driver.

We will see in the next Sect. 6.4.3 how the bounded noise case relates to that of
a deterministic time-varying driving frequency.
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Fig. 6.5 Average quantities characterising synchronisation. a Asymptotic Lyapunov exponent and
b beat frequency, for fixed-frequency driving (solid black), deterministically time-varying frequency
of driving (dashed red), and noisy-frequency driving (dotted black), from systems (6.11), (6.21),
and (6.19), respectively. For the noisy case, (bounded) dichotomous noise is used. Parameters are
set to γ = 1 rad/s, ω0 = 4 rad/s, k = 0.1, dichotomous noise strength D = 1.6 s−1 and transition
constant 10 s−1

6.4.3 Single Oscillator: Time-Varying Frequency Driving

Another way to model time-variability is to use deterministic non-autonomous sys-
tems, instead of noise as in Sect. 6.4.2. We present system (6.9) with deterministic
time-varying frequency, as in [35], obeying

θ̇0 = ω0[1 + k f (ωmt)], (6.20)

with modulation amplitude k, modulation frequency ωm , and a bounded function f
that determines the shape of the modulation. For the simulations in Fig. 6.7, we take
f (·) = sin(·).
The phase difference ψ = θ1 − θ0 now obeys the non-autonomous equation

ψ̇ = �ω(t) + γ sinψ, (6.21)

with time-varying frequency mismatch

�ω(t) = ω − ω0(1 + k f (ωmt)) = �ω − ω0k f (ωmt). (6.22)

Such non-autonomous equations are generally harder to treat analytically than
autonomous equations. For the remainder of this section, the frequency modulation
is assumed to be very slow in comparison to the dynamics of the unmodulated system,
i.e. ωm is very small.

Recall that we presented the periodic case k = 0 in Sect. 6.4.1. In that case,
depending on the parameters, either Eq. (6.11) has a stable fixed point and the driven
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Fig. 6.6 Intermittent
synchronisation in parameter
space. a Intermittent
existence of point attractor in
Eq. (6.21) yields b the birth
of region III of intermittent
synchronisation in phase
diagram, compared to the
original diagram for periodic
driving shown in Fig. 6.3

oscillator is synchronised to the driving, or Eq. (6.11) has no fixed point and the
solution exhibits incoherence between the driven and the driving oscillator.

However, when we modulate the driving frequency, k 	= 0, as illustrated in
Fig. 6.6 there are times t when the instantaneous stable fixed point ψs(t) = π −
arcsin(−�ω(t)/γ ) exists and other times when it does not. Namely, it exists when
γ > |�ω(t)| and does not exist when γ < |�ω(t)|. Since we assume a slow mod-
ulation, we have as in [22] that all trajectories converge “fast” to the slowly moving
point ψs(t) and follow it adiabatically as long as it exists, but when it does not exist
the solutions exhibit unbounded growth of the phase difference, with no synchrony
between the driver and driven oscillator. While γ > |�ω(t)|, the ILE λ(t) atψs(t) is
as in Eq. (6.13), namely λ(t) = −√

γ 2 − �ω(t)2. But while γ < |�ω(t)|, the ILE
of any solution oscillates around 0.

Accordingly, we can consider in a time-localisedmanner the stability of the driven
oscillator, by considering the FTLE λT (t) over a time-window [t, t + T ], where T
represents an intermediate timescale between the slow timescale of the driving fre-
quencymodulation and the fast timescale of the driven oscillator’s internal dynamics.
This intermediate-timescale FTLE will match the ALE of the differential equation
obtained by freezing Eq. (6.21) at time t ; that is,

λT (t) ≈
{−√

γ 2 − �ω(t)2 if t : γ ≥ |�ω(t)|,
0 else.

(6.23)

As a consequence of the intermittent existence of the instantaneous stable fixed
point ψs(t), three scenarios exist, as illustrated in Fig. 6.7, instead of two in the
periodic case.

The first scenario is that of synchronisation at all times, and is illustrated in the
top row of Fig. 6.7. This is the scenario where, even though the driving frequency
changes, there exists a stable fixed point at all times: γ ≥ |�ω(t)| for all t . In this
case, trajectories follow the slowly moving fixed point, as can be seen from the
evolution of the phase difference ψ(t), between each oscillator and the driving, in
Fig. 6.7b. Physically, this means that at all times the frequency of the driven oscillator
is entrained by the time-varying frequency of the driving, as shown in Fig. 6.7d. From
the point of view of stability, the fixed point is always stable, hence the ILE is always
negative, as shown in Fig. 6.7c. This scenario is very similar to the synchronisation
scenario in the periodic case k = 0, except that now the oscillators’ frequency and
the ILE both modulate in time.
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Fig. 6.7 Dynamical regimes of the single oscillator with time-varying frequency driving: syn-
chronisation (top row, γ = 3.5 rad/s), intermittent synchronisation (middle row, γ = 2.5 rad/s),
and no synchronisation (bottom row, γ = 0.5 rad/s). For each regime, we show a sin θ over time
for two random initial conditions, b the phase difference over time, c the instantaneous Lyapunov
exponent (black) and the asymptotic Lyapunov exponent (dashed grey), as well as time-frequency
representation of the time series sin θ(t). Other parameters are set to ωm = 0.02 rad/s, k = 0.5,
ω0 = 2 rad/s, and ω = 4 rad/s. The time-frequency representation are computed with the Morlet
wavelet transform (p = 1) with central frequency f0 = 3

The second scenario is that of no synchronisation, and is illustrated in the bot-
tom row of Fig. 6.7. This is the scenario where, even though the driving frequency
changes, the fixed point does not exist at any time: γ < |�ω(t)| for all t . In this case,
there is no mutual convergence of different trajectories, as seen in Fig. 6.7i, and the
phase difference ψ(t), between each oscillator and the driving, exhibits unbounded
monotonic growth, as seen in Fig. 6.7j. Physically, the frequency of the driven oscil-
lator is not entrained by the time-varying frequency of the driving, and so multiple
frequency modes appear in the time-frequency representation, as shown in Fig. 6.7l.
From the point of view of stability, the trajectories are neutrally stable, with the
ILE oscillating around 0 as shown in Fig. 6.7k. This scenario is very similar to the
scenario of no synchronisation in the periodic case k = 0, except that now the phase
difference drifts at a modulated rate, as seen in Fig. 6.7j and also reflected in the
time-frequency representation in Fig. 6.7l.

The third scenario is that of intermittent synchronisation, and is illustrated in
the middle row of Fig. 6.7. This is the scenario where, due to time-variability of the
driving frequency, the stable fixed point exists some of the time but not all of the time.
In this case, trajectories follow the slowlymoving stable fixed point when it exists. As
a result, the phase difference between each oscillator and the driving,ψ(t) alternates
between periods of drifts and periods where it is bounded, as shown in Fig. 6.7f.
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Fig. 6.8 Increase of stability region with the amplitude k of the frequency modulation. This is
illustrated by the long-time (i.e. approximately asymptotic) Lyapunov exponent a–c over parameter
space for increasing values of k. A negative value (shades of blue) indicates mutual convergence of
trajectories, whereas a zero value (grey) does not. The grey line indicates the border of the stability
region for k = 0, and the dashed black lines indicate the borders of regions I, II, and III. d The
Lyapunov exponents values of panels a, b, and c are shown for a fixed γ = 2.5 in solid, dashed,
and dotted black, respectively

Physically, this means that the frequency of the driven oscillator is entrained by the
time-varying frequency of the driving only when the fixed point exists, as shown
in Fig. 6.7h. From the point of view of stability, the driven oscillator exhibits time-
localised stability when the fixed point exists, and time-localised neutrally stable
when the fixed point does not exist. In particular, the ILE exhibits intermittency
between periodswhere it is negative and periodswhere it oscillateswith zero average,
as in Fig. 6.7g. Even though trajectories are only intermittently synchronised to the
driving, this is sufficient for different initial conditions to converge to a common
trajectory, as shown inFig. 6.7e. Indeed, trajectoriesmutually converge during epochs
of negative ILE, but do not then diverge during the epochs where the ILE oscillates
around zero. This scenario does not correspond to any dynamical behaviour that
was observed in the periodic case k = 0. It is rather an alternation between the two
previously known dynamical behaviours.

The mutual convergence of trajectories in the intermittent synchronisation sce-
nario can also be understood from the value of the asymptotic Lyapunov exponent.
Since the trajectories have an ILE that alternates between periods of being nega-
tive and periods of oscillating with zero average, the net effect is a negative ALE,
signifying mutual convergence of trajectories.

As discussed in chapter [40] of this volume it is theoretically possible for the
mutual synchronisation to be destroyed by canard-like phenomena where, due to an
extreme “fluke” of fine-tuning of parameters, the trajectories spend time following
the slow motion of the unstable fixed point and are thus re-dispersed. In such cases,
we can fail to have a negative ALE. But, as one would expect, this is extremely rare.

An interesting consequence of the above analysis is that, as discussed in [35], the
region in parameter space corresponding to overall stability, i.e. corresponding to the
mutual convergence of trajectories towards each other, increases as the modulation
amplitude k increases. As illustrated in Fig. 6.8, the region of intermittent synchroni-
sation grows in proportion with k, while the region of perpetual synchronisation and
the region of no synchronisation both diminish. Since the region of overall stability
comprises of the union of the regions of perpetual synchronisation and intermittent
synchronisation, this region grows with increasing k.
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This stabilising effect of the external modulation can be compared to that of
bounded noise illustrated in Fig. 6.5. The net effect averaged over long time is similar,
such that curves showing the parameter-dependence of the ALE can be made to look
similar between the case of bounded noise and the case of deterministic slow driving
frequency modulation. The same is also true for the parameter-dependence of �ψ ,
which likewise represents an average over infinite time. However, even if the effects
of bounded noise and of slow deterministic modulation are similar to each other on
average over long times, the actual dynamics observed in time is very different in
nature. This is discussed in more detail in [35].

Now that we have described in detail the three dynamical regimes over short and
long times, we generalise this to networks of oscillators in the next section.

6.4.4 Network: Time-Varying Frequency Driving

Now, results from the previous section are extended to networks. Instead of con-
sidering the single driven oscillator of system (6.9), we now present an arbitrary
(undirected) network of N identical such oscillators, driven by the external phase
θ0(t), studied in [34]

θ̇i = ω + D
N∑
j=1

Ai j sin(θi − θ j ) + γ sin[θi − θ0(t)], (6.24)

with frequency ω, coupling constant D, symmetric adjacency matrix A. Entries Ai j

are set to 1 for connected oscillators, and 0 otherwise. All oscillators in the networks
are driven with strength γ by the external oscillator θ0(t) evolving according to
Eq. (6.20) as in the previous section. As mentioned earlier, system (6.24) is a direct
generalisation of Eq. (6.9) to networks.

Without external driving, γ = 0, the network converges to a fully synchronous
solution θ1(t) = θ2(t) = · · · = θN (t) = c + ωt for some c, provided that the network
does not have disconnected components, and that couplings are attractive, D < 0,
see [58–60].

With external driving, γ > 0, three regimes are possible for the fully synchronous
solution: it can synchronise to the external driving, or not synchronise to the external
driving, or intermittently synchronise to the external driving. These regimes corre-
spond to the three regimes of the previous section, Sect. 6.4.3, for a single driven
oscillator. In fact, when all nodes in the network are in a synchronous state, they can
be seen as one single node driven by the external phase. The region in parameter
space for each of the regimes is also identical to the single oscillator case illustrated
in Figs. 6.6 and 6.8 of Sect. 6.4.3.

For convenience, system (6.24) can be rewritten in the rotating reference frame
of the driving oscillator, ψi = θi − θ0(t),
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ψ̇i = �ω(t) + D
N∑
j=1

Ai j sin(ψi − ψ j ) + γ sinψ, (6.25)

where the time-varying frequencymismatch is�ω(t) = ω − ω0(1 + k f (ωm)).When
oscillators of the network are uncoupled, D = 0, we recover Eq. (6.21) from the sin-
gle oscillator case of the previous section.

Wenowperform a linear stability analysis around the synchronous solution,which
we denote ψ̃(t). An infinitesimal heterogeneous perturbation δψ = (δψ1, . . . , δψN )

evolves according to

δψ̇i = −D
N∑
j=1

Li jδψ j + γ δψi cos ψ̃(t). (6.26)

This is an N -dimensional system, and hence the stability of these solutions is
described by N Lyapunov exponents. However, it is possible to project the system
onto N time-independent one-dimensional subspaces, reducing the N -dimensional
problem to N one-dimensional problems. This reduction is done by using the eigen-
vectors φα and eigenvalues �α , α = 1, . . . , N , of the Laplacian to project the per-
turbations δψ̇i = ∑

α cα(φα)i exp(
∫

λα(t)dt), with real constants cα . We order these
such that �1 ≥ �2 ≥ · · · ≥ �N . Injecting this expression into (6.26) and solving
yields for each α = 1, . . . , N the ILE λα(t) corresponding to perturbation in the
direction of φα , namely

λα(t) = −D�α + γ cos ψ̃(t). (6.27)

The asymptotic counterpart is then given by

λα = −D�α + γ 〈cos ψ̃(t)〉 ≤ 0. (6.28)

These Lyapunov exponents are made up of two contributions: that of the network
interactions, proportional to D, and that of the external driving, proportional to γ . In
the first term, the Laplacian matrix has one zero eigenvalue, �1 = 0, and the rest are
negative,�α < 0, for α ≥ 2. This implies that the first term is non-positive for any α.
In the second term, the contribution is identical to that in the single oscillator case of
the previous section: it is negative when the stable fixed point exists, γ > |�ω(t)|,
but zero on average when it does not, γ < |�ω(t)|. So if, as in the previous section,
we take an intermediate timescale T between the slow timescale of the modulation
and the fast timescale of the internal dynamics of the driven oscillators θi , the FTLEs
λα
T (t) over the time-window [t, t + T ] corresponding to perturbation in the direction

of φα are given by

λ1
T (t) ≈

{−√
γ 2 − �ω2(t) if t : γ ≥ |�ω(t)|,

0 else
(6.29)
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Fig. 6.9 Driven network with time-varying frequency: intermittent synchronisation yields conver-
gence of different initial conditions. a Time series of two initial conditions (blue and black). The
oscillators of each initial condition first synchronise between themselves, and then both initial con-
ditions converge to the same trajectory. b These trajectories were simulated on a random network
with wiring probability p = 0.5. Other parameters are set to N = 20, ω = 3 rad/s, ω0 = 1 rad/s,
γ = 2 rad/s, D = −0.5 rad/s, k = 0.5, ωm = 0.02 rad/s

and for α ≥ 2,

λα
T (t) ≈

{−D�α − √
γ 2 − �ω2(t) if t : γ ≥ |�ω(t)|,

−D�α < 0 else.
(6.30)

TheseFTLEs forα ≥ 2 are alwaysnegative due to the attractive couplings between
the oscillators in the network.

The first asymptotic Lyapunov exponent λ1 corresponds to the eigenvector φ1 =
(1, . . . , 1)T , i.e. a perturbation that pushes all synchronised oscillators in the same
directionwith the same strength. In other words, this perturbation does not affect how
synchronous oscillators in network arewith each other; it only affects the global phase
of the fully synchronised oscillators. A zero value indicates neutral stability, and
hence no synchronisation to the external driving, whereas a negative value indicates
stability of the phase, i.e. synchronisation to the external driving. This is identical
to the single oscillator case of the previous section, and so Fig. 6.8 is also valid for
λ1 of the present section. The subsequent ALEs, λα are negative, and hence ensure
that the synchronous state—that is, θ1(t) = θ2(t) = · · · = θN (t)—is maintained in
the face of any perturbation.

In conclusion, this section shows a natural generalisation of the previous section
to the case of a driven network of identical oscillators. We illustrate in Fig. 6.9
the two different phenomena taking place: (1) the mutual convergence of different
oscillators in the network due to the Lyapunov exponents λα < 0 for all α ≥ 2, and
(2) the mutual convergence of two different initial conditions due to λ1 < 0. This is
done in a random network, in which each link exists with probability p = 0.5.
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6.4.5 Network: Time-Varying Driving Strength

In this section, we extend existing results to take into account a time-varying cou-
pling strength. Here, we consider a slowly time-varying driving strength γ (t) of the
unidirectional driving of a phase oscillator θ0 (of fixed frequency) upon a network
of N identical oscillators. This is given by

θ̇i = ω + D
N∑
j=1

Ai j sin(θi − θ j ) + γ (t) sin[θi − ω0t], (6.31)

where the driving strength varies as

γ (t) = γ0 + k f (ωmt), (6.32)

with very small ωm . Similarly to the case of Sect. 6.4.4, the phase difference ψi =
θi − ω0t evolves as

ψ̇i = �ω + D
N∑
j=1

Ai j sin(ψi − ψ j ) + γ (t) sinψ. (6.33)

Similarly to Eq. (6.25), whenever γ (t) > |�ω|, the synchronous solution is
attracted to the slowlymoving pointψ∗(t) given byψ∗

i (t) = π − arcsin[−�ω/γ (t)]
for all i = 1, . . . , N . So once again, one can define three regions in parameter space,
corresponding to the same three dynamical regimes for the synchronous solution as
before: synchronisation to the driver, intermittent synchronisation to the driver, and
no synchronisation to the driver. These are also based on the existence of the stable
fixed point ψ∗(t) at all time, some of the time, and never, respectively.

Without loss of generality we assume that f (ωmt) is bounded in [−1, 1] such that
γmax = γ0 + k and γmin = γ0 − k. Just as in the time-varying-frequency case, the
three regions are defined as satisfying the synchronisation γ (t) > |�ω| at no times
(I), at all times (II), or intermittently (III), which yields the following conditions

I. γ0 < |�ω| − k No sync. (6.34)

II. γ0 > |�ω| + k Sync. (6.35)

III. |�ω| + k > γ0 > |�ω| − k Intermit. sync. (6.36)

so that the regions are identical to the time-varying-frequency case of Sect. 6.4.4 and
illustrated in Fig. 6.10.

Interestingly, the dynamics of the phase differencewill varywith time even though
the driving and the driven frequencies are constant, due to dynamics of the driving
strength.
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Fig. 6.10 Intermittent
synchronisation in parameter
space. a Intermittent
existence of point attractor in
Eq. (6.33) yields b the birth
of region III of intermittent
synchronisation in phase
diagram, compared to the
original diagram for periodic
driving shown in Fig. 6.3

Finally, in addition to intermittent synchronisation induced from a time-varying
frequency and a time-varying coupling strength, Hagos and coworkers reported that a
time-varying coupling function (while keeping the total coupling strength constant),
can also yield intermittent synchronisation [18].

6.5 Summary and Conclusions

In this chapter, we have reported on five models of increasing complexity, that inves-
tigate the effect of an ever-changing environment on the synchronisation of coupled
oscillators. The first three models consisted of a unidirectionally coupled pair of
oscillators, with the driving frequency taking different forms as a function of time.
The last two models were driven networks of coupled oscillators, with (1) time-
varying frequency of driving and (2) time-varying driving strength. The analysis of
this last model was new.

In each of these models, we reported on the motion and stability of solutions
(in particular, the synchronous solution for the last two models). In each case, the
model was systematically analysed with time-resolved measures, such as finite-time
Lyapunov exponents and time-frequency representations, as well as averaged quanti-
ties, such as asymptotic Lyapunov exponents. We discussed the appearance of a new
dynamical regime, “intermittent synchronisation”, induced by deterministic time-
variability of parameters, and we also compared and contrasted this with the effect
of introducing bounded noise into the driving frequency.

Including a deterministic source of temporal variation is a step closer to realistic
modelling of oscillatory systems in nature. This regime of intermittent synchroni-
sation, even though only implying intermittent time-localised stability, guarantees
mutual convergence of initial conditions in the long term. For amore in-depth analysis
of this long-term synchronisation of trajectories via intermittent synchronisation in
the one-dimensional setting, see [40]. Intermittent synchronisationwas also observed
in a related but different setting in [18]. In addition, we reported on how time-varying
parameters can enlarge the region in parameter space where synchronisation to the
driver occurs and is stable. Thismechanism could be one of the keys to understanding
how living systems maintain stability in the face of their ever-changing environment.
A natural future direction for this work is to develop methods of analysis of time-
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series recordings for identification of such stability mechanisms in open systems,
building upon the initial work of [29, 30].

In conclusion, we have studied oscillatory systems that are explicitly driven by
time-variable external influences; such models aim at explicitly taking into account
the thermodynamic openness that is crucial for living systems to stay alive.Modelling
this openness deterministically and explicitly may be key to advancing our under-
standing of the underlying mechanisms at play in the stability of living systems, such
as the brain [6], and even beyond, e.g. in cosmology [36].
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12. M. Faggian, F.Ginelli, F. Rosas, Z. Levnajić, Synchronization in time-varying randomnetworks
with vanishing connectivity. Sci. Rep. 9(1), 10207 (2019)

13. P. Gandhi, E. Knobloch, C. Beaume, Dynamics of phase slips in systems with time-periodic
modulation. Phys. Rev. E 92(6), 062914 (2015)

14. C. Gardiner, Stochastic Methods, vol. 4 (Springer, Berlin, 2009)
15. P. Gaspard, Cycles, randomness, and transport from chaotic dynamics to stochastic processes.

Chaos 25(9), 097606 (2015)
16. M. Ghil, The wind-driven ocean circulation: applying dynamical systems theory to a climate

problem. Discrete Contin. Dyn. Syst. A 37(1), 189–228 (2017)



6 Synchronisation and Non-autonomicity 109

17. M. Ghil, M.D. Chekroun, E. Simonnet, Climate dynamics and fluid mechanics: natural vari-
ability and related uncertainties. Phys. D 237(14–17), 2111–2126 (2008)

18. Z.Hagos, T. Stankovski, J. Newman, T. Pereira, P.V.McClintock,A. Stefanovska, Synchroniza-
tion transitions caused by time-varying coupling functions. Philos. Trans. R Soc. A 377(2160),
20190275 (2019)

19. P. Holme, Modern temporal network theory: a colloquium. Eur. Phys. J B 88(9), 234 (2015)
20. P. Holme, J. Saramäki, Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
21. A. Iggidr, G. Sallet, On the stability of nonautonomous systems. Automatica 39(1), 167–171

(2003)
22. R.V. Jensen, Synchronization of driven nonlinear oscillators. Am. J. Phys. 70(6), 607–619

(2002)
23. C. Kim, E.K. Lee, P. Talkner, Numerical method for solving stochastic differential equations

with dichotomous noise. Phys. Rev. E 73(2), 026101 (2006)
24. P.E. Kloeden, C. Pötzsche, Nonautonomous dynamical systems in the life sciences, in Nonau-

tonomous Dynamical Systems in the Life Sciences (Springer, 2013), pp. 3–39
25. P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems (American Mathematical

Society, Providence, 2011)
26. Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators title, in Inter-

national Symposium on Mathematical Problems in Theoretical Physics, Kyoto (1975), pp.
420–422

27. W. Kurebayashi, S. Shirasaka, H. Nakao, Phase reduction method for strongly perturbed limit
cycle oscillators. Phys. Rev. Lett. 111(21), 214101 (2013)

28. W. Kurebayashi, S. Shirasaka, H. Nakao, A criterion for timescale decomposition of external
inputs for generalized phase reduction of limit-cycle oscillators. NOLTA 6(2), 171–180 (2015)

29. G. Lancaster, P.T. Clemson,Y.F. Suprunenko, T. Stankovski, A. Stefanovska, Detecting chrono-
taxic systems from single-variable time series with separable amplitude and phase. Entropy
17(6), 4413–4438 (2015)

30. G. Lancaster, Y.F. Suprunenko, K. Jenkins, A. Stefanovska, Modelling chronotaxicity of cel-
lular energy metabolism to facilitate the identification of altered metabolic states. Sci. Rep. 6,
29584 (2016)

31. J.A. Langa, J.C. Robinson, A. Suárez, Stability, instability, and bifurcation phenomena in non-
autonomous differential equations. Nonlinearity 15(3), 887 (2002)

32. J.P. LaSalle, Stability of nonautonomous systems. Technical Report, Brown Univ. Providence
Ri Lefschetz Center for Dynamical Systems (1976)

33. M. Lucas, D. Fanelli, T. Carletti, J. Petit, Desynchronization induced by time-varying network.
EPL 121(5), 50008 (2018)

34. M. Lucas, D. Fanelli, A. Stefanovska, Nonautonomous driving induces stability in network of
identical oscillators. Phys. Rev. E 99(1), 012309 (2019)

35. M. Lucas, J. Newman, A. Stefanovska, Stabilization of dynamics of oscillatory systems by
nonautonomous perturbation. Phys. Rev. E 97(4), 042209 (2018)

36. D.J. Lurie, D. Kessler, D.S. Bassett, R.F. Betzel, M. Breakspear, S. Kheilholz, A. Kucyi, R.
Liégeois, M.A. Lindquist, A.R. McIntosh et al., Questions and controversies in the study of
time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4(1), 30–69 (2020)

37. D. Malicet, Random walks on Homeo(S1). Commun. Math. Phys. 356(3), 1083–1116 (2017)
38. D.R.Merkin, The stability of nonautonomous systems, in Introduction to the Theory of Stability

(Springer, 1997)
39. J.Newman,Necessary and sufficient conditions for stable synchronization in randomdynamical

systems. Ergod. Theory Dyn. Syst. 1–19 (2017)
40. J. Newman, M. Lucas, A. Stefanovska, Non-asymptotic-time Dynamics. In: Physics of Bio-

logical Oscillators (Springer, Berlin, 2020)
41. V.I.Oseledets,Amultiplicative ergodic theorem.Characteristic Ljapunov, exponents of dynam-

ical systems. Tr. Mosk. Mat. Obs. 19, 179–210 (1968)
42. W. Ott, J.A. Yorke, When Lyapunov exponents fail to exist. Phys. Rev. E 78(5), 056203 (2008)



110 M. Lucas et al.

43. A. Palmigiano, T. Geisel, F. Wolf, D. Battaglia, Flexible information routing by transient
synchrony. Nat. Neurosci. 28(3), 1–9 (2017)

44. Y. Park, G.B. Ermentrout, Weakly coupled oscillators in a slowly varying world. J. Comput.
Neurosci. 40(3), 269–281 (2016)

45. S. Petkoski, A. Stefanovska, The Kuramoto model with time-varying parameters. Phys. Rev.
E 86(4), 046212 (2012)

46. B. Pietras, A. Daffertshofer, Ott-Antonsen attractiveness for parameter-dependent oscillatory
systems. Chaos 26(10), 103101 (2016)

47. A.S. Pikovskii, Synchronization and stochastization of array of self-excited oscillators by exter-
nal noise. Radiophys. Quantum Electron. 27(5), 390–395 (1984)

48. A. Pikovsky, A. Politi, Lyapunov Exponents: A Tool to Explore Complex Dynamics (Cambridge
University Press, Cambridge, UK, 2016)

49. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear
Sciences (Cambridge University Press, Cambridge, UK, 2003)

50. M. Rasmussen, Finite-time attractivity and bifurcation for nonautonomous differential equa-
tions. Differ. Equ. Dynam Syst. 18(1), 57–78 (2010)

51. E. Schrödinger, What Is Life? (Cambridge University Press, Cambridge, 1944)
52. A. Stefanovska, Coupled oscillators: complex but not complicated cardiovascular and brain

interactions. IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007)
53. A. Stefanovska, H. Haken, P.V.E. McClintock, M. Hožič, F. Bajrović, S. Ribarič, Reversible
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Chapter 7
Non-asymptotic-time Dynamics

Julian M. I. Newman, Maxime Lucas, and Aneta Stefanovska

Abstract Traditional analysis of dynamics concerns coordinate-invariant features of
the long-time-asymptotic behaviour of a system. Using the non-autonomous Adler
equation with slowly varying forcing, we illustrate three of the limitations of this
traditional approach. We discuss an alternative, “slow-fast finite-time dynamical
systems” approach, that is more suitable for slowly time-dependent one-dimensional
phase dynamics, and is likely to be suitable for more general dynamics of open
systems involving two or more timescales.

7.1 Introduction

In recent decades, the limitations of long-time-asymptotic approaches to dynamical
systems analysis have been increasingly recognised, giving rise to the birth of finite-
time dynamical systems (FTDS) theory. In this chapter, building upon considerations
from the chapter [24] of this same volume, we illustrate these limitations through
the dynamics of a non-autonomous Adler equation with slowly varying forcing.
Furthermore, we briefly introduce the concept of dynamics analysis via a slow-fast
limit of finite-time dynamical systems, which is more suitable for describing this
system than traditional long-time-asymptotic analysis is.

J. M. I. Newman (B)
Exeter University, Exeter, UK
e-mail: J.M.I.Newman@exeter.ac.uk

M. Lucas
Aix-Marseille University, Marseille, France
e-mail: maxime.lucas.1@univ-amu.fr

A. Stefanovska
Lancaster University, Lancaster, UK
e-mail: aneta@lancaster.ac.uk

© Springer Nature Switzerland AG 2021
A. Stefanovska and P. V. E. McClintock (eds.), Physics of Biological
Oscillators, Understanding Complex Systems,
https://doi.org/10.1007/978-3-030-59805-1_7

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59805-1_7&domain=pdf
mailto:J.M.I.Newman@exeter.ac.uk
mailto:maxime.lucas.1@univ-amu.fr
mailto:aneta@lancaster.ac.uk
https://doi.org/10.1007/978-3-030-59805-1_7


112 J. M. I. Newman et al.

7.1.1 Classical Dynamical Systems Theory

Dynamical systems theory describes the “qualitative” behaviour of processes evolv-
ing according to some given law. As a mathematical discipline, it dates back to
Henri Poincaré [29] and Aleksandr Lyapunov [25]; a particular goal of this theory
was to describe properties—particularly stability properties—of celestial orbits.

The fundamental assumption underlying the modelling of celestial mechanics
is that each celestial body is a point particle, whose instantaneous acceleration is
determined from the instantaneous configuration of the positions of all the celestial
bodies, by Newton’s universal law of gravitation. This law stipulates the existence
of a universal non-time-varying constant of nature in terms of which the (simi-
larly time-independent) mathematical relation between forces and distances is then
formulated. This model of celestial mechanics means, in particular, that the future
motion of celestial bodies starting from any given initial configuration of positions
and velocities is in no way dependent on the time at which the bodies start in this ini-
tial configuration. In other words, the Newtonian formulation of celestial mechanics
is, in a way, “timeless”: although increments of time are of physical meaning and
significance, absolute times are not. Or in the language of dynamical systems the-
ory: the law specifying the time-evolution of the position-velocity configuration of
a system of interacting celestial bodies is an autonomous dynamical system.

As described in the preceding chapter [24], a dynamical system is called
autonomous if the future evolution that it specifies from any given current state has
no dependence on the current time. Autonomous dynamical systems serve as math-
ematical models for the time-evolution of the state of an isolated physical system. A
physical system is called isolated if it exchanges neither matter nor energy with its
environment. Since the pioneering work of Poincaré and Lyapunov, the mathemati-
cal theory of autonomous dynamical systems has become extremely well-developed
over the last century, and new and important advances continue to be made. This
theory includes mathematical formalisms for some of the most fundamental ques-
tions that one can ask about a physical system’s behaviour in time, such as stability or
chaos, as well as how this behaviour depends on the system’s parameters. Suchmath-
ematical formalisms include asymptotic stability, stability in the sense of Lyapunov
(formalising the physical concept of “neutral stability”), various mathematical def-
initions of chaos, and also asymptotic Lyapunov exponents (ALEs) which are often
used to quantify stability or chaos [24]. Two important features of these various
mathematical formalisms for the questions one can ask about a system’s qualitative
or quantitative dynamics are as follows.

• They give the same answer after a change of coordinates of the state space of the
system.

• For any finite time-interval [0, T ] (however large T may be), the answer is inde-
pendent of the behaviour of the system on the time-interval [0, T ].

Properties of dynamical systems that fulfil the latter of these are referred to as long-
time-asymptotic properties. These only make sense if the dynamical system is itself
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well-defined on infinite time; but in the setting of autonomous dynamical systems,
this is not generally a problem. As above, long-time-asymptotic properties include
traditionally defined notions of stability and neutral stability, as well as asymptotic
Lyapunov exponents.

The classical theory of autonomous dynamical systems has been applied through-
out the sciences to describe the qualitative behaviour of systems given a quantitative
model, and inversely to inform the inference of underlying physics from observa-
tional data [28, 34].

7.1.2 The Limitations of Long-Time-Asymptotic Analysis

The aim of the present chapter is to explore some of the ways in which long-time-
asymptotic formalisms of stability can be inadequate or unsuitable when studying
open systems and the parameter-dependence of their stability.

As we have seen in Chap.6 [24], in order to model the time-evolution of a process
subject to time-variable external influences (i.e. a process that does not possess the
kind of “timelessness” described above for Newtonian celestial mechanics), it would
not be suitable to use an autonomous dynamical system defined on the space of states
of the process. Instead, non-autonomous [18] and noise-perturbed [1] dynamical
systems can be used. (It is well-known that one can convert a non-autonomous system
on the state space into an autonomous system on the higher-dimensional state-time
space. But this does not make traditional autonomous dynamical systems theory, as
developed for isolated systems, applicable to analysis of open systems: all solutions
of this higher-dimensional system simply blow up to infinity as their time-coordinate
blows up to infinity [18, Remark 2.5].)

Nonetheless,merely carryingover traditional long-time-asymptotic analysismeth-
ods from the classical autonomous setting to the non-autonomous setting still inher-
ently limits the extent to which the free time-variability of open systems can be
suitably treated. The main points that we will highlight in this chapter (see also [15,
Sects. 1.1, 6]) are:

(1) that the behaviour of an open system on the finite timescales of interest need not
follow (even approximately) any particular deterministic or statistical rule that
can be extended indefinitely in time;

(2) that a finite-time dynamical model which admits no natural extension to infinite
time may still clearly exhibit important dynamical phenomena;

(3) that even for an indefinite-time non-autonomous model, simply pursuing a long-
time-asymptotic analysis of dynamics may hinder the recognition of physically
significant dynamical phenomena.

Chapter6 [24] highlighted how non-autonomous driving can induce stability,
through the example of a phase oscillator governed by the Adler equation being
driven by an external phase oscillator with time-dependent frequency, where the

http://dx.doi.org/10.1007/978-3-030-59805-1_6
http://dx.doi.org/10.1007/978-3-030-59805-1_6
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frequency modulation of the driving oscillator is such that the driven oscillator inter-
mittently synchronises with the driving oscillator. We will use this same example to
illustrate the above three points; further details are presented in [27]. The physical
phenomenon of phase stabilisation by time-dependent external influence has previ-
ously been described within the framework of chronotaxic oscillators [33], where
the mathematical concept of pullback-attraction in deterministic nonautonomous
dynamical systems was used to describe the stability of self-sustained oscillators
with time-dependent phase dynamics. However, this requires the model of the time-
dependent external forcing to be well-defined indefinitely far back into the past. This
present chapter draws attention to how the same physical stabilisation effect can be
understood in terms of dynamical behaviour on bounded time-intervals even when
indefinite-time models are inherently irrelevant or unsuitable.

Now let us mention that the paper [27], and this present chapter, are far from
being the first investigation into finite-time dynamics motivated by the limitations of
long-time-asymptotic dynamics. The field of non-autonomous finite-time dynamical
systems, though relatively recent, has seen important progress being made [2, 3, 5,
9, 15, 16, 21, 31]. So far, the primary application of FTDS theory has been the study
of Lagrangian coherent structures in diverse fluid flows [10, 11, 13, 20, 26, 30,
32, 35, 36, 38]. Other examples include population dynamics [37] and activation
of biochemical signalling pathways [3]. Our present contribution to this field of
finite-time dynamics is the consideration of FTDS with slow-timescale driving (as
formalised in Sect. 7.5). Let us mention that fast-timescale driving of the Adler
equation has also been treated rigorously from a finite-time perspective in [8], in the
context of synchronisation transitions induced by time-dependence of the shape of
phase-coupling function.

7.1.3 Structure of the Chapter

In Sect. 7.2, we will present a general analysis of Adler equations with slowly
time-dependent additive forcing, following the same line of reasoning as in the
chapter [24]. In particular, in Sect. 7.2.4wewill describe the time-variability-induced
stabilisation phenomenon that forms the basis of the considerations in this chapter.
In Sect. 7.3, we will illustrate points (1) and (2) of Sect. 7.1.2 through the example
of an Adler equation driven by a low-pass-filtered sample realisation of a Brownian
bridge. In Sect. 7.4, we will illustrate point (3) of Sect. 7.1.2 through the example of
an Adler equation with slow sinusoidal driving. In Sect. 7.5, we will briefly describe
the framework of slow-fast FTDS that can be used to formalise the stabilisation phe-
nomenon seen in both [24] and this chapter. In Sect. 7.6, we will summarise and
conclude.
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7.2 The Non-autonomous Adler Equation

As in [24], the phase difference for a unidirectionally coupled pair of phase-oscillators
with Kuramoto-type coupling can be modelled by an Adler equation with additive
forcing, i.e.

θ̇ (t) = −a sin(θ(t)) + G(t). (7.1)

Physically, if the oscillator-pair is an isolated system then the driving frequency will
be constant (i.e. not time-dependent), and as a result the term G(t) will simply be a
constant (i.e.with no dependence on t). In this case, (7.1) is an autonomous dynamical
systemon the circle. But if, instead, the driving oscillator is open to external influence,
then this is likely to mean that the driving frequency will be time-dependent, and
as a result the term G(t) will depend on t . In this case, (7.1) is a non-autonomous
dynamical system on the circle. In either case, for studying dynamics, we canwithout
loss of generality take a > 0.

For our consideration here, just as in the previous chapter [24], we will take the
forcing term G(t) to be slowly time-dependent, corresponding to slow frequency
modulation of the driving oscillator. In other words, the timescale of variation of
G(t) is slower than the timescale of the dynamics of θ itself. (This can be formalised
as in Sect. 7.5.).

7.2.1 Stability and Neutral Stability in the Autonomous Case

Before considering the non-autonomous case where G(t) depends slowly on t , let us
first consider the autonomous case where G is constant, in which case we can apply
a classical dynamical systems analysis to (7.1).

• If G ∈ (−a, a), all solutions θ(t) of (7.1) converge to the sink y := arc sin
(
G
a

)
,

apart from the repulsive constant solution at the source π − arc sin
(
G
a

)
. Hence in

particular, for any solution other than the repulsive solution, a small perturbation to
the initial conditionwill be “forgotten over time”, since eventually the solutionwill
settle at the sink in any case. This “loss of memory of perturbation” corresponds
physically to stability. The separation between solutions starting at different initial
conditions (other than the source) will decay at an exponential rate, with exponent
−a cos(y) = −√

a2 − G2; this is the ALE of every trajectory of (7.1) other than
the single repulsive trajectory, and quantifies the system’s stability.

• If G /∈ [−a, a], all the trajectories θ(t) of (7.1) move strictly periodically round
the circlewith common period

∫ 2π
0

dθ
|−a sin(θ)+G| = 2π√

G2−a2
. Hence, on the one hand,

the separation between solutions starting at two nearby conditions does not decay
as time tends to infinity, but on the other hand, the two solutions will remain nearby
forever. So the effect of a small perturbation to a solution’s initial condition will
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not be forgotten but nonetheless it will remain small. This corresponds physically
to neutral stability. In this case, the ALE of every trajectory is 0.

So in short, if G ∈ (−a, a) then the system (7.1) describes a stable process, but
if G /∈ [−a, a] then the system (7.1) describes a neutrally stable process.

Finally, let us brieflymention the boundary between stability and neutral stability,
which occurs when |G| is exactly equal to a. In this case, there is a unique fixed point,
which is attracting from one direction but is unstable due to being repelling in the
other direction, and all trajectories converge to this unstable fixed point and have an
ALE of 0. For most of this chapter, we will leave out the analysis of such degenerate
cases lying on the boundary between two scenarios.

7.2.2 Stability and Neutral Stability in the Non-autonomous
Case

In view of the above statemets for the autonomous case, now under the assumption
that G(t) varies very slowly with time t , a “conceptual-level” analysis of (7.1) gives
us the following:

• While G(t) ∈ (−a, a), the trajectories move away from the vicinity of the slowly

moving source π − arc sin
(
G(t)
a

)
, and cluster together into an increasingly tight

cluster near the slowly moving sink y(t) := arc sin
(
G(t)
a

)
. In this clustering, the

separation between different trajectories decays approximately according to an
exponential decay of exponent −a cos(y(t)) = −√

a2 − G(t)2.
• While G(t) /∈ [−a, a], trajectories move approximately periodically round the
circle with common approximate period 2π√

G(t)2−a2
.

• Thus overall, over a given time-interval [0, T ], we have the following:
(a) If there are subintervals duringwhichG(t) ∈ (−a, a), then the solutions starting

at different initial conditions end up clustered extremely close to each other
(apart from those solutions that start extremely near the maximally repulsive
solution which follows the slowly moving source while G(t) ∈ (−a, a)). So
the effect of a perturbation to a solution’s initial condition will eventually be
forgotten over time.

(b) If there are no times at which G(t) ∈ [−a, a] then the system does not exhibit
significant separation or attraction between the trajectories of different initial
conditions. So the effect of a small perturbation to a solution’s initial condition
will not be forgotten but on the other hand will remain small.

Once again, the loss of memory of initial condition in case (a) corresponds phys-
ically to stability, and the lack of significant mutual attraction or separation of
solutions in case (b) corresponds physically to neutral stability.
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The above adiabatic reasoning is precisely the reasoning behind the stabilisation
phenomenon observed in Sect. 6.4.3 of the chapter [24]. Here in this chapter, we will
highlight how the stabilisation arising from this inherently finite-time reasoning does
not, in general, lend itself to being formalised and quantified in terms of traditional
long-time-asymptotic mathematical formalisms. This stands in contrast to the noise-
induced stability described in Sect. 6.4.2 of the chapter [24], the theory of which is
inherently tied to the model’s long-time-asymptotic dynamics.

7.2.3 Quantitative Rate of Synchronisation of Trajectories

As in [14], an approximate overall exponential separation rate � ≤ 0 between solu-
tions of (7.1) over a time-interval [0, T ] can be computed in accordance with the
above adiabatic reasoning. Namely, recalling that there is no significant mutual sep-
aration or attraction of trajectories while |G(t)| > a, but that while |G(t)| < a the
separation between trajectories decays with exponential rate −√

a2 − G(t)2, we
obtain overall the approximate exponential separation rate

� = − 1

T

∫

{s∈[0,T ]:|G(s)|<a}

√
a2 − G(t)2 dt. (7.2)

More precisely, this quantity � serves as an estimate for the finite-time Lyapunov
exponent λT , over the time-window [0, T ], of trajectories of (7.1). Note that � must
be either 0 or negative, with 0 corresponding to neutral stability and a negative value
corresponding to stability.

7.2.4 Transition from Neutral Stability to Stability

In this chapter, we will consider G(t) taking the form k + Ag(t) where A ≥ 0 is
a parameter representing the breadth of time-variability. That is, we consider the
non-autonomous Adler equation

θ̇ (t) = −a sin(θ(t)) + k + Ag(t). (7.3)

Consider g(t) on a time-interval t ∈ [0, T ], and suppose that g(t) takes both
positive and negative values on [0, T ]. If k > a, then letting

A∗ := a − k

mint∈[0,T ] g(t)
> 0, (7.4)

the reasoning in Sect. 7.2.2 yields the following:
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• if A < A∗ then the trajectories of (7.3) exhibit neutral stability,
• but if A > A∗ then the trajectories of (7.3) exhibit stability.

In physical terms, sufficiently broadly time-variable forcing induces phase stability
in an oscillatory process evolving according to the model (7.3). The chapter [24]
presents the stabilisation phenomenon from the point of view of the overall region
of stability in parameter space. The value A∗ represents the critical A-value for the
transition between neutral stability and stability.

7.2.5 Numerics for the Non-autonomous Adler Equation

To aid physical intuition, in the presentation of all our numerics, time t is considered
as real timemeasured in units of seconds, and all other parameters and variables have
the appropriate units accordingly. Throughout this chapter, solutions of Eq. (7.1) are
simulated by numerical integration using a 4th order Runge-Kutta scheme, with a
time step of 0.01 s. For the reverse-time bifurcation diagrams, to obtain the initial
condition θ(0) for a given final state θ(T ), the value of θ(T ) was used as the initial
condition θback(0) of a forward-time simulation of the differential equation θ̇back(t) =
a sin(θback(t)) − G(T − t), and then θ(0) was taken as θback(T ).

7.3 A Toy Model of “inherently Finite-Time” Dynamics

In this section, we use the stabilisation phenomenon described in Sect. 7.2.4 to illus-
trate that stability and neutral stability can be central among the physical properties
of a finite-time process even if the process’s dynamics cannot be described by the
long-term behaviour of an infinite-time mathematical model of the process. In this
case, such stability properties cannot be formalised and quantified by the traditional
mathematical formalisms such as asymptotic Lyapunov exponents.

Specifically, as a finite-time adaptation of the indefinite-time ergodic Gaussian
process considered in [14], we consider here the non-autonomous Adler equa-
tion (7.3)with g(t) being a low-pass-filtered sample realisation of aBrownian bridge,
as illustrated in Fig. 7.1.

7.3.1 Definition and Basic Properties of a Brownian Bridge

A Brownian bridge is a finite-time stochastic process that models the inhomogene-
ity of a large sample of random times selected mutually independently from the
uniform distribution on a pre-specified finite time-interval. Namely, fixing a finite
time-interval [0, τ ] and a value σ > 0 (analogous to the diffusion parameter of
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a Brownian motion), a Brownian bridge (Bt )t∈[0,τ ] on [0, τ ] with parameter σ is
approximated by taking an i.i.d. sample S = {T1, . . . , TN } of large size N from the
uniform distribution on [0, τ ], and setting

Bt = σ
√
Nτ

(
PS([0, t]) − t

τ

)

where PS([0, t]) is the proportion of the sample S that lies within [0, t], i.e.
PS([0, t]) = #(S∩[0,t])

N . The well-definedness of the limit as N → ∞ is given by
Donsker’s theorem [4, Theorem 1.1.1]. Note that B0 = Bτ = 0.

Let us now outline the connection between a Brownian bridge and a Brownian
motion.A (zero-drift)Brownianmotionwith diffusion parameter σ is an infinite-time
stochastic process (Mt )t∈R with continuous time-dependence, such that increments
inMt over consecutive time-intervals are independent of each other, andMt hasmean
0 and standard deviation σ

√|t |. Now given a finite time τ > 0, one can construct a
portion (Mt )t∈[0,τ ] of a Brownian motion (Mt )t∈R with diffusion parameter σ as the
sum of two independent components,

Mt = t X + Bt , (7.5)

where (Bt )t∈[0,τ ] is a Brownian bridge on [0, τ ] with parameter σ , and X is a normal
random variable independent of (Bt )t∈[0,τ ] with mean 0 and standard deviation σ√

τ
.

There is no way to define Bt for t > τ so as to extend the construction (7.5) of
Brownian motion beyond time τ : for any t > τ , the standard deviation σ t√

τ
of the

component t X is already larger than the standard deviation σ
√
t of Mt .

7.3.2 Finite-Time Non-autonomous Adler Equation

We consider the model (7.3) with g : [0, τ ] → R as shown in Fig. 7.1, where τ =
2π × 105 s. Since the construction of g (as detailed shortly) is based on a sample
realisation of a Brownian bridge, and Brownian bridges admit no natural extension
to infinite time, the model we consider exemplifies point (1) of the three main points
in Sect. 7.1.2. In this section, we will compare numerical simulation of this model
with the picture presented in Sect. 7.2.4 and observe clear agreement. This will serve
to exemplify point (2) of the abovementioned three points in Sect. 7.1.2.

The function g(t) was constructed as follows. First, a sample realisation (Mt )

of a zero-drift Brownian motion with diffusion parameter 1√
τ
was constructed on

[0, τ ], by cumulative addition of independent and identically distributed Gaussian
increments, with a time-step of 0.01 s. (The purpose of taking 1√

τ
for the diffusion is

simply to help “bound” this long-duration process; it means that Mτ has a standard
deviation of 1.) A corresponding sample realisation (Bt )t∈[0,τ ] of a Brownian bridge
of parameter 1√

τ
was then constructed as Bt = Mt − t

τ
Mτ . Finally, (g(t))t∈[0,τ ] was
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obtained by passing (Bt )t∈[0,τ ] through a 5th order Butterworth low-pass filter with
cut-off frequency 1/(2π × 103) Hz, performed via cascaded second-order sections
(in Python, with the function “scipy.signal.sosfilt”), and we linearly interpolated the
output of the filter.

Other parameters of Eq. (7.3) are taken to be a = 1
3 rad/s and k = 1 rad/s, and

we consider how the dynamics depends on the parameter A. Due to the low-pass
filter, g(t) has very slow gradual time-dependence compared to the timescale of the
“internal dynamics” of the system (represented by A = 0). Therefore, since k > a,
the picture described in Sect. 7.2.4 can be applied, and we will now see this picture
confirmed by numerics. Figure 7.2b shows a “numerical bifurcation diagram” of
(7.3) where for each A-value, the trajectories at time τ of 50 evenly spaced initial
conditions are shown. Despite the non-existence of infinite-time dynamics for this
system, we clearly see in Fig. 7.2b a transition from neutrally stable dynamics, where
trajectories fill the circle, to stable dynamics, where trajectories cluster around a point
(implying loss of memory of initial condition). We see this transition occurring at
the value A∗ defined by (7.4) with T = τ , which is marked in dashed black in plots
(a), (b) and (c) of Fig. 7.2. Thus, the picture seen in Fig. 7.2b is exactly in accordance
with the description in Sect. 7.2.4.

As in [24], the stability can also be assessed in terms of finite-time Lyapunov
exponents (FTLEs). The FTLE for a trajectory θ(t) of (7.3) over a time-window
[0, T ] is computed as

λT = 1

T

∫ T

0
−a cos(θ(t)) dt. (7.6)

We consider the FTLEs for trajectories of (7.3) over the whole time-window [0, τ ].
The values of λτ for the trajectories of 50 initial conditions are shown in Fig. 7.2a.
For each A-value, we see that the 50 trajectories share indistinguishably the same
FTLE value, being indistinguishable from 0 for A < A∗ and clearly negative for
A > A∗. Again, this suggests a transition from neutral stability to stability at A∗.

For further illustration, let us now consider the dynamics not over the whole time-
interval, but rather over the subinterval [0, τ ′]with τ ′ = π × 104 s. Figure 7.2e shows
the numerical bifurcation diagram for simulation only up to time τ ′. Here, we see the
critical transition from neutral stability to stability occurring at the new value of A∗
where in (7.4), we take T = τ ′ rather than T = τ . Note that A∗ is now significantly
larger than what it was when we considered the whole time-interval [0, τ ]. This is

Fig. 7.1 Graph of g(t),
obtained by passing a sample
realisation of a Brownian
bridge on [0 s, 2π × 105 s]
through a low-pass filter
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Fig. 7.2 Dynamics of (7.3) with g as in Fig. 7.1, with varying A, over the time-interval
[0 s, 2π × 105 s] of duration τ = 2π × 105 s in (a)–(c), and over the shorter time-interval [0 s, π ×
104 s] of duration τ ′ = π × 104 s in (d)–(f). Other parameters are a = 1

3 rad/s and k = 1 rad/s.
In (a–e), for each A-value, results for the evolution θ(t) of 50 equally spaced initial conditions
θ(0) = 2π i

50 , i = 0, . . . , 49, are shown: (a, d) shows the finite-time Lyapunov exponents λT , as
defined by (7.6), for these trajectories, with T = τ in (a) and with T = τ ′ in (d); (b, e) shows the
positions θ(T ) of these trajectories at time T = τ in (b) and T = τ ′ in (e). In (c, f), for each A-
value, the positions of θ(0) for the 50 trajectories ending at the points θ(T ) = 2π i

50 , i = 0, . . . , 49,
are shown, with T = τ in (c) and T = τ ′ in (f). In (a)–(c), the value A∗ as defined in (7.4) with
T = τ is marked in dashed black. In (d)–(f), the value A∗ as defined in (7.4) with T = τ ′ is marked
in dashed black

because g(t) reaches significantly more negative values during t ∈ (τ ′, τ ] than it
manages to reach during t ∈ [0, τ ′]. FTLEs of trajectories over the time-window
[0, τ ′] are shown in Fig. 7.2d, and again they show a transition from 0 to negative at
the new A∗ value.

For the whole time-interval [0, τ ] and the subinterval [0, τ ′], reverse-time bifur-
cation diagrams are shown in plots (c) and (f) of Fig. 7.2 respectively. In plots (b)
and (c), and likewise in plots (e) and (f), we see that if A is above the critical value
then trajectories are repelled away from the very small vicinity of a repulsive ini-
tial condition and are mutually attracted into a very small cluster; thus, the critical
transitions that we see in Fig. 7.2 are strongly resemblant of a classical saddle-node
bifurcation of autonomous dynamical systems. But this bifurcation cannot be for-
malised in terms of the long-time-asymptotic dynamics of any reasonable extension
of the model (7.3) to infinite time. Indeed, this is highlighted by the fact that crit-
ical parameter-value A∗ for this bifurcation is different between when the system
is considered over [0, τ ′] and when the system is considered over [0, τ ]. The con-
clusion we draw from these observations is that for a physical process subject to
time-dependent external influences, important stabilisation phenomena can be com-
pletely indetectable by all theoretical or experimental approaches that assume the
well-definedness of long-time-asymptotic dynamical properties such as asymptotic
stability or asymptotic Lyapunov exponents.
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7.4 The Adler Equation with Sinusoidal Driving

In order to illustrate point (3) of the three main points in Sect. 7.1.2, we now consider
the Adler equation with slow-timescale sinusoidal driving (just as was used for the
numerical illustrations in the chapter [24]). The strict periodicity of the drivingmeans
that the theoretical analysis in Sect. 7.2, as well as numerics of the kind presented in
Sect. 7.3, can now be compared with a long-time-asymptotic analysis of stability.

We consider the system (7.3) with g(t) = cos(ωt), i.e.

θ̇ (t) = −a sin(θ(t)) + k + A cos(ωt), (7.7)

with a, k, ω > 0 and A ≥ 0.We assume slow time-dependence of the driving, specif-
ically in the sense that bothω and the product Aω are very small. We will also mostly
focus on the case that k > a, so that the picture in Sect. 7.2.4 is applicable.

Let us first present the basic results of a classical stability analysis.

7.4.1 An Initial Long-time-asymptotic Analysis of Dynamics

The case that A = 0 is the autonomous case for which a classical stability analysis
was carried out in Sect. 7.2.1 (with k = G), as well as in Sect. 6.4.1 of the chapter
[24]. We now address the general case from the same classical point of view.

The ALE of a trajectory θ(t) of (7.7) is precisely the limit as T → ∞ of the FTLE
λT given by (7.6). Now let 	 be the “mean frequency” 〈θ̇〉 of trajectories of (7.7),
namely

	 = lim
T→∞

1

T

∫ T

0
θ̇ (t) dt,

which does not depend on the initial condition θ(0) of the trajectory θ(t), but does
depend on the system parameters a, k, A andω. For the autonomous case A = 0, as in
[24, Sect. 6.4.1] we have	 = 0 in the stable scenario (k < a), but	 = √

k2 − a2 >

0 in the neutrally stable scenario (k > a).

Proposition 1 For any given parameter values a, k, A, ω in Eq. (7.7), exactly one
of the following three statements holds.

(A) Equation (7.7) exhibits neutral stability in the following sense:

– There is a finite bound M > 0 such that for any two distinct solutions θ1(t)
and θ2(t) of (7.7), for all time t ∈ R,

1

M
≤ distance between θ1(t) and θ2(t)

distance between θ1(0) and θ2(0)
≤ M.

– The ALE of every trajectory is 0.
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(B) Equation (7.7) exhibits stability in the following sense:

– There is a 2π
ω
-periodic solution p(t) that attracts all solutions as t → ∞,

apart from a single repulsive periodic solution π − p(−t).
– The ALE of every trajectory other than the repulsive trajectory π − p(−t) is
a negative number λ.

(C) Equation (7.7) lies “on the boundary between stability and neutral stability”, in
the following sense: There is a unique 2π

ω
-periodic solution, which is attracting

from one direction but is unstable due to being repulsive in the other direction,
and all solutions converge to this solution as t → ∞ and have an ALE of 0.

Furthermore, if the mean frequency 	 is not an integer multiple of ω, then we must
be in case (A).

This proposition is essentially Theorems 1 and 4 of [12]. So we see that the set of
possible behaviours for the periodically forced Adler equation is directly analogous
to the set of possible behaviours for the autonomous Adler equation in Sect. 7.2.1.
(This is quite a special property of Adler equations, that does not generalise to other
one-dimensional phase-oscillator models [6].)

For the case that k > a, we emphasise the following corollary of Proposition 1.

Corollary 1 Assume k > a, and fix any A ≥ 0. There are intervals of ω-values
arbitrarily close to 0 for which Eq. (7.7) exhibits neutral stability in the sense of
Proposition 1(A).

Proof For any trajectory θ(t), since

k − a + A cos(ωt) ≤ θ̇ (t) ≤ k + a + A cos(ωt)

for all t , and since the term A cos(ωt) has an average of 0, it follows that

k − a ≤ 	 ≤ k + a.

Now 	 depends continuously on the parameters of Eq. (7.7) [17, Proposi-
tion 11.1.6]. Hence, since 	 is constrained to the interval [k − a, k + a] ⊂ (0,∞),
it follows that as ω → 0, there will always be intervals of ω-values for which 	 is
not an integer multiple of ω.

Note that Corollary 1 applies to every A ≥ 0: whatever the value of A, it is pos-
sible for the time-dependence of the driving G(t) := k + A cos(ωt) to be arbitrarily
slow (corresponding to arbitrarily small ω) and yet for the system to exhibit neutral
stability in the sense of Proposition 1(A). In both the statements and the proofs of
Proposition 1 and Corollary 1, no distinction whatsoever appears between the situa-
tion that G(t) remains forever outside [−a, a] and the situation that there are times
t when G(t) ∈ (−a, a), as considered in Sect. 7.2.2. In particular, the statement and
proof of Corollary 1 recognise no distinction between A-values less than a critical
value A∗ and A-values larger than a critical value A∗.
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7.4.2 Analysis Based on Sect. 7.2

Assume k > a. Considering (7.7) over an arbitrary time-interval [0, T ] with T ≥ π
ω
,

the critical A-value A∗ as defined in (7.4) is simply given by A∗ = k − a. So as in
Sect. 7.2.4 we have the following: if A < k − a then, by the reasoning of Sect. 7.2.2,
the trajectories of (7.7) exhibit neutral stability; and if A > k − a then by the same
reasoning of Sect. 7.2.2, the trajectories of (7.7) exhibit stability.

As in Sect. 7.2.3, one can quantify the level of stability using the adiabatically
derived FTLE estimate � defined in Eq. (7.2). If T is an integer multiple of π

ω
then

this is given by

� =

⎧
⎪⎪⎨

⎪⎪⎩

0 A ≤ k − a
− 1

π

∫ π

arc cos( a−k
A )

√
a2 − (k + A cos(t))2 dt k − a < A ≤ k + a

− 1
π

∫ arc cos(− k+a
A )

arc cos( a−k
A )

√
a2 − (k + A cos(t))2 dt A > k + a.

(7.8)

We emphasise that this quantity � has no dependence on ω and no dependence on
T , within the constraint that T is an integer multiple of π

ω
.

7.4.3 Numerics

We fix the time-interval [0 s, 2π × 105 s] of duration T = 2π × 105 s, and fix
ω = 10−3 rad/s, so that T = 200π

ω
, i.e. T corresponds to exactly 100 periods of the

driving k + A cos(ωt). Figure 7.3 shows the FTLEs and forward- and reverse-time
numerical bifurcation diagrams for the system, analogous to the plots in Fig. 7.2.
Once again, the value of A∗ is marked, which is now simply equal to k − a as stated
in Sect. 7.4.2. But additionally, on the FTLE plot, the adiabatically derived FTLE
approximation � given in (7.8) is shown in grey.

In all these plots, we see exactly the same stabilisation phenomenon as was
observed in Sect. 7.3.2. We furthermore observe extremely good agreement between
� and the numerically obtained FTLE values. So overall, the numerical picture in
Fig. 7.3 confirms the analysis in Sect. 7.4.2.

Many further numerical simulation results for the sinusoidally driven Adler equa-
tion can be found in the chapter [24] and in [27], all confirming the conceptual
analysis in Sect. 7.2.2 and the stabilisation phenomenon in Sect. 7.2.4.

7.4.4 Comparison of the Above Analyses

We have seen clearly that for k > a, the same critical transition from neutral stability
to stability occurs in the slowly sinusoidally forced Adler equation (7.7) as was
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seen to occur for the model in Sect. 7.3.2. Furthermore, for A > k − a the FTLEs
are indistinguishable from the negative value � < 0 given in Eq. (7.8). However,
Corollary 1 says that whatever the value of A, it is possible for ω to be arbitrarily
small and still for (7.7) to have neutrally stable dynamics where the ALE of every
trajectory is 0.

So the question arises of how to reconcile these two seemingly conflicting descrip-
tions of the dynamics of (7.7). Now it turns out that when A > k − a, the width of the
ω-intervals of neutral stability is extremely small compared to the separation between
them; this is proved rigorously in [7] for A = a and k ∈ (a, 2a). So, in other words,
while this neutral stability can occur for all A-values as in Corollary 1, nonethe-
less it is an extremely fine-tuned phenomenon in the case that A > k − a. In these
narrow ω-intervals of neutral stability for A > k − a, the mechanism for the break-
down of the conceptual analysis in Sect. 7.2.2 is a kind of canard-like phenomenon:
at some of the times when the forcing G(t) := k + A cos(ωt) starts to re-enter the
interval (−a, a), the previously formed cluster of mutually synchronised trajectories
happens to spend too much time tracking the motion of the slowly moving source

z(t) := π − arc sin
(
G(t)
a

)
and is thus de-synchronised.

However, the mathematical tools needed to obtain Proposition 1 and Corollary 1
neither reveal the narrowness of the ω-intervals of neutral stability when A > k −
a, nor hint at the existence of an adiabatic mechanism of stability for A > k − a
(namely as described in Sect. 7.2.2) which needs some other peculiar mechanism of
destabilisation to undo.

So in conclusion:

• We have seen in Fig. 7.3 a clear and physically important qualitative change in the
behaviour of the model (7.7) as A crosses from below k − a to above k − a, and
we have explained this in terms of very simple non-asymptotic-time reasoning, of
exactly the same kind as was applied to the model in Sect. 7.3.2.

• But simply pursuing a classical approach to stability analysis risks positively hin-
dering the recognition of this important qualitative change.

Fig. 7.3 Dynamics of (7.7)with varying A, forω = 10−3 rad/s, from time 0 s up to time T = 2π ×
105 s = 200π

ω
. Other parameters are a = 1

3 rad/s and k = 1 rad/s. In (a) and (b), for each A-value,
results for the evolution θ(t) of 50 equally spaced initial conditions θ(0) = 2π i

50 , i = 0, . . . , 49, are
shown: a shows the finite-time Lyapunov exponents λT , as defined by (7.6), for these trajectories,
and also shows� (defined in (7.8)) in grey; (b) shows the positions θ(T ) of these trajectories at time
T . In (c), for each A-value, the positions of θ(0) for the 50 trajectories of (7.7) with θ(T ) = 2π i

50 ,
i = 0, . . . , 49, are shown. The value k − a = 2

3 rad/s is marked by the black dashed line
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7.5 Slow-Fast Finite-Time Dynamical Systems

In view of the conclusions at the end of Sects. 7.3 and 7.4, a natural question is
whether there might be other approaches to formally defining concepts of stability
and neutral stability other than the long-time-asymptotic approaches introduced by
Aleksandr Lyapunov.

For any physical process in the real world, time is a finite parameter just like
all other parameters, and we are interested in the behaviour on finite timescales.
The philosophy behind traditional long-time-asymptotic dynamics analysis is that
for many physical processes, what is practically observed on such finite timescales
of interest matches the theoretical limiting behaviour of a suitable mathematical
model of the process as t → ∞. However, we propose that for the kinds of slowly
time-dependent systems that we have been studying in this chapter, an appropriate
approach is not to treat time as the special parameter that can be approximated by an
infinite limit, but instead to treat the timescale separation as the special parameter that
can be approximated by an infinite limit. We do anticipate (as evidenced numerically
in [27]) that the timescale separation will often not need to be very great in order for
the infinite-limit approximation to give a suitable description of dynamics.

For one-dimensional phase-oscillator models, our proposed approach means that
we consider finite-time differential equations of the form

θ̇ (t) = F(θ(t), εt), t ∈ [0, 1
ε
] (7.9)

for some function F : R × [0, 1] → R that is 2π -periodic in its first input, and we
consider the limiting behaviour as ε → 0. For example, non-autonomousAdler equa-
tion models could take the form

θ̇ (t) = −a sin(θ) + G̃(εt)

for some G̃ : [0, 1] → R, and one can consider the limiting behaviour as ε → 0.
The study of limiting dynamical behaviour as timescale separation tends to infinity

is the subject of slow-fast dynamical systems [19]. Here, we are combining this slow-
fast approach with the philosophy of FTDS theory, by restricting the slow time εt
to the unit interval. In the paper [27], we use this “slow-fast FTDS” approach to
define notions of stability and neutral stability that are analogous to those seen in
scenarios (A) and (B) of Proposition 1 but from an “ε → 0 perspective” in place of a
“t → ∞ perspective”.We use these definitions to address rigorously the stabilisation
phenomenon that we have discussed in this chapter.

This chapter has focused on stabilisation of one-dimensional phase dynamics.
But as seen in [22, 24] and also numerically evidenced in [23], similar dynamical
phenomena are likely to be prevalent in higher-dimensional multiple-timescale non-
autonomous systems as well.
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7.6 Conclusion

We have studied slowly time-varying one-dimensional phase dynamics to illustrate
the physical limitations of traditionalmathematical formalisms of dynamical systems
analysis that have their roots in the study of isolated systems. For processes subject to
slowly time-dependent forcing, we have proposed an alternative framework of “slow-
fast finite-time dynamical systems” for mathematical analysis of physical concepts
such as stability.More generally, we argue that a finite-time perspective on dynamical
behaviour may be crucial to the correct identification and explanation of dynamical
phenomena occurring in open systems studied throughout the sciences.
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Chapter 8
Synchronization of Coupled
Oscillators—Phase Transitions
and Entropy Production

Steven Yuvan and Martin Bier

Abstract Over the last half century, a good understanding of liquid-gas phase transi-
tions and magnetization phase transitions has been developed. After an order param-
eter, r , is defined, it can be derived how r = 0 for T > Tc and how r ∝ (Tc − T )γ at
lowest order for T < Tc. Here T is the temperature and Tc represents a critical temper-
ature. The value of γ appears to not depend on physical details of the system, but very
much on dimensionality. No phase transitions exist for one-dimensional systems. For
systems of four or more dimensions, each unit is interacting with sufficiently many
neighbors to warrant a mean-field approach. The mean-field approximation leads to
γ = 1/2. In this article we formulate a realistic, nonequilibrium system of coupled
oscillators. Each oscillator moves forward through a cyclic 1D array of n states and
the rate at which an oscillator proceeds from state i to state i + 1 depends on the
populations in states i + 1 and i − 1. We study how the phase transitions occur from
a homogeneous distribution over the states to a clustered distribution. A clustered
distribution means that oscillators have synchronized. We define an order parameter
and we find that the critical exponent takes on the mean-field value of 1/2 for any
number of states n. However, as n increases, the phase transition occurs for ever
smaller values of Tc. We present rigorous mathematics and simple approximations
to develop an understanding of the phase transitions in this system. We explain why
and how the critical exponent value of 1/2 is expected to be robust and we discuss a
wet-lab experimental setup to substantiate our findings.
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8.1 Introduction

8.1.1 The Liquid-Gas Phase Transition

A small correction to the Ideal Gas Law suffices to capture most of the phenomenol-
ogy of the liquid-gas phase transition. In the Van der Waals Equation [19],

(
P + a

v2

)
(v − b) = kBT, (8.1)

P denotes the pressure, v is the volume per molecule, kB is Boltzmann’s constant,
and T is the temperature. The “b” takes into account that the involved molecules
are not points, but have finite size. The “a” is associated with the attractive force
between molecules. There is a v2 in the denominator for the following reasons. (i)
For each molecule the amount of interaction with other molecules is proportional
to the number of molecules in a specified volume around the molecule and thus to
the density ρ = 1/v. (ii) For the pressure on the wall of the container, the number
of molecules in a layer-volume near the wall is what is significant. The molecules in
that layer-volume are only attracted in the direction away from the wall. The number
of molecules in the layer-volume is again proportional to ρ = 1/v. Effects (i) and
(ii) together result in the a/v2 term in Eq. (8.1).

Equation (8.1) leads to the isotherms depicted in Fig. 8.1a. The equation is readily
turned into a 3rd order polynomial in v. There are values of T for which there is
only one value of v for every P . But for sufficiently small T there are 3 values of

a

b

Fig. 8.1 aThe P-v diagram according to theVan derWaals Equation (Eq. 8.1). In the area inside the
dotted curve, there is coexistence of liquid and gas phases. The critical point (Pc, vc, Tc) is a unique
point where there is no distinction between liquid and gas phase. b But lowering the temperature at
constant pressure, such distinction emerges and follows a power law: ρliquid − ρgas ∝ (Tc − T )γ ,
where γ is the critical exponent
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v for a sufficiently small value of P . The area inside the dotted curve in Fig. 8.1a
is where the multivaluedness occurs. The T = Tc isotherm is the border curve that
divides the P-v diagram into the two regions. The part of the T < Tc curve where
dP/dv > 0 is not realistic. It was James Clerk Maxwell who realized that, between
the points A and B on the dotted curve (cf. Fig. 8.1a), the isotherm has to be replaced
by a horizontal segment (dashed in Fig. 8.1a). It is along this line that liquid and gas
coexist and that the phase transition takes place: as volume is increased, pressure
stays the same and the system responds by evaporating more liquid.

On the T = Tc curve there is a point where d2P/dv2 = dP/dv = 0. This is the
so-called critical point. It is a unique point (Pc, vc, Tc) in P, v, T -space where the
liquid phase and the gas phase are not distinguishable. In the vicinity of the critical
point, the different physical quantities follow power laws. From the Van der Waals
Equation it can be derived that at leading order

(
vgas − vliquid

) ∝ (Tc − T )1/2 or, in
terms of the density ρ = 1/v:

ρliquid − ρgas ∝ (Tc − T )1/2 . (8.2)

In other words, as the temperature is brought from Tc to a small�T below the critical
temperature, the liquid and gas densities start to differ proportionally to

√
�T . This

is a symmetry breaking and Fig. 8.1b illustrates how it occurs. The liquid phase
occupies a smaller volume and therefore a smaller phase-space volume than the
gas phase. A smaller phase-space volume means fewer microstates and therefore,
following the traditional Boltzmann definition [19], a lower entropy. The quantity
(ρliquid − ρgas), cf. Eq. (8.2), can therefore be taken as an order parameter.

The critical behavior described by Eq. (8.2) does not depend on a or b. The
exponent 1/2 is therefore expected to apply universally. Experiment does show uni-
versality. However, it appears that the actual exponent is not 1/2, but close to 1/3
[10, 13].

8.1.2 Magnetization

Magnetization is less omnipresent in daily life than evaporation. However, as a phase
transition it is easier tomodel than the transition from liquid to gas. Figure 8.2a shows
a 2D Ising model. On each lattice point there is an atomwhose spin, s, can be pointed
either upward (s = 1) or downward (s = −1). Parallel spins (↑↑) have less energy
than spins with opposite orientation (↑↓). Assuming that an individual spin only
interacts with its four nearest neighbors and that there is no external magnetic field,
we have for the magnetic energy of the entire system

H = −J
∑
〈i, j〉

si s j , (8.3)
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Fig. 8.2 a In the 2D Ising model each spin interacts only with its four nearest neighbors. b Ising
models of two and more dimensions exhibit a phase transition. Above a critical temperature, Tc,
there is no magnetization. At the critical temperature there is a discontinuity in the first derivative
and below the critical temperature we have m ∝ (Tc − T )γ , where γ is the critical exponent

where 〈i, j〉 denotes a summation over all neighbor-neighbor interactions and −J
and J are the energies of the parallel and antiparallel orientation, respectively.

If the temperature is finite, then there is a competition in the system between
thermally driven randomization and the “desire” of the system to go to the lowest
energy by aligning spins. The solution is readily found if we assume that, through
its four neighbors, each individual spin just “feels” the average magnetization of the
entire system. This is called the mean-field approximation. If we let p and 1 − p be
the probabilities of “spin up” and “spin down,” thenwe can identify themagnetization
of the system, m, with the average value of the spin: m = p(1) + (1 − p)(−1) =
2p − 1. With the mean-field approximation, the above sum for the energy, Eq. (8.3),
simplifies: it becomes a sum over all the individual spins and each spin in the system
can either be parallel or antiparallel with m. The energy difference between the
parallel and the antiparallel orientation is 2Jm. The probability p of a spin being
parallel tom is thengivenbyaBoltzmann ratio [19]: p/(1 − p) = exp [2Jm/(kBT )],
where kB denotes Boltzmann’s constant. With m = 2p − 1, we eliminate p and
derive that m = tanh [Jm/(kBT )]. This equation has three solutions for small T
and one solution for large T . As in the case of the liquid-gas transition, the critical
temperature Tc marks the border between these two domains. In the vicinity of the
critical temperature we take J/(kBT ) = 1 + ε. Expanding the hyperbolic tangent up
to third order in ε, we can solve for the magnetization m. It is found that |m| ∝ ε1/2

(cf. Fig. 8.2b). It is obvious that |m| can be seen as an order parameter for the system
and that a symmetry breaking occurs if the temperature drops below Tc.

As in the case of the liquid-gas transition, the estimate of 1/2 for the critical
exponent turns out to be higher than what experiments show. Real critical exponents
associated with the onset of magnetization cover a range between 1/3 and 1/2 [1,
11, 17].
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8.1.3 Universality in Phase Transitions

For both the liquid-gas transition and the magnetization there is a “competition”
between the system’s tendency to settle in the lowest energy arrangement and the
thermal agitation due to kBT . A phase transition occurs when the system exhibits
a discontinuity upon variation of temperature. Though the physical details and the
basic equations are different for the magnetization and the liquid-gas transition, in
both cases we observed that simple theory predicts a value of 1/2 for an exponent
that actual experiment finds to be significantly lower.

The reason for the discrepancy is the same in both cases. The mean-field approach
is not justified in a 3D space where each particle only interacts with a limited number
of other particles. Themean-field approximation replaces the product of the two spins,
si s j , in Eq. (8.3) with the product of the average spins, i.e.m2.We can actually rewrite
si s j = (m + δi )(m + δ j ), where δ can only take the values (1 − m) and (−1 − m).
What the mean field approximation essentially does is neglect all the δiδ j products
in Eq. (8.3). This will lead to incorrect energies particularly if there are clusters with
parallel spins.

Our treatment of the liquid-gas phase transition was fully based on the Van der
Waals Equation. This equation does not acknowledge local density variations. The
mean-field approximation was therefore implicit when the critical exponent of 1/2
was derived.

Through analytical solutions and approximations, series expansions, and numer-
ical simulations, the critical exponents for the Ising model in spaces of different
dimensionality have been obtained [10]. There is no phase transition at finite tem-
perature in 1D. In 2D and 3D the critical exponents are 1/8 and 0.32, respectively. It
turns out, finally, that in case of more than three dimensions the number of neighbors
is sufficiently large for the mean-field approximation to apply and obtain 1/2 for the
critical exponent.

8.1.4 Phase Transitions for Coupled Oscillators

Already in the 17th century Christiaan Huygens noticed that two clocks, when hang-
ing side-by-side on a wall, will synchronize their ticking over time. For a modern
scientist or engineer it is not hard to understand that such clocks are mechanically
coupled through little shockwaves that propagate through the wall. A contemporary
and animate version of Huygens’ clocks occurred when the LondonMillenium Foot-
bridge across the Thameswas opened in June of 2000. Pedestrians walking across the
bridge began to synchronize their stepping leading the bridge to sway with alarming
and unforeseen amplitude [12].

Setups with N coupled oscillators are commonly modelled with a system due to
Kuramoto [26]:
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θ̇i = ωi + K

N

N∑
j=1

(θ j − θi ). (8.4)

Here θ and ω represent the phase and innate frequency of each oscillator. K denotes
the coupling strength between the oscillators. The last term on the right-hand-side
describes a force that drives each oscillator towards the average phase. As each
oscillator “feels” the average of the other oscillations, it is obvious that this is a
mean-field model. There is no Brownian noise in this model. The competition here
is between the coupling strength and the distribution of the innate frequencies. For
the Kuramoto model it has indeed been derived and observed that a phase transition
occurs as K goes up [26].

It is not justmechanical oscillations that synchronize. In an anaerobic environment
yeast cells turn glucose into ethanol. Under certain conditions the throughput of the
glucose-ethanol metabolic chain will oscillate with a period of about a minute. One
of the metabolites in the chain, acetaldehyde, can freely permeate the cell membrane.
Yeast cells in a suspension thus share the bath’s acetaldehyde concentration and this
leads to a mean-field coupling. Experiment and mathematical analysis both show
how, in the course of several cycles, the yeast cells in a suspension synchronize their
oscillations [4].

Just such a chemically-inspired system of coupled oscillators will be our focus.
The setup in Fig. 8.3a depicts an n-state cycle. Only counterclockwise transitions
are possible. A large population of oscillators is going through the cycle. We take pi
to be the fraction of the total population that is in state i . We let the transition rate ki
from state i to (i + 1) depend on pi+1 and pi−1, i.e. on the populations in the state
ahead and the state behind state i (cf. Fig. 8.3a):

ki = k0 exp
[
α (pi+1 − pi−1)

]
. (8.5)

The constant k0 is the same for all transitions and can be absorbed in the timescale;
we will leave it out in the remainder of this article. The idea of Eq. (8.5) is that
the population in state (i + 1) increases the transition rate ki and thus pulls the
population in state i forward to state (i + 1). At the same time, the population in
state (i − 1) decreases ki and thus pulls back on the population in state i . For α > 0,
Eq. (8.5) describes a tendency of the entire population to cluster in one ormore states.
That tendency increases with α. We choose to put the populations in the exponent
as the transition rate, k, generally depends exponentially on the height E of the
activation barrier associated with the transition, i.e. k ∝ exp [−E]. In Refs. [28–31]
a 3-state model with ki = k0 exp

[
α (pi+1 − pi )

]
is the basis for the analysis, i.e.,

not the population in the previous state (i − 1), but the population in state i itself is
impeding the forward transition from i to (i + 1).

The system in Fig. 8.3a with Eq. (8.5) can be taken to model a number of real-life
systems. Ion pumps in cell membranes go through a sequence of conformational
states as they go through their catalytic cycle. An example is the well-known Na,K-
ATPase. This is an ion pump that hydrolyzes ATP and uses the released energy to
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Fig. 8.3 a Our n-state model of coupled oscillators. Each oscillator moves through the n-state
cycle in the counterclockwise direction. The transition rate, ki , from state i to state i + 1 depends
on populations in states i − 1 and i + 1. b For sufficiently low values of the coupling parameter,
α, there is a homogeneous distribution over the states, i.e. pi = 1/n ∀ i . For values just above the
critical value, αc, we construct a model in which we assume that the population in a state is either
(1 + ε)/n or (1 − ε)/n, where ε is small

pump sodium and potassium ions through the membrane against the electrochemical
potential [18]. Na,K-ATPase can be present in the membrane in large concentra-
tions. These proteins are very polar and they can be coupled through dipole-dipole
interaction. But they can also interact as they change shape in the course of the cat-
alytic cycle and thus deform the cytoskeleton and bilayer membrane. Through these
couplings and the mechanism of Fig. 8.3, the pumps can synchronize their catalytic
cycles.

A more provocative example of the dynamics of Fig. 8.3a and Eq. (8.5) can be
found in bicycle racing. On a flat road with a smooth asphalt surface, more than 95%
of the effort goes into overcoming air resistance. Due to aerodynamic drag, bicycle
racers that ride in a group put in a smaller effort as compared to when they ride alone
[6, 9]. The larger the group, the smaller the power that has to be produced by an
individual rider. Bicycle racers thus tend to cluster in groups where they share the
burden. However, when the road goes uphill, work against gravity has to be done.
Furthermore, on a surface of cobblestones or gravel, the rolling resistance takes on
more significance. Work against gravity or rolling resistance cannot be shared and
the “racers’ coupling,” theα in our model, thus goes down. This is why it is generally
on hill climbs or on cobblestones that the peleton in a bicycle race breaks up [7].
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There is no explicit Brownian noise in the system of Fig. 8.3a. However, a con-
stant rate out of a state implies that an individual oscillator has an exponentially
distributed waiting time in that state. Effectively, this gives the system a stochasticity
and a temperature: for α = 0 the n-state system will, over time, forget any initial
distribution over the n states and evolve towards a homogeneous distribution over
the states, i.e. pi = 1/n where i = 1, 2, ... n. The parameter α denotes the coupling
strength. For α = 0 there is no coupling. As in the case of the gas-liquid transition
and the magnetization, the randomization is opposed by a coupling that drives the
system to an ordered state.

There is a fundamental difference between the liquid-gas transition (Fig. 8.1)
and the magnetization (Fig. 8.2) on the one hand and our setup (Fig. 8.3a) on the
other hand. With the first two systems we are looking at a thermal equilibrium.
The system in Fig. 8.3a, however, goes through a chemical cycle. As there are no
clockwise transitions, there is no detailed balance and there is continuous production
of entropy.

8.2 Numerical Simulation and Mathematical Analysis

8.2.1 A Heuristic Approach

A simple heuristic model for the behavior close to the phase transition leads to some
concise formulae that well approximate the actual behavior. The simple model can,
furthermore, help build intuition for the mechanisms behind the phase transition. A
less general form of the model was also presented in Ref. [5] in the context of n = 4,
i.e., oscillators going through a 4-state cycle.

As was mentioned before, when α is small the probability distribution over the
n states will over time approach pi = 1/n for all initial conditions. For sufficiently
large values of α, clusters as in Fig. 8.3b will persist. For the clustering and the
homogenization to be in balance, a “bump of length m” as in Fig. 8.3b needs to have
as much influx (J in

i = piki ) as outflux (J out
i+m = pi+mki+m). We are interested in the

region near the phase transition, so we consider values of the probability variation,
ε (cf. Fig. 8.3b), that are small relative to 1. For simplicity, we allow two values for
pi : (1 + ε)/n and (1 − ε)/n. Each value is taken on by half of the probabilities in
the distribution. In the vicinity of the phase transition, equating the fluxes into and
out of the “bump” leads to:

1 − ε

n
exp [2αε/n] ≈ 1 + ε

n
exp [−2αε/n] . (8.6)

This formula is only valid for a bump that consists of two or more neighboring states
with a population (1 + ε)/n. Furthermore, to the left of this bump there need to be at
least two neighboring states with a population (1 − ε)/n. Expressingα/n in terms of
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ε, we find from Eq. (8.6): α/n ≈ 1/(4ε) log [(1 + ε)/(1 − ε)]. Expanding the right-
hand-side for small ε up to second order, we next obtain α/n ≈ (1/2) + (1/6)ε2.
From the latter expression, we solve for ε and thus derive an approximation for the
amplitude, ε, as a function of the coupling parameter α:

ε ≈
√
6

n

√
α − n

2
. (8.7)

In order to quantify to what extent a distribution on a cycle as in Fig. 8.3a is
homogeneous, an order parameter, r , is commonly defined as:

reiψ =
n∑

k=1

pk exp

[
2iπk

n

]
, (8.8)

where the “i” in the numerator of both exponents denotes
√−1. This definition is due

to Lord Rayleigh [2, 26]. It is obvious that we get r = 0 if there is no synchronization
and all the pk’s are identical. We have r = 1 if there is maximal synchronization and
all molecules are in the same state j , i.e. pk = 1 if k = j and pk = 0 if k 
= j .
We consider our model (Fig. 8.3) for a large value of n and we again take a simple
approach to come to an upper bound for the value of the order parameter. Imagine that
pk = (1 + ε)/n for 1 ≤ k ≤ n/2 and pk = (1 − ε)/n for n/2 < k ≤ n. The sum on
the right-hand-side of Eq. (8.8) now reduces to (2ε)

∑n/2
k=1(1/n) exp [2iπk/n]. For

large n we can approximate the summation with an integral over a half of a period L:
(1/L)

∫ L/2
x=0 exp [2iπx/L] dx = i/π. With this result and with Eq. (8.7), we derive

for the order parameter as a function of α:

r = 0 if α < n/2 and r ≈ 3

2

√
1

n

√
α − n/2 if α > n/2, (8.9)

where we took 2
√
6/π ≈ 3/2. Equation (8.9) makes strong statements about the

phase transition.As the number of states in the cycle, n, increases, the phase transition
occurs for ever larger values of the coupling parameter as αc ≈ n/2, where αc stands
for the critical value of α. However, the square root over the (α − n/2)-term means
that the critical exponent maintains its mean-field value of 1/2 (cf. Eq. (8.2)) for all
values of n. In the next section we will verify some of these predictions with both
analytical and numerical work. In the Conclusions and Discussion section of this
article we will put these results in the larger phase-transition context.

8.2.2 The System of ODEs

The system of coupled ordinary differential equations associated with the setup
shown in Fig. 8.3a is:
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ṗ1 = kn pn − k1 p1,

ṗ2 = k1 p1 − k2 p2,

...

ṗn = kn−1 pn−1 − kn pn. (8.10)

Here the k’s represent the transition rates (cf. Eq. (8.5)) and a dot above a symbol
denotes differentiation with respect to time, i.e. • ≡ d/dt . The periodic boundary
conditions imply kn = exp

[
α (p1 − pn−1)

]
and k1 = exp [α (p2 − pn)]. The point

p j = 1/n ∀ j is the obvious fixed point. As in an ordinary Taylor series, the behavior
of the system in the close vicinity of a point is determined by the lowest order terms,
generally the linear terms, in an expansion.This leads to ann × nmatrix; the so-called
Jacobian matrix [8]. The j-th row of this matrix lists the values of the derivatives of
(k j−1 p j−1 − k j p j ) at the fixed point. The expression (k j−1 p j−1 − k j p j ) is the right-
hand-side of the j-th equation in Eq. (8.10). Along a row of thematrix, derivatives are
taken with respect to p1, p2, ..., pn , respectively. We obtain for the Jacobian matrix
in our case:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(α
n − 1) −α

n 0 0 . . . 0 −α
n (α

n + 1)
(α
n + 1) (α

n − 1) −α
n 0 0 . . . 0 −α

n−α
n (α

n + 1) (α
n − 1) −α

n 0 . . . 0 0
0 −α

n (α
n + 1) (α

n − 1) −α
n 0 . . . 0

... 0
. . .

. . .
. . .

. . . 0
...

...
... 0

. . .
. . .

. . .
. . . 0

0 0 . . . 0 −α
n (α

n + 1) (α
n − 1) −α

n−α
n 0 0 . . . 0 −α

n (α
n + 1) (α

n − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.11)

The eigenvalues of this n × n matrix will tell us whether p j = 1/n ∀ j is an attractor
or a repeller [8]. For sufficiently small α the real parts of all eigenvalues are negative
and the point p j = 1/n ∀ j is then an attractor. The phase transition to synchronization
occurs when, upon increasing α, the real part of just one eigenvalue turns positive.
At that value of α, p j = 1/n ∀ j becomes an unstable solution.

The matrix J (cf. Eq. (8.11)) is a tetradiagonal circulant matrix. In a circulant
matrix each row is rotated one element to the right relative to the preceding row. The
eigenvalues are the values of λ that solve the equation:

det (J − λI) = 0. (8.12)

A standard formula is available for the eigenvalues of a circulant matrix [25]. For
the present system with only four possible nonzero elements in the matrix, we obtain
after some algebra:
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λ j =
(α

n
− 1

)
− α

n
exp

[
2πi

j

n

]
− α

n
exp

[
−4πi

j

n

]
+ (

α

n
+ 1) exp

[
−2πi

j

n

]
, j = 0, 1, . . . , n − 1.

(8.13)
Considering only the real parts, we have:

Re[λ j ] = α

n

(
1 − cos

[
4π

j

n

])
− 1 + cos

[
2π

j

n

]
. (8.14)

Note that λ0 = 0. This zero eigenvalue is associated with the zero determinant of
the above matrix, Eq. (8.11), and ultimately with the normalized total population,∑n

j=1 p j = 1. It is obvious from Eq. (8.14) that all eigenvalues for j ≥ 1 have nega-
tive real parts for sufficiently small α. Real parts are zero for α = (n/4) sec2(π j/n).
The smallest values of sec2(x), and hence the first eigenvalues to become posi-
tive, occur for arguments furthest away from the asymptote at x = π/2. This hap-
pens simultaneously for j = 1 and j = n − 1 and leads to a critical point point at
αc = (n/4) sec2(π/n). For large values of n, the secant squared will approach unity.
We thus have limn→∞ αc = n/4. The heuristic approach of the previous section led
to αc ≈ n/2. Even though the proportionality factors differ by a factor of two, the
heuristic treatment and the analytical result of this section agree in that they both
have αc increase in directly proportionality to n.

Figure 8.4 shows the results of numerical simulations of Eq. (8.10); for different
values of the number of states, n, the order parameter, r , is plotted as a function
of the coupling parameter α. It appears that the critical exponent follows the γ =
1/2 prediction of the heuristic approach to very good accuracy. A critical exponent
γ = 1/2 was already established for n = 4 in Ref. [5]. We also obtained the plots
for n = 6 and n = 8. For these values we likewise found a critical exponent of 1/2.
For values n � 10 the numerical simulations become inaccurate, especially in the
vicinity of the phase transition. There are therefore insufficient data to verify the
3/(2

√
n) prefactor in Eq. (8.9).

8.2.3 The Temperature Dependence

If transitions as in Eq. (8.5) are thermally activated, then the transition rate k generally
follows anArrhenius dependence and features the temperature, T , in the denominator
of the exponent, i.e. k ∝ exp [−b/T ], where b is positive [19]. This means that
the coupling parameter α in Eq. (8.5) should be replaced by α/T if we wish to
include temperature dependence. We can now see how the system behaves in the
experimentally more likely scenario where the temperature is varied while coupling
constants are fixed and constant. Equation (8.7) has the form r ∝ √

α − αc, whereαc

denotes the critical value of α. For a constant α = α0 and a varying temperature T ,
this formula takes the form r ∝ √

α0/T − α0/Tc ∝ √
1/T − 1/Tc.When T is close

to Tc, the latter expression is well approximated by r ∝ √
Tc − T . This is the same
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Fig. 8.4 The order parameter, r (cf. Eq. (8.8)), as a function of the coupling parameter α. Shown
are the results of numerical simulation of the ODEs (cf. Eq. (8.10)) with Mathematica for 3, 5,
7, and 9 states. Each dot represents the result of a simulation of a million units of time. After the
order parameter had relaxed to a constant value, the average over 100,000 units of time was taken.
The red curves result from fitting a power law, r = q(α − αc)

γ to the blue dots, where αc is the
critical value αc = (n/4) sec2(π/n). Let (qn, γn) be the result of this fit for the n-state system.
For n = 3, we find (q3, γ3) = (0.77, 0.25). For n = 5, n = 7, and n = 9 we gathered data up to
r ≈ 0.1 so as to identify just the leading order behavior. The results were (q5, γ5) = (1.0, 0.50),
(q7, γ7) = (1.2, 0.51), and (q9, γ9) = (1.6, 0.48). The values of the prefactor qn appear of the order
of magnitude of the (3/2)

√
1/n-prediction (cf. Eq. (8.9)), but do not show the ∝ √

1/n decrease
with n

mean-field temperature dependence of the order parameter that we discussed earlier
in the context of the gas-liquid transition (cf. Fig. 8.1) and the onset of magnetization
(cf. Fig. 8.2).

8.3 Conclusions and Discussion

8.3.1 The Phase Transition as the Number of States Is
Increased

The system of Fig. 8.3a with n = 3 has already been a starting point for much
research [28–31]. What we observe for n = 3 is a critical exponent of 1/4 (see Fig.
8.4). A bifurcation with a critical exponent of 1/4 occurs in ẋ = x(μ − x4) as the
system crosses μ = 0. For our system in case of n = 3, the nonlinear system of
three coupled first-order equations is highly coupled; each of the three equations
contains nonlinear terms that contain all of the three dependent variables. It should
furthermore be pointed out that this system of three coupled first-order ordinary
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differential equations actually readily reduces to second order. This is because of the
fixed and normalized total population, i.e. p1 + p2 + p3 = 1.

For n = 4 each state is coupled to two of the four others states. In Ref. [5] the
system of ODEs is numerically solved and, in addition, stochastic simulations are
performed and a heuristic derivation is presented. The critical exponent comes out
to be 1/2. For n = 4, we still face a highly structured dynamical system and it is
remarkable that the statistical approach and the associated mean-field prediction
apparently already apply.

In the system of Fig. 8.3a, each state “interacts” with its two neighbor states. So
for general n, each oscillator effectively connects with a fraction of about 2/n of the
entire population. It appears that for n = 4, the fraction of 1/2 is sufficiently high
to warrant a mean-field approach. As n is increased, we expect the legitimacy of
the mean-field approach to break down. In Ref. [5] the continuum limit, n → ∞, of
the system in Fig. 8.3a is investigated. In that limit the flow of probability density
around the cycle in Fig. 8.3a is described by a PDE that, after some manipulation,
appears equivalent to a Burgers’ Equation [15]. It turns out that for n → ∞, a phase
transition no longer occurs as α is varied. The results presented in Sect. 8.2 of this
article are consistent with this observation: in the n → ∞ limit, the phase transition
is pushed to the α → ∞ limit. Going to n = 10 with our numerical simulations,
we did not observe a change of the mean-field exponent of 1/2. All in all, both the
simple heuristic approach and the full simulation of the ODEs show that the critical
exponent of the phase transition keeps the mean-field value of 1/2, but that the phase
transition occurs for ever higher values of the coupling parameter, α, as the number
of states, n, is increased. We will come back to this in the penultimate subsection.

8.3.2 Entropy and Dissipative Structures

As was mentioned before, our system as depicted in Fig. 8.3 has irreversible transi-
tions. Unlike the systems discussed in Sects. 8.1.1 and 8.1.2, it is not at equilibrium.
Our system produces entropy and in this subsection we will come to a quantitative
assessment of the involved entropies.

One oscillator with a probability pk of being in state k, comes with an associated
entropy of S = −∑n

k=1 pk log pk . For the case of a homogeneous distribution, i.e.
pk = 1/n ∀k, it is readily found that S = log n. If we have pk = (1 + ε)/n for half
of the n states and pk = (1 − ε)/n for the other half, then we find S ≈ log n −
ε2/2 after we use the approximation log(1 ± ε) ≈ ±ε − ε2/2. In other words, the
nonhomogeneous distribution of oscillators over states leads to an entropy decrease.
Clustering decreases entropy.

Consider again the “bump” in Fig. 8.3b. If the probability in each state were
1/n, then the flux from each state to the next would be Ji→(i+1) = piki = 1/n.
However, when there is a jump as in Fig. 8.3b, the two fluxes adjacent to the jump
carry nonzero exponents (cf. Eq. (8.5)). From state i to i + 1, the probability goes
from (1 − ε)/n to (1 + ε)/n. This leads to Ji→(i+1) = (1/n)(1 − ε) exp [2αε/n]
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and J(i+1)→(i+2) = (1/n)(1 + ε) exp [2αε/n]. Upon going from state (i + m) to
state (i + m + 1), there is a probability decrease from (1 + ε)/n to (1 − ε)/n.
This leads to J(i+m)→(i+m+1) = (1/n)(1 + ε) exp [−2αε/n] and J(i+m+1)→(i+m+2) =
(1/n)(1 − ε) exp [−2αε/n]. The remaining fluxes along the horizontal axis in Fig.
8.3b are (1 + ε)/n and (1 − ε)/n in the elevated and lowered part, respectively. They
average to 1/n as there are just as many elevated as lowered probabilities. It is read-
ily verified that the four fluxes adjacent to the upward and downward jump average
to (1/n) cosh [2αε/n]. For any nonzero real value of x , we have cosh x > 1. This
means that having a “bump” leads to a higher throughput for the cycle in Fig. 8.3a
and to a larger production of entropy.

The phase transition from a homogeneous distribution to one with “bumps” con-
stitutes a symmetry breaking and an establishment of an order. However, this lower
entropy structure leads to a larger throughput and a larger entropy production for
the system as a whole. We can thus view the bumps as a self-organized dissipative
structure as described by Prigogine in the 1970s [20].

The increase of four fluxes from an average of 1/n to an average of (1/n)

cosh [2αε/n] for every bump can help us understand why the phase transition is
pushed out to α → ∞ for n → ∞. We have |ε| < 1. So for n → ∞, the argument
2αε/n vanishes (leading to (1/n) cosh [2αε/n] → 1/n) and the enhanced flux dis-
appears, unless α changes proportionally with n.

The subject matter of this subsection can be the starting point for ample mathe-
matical analysis. There is, for instance, a large body of work on how the flux through
an entire cycle as in Fig. 8.3a is affected if just a few transitions are speeded up
[14, 16]. As Eq. (8.7) is a rough approximation already, it would be somewhat
excessive to substantially elaborate in this direction.

8.3.3 Why Mean-Field Works for a 1D System

It may at first seem surprising that a 1D system as in Fig. 8.3a gives rise to a value
of the critical exponent that is characteristic of the mean-field approximation. After
all, the 1D Ising model features no phase transition at all if the number of involved
spins, N , is finite. Only if the 1D Ising array has infinitely many spins is there a phase
transition, but it occurs at the T → 0 limit if N → ∞.

However, upon closer consideration our mean-field result makes sense. With the
system in Fig. 8.3a we face a large number of oscillators, Ntot , that is distributed
over n states. For the mass action approach of Eq. (8.10) to apply, we need Ntot � n.
Let Ni be the number of oscillators in state i . We then have pi = Ni/Ntot . The rate
of change of Ni depends on the numbers Ni−2, Ni−1, Ni , and Ni+1. In this way
every individual oscillator is interacting with infinitely many other oscillators. The
legitimacy of the mean-field approach can thus be understood.

The 1D Ising model can be evaluated analytically and the pertinent derivation
is shown in many authoritative textbooks [10, 22, 24]. A rigorous treatment shows
that at finite temperature, the magnetization (which is taken as an order parameter in
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Ising models) is zero in the absence of an external field. However, as the temperature
T goes to zero, a singularity is approached. Complete alignment, i.e. r = 1, occurs
at T = 0 [22]. Lev Landau gave a good intuitive explanation of this behavior [24].
We will give an explanation in the same vein for our coupled oscillators, but before
doing so it is instructive to reiterate Landau’s account.

Let−J and+J be the energies for neighboring spins in the parallel and antiparal-
lel alignment, respectively. Next imagine a cyclic 1D array of N spins all in parallel
alignment. We randomly pick two non-neighboring spins on this cycle. There are
W = N (N − 3) ways to make this choice. The chosen spins divide the cycle into
two segments. After flipping all the magnets in one of the segments, we have two
magnetic domains. The flipping involves two interfaces where the energy increases
from −J to +J and thus requires 4J of free energy. However, it is also associated
with an entropy increase of �S = kB lnW ≈ 2kB ln N . For finite T and N → ∞,
we always have T�S � 4J . This means that no finite coupling energy is sufficient
to overcome the thermal noise and give full alignment of all spins. Only at T = 0 is
it possible to achieve r > 0.

Going back to the system depicted in Fig. 8.3a, a similar line of reasoning is
found to apply. Assume we add one oscillator to the system with Ntot oscillators.
The randomization over n states is associated with an entropy of S = kB ln n. This
quantity obviously increases with n. As was mentioned before, the energy that is
driving the transitions features in the exponents of the transition rates ki (cf. Eq. (8.5)).
If an oscillator is added to state i , there is a change in the quantities α(pi+2 − pi ) and
α(pi − pi−2) that are in the exponents of ki+1 and ki−1, respectively. For an increasing
number of states, one oscillator is coupled to an ever smaller fraction of the entire
population of oscillators. The changes in the coupling energy will therefore become
ever more insignificant upon increase of n when compared to kBT ln n, i.e. the free
energy change due to entropy effects. This explains why the value of the coupling
constant α at which the phase transition occurs increases with n. Equivalently, the
value of T at which the phase transition occurs decreases with n and we have Tc → 0
as n → ∞.

The resiliency of the critical exponent value of 1/2 would be an interesting venue
for future research. We have shown that in a nonequilibrium setting as in Fig. 8.3a,
the value of 1/2 persists for any number of states. But what would happen if, for
instance, we let the rates ki , where i = 1...n, depend on time, i.e., ki goes up or down
as an oscillator spends more time in state i? How much can we modify the system
in Fig. 8.3a before we find another critical behavior?

8.3.4 Implications for Coupled Oscillators in the Wet Lab

We have seen and come to understand that the 2nd order phase transition with a
critical exponent of 1/2 is very robust. The mean-field value of the critical exponent
arises because the mass action (Eq. (8.10)) implies that each oscillator in the system
is coupled to infinitely many other oscillators. Coupling an oscillator to a smaller
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fraction of the total number of oscillators pushes the phase transition to a higher value
of the coupling coefficient or, equivalently, to a smaller value of the temperature.With
this insight we expect that the critical exponent value of 1/2 will also persist if the
transition rates in Fig. 8.3a are made to vary along the cycle or if other mathematical
forms for the population dependencies of the the transition rates are tried.

There is autocatalysis or product stimulation in the system depicted in Fig. 8.3a,
i.e., the product of the j → j + 1 transition increases the rate of the j → j + 1
transition. Product stimulation is a form of positive feedback and it is commonly
the underlying driving force behind biochemical oscillations [21]. In the system in
Fig. 8.3a, the parameter α can be seen as a measure for the strength of the positive
feedback. Product stimulation is a key feature in the glycolytic oscillations that were
already mentioned in Sect. 8.1.4 [3]. The product stimulation in glycolytic oscilla-
tions is twofold. ATP binding and hydrolysis is the first step in this metabolic chain,
but subsequently ATP is produced again at several steps in the chain. Furthermore,
early in the chain energy that is harvested from the breakdown of glucose is stored
in NAD reduction: NAD+ + H+ + 2e− → NADH. For the final step in the chain,
the conversion from acetaldehyde to ethanol, the necessary energy is derived from
the oxidation of NADH, i.e. the reverse reaction: NADH → NAD+ + H+ + 2e−.
The glycolysis consists of about ten enzyme-mediated steps and because ATP and
NADH are products as well as substrates in the chain, the chain can be seen as a
cycle much like the one in Fig. 8.3a.

In a suspension of oscillating yeast cells there is a synchronized oscillation inside
every cell. The number of oscillators inside each cell, Nin , is different for each
cell. The catalyzing enzymes process the substrate molecules one-by-one and it is
substrate concentrations and the number of enzymes in each cell that ultimately
determine an effective Nin and a characteristic frequency for each cell.

As was mentioned before, acetaldehyde can freely permeate the membrane of
the yeast cell. The oscillations are thus coupled through the shared acetaldehyde
concentration. It is obvious that for a suspension with a small density of yeast cells,
the acetaldehyde concentration will be close to zero and not lead to any coupling.
Reference [27] models the suspension of oscillating yeast cells with a Kuramoto
model, where the shared acetaldehyde concentration provides the coupling between
theM cells. Figure 8.5a is fromRef. [27] and shows the order parameter as a function
of the density. The order parameter r is experimentally determined by simultaneously
following the fluorescing behavior of individual cells that have been fixed in their
location. The measurements are not very precise, but appear consistent with the
phase transition and the critical exponent of 1/2 that are predicted by the Kuramoto
model. Amodel as in Fig. 8.3a, which also predicts a critical exponent of 1/2, may be
more chemically realistic than the Kuramoto model as it explicitly includes positive
feedbacks that underlie the oscillations.

There is still a measure of controversy about the oscillations of yeast cells in a
suspension. Reference [27] reports the observation that individual cells still oscillate
even when they are in a solution that is too dilute for coupling. In Ref. [23], on
the other hand, similar measurements were described and there it was found that
cells in a diluted solution no longer oscillate. The authors of Ref. [23] describe how
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a

b

Fig. 8.5 a The top graph is from Ref. [27]. Yeast cells in a suspension synchronize their glycolytic
oscillations, but do so more effectively if the density of the cells in the suspension is higher. The
horizontal axis (note the logarithmic scale) gives the density of the yeast cells in the suspension.
On the vertical axis r gives the resulting order parameter for the coupled oscillating cells (cf. Eq.
(8.8)). From a density of about 0.5% on, we observe a rapid increase of r and what appears like a
phase transition. The bottom graph shows the data points in the red rectangle and giving the vertical
axis a logarithmic scale, we find for the best fitting straight line a slope of 0.54. The margins of
error are large and data points exhibit a wide spread, but this result appears consistent with the 1/2
that the Kuramoto model and our theory predict

a suspension of cells ultimately uses the acetaldehyde concentration for “quorum
sensing.” Only when a quorum is met, i.e. when the cell density and the ensuing
bath-acetaldehyde concentration are sufficiently high, do oscillations commence. A
Kuramoto model is in that case no longer appropriate. Quorum-sensing can be con-
sistent with a model as in Fig. 8.3a. In a very dilute solution acetaldehyde effectively
diffuses away and disappears from the cell as soon as it is formed. The conversion
to ethanol and the accompanying NADH consumption then no longer take place.
Instead of an NADH-NAD feedback loop, we would get NADH accumulation. Upon
increase of the cell density, the NADH-NAD feedback loop gets established. Once
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the quorum ismet, amean-field approach applies and a phase transitionwith a critical
exponent of 1/2 once again occurs.
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References

1. S. Arajs, B.L. Tehan, E.E. Anderson, A.A. Stelmach, Critical magnetic behavior of nickel near
the Curie point. Phys. Stat. Sol. 41(2), 639–648 (1970)

2. E. Batschelet, Circular Statistics in Biology (Academic Press, New York, 1981), pp. 54–58
3. M. Bier, B. Teusink, B.N. Kholodenko, H.V. Westerhoff, Control analysis of glycolytic oscil-

lations. Biophys. Chem. 62(1), 15–24 (1996)
4. M. Bier, B.M. Bakker, H.V. Westerhoff, How yeast cells synchronize their glycolytic oscilla-

tions: a perturbation analytic treatment. Biophys. J. 78(3), 1087–1093 (2000)
5. M. Bier, B. Lisowski, E. Gudowska-Nowak, Phase transitions and entropies for synchronizing

oscillators. Phys. Rev. E 93(1), 012143 (2016)
6. B. Blocken, T. van Druenen, Y. Toparlar, F. Malizia, P. Mannion, T. Andrianne, T. Marchal,

G.J. Maas, J. Diepens, Aerodynamic drag in cycling pelotons: new insights by CFD simulation
and wind tunnel testing. J. Wind Eng. Ind. Aerod. 179, 319–337 (2018)

7. E. Borysewicz, Bicycle Road Racing: The Complete Program for Training and Competition
(Velo-News, Boulder, CO, 2005)

8. W. Boyce, R. DiPrima, Elementary Differential Equations, 10th edn. (Wiley, Hoboken, NJ,
2012)

9. J.P. Broker, C.R. Kyle, E.R. Burke, Racing cyclist power requirements in the 4000-m individual
and team pursuits. Med. Sci. Sports Exerc. 31(11), 1677 (1999)

10. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University
Press, Cambridge, UK, 1995)

11. K. Dhahri, N. Dhahri, J. Dhahri, K. Taibi, E.K. Hlil, Critical phenomena and estimation of
the spontaneous magnetization from a mean field analysis of the magnetic entropy change in
La0.7Ca0.1Pb0.2Mn0.95Al0.025Sn0.025O3. RSC Adv. 8(6), 3099–3107 (2018)

12. B. Eckhardt, E. Ott, S.H. Strogatz, D.M. Abrams, A. McRobie, Modeling walker synchroniza-
tion on the Millennium Bridge. Phys. Rev. E 75(2), 021110 (2007)

13. E.A.Guggenheim, The principle of corresponding states. J. Chem. Phys. 13(7), 253–261 (1945)
14. R. Heinrich, T.A. Rapoport, A linear steady-state treatment of enzymatic chains. Eur. J.

Biochem. 42(1), 89–95 (1974)
15. E.A. Jackson, Perspectives of Nonlinear Dynamics, vol. 2 (Cambridge University Press, New

York, 1991)
16. H. Kacser, The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 (1973)
17. L.P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E.A.S. Lewis, V.V. Palciauskas, M. Rayl, J.

Swift, D. Aspnes, J. Kane, Static phenomena near critical points: theory and experiment. Rev.
Mod. Phys. 39(2), 395–431 (1967)

18. P. Läuger, Electrogenic Ion Pumps (Sinauer Associates Inc., Sunderland, MA, 1991)
19. W. Moore, Physical Chemistry, 5th edn. (Prentice-Hall, Englewood, New Jersey, 1974)
20. G.Nicolis, I. Prigogine,Self-organization inNon-EquilibriumSystems:FromDissipative Struc-

tures to Order Through Fluctuations (Wiley, New York, 1977)
21. B. Novák, J.J. Tyson, Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol.

9(12), 981–991 (2008)
22. M. Plischke, B. Bergersen, Equilibrium Statistical Physics, 2nd edn. (World Scientific Pub-

lishing, Singapore, 1994)



8 Synchronization of Coupled Oscillators—Phase Transitions … 149

23. A.K. Poulsen, M.Ø. Petersen, L.F. Olsen, Single cell studies and simulation of cell–cell inter-
actions using oscillating glycolysis in yeast cells. Biophys. Chem. 125(2), 275–280 (2007)

24. S. Salinas, Introduction to Statistical Physics, 1st edn. (Springer, NewYork, 2001), pp. 257–276
25. G. Seber, A Matrix Handbook For Statisticians (Wiley, Hoboken, NJ, 2008), p. 153
26. S.H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in popula-

tions of coupled oscillators. Physica D 143(1), 1–20 (2000)
27. A. Weber, Y. Prokazov, W. Zuschratter, M.J.B. Hauser, Desynchronisation of glycolytic oscil-

lations in yeast cell populations. PLoS ONE 7(9), e43276 (2012)
28. K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Critical behavior and synchronization

of discrete stochastic phase-coupled oscillators. Phys. Rev. E 74(3), 031113 (2006)
29. K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Universality of synchrony: critical

behavior in a discrete model of stochastic phase-coupled oscillators. Phys. Rev. Lett. 96(14),
145701 (2006)

30. K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Continuous and discontinuous phase
transitions and partial synchronization in stochastic three-state oscillators. Phys. Rev. E 76(4),
041132 (2007)

31. K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Effects of disorder on synchronization
of discrete phase-coupled oscillators. Phys. Rev. E 75(4), 041107 (2007)



Part II
Model-Driven and Data-Driven

Approaches



Chapter 9
On Localised Modes in Bio-inspired
Hierarchically Organised Oscillatory
Chains

Ivana Kovacic, Dragi Radomirovic, and Miodrag Zukovic

Abstract This study is concerned with bio-inspired hierarchically organised oscil-
latory chains from the viewpoint of a localisation phenomenon, when only certain
parts of the chain oscillate. The chain consists of block masses attached mutually via
tension-extensionHookean springs. The first- and second-order hierarchy are consid-
ered to determine their modes and modal frequencies, with the focus on localised
modes. Then, a chain with an arbitrary number of masses is dealt with. A theorem
is presented that defines the number of its localised modes in terms of the order of
hierarchy.

Keywords Spring-mass system · Coupling · Localisation phenomenon

9.1 Introduction

Mechanical aspects of trees’ static and dynamic behaviour and the role of branches
have been intriguing researchers not only for decades, but for centuries. Even Galileo
[1] noted ‘that an oak two hundred cubits high would not be able to sustain its own
branches if they were distributed as in a tree of ordinary size.’ Branches of trees
belong to slender structures, but cope reasonably well both with small and large-
amplitude oscillations caused by a variety of excitations, unlike man-made slender
structures, which are not so robust. Understanding the underlying physical principle
of their behaviour is of interest both for plant science [2] and also for biomimetics
when they are modelled as coupled oscillators [3], as they can be beneficially utilised
in many engineering applications [3, 4].

Of interest for this work are mechanical models of branched trees as biological
oscillators. These mechanical models created and examined so far have been either
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discrete or continuous, with only few multi-degree-of-freedom models of branched
trees with discrete masses. In [5, 6], each structural element of a tree—the trunk and
branches—are treated as oscillating masses attached mutually via springs arranged
in parallel. The model is simple and potentially useful for biomimetic applications,
especially related to tunedmass-dampers [3].However, its dynamic behaviour has not
been explored deeply. This work contributes to this shortcoming from the viewpoint
of the appearance of localised modes, when only a part of the structure oscillates,
but the main mass, i.e. the trunk stays at rest.

9.2 Model with First-Order Branches

A discrete model of a trunk with two branches is shown in Fig. 9.1: the trunk (main
mass) is of mass m and it is attached first to the fixed base via one linear spring
of stiffness k as well as via two parallel linear springs of stiffness k1 to two subse-
quent masses m1, which mimic the branches. Such model is suggested in [6], but
no analyses of its modal characteristics have been presented. Thus, such analyses
are provided subsequently. The generalised coordinates are chosen to be the abso-
lute displacements x, y1, y2 of each mass measured from the respective equilibria
(Fig. 9.1). The chain from Fig. 9.1 has the following equations of motion per each
mass:

mẍ + (k + 2k1)x − k1y1 − k1y2 = 0, (9.1)

m1 ẍ1 − k1x + k1y1 = 0, (9.2)

m1 ẍ1 − k1x + k1y1 = 0. (9.3)

In order to determine natural (mode) frequencies ω, one can assume the solutions
as x = A cos ωt , y1 = B1 cos ωt , y2 = B2 cos ωt , where the amplitudes A, B1,
B2 and ω are unknown. Substituting these forms into the equations of motion, the
corresponding characteristic equation [7] can be derived:

Fig. 9.1 Mechanical model
of a trunk and first-order
branches
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�21 =
∣
∣
∣
∣
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∣

k + 2k1 − mω2 −k1 −k1
−k1 k1 − m1ω
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−k1 0 k1 − m1ω

2

∣
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∣
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∣
∣

= 0. (9.4)

This equation can be represented as �21 = �21,1 �21,2 = 0, where

�21,1 = (

k1 − m1ω
2
)

, (9.5)

�21,2 = [

kk1 − (k1m + km1 + 2k1m1)ω
2 + mm1ω

4
] = 0. (9.6)

Based on previous experiments that the masses and stiffness reduce with a new

order of hierarchy, the corresponding reduction laws are taken as follows: m1
m = (

1
2

) 4
3 ,

k1
k = κ (see [3] and the references cited there). The parameter κ represent the stiffness
ratio.

Three resultingmodal frequencies are calculated fromEqs. (9.5)–(9.6) and plotted
versus the stiffness ratio in Fig. 9.2.

Note that the modal frequencies are normalised with respect to the natural
frequency of the trunk, i.e. the first mass m and the spring k, where this natural
frequency is

√
(k/m). The second modal frequency ωII is obtained by equating

Eq. (9.5) to zero as ω2
II

( k
m )

= k1
m1
, while the first ωI and third frequency ωIII are calcu-

lated by making Eq. (9.6) equal to zero. Note that ωI√
k/m

→ 0.75 when κ → ∞,
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Fig. 9.2 Modal frequencies I, II and III of the model with first-order branches calculated from
Eqs. (9.5) and (9.6)
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Fig. 9.3 Mode shapes I–III
of the model with first-order
branches

which implies that the first modal frequency has an asymptotic value equal to 75%
of the natural frequency of the trunk.

Three mode shapes describing the behaviour at each frequency, i.e. the ratios of
the amplitudes of masses at each frequency, are shown in Fig. 9.3 qualitatively. In the
first mode, all the masses move in-phase and the amplitudes of the smaller masses are
equal (B1 = B2), which indicates that they behave as rigidly attached to each other
(Mode I, Fig. 9.3). Note that the direction of motion is depicted by the arrows. The
second mode that corresponds to the frequency ωII is characterised by the fact that
the first mass does not move (A = 0), while the smaller masses move out-of-phase
(B1 = −B2) (Mode II, Fig. 9.3), i.e. the mode is localised in these branches, while
the trunk stays at rest. In the third mode shape, the main mass and the smaller ones
move out-of-phase, but the amplitudes of the smaller masses are equal (B1 = B2), so
they again behave as rigidly attached to each other (Mode III, Fig. 9.3).

9.3 Models with Second-Order Branches

The model with two block masses arranged in parallel that are attached to the main
mass (Fig. 9.1) is enriched now with the second-order hierarchy (Fig. 9.4), where

Fig. 9.4 Mechanical model with second-order branches
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two pairs of block massesm2 are attached to twomassesm1 by parallel linear springs
of equal stiffness k2.

Following the algorithm from the previous section, it is assumed that the reduction

of the parameters follows the laws: m1
m = m2

m1
= (

1
2

) 4
3 , k1k = k2

k1
= κ [3]. Four absolute

generalised coordinates z1–z4 are introduced (Fig. 9.4). Deriving the equations of
motion as in Sect. 9.2, assuming the harmonic solutions for each coordinate, the
following corresponding characteristic equation [7] can be obtained:

�22 = �22,1�22,2�22,3 = 0, (9.7)

where:

�22,1 = (

k2 − m2ω
2
)2

, (9.8)

�22,2 = k1k2 − (k2m1 + k1m2 + 2k2m2)ω
2 + m1m2ω

4, (9.9)

�22,3 = kk1k2 − (k1k2m + kk2m1+2k1k2m1 + kk1m2+2kk2m2+4k1k2m2)ω
2

+ (k2mm1 + k1mm2+2k2mm2 + km1m2+2k1m1m2)ω
4 − mm1m2ω

6,

(9.10)

with ω again standing for the unknown frequency of each mode. The solutions of
the characteristic equation (9.7), normalised with

√
k/m are presented in terms of

the stiffness ratio in Fig. 9.5. As seen from Eq. (9.8), one modal frequency is double:
ω2
II = k2/m2. The order of modal frequencies III = IV and V changes for κ ≈ 0.59.
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Fig. 9.5 Modal frequencies I–VII of the system with second-order branches calculated from
Eqs. (9.8)–(9.10)
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Two penultimate frequencies (VI and VII) become close to each other for higher κ.
Note that for certain κ, frequencies III, IV can become equal to V.

Mode shapes that correspond to the behaviour at each of these frequencies are
shown in Fig. 9.6 for κ = 0.3.Modes I, V andVII affect thewhole chain of oscillators.
Modes II and VI are localised in all branches, while Modes III = IV are localised in
the second-order branches. The case plotted is when two groups of these branches
move in the opposite direction (note that the green arrows inFig. 9.6 can have opposite
directions, so this is counted as a double mode).

Fig. 9.6 Mode shapes for of the system with second-order branches for κ = 0.3
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9.4 Model with a Chain of Arbitrary Order of Hierarchy

The models presented previously can be extended to an arbitrary order of hierarchy
by adding two new subsequent masses to each mass, attaching them via two linear
springs arranged in parallel (Fig. 9.7). The number of masses n in a chain is equal to
the number of degrees of freedom, and is given by:

n =
N

∑

i=0

2N−i . (9.11)

where N stands for the order of hierarchy, i.e. the number of groups of equal masses
arranged in parallel. So, the main mass corresponds to the zeroth order of hierarchy
(N = 0, n = 1); two masses attached to it belongs to the first-order of hierarchy (N
= 1, n = 3); there are four masses in the second-order of hierarchy (N = 2, n = 7);
there are eight masses in the third order of hierarchy (N = 3, n = 15), and so on.
Considering the equilibrium in each hierarchical order, one can distinguish several
possibilities for the appearance of the localisation phenomenon:

Group 1: One pair of masses of the highest hierarchy oscillate, while the lower
order of the structure is at rest (Fig. 9.8a). As the masses mN oscillate with the same
magnitude but in the opposite direction, the corresponding spring forces have also
the same magnitude and the opposite directions. Consequently, the resulting force

Fig. 9.7 Chain of hierarchically organised oscillators
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(a)

(c)

(d)

(b)

Fig. 9.8 Localised modes in: a Group 1; b Group 2; c Group 3; d Group 4
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that acts on the mass mN−1 is equal to zero and this mass does not oscillate. The
frequency of vibration corresponds to the natural frequency of the masses from the
highest order of hierarchy and is equal to

√
kN/mN. The number of the localised

modes n1 that appear at this frequency corresponds to the number of the pairs of
masses of the highest hierarchy: n1 = 1 group* 2N masses/2 in each pair = 2N−1.

Group 2: This group includes the case when the masses from the penultimate and
ultimate order of hierarchy oscillate (Fig. 9.8b). One mass mN−1 and two masses mN

attached to it move in one direction, while the other mass mN−1 and two masses mN

attached to it move in the opposite direction. Thus, the spring forces that act on the
mass mN−2 cancel out and this mass stays at rest. This case is characterised by two
modal shapes and two natural frequencies. The overall number of this type of modal
shapes n2 is equal to: n2 = 2 groups * 2N−2 modal shape = 2N−1.

Group 3: There are oscillations of the masses from the three highest orders of
hierarchy (note that one existing group is presented in Fig. 9.8c). There are two sets
of such masses, numbered by I and II in Fig. 9.8c. They move in the identical way
but in the opposite directions, yielding a zero-valued resulting force acting on the
mass mN−3, so that this mass stays at rest. This case is characterised by three modal
shapes and three modal frequencies. The overall number of this type of modal shapes
n3 is defined by: n3 = 3 groups * 2N−3 modal shape.

Group 4: This class contains the modes when all masses besides the main one m
(Fig. 9.8d) oscillate. There are two sets of such masses. One set contains N masses
and is characterised by N modal shapes. The overall number of these modal shapes
nN is: nN = N groups * 2N−N modal shape = N.

The following Theorem can now be formulated.

Theorem [8] A chain consisting of the main spring-mass system to which N hierar-
chically organised parallel systems of spring-masses is attached (Fig. 9.7) is char-
acterised by localised modes whose number is defined by the difference between the
number of degrees of freedom and the number of masses in the hierarchy including
the main mass, i.e.

N
∑

i=1

i · 2N−i =
N+1
∑

i=1

2N+1−i − (N + 1) (9.12)

This Theorem is given here without the proof, which can be found in [8]. Instead
of giving the proof, the claim of the theorem is compared with the results presented
in Sects. 9.2 and 9.3.

So, when N = 1, only one localised mode exists: the masses m1 oscillate, but the
main mass does not. This coincides with the case obtained in Sect. 9.2, illustrated in
Fig. 9.3.

When N = 2, Theorem implies that there are four localised modes. Two modes
are localised in the highest-order of hierarchy and two modes are localised in the
penultimate and ultimate order of hierarchy and corresponds to different frequencies.
This agrees with the findings from Sect. 9.3, presented in Fig. 9.6.
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Using Theorem for the case N = 3, one can calculate that 11 localised modes will
appear. Four modes are localised in the highest-order of hierarchy. There are two
groups of two localised in the penultimate and ultimate order of hierarchy and, conse-
quently, two doubled frequencies. In addition, there are also three modes appearing
at a different frequency. It should be pointed out that this chain with the third-order
hierarchy is characterised by one quadrilateral and two double modal frequencies.

9.5 Conclusions

A chain of bio-inspired hierarchically organised masses on linear springs has been
considered, where the trunk is modelled as a main mass, while branches are symmet-
rically attached to the masses in pairs via linear springs. The mass and stiffness prop-
erties are reduced in each order of hierarchy. This model is characterised by localised
modes, when only certain parts of the chain oscillate while the main mass stays at
rest. So, in the case of a trunk and the first-order branches, only one localised mode
exists: the main mass does not oscillate, while the branches do. In the model with
second-order branches, there are two modes localised in the second-order branches
and two in all branches. As the order of hierarchy increases, the number of localised
modes increases, too. One potential applications of these findings is the case when
the trunk is excited at the frequency tuned to the one that corresponds to a localised
modes Although excited, the trunk will not oscillate, as this case corresponds to the
concept of dynamic absorbers or tuned mass-dampers [3, 7].
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Chapter 10
Useful Transformations from
Non-autonomous to Autonomous Systems

Alona Ben-Tal

Abstract Every non-autonomous vector field can be viewed as autonomous by treat-
ing the time as another dependent variable and augmenting the dynamical systemwith
an additional differential equation. This standard transformation of non-autonomous
vector fields to autonomous is, arguably, of little use in that common techniques for
the study of autonomous systems, such as looking for stationary solutions, cannot be
applied. This chapter presents alternative ways of transforming a non-autonomous
system to autonomous in the special case of periodic forcing, but it also makes the
argument that this could be done in other special cases. The argument is inspired
by mathematical modelling. Two examples of alternative transformations are given,
one in a system of ordinary differential equations and one in a Boolean network.

10.1 Introduction

Analysis of autonomous systems of ordinary differential equations, ẋ = f(x), where
x ∈ R

n , ẋ is the derivative of x with respect to time and f(x) is a vector of func-
tions, usually starts by finding stationary solutions and their stabilities [13, 25]. The
stationary solutions, x∗, are solutions for which x(t) = x∗ for all time t . In other
words, they satisfy the equation f(x∗) = 0. The stability of each stationary solution
can often be found by calculating the eigenvalues of the (n × n) Jacobian ∂ fi

∂x j

∣
∣
x=x∗

where i, j ∈ {1, . . . , n}. As an example, consider the simple, damped pendulumwith
mass m and length L (see Fig. 10.1a). The rates of change of the angle, θ , and the
angular velocity, z are given by:
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Fig. 10.1 Examples of
autonomous and
non-autonomous systems. a
The simple pendulum is an
autonomous system. b A
periodically forced
pendulum is a
non-autonomous system



a

dθ

dt
= z (10.1)

dz

dt
= − g

L
sin θ − μz

where g is the gravitational acceleration and μ is a damping coefficient.
Here, n = 2 and x = [θ, z]. The stationary solutions are x∗

1 = [0, 0] and x∗
2 =

[π, 0]. The Jacobians can be calculated as:

∂ fi
∂x j

∣
∣
x∗
1
=

[

0 1
− g

L −μ

]

,
∂ fi
∂x j

∣
∣
x∗
2
=

[

0 1
g
L −μ

]

(10.2)

from which it can be deduced that x∗
1 is stable and x∗

2 is unstable [13].
Consider now a periodically forced pendulum with a vertical acceleration of its

base (expressed as a cos (ωt) in Fig. 10.1b). In this case, the rates of change of θ ,
and z are given by (see also [9]):

dθ

dt
= z (10.3)

dz

dt
= − g

L
sin θ − μz − a

L
cos (ωt) sin θ

Time appears now explicitly on the right hand side of the equations, so ẋ = f(x, t),
and the system is non-autonomous. The standard way of transforming the non-
autonomous system to autonomous is to define a new variable φ = t and augment
the original system by adding a new differential equation [15, 25]:

dφ

dt
= 1 (10.4)

The new system of differential equations, ẏ = f̄(y), is now autonomous with n = 3
and y = [θ, z, φ]. The standard transformation shows that the explicit appearance of
time, adds another dimension to the system. This extra dimension could add signif-
icant complexity to the behavior of solutions. In particular, a two dimensional non-
autonomous system could exhibit chaos, whereas, a two-dimensional autonomous
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system of ordinary differential equations could not (assuming continuity and smooth-
ness of f(x)) [15]. Indeed, the forced pendulum exhibits complicated motions (see
for example, [9, 10, 17, 26]). Arguably, this is where the usefulness of this transfor-
mation ends. The most basic analysis that can be done in native autonomous systems
(i.e. finding stationary solutions) cannot be done in the transformed system—there is
no solution to the equation f(y) = 0. One could argue that the absence of stationary
solutions in non-autonomous systems is not surprising - solutions of non-autonomous
systems are expected to be time-dependent. It could also be argued that techniques
used to study time-dependent solutions of autonomous systems, could be used to
study solutions of non-autonomous systems (for example, Poincaré map [16, 25],
averaging and perturbation methods [15–17]). Nevertheless, we show in Sect. 10.3
that in special cases, there exist other transformations from non-autonomous sys-
tems to autonomous that are more useful than the standard transformation in that
they allow analysis of the transformed system using theoretical results derived for
native autonomous systems. Our approach is inspired by mathematical modelling
and we begin by looking at a specific example: modelling the cardio-respiratory
system.

10.2 Appearance of Oscillations in Mathematical
Modelling of the Cardio-Respiratory System

The main function of the cardio-respiratory system is to ensure an adequate delivery
of oxygen to every cell in the body and the removal of carbon dioxide [11]. Over
a short period of time (several minutes), this is achieved by adjusting the breathing
pattern and the heart rate via a neural network located in the brainstem [12, 14, 21].
Assuming the external environment is large enough and insulated, conditions out-
side the body practically stay constant over a short period of time (e.g. temperature,
concentrations of oxygen and carbon dioxide). Hence, we can assume that there are
no external sources of time-dependent signals. Under these conditions, the cardio-
respiratory system (and indeed the whole body) can be viewed as an autonomous
system. However, due to its complexity, parts of the system are often modeled sepa-
rately. This leads to two sources of oscillations: intrinsic and forced.

10.2.1 Intrinsic Oscillations

Intrinsic oscillations can be found in mathematical models of the respiratory neural
system [7, 8, 18, 20, 23]. As an example, consider a model of a single neuron in
an area of the brainstem called the pre Bötzinger Complex (preBötC) which drives
breathing [7]:
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dv

dt
= f1

(

v, n, h p
)

(10.5)

dn

dt
= f2 (v, n) (10.6)

dh p

dt
= f3

(

v, h p
)

(10.7)

where v is the neuron membrane potential, n is the gating of potassium, h p is the
gating of persistent sodium and f1, f2, f3 are specific functions (see [4, 7] for more
details). The system can generate a bursting signal (Fig. 10.2). A typical analysis of
this system and the underlying mechanism of the bursting generation is shown in
Fig. 10.3. Equations10.5 and 10.6 are treated as a fast subsystem and the variable
h p is treated as a parameter. The steady state solutions and their stabilities can then
be calculated for different values of h p. These solutions are shown as a bifurcation
diagram of the fast subsystem in Fig. 10.3a. Solid blue lines represent stable equilib-
ria, dashed blue lines represent unstable equilibria, solid red line represents periodic
solutions and the dashed red line represents unstable periodic solutions. The periodic
solutions in Fig. 10.3a appear through a sub-critical Hopf bifurcation [22]. This is
when the stability of the equilibrium solution changes from unstable to stable and an
unstable periodic solution appears. Figure10.3b shows a smaller area of Fig. 10.3a
with a solution of the full system (Eqs. 10.5–10.7) superimposed on it in green. The
rate of change of h p is positive when the solution of the full system is near the stable
equilibrium of the fast sub-system and negative when it is near the stable periodic
solution of the sub-system. Hence, the solution of the full system moves to the right
along the equilibrium of the fast sub-system and to the left along the periodic solu-
tion of the sub-system. When the stable equilibrium of the sub-system terminates,
the solution of the full systemmoves to the periodic solution and vice versa, creating
bursting.

Fig. 10.2 A bursting signal
generated by Eqs. 10.5–10.7.
The underlying mechanism
of the bursting generation
can be explained by Fig. 10.3

t (s)

v 
(m

V
)
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hp

v 
(m

V) Stable 
equilibrium

Stable periodic

Stable 
equilibrium

hp

v 
(m

V)

0
dt

dhp

0
dt

dhp

Fig. 10.3 A typical analysis of the underlying mechanism of bursting generation. a A bifurcation
diagram of Eqs. 10.5–10.6 (the fast subsystem) when h p is taken as a parameter. Solid blue lines
represent stable equilibria, dashed blue lines represent unstable equilibria, solid red line represents
periodic solutions and dashed red line represents unstable periodic solutions. b A smaller area of
the bifurcation diagram in (a) with a solution of the full system (Eqs. 10.5–10.7, see Fig. 10.2)
superimposed on it in green

10.2.2 Forced Oscillations

As we have seen in the previous section, the neural respiratory circuitry generates
intrinsic oscillations, usually in the form of bursting. These neural signals excite
the respiratory muscles, causing the muscles to contract during the active phase
of the bursting and relax during the quiet phase (under normal conditions, [12]).
When modeling other parts of the cardio-respiratory system, it is often convenient to
ignore the neural circuitry and replace it with some given oscillations (called “forced
oscillations”). As an example consider a simple model of the mammalian lungs
(Fig. 10.4) [3]. The lungs here are modeled as a single container with a moving plate.
The plate is connected to a spring with a constant ks . Spring compression represents
lung inflation. The lung elastance E is equivalent to ks/s2 where s is the area of
the plate. The pressure inside the container is PA and the volume of the container is
VA. The pressure outside is Pm (assumed to be constant), the air flow is q and the
resistance to flow is R. The pleural pressure PL(t) is a given function of time. When
the pleural pressure drops, PA drops and air flows into the lungs. When the pleural
pressure increases, PA increases and air flows out. The rate of change of the lung
volume can be described by the following equation [3]:

dVA

dt
= − E

R
VA + 1

R
(Pm − PL(t)) (10.8)

This equation is clearly non-autonomous. In this case, because it is a linear ordinary
differential equation, VA(t) can be expressed as [19]:
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R
q

Pm

PL (t)
ks

PA

VA

Fig. 10.4 A simple model of the lungs. The lungs is modeled as a single container with a moving
plate. The plate is connected to a spring with a constant ks . The pressure inside the container is PA
and the volume of the container is VA. The pressure outside is Pm (assumed to be constant), the air
flow is q and the resistance to flow is R. The pleural pressure, PL (t), is a given function of time.
Figure adapted from [3]

VA(t) = VA(0)e
− E

R t + e− E
R t

∫ t

0

1

R
(Pm − PL(τ )) e

E
R τdτ (10.9)

If PL(t) is periodic then VA(t) in steady state is periodic too.
Another example of forced oscillations can be found in a model of heart rate con-

trol (Fig. 10.5) [5]. The heart period is controlled by the parasympathetic nerve which
itself is affected by the baroreceptors, central respiratory drive and stretch receptors.
There are nine equations in this model and the exact details are not essential. There-
fore, the equations are not given here (see [5] for the details). The important thing
to note in Fig. 10.5 is that the signal A(t) (the central respiratory drive, Fig. 10.5a)
is an input to the model. This signal is a simplification of the bursting signal shown
in Fig. 10.2. In principle, had we known more about the operation of the respiratory
neural circuitry and how it responds to feedback signals, we could have closed the
loop on respiration and create an autonomous model for the short-term control of the
cardio-respiratory system.

10.3 Alternative Transformations

The modeling examples illustrated in Sect. 10.2 demonstrated that for modeling con-
venience, intrinsic oscillations in an autonomous system can be replaced by forced
oscillations, creating non-autonomous systems. Inspired by the modeling examples
we suggest that, in special cases, the process can be reversed. That is, the non-
autonomous systems can be transformed to “native” autonomous. We show two
examples of how this can be done. Clearly there are many other examples to be
found.
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Sym. (SM)

Parasym. 
(CVN) Heart 

Period (TL)

BR(TL)

G(A q)

A

Lung 
model

Vol. (VA)
Rp

Airflow 
(q)

To lung 
model

Central respiratory drive

Stretch receptors

Baroreceptors
(a)

Fig. 10.5 A model of heart rate control (figure adapted from [5]). The heart period is affected
by the sympathetic nerve (assumed to be constant in this model) and the parasympathetic nerve.
The parasympathetic nerve is affected by the baroreceptors which are modulated by the central
respiratory drive A(t) and air flow q through a gating functionG. The baroreceptors are represented
by a function of the heart period, BR . The parasympathetic nerve is also affected by stretch receptors
represented by lung volume. The central respiratory drive A(t) shown in (a) is an input to the model
and the main reason the model is non-autonomous. This signal is a simplification of the bursting
shown in Fig. 10.2. It drives respiration and also affects the parasympathetic nerve. See [5] for more
details

10.3.1 Transforming a System of Ordinary Differential
Equations with Sinusoidal Inputs

Consider a general description of a system with sinusoidal inputs:

dx
dt

= f(x) + g(a cos (ωt), a sin (ωt), x) (10.10)

where x ∈ R
n , g = [g1 (a cos (ωt), a sin (ωt), x) , . . . , gn (a cos (ωt), a sin (ωt),

x)]T and a ≥ 0. We further assume that g(a = 0) = [0, . . . , 0]T . That is, we assume
that without the sinusoidal inputs, the system is autonomous.

Let u = a cos (ωt) and v = a sin (ωt). Equation (10.10) can then be written as:

dx
dt

= f(x) + g(u, v, x) (10.11)

du

dt
= −ωv

dv

dt
= ωu
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The system of Eq. (10.11) can be written as ẏ = f̄(y) where y = [x, u, v] and is
subjected to the constraint u2 + v2 = a2. Hence it has only one extra dimension
compared to the original non-autonomous system. The system has equilibrium points
at f(x) = 0, u = 0 and v = 0, that is, the same equilibrium points of the systemwhen
there is no forcing (a = 0). The Jacobian is given by:

∂ f̄i
∂y j

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
∂ fi
∂x j

+ ∂gi
∂x j

)

⎛

⎜
⎝

∂g1
∂u

∂g1
∂v

...
...

∂gn
∂u

∂gn
∂v

⎞

⎟
⎠

(

0 . . . 0
0 . . . 0

) (

0 −ω

ω 0

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10.12)

As an example consider the forced pendulum in Eq. (10.3). The transformed
system is given by:

dθ

dt
= z (10.13)

dz

dt
= − g

L
sin θ − μz − u

L
sin θ

du

dt
= −ωv

dv

dt
= ωu

subject to u2 + v2 = a2. The Jacobian at the fixed point [0, 0, 0, 0] is given by:

∂ f̄i
∂y j

∣
∣
(0,0,0,0) =

⎡

⎢
⎢
⎢
⎢
⎣

(

0 1
− g

L −μ

) (

0 0
0 0

)

(

0 0
0 0

) (

0 −ω

ω 0

)

⎤

⎥
⎥
⎥
⎥
⎦

(10.14)

The eigenvalues of the Jacobian in Eq. (10.14) are the eigenvalues of the two
matrices along the diagonal of the Jacobian. This gives two eigenvalues with negative
real parts (the eigenvalues of the original unforced system at the equilibrium point
which is known to be stable) and two additional eigenvalues that are purely imaginary.
This means that the stability of the equilibrium point cannot be determined by this
analysis (a linearization around the equilibrium point), however, the center manifold
theorem [15, 25] can be applied. From it we can conclude that if a is very small
(that is, the forcing is weak), the system will oscillate in steady state around the
original equilibrium point with the same direction and period as the forcing (in this
example, vertical movement with period 2π/ω) and the same stability as the original
equilibrium point. Note that, in this example, if the initial conditions are such that
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[θ, z] = [0, 0] or [θ, z] = [π, 0] the vertical movement around these points will be
sustained even for large a. However, for other initial conditions, our result predicts
that, for very small a, the vertical oscillations around θ = 0 will be stable but the
vertical oscillations around θ = π will be unstable. This result, has been found using
othermethods for the forced dampedpendulum [9, 10] and for other forced oscillators
[2, 15]. The idea for the transformation presented here was first introduced in [2].
It was also used there to conclude that if x ∈ R, the oscillations in steady state will
always have the period of the forcing even if a is large, provided f (x) is not periodic
(see [2] for a proof).

10.3.2 Transformation of a Non-autonomous Boolean
Network

We now divert from differential equations and look at a Boolean network. The nodes
in a Boolean network could take only two values “1” or “0” and the connection
between nodes could be excitatory or inhibitory (see Fig. 10.6). The state of the
nodes can change according to a set of rules. As an example consider the following
set of rules adapted from [1, 24]:

• A node will be “1” in the next step if at least one activator is “1” in the current
step and all the inhibitors are “0”.

• A node will be “0” in the next step if there are no activators which are “1” in the
current step.

• A node will be “0” in the next step if at least one of the inhibitors is “1” in the
current step, regardless of the state of the activators.

1 0 1

01

External input (1,1,0,0,0,1,0,1,1,0….)

1 0 1

01

I(a) (b)

Fig. 10.6 Examples of Boolean networks. The nodes could take only two values: “1” or “0”.
Connections between nodes could be excitatory (→) or inhibitory (�). The figure shows the current
state of the nodes. These can change in the next step according to a set of rules (see text). a An
autonomous Boolean network—the states of the nodes in the next step depend only on their current
state. b A non-autonomous Boolean network—due to the external input, the states of the nodes in
the next step depend on their current state as well as the step number
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Fig. 10.7 Examples of
autonomous Boolean
networks that can generate
periodic signals. a Period 2.
b Period 3. c Period 4. In all
cases, a constant source of
energy (the node E) is
required. Figure adapted
from [6]

S1 C1E

S1 C1

S2

E

S1 C1

S2S3

E

(1,0,1,0,1,0,. . .)

(1,0,0,1,0,0,. . .)

(1,0,0,0,1,0,0,0,. . .)

(1,1,1,1,1,. . .)

(1,1,1,1,1,. . .)

(1,1,1,1,1,. . .)

(a)

(b)

(c)

This set of rules relies on knowing the current state of the nodes and can be applied
to autonomousBoolean networks (for example, Fig. 10.6a). However, it is not enough
for non-autonomous Boolean networks (for example, Fig. 10.6b) because we cannot
know the state of I without knowing the step number.

However, if the input signal I could be replaced by an autonomous Boolean net-
work that produces the same signal as its output, itwill transform the non-autonomous
network to autonomous. We show in [6] how this can be done when I is periodic
(we define the trajectory (10 · · · 010 · · · 0...) ≡ (10 · · · 0

︸ ︷︷ ︸

p

) as periodic with period p).

Figure10.7 shows autonomous networks that can produce signals with periods 2, 3
and 4.A similar idea was used to prove that for any given periodic signal there exists
an autonomous Boolean network that can generate the signal.

We used the Boolean framework to study the control of bursting in the respiratory
neural network [6]. Within this framework, the bursting signal in Fig. 10.2 could
be represented by the signal (1111000011110000...) ≡ (11110000) where “1” rep-
resents an action potential and “0” no action potential. Input signals to the neural
network were taken as periodic with period p where p was a control parameter. The
transformation described in Fig. 10.7 enabled us to conclude that a trajectory of a
non-autonomous Boolean network with a periodic forcing will eventually repeat a
certain pattern. This is because an autonomous and deterministic Boolean network
has a finite number of nodes and hence a finite number of states. Therefore, trajec-
tories will eventually come back to one of the states they have visited before. Our
ability to use rules for an autonomous system, to study a non-autonomous system,
enabled us to show how inspiration and expiration times can be controlled selectively
at the level of the neural circuitry.
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10.4 Conclusions

This chapter presented two alternative transformations from non-autonomous sys-
tems to autonomous in the special case of periodic forcing. The alternative transfor-
mations enabled the use of theorems derived for native autonomous systems which
otherwise, under the standard transformation, could not be utilized. The transfor-
mations presented are inspired by mathematical modeling which also suggests that
transformations for other special cases exist.
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Chapter 11
Coupling Functions in Neuroscience

Tomislav Stankovski

Abstract Neural interactions play one of the central roles in the brainmediating var-
ious processes and functions. They are particularly important for the brain as a com-
plex system that has many different functions from the same structural connectivity.
When studying such interactions coupling functions are very suitable, as inherently
they can reveal the underlaying functional mechanism. This chapter overviews some
recent and widely used aspects of coupling functions for studying neural interac-
tions. Coupling functions are discussed in connection to two different levels of brain
interactions—that of neuron interactions andbrainwave cross-frequency interactions.
Aspects relevant to this from both, theory and methods, are presented. Although the
discussion is based on neuroscience, there are strong implications from, and to, other
fields as well.

11.1 Introduction

Many systems in nature are found to interact, between each other or with the envi-
ronment. The interaction can cause gradual or sudden changes in their qualitative
dynamics, leading to their grouping, self-organizing, clustering, mutual coordinated
synchronization, even to some extremes when their very existence is suppressed [20,
37, 55, 74, 75, 84]. An important class of such dynamical systems are oscillators,
which also often interact resulting in a quite intricate dynamics.

On the quest to untangle and better understand interactions, one could study
several complementary aspects [14]. One is structural connectivity, where physical
actual connection is studied.Often this is not directly observable, or it exist but it is not
active and dynamic all the time. Further on, one could study functional connectivity
i.e. if a functional dependence (like correlation, coherence or mutual information)
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exist between the observed data. Finally, one could study the causal relations between
dynamical models and observe the effective connectivity. In this way, the interactions
can be reconstructed in terms of coupling functions which define the underlaying
interaction mechanism.

With their ability to describe the interactions in detail, coupling functions have
received a significant attention in the scientific community recently [69, 70]. Three
crucial aspects of coupling functions were studied: the theory, methods and applica-
tions. Various methods have been designed for reconstruction of coupling functions
from data [15, 33, 35, 39, 66, 80]. These have enabled applications in different
scientific fields including chemistry [32], climate [41], secure communications [44,
68], mechanics [34], social sciences [56], and oscillatory interaction in physiology
for cardiorespiratory and cardiovascular interactions [26, 35, 40, 59, 79].

Arguably, the greatest current interest for coupling functions is coming from neu-
roscience. This is probably because the brain is a highly-connected complex system
[51], with connections on different levels and dimensions, many of them carrying
important implications for characteristic neural states and diseases. Coupling func-
tions are particularly appealing here because they can characterize the particular
neural mechanisms behind these connections. Recent works have encompassed the
theory and inference of a diversity of neural phenomena, levels, physical regions,
and physiological conditions [4, 13, 47, 49, 61, 71, 73, 76–78, 81, 86].

The chapter gives an overview of the topic of coupling function, with particular
focus on their use and suitability to neuroscience. This will be explained through
observations on two levels of brain connectivity—the neurons and the brainwaves
level. The relationship between the appropriate theory and methods will be also
given. On systemic level, the focus will be on neuronal oscillations, thus positioning
around and complementing the main topic of the book—biological oscillators. The
chapter will finish by outlook and some thoughts on the future developments and
uses of coupling function in neuroscience. However, before going into greater detail,
first the basics of what coupling functions are discussed briefly bellow.

11.1.1 Coupling Function Basics

The system setup to be studied is one of an interacting dynamical systems, with
the focus of coupled oscillators. Then, coupling functions describe the physical rule
specifying how the interactions occur and manifest. Because they are directly con-
nected with the functional dependencies, coupling functions focus not only on if the
interactions exist, but more on how they appear and develop. For example, when
studying phase dynamics of coupled oscillators the magnitude of the phase coupling
function affects directly the oscillatory frequency and will describe how the oscil-
lations are being accelerated or decelerated by the influence of the other oscillator.
Similarly, if one considers the amplitude dynamics of interacting dynamical systems,
the magnitude of coupling function will prescribe how the amplitude is increased or
decreased due to the interaction.
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First we consider two coupled dynamical systems given in the following general
form:

ẋ = f1(x) + g1(x, y)

ẏ = f2(y) + g2(x, y), (11.1)

where the functions f1(x) and f2(y) describe the inner dynamics, while g1(x, y)
and g2(x, y) describe the coupling functions in the state space. Then, given that
the two dynamical systems are oscillators, and under the assumption that they are
weakly nonlinear and weakly coupled, one can apply the phase reduction theory [37,
45, 53]. This yields simplified approximative systems where the full (at least two
dimensional) state space domain is reduced to a one dimensional phase dynamics
domain:

φ̇1 = ω1 + q1(φ2, φ1)

φ̇2 = ω2 + q2(φ1, φ2), (11.2)

where φ1, φ2 are the phase variables of the oscillators, ω1, ω2 are their natural fre-
quencies, and q1(φ2, φ1) and q2(φ1, φ2) are the coupling functions in phase dynamics
domain. For example, in the Kuramoto model [37] they were prescribed to be sine
functions from the phase differences:

φ̇1 = ω1 + ε1 sin(φ2 − φ1)

φ̇2 = ω2 + ε2 sin(φ1 − φ2), (11.3)

where ε1, ε2 are the coupling strength parameters. Apart from this example of sinu-
soidal form, the coupling functions q1(φ2, φ1) and q2(φ1, φ2) can have very different
and more general functional form, including a decomposition on a Fourier series.
Given in the phase dynamics like this Eq. 11.2, the coupling functions q1(φ2, φ1) and
q2(φ1, φ2) are additive to the frequency parameters ω1, ω2, meaning that their higher
or lower values will lead to acceleration or deceleration of the affected oscillations,
respectively.

Coupling function can be described in terms of its strength and form. The coupling
strength is a relatively well-studied quantity, and there are many statistical methods
which detect measures proportional to it (e.g., the mutual-information based mea-
sures, transfer entropy and Granger causality). It is the functional form of the cou-
pling function, however, that has provided a new dimension and perspective probing
directly the mechanisms of the interactions. Where, the mechanism is defined by
the functional form that gives the rule and process through which the input values
are translated into output values i.e. for the interactions it prescribes how the input
influence from one system is translated into the output effect on the affected or the
coupled system.

In this way a coupling function can describe the qualitative transitions between
distinct states of the systems e.g., routes into and out of synchronization, oscillation
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death or network clustering. Moreover, depending on the known form of the cou-
pling function and the detected quantitative inputs, one can even predict transitions
to synchronization. Decomposition of a coupling function provides a description of
the functional contributions from each separate subsystem within the coupling rela-
tionship. Hence, by describing the mechanisms, coupling functions reveal more than
just investigating correlations and statistical effects.

11.2 Suitability of Coupling Functions for Neuroscience

The human brain is an intriguing organ, considered to be one of the most complex
systems in the universe. The adult human brain is estimated to contain 86±8 billion
neurons, with a roughly equal number (85±10 billion) of non-neuronal cells [3].
Out of these neurons, 16 billion (19%) are located in the cerebral cortex, and 69
billion (80%) are in the cerebellum. One of the main features of the brain is how
the neurons are connected, and when and how they are active in order to process
information and to produce various functionalities.

In neuroscience, the brain connectivity is classified in three different types of
connectivity. That is, the brain connectivity refers to a pattern of links (“structural, or
anatomical, connectivity”), of statistical dependencies (“functional connectivity”) or
of causal model interactions (“effective connectivity”) between distinct units within
a nervous system [14, 25, 60]. In terms of graph theory of the brain, the units corre-
spond to nodes, while the connectivity links to edges [23]. The connectivity pattern
between the units is formed by structural links such as synapses or fiber pathways, or
it represents statistical or causal relationships measured as cross-correlations, coher-
ence, information flow or the all-important coupling function. In this way, therefore,
the brain connectivity is crucial to understand how neurons and neural networks
process information.

The units can correspond to individual neurons, neuronal populations, or anatomi-
cally segregated brain regions. Taking aside the anatomically structural brain regions,
the other two—the neurons and their populations—are of particular interest from a
system neuroscience point of view. Moreover, for certain conditions these systems
may operate in the oscillatory regime for some time. When having an oscillatory
nature their dynamics and connectivity can be modeled as coupled oscillators (see
for example Fig. 11.1). In this constellation, a coupling function with its functional
form can be very suitable effective connectivity measure through which much can
be learned about the mechanisms and functionality of the brain.

As the two connectivity units, the neurons and the neuronal populations, are of
particular interest to the focus of coupling functions and oscillatory dynamics, bellow
they will be discussed separately in light of the utility of coupling functions.



11 Coupling Functions in Neuroscience 179

Fig. 11.1 A schematic
example of the brain, an
electroencephalography
(EEG) signal recording as a
measure of the neural
population electrical activity,
and the schematic model of
two oscillators and their
coupling functions which
can be used to model a
particular brainwave activity.
The five distinct brainwave
(δ, θ, α, β, γ ) frequency
intervals are also given on
the right of the figure

11.2.1 Coupling Functions on Neuronal Level

The neurons are archetypical cells which act as basic units from which the structure
of the brain is realized. Existing in great numbers, they are interconnected in various
network configurations giving rise to different functions of the brain. One should
note that besides neurons other cell types may also contribute to the brain overall
function [21]. As such the brain is a complex systemwhich can perform large number
of neural functions from relatively static structure [51]. For comparison, in terms of
functions the brain ismuchmore complex than for example the heart, which performs
generally only one function—pumping blood to other parts of the body. Importantly
for the brain, the neurons are electrically excitable cells, which are active only in the
act of performing certain function.

Based on their function, neurons are typically classified into three types: sensory
neurons, motor neurons and interneurons. Number of neuron models exist which
describe various features, including but not limited to the Hodgkin-Huxley, the
Integrate-and-fire, the FitzHugh-Nagumo, the Morris-Lecar and the Izhikevich neu-
ronal model [18, 24, 27, 42, 58]. These models describe the relationship between
neuronal membrane electrical currents at the input stage, and membrane voltage at
the output stage. Notably, the most extensive experimental description in this cat-
egory of models was made by Hodgkin and Huxley [24], which received the 1963
Nobel Prize in Physiology or Medicine. The mathematical description of the neu-
ronal models is usually represented by a set of ordinary or stochastic differential
equations, describing dynamical systems which under specific conditions exhibit
nonlinear oscillatory dynamics.
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Importantly, the neurons are highly interconnected forming a complex brain net-
work. Their interactions give rise to different neural states and functions. In terms
of system interactions, such brain interactions could lead to qualitative transitions
like synchronization and clustering, on the whole or part of the brain network. When
observing the neuronal models as dynamical systems, the mechanisms of the interac-
tions are defined by the neuronal coupling functions. On this level, coupling functions
have been studied extensively, although more in an indirect way through the neu-
ronal phase response curve (PRC) [2, 10]. Namely, coupling function is a convolution
between two functions, the phase response curve and the perturbation function [37]
i.e. one function of how an oscillator responds to perturbations and the second func-
tion defining the perturbations from the second oscillator, respectively. There are
generally two types of such response curves, type I with all positive, and type II with
positive and negative values. Different types of phase response curves were studied
(especially theoretically) forming different types of neuronal models [6, 11, 48]. The
phase response curves are typically defined for weakly coupled units [45, 53].

An important feature of the neuronal oscillations are that they are excitable and
have non-smooth spike-like trajectories. Such dynamics of the neuronal oscillations
are highly nonlinear. For many applications, the neuronal activity is studied com-
pletely through the timing of the spike events [17]. In general, such spike-like oscil-
lations act similar as a delta function, hence the phase response curves will have a
similar delta function-like form [12]. This can have direct effect when observing the
coupling function which can be a convolution between the a delta-like functions.

In terms of methods for neuronal coupling functions, a number of methods exist
for reconstructing the neuronal phase response curves and the associate coupling
functions [16, 77]. However, there are many open problems on this task and many
applications on different types of signals from interacting neurons are yet to be
resolved.

11.2.2 Coupling Functions on Brainwave Level

Studying some kind of property of a large number of neurons at once, as a whole
or region of the brain, scales up the observation on higher level. In this way the
resultant measurement of the brain, or region of the brain, is in a way some kind
of mean field, a sum of all the functional activities of the individual neurons in a
group, ensemble or network. For example such measurements include the neural
EEG, iEEG, NIRS, MRI, CT and PET, which measure different characteristics like
the electrical activity, the hemodynamic activity, the perfusion etc. of the whole brain
or on specific spatially localized brain regions.

Arguably, the most used high level observable is the EEG. Electroencephalog-
raphy (EEG) is a noninvasive electrophysiological monitoring method to record
electrical activity of the brain. EEG measures voltage fluctuations resulting from
ionic current within the neurons of the brain [46]. EEG measures electrical activity
over a period of time, usually recorded from multiple electrodes placed on the scalp
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according to some widely accepted protocols, like the International 10–20 system
[31] (internationally recognized protocol to describe and apply the location of scalp
electrodes).

At first sight the EEG signal looks random-like and complex (see e.g., Fig. 11.1),
however, a detailed spectral analysis reveals that there are number of distinct oscillat-
ing intervals—called brainwaves. The most commonly studied brainwaves include
the delta δ, theta θ , alpha α, beta β and gamma γ neural oscillation [7]. The fre-
quency intervals of these brainwaves are also given in Fig. 11.1. Apart from these,
there are also other brainwaves, including themuμ, faster gamma1γ1 and gamma2γ2
brainwaves, and other more characteristic oscillations like the sleep spindles, thala-
mocortical oscillations, subthreshold membrane potential oscillations, cardiac cycle
etc. The brainwaves are often linked to specific brain functions and mechanisms,
though not all of them are known and they are still a very active field of research.
The existence and strength of the brainwave oscillations are usually determined by
spectral Fourier or Wavelet analysis.

The brainwave oscillations emanate from the dynamics of large-scale cell ensem-
bles which oscillate synchronously within characteristic frequency intervals. The
different ensembles communicate with each other to integrate their local information
flows into a common brain network. One of the most appropriate ways of describing
communication of that kind is through cross-frequency coupling, and there has been
a large number of such studies in recent years to elucidate the functional activity of
the brain underlying e.g., cognition, attention, learning and working memory [9, 29,
30, 43, 82]. The different types of cross-frequency coupling depend on the dynamical
properties of the oscillating systems that are coupled, e.g., phase, amplitude/power
and frequency, and different combinations of brainwaves have been investigated,
including often the δ-α, θ -γ and α-γ cross-frequency coupling relation. These types
of investigation are usually based on the statistics of the cross-frequency relationship
e.g., in terms of correlation or phase-locking, or on a quantification of the coupling
amplitude.

Recently, a new typeofmeasure for brain interactionswas introduced calledneural
cross-frequency coupling functions [73]. This measure is one of the central aspects
in this chapter. The neural cross-frequency coupling functions describe interactions
which are cross-frequency coupling i.e. between brainwaves but now describing not
only the coupling existence and strength but also the form of coupling function. This
functional form acts as another dimension of the coupling with the ability to describe
the mechanisms, or the functional law, of the underlying coupling connection in
question [69]. In simple words, not only if, but also how the neural coupling takes
place.

When studying brainwave interactions the neural cross-frequency coupling func-
tions are very suitable. Namely, the fact that the brainwaves are described by oscilla-
tions can be used to model the interacting dynamics with the coupled phase oscillator
model [37]. In this way one can have a direct 1:1 correspondence between the num-
ber of observables and the dimensions of the measured signals—having a 1D signal
and 1D model for the phase dynamics for each system i.e. there will be no hidden



182 T. Stankovski

dimensions. To illustrate the steps of the analysis an example of δ-to-α phase neural
coupling function is considered:

• First one needs to extract the δ andα oscillation signals—this is donewith standard
filtering of the EEG signals.

• After this, one needs to detect the instantaneous phase signals from the oscilla-
tions, which can be done by Hilbert transform, and further transforming this with
protophase-to-phase transformation [34].

• Such phases φδ(t) and φα(t) are then inputs to a method for dynamical inference
which can infer a model of two coupled phase oscillators where the base functions
are represented by Fourier series (set of sine and cosine functions of the φδ(t) and
φα(t) arguments). In our calculations we used the method for dynamical Bayesian
inference [66] and Fourier series as base function up to the second order.

• The resulting inferredmodel explicitly gives the desired neural coupling functions.
• After reconstructing the neural coupling functions of interest, one can use them
to perform coupling function analysis in order to extract and quantify unique
characteristics.

The phase coupling functions give the precise mechanism of how one oscilla-
tion is accelerated or decelerated as an effect of another oscillation. For example,
let us consider the δ-to-α phase neural coupling function. Figure 11.2 presents such
δ-to-α coupling function qα(φδ(t), φα(t)) from three studies involving resting state
and anaesthesia, from single electrode or from spatially distributed electrodes [71–
73]. Figure 11.2a shows the coupling existence, strength and significance in respect
of surrogates, while the Fig. 11.2b shows the all-important neural coupling func-
tion qα(φδ(t), φα(t)). Observing closely the 3D plot in Fig. 11.2 describes that the
qα(φδ(t), φα(t)) coupling function which is evaluated in the φα(t) dynamics changes
mostly along the φδ(t) axis, meaning it is a predominantly direct coupling from δ

oscillations. Detailed description of the direct form of coupling function, which is
not analytical for non-parametric functional form, are presented elsewhere [72]. The
specific form of the coupling function describes the coupling mechanism that when
the δ oscillations are between 0 and π the coupling function is negative and the α

oscillations are decelerated, while when the δ oscillations are between π and 2π
the coupling function is positive and the α oscillations are accelerated. The rest of
the figures tell similar story—Fig. 11.2c present three cases of qα(φδ(t), φα(t)) cou-
pling functions for awake and anaesthetized subjects (with propofol and sevoflurane
anaesthetics, respectively), while Fig. 11.2d, e present the qα(φδ(t), φα(t)) in spatial
distribution on the cortex and its average value. The 3D plots present the qualita-
tive description, while for quantitative analysis one can extract two measures—the
coupling strength and the similarity of form of coupling function [69].
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Fig. 11.2 Examples of δ-α neural coupling functions. a The coupling strength spatial distribution
and significance in respect of surrogates. b The δ-α phase coupling functions of resting state—with
3D and 2D plots and a polar index of coupling function similarity. c The effect of anaesthesia on
the δ-α coupling functions—the three group functions are for the awake, anesthetised with propofol
and anesthetized with sevoflurane states. d and e depict the spatial distribution and the average
resting state δ-α coupling function, respectively. a and b are from [73], c is from [71], d and e are
from [72]

11.3 Theory and Methods for Coupling Functions
in Neuroscience

The theory and methods for studying coupling functions of brain interactions are
developed unsymmetrically. Namely, it seems that theoretical studies aremore devel-
oped for the neuronal level, while the methods are largely developed for studying the
large-scale (brainwaves) systems. Of course, this is not a black-and-white division,
however the predominance of the two aspects certainly seems to be like this.
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The large populations of interacting neurons, in form of ensembles and networks,
have been studied extensively in theory. The celebrated Kuramoto model [36, 37]
has been exploited in particular. It is a model of large population of phase oscilla-
tors, one which has an exact analytic solution for the synchronization state of the
whole ensemble. The coupling functions is a simple sine function of the phase differ-
ence. Kuramoto discussed that this coupling function is not very physical, however
his interest was in finding an analytically solvable model. The Kuramoto model
has been particularly popular in neuroscience with its ability to describe analyti-
cally the synchronous states of large populations of neurons [1, 5, 52]. Other two
recently introduced approaches, known as the Ott and Antonsen [50] and Watanabe
and Strogatz [83] reductions, provide reduced model equations that exactly describe
the collective dynamics for each subpopulation in the neural oscillator network via
few collective variables only. A recent review provides a comprehensive and updated
overview on the topic [4]. The theoretical studies on the large-scale brainwave inter-
actions are often performed through the common framework of two or few coupled
oscillatory systems [55].

To infer coupling functions from data one needs to employ methods based on
dynamical inference. These are class of methods which can reconstruct a model of
ordinary or stochastic differential equations from data. The coupling functions are
integral part of such models. In this chapter examples were shown from the use of
a specific method based on dynamical Bayesian inference [64, 66, 67]; however
any other method based on dynamical inference (often referred to also as dynamic
modelling or dynamic filtering) can also be used [15, 33, 35, 39, 80]. The differences
between the results of thesemethods in terms of the coupling functions are minor and
not qualitatively different. Often, there is a need for coupling functions to be inferred
from networks of interacting systems, and several methods have been applied in this
way [39, 54, 72]. In neuroscience, such methods have been used mainly on two
to several brainwave oscillation systems, and it has been argued that the precision
and feasibility are exponentially reduced as the number of systems increases and
it is recommended not to go beyond N > 10 [57]. For this reason and due to the
exponentially increasing demand for larger number of systems, there are not many
effective methods for inference of coupling functions in low-level large populations
of neuronal interactions.

In terms of methodology and analysis, few other aspects are important when
analysing coupling functions. One is that once coupling functions are inferred they
give the qualitativemechanisms but for any quantitative evaluations and comparisons
(for example in amultisubject neuroscience study) one can conduct coupling function
analysis i.e. it can calculate the coupling strength and the similarity of the form of
coupling function [35, 69, 79]. Also, of paramount importance is to validate if the
inferred coupling functions are statistically significant in respect of surrogate time
series [38, 63]. Usually one tests whether the strengths of the coupling functions
are significantly higher than the coupling strengths of a large number of randomized
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surrogate time series which have similar statistical properties to those of the original
data. Also one should be careful when analysing neural coupling functions as it has
been shown that they can be time-varying [19, 65, 73], hence this should be taken
into account in the analysis.

11.4 Conclusions and Discussions

In summary, this chapter gives an overviewof howcoupling functions are relevant and
useful in neuroscience. They bring an additional dimension—the form of coupling
function—which revels the mechanism of the neural interactions. This is relevant in
neuroscience, as it can describe and be linked to the many different brain functions.

Two largely studied levels of neural interactions were discussed, the low-level
individual neurons and the high-level systemic processes like the brainwave oscilla-
tions. Of course, these two levels are not exclusive but they are closely related, i.e. the
brainwaves are likemean-field averages of the activities of billions of neurons. In fact
studies exist where the brainwave oscillations are modeled as Kuramoto ensembles
but the large-scale cross-frequency couplings for the modelling are inferred from
data [5, 62]. Needless to say, coupling functions have implications for other levels
and depths of the brain other than the two discussed here.

The focus was on phase coupling functions, though the interactions can be in
amplitude, or combine phase-amplitude based domains [8, 29, 30]. Many modeling
methods used in neuroscience actually inferred dynamical systems where coupling
functions were an integral part [15, 28]. In such cases coupling functions were
implicit, and they were not treated as separate entities, nor were they assesses and
analysed separately. These tasks are yet to be developed properly for the amplitude
and the phase-amplitude domains.

As an outlook, with all their advantages one could expect that coupling functions
will continue to play an important role in future neuroscience studies, maybe even to
extend their current use. The ever demanding computational power for calculations
on large populations of neuron interactions will be more accessible in future, as new
improved and faster methods will be developed. The artificial neural networks take
on increasing importance recently, with many application across different disciplines
and industries [22, 85]. The coupling function theory and the different findings in
many neuroscience studies could play an important role in establishing improved
and more efficient artificial neural networks. Also, the models could be extended
and generalized further for easier applications on amplitude and phase-amplitude
domains. The theory needs to follow closer the new discoveries from neural coupling
functions analysis. The coupling function developments in other fields, especially in
physics, could play an important role for neuroscience tasks, and vice versa.



186 T. Stankovski

References

1. J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: a
simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

2. S. Achuthan, C.C. Canavier, Phase-resetting curves determine synchronization, phase locking,
and clustering in networks of neural oscillators. J. Neurosci. 29(16), 5218–5233 (2009)

3. F.A. Azevedo, L.R. Carvalho, L.T. Grinberg, J.M. Farfel, R.E. Ferretti, R.E. Leite, W.J. Filho,
R. Lent, S. Herculano-Houzel, Equal numbers of neuronal and nonneuronal cells make the
human brain an isometrically scaled-up primate brain. J. Comparat. Neurol. 513(5), 532–541
(2009)

4. C. Bick, M. Goodfellow, C.R. Laing, E.A. Martens, Understanding the dynamics of biological
and neural oscillator networks through exact mean-field reductions: a review. J. Mathemat.
Neurosci. 10, 9 (2020)

5. M. Breakspear, S. Heitmann, A. Daffertshofer, Generative models of cortical oscillations:
neurobiological implications of the Kuramoto model. Front. Human Neurosci. 4, 190 (2010)

6. E.N. Brown, J. Moehlis, P. Holmes, On the phase reduction and response dynamics of neural
oscillator populations. Neur. Comp. 16(4), 673–715 (2004)

7. G. Buzsáki, A. Draguhn, Neuronal oscillations in cortical networks. Science 304, 1926–1929
(2004)

8. R.T. Canolty, E. Edwards, S.S. Dalal, M. Soltani, S.S. Nagarajan, H.E. Kirsch, M.S. Berger,
N.M. Barbaro, R.T. Knight, High gamma power is phase-locked to theta oscillations in human
neocortex. Science 313(5793), 1626–1628 (2006)

9. R.T. Canolty, R.T. Knight, The functional role of cross-frequency coupling. Trends Cognit.
Sci. 14(11), 506–515 (2010)

10. B. Ermentrout, Type I membranes, phase resetting curves, and synchrony. Neural Comput.
8(5), 979–1001 (1996)

11. B. Ermentrout,D. Saunders, Phase resetting and coupling of noisy neural oscillators. J. Comput.
Neurosci. 20(2), 179–190 (2006)

12. G.B. Ermentrout, B. Beverlin, T. Netoff, Phase response curves to measure ion channel effects
on neurons, in Phase Response Curves in Neuroscience (Springer, 2012), pp. 207–236

13. A.S. Etémé, C.B. Tabi, J.F.B. Ateba, H.P.F. Ekobena, A. Mohamadou, T.C. Kofane, Neuronal
firing and DNA dynamics in a neural network. J. Phys. Comms. 2(12), 125004 (2018)

14. K.J. Friston, Functional and effective connectivity: a review.Brain. Connect. 1(1), 13–36 (2011)
15. K.J. Friston, L. Harrison,W. Penny, Dynamic causal modelling. Neuroimage 19(4), 1273–1302

(2003)
16. R.F. Galán, G.B. Ermentrout, N.N. Urban, Efficient estimation of phase-resetting curves in real

neurons and its significance for neural-network modeling. Phys. Rev. Lett. 94, 158101 (2005).
https://doi.org/10.1103/PhysRevLett.94.158101

17. W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity
(Cambridge University Press, 2002)

18. W. Gerstner, R. Naud, How good are neuron models? Science 326(5951), 379–380 (2009)
19. Z. Hagos, T. Stankovski, J. Newman, T. Pereira, P.V.E. McClintock, A. Stefanovska, Syn-

chronization transitions caused by time-varying coupling functions. Philoso. Trans. R. Soc. A
377(2160), 20190275 (2019)

20. H. Haken, Synergetics, An Introduction (Springer, Berlin, 1983)
21. R. Haseloff, I. Blasig, H.C. Bauer, H. Bauer, In search of the astrocytic factor (s) modulat-

ing blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell. Molecul.
Neurobiol. 25(1), 25–39 (2005)

22. M.H. Hassoun et al., Fundamentals of Artificial Neural Networks (MIT Press, 1995)
23. Y. He, A. Evans, Graph theoreticalmodeling of brain connectivity. Current Opin. Neurol. 23(4),

341–350 (2010)
24. A.L. Hodgkin, A.F. Huxley, Currents carried by sodium and potassium ions through the mem-

brane of the giant axon of loligo. J. Physiol. 116(4), 449–472 (1952)

https://doi.org/10.1103/PhysRevLett.94.158101


11 Coupling Functions in Neuroscience 187

25. B. Horwitz, The elusive concept of brain connectivity. Neuroimage 19(2), 466–470 (2003)
26. D. Iatsenko, A. Bernjak, T. Stankovski, Y. Shiogai, P.J. Owen-Lynch, P.B.M. Clarkson, P.V.E.

McClintock, A. Stefanovska, Evolution of cardio-respiratory interactions with age. Phil. Trans.
R. Soc. Lond. A 371(1997), 20110622 (2013)

27. E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–
1572 (2003)

28. A. Jafarian, P. Zeidman, V. Litvak, K. Friston, Structure learning in coupled dynamical systems
and dynamic causal modelling. Phil. Trans. R. Soc. A 377, 20190048 (2019)

29. O. Jensen, L.L. Colgin, Cross-frequency coupling between neuronal oscillations. Trends Cog-
nit. Sci. 11(7), 267–269 (2007)

30. V. Jirsa, V.Müller, Cross-frequency coupling in real and virtual brain networks. Front. Comput.
Neurosci. 7, 78 (2013)

31. V. Jurcak, D. Tsuzuki, I. Dan, 10/20, 10/10, and 10/5 systems revisited: their validity as relative
head-surface-based positioning systems. Neuroimage 34(4), 1600–1611 (2007)

32. I.Z.Kiss,C.G.Rusin,H.Kori, J.L.Hudson,Engineering complex dynamical structures: sequen-
tial patterns and desynchronization. Science 316(5833), 1886–1889 (2007)

33. I.Z. Kiss, Y. Zhai, J.L. Hudson, Predicting mutual entrainment of oscillators with experiment-
based phase models. Phys. Rev. Lett. 94, 248301 (2005)

34. B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Phase dynamics of
coupled oscillators reconstructed from data. Phys. Rev. E 77(6, Part 2), 066205 (2008)

35. B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, M. Moser,
In vivo cardiac phase response curve elucidates human respiratory heart rate variability. Nat.
Commun. 4, 2418 (2013)

36. Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in Lecture
Notes in Physics, vol. 39, ed. by H. Araki (Springer, New York, 1975), pp. 420–422

37. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)
38. G. Lancaster, D. Iatsenko, A. Pidde, V. Ticcinelli, A. Stefanovska, Surrogate data for hypothesis

testing of physical systems. Phys. Rep. (2018)
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Chapter 12
Phase Reconstruction with Iterated
Hilbert Transforms

Erik Gengel and Arkady Pikovsky

Abstract We discuss theoretical and practical issues of data-driven phase recon-
struction approaches for nonlinear oscillatory systems by means of the geometric
technique of embeddings and protophase-to-phase transformation. In this chapter,
we introduce a natural extension of the well-studied Hilbert transform by iteration.
The novel approach, termed iterated Hilbert transform embeddings, implements cen-
tral assumptions underlying phase reconstruction and allows for exact demodulation
of purely phase modulated signals. Here, we examine the performance of the novel
method for the more challenging situation of generic phase-amplitude modulated
signals of a simple nonlinear oscillatory system. In particular we present the benefits
of the approach for secondary phase analysis steps illustrated by reconstruction of
the phase response curve. Limitations of the approach are disussed for a noise-driven
phase dynamics.
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12.1 Introduction and Overview

This chapter deals with the art of phase reconstruction. We focus on Hilbert trans-
forms, however, much of the introduced methodology is not bound to Hilbert trans-
forms alone.

In general, three approaches to signal analysis of oscillatory signals can be iden-
tified. The first approach applies statistical methods to extract information from
observations assuming no further model [2, 22, 34]. The second approach takes
the theory of dynamical systems into account and analyses the signals in terms
of the phase and the amplitude notions provided in this theory [1, 7, 9, 17–19, 24,
29, 30, 37]. In an intermediate methodology, a phase and an amplitude are extracted
from the data and then analysed in terms of statistical quantities. These methods
may or may not take an underlying theory into account [15, 23, 25, 28, 36, 42, 43]
Alternatively, one applies machine learning techniques to obtain equations of motion
directly from observations [6, 41].

Here we focus on signal analysis approaches suitable for oscillating systems. The
basic assumption is that the signal originates from a dynamical oscillating system,
interacting with other systems and/or with the environment, and the goal is to under-
stand the dynamics. This task is especially important and challenging in life science,
where a theoretic description of the oscillators is in many cases lacking, because the
underlying mechanisms are not clear. On the other hand, measurements of the full
phase space dynamics are impossible, or would destroy the system itself. The latter
aspect introduces the common setting where measurements of the systems are pas-
sive, i.e., an observer collects data from the free running system and may only apply
weak perturbations to prevent damage. For such passive observations, we pursue here
the approach inspired by the dynamical system theory: we try to extract the phases
from the signals, with the aim to build models as close to theoretical descriptions as
possible.

The ideas of the phase dynamics reconstruction has been widely used in physics,
chemistry, biology, medicine and other areas [4, 20, 31, 35] to understand properties
of oscillators and coupling between them (see also Chaps. 2, 3 and 11 of this book).
The reason for this, as we discuss below, is that the phase is sensitive to interactions
and external perturbations. In particular, many studies apply Hilbert transforms to
reconstruct the phase from data (for example see [3, 14, 38, 43] and references
therein). However, several fundamental issues in the process of phase reconstruc-
tion are unresolved, long standing and mostly omitted in the community. One issue
deals with the role of the amplitudes [8, 21]. And from the view point of pure
signal processing: how to deal with phase-amplitude mixing in Hilbert transforms
[10, 13]. The latter issue will be discussed in particular here and we describe a
solution by virtue of iterative Hilbert transform embeddings (IHTE) [12].

First, we describe the theoretical concepts. We then discuss the art of phase recon-
struction with a focus on IHTE. We illustrate this method by presenting results for
a Stuart-Landau non-linear oscillator, including reconstruction of the infinitesimal
phase response curve (iPRC). Finally, we discuss difficulties of application in case
of noisy oscillations.

http://dx.doi.org/10.1007/978-3-030-59805-1_2
http://dx.doi.org/10.1007/978-3-030-59805-1_3
http://dx.doi.org/10.1007/978-3-030-59805-1_11
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12.2 Nonlinear Oscillators and Phase Reduction

Here we briefly review the phase reduction of driven limit cycle oscillators, for more
details see [26, 27]. An autonomous oscillator is described by N state variables y
which evolve according to a system of differential equations ẏ = f(y). One assumes
that this system has a stable limit cycle y0(t) = y0(t + T ) describing periodic (period
T ) oscillations. In the basin of attraction of the cycle one can always introduce a phase
variable ϕ which grows uniformly in time

ϕ̇ = ω = 2π

T
. (12.1)

On the limit cycle, only the phase varies, so that y0(ϕ) = y0(ϕ + 2π), which
means that the value of the phase uniquely determines the point on the limit cycle.

If the autonomous oscillator is perturbed, i.e., it is driven by a small external force
ẏ = f(y) + εp(y, t), then the system slightly (of order ∼ ε) deviates from the limit
cycle, and additionally the phase does not grow uniformly, but obeys (in the first
order in ε) the equation

ϕ̇ = ω + εQ(ϕ, t), (12.2)

where Q can be expressed via f,p (see [26] for details). Equation (12.2) contains only
the phase and not the amplitude, it can be viewed as a result of the phase reduction.
The dynamics of the phase according to (12.2) allows for studying different important
effects of synchronization, etc. In the case when the oscillator is forced by another
one, the force p(η) can be viewed as a function of the phase η(t) of this driving
oscillator, so the function Q(ϕ, η) becomes the coupling function depending on two
phases. In experimental situations it is quite common to perturb just one variable
of the system. In that case, if the forcing term is scalar and does not depend on the
system variables, one can factorize Q(ϕ, t) = Z(ϕ)P(t) into the iPRC Z(ϕ) and the
(scalar) external driving P(t) [5, 39].

Example: Forced Stuart-Landau Oscillator. In this contribution we consider as
an example the perturbed Stuart-Landau oscillator (SL)

ȧ = (μ + iν)a − (1 + iα)a|a|2 + iεP(t), P(t) = cos(rωt) (12.3)

where a(t) := R(t) exp[iφ(t)] is the complex amplitude. Parameterμ determines the
amplitude (

√
μ) and stability of the limit cycles, α is the nonisochronicity parameter.

It is easy to check that
ϕ(t) = φ(t) − α ln[R(t)] (12.4)

is the proper phase, rotating, independently of amplitude R, with uniform frequency
ω = ν − μα. The frequency of the forcing is rω, where parameter r is the ratio of
the external frequency to the base frequency ω. In the first order in ε, the amplitude
and the phase dynamics read
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Fig. 12.1 Panel a: Observables X2 (blue points) and X3 (green points) as functions of the true
phase ϕ. The fact that these sets are not distiguishable from a line demonstrates validity of the
phase description for the SL oscillator (i.e. the amplitude modulation is indeed small). The same
observables as functions of the first protophase θ1 are not lines but broad sets (orange points for
X2(θ1) and grey points for X3(θ1)). The same observables become good function of the protophase
θ10 after 10-th iteration of our procedure (red and black points, corerspondingly). Panel b: Time
series for observables X2,3(t) (red,black). Simulationparameters areμ = 8,α = 0.1,ν = 1, ε = 0.1
and r = 1.8 (for X2(t)) and r = 5.6 (for X3(t)). In this scale, small amplitude andphasemodulations
are hardly seen

Ṙ = R(μ − R2) + εP(t) sin(ϕ),

ϕ̇ = ω + εμ−1/2(cos(ϕ) − α sin(ϕ))P(t).
(12.5)

Here, the iPRC is

Z(ϕ) = (cos(ϕ) − α sin(ϕ))μ−1/2. (12.6)

One can see that for small ε the dynamics of the SL is nearly periodic, with
small (∼ ε) amplitude and phase modulations. Below in this paper we will con-
sider three different scalar observables of the SL dynamics: X1(t) = Re[a(t)],
X2(t) = 0.1(Im[a])2 + 0.2(Re[a])2 + 0.3Im[a] + 0.4Re[a], and X3(t) = X2(t) +
0.3Re[a]Im[a]. The observable X1 is “simple”, it is a pure cosine function of time
for the autonomous SL oscillator. The observable X2 is also relatively simple (with
one maximum and minimum pro period), but not a pure cosine. The observable X3

can be viewed as a multi-component signal [11], with two maxima and minima pro
period. Snapshots of the time series of corresponding signals X2,3(t) are illustrated
in Fig. 12.1b.

12.3 Phase Reconstruction and Iterative Hilbert Transform
Embeddings

12.3.1 Waveform, Phase and Demodulation

In Sect. 12.2we introduced the phase dynamics concept for weakly perturbed oscilla-
tors. It is based on the equations of the original oscillator’s dynamics. In the context of
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data analysis, one faces a problem of the phase dynamics reconstruction solely from
the observations of a driven oscillator. From the time series of a scalar observable,
one wants to reconstruct the phase dynamics equation (12.2).

The first assumptionwemake is that the phasemodulation of the process observed
is much stronger than the amplitude modulation. Although, according to the theory,
amplitude perturbations appear already in the leading order ∼ ε (cf. Eq. (12.5)),
these variations could be small if the stability of the limit cycle is strong. Indeed, like
example Eq. (12.5) shows, perturbations of the amplitude are inverse proportional to
the stability of the limit cycle∼ ε/μ, and are additionally small for μ large. Thus, for
the rest of this chapter we assume that the dynamical process under reconstruction
is solely determined by the dynamics of the phase.

Generally, a time series emanates from an observable X [y(t)] of the systems
dynamics. According to the assumption above, we neglect amplitude modulation
which means that we assume y = y0, so that the scalar signal observed is purely
phase modulated

X (t) = X [y0(ϕ(t))] =: S(ϕ(t)). (12.7)

Here a 2π-periodic function S(ϕ) = X [y0(ϕ)] is unknown, we call it the wave-
form. The reconstruction problem for the signal X (t) is that of finding the waveform
S(ϕ) and the phase ϕ(t). In Fig. 12.1a, we illustrate these waveforms for the observ-
ables X2,3 of the SL oscillator. Plotting X2,3 as functions of ϕ with dots, one gets
extremely narrow lines which indicate that for chosen large stability of the limit
cycle the amplitude dynamics can be neglected and decomposition is possible. On
the contrary, if the observed signals possess essential amplitude modulation, X (ϕ)

would look like a band. In that case the above representation (12.7) is not adequate.
We stress here that a decomposition into thewaveform and the phase is not unique.

Indeed, let us introduce a new monotonous “phase” θ(t) according to an arbitrary
transformation

θ = �(ϕ), �(ϕ + 2π) = �(ϕ) + 2π, �′ > 0. (12.8)

Then the signal can be represented as X (t) = S(�−1(θ)) = S̃(θ) with a new
waveform S̃ = S ◦ �−1. Variables θ(t) are called protophases [17, 18]. Examples
for mappings Eq. (12.8) are depicted in Fig. 12.4. To see the difference between
protophases and true phase ϕ(t), let us consider the non-driven, non-modulated
dynamics. Here the phase ϕ(t) grows uniformly ϕ̇ = ω, while the protophase θ(t)
grows non-uniformly, as

θ̇ = �′(ϕ)ω = ω�′(�−1(θ)) = f (θ). (12.9)

However, having a protophase and the function f (θ) governing its dynamics, one
can transform to the true phase ϕ(t) by inverting relation (12.8):

dϕ

dθ
= 1

�′(ϕ)
= ω

f (θ)
, ϕ =

∫ θ

0

ωdθ′

f (θ′)
. (12.10)
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Note that Eq. (12.10) is well defined as by construction, θ̇ = f (θ) > 0. In the
case one observes driven oscillations, one approximately estimates f (θ) = 〈θ̇〉, see
[18] for details.

According to the discussion above, one can perform the phase reconstruction of
an observed signal X (t) in two steps:
(i) Find a decomposition X (t) = S̃(θ(t)) into a waveform and a protophase, satisfy-
ing conditions

(I): ∀t, θ̇(t) > 0, (II): S̃(θ) = S̃(θ + 2π). (12.11)

(ii) Perform a transformation from a protophase to the phase, so that the latter grows
on average uniformly in time

(III): 〈ϕ̇〉 = const. (12.12)

Conditions [I, II] ensure that the reconstructed protophase is monotonous and
2π-periodic. Condition [III] selects the phase as a variable uniformly growing in
time, in contrast to other protophases which according to (12.9) grow with a rate
that is protophase-dependent (with 2π-periodicity). Below we discuss in details the
methods allowing for accomplishing steps (i) and (ii).

12.3.2 Embeddings, Hilbert Transform, and
Phase-Amplitude Mixing

The first task, a decomposition into a waveform and a protophase, is trivial, if two
scalar observables {X (t) = X [y0(t)],Y (t) = Y [y0(t)]} of the oscillator’s dynamics
are available (of course, these observables should be not fully dependent). In this
case, on the {X,Y } plane one observes a closed continuous curve, parametrized by
the phase, and the trajectory rotates along this curve. Any parametrization of the
curve, normalized by 2π, will then provide a protophase as a function of time. After
this, one has only to accomplish the step (ii), i.e. to transform the protophase to the
phase.

An intrinsically non-trivial problem appears, if only one scalar observable, X (t),
is available. The goal is to perform a two-dimensional embedding of the signal X (t),
by generating from it the second variable Y (t). There exist several approaches for
this task. The most popular ones are the delay-embedding Y (t) = X (t − τ ) [16], the
derivative embedding Y (t) = Ẋ(t) [32], and the Hilbert transform (HT) embedding
Y (t) = Ĥ [X ](t), where (on a finite interval [t0, tm])

Ĥ [X ](t) := p.v.

π

∫ tm

t0

X (τ )

t − τ
dτ . (12.13)
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It is an observation of practice, that the latter approach based on the HT often
gives the most stable results. A reason for this is that the HT produces minimal
distortions to the signal’s spectrum. Indeed, all the methods mentioned are linear
transformations, which in Fourier space correspond to multiplications with factors
ei�τ , i�, and i sign(�), respectively. The factor for HT depends on frequency in a
“minimal” way, and does not have, contrary to the delay embedding, a parameter.
However, the HT provides only an approximate embedding, due to a mixing of phase
and amplitude modulations [13].

Indeed, only for a non-modulated, i.e. for a purely periodic signal X (t), the HT
transform provides a periodic Y (t), so that on the {X,Y } plane one observes a perfect
closed loop. If the signal X (t) is phase-modulated, then on the {X,Y = Ĥ [X (t)]}
plane one observes a non-closed trajectory (which only approximately can be con-
sidered as a loop), the width of the band gives the size of the appearing amplitude
modulation (see Figs. 12.1a and 12.2). (Also if one has a purely amplitude-modulated
signal, its HTwill provide spurious phase modulation - but this is not relevant for our
problem). It should be noted that the spurious amplitude modulation arises solely
due to the spectral properties of the Hilbert transform, and is not related to the
length of the observation data. Usually, already 20–30 observed periods suffice to
overcome boundary effects. Instead, the spectral content of the phase modulation
heavily influences the appearance of amplitude modulation, and hence the accuracy
of reconstruction [12].
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Fig. 12.2 IHTE for a periodically driven SL oscillator Eq. (12.3) with harmonic driving P(t) =
cos(rωt). Parameters: μ = 8, α = 0.1, ν = 1, ε = 0.1. In panel a observables X1(t) (for frequency
ratio r = 5.6) and X2(t) (for r = 1.8) are used. Shown are the first step of the IHTE hierarchy in
grey and orange, and step ten in black and red for X1 and X2, respectively. In panel b the observable
X3(t) with r = 5.6 is used where grey corresponds to the first embedding and black corresponds to
the embedding in step ten. Embeddings at the first iteration yield wide bands, which indicates for
an “artificial” modulation of the amplitude, while at the 10th iteration the embeddings are nearly
perfect lines, which means that the observed signals are nearly perfect phase modulated ones. Note
that the embedding of X1 has a circular shape, the embeddings of X2,3 are distorted from a circle
causing non-uniform protophases. In case of X3, the embedding shows a loop (panel (b))
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In the next section we describe a method to circumvent this problem by virtue
of iterated HT embeddings (IHTE) [12], illustrating the procedure with different
observables of the SL oscillator.

12.3.3 Iterated HT Embeddings

As discussed above, the HT embedding {X (t), Ĥ [X (t)]} although does not provide
a closed looped line, allows one for an approximate determination of the protophase.
To accomplish this, one needs to define a variable monotonously growing along
the trajectory and gaining 2π at each approximate loop. A naive analytic-signal-
based protophase arg(X + iY )would work only for cosine-like waveforms like X1,2.
Therefore we employ another definition of the protophase, based on the trajectory
length [18]

L(t) =
∫ t

0

√
Ẋ2(τ ) + Ẏ 2(τ )dτ . (12.14)

This length grows monotonously also in the case when the embedding has loops
(cf. Fig. 12.2), in which case the analytic-signal-based definition obviously fails.

Having calculated the length L(t), we can transform it to a protophase by interpo-
lation. For this, we define in the signal features which we attribute to the zero (mod-
ulo 2π) protophase, and define the corresponding time instants t j . In the simplest
case, one can define a protophase θ(t) on the interval (t j , t j+1) as a linear function
of the length θ(t) = 2π j + 2π(L(t) − L(t j ))/(L(t j+1) − L(t j )). However, such a
protophase will be discontinuous in the first derivative. A better transformation is
achieved via splines: one constructs a spline approximation for the function θ(L),
provided one knows the values of this function at the signal features: θ(t j ) = 2π j at
L(t j ).

Constructed in this way, the protophase θ(t) is only approximate, because X (θ +
2π) 	= X (θ). Visually, on the plane {X, Ĥ [X ]} one observes a band instead of a
single loop (see Fig. 12.2). Also, when X is plotted versus θ, one observes not a
single-valued function, but a band (see Fig. 12.1a).

Recently, in Ref. [12], we proposed to use iterative Hilbert transform embeddings
(IHTE) to improve the quality of the protophase definition above. Our idea is to per-
form subsequent Hilbert transforms based on the previously calculated protophases
θn(t), where n denotes the step of iteration (see Fig. 12.3). Intuitively, the advantage
of iterations can be understood as follows: The widely used first iteration already
presents an approximation to the protophase, although not a perfect one. This means,
that the function X (θ1) still has modulation, but less than X (t). Now, if we take θ1
as a new time and again perform a demodulation by virtue of the Hilbert transform
embedding, we expect θ2(t) to be better than θ1(t), etc. A detailed analysis performed
in Ref. [12] shows that this procedure indeed converges to perfect demodulation.

In terms of iterations, the protophase θ(t) discussed above is the first iteration
θ1(t), while the time variable can be considered as the “zero” iteration θ0(t). At each



12 Phase Reconstruction with Iterated Hilbert Transforms 199

Fig. 12.3 Here we schematically explain the iterative Hilbert tranform embeddings. Typically only
one iteration is performed, and the protophase θ1(t) is used for further analysis. We show in this
chapter, how the quality of the phase reconstruction improves with the iterative embeddings

iteration step we use the obtained protophase as a new “time” with respect to which
the next HT is performed:

Yn+1(θn) = Ĥ [X (θn)] := p.v.

π

∫ θn(tm )

θn(t0)

X (θ′
n)

θn − θ′
n

dθ′
n. (12.15)

An implementation of this integral is given in [12]. Basically there are two chal-
lenges here: first, the integration has to be performed on a non-uniform grid and
second, one has to take care of the singularity at θ′

n = θn .
The iteration process will be as follows (see Fig. 12.3):

1. Having X (θn) = X (t (θn)), we calculate Yn+1(θn) = Ĥ [X (θn)] according to
(12.15).

2. Next, we construct the embedding {X,Yn+1} and find the length L(θn) from
(12.14).

3. After defining signal features, we calculate, using splines, the new protophase
θn+1 as a function of L(θn), which gives the new protophase θn+1 as a function
of the old one θn .

The steps 1–3 are repeated, starting from θ0 = t . After n iterations, we obtain a
waveform and a protophase

S̃(θn) = X (t (θn)) (12.16)

As has been demonstrated in Ref. [12], the procedure converges to a proper pro-
tophase, fulfilling conditions [I, II] above. For a purely phase modulated signal, at
large n the errors (12.17) reach very small values limited by accuracy of integration.
The convergence rate depends heavily on the complexity of the waveform and on
the level and frequency of modulation, but typically at n̂ ≈ 10 a good protophase is
constructed.

Summarizing, the IHTE solve the problem of constructing a protophase θ(t) =
θn̂(t) and the corresponding waveform S̃(θ) from a scalar phase-modulated signal
X (t); this protophase fulfills conditions (12.11)-[I, II]. Indeed, one observes in Fig.
12.4 that the first mapping �1(ϕ) is not purely 2π-periodic (blue bands). Instead,
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Fig. 12.4 Depicted are the phase-to-protophase maps Eq. (12.8) for X2[.] (panel a) and X3[.]
(panel b) based on the embeddings shown in Fig. 12.2. Colours correspond to �1(ϕ) (blue, this
data form a rather wide band indicating that the protophase at the first iteration is not precise),
�10(ϕ) (black, this data forms a narrow line indicating for a good protophase reconstruction),
ψ10(ϕ) (red, this narrow line is straight indicating for a good phase reconstruction). The orange line
is the diagonal. For better visibility the curves are shifted vertically

after ten iterations, �10(ϕ) effectively has become a line (black) indicating that a
protophase is reconstructed. The same can be seen in Fig. 12.1a, where bands of
values X2,3(θ1) are transformed to narrow lines X2,3(θ10) after ten iterations.

As the final step in obtaining a close estimate ψ(t) of the proper phase ϕ(t), we
have to perform the protophase-to-phase transformation, as described in Ref. [18].
The transformation is based on relation (12.10), where the Fourier components of the
density of the protophase are estimated according to Fk = t−1

m

∫ tm
0 exp[−ikθ(t)] dt ;

these components are used to perform the transformation as ψ = θ + ∑
k 	=0

Fk(ik)−1[exp(ikθ) − 1]. Indeed, one observes in Fig. 12.4 (red lines) that ψ(t) is,
up to estimation errors, resembling the dynamics ofϕ(t). However, we want to stress
here that determination of the protophase-to-phase transformation is based on a sta-
tistical evaluation of the probability density of the protophase. Hence, in order to
achieve a proper reconstructions with small distortions in the protophase-to-phase
mapping, one needs long time series.

We can check for the similarity of θn(t) or ψn(t) to the true phase ϕ(t) by calcu-
lating a phase and a frequency error as the standard deviations

STDq
n =

√
1

N̂1

∫ tmax

tmin

[qn(τ ) − ϕ(τ )]2dτ STDq̇
n =

√
1

N̂2

∫ tmax

tmin

[q̇n(τ ) − ϕ̇(τ )]2dτ

N̂1 =
∫ tmax

tmin

(ϕ(τ ) − ω̃τ )2dτ N̂2 =
∫ tmax

tmin

[ϕ̇(τ ) − ω̃]2dτ .

(12.17)
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STDq,q̇
n tend to zero only, if the reconstructed protophases and transformed pro-

tophases qn = {θn(t),ψn(t)} are close to the true phase ϕ(t) of the system (see
Eq.(12.4)). In the integration, we skip the outer ten percent at the beginning and at
the end of the time series, to avoid boundary effects. Estimations of the instantaneous
frequency ϕ(t) and q̇n(t) are performed by a 12th order polynomial filter (Savitzky-
Golay filter) with a window of 25 points and four times repetition [33] denoted as
SG(12,25,4). Throughout the chapter we use a sampling rate of dt = 0.01, such that
the smoothing window has a width of dt = 0.25, corresponding to roughly 11% of
the fastest forcing period (r = 14.3). The estimated average growth rate ω̃ is obtained
by linear regression. Note that the normalization integral N̂1 is suitable for all phases
where the average growth is linear.

12.4 Numerical Experiments

12.4.1 Deterministic Oscillations

Here we consider the SL system (12.3) with μ = 8, α = 0.1, ν = 1. As the observ-
ables we explore functions X1,2,3[a(t)] defined above. The system is forced harmon-
ically by εP(η) = ε cos(η(t)) with amplitude ε = 0.1. The external force phase is
η(t) = rωt , for the explored range of driving frequencies rω the SL operated in the
asynchronous regime. We observe 100 periods with a time step of dt = 0.01.

In Fig. 12.6 the phase and the frequency errors according to Eq. (12.17) for the first
20 iteration steps are shown. While for slow modulations (r < 1), the reconstruction
is already accurate in the first step, for fast forcing frequencies (r > 1) indeed several
iterations are needed for precise reconstruction. The reason for this is that for high-
frequency modulations iterative HT embeddings first shift high-frequency Fourier
components of the phase modulation to lower frequencies, where they eventually
disappear. This mechanism is closely related to the Bedrosian identities [40] and is
explained in detail in [12]. For the reconstruction of phases in case of X2,3[a(t)], we
have to calculate the transformed phase ψ(t), because here the protophases deviate
from uniform growth. The results show, that IHTE combined with the protophase-
to-phase transformation provides proper phase reconstructions for the fairly stable
limit cycle oscillator under study.

Figure12.5 presents comparisons of the inferred modulation un(t) := ψn(t) −
ω̃t with the true one q(t) = ϕ − ωt , and of the inferred instantaneous frequencies
θ̇n(t)/ψ̇n(t) with ϕ̇, for a quite fast external force r = 5.6 (black bold dots in Fig.
12.6).While the first iterate is by far not accurate, iterations provide the reconstructed
estimation of the phases ψ20(t) which is very close to ϕ(t).
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12.4.2 Reconstruction of the Phase Response Curve from
Observation

Here, we present the advantage of using the IHTE for the reconstruction of the
coupling functions and the iPRC. As an example we consider the SL oscillator
with harmonic driving and parameters r = 5.6, μ = 8, α = 0.1, ν = 1 and ε = 0.1
observed via variable X1[.]. The coupling function is reconstructed by a kernel-
density fit. Namely, we use a kernel K(x, y) = exp[κ(cos(x) + cos(y) − 2)] and
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κ = 200 to construct θ̇(ϕ, η). We apply a simple iterative method described in [19].
After K iterative steps, the extracted coupling function Q̃K ,n(ϕ, η) := θ̇n(ϕ, η) − ω̃
is factorized into Z̃K (ϕ) and P̃K (η). In Fig. 12.8, the improvement due to IHTE is
evident.We used K = 30 factorization steps and recover the actual coupling function
with pretty high accuracy for different frequencies of forcing depicted in Fig. 12.7.
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12.4.3 Noisy Oscillations

In this section we discuss applicability of the described method to noisy signals. We
assume that the SL oscillator is driven by an external force containing a deterministic
and a stochastic (white noise) component

εP(t) = ε cos(ωr t) + ξ(t), 〈ξ〉 = 0, 〈ξ(t), ξ(t ′)〉 = σ2δ(t − t ′) (12.18)

with μ = 8, α = 0.1, ν = 1, ε = 0.2, r = 5.6 and different noise levels σ = [0.1,
0.08, 0.06]. We assume a “perfect” observation according to X1(t) (i.e., there is no
observational noise). Due to the stochastic forcing, the signal’s spectrum has infinite
support. In the time domain, X (t) contains an infinite amount of local maxima and
minima which will cause infinitely many but small loops in the embedding (see Fig.
12.9b). Strictly speaking, we can not obtain phase from such a signal by calculating
the length of the embedded curve, because the latter is a fractal curve.

Therefore, we can not deal with the raw signal X (t). Instead, as a preprocessing,
we smooth out fast small-scale fluctuations of X (t) by a SG [4, 12, 25] filter, effec-
tively cutting the spectrum of the signal at high frequencies. In such a setting with a
finite-width spectrum, we expect that IHTE can improve the phase reconstruction.
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The results in this case have to be interpreted relative to the smoothing parameters
which are chosen in such a way that they preserve essential local features of the
dynamics. Indeed, we observe negative instantaneous frequencies ϕ(t) pointing to
the need of a high polynomial order of smoothing (see Fig. 12.9c, d, e). Also, the
noise causes diffusion of phase (see Fig. 12.9).

From the viewpoint of phase extraction via embeddings, the white noise forcing
represents a “worst case”. On the contrary, in all situations where coloured noise with
a bounded spectrum is present, we expect IHTE to be the more easily applicable.
Depending on the spectral composition of noise, small-scale loops in the embedding
may be not present at all, or may be eliminated with minimal filtering. If the noise has
only relatively low-frequency component, the embedding will be relatively smooth,
and no additional processing is needed.

Ourmethod is restricted to the conditions (12.11). Since all of these conditions are
not fulfilled in this example, the actual phase dynamics is only partly reconstructed,
as can be seen also from Fig. 12.9a where the reconstruction error decay is much
less pronounced than in Fig. 12.6. In view of this, the presented example can be
considered as a proof of concept for IHTE of noisy signals. The method improves
the estimation of the phase, as the examples of Fig. 12.9 show, by factor up to 2.

We add the following preprocessing to IHTE:

1. Given X (t), apply a high-order SG-filter making the signal smooth with a large
number of inflection points.

2. Next, smooth ϕ(t) by the same SG-filter.
3. Proceed signal X (t) with IHTE as described in Sect. 12.3.3.

12.5 Conclusion and Open Problems

In summary, the IHTE approach solves the problem of phase demodulation for purely
phase modulated signals. Here, we present results for a dynamical system, where the
amplitude dynamics is also present and linked to the dynamics of ϕ(t). We have
demonstrated that IHTE indeed provides a good reconstruction of the phase dynam-
ics, if the amplitude variations are relatively small (see Fig. 12.4, 12.6, 12.5). We
show that iterations drastically improve the reconstruction of the phase, in compar-
ison to the previously employed approach based on a single Hilbert transform (see
Fig. 12.5) and Z(ϕ) (see Fig. 12.8). However, the analysis of the performance of
IHTE in the case of larger amplitude variations is a question to be discussed in the
future.

An important issue in the phase reconstruction is the protophase-to-phase trans-
formation. It is particularly relevant for generic observables like X3[.], with complex
waveforms. While handling such observables in the framework of IHTE does not
state a problem, influence of amplitude variations may depend drastically on the
complexity of the waveform. It should be stressed here, that while construction of
the protophase via IHTE is almost exact, the protophase-to-phase transformation is
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based on some assumption about the dynamics, which typically are only approxi-
mately fulfilled. This topic certainly deserves further studies.

Biological systems are noisy. We have given an example here, where IHTE also
improves the reconstruction of the phase in presence of fluctuations (see Fig. 12.9).
However, the very concept of a monotonously growing phase should be reconsidered
for noisy signals. Here we largely avoided problems by smoothing the observed
signal, but in this approach some features of the modulation might be lost.
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Part III
Biological Oscillators



Chapter 13
Oscillations in Yeast Glycolysis

Lars Folke Olsen and Anita Lunding

Abstract Oscillations in yeast glycolysis have been known for more than six
decades. In spite of intensive experimental and model studies there are still gaps
in our understanding of these glycolytic oscillations, e.g. the mechanisms by which
they arise, why they have been preserved throughout evolution, and what their poten-
tial functions in the cell could be. In the current paper new experimental observa-
tions will be presented showing that many variables, that were hitherto considered
unrelated to glycolysis, oscillate synchronously with glycolytic intermediates. Fur-
thermore, a strong coupling between glycolysis and the polarisation of intracellular
water is presented, suggesting that water has a strong influence on metabolism. This
challenges our current understanding of themechanism behind the glycolytic oscilla-
tions. Finally, it is proposed that the function of metabolic oscillations is to maintain
the cell in a state of constant low entropy.

13.1 Introduction

Glycolysis is the conversion of glucose to smaller substances such as lactic acid or
ethanol in both prokaryotic and eukaryotic cells. The main function of glycolysis is
to provide the cell with ATP when respiration is inhibited or absent. In dense suspen-
sions of starved non-growing cells of the yeast Saccharomyces cerevisiae temporal
oscillations in glycolysis can be observed [58]. These oscillations were discovered
more than 60 years ago by Duysens [20]. The oscillations manifest themselves as
oscillations in not only concentrations of metabolites in the glycolytic pathway (e.g.
hexose phosphates), the redox active coenzyme NADH and adenylates (e.g. ATP)
[59], but also in many other extensive (scale linearly with system size) and intensive
(independent on system size) thermodynamic variables [2, 19, 46, 47, 63–66], all
with the same frequency. In intact yeast cells the frequency of glycolytic oscillations
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is almost constant and only shows significant variation in response to changes in
temperature or in cell density [1] or to partially replacing H2O by D2O [64]. The
reason for this robustness of frequency is not known and cannot be reproduced by
most mathematical models of the pathway. While it is generally accepted that the
enzyme phosphofructokinase plays a central role in the mechanism responsible for
the oscillations, recent evidence has shown that also a number of enzymes and pro-
teins, normally considered unrelated to glycolysis, contribute to the mechanism [61,
65].

Thus, glycolytic oscillations seem to involve a plethora of cellular processes.Here,
we will present new evidence that the dynamics of intracellular water also plays an
important role in the mechanism of the oscillations. These results seem to be general
and may be carried over to other oscillatory processes and ultimately suggest that
intracellular water may have a key role in cell metabolism and signal transduction in
cells. The function of the glycolytic oscillations is not known, but nevertheless they
have been preserved throughout evolution. Several roles of the oscillations have been
proposed, e.g. that they constitute an inevitable side effect in the tradeoff between
hard robustness and efficiency [13] or they increase the thermodynamic efficiency of
glycolysis [60]. Here we propose an alternative function for the oscillations, namely
that they serve to maintain the cell in a state of constant low entropy.

13.2 Variables Measured in Oscillating Glycolysis

Oscillations in glycolysis are typically measured as oscillations in the autofluores-
cence ofNADH.Most othermetabolites in glycolysis are optically “silent” and there-
fore cannot be measured in real time, but only after quenching of cell metabolism,
extraction of cell content and subsequent analysis by off-line assays [22, 40, 41, 59].
NADH oscillations in intact cells may be observed using fluorescence spectroscopy
to measure oscillations in cell suspensions [9, 23] or fluorescence microscopy [4,
12] to measure oscillations in single cells [12]. A typical experiment which shows
oscillations of NADH fluorescence in a suspension of yeast cells can be seen in Fig.
13.1a. Oscillations in NADH fluorescence are induced by addition of first glucose
and then 60 s later potassium cyanide to a suspension of starved yeast cells.

However, more recently time-resolved measurements of other variables such as
intracellular pH [19, 46], mitochondrial membrane potential [2], intracellular potas-
sium ion [47] and water dynamics [64, 65] have been made. For example, it has long
been known that mitochondria contribute to the regulation of glycolytic oscillations
[3], and more recently oscillations in mitochondrial and other intracellular mem-
brane potentials were directly measured using membrane potential-sensitive fluores-
cent dyes and shown to oscillate synchronously with NADH [2]. Figure 13.1 shows
simultaneous measurements of NADH, intracellular ATP, mitochondrial membrane
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Fig. 13.1 Measurements of oscillations in a NADH, b intracellular ATP concentration (measured
using an ATP-sensitive optical nanosensor [50]), cmitochondrial membrane potential (measured as
the fluorescence of themembrane potential-sensitive dyeDiOC2(3)),d intracellular pH, e potassium
ion concentration (measured as the fluorescence of the potassium sensitive fluorophore PBFI) and f
the physical state of water (measured as ACDANGP, see Sect. 13.3) in a suspension of S. cerevisiae
BY4743 cells. The cells were suspended in 100mMpotassium phosphate buffer, pH 6.8, to a density
of 10% (w/v). Oscillations in glycolysis were induced by addition of 30mMglucose at the indicated
arrows and 60 s later 5 mM potassium cyanide (KCN)

potential, intracellular pH, K+ concentration and water dynamics (see Sect. 13.3)
in a suspension of yeast cells supplied with glucose and KCN. The main function
of KCN is to inhibit respiration. Intracellular glucose was shown to be essentially
constant and non-oscillating at a concentration of about 0.5 mM [56] (not shown in
Fig. 13.1).
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ATP was shown to oscillate in antiphase with NADH [50, 59] (see also Fig.
13.2a). At the same time the ATP concentration decreases slowly (Fig. 13.1b) until
the added glucose is used up and then starts to rise again up to the initial level. It is
somewhat puzzling that after starvation of the cells intracellular ATP is not zero, but
relatively high.The (slow)decline inATPobserved after additionof glucose andKCN
indicates that the consumption of ATP is higher than its production. Mitochondrial
membrane potential (Fig. 13.1c) shows a rapid rise immediately after addition of
glucose and KCN followed by a slower increase with superimposed oscillations until
a plateau is reached.When glucose is exhausted the potential drops to its initial value.
Intracellular pH shows an initial fast rise followed by a slower decline (Fig. 13.1d).
On top of this are pH oscillations with a very small amplitude as seen in the inset in
Fig. 13.1d. The initial rise in pHi will be smaller if inhibitors of the plasmamembrane
H+-ATPasePma1p are added before glucose andKCN[46]. Inhibition of this enzyme

Fig. 13.2 Phase plots of a intracellular ATP concentration, b mitochondrial membrane potential,
c potassium concentration and d ACDAN GP against the fluorescence of NADH
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will also reduce the slowdecline in intracellularATP [74].Oscillations in intracellular
K+ concentration can also be measured as shown in Fig. 13.1e using the potassium-
sensitive fluorescent probe PBFI [43]. Interestingly, these measurements suggest
that the concentration of free intracellular potassium ion is on the order of 20 mM or
below [47], which contrasts with the up to 300 mM total intracellular concentration
of this ion in yeast [72]. This suggests that most intracellular potassium ion may be
bound to proteins and other negatively charged groups in the cell [47].

Recently, our group has explored a new class of fluorescent dyes, which has
allowed us to measure a new and hitherto overlooked physical property linked to gly-
colytic oscillations.Thesedyes are the so-called6-acyl-2-(dimethylamino)naphtalene
(DAN) probes, which are polarity-sensitive molecules that can be used to measure
the dynamics of intracellular water. These probes, originally introduced by G.Weber
[39, 70], were designed to measure dipolar relaxation times of the environment
(water in particular) [6, 39, 70]. When these probes are added to yeast cells with
oscillating glycolysis it was shown that their fluorescence oscillates synchronously
with NADH fluorescence (Fig. 13.1f) [64, 65]. This suggests that the dynamics of
water and metabolism (glycolysis) are tightly coupled as will be discussed further in
Sect. 13.3.

A useful way to analyse multiple simultaneous time series from oscillating reac-
tions is to performphase plots of the variables. Such phase plots are shown inFig. 13.2
for some of the data shown in Fig. 13.1. From these phase plots we may infer, e.g.,
that intracellular ATP,K+ concentration andACDANGP (see Sect. 13.3) all oscillate
in phase.

Other variables that have been measured in oscillating glycolysis in intact yeast
cells include carbon dioxide production [55], heat flux [63], temperature and cell
volume [66] (see Sect. 13.4).

The fact that so many different and seemingly unrelated intensive and extensive
thermodynamic variables were found to oscillate in synchrony suggest that numerous
cellular processes, and not just enzymes in the glycolytic pathway, contribute to the
mechanism of the oscillations.

13.3 The Dynamics of Intracellular Water Modulate
Glycolytic Oscillations

13.3.1 Macromolecular Crowding and the Dynamics
of Intracellular Water

Water is the most abundant component of the cell and plays important roles in many
cellular processes as a solvent for macromolecules, small molecules and ions, but
also as a substrate in hydrolysis reactions. Traditionally, intracellular water has been
considered to be in a liquid state [27, 69]. In fact, essentially all previous biochemical
models of glycolytic oscillations assume mass action kinetics, which is only strictly
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valid in dilute solutions. However, due to the molecular crowding of the cytoplasm
caused by the high intracellular concentrations of biological macromolecules [16,
17, 32, 38, 54, 73] the state of intracellular water may be different from that in dilute
solution. The overall concentration of macromolecules in the cytoplasm amounts to a
volume fraction of 40%, and this and the large polar surface areas of intracellular lipid
membranes may facilitate the binding of water molecules and restrict their motion,
challenging the view that intracellular water is mainly in a fluid state [14, 21, 75].
This creates a gap in our current understanding of metabolism and its regulation,
mainly because enzymes may have different properties in the crowded environment
inside a cell [15, 53]. In some cases thismacromolecular crowding is referred to as an
“excluded volume effect” [15]where crowding has no effect on the physical-chemical
properties of water. However, recent studies using molecular dynamics simulations
have indicated that the mobility of water molecules is very heterogeneous and that a
large fraction of intracellularwatermolecules is essentially immobilised in long-lived
water bridges between proteins [37].

13.3.2 Coupling of Dynamics of Intracellular Water
to Glycolysis

The discovery of biomolecular condensates has spurred new interest in intracellular
water [7]. These phase-separated concentrates of proteins and nucleic acids may
offer additional cellular compartmentalization on top of that provided by organelles
and may provide a special aqueous environment for temporal and spatial control of
cellular biochemistry [62]. Interestingly—and relevant here—the liquid-like droplets
may showviscous fluid dynamics and their apparent viscosity isATP-dependent [10].
Recently it was found that the dynamics of intracellular water has a strong influence
on glycolytic oscillations [64]. For example adding increasing concentrations of D2O
(up to 50%) to a suspension of yeast cells results in a decrease in the frequency of
the oscillations. As stated above the oscillation frequency is otherwise generally
insensitive to changes in experimental conditions [11, 57]. The effect of D2O is not
due to its physicochemical properties (e.g. density and viscosity) because ACDAN
and PRODAN show exactly the same emission peaks in pure H2O and D2O [6, 64].
Instead, the effect of D2O on the frequency of glycolytic oscillations was interpreted
as a secondary isotope effect [64], i.e. the presence of deuterium affects the rates of
physicochemical processes even if deuterated bonds are not themselves involved [68].

Further evidence that the solvent (H2O or D2O) is involved in the mechanism
of oscillation comes from the use of the so-called DAN (6-acyl-2-(dimethylamino)
naphtalene) probes, specifically ACDAN, PRODAN and LAURDAN [64]. These
probes were developed as polarity sensitive fluorescent probes to study nanosecond
relaxation processes in biological systems [70]. LAURDAN is, because of its long
hydrophobic side chain, not soluble in water, whereas the two other probes (ACDAN
and PRODAN), because of their shorter side chains, are very soluble in water and
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Fig. 13.3 Confocal fluorescence images of S. cerevisia BY4743 cells stained with a ACDAN, b
PRODAN and c LAURDAN

hence also in the cytoplasm of cells. For years these probes (primarily LAURDAN)
have been used to study phase transitions in model lipid membranes [5, 52]. Here, it
was found that the probesmainly respond to the dipolar relaxation ofwatermolecules
present at the membrane interface. If relaxation of the solvent molecules is relatively
fast the emission spectrum of the DANprobes exhibits a red shift and if the relaxation
of the solvent is relatively slow the spectrum exhibits a blue shift. This approach can
be generalised to all the DAN probes [6] such that ACDAN, which is hydrophilic and
water soluble responds in a similar way to the surrounding solvent (water) molecules.
Confocal images of yeast cells stained with DAN probes are shown in Fig. 13.3. The
regions exhibiting blue and green fluorescence represent domains with slow relax-
ation of water, while the dark regions represent domains with fast relaxation of water.
The two major dark intracellular regions in Fig. 13.3a, b (low or no fluorescence)
represent the vacuole (largest dark region) and the nucleus. It is not possible from
such images to quantify how much of the total intracellular water is represented by
the blue and green fluorescence. However, a recent report on intracellular water in
yeast suggests that about 20% of intracellular water is “slow” water, bound mostly to
proteins [69]. The remaining 80% were reported to be in a fluid state. This number
is compatible with what we observe in Fig. 13.3a, b since a large fraction of intracel-
lular water is present in intracellular vacuoles and the nucleus where it is in a fluid
state and therefore optically “silent”.

To quantify the spectral data from the DAN probes a so-called “Generalized
Polarization function” (GP) was developed and defined as [6, 51]:

GP = I440 − I490
I440 + I490

(13.1)

where I440 and I490 are the measured fluorescence intensities at 440 nm and 490 nm,
respectively, for an excitation wavelength of 365 nm. It is easily seen from Eq.13.1
that the value of GP must fall in the interval −1 ≤ GP ≤ +1. The closer the GP
gets to +1 the slower is the relaxation of water. We have previously reported that
the GP value for ACDAN (ACDAN GP), and hence the dynamics of intracellular
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Fig. 13.4 Time series of
ACDAN GP in the BY4743
wild type strains and two
strains with a mutation in the
F1F0 ATPase complex
(YBL099w) and the
mitochondrial H+/K+
transporter mdm38
(YOL027c). Glucose was
added at the time indicated
by the arrows and KCN was
added 60 s later

water, oscillate synchronously with other intensive variables in glycolysis and that
all the green and blue regions in Fig. 13.3a oscillate in complete phase, i.e. the
oscillations are cell wide with no time delay between different aqueous regions in
the cell [64]. To investigate further the coupling between glycolytic oscillations and
the state of intracellular water a number of S. cerevisiae strains with null mutations
in various enzymes and proteins in glycolysis and other metabolic pathways were
stained with ACDAN and the fluorescence spectra and temporal behaviour were
recorded [65]. Figure 13.4 shows the time series of ACDAN GP in the wild type
strain and two strains with null mutations in the Atp1p subunit of the F1F0-ATPase
or in the protein Mdm38p mitochondrial H+/K+ transporter. Neither of the two
mutant strains exhibits glycolytic oscillations. We note that the ACDAN GP in the
two mutants is either higher (Mdm38p� mutant) or lower (Atp1p� mutant) than
the GP in the wild type strain. This could indicate that there is an optimal GP value
for observing glycolytic oscillations in yeast. Therefore, more than 20 additional
strains with various null mutations were examined for their ability to show glycolytic
oscillations and their ACDAN GP values were measured in the resting state before
addition of glucose and KCN. A plot of the oscillation amplitude and the frequency
against the ACDAN GP value showed that there is indeed a range of GP values
(from about 0.0 to −0.06) for which oscillations occur [65]. Thus, the physical state
of intracellular water seems to have a tremendous effect on glycolytic oscillations.
This does not fit very well to the hypothesis that intracellular water is always in a
fluid state. However, a recent model based on equilibrium statistical mechanics [67]
is capable of reproducing and explaining the coupling of oscillations in glycolysis
to oscillations in dynamics of intracellular water. This model is based on the so-
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called Association-Induction hypothesis developed by Gilbert Ling [26, 30–32],
which, among other things, predicts that intracellular water is in a polarised state and
that the concentration of free intracellular K+ is low due to binding to intracellular
proteins.

13.4 A Potential Role of Glycolytic Oscillations

Homeostasis implies that a variable, e.g. a concentration or temperature, is actively
regulated to be maintained nearly constant. The concept was originally proposed
by French physiologist Claude Bernard [8]. In biochemistry homeostasis is syn-
onymous with the term steady state. The idea that biological systems operate at a
steady state has survived to this date. Oscillatory dynamics do not fit very well to
the steady state concept. It is interesting that glycolytic oscillations have been found
in multiple yeast strains and thus seems to have been preserved throughout evolu-
tion. Furthermore, many other metabolic and signalling pathways in yeast and other
organisms show oscillatory behaviour [23, 24, 34, 36]. Therefore, it is tempting to
speculate that instead of homeostasis one should consider the normal state of the cell
as a homeodynamic state [35, 71]. Homeodynamics consider the living organism
as operating not far from equilibrium on a low duty cycle and with only some con-
stituent processes being far from equilibrium. Sincemetabolic oscillations seem to be
so widespread it is natural to ask: what are their functions? So far no definite answer
has been given. One possible explanation for the existence of metabolic oscillations
is that the ability to exhibit oscillatory dynamics constitutes a harmless side-effect of
the complex regulatory mechanisms controlling the activities of glycolytic enzymes
[18]. Another explanation could be that the glycolytic oscillations have evolved as
an inevitable side effect of hard trade-offs between robustness and efficiency [13].
According to these two views oscillations have no function at all. On the other hand,
it has also been proposed that the mechanisms responsible for the oscillations have
evolved to reduce the dissipation of energy [60]; that is, oscillations make metabolic
pathways more energy efficient. Here we shall propose a radically new hypothesis
for the glycolytic oscillations, namely that they reflect a living organism’s quest for
maintaining a low-entropy state [66].

Oscillating (bio)chemical processes are considered to be non-linear dissipative
thermodynamic processes [28, 44, 45]. This is in contrast tomany oscillating systems
in classical physics, which are non-dissipative adiabatic processes. Traditionally,
irreversible processes havebeendescribedbyOnsager’s phenomenological equations
[48, 49], which assume a symmetric linear coupling matrix between fluxes and
forces. Onsager-type equations yield fluxes that can be written as J = L · X where
L is an arbitrary matrix. As demonstrated in a recent study [25] any such matrix

can be separated into a symmetric (LS) and an antisymmetric (LA) matrix. Since
the antisymmetric matrix does not contribute to dissipation, entropy production is
exclusively governed by the symmetric matrix [48, 49]. This situation is illustrated
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Fig. 13.5 Schematic representation of a dissipation, b isentropic oscillation and c a real process
with both oscillation and dissipation. Entropy (S) is plotted against two state variables x and y.
Adapted from [25]

in Fig. 13.5a. However, as shown in [25] it is not generally justified to omit the
antisymmetric terms. Furthermore, it can be shown that the antisymmetricmatrixmay
lead to oscillationswhere entropy is conserved as exemplified by an oscillating piston
or an electrical LC-circuit [25]. In addition, it was shown that this formalism can
be extended to other processes, including oscillating (bio)chemical systems. In such
entropy conserving thermodynamic systems all extensive and intensive variables
including temperature can display oscillations [25]. This situation is illustrated in
Fig. 13.5b. Thus, the combination of the symmetric and the antisymmetric matrix
may lead to damped oscillations as illustrated in Fig. 13.5c. A strong indicator for
an entropy conserving adiabatic process will be a periodic change in temperature.

As for glycolysis in intact yeast cells it has been shown that the oscillations in
NADH concentration are accompanied by oscillations in a multitude of extensive
and intensive thermodynamic variables (see Sect. 13.2), including heat production
[63], electrical conductivity [42], cell volume and temperature [66] as predicted by
the revision of Onsager’s theory [25]. It is important to note that the observed temper-
ature oscillations evidence both heat absorption and heat release as expected for an
adiabatic process [66]. The fact that so many extensive and intensive thermodynamic
variables oscillate in synchrony could indicate that glycolytic oscillations are isen-
tropic or close to being isentropic, and hence may not be that far from equilibrium.

13.5 Concluding Remarks

Our studies of glycolytic oscillations cannot be explained in terms of current views
on cell physiology where cells are assumed to be in a far from equilibrium steady
state and cell cytoplasm is assumed to be a fluid aqueous solution in which ions
and macromolecules diffuse freely. However, our results are in accordance with
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the Association-Induction (AI) hypothesis developed by Gilbert Ling [26, 29, 30,
32, 33], which treats the cellular interior in a resting cell as a highly structured
near-equilibrium system. According to the AI hypothesis intracellular water is in
a polarised state and most intracellular potassium ions are bound to cytoskeletal
proteins [32]. Interestingly the AI hypothesis, while largely ignored, has never been
refuted and we suggest that it may be relevant for all cellular types.
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Chapter 14
Oscillations, Rhythms and Synchronized
Time Bases: The Key Signatures of Life

David Lloyd

Abstract The dynamic complexity of the living state as evident on viewing cells
microscopically defies immediate comprehension. Experiment and theory now
allows us to approach some of the problems of this organized complexity (and one
that embraces inherent functional purpose) characterizing the phenomenon of life. In
an irreducible whole, and in a not so far from equilibrium open system, for the most
part it works on a low-duty cycle. We can distinguish many types of time-dependent
behaviour: e.g., oscillatory, rhythmic, clock-like timekeeping (and synchronized),
deterministically chaotic, and self-similar or fractal), all simultaneously proceeding
on many time scales. Self-synchronized continuous cultures of yeast represent, until
now, the most characterized example of in vivo elucidation of time structure. The
predominantly oscillatory behavior of network components becomes evident, with
spontaneously synchronized cellular respiration cycles between discrete periods of
increased oxygen consumption (oxidative phase) and decreased oxygen consumption
(reductive phase). This temperature-compensated ultradian ‘clock’ provides coordi-
nation, linking temporally partitioned functions by direct feedback loops between the
energetic and redox state of the cell and its growing ultrastructure. This model system
represents a basic framework is proposed as a universal cellular principle whereby
ultradian rhythms are the synchronizing signatures that organize the coherence of
the living state. The current challenge is to devise ever increasingly powerful, but
non-invasive (or minimally perturbing) techniques to investigate the living organism.
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14.1 Introduction: Life as a Complex System

‘You can never know what to expect from the real nightingale, but everything is determined
in the artificial bird. It will be so-and so, and no different! You can explain it; you can open
it up and show the human thought - how the cylinders are placed, how they work, and how
one follows the other.’

Andersen [3] ‘The Nightingale’.

Physicists and engineers deal with universal uniformity of mechanisms, usually
reducible to relatively simple systems, whereas the evolution of organisms has used
an almost infinite range of quality controls on the test-beds of vitality and survival
over a period of >2 billions of years leading to colossal variety. Biology has come
to expect a great diversity of form, each example of which is invested with its own
individual functional efficiency. The coherent unit (cell and/or, for an unicellular
example, whole organism) has to self-organize (coherently control) its energetics,
informational signaling, andmass increase during its growth [22]. It then has to repro-
duce exact copies of each and every one of its almost infinite molecular components
and partition them to the progeny, often then to develop new structures during adap-
tation to environmental changes, signals and stresses, whilst still maintaining form
and function (perhaps over many years) until death. Functional order requires tempo-
rally ordered sequences of processes and events repeatedly performed in successive
discreet time intervals and on time scales from atto-seconds to years.

There is a simplistic current zeal for equating an organism to a machine that
can be understood, and with a life story that can be predicted if its DNA is
completely sequenced. Although analogies with robotic machines and their informa-
tional contents have become commonplace, these provemore useful to theman-made
constructs of engineers (‘biomimetics’) than to the attempts of biologists to fathom
the purposeful organized complexity of life [100]. Furthermore, the non-reducibility
of the living order to its constituent parts is one of its implicit properties: Hans
Christian Andersen got it right!

14.1.1 Thermodynamics of the Living State

The living state in exchanging matter and energy with its surroundings is an open
thermodynamic system, but close analogies cannot be made with far-from equilib-
rium physical (Bénard instabilities), or chemical (Belousov-Zhabotinsky oscillator)
systems. Living organisms perform with their constituent enzyme reactions on a low
duty-cycle whereby �G values are small (some exceptions occur where ionophores
are involved) [162]. Thus overall they are at not-so-far from equilibrium states.
Heimburg [60] asserts that ‘In isoentropic thermodynamic systems all extensive
and intensive variables including temperature can display oscillations reminiscent of
adiabaticwaves’. This suggests [156] that the oscillatory propensity of the living state
is a consequence of the necessity for continued performance of metabolic activity
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at a maintained low entropy condition; it also questions the proposal that metabolic
reactions are essentially dissipative.

14.1.2 Metabolic Fluxes, Flows and Turnover of Constituents
and Component Organelles

Claude Bernard’s classic monograph ([9], translated in 1927) of the control mech-
anisms dictating the constancy of the milieu intérieur, set a standard for physiolo-
gists considering the persistent and robust maintenance of a mean composition of
body fluids. This philosophy was perpetuated and developed by Cannon [14] as ‘the
wisdom of the body’ and he introduced the useful concept of ‘homeostasis’ as an
overarching natural balanced consequence. However, Yates [162] has emphasised
the essentially dynamic condition of enzyme-catalysed reactions in networks and
cycles, and advocated the term, homeodynamic to more precisely describe living
systems [100].

14.1.3 Time Domains of Living Systems

A dynamic concept at the whole cell level was analysed by Gilbert [33], and hypo-
thetical relationships between differentiation, the cell division cycle, and oncogenesis
were modeled with a mathematical rigour. At this date it was also proposed that in
early sea urchin embryos, the observed hourly rhythms of amino acid incorporation
into proteins could be ascribed tomechanisms involving cytoplasmic regulators, e.g.,
non-protein thiols [116, 117].

The postulate of ‘homeostasis’ has overshadowed the recognition of the funda-
mental and basic importance of the ‘harmonious organization’ of life, [61, 62],
whereby the simplistic static condition concept is refined to indicate the ceaseless
dynamism of the ‘milieu intérieur’ as oscillatory states on many temporal scales.
Thus it must be realised that ‘constancy’ is a relative term [100], and that time-scales
must be considered; oscillatory performance is common.

Figure 14.1 indicates much of what is known of the frequency ranges (about their
mean values) of the human rhythmical functions in repose, aswell as under functional
effort (horizontally hatched).

Sel’kov [148] revived and applied mathematical modeling to the important
concept of the of redox cycling involving thiol-disulphide compounds as proposed
by Rapkine [140], and extended the model to the pathophysiology of the aberrant
growth of tumours. In a series of sole-authored papers, Gilbert [33–38], further devel-
oped his own highly original ideas on the living state and modeled inter-dependence
of normal and cancerous states of this transition, cellular differentiation and senes-
cence as series of dynamic bifurcations: this was a seminal series of publications.
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Fig. 14.1 Measurements of human physiological functions illustrating the ‘harmony of the body’
[61]

Examples of analytical mathematical methods used and of examples of oscillating
experimental systems are to be found in Gilbert’s subsequent publications with Tsil-
imigras [44], MacKinnon [43], Visser [45], Josting [41], Lloyd [42], Ferreira [39],
and Hammond [40], and recently reviewed [47]. The dynamics and stability of mito-
chondrial structure and related functions in yeast was probed throughout the 1970s
by the pioneering group of Luzikov (reviewed in [109]); their conclusion was that
the continued activity of components of the respiratory chain require their contin-
uous performance, and quality control of this maintenance is dictated by a host of
proteolytic enzymes [110], via creative destruction.

Reich and Sel’kov [142, 143] published a useful summary of the ideas previ-
ously promulgated by Goodwin [48], that changes in controls on key parameters
of oscillatory metabolism could be explanatory for differentiation of cells to form
tissues, and also for changes of state leading to oncogenesis. Key concepts [33] were
subsequently further developed by Goodwin [49]. A logical classification of the time
domains operational in all living organisms, made the apparently incomprehensible
complexity somewhat more easily understood [94, 20–22].

Figure 14.2 shows the domains of biochemical reactions underlying physiolog-
ical functions on faster time scales [130] down to sub-picoseconds. Real-time fluo-
rescence imaging (using confocal and 2-photon excitation) provide new insights
into long-standing problems of cell structure and function [80, 81, 105]. Advancing
imaging techniques applied to biophysical measurements lead to ever more defined
resolution at single cell, organelle [164] and molecule levels.
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Fig. 14.2 The time domains of living systems

14.1.4 Biological Oscillations

The history of synchronizing oscillators, and the remarkable mechanisms in the
heart and brain depend upon these principles, but how coherence is achieved across
widespread distance these in organs is complex and not understood. Stabilization of
dynamics can be achieved by non-autonomous perturbation [107], and chronotaxic
systems far from equilibrium can adjust their clocks [155]. Changes in metabolic
states can be described by the alterations in their chronotaxicity [78].

Reasons have been presented why oscillations should be expected in all biochem-
ical studies [39, 163]. These articles provide practical details for setting up sampling
regimes and analyzing data for confirmation of oscillatory behaviour. Our basic
understanding of cell biochemistry requires extensive re-evaluation in the light of
these principles. Furthermore, until the last few years, comparative neglect of the
medical importance of biological rhythms has arisen because temporal anatomy is
invisible by nature [123].

Lüttge and Hütt [108] have summarized why ultradian oscillations may be crucial
for functional biochemical and physiological coherence: and an updated list of
examples can now be formulated:

1. For the synchronization of spatially separated physiological processes, e.g. respi-
ratory activity of mitochondria, and reactions leading to nucleotide biosynthesis
[87, 89].
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2. For the separation of incompatible processes within the same cellular compart-
ment e.g., H2S production and oxidative metabolism in a protozoon, Acan-
thamoeba castellanii [93, 99], and in yeast [72, 125, 153].

3. Oscillations in enzyme reactions lower the average concentrations involving
potentially toxic reaction products (e.g. H2O2, superoxide, and other reactive O2

species (e.g. in the peroxidase-oxidase reaction), Hauser et al. [58]. Superoxide
radical anions (O2

−) act as signals, but in excess are responsible for oxidative
damage.

4. Oscillations may increase the thermodynamic efficiency of metabolism by
lowering energy dissipation [79, 122, 123], and/or be a necessary accompaniment
of the low-entropy state of cells [60].

5. Signaling: e.g., Ca2+ oscillations transmit stimulus-specific information to down-
stream signaling machinery involving Ca2+dependent protein phosphorylation
[120]. Protein phosphatases and protein kinases are involved in the complex and
highly dynamic and specific signaling functions in normal, inflamed, [19], and
cancerous cells [51–56]. Out of phase expression of multiple isoenzymes may
be involved: e.g., in cultured erythroleukemia cells distinct temporal oscillatory
expression of 3 isoforms have been characterized [54, 56], and in the ras onco-
gene during proliferation and differentiation [56]. Regulation of the dynamics
may be crucial to the control of cell function and transformation. Oscillations
may encode information (frequency-encoding is more accurate than amplitude
encoding) in signal transduction chains or networks. Spatial reorganization is
required during differentiation, e.g., in the segmentation of embryos and insects
the ‘somite clock’.

6. Synchronization of intra- and extra-cellular processes. In heart and brain synchro-
nization of coupled oscillators is vital for concerted signaling, action and
responses over wide spatial scales. Thus, time-frequency wavelet transforms of
several non-invasive measurements of cardiovascular signals within and between
neuronal (EEC) recordings indicate strengths and directions of interactions
between the two systems and in principle can be used to assess the state of
the organism under anesthesia [154].

7. Most biological receptors are phasic in their nature and therefore oscillating
signals can be rapidly sensed without membrane modification [122]: i.e., speed
of response can be faster from an appropriately rapidly oscillating signal.

14.1.5 Rhythms and Clock-Like Timekeepers

Rhythms are self-sustained oscillations, emergent and persistent, even if their charac-
teristics (frequency, phase or amplitude) may become temporarily modified (as just
described for oscillations). However, their unregulated and hence unperturbed “free-
running” periods are robust and their periods, phase and amplitudes fully recoverable
when restraints or stimuli are removed. Biological clock-like synchronisers, e.g. the
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40 min ultradian clock in the yeast, Saccharomyces cerevisiae, like circadian clocks
and physical clocks, are temperature compensated, exhibiting a Q10 close to 1.

The term “theBiological Clock”, as often used, refers to the ~24 h period circadian
clock that has evolved in almost all animals, plants, andmany fungi and cyanobacteria
[50, 141]. It matches many hundreds of biochemical, physiological and behavioral
functions to the daily rotation of the earth. Circadian rhythms are comparatively
recent innovations on the evolutionary time scale [85, 94, 163]. Although crucially
important, especially in biomedical understanding and applications, they are not
fundamental core characteristics of the living state: they represent the icing on the
cake. Many unicellular organisms (e.g., yeasts, [86] with no ‘canonical’ circadian
receptors or genes’ can entrain to daily environmental cycles.

14.1.6 Ultradian (Circahoralian) Clocks

Clocks or timekeepers that cycle many times in a day are called ultradian (a general
term), or more specifically circahoralian (~hourly ones) [11]. In baker’s or brewer’s
yeasts e.g., some defined strains of Saccharomyces cerevisiae, a 40 min rhythm is a
basic timer mechanism, closely linked to cycles of mitochondrial energization [15,
101, 102]. In another yeast (with a faster growth rate), this timekeeper is of shorter
duration e.g., in Candida utilis it is 30 min [64], Lloyd et al. [93, 99], whereas in
Schizosaccharomyces pombe longer, at 60 min [90, 135–137]. Longer period oscil-
lations have been repeatedly described in yeasts or bacteria in continuous cultures in
the earlier literature: thesemay stem fromperturbative disturbances.Klevecz [69] has
measured the mammalian quantal increments in cultured cell division times as being
about 4 h. Brodsky [10, 12] has surveys showing circahoralian rhythms measured
by different characteristics in a diverse range of cells, and tissues from animals as
30–80 min. Ultradian rhythms are extensively studied in plants (stem growth, leaf
movements, etc. [103].

14.1.7 The Cell-Division Cycle

The cell-division cycle is not a clock but an emergent biological process hypotheti-
cally composed of multiple oscillators, check- points ‘sizer’ and temporal controls
[48, 75, 85, 91, 94, 95, 97, 104]. It is often regarded as depending on a series
of stepwise progressions, i.e., like a set of dominoes that must fall in a specific
sequence, controlled at specific “checkpoints”. Eukaryotes have evolved prior to the
cyclin/cyclin kinase mechanism, and respiratory oscillations are sufficient to trigger
and progress the cell division cycle [133]. Many other investigators have always
regarded the cell cycle (and it is now evident) to be a complex process dependent on
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an interwoven ensemble of oscillators, rhythms, and timekeepers acting on different
time scales but integrated as a heterarchy and therefore with no dominant central
control.

14.1.8 Oscillations in Glycolysis

The first report of oscillating concentrations of NADH, a cofactor in intact living
organisms was in suspensions of anaerobic yeast cells by Duysens and Amesz [27].
This observation appears not to have been immediately followed up by these inves-
tigators or elsewhere until, following electrical activity in the muscle of the electric
eel, transients in metabolites were analysed [115]. A decade later, [113] interest in a
baker’s yeast as an excellent model system for spectrophotometric and fluorometric
studies was rekindled and analysed in detail were reviewed in an essential text for
anyone studying oscillating biological systems [16], and their computer simulations.
No clear-cut function has been assigned to glycolytic oscillatory dynamics [88]. It
has however provided many insights into control mechanisms, especially in mutant
strains, (e.g., [106, 114]). The recognition of feedback control and allosteric enzyme
regulation has helped to elucidate the molecular mechanisms involved in some of
these cases, the most clearly understood system is still the high-frequency (approx-
imately 2 min−1) glycolytically-associated oscillations in the yeast Saccharomyces
carlsbergensis, (reclassified as a strain of S. cerevisiae).

Thereby yeast glycolytic oscillations are the most defined systems, as are their
interactionswithmitochondria andplasmamembranes [131, 139]. In yeast displaying
glycolytic oscillations, coupling of the dynamics of glycolytic ATP and NADH and
the extent of dipolar relaxation of intracellular water is synchronized via the action
of the cytoskeleton and affects membrane functions [156].

14.1.9 Cellular Respiratory Oscillations

In 1973 Mochan and Pye [121] pointed out that respiratory oscillations in yeast
cultures during growth involve redox changes in mitochondrial cytochrome compo-
nents.

Degn [24] suggested that oscillatory behaviour in general (e.g., not only inNADH,
but also in the fluorometrically detected oxidized form of flavins [25, 26], might
indicate sloppy-control under certain conditions.

In 1980, Bashford et al. [7] obtained fluorometric evidence for redox cycling in
Schizosaccharomyces pombe, and in Acanthamoeba castellanii: in both organisms
each of the coenzymes showed short-periods of 4.5 ± 1.0 min.

Oscillatingmitochondrial membrane potentials in yeast have been observed using
fluorimetry by Andersen et al. [4], and dynamically imaged by Aon et al. [5].
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Rates of O2 consumption during the respiration of the yeast cell division cycle
were shown to be a discontinuous (oscillatory) process proceeding in in selection-
synchronized cultures [135, 136].

Observations of short term rhythms of protein synthesis (period ~1 h) in a variety
ofmammalian tissues and cultured cells as noted over the previous years in the Soviet
journals from 1967 was reviewed in the Western literature [10, 11]. In synchronous
cultures of Schizosaccharomyces pombe, inhibitor sensitivities and activity of mito-
chondrial ATPase oscillated [29]. In Acanthamoeba castellanii, oscillatory respi-
ration was accompanied by synchronized total cellular protein and RNA accumu-
lation [30, 31], and also by accumulation of ATPase activity, enzyme protein and
F1-ATPase inhibitor [32]. Temperature compensation of these respiratory oscilla-
tions was revealed, and hence their probable functions as rhythms with timekeeping
or synchronizing activities [95, 118]. Quantal increments in cell-division cycle times
at decreasing temperatures from 30 to 20 °Cwere noted. Similar quantization of divi-
sion times in cultured mammalian cells had previously been observed and modeled
as a limit cycle oscillator with added noise [69, 88, 149].

14.1.10 Time Structure Discovered in Self-synchronous Yeast
Continuous Cultures

Detailed mapping of the temporally organized structure of a cell and requires either
the production of unperturbed populations of individuals growing and performing
in synchrony [13, 63, 64, 90, 136, 150–152], or measurements made on single cells
[5, 8, 133, 138]. The former method provides large enough sampled populations
for physiological and biochemical assays, whereas possible time averaging from
imperfect, perturbed synchrony, or specific population effects are avoided from the
latter.

A pivotal development was described and implemented by the group of Hiroshi
Kuriyama at Tsukuba. They first devised and perfected the conditions enabling the
growth of laboratory scale self-synchronous continuous culture. These studies have
enabled highly significant advances in the resolution of time structure of yeast, an
invaluable experimental model system, and at present the most fully investigated of
any organism [67, 68, 147]. The temperature compensated period in yeast [128] of
the ~40 min period in yeast strongly suggested a time-keeping function, just as for
the ultradian ~65 min rhythm in Acanthamoeba castellanii [95], and the circadian
(~24 h) expression of bioluminescence inGonyaulax (now Lingulodinium) polyedra,
a dinoflagellate [57]. Glutathione is a central player in the redox cycle that sustains
the respiratory oscillation [127], confirming the ideas of Rapkine [140], and that thiol
cycling is the key to the generation of cellular respiratory rhythms [92].Mitochondrial
respiratory (adenylate) control [15] is also at the very core of the ultradian rhythms,
not only in yeast [97, 101], but also in protists [85, 104].



234 D. Lloyd

Continuousmonitoring of dissolved gases (O2, CO2 andH2S, [96] by a submerged
probe, using membrane inlet mass spectrometry proved revelatory, especially when
employed in conjunction with intracellular redox state readout (NADPH, and flavins,
[17]. Transcriptional analyses using microarrays have revealed a global dynamic
architecture [18, 70, 71, 73], and that with respect to gene expression, the dominant
period is not the cell budding cycle (90–120 min), but more commonly the ~40 min
sub-multiple of that cycle period. Furthermore, wavelet analysis revealed genome-
wide oscillations in expressionmirroring the 40min respiratory oscillations in the self
synchronized continuous culture [72]. Two temporal clusters (4,679 of 5,329) were
maximally expressed in the reductive phase of the ~40-min cycle, and the third cluster
(650) in the respiratory stage [74]. Thusmaximal expression of the gene super-cluster
important in respiration is functionally expressed oppositely in the cycle from those
genes known to be involved in reductive functions. The transcriptional cycle gates
synchronous bursts of DNA replication in a constant fraction of the population at
40 min intervals. It was also suggested [74], that the separation of DNA replication
into the reductive part of the ~40 min cycle represents an evolutionary important
mechanism for the obviation of oxidative damage (e.g. by reactive species derived
from partial reductive reactions of O2.

More than 1600 oscillating metabolites [2, 126, 129, 146] reveal coordination
with metabolic functions, organelle elaboration and function, and the cell division
cycle. Redox control is central in the cellular network and implicit to its rhythmicity
[129], and also to transcriptional processes and chromosome dynamics [2, 111, 112].

The detailed chronology of these coordinated research topics by collaborating
groups has been reviewed [1, 86, 104].

14.1.11 Non-linear Dynamics of the Self-synchronous
Culture: Chaos and Fractals

May [119] has written: ‘First-order difference equations arise in many contexts in
the biological, economic and social sciences. Such equations, even though simple
and deterministic, can exhibit a surprising array of dynamical behaviour, from stable
points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations.
There are consequently many fascinating problems, some concerned with delicate
mathematical aspects of the fine structure of the trajectories, and some concerned
with the practical implications and applications of the bizarre behaviour exhibited
by the simplest of discrete time, nonlinear systems, such as Eq. (14.1).

xt+1 = a xt(1− xt) (14.1)

Yet such nonlinear systems are surely the rule, not the exception, outside the
physical sciences.’
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One application of this Eq. (14.1) is in describing the density of individuals xt, as
a population whose growth constant is a.

Mathematical methods for exposing the complex behaviour of continuous yeast
cultures has been shown to satisfy several of the criteria [46, 59, 83, 84] for
deterministic chaos:

1. Under ‘permittistatical’ control of a continuous yeast culture, using the output
from an AC impedance measuring device to regulate growth rate by the medium
supply rate [23].

2. Stepwise decreased medium pH reveals increased complexities of trajectories
and the uncovering of a strange attractor [124].

3. Addition to cultures of a type-A monoamine oxidase inhibitor, phenelzine, gave
period 2 doubling [82, 145].

4. A long-term (3 months) culture yielding more than 36,000 points at 12 s inter-
vals for each of 4 dissolved gases (O2, CO2, H2S and Ar) using an immersed
membrane inlet mass spectrometer probe indicated a low-dimensional chaotic
attractor [144].

Figure 14.3a, b shows the dissolved oxygen signal versus time. The 13 h collective
mode and bursts in circahoralian oscillatory activity are clearly visible in panel (a).
Panel (b), is an enlargement of the boxed region in panel (a), showing the 4-min
oscillations aswell as the periodic re-emergenceof the circahoralian rhythm.Panel (c)
shows the metabolic attractor seen in an [O2], [H2S] projection, with points coloured
by the (baseline- corrected) CO2 signal. The line (which is actually a plane extending
in the direction of the [CO2] axis) was obtained by a simple linear regression of the
[H2S] versus [O2] data. Panel (d) shows a section through the attractor at the level
of the plane in panel (c), which is used as simple way to de-trend the data and chose
a plane running roughly through the middle of the attractor. These short-period
oscillations were also visible in recordings from the O2 electrode when the culture
exhibited simpler dynamics.

A metabolic attractor (the set of biochemical states visited by the culture after
decay of initial transients) of a time-series obtained for all three dissolved gases
(normalized for variations in Ar as an inert reference gas) at 12-s intervals directly
in the culture exhibited several characteristics indicative of chaotic behavior. The
attractor is shown in Fig. 14.3c, d. The capacity dimension of the attractor [28], one
measure of fractal dimension, was 2.09± 0.07 (95% confidence). A capacity dimen-
sion close to two suggests that this is neither a simple cycle (D = 1.0), nor a system
filling a three-dimensional (3-D) region of phase space. Although the attractor looks
like a mostly solid structure seen from the perspective of Fig. 14.3c, cuts through the
attractor show a complex structure, with regions that are nearly completely filled, and
others containing only a few points, e.g., Fig. 14.3d, which explains the dimension
that is <3. A dimension of two could be compatible with a quasiperiodic attractor.
However, an estimate of the Lyapunov exponent gave a value of 0.752 ± 0.004 h−1.
A positive Lyapunov exponent implies exponential divergence of nearby trajectories,
which is the signature of chaos [59]. The 3–5min signal was also observed associated
with high respiration levels in single cells [5]. Self-similar (fractal) time structure
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Fig. 14.3 Mass spectrometric determination of dissolved O2, CO2 and H2S during complex oscil-
lations in a yeast continuous fermentation experiment. Data are from Roussel and Lloyd [144],
courtesy of Dr. MR. Roussel

across multiple time scales of the multioscillator was determined by well-established
principles [6]. Thus both the dissolved O2 and the CO2 data gave a perfect correlation
between oscillators in the 13 h, 40 min, and 4 min domains. Relative Dispersional
Analysis (RDA) of double log plots gave an inverse power relationship with a fractal
dimension Df = (1.0) implying that RD is constant with scale (i.e., the time series
look statistically-similar on all time scales). Long-term memory from min to hours
is implicit in the oscillatory behaviour, and provides for coherence of the whole
system. Power spectral analysis (PSA) also indicated an inverse power law propor-
tional to 1/fß, with a value of ß = 1.95, close to that of coloured noise, and again as
expected for a system that shows deterministic chaos. The basic principles under-
lying the fractal nature of a chaotic time series has previously been explained [84].
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Advantages proposed for systems displaying chaos include innovation, the preser-
vation of diversity, the prevention of entrainment and the dissipation of disturbance
[84]. Controlled chaos may provide for flexible mechanisms for switching from one
periodic orbit to another [83]. Chaotic dynamics has recently been detected in mito-
chondrial oxidative metabolism under stress when network stability is compromised
at the ‘edge’ between fully functional and pathological behaviour [65, 66].

14.2 General Conclusions

Studies of ultradian oscillatory phenomena as ‘the dynamic signatures of life’ [163],
not only in lower eukaryotes, but also in mammals [98, 132], and of declining capac-
ities during aging [157], are playing a burgeoning part in current research [20, 21,
76, 77], as well as future diagnostic and medical practice [134, 158–161].
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Chapter 15
Glycolytic Oscillations in Cancer Cells

Takashi Amemiya, Kenichi Shibata, Masatoshi Watanabe, Satoshi Nakata,
Kazuyuki Nakamura, and Tomohiko Yamaguchi

Abstract We highlight recently discovered glycolytic oscillations in HeLa cervical
and DU145 prostate cancer cells, and discuss the individual and collective behaviors
basedon amathematicalmodel proposedpreviously.We found strongheterogeneities
in the oscillations, indicating that glycolytic enzymatic activities are very heteroge-
neous in these cells. Further, the degree of synchronisation in their oscillations was
very low, indicating that cell-to-cell interaction is very low during glycolysis in
cancer cells. Biomedical implications obtained from the analyses of the oscillatory
dynamics are also presented; more malignant cancer cells tend to exhibit glycolytic
oscillations with higher frequencies than less malignant cells. Thus, glycolytic oscil-
lations in cancer cells can be a medical indicator to detect the malignancy of cancer
cells.
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15.1 Introduction

Glycolytic oscillations are spatiotemporal oscillations in the concentrations of
metabolic intermediates in cells, and this phenomenon has been the focus of theoret-
ical and experimental studies in rhythmic behaviours at the cellular level [21]. They
have been reported in several cell types such as yeast cells [3, 16, 24, 44, 54, 60],
pancreatic β-cells [7, 8], ventricular myocytes [66], and cancer cells [4, 5, 19, 30].
Themechanism of intracellular glycolytic oscillations and their synchronisation have
been studied intensively using yeast, Saccharomyces cerevisiae, for almost 60 years
[13].

In 1967, glycolytic oscillations in cancer cells were reported for the first time
[30]. Oscillations of metabolic intermediates, such as nicotinamide adenine dinu-
cleotide (NAD+), fructose 1,6-bisphosphate, and adenosine triphosphate (ATP), were
observed in aerobic suspensions of intact Ehrlich ascites tumour cells obtained from
Swiss whitemice. However, so far, no studies have reported an evidence of glycolytic
oscillations in cancer cells in individual cell level, and we have previously reported
the oscillations in HeLa cervical cancer cells [5].

This chapter reviews the first direct observation of glycolytic oscillations in HeLa
cervical and DU145 prostate cancer cells, and presents a mathematical model to
explain the mechanism of their oscillations and reproduce the experimental results.
Biomedical implications obtained from the analyses of the oscillatory dynamics are
also presented: the more the malignancy of cancer cells, the more they tend to exhibit
glycolytic oscillations with higher frequencies.

15.2 Mechanism of Glycolytic Oscillations in Cancer Cells

The mechanism of the glycolytic oscillations in cancer cells can be compared with
glycolytic control reactions in yeast as shown in Fig. 15.1. The core oscillatory
mechanism is the adenosine diphosphate (ADP) dependent activation of glycolytic
products via allosteric enzyme phosphofructokinase (PFK), and its subsequent inhi-
bition by ATP. Although it is now recognized that interactions with mitochondria
are extensive [34] even at low physiological and pathophysiological levels of tissue
and cytosolic oxygen [36]. Our understanding of this basic oscillatory mechanism
will be improved by considering interactions between cytosolic glycolytic pathway
and mitochondrial oxidative phosphorylation such as reduced nicotinamide adenine
dinucleotide (NADH) transport via malate-aspartate shuttle [23, 33].

It is also noted that during the period NADH fluorescence is being measured,
cancer cells are not in a replicative state. The glycolytic dynamics would vary signif-
icantly in cells in replicative and non-replicative states, and so the applicability of the
present studies to the non-replicative state will be limited. Nonetheless, the dynamics
of glycolytic oscillations reflects glycolytic activities in cancer cells, and therefore
can be applied to a biomedical diagnosis of cancer, as discussed later.
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Fig. 15.1 Schematic of glycolytic pathway and mechanism for glycolytic oscillations in yeast
and cancer cells. Aerobic glycolysis is enhanced because of the Crabtree effect in yeast cells
and both the Crabtree and Warburg effects in cancer cells. Thus, pyruvate, the end product of
glycolysis, is not used as a substrate in tricarboxylic acid cycle (TCA), but used during fermentation.
Glycolytic oscillations are due to a nonlinear enzymatic reaction of phosphofructokinase (PFK),
which is promoted by adenosine diphosphate (ADP) and inhibited by adenosine triphosphate (ATP).
The oscillatory behaviour can be observed by auto-fluorescence of reduced nicotinamide adenine
dinucleotide (NADH), the coenzyme in glycolysis

15.3 Crabtree Effect and Warburg Effect

Many yeasts including Saccharomyces cerevisiae are known to enhance their
glycolytic pathway at high glucose concentrations and even under aerobic conditions,
in a phenomenon called the Crabtree effect [15]. This metabolic character might be
one of the reasons why glycolytic oscillations were studied using the budding yeast.
Similarly, many types of cancer cells also exhibit the Crabtree effect, which is a short-
term phenotypic adaptation, and the Warburg effect in which glycolytic ATP gener-
ation predominates over mitochondrial oxidative ATP production [38, 59]. Genetic
mutations also enhance the glycolytic activity and impair oxidative phosphorylation
[17]. Since theWarburg effect is a metabolic hallmark of cancer cells [28], glycolysis
has been the focus of research interest, even from a therapeutic viewpoint [26]. Thus,
studies on glycolysis have been carried out using both cancer and yeast cells [17].

In spite of extensive studies on glycolysis in cancer cells from mid-1900s [12, 37,
63], there have been no reports of glycolytic oscillations in cancer cells since the first
report in the preliminary note [30]. The scarcity of observed glycolytic oscillations
in cancer cells can be attributed to their low degree of synchronisation. To date,
experiments to investigate glycolysis in yeast and cancer cells have been carried
out using glucose-starved suspension cultures under aerobic conditions [16, 30, 42,
63]. In such systems, glycolytic oscillations could be observed at the population
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level. However, only ambiguous oscillations will be observed if the degree of cell
synchronisation is low, which will be discussed below.

15.4 Dynamical Quorum Sensing and Kuramoto
Desynchronization

The cell-density dependent synchronisation behaviour in suspension culture systems
is called dynamical quorum sensing [42]. Quorum sensing is a phenomenon in which
microorganisms can sense a small, freely diffusible, and transient molecule, the
autoinducer, that accumulates to a critical concentration in a cell-density depen-
dent manner in the extracellular environment [27]. In suspension culture, yeast cells
exhibit coherent oscillations at the population level by the exchange of a metabo-
lite, acetaldehyde, pyruvate, H2S, or possibly ethanol [6, 9, 31, 43, 49]; however
these oscillations suddenly cease below the critical cell density, ca. 7 × 108 cells/ml.
Detailed mathematical analysis of the oscillatory behaviour revealed that individual
yeast cells have a coherentmotion and stop oscillating in synchrony below the critical
cell density. This dynamical behaviour is phenomenologically similar to the Hopf
bifurcation in a single oscillator [21].

An intrinsically different type of transition to synchronised oscillatory behaviour
was observed in systems of immobilised yeast cells [60]. In the immobilised systems,
individual cells exhibited oscillations even at very low cell densities, ca. 1 ×
105 cells/ml, however collective oscillatory behaviour did not appear due to weak
coupling between cells at low densities. Whereas the collective coherent oscillations
appeared at high cell densities; thus, this collective oscillatory behaviour at popu-
lation level is cell-density dependent. This type of transition from oscillations to
quiescence at the population level is called Kuramoto desynchronization [55, 57].

15.5 Glycolytic Oscillations in HeLa Cervical Cancer Cells

We have focused on the metabolic characteristics, namely, the Crabtree and/or
Warburg effects in yeast and cancer cells, and thus carried out experiments of
glycolytic oscillations in HeLa cells using systems of immobilised cells [5]. We
could observe their glycolytic oscillations in individual cell level for the first time
(Fig. 15.2).

Four characteristic behaviours in HeLa glycolytic oscillations can be summarised
as follows [5]: (i) starvation of glucose was indispensable for the oscillations, (ii)
starvation of both glucose and serum induced oscillations with longer periods and
larger amplitudes than those with only glucose starvation, (iii) the oscillations were
highly heterogeneous in terms of the number of oscillatory cells, periods of oscil-
lations, and duration of oscillations in large populations of cells (N ≈ 700 − 900),
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Fig. 15.2 Typical time series of experimental results with NADH fluorescence in HeLa cells and
simulation results in an intermediary metabolite Y (e–h). The pre-incubating conditions were (a, e):
(Glc−, FBS+); (b, f): (Glc− , FBS−); (c, g): (Glc+, FBS+); and (d, h): (Glc+, FBS−). HeLa cells
were cultured and starved at 37 °C, and fixed to the stage of an inverted fluorescence microscope
at 25 °C. The mathematical model is shown in Fig. 15.4, and parameter values for the simulation
can be found in literature [4] [Reproduced from Amemiya et al., Chaos 29, 033132 (2019), with
the permission of AIP Publishing]

and (iv) quantitative analysis using Kuramoto order parameter K(t) [55] with values
lying between 0 (all cells out of phase) and 1 (perfect synchrony) confirmed a very
low degree of the intercellular synchronisation of oscillations.

As for the oscillations in individual cells, period distributions can be considered
to originate from the difference in the enzymatic activity in the glycolytic pathway
[4]. Contrarily, not much is known about possible synchronisation mechanisms in
glycolytic oscillations in cancer cells, unlike yeast cells [13, 42, 44, 49]. Thus far,
intercellular calcium waves have been found to propagate over a monolayer of HeLa
cells via an extracellular signalling molecule such as ATP or through gap junctions
[35, 45]. However, no studies have reported cell-to-cell communication for glycolysis
in cancer cells.
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15.6 Glycolytic Oscillations in Prostate Cancer Cells
(DU145)

Prostate cancer, DU145 cells were also found to exhibit glycolytic oscillations for
the first time as shown in Fig. 15.3. Experimental methods for the oscillations in
DU145 cells were similar to those for HeLa cells [5]. We found that the periods of
oscillations (46.2± 14.6 s) were longer and themaximum of oscillatory ratio (0.249)
was smaller in DU145 cells than the periods (19.3 ± 6.30 s) and the oscillatory ratio
(0.355) in HeLa cells. DU145 cells also exhibited heterogeneities in the oscillations
in terms of the number of oscillatory cells, periods of oscillations, and duration of
oscillations, similar to HeLa cells [4, 5].

Interestingly, theWarburg effect, a common feature of cancer cells, is not observed
in prostate cancer cells [18]. In particular, early prostate cancers rely on lipids
and other energetic molecules, and not on aerobic respiration, for ATP production.

Fig. 15.3 Typical time series of experimental results of glycolytic oscillations with NADH fluores-
cence in DU145 prostate cancer cells (a), their frequency distribution (b), and the ratio of oscillatory
cells to total cells of N = 650 as function of time (c). The mean period was 46.2 ± 14.6 s, and
the maximum oscillatory ratio was 0.249. The cells were cultured at 37 °C, pre-incubated for 24 h
without glucose and with serum conditions (Glc−, FBS+) at 37 °C, and 20 mM glucose was added
for the experiment of glycolytic oscillations at 25 °C
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Furthermore, prostate cancer cells are reported to show “reverse Warburg effect” in
which cancer-associated fibroblasts (CAFs) undergo aerobic glycolysis to produce
lactate, which is subsequently used as a metabolic substrate by adjacent cancer cells
in tumour tissues [48].

The above metabolic characteristics in prostate cancer, namely, low glycolytic
activities, were probably represented in the glycolytic oscillations in DU145 cells;
the periods of oscillationswere longer and the oscillatory ratiowas smaller than those
in HeLa cells, which exhibit theWarburg effect. In addition, prostate cancer has been
reported to have high five-year survival rates, for instance, close to 99% in 2013 in
the US [50]. On the other hand, cervical cancer, whose cell line (HeLa) exhibited
higher glycolytic activities than DU145 cells in the oscillations, was reported to have
five-year survival rates of 67% in 2009 in the US [50]. Thus, we might predict the
malignancy that is directly proportional to glycolytic activities in cancer cells by
using their oscillatory behaviours as a readout.

15.7 Mathematical Model for Glycolytic Oscillations
in Cancer Cells

Manymathematical models have been developed to reproduce glycolytic oscillations
in yeast cells based on the enzymatic reactions in cells. They includeminimal models
with two variables [14, 22, 51, 52], those with five to nine variables [58, 61, 62], and
those with extensive mechanistic details [25, 47].

On the other hand, very detailed models for cancer glycolysis were developed
to study the basic cellular physiology such as enzymatic and transport properties
[32, 40, 41]; however, no glycolytic oscillations have been investigated in these
models. A kinetic model was proposed recently to reproduce glycolytic oscillations
of HeLa cells qualitatively [39]. The importance of interaction between glycolysis
and mitochondria was also pointed out [34].

We developed a simplemathematical model, as shown in Fig. 15.4, to describe the
heterogeneities in glycolytic oscillations in HeLa cells [4]. It is a six-variable model,
simple enough to be applied for a mathematical analysis and capture the core of
the glycolytic pathway and the activity of the glucose transporter (GLUT). We have
succeeded in quantitatively simulating the heterogeneous oscillatory behaviours by
considering the variations in the rate constants for the enzymatic reactions and the
flux of glucose uptake through GLUT.

Briefly, it considers the upstream (ATP-consuming) reactions of hexose and the
downstream (ATP-producing) reactions of triose. Allosteric reactions of PFK and
pyruvate kinase (PK) represent the upstream and downstream reactions, respectively.
This model describes Michaelis–Menten type mechanisms for the PFK and PK reac-
tions, and a first-order reaction for the consumption of ATP and the final product [4].
It also considers the uptake of glucose into the cells through GLUT. Glucose uptake
is reported to enhance glycolysis more than 20-fold in HeLa cells under glucose
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Fig. 15.4 Schematic representation of the model. Variables are Gex (extracellular glucose), G
(glucose),X (pools of intermediates after PFK reaction),Y (pools of intermediates after PK reaction),
Y ex (extracellular Y ), and A3 (ATP). Total concentration of A2 (ADP) and A3 is assumed to be
constant: A2 + A3 = A0. Transport processes are J in (glucose supply), JGLUT (glucose transporter),
and JP,Y (exchangeofY across plasmamembrane).Reaction rates of enzymatic reactions are v1 (PFK
reaction), v2 (PK reaction), v3 (consumption of Y ), and v4 (ATP consumption). The PKF reaction
(v1) is activated by A2, and inhibited by A3. The PK reaction (v2) is inhibited by A3 [Reproduced
from Amemiya et al., Chaos 29, 033132 (2019), with the permission of AIP Publishing]

starvation [53], and its rate was found to affect the occurrence of the oscillations in
the model as well.

The model reproduced the experimental results of glycolytic oscillations in HeLa
cells quantitatively. First, the effect of serum-starvation (Glc−, FBS−) was repro-
duced by using smaller values of the rate constants of enzymatic reactions than
those under only glucose starvation (Glc−, FBS+), yielding oscillations with longer
periods in glucose and serum starved (Glc−, FBS−) condition (Fig. 15.2 panel b,
f) than those in the glucose starved (Glc−, FBS+) condition (Fig. 15.2 panel a, e).
Second, the effect of no-starvation of glucose, (Glc+, FBS+) and serum starvation
(Glc+, FBS−), resulted in no oscillations; this behaviour was reproduced using a
small value of Vmax, indicating decrease in the activity of GLUT (Fig. 15.2 panel c,
d, g, h). Third, different values of the rate constants yielded oscillations with different
periods, and both rate constants values and initial conditions of the metabolites in the
cells, yielded different starting time and duration of the oscillations. Fourth, the ratio
of oscillatory cells to those of both non-oscillatory and oscillatory cells, as function
of time was also reproduced well [4].

It is noted that since the Warburg effect applies in cancer cells generally, the
exclusion of oxidative phosphorylation in modelling NADH dynamics is justifi-
able approximation here. However, oxidative phosphorylation still takes place in
cancer cells [33], thus the present NADH dynamics should be remarked to be still
an approximation, and to be improved in that way.
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15.8 Conditions for Glycolytic Oscillations in Cancer Cells

Experiments indicated that the ratio of oscillatory cellswas higher under both glucose
and serumstarved condition (Glc−, FBS−) thanunder only glucose starved condition
(Glc−, FBS+) [5]. This was also reproduced by our mathematical model, which
assumed that the values of rate constants of glycolytic enzymes were lower under
the former condition (Glc−, FBS−) than under the latter (Glc−, FBS+). The above
consideration is reasonable because both glucose and serum starvation are reported
to decrease the glycolytic enzymatic activities in cancer cells [10, 29, 64, 67]. In
contrast, glucose starvation induces increase in the glucose uptake rate in HeLa cells
[53]. Thus, it can be said that cancer cells tend to exhibit more glycolytic oscillations
with lower activities of glycolytic enzymes and higher velocities of glucose uptake.
This was represented by our mathematical model under conditions of glucose and
serum starvation (Glc−, FBS−) and glucose starvation (Glc−, FBS+) in our previous
study [4].

Thus, we numerically examined the oscillatory conditions as functions of the
activities of glycolytic enzymes (α), and the maximum velocity of glucose uptake
(Vmax); Based on these results we proposed a schematic model in Fig. 15.5. Here, a
parameter α was introduced in our model [4], and has linear relationships with the

Fig. 15.5 Schematic of steady-state (SS) and oscillatory (OSC) regions spanned by enzymatic
activity, α, and maximum rate of glucose uptake, Vmax, through glucose transporter as shown in
Fig. 15.4. This graph is drawn on the basis of numerical calculations of SS and OSC behaviours
using the mathematical model (Fig. 15.4). We can see that cancer cells tend to oscillate more
with lower enzymatic activity and higher glucose-uptake rate. Populations of three types of cancer
cells, prostate, cervical, and pancreatic cancers, are indicated in the diagram by circles. These cells
may exhibit glycolytic oscillations under pre-incubation without glucose (glucose-starvation); the
oscillatory cells are indicated by the coloured region. On the basis of our studies of glycolytic
oscillations in HeLa cervical and DU145 prostate cancer cells, and literature survey, we postulated
that more malignant cancer has higher glycolytic enzymatic activity and glucose-uptake rate



254 T. Amemiya et al.

values of four rate constants (k1–k4) of glycolytic enzymes in the model. We can see
that more glycolytic oscillations tend to occur with lower enzymatic activities and
the higher velocity of glucose uptake as mentioned above.

Effects of starvation of glucose, or both glucose and serum on the oscillations are
represented in the diagram (Fig. 15.5). Cancer cells with no-starvation of glucose,
(Glc+, FBS+) and serum starved cells (Glc+, FBS−), exhibited no glycolytic oscilla-
tions upon addition of glucose, thus the population of cells is schematically indicated
by a white-outlined circle in a steady-state region (SS) in the diagram. Glucose-
starvation is reported to decrease the activities of glycolytic enzymes [64, 67] and
also to increase the velocity of glucose uptake [53]. On the other hand, serum-
starvation is reported to decrease enzymatic activities [10, 29]. Thus, starvation of
both glucose and serum totally moves the population of cells to a region indicated
by a partly coloured circle where some of the cells are in an oscillatory state (OSC).
The oscillatory ratio can change depending on starvation conditions and on the type
of cells.

15.9 Malignancy of Cancer Cells and Glycolytic
Oscillations

Based on previous studies of glycolytic oscillations in HeLa cells [4, 5], and DU145
cells presented here, and the characteristics of glycolytic activities in cancer cells as
will be mentioned below, we assume that the greater the malignancy of cancer cells,
the more they tend to exhibit glycolytic oscillations. Thus our operating definition of
malignancy of cancer cellswith relation to cellularmetabolism is thatmoremalignant
cancer cells may enhance more glycolytic activities.

Multiple glycolytic enzymes are highly expressed in various types of cancers,
including pancreatic cancer [65], one of the most malignant cancers, and promote
metastasis [2]. By comparing two breast cancer cell lines MCF7 and MDA-MB231,
highly invasive MDA-MB231 cells were reported to be more glycolytic than non-
invasive MCF7 cells [20, 46]. With regard to adoptive T cell therapy, increased
tumour glycolytic activity is shown to be associated with lower therapeutic response,
and glycolysis-related genes are reported to be upregulated in melanoma and lung
cancer patient samples that are poorly infiltrated by T cells [11]. Further, glucose-
transporter 1 (GLUT1) is also reported to be highly expressed in tumour cell lines
of different organs such as renal cell carcinoma, melanoma, and hepatocellular
carcinoma compared to their non-malignant counterparts [56].

However, according to worldwide epidemiological survey [50], prostate cancer,
whose cell line (DU145) exhibited little glycolytic oscillations in our study
(Fig. 15.3), was reported to have close to 99% five-year survival rates in 2013,
in the US; in contrast, pancreatic cancer showed very low five-year survival rates of
8.2%. Cervical cancer, whose cell line (HeLa) exhibited glycolytic oscillations [5],
was reported to have five-year survival rates of 67% in 2009 in the US. In general,
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prostate cancer has very high five-year survival rates, cervical cancer has moderate
survival rates, and pancreatic, liver, and lung cancers have very low survival rates
in other countries [1, 50]. Naturally, five-year cancer survival rates are affected by
earlier detection and/or improved treatment, nonetheless it can be considered to be
a good indicator representing malignancy of cancer.

Based on the above considerations, three types of cancer, i.e., pancreatic, cervical,
and prostate cancers, are schematically plotted in the diagram (Fig. 15.5). In the
diagram, populations of more malignant cancer are located in more upper right
region. Upon addition of glucose after glucose starvation, or glucose and serum
starvation, a certain number of these cancers may exhibit glycolytic oscillations. We
hypothesise from the studies of HeLa and DU145 cells that more malignant cancer
may exhibit higher oscillatory ratio. More studies using various types of cancer cells
are necessary in order to verify this hypothesis regarding the relationship between
malignancy and characteristics in glycolytic oscillations in cancer cells, which will
be applied for diagnosis of cancer.

15.10 Summary

Fifty years after the discovery of glycolytic oscillations inEhrlich ascites tumour cells
grown in suspension, the individual and collective behaviours have been unravelled
in HeLa cells due to the advancements in experimental and analytical techniques.
Strong heterogeneities were found in their glycolytic oscillations, indicating that
glycolytic enzymatic activities are very heterogeneous in HeLa cells. Furthermore,
the degree of synchronisation in the oscillations was very low, indicating very little
cell-to-cell interaction during glycolysis in HeLa cells. Nearly the same qualitative
behaviours were also observed in DU145 cells.

Based on the experiments of glycolytic oscillations in HeLa and DU145 cells, and
the literature available onglycolytic activities andmalignancy in cancer cells,wehave
proposed amodel indicating the relationship betweenmalignancy of cancer cells and
their glycolytic oscillation characteristics. We propose that more malignant cancer
cells tend to exhibit glycolytic oscillations with shorter periods than less malignant
cells. Thus, glycolytic oscillations in cancer cellsmay be amedical indicator to detect
the malignancy of cancer cells.
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Chapter 16
Mechanism and Consequence
of Vasomotion

Jens Christian Brings Jacobsen and Christian Aalkjær

Abstract Oscillations in the tone or diameter of arteries is called vasomotion and
leads to the phenomenon of flowmotion, where the flow of blood into a tissue is
oscillating. Vasomotion occurs consequent to oscillations of the contractile state of
the smooth muscle cells in the vascular wall and is present in most small arteries in
the body. Vasomotion can occur via mechanisms intrinsic to the vascular wall and
can consequently be studied in arteries isolated from the body and mounted in an
organ chamber. The prevalence of vasomotion is highest in situations where the flow
to an organ is compromised. It seems likely that vasomotion is beneficial and ensures
an improved dialysis of the tissue, i.e. more efficient delivery of oxygen and removal
of waste product, although there is still a need for more experimental evidence to
confirm this.

This small review will discuss the oscillation in the tone of small arteries, i.e. vaso-
motion, and the consequent oscillation of blood flow, which is called flowmotion.
However, before we get into a discussion of these oscillations we will briefly outline
the main concepts of arterial structure and function.

16.1 Background Information on Small Arteries and Their
Function

Arteries are the blood vessels, which lead from the heart to the organs and tissues
and where the oxygenated blood is transported. These vessels deliver the oxygen and
nutrients needed to sustain a normal metabolism and hence function of the organs.
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The arterial wall has three layers. An inner layer, which mainly consist of a single
cell layer—the endothelial cells. The endothelial cells separates the other layers of
the arterial wall from the blood, and produce a large number of molecules, which
are important for the fluidity of the blood and for the tone of the vascular smooth
muscle cells. The latter are present in the next layer of the arterial wall, the medial
layer. The smooth muscle cells of the medial layer are circumferentially oriented
and controls the lumen diameter and the compliance of the arterial wall through
contraction and relaxation. The third layer is the adventitia, which is a connective
tissue layer containing only few cells of importance for maintenance of the collagen
and elastic fibers and for some immune functions of the arterial wall. The inner part of
the adventitia (next to the smooth muscle cells of the media) harbors different types
of nerve fibers. The activity in the nerve fibers controls the tone of the smooth muscle
cells, i.e. some nerve fibers release substances, which causes contraction, while other
fibers release substances that relax the smooth muscle cells. Vasoactive substances
both from the endothelium and from the nerves thus affect the tone of the smooth
muscle cells. In addition, molecules produced in the various organs of the body
influence tone; a prominent example of this is the relaxant and hence vasodilatory
effect of metabolic end-products such as e.g. CO2.

The tone of the smooth muscle cells and hence the diameter of the arteries has
a number of hemodynamical consequences. By constriction and thus reduction of
vessel diameter the resistance to flow increases. By constricting some arteries and
dilating others, the blood can be shunted away from one organ or region and towards
another. Simultaneous constriction of a large number of arteries will also increase
the total hydraulic resistance, which means that the blood pressure, i.e. the pressure
in the large arteries at the level of the heart, increases. Finally, constriction of an
artery will reduce the intravascular pressure in the arteries, arterioles and capillaries
downstream for the constricted artery.

Arteries are conveniently divided into large and small arteries. The main function
of the large arteries is to dampen the oscillations in pressure and flow, which is
consequent to the pulsative action of the heart. The systole is the constriction phase
of the heart muscle when blood is expelled and pressure in the arterial system rises,
and the diastole is the filling phase, where the heart muscle is relaxed and arterial
pressure is lower.

The small arteries (and the even smaller arterioles) is where the main hydraulic
resistance resides and it is the regulation of the tone of the smooth muscle cells in
the small arteries that is important for the distribution of blood and for control of
blood pressure and capillary pressure. It is the small arteries, which are in focus in
this review.

The tone of the vascular smooth muscle cells is controlled by (1) the electrical
potential across themembrane (themembrane potential), (2) the release of Ca2+ from
Ca2+-stores in the cells, and (3) the sensitivity of the contractile proteins to Ca2+.
The membrane potential is generated by a combination of active transport (transport
against an electrochemical gradient) of ions and passive transport of ions. The most
relevant ions are Na+, K+, and Cl−. In a relaxed smooth muscle the membrane poten-
tial is about −60 to −80 mV, with the inside being negative. When the membrane
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depolarizes towards 0 mV Ca2+ selective channels open and Ca2+ runs into the cell
down its electrochemical gradient. The resulting intracellular increase Ca2+ concen-
tration activates contractile proteins and the smooth muscle cell contract. When the
cell membrane repolarizes the Ca2+ channels closes and Ca2+ is pumped out of the
cell. Importantly the smooth muscle cells (and also the endothelial cells) constitute
an electrical syncytium because they are connected by low resistance channels (gap
junctions), allowing current to flow from one cell to the next. When the cells are
activated by vasoconstrictors e.g. noradrenaline from nerves in the vessel wall, Ca2+

is also released from stores inside the cells, which adds to the Ca2+ increase induced
by depolarization of the membrane. The sensitivity of the contractile proteins to Ca2+

can be modified through a number of relatively complex biochemical pathways.

16.2 The Concept of Vasomotion

The tone of the vascular smooth muscle cells often oscillate. This leads to the
phenomenon of vasomotion which is a cyclic variation in vessel diameter. Vaso-
motion is present in most, if not all, small arteries in both animals and humans. The
first description of vasomotion was in bat wing veins [31], i.e. the blood vessels
which leads from the tissues to the heart. Vasomotion of veins is a well studied
phenomenon [59]. Vasomotion leads to flowmotion, where the flow into a tissue or a
whole organ oscillates. Flowmotion can be seen in the intact animal or human where
it can be divided and characterized within five or six different frequency bands [33,
34, 54]—from 0.008 Hz to 1–2 Hz—associated with different aspects of the vascular
function (e.g. endothelium dependent, nerve dependent, smooth muscle dependent
etc.).Vasomotion also occurswhen an artery is removed from the body and suspended
in an organ bath [16, 43], demonstrating that vasomotion is an inherent property of
the vascular wall. The prevalence of vasomotion varies between different vascular
beds, between blood vessel branching orders, and between arteries and veins and
is changed in many pathological conditions e.g. hypertension [42, 47], diabetes [4],
ischemia [49] and Alzheimer’s disease [10]. Vasomotion appears to disappear in
elderly people and yet, as it will be seen, we still do not fully understand what the
consequences of vasomotion are.

16.3 How Does Vasomotion Develop?

For vasomotion to occur there is a requirement for an oscillator and for a mean
of synchronizing the oscillations in the many smooth muscle cells in the arterial
wall. There is undoubtedly a number of ways in which this can be achieved. There
is, however also some mechanisms which very likely are important for most types
of vasomotion. It seems likely that there is no single pacemaker cell or group of
pacemaker cells which sets up the oscillation. Rather, there is evidence that at least
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the Ca2+ concentration of all the smooth muscle cells in the wall can oscillate and
it is the entrainment of these oscillations which sets up vasomotion. It is also likely
that it is electrical current running between the cells via gap-junctions which is key
to understanding the entrainment. This is supported by the finding that in all cases,
where the membrane potential of the smooth muscle has been measured during
vasomotion, the membrane potential is oscillating [9, 13, 19, 21–23, 39, 41, 53].
These oscillations occur with the same frequency as the contractions (between 2 and
20 Hz) and only slightly phase shifted relative to the latter, so the depolarizing phase
of the oscillation precedes the contractile phase of the vasomotion with 1–2 s [1].
Also Ca2+ is oscillating synchronized in all cells when vasomotion occurs and is
phase shifted less than 1 s relatively to the contraction [1]. There is thus little doubt
that vasomotion in all instances is caused by oscillation of the membrane potential
which sets up the oscillation of Ca2+ in the smooth muscle cells in turn leading to
vasomotion.

There is evidence for the existence of two types of oscillators in smooth muscle
cells. One where interactions between potential sensitive and/or Ca2+ sensitive ion
channels in the membrane leads to oscillations of the membrane potential—the
membrane oscillator, and one where release of Ca2+ from intracellular stores and
slow reuptake of Ca2+ into these stores, sets up and oscillation of Ca2+—a cytosolic
oscillator. A combination of the two is also a possibility and in the following, we will
provide an example of a model for vasomotion in small arteries from the rat intestine
where the oscillator is based on an interaction between an intracellular oscillator
and a cytosolic oscillator. This mechanism for initiation of vasomotion has been
modelled in silico [29, 30].

In the smooth muscle cells of small muscular arteries, when exposed to a low
concentration of noradrenaline, Ca2+ waves run along the cell length axis in an unco-
ordinated fashion [43]. After a few minutes these Ca2+ oscillations synchronize and
becomeglobal oscillations (i.e. notwaves) in cellCa2+; at this point vasomotion starts.
The initial Ca2+ waves are caused by release of Ca2+ from the intracellular Ca2+ store,
while the synchronized oscillations of global Ca2+ are dependent on Ca2+ influx from
the extracellular space consequent to oscillations of themembrane potential [43]. The
synchronizing step is prevented by removing the endothelial cells from the arteries
[43] and it was shown that adding a constant concentration of the amembrane perme-
able variant of the messenger molecule cGMP to an artery where the endothelium is
removed induces vasomotion [18] and synchronization of the Ca2+ transients [43].
Since membrane potential oscillations are critical for vasomotion, it is of interest
to understand how the oscillatory Ca2+ transients in a cGMP dependent manner
lead to oscillations of the membrane potential. Pharmacologically induced release
of Ca2+ from the intracellular stores could induce depolarization of the membrane
potential in an endothelium- and cGMP dependent manner. This would mean that a
Ca2+-activated and cGMP-dependent ion conductance,whichprovides a depolarizing
current is most likely of importance. We showed that a Cl− conductance with these
characteristics is present in rat small arteries [38] and suggested that this Cl− conduc-
tance would be important for vasomotion in these arteries [43]. This is consistent
with the idea that a Cl− conductance is also important for the rhythmic contraction
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of lymph-vessels [58]. This hypothesis could be tested when the membrane proteins
responsible for the Cl− conductance were known. It turned out that two proteins
were necessary for the Ca2+-activated, cGMP-dependent Cl− conductance. One is a
protein called TMEM16A [7] and the other protein is called bestrophin [40]. If the
Ca2+-activated and cGMP-dependent Cl− conductance is important for vasomotion,
the latter should be disturbed if TMEM16A or bestrophin is knocked out. Using gene
targeting approaches we performed knock-down of these two gene products in the
smooth muscle cells and showed that this is associated with gross disturbance of
vasomotion [5, 7]. This confirmed a model for vasomotion where a mixed cytosolic
and membrane oscillator result in entrainment of oscillating smooth muscle cells to
produce vasomotion. The basis for this model is a loop where Ca2+ released from
the sarcoplasmic reticulum activates a Cl− conductance in the cell membrane. This
leads to membrane depolarization, consequent influx of Ca2+, and refilling of the
sarcoplasmic reticulum. A delay in this loop sets up the oscillation and the loop
involves a reciprocal interaction between release of Ca2+ from the sarcoplasmic
reticulum and the membrane potential.

It is important to emphasize that there is experimental evidence for other mech-
anisms leading to vasomotion as well. Some of these are not dependent on release
of Ca2+ from the intracellular Ca2+ stores and solely depend on a membrane oscil-
lator. In other situations, the endothelial cells seem to prevent vasomotion rather than
promote it, as it was the case in the example discussed above.

16.4 Microvascular Networks

The small arteries connect to form networks. These are highly branched, space
filling structures, permeating the tissue. Successive branching ultimately places the
primary exchange vessels, the capillaries, within close proximity of any tissue cell.
As described mathematically already long ago by Krogh [32] the remaining distance
for nutrients and waste products can thereby be efficiently bridged by diffusion.

Microvascular networks are constantly adapting to long-term changes in structure
and demand of the surrounding tissue. As e.g. skeletal muscle tissue increases in size
under physical training, the microvascular supply network must change accordingly.
This process, characterized by sprouting of numerous new vessels from existing ones
and subsequent pruning and remodeling to form a mature network [44], (reviewed
in [35]), encompasses substantial variation which is reflected in the final network
structure. Hence, microvascular networks are inherently heterogeneous structures
[12]. Different flow routes through the network therefore tend to have different
hydraulic resistances. At normal perfusion levels, this heterogeneitywill not compro-
mise delivery of oxygen and nutrients to any tissue region, since resistance vessels
upstream of the capillary bed can actively change diameter to compensate for inad-
equate perfusion of a given area. If e.g., perfusion pressure drops or local tissue
metabolism increases, resistance vessels dilate to ensure adequate perfusion of their
local region. In particular, the dependence of artery diameter on transmural pressure,
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i.e. the myogenic mechanism, is important in many tissues to ensure a uniform flow
(flow autoregulation) over a broad range of perfusion pressures. In addition, under
low-pressure conditions accumulation of a diversity of factors in the tissue caused
by inadequate oxygenation and inadequate removal of waste products will enhance
vasodilatation. The latter situation however, unveils the underlying differences in
hydraulic resistance of different flow routes through the network. Consequently, as
pressure is reduced, regions with high resistance may increasingly lose blood-flow
to regions with low resistance.

16.5 Vasomotion Depends on the Hemodynamic Status
and May Have Consequences for Tissue Oxygenation

An interesting observation concerns the relation between perfusion pressure and
the prevalence of flowmotion (cyclic change in blood perfusion, which is a conse-
quence of upstream vasomotion). Smith et al. [50, 51] characterized flowmotion
initiated by pressure reduction in the rabbit gastrocnemius and tenuissimus muscles.
Skeletal muscle tissue displays a well-developed autoregulatory response. Below a
certain pressure limit however, tissue perfusion declines almost linearly with pres-
sure, indicating that perfusion can no longer be sustained by further reduction in
myogenic tone. This lower limit coincides with onset of flowmotion. Reducing the
pressure further enhances flowmotion. However, increased occurrence of flowmotion
is predominantly seen within a certain range of pressures around the lower end of the
autoregulatory curve. Below this range, flowmotion declines and eventually vanishes.
Likely, flowmotion that originate locally in the vascular bed represents oscillations
in vascular tone superimposed on the basal tone ubiquitously present under resting
conditions. Complete loss of basal tone due to very low pressure therefore abolishes
vasomotion altogether. In fact, one would expect flowmotion being absent no matter
the cause of complete vasodilation in a tissue, be it excessively low perfusion pres-
sure, accumulation of metabolites and/or hypoxia. Observations very similar to those
of Smith et al. was made in the rat diaphragm microcirculation, in which vasomo-
tion first become more prevalent during progressive hemorrhagic hypotension, then
decline in prevalence as pressure falls below 60% of normal pressure [6].

Along the same line, a lower perfusion pressure in patients with occlusive periph-
eral arterial disease (PAD) appears to coincide with a higher prevalence of flowmo-
tion as measured with laser Doppler-flowmetry [24, 46, 52]. Schmidt et al. [52] made
observations in 50 healthy controls and in a total of 75 patients with PAD ranging
in severity from Fontaine class I to class IV (with class IV being the most severe).
Skin flowmotion was relatively rare in healthy subjects (around 10%, mean arterial
pressure in the foot 132 mmHg). Its incidence (plantar side of first toe) increased to
around 50% in class I and II PAD (mean arterial pressure in the foot 100 mmHg)
and on to around 80% in class III and IV PAD (mean arterial pressure in the foot
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75 mmHg). Furthermore, with other factors matched, skin oxygenation appeared to
be better in the presences of flowmotion as compared to a situation without [49].

Similar observations weremade byHudetz et al. [25] in the rat cerebral circulation
which also has a pronounced autoregulatory response. Reduction in mean arterial
pressure by variousmethods below 90mmHg all resulted in appearance of flow oscil-
lations at 4–11 cpm, the amplitude of which grew with further pressure reduction.
Time-averaged flow was preserved though, corresponding in this case to an intact
autoregulation. Oscillations were completely abolished during cerebral vasodilata-
tion by 5% carbon dioxide in the inspired air. Abolition of all tone by lowering
pressure to very low levels was not investigated in that study, however Fujii et al.
[11] found that pronounced hypotension abolishes vasomotion in another cerebral
vessel, the basilar artery (for a review see [26]).

The abovementioned studies identified an association between pressure reduction
and the prevalence of flowmotion, but this does not guarantee a direct causal relation
between the two. Rather, some evidence point to the state within the tissue itself
as a main determinant of the prevalence and characteristics of flowmotion. In the
observations above from both rabbit and man, flowmotion became more prevalent
as perfusion pressure was reduced. While this could be a consequence of the pres-
sure reduction itself and its effect on the arterial wall it could also be a consequence
of reduced perfusion, in turn changing the state of the tissue. That factors such as
reduction in oxygen transport to the tissue may be as important a stimulus as the
pressure reduction itself, was shown by Lee et al. [36]. They observed that the preva-
lence of flowmotion (around 3 cpm) increased from 65% under baseline conditions
to 100% during hemodilution to 43% of normal hematocrit, which is equivalent to a
large reduction in the oxygen transport capacity of the blood. Thorn et al. [56] noted
when simultaneously recoding flow and oxygenation in the skin microcirculation
of healthy individuals, that there appears to be distinct modes of flowmotion. One
of these oscillations involves a fall in oxygenated hemoglobin and a simultaneous
rise in deoxygenated hemoglobin. Further investigation [55], revealed what could
potentially be a causal relation inducing flowmotion. A slow decline in blood mean
oxygen saturation (reflected in a simultaneous rise in deoxygenated hemoglobin and
fall in oxygenated hemoglobin) to a threshold value induced a consistent and rapid
rise in flow, which was again followed by a slow decline. A possible interpretation
of this pattern is that the tissue under resting conditions cyclically upregulates its
own flow when a certain critical lower limit is approached. This must somehow
involve upstream signaling, likely in the form of an electrical vascular conducted
response running in the endothelium, from the capillary bed to the upstream resis-
tance network in order to allow for a rapid and consistent increase in flow. To that end,
laser-Doppler-flowmetry of flowmotion in the rabbit tenuissimus muscle has indeed
been found to correlate tightly with vasomotion in upstream transverse arterioles
[50].

In a different tissue, the rat testis, Lysiak et al. [37] measured flow and oxygen
tension (with laser Doppler-flowmetry and an oxygen electrode) simultaneously in
the interstitium and found the two signals to be completely phase-locked at 12 cpm
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(although with different amplitude relative to baseline). Others have identified oscil-
lations in the rat testis with similar characteristics, and, notably, such oscillations are
local and vary in characteristics across the tissue [8]. As pointed out by Lysiak et al.
[37], the normal interstitial oxygen pressure of the testis is very low (in the range of
half of that found in other tissues); probably the testis interstitium is a protected envi-
ronment, also when it comes to avoiding high oxygen levels which might increase
production of reactive oxygen species.

These observations raises the question if, on a theoretical basis, the presence
of flowmotion per se is beneficial to the tissue. Goldman and Popel [15] simu-
lated the effect on tissue oxygenation of oscillations in blood flow velocity, in a
network of skeletal muscle capillaries. Under “resting” conditions when the amount
of inflowing oxygen is plenty relative to oxygen consumption rate, there is no effect
of oscillations in flow velocity (in any combination of amplitude and frequency) and
throughout the tissue oxygen tension remains sufficient. Increasing tissue metabolic
rate while preserving the same flow increases heterogeneity in tissue oxygenation
since the delivery of oxygen is not uniformly efficient in a network with a naturally
heterogeneous structure. In this situation, flowmotion appear to alleviate the hypoxia
of undersupplied regions. The most efficient frequency in this system was in the
range 1.5–3 cpm in agreement with the abovementioned observations from skeletal
muscle [50] and skin [52]. Introducing an oxygen buffer into the model in the form
of myoglobin removes the beneficial effect of vasomotion, however as pointed out
by the authors, many tissues have little or no myoglobin.

There are indications that vasomotion may also promote drainage of the intersti-
tium. Sakurai and Terui [48] induced vasomotion in the rabbit ear microcirculation
by electrical stimulation of the cervical sympathetic nerve and studied the clearance
of radioactive Cr-EDTA injected into the interstitium. Stimulating the nerve while
keeping the ambient temperature in the interval 25–35 °C consistently induced vaso-
motion (around 3 cpm) and a reduction in total flow. Below or above this temperature
interval, stimulation caused the same reduction in total flow but without vasomotion.
The radioactive isotope was however, cleared from the tissue at a double rate in
the presence of vasomotion. Also based on calculations of transcapillary fluxes it
has been suggested that during pressure fluctuations caused by vasomotion there
will be an increased drainage of the interstitium [27]. As pointed out by Intagli-
etta [28] an increased drainage is required to increase intravascular volume during
systemic hypotension which, as outlined above, is a state associated with increased
prevalence of vasomotion. Likely, vasomotion is further stimulated in this situation
due to release of the vasoactive substance vasopressin [14]. There is, however, a
general need for experiments, which can critically test the hypothesis that vaso-
motion acts to preserve tissue homeostasis and functionality by enhancing uniform
oxygen delivery and removal of waste products. Ideally, this would be experiments
that could report tissue parameters that reflects deviation from normal tissue home-
ostasis under various conditions. The parameters measured could be e.g. oxygen- and
carbon dioxide pressures, pH, interstitial lactic acid and potassium concentration etc.
but also tissue function such as contractility or conductivity in electrically coupled
tissues. The conditions investigated could be a gradual reduction in tissue perfusion
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pressure. The intervention could be a situation with abolition of vasomotion versus
control. Clearly, this requires that we fully understand the pathways which leads to
vasomotion (and consequently flowmotion), in order to selectively block vasomo-
tion without affecting tissue metabolism by the intervention itself. Such data would
provide valuable input to the discussion of the consequences of vasomotion.

There are numerous examples of spontaneous or induced vasomotion in isolated
vessels (e.g. Peng et al. [43], Gustafsson et al. [17, 20], Broegger et al. [5], Rahman
et al. [45], reviewed in [2]). Since isolated vessels are devoid of influence from other
vessels, nerves and surrounding tissue, self-sustained oscillations must, as noted
above, be an intrinsic property of the vascular wall. The ubiquitous presence of
vasomotion across species and tissues suggests that, rather than being a question
of ability per se to oscillate it is a question of which set of conditions should be
present for a given type of vessel to oscillate. Thus, the oscillatory ability may or
may not, be evoked under the specific conditions that prevail in a given tissue at a
given time. Simulation studies show that myogenic reactivity in a network of vessels
may in itself be enough to elicit complex and self-sustained oscillatory behavior [57],
and, as discussed above, indeed intraluminal pressure has been shown to modulate
vasomotion characteristics [3]. When it comes to causal relations and consequences
however, it is helpful that some studies report the occurrence of flowmotion (as the
consequence of vasomotion) together with independently measured parameters such
as tissue oxygenation or tracer clearance. For instance, it appears that flowmotion
become more prevalent and pronounced as autoregulation reaches its lower limit,
perfusion heterogeneity increases and the tissue experiences risk of focally insuf-
ficient oxygenation. In some tissues, a life on the edge of insufficient flow appear
be the normal state although likely for different reasons in different tissues. In the
skin, minimal perfusion under baseline conditions could be an adaptation to avoid
heat-loss at rest, whereas in the testis it may, as described above, represent a specific
adaptation to avoid high oxygen pressures. Whatever the reason, the tissue faces the
same problem: with a heterogeneous distribution network, approaching the lower
limit of sufficient perfusion increases the risk of some regions experiencing hypoxia
for periods intolerable for the tissue cells. In this situation however, the different
stimuli (e.g. accumulation of metabolites, fall in pH, fall in oxygen tension) seem
to increasingly converge to push the vascular wall from a non-oscillatory and into
an oscillatory domain. While, as outlines above, an oscillating flow may increase
the local delivery of oxygen and drainage of the interstitium, it may also have a
more direct effect. By periodically forcing the hydraulic resistance up in some parts
of the network and simultaneously down in others, flow is forced along constantly
shifting flow routes (briefly reviewed in [28]). In this way the effect of structural
heterogeneity in the network is mitigated and the risk of some tissue areas experi-
encing long-lasting hypoxia or ischemia is reduced. Below a certain critical perfusion
pressure however, total flow is insufficient to match total tissue demand in all cases.
Eventually, as shown by Schmidt [49] and others, vasomotion/flowmotion tend to
disappear when pressure becomes very low. In this situation, where the microvas-
cular bed relaxes completely due to absence of myogenic activation and buildup of
tissue waste products, flowmotion would probably be of little significance anyway.
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In summary, there seem to be some evidence suggesting that vasomotion and
the derived flowmotion can expand the pressure range over which a heterogeneous
network can supply the surrounding tissue with sufficient flow.
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Chapter 17
Biological Oscillations of Vascular Origin
and Their Meaning: In Vivo Studies
of Arteriolar Vasomotion

Antonio Colantuoni and Dominga Lapi

Abstract Oscillations in vessel diameterwere reported by Jones (Circ. Res. 15:279–
287, [15]) in the bat wing venular microcirculation, while Krogh (A Contribution to
thePhysiologyof theCapillaries.NobelLecture, [16]) suggested the capillary recruit-
ment to increase blood flow in muscle tissue. Nicoll and Webb (Angiology 6:291–
308, [23]) were the first to define vasomotion as the outstanding motor phenomenon
in the vasculature, investigating microcirculation in the bat wing. A lot of data were
reported during the decades 70’ and 80’ of the last century. We implemented a prepa-
ration (skin fold chamber window) to observe subcutaneous vessels without anes-
thesia and acute surgical trauma in golden hamsters. We observed rhythmic changes
in arteriolar diameter, with increase in amplitude and frequency from larger to smaller
arterioles. We noted that at branchings there was a change in vasomotion frequency
with significant reduction in arteriolar diameter. We further developed our in vivo
preparation to investigate the microvascular networks in dorsal skin muscle (Cuta-
neous Maximus) in golden hamsters. We characterized the arterioles according to
Strahler’s ordering scheme, starting from order 1 arterioles up to largest in the prepa-
ration (order 5: 39.6 ± 5.7 μm), that were arcade arterioles, i.e. arterio-arteriolar
anastomoses, functioning as a blood reservoir to feed the muscle tissue, through
terminal arteriolar trees. These arterioles gave origin to the capillaries and presented
vasomotion with occlusion of the lumen (0.14± 0.04Hz), causing intermittent capil-
lary blood flow. Furthermore, the arteriolar oscillations were investigated in the rat
cranial window preparation, where we detected arteriolar oscillation in the same
range as reported by Aneta Stefanowska in humans by the laser Doppler technique.
In conclusion, the regulation of tissue perfusion takes place in the microcirculation,
where arterioles induce an “opening and closing mechanism” distribution of blood
flow to the capillary networks.
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17.1 Historical Background

Oscillations in vessel diameter were reported as early as 1852 by Jones in the bat
wing, where rhythmic contractions of venular vessels with fast frequency (more than
20 cycles per min, cpm) were described [27]. However, we had to wait until the new
century, when Krogh introduced the concept of capillary recruitment in [16, 17], due
to precapillary sphincters, and Clark and Clark [6] described in an in vivo preparation
(rabbit ear chamber) calibre changes in minute vessels. They observed constriction
and dilation of arterioles with a frequency in the range 2–3 cpm.

Chambers and Zweifach [5] reported oscillations in capillary blood flow, but
the fundamental finding was the organization of the microcirculation around the
metarteriole in themesentery of frog andother experimentalmodels.Nicoll andWebb
[23] for the first time defined vasomotion as the outstandingmotor phenomenon in the
vasculature. They reported the rhythmic changes in diameter of venules and arterioles
describing the microcirculation in the bat wing. However, the effects of arteriolar
diameter changes on vascular tone were highlighted by Folkow [14], who suggested
that many points in the arterial circulation endowed with peripheral pacemakers are
able to regulate vascular tone through contraction of vascular smooth muscle cells.

Wiederhielm and Weston [26] reported irregular vasomotion in small arteries
and arterioles, but regular activity in metarterioles and precapillary sphincters in
the same model of bat wing. Further data on vasomotion or changes in blood flow
were presented in the 70’s and 80’s of the last century in rabbit tenuissimus muscle
[21], isolated sartorius muscle [25], isolated arterioles of the hamster cheek pouch
[12], cremaster muscle of decerebrate rat [13]. Therefore, arteriolar vasomotion was
detected in different tissues, while isolated arterioles were able to constrict and dilate:
all data indicated that rhythmic changes in arteriolar diameter occur with and without
anesthesia, characterized by frequencies quite in the same ranges.

17.2 Vasomotion in Hamster Dorsal Skin Fold Window
Preparation

In the laboratory of Marcos Intaglietta we implemented the dorsal skin fold chamber
window preparation to observe microcirculation in hamsters without anesthesia and
acute surgical trauma [7, 8]. We defined the pattern of arteriolar rhythmic diam-
eter changes along the arteriolar networks in subcutaneous tissue, while we did not
detect diameter changes in venular vessels. It was of interest that branching points
were present in discrete points of the arteriolar networks and from these branching
points originated oscillations in vessel diameter which were effective in producing
oscillations in blood flow in downstream vessels right down to the capillaries. The
amplitude of these diameter changes was different according to arteriolar diameter:
from the largest arterioles (15–30% of mean diameter) down to the smallest ones
(85–100% of mean diameter). The frequencies of these oscillations were inversely
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related to arteriolar diameter, because the smallest arterioles (7.05 ± 2.20 μm)
revealed the highest frequencies (9.47 ± 2.89 cpm). Moreover, we reported that
nor-epinephrine and epinephrine increase the frequency of vasomotion, and vaso-
motion was reduced or abolished by isoproterenol, phentolamine, adenosine and
verapamil [9]. We observed, furthermore, that vasomotion frequencies changed at
arteriolar bifurcations [10]. These data indicate that all arterioles presented oscilla-
tions in diameter from the largest to the smallest, where branching points appeared
able to generate constriction and dilation of the vessels with complex overlapping
of waves regulating capillary blood flow. However, in [4] Bouskela and Grampp
reported data derived from hamster cheek pouch where they did not find any rela-
tionship between diameters and frequencies, with different changes in diameter (2–
10 μm) and frequencies in the range 3–15 cpm. In this case, arteriolar vasomotion
appeared as irregular vasomotor phenomenon difficult to explain. We could suggest
that surgical trauma and anesthesia might have influenced vasomotion patterns. In
our hamster cheek pouch preparations we did not observe regular vasomotion [11],
otherwise detected in unanesthetized hamster window preparation. In this prepa-
ration we investigated the changes in arteriolar vasomotion induced by anesthesia
and we observed disappearance of the arteriolar rhythmic diameter changes. After a
while there was a recovery of arteriolar vasomotion in alpha-chloralose anesthetized
animals [8]. However, improvements in methods of signal processing allowed us
to identify all frequency components in long-lasting recordings of pial arterioles in
anesthetized rats [19].

More recently, there have been several reports on vasomotion, especially inmesen-
teric arterioles, and the molecular mechanisms involved [1, 24], indicating that ion
fluxes are able to induce vasomotion and suggesting whichmechanisms are operative
in vascular smooth muscle cells (a review of these mechanistic areas is beyond the
scope of this chapter and is dealt with elsewhere: see Chap. 20).

We investigated the changes in arteriolar vasomotion frequency and amplitude
in hamster skin fold chamber window preparation under hypoxia and hyperoxia,
reporting different responses between larger and smaller arterioles [2]. Hypoxia (8,
11 and 15% oxygen gas mixture inspiration), indeed, caused an increase in vaso-
motion frequency, a decrease in mean diameter and in capillary blood flow. These
effects were more pronounced with 8 and 11% oxygen gas mixture: high frequency
vasomotion shifted from order 1 and 2 to order 3 arterioles (24 ± 4 cpm, 11%
oxygen gas mixture). Hyperoxia (100% oxygen gas mixture) induced constriction of
the smallest vessels (order 1 and 2), decrease in mean diameter and in vasomotion
frequency, while order 3 arterioles dilated.

Improving our model, we implemented the hamster skin fold window preparation
to investigate the microvascular networks in the hamster skeletal muscle (Cutaneous
Maximus) [20]. We characterized the micro-arrangement of arterioles feeding the
muscle, where we found arterio-arteriolar anastomoses, called arcade arterioles, just
overlapping the layer of the skeletalmuscle cells, fromwhere originated the arterioles
penetrating among the muscle cells and feeding the skeletal tissue. Therefore, it is
reasonable to suggest that a blood reservoir (arcading system) is operative to feed
blood to cells according to their metabolic requirements. The terminal branching
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Fig. 17.1 Scheme of a microvascular network in hamster skeletal muscle (Cutaneous Maximus).
The arcade arteriole is an order 5 arteriole with two branchings: the long terminal arteriolar tree and
the short terminal arteriolar tree. At branching, the long and short terminal trees present an active
point of contraction and dilation. In the long terminal arteriolar tree, there is at least another point
of activity at the first branching of order 4 arteriole

arterioles were differentiated in short and long terminal arteriolar trees, where the
long ones were characterized by larger vessels undergoing constriction and dilation
from the branching point (Fig. 17.1). This activity was conducted to all daughter
vessels with different amplitude (50–70% in order 4, 90–100% in order 2 and 1) and
caused intermittent blood flow in capillaries, according to the constriction or dilation
of the smallest arterioles. The short terminal trees were characterized by order 3
arterioles (diameter: 19.4 ± 3.0 μm) spreading from arcading arterioles (diameter:
39.6 ± 5.7 μm) and able to completely constrict, inducing opening and closing of
downstream arterioles. Therefore, there was consequent intermittent blood flow in
all capillaries originating from the smallest order 1 arterioles, present in the terminal
tree. These rhythmic diameter changes were observed in awake animals without
anaesthesia, with complex superposition of waves spreading from larger vessels up
to the terminal arterioles.

The microvascular scenario could be summarized as the interplay of larger arte-
riolar anastomoses and the terminal branching vessels. The arcade arterioles full of
blood facilitate the blood supply to the skeletal muscle cells; these vessels are char-
acterized by slow oscillations in diameter and repeated inversion in the direction of
blood flowduring aminute time interval. These arterioles gave origin to terminal arte-
riolar trees, that presented a point of activity at their beginning, where a mechanism
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“switch on and off” was effective in opening or closing the branching vessel, regu-
lating the volume of blood perfusing the active skeletal muscle cells. The difference
between terminal order 4 and order 3 arterioles, branching from arcade arterioles,
was in the frequency rate, higher in order 3 than in order 4 vessels. Moreover, order 3
arterioles completely constricted during the vasomotion cycle, and this constriction
wave was conducted through the daughter arterioles up to the capillaries (usually
24 ± 9, for each terminal unit). Therefore, all the capillaries presented stop and go
blood flow, according to the activity of parent order 3 arteriole. The long terminal
trees, conversely, originated 45 ± 6 capillaries, where the stop and go mechanism
was asynchronous, due to the different points of activity in the daughter vessels
spreading from the parent order 4 arteriole. These features permit to increase the
blood volume supply to the tissue by 273 and 239% compared to the baseline, on the
average, for the short and long terminal trees, respectively. Therefore, it is reasonable
to suggest that frequency oscillations in the ranges 0.01–0.08 and 0.08–0.16 derive
from arteriolar vasomotion, i.e. frommechanisms regulating the blood flow distribu-
tion to the tissues. It is worth noting that larger arterioles are densely innervated and
their activity is largely influenced by sympathetic nervous system discharge, while
smaller arterioles are most influenced by features of smooth muscle cells endowed
in the arteriolar walls.

17.3 Vasomotion in Rat Closed Cranial Window

In another experimental preparation, the rat closed cranial window, under α-
chloralose anaesthesia, we recorded rhythmic diameter changes in pial arterioles
observed through the window localized on the left parietal cortex [19]. We recorded
the rhythmic changes for 30 min and processed the diameter changes with the
generalized short time Fourier transform (GSTFT) to evaluate the frequency compo-
nents. We detected six components in the rhythmic diameter change recordings. Our
aim was to characterize each component; consequently, we used many substances
to stimulate or inhibit the endothelial or smooth muscle factors: acetylcholine,
papaverine, Nω-Nitro-L-arginine (L-NNA), inhibitor of eNOS; indomethacin
(INDO), inhibitor of prostaglandin endoperoxidase; charybdotoxin plus apamin,
inhibitors of endothelium-derived hyperpolarizing factor (EDHF). We observed that
under baseline conditions, the range of the first component was: 0.001–0.0095 Hz
(0.06–0.57 cpm); of the second: 0.0095–0.02 Hz (0.57–1.2 cpm); of the third: 0.02–
0.06 Hz (1.2–3.6 cpm); of the fourth: 0.06–0.2 Hz (3.6–12 cpm); of the fifth: 0.2–
2.0 Hz (12–120 cpm) and of the sixth: 2.0–4.5 Hz (120–270 cpm) (Table 17.1). The
sixth component had the highest power spectral density in order 2 and 3 arterioles
(mean diameter: 23.8 ± 1.4 μm and 33.5 ± 1.8 μm, respectively), followed by the
fourth, third, second and first component. In order 4 vessels (mean diameter: 43.7
±1.4) the sixth component showed the highest spectral density, but there was an
increase in the first and second components, while there was a decrease in third
and fifth components. Our data indicate that acetylcholine caused an increase in
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Table 17.1 The six
frequency components
detected in rat pial arterioles

Frequency
components

Frequency range
(Hz)

Frequency range
(cpm)

ULF
ultra low

0.001–0.0095 0.06–0.57

VLF
very low

0.0095–0.02 0.57–1.2

ILF
intermediate

0.02–0.06 1.2–3.6

LF
low

0.06– 0.2 3.6–12

HF
high

0.2–2.0 12–120

VHF
very high

2.0–4.5 120–270

power spectral density of both the first and the second component. However, L-NNA
after acetylcholine decreased the power spectral density of the second, compared
to the first component. Charybdotoxin plus apamin were effective in blunting the
power spectral density of the first component, while the second was not affected.
After acetylcholine administration, charybdotoxin plus apamin were able to abolish
the power spectral density of the first component, while the second was partially
affected. Therefore, it is reasonable to conclude that the first component of arteriolar
oscillation is related to the release of EDHF able to facilitate dilation of arterioles
with nitric oxide, effective in causing the second component of arteriolar rhythmic
diameter changes.

It is worth noting that the arterial rhythmic diameter changes, evaluated in rat pial
microcirculation, presented the same frequency components as reported by Aneta
Stefanovska and coworkers [18] in humans, processing laser Doppler recordings of
cutaneous blood flowoscillations. Therefore, the oscillations in diameter of arterioles
are related to the complex interactions onvascular smoothmuscle cells of the different
mechanisms involved in the regulation of blood flow distribution in the living bodies.
The smoothmuscle cells in the arteriolar walls receive stimulations from sympathetic
nervous system discharge, respiration and heart rates and are responsive to EDHF
and nitric oxide released from endothelial cells. The summation of all these factors
produces the oscillatory patterns of vasomotion, the outstanding motor phenomenon
in the vasculature.

After decades of experimental investigations and clinical studies, utilizing
different techniques, such as in vivo videomicroscopy, laser-Doppler flowmetry and
laser speckle imaging [22], available data indicate that oscillations in blood flow
characterize peripheral circulation in living organisms. The oscillations in peripheral
bloodfloware due to several factors in humans, as previously reported [18]: it isworth
noting that systemic sclerosis, largely affecting body circulation, is effective in abol-
ishing most of these components, so that in the regulation of peripheral blood flow
distribution only the heart rate-related component influences microvascular oscilla-
tions [3]. The remaining components are unable to modulate peripheral blood flow



17 Biological Oscillations of Vascular Origin and Their Meaning … 279

during the late phases of the disease. The patterns of the oscillation frequencies are
the same in both experimental models and humans in clinical settings.

17.4 Conclusions

In conclusion, the regulation of tissue perfusion takes place in the microcirculation,
where the delivery of blood is controlled at the level of arterioles by “an opening and
closingmechanism” that causes intermittent capillary blood flowwhich is effective in
inducing an efficient delivery of nutrients to the tissue andwashout of waste products.
This regulation participates to the overall vascular tonewhich is subjected to complex
and different control mechanisms, such as those exerted by endothelium-derived
factors, sympathetic nervous system discharge and hormones.
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Chapter 18
Phase Coherence of Finger Skin Blood
Flow Oscillations Induced by Controlled
Breathing in Humans

Arina V. Tankanag, Gennady V. Krasnikov, and Nikolai K. Chemeris

Abstract The influence of deep controlled breathing on phase coherence of
respiratory-related skin blood flow oscillations of left and right finger-pad fore-
fingers in 29 healthy young females was studied. Breathing was controlled on both
rate (0.25, 0.16, 0.1, 0.07 and 0.05 Hz) and depth (40% of the maximal chest excur-
sion). The correlation degree between the phases of respiratory-related skin blood
flow oscillations of left and right fingers was estimated from the value of wavelet
phase coherence . We obtained the significant increase of phase coherence for all
analyzed frequencies of controlled breathing as compared to spontaneous one. The
maximal increase was observed for controlled breathing at 0.25 Hz, at a frequency
close to the spontaneous one. We suggest that the observed effects are primarily due
to an increase of breathing depth. Under spontaneous breathing depth does not
exceed 15% of the maximal chest excursion, while in the present study the breathing
depth was 40%. The results obtained can be attributed to the effects of the autonomic
nervous system on vascular tone regulation under controlled breathing .

18.1 Introduction

The respiration effect on vascular bed can be described as an amplitude modulation
of the heart-synchronous pulsating signal. Spontaneous breathing is accompanied
by variations in the intrathoracic pressure, which determines the dynamics of the
breathing pump—blood venous return to the heart from the periphery [6, 12]. This
causes a cyclic variation in the cardiac output, maintains the average arterial blood
pressure and increases the activity of aortic and pulmonary baroreceptors. The latter
leads to a cyclic variation of activity in the corresponding structures of autonomic
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nervous system [8, 11]. The formation of respiratory-related oscillations in vascular
blood flow is due to at least two mechanisms: a) passive spread of respiratory modu-
lation of blood pressure, b) vasomotor reflexes caused by respiratory modulation of
sympathetic nerve activity. Such oscillations were successfully recorded by means
of laser Doppler flowmetry (LDF). Apart from spontaneous breathing, controlled
one is of particular interest due to its influence on respiratory-related cardiovascular
oscillations. Our previous study demonstrated that deep controlled breathing affects
skin blood flow oscillation spectra [9]. Other authors reported that a deep inspiratory
gasp induces almost complete shut-down of a microvascular blood flowwhich mani-
fests itself as a decrease in LDF signals [1]. Thus, the respiratory-cardiovascular
coupling is a complicated and timely problem. It is known that it depends on the
frequency and deepness of breathing. In this work, we present a study of the influ-
ence of deep controlled breathing on phase coherence of respiratory-related skin
blood flow oscillations of left and right finger-pad forefingers.

18.2 Methodology

18.2.1 Participants

29 healthy normotensive young females aged from 18 to 25 years (weight 58± 10 kg,
height 166 ± 4 cm, arterial blood pressure 117 ± 11/69 ± 6 mm Hg, heart rate 71
± 9 bpm) participated in the study. The participants had not taken any drugs for at
least one week before the study. None of the participants smoked and they abstained
from any alcohol- or caffeine-containing drinks for at least 12 h before the study.
The exclusion criteria were previous history of cardiovascular diseases, diabetes and
other acute and chronic illnesses. The study was approved by the local Committee
for Human Biomedical Research Ethics and was carried out in accordance with
the principles outlined in the 2002 Declaration of Helsinki of the World Medical
Association. The study protocol and its purpose were explained in detail to each
subject and informed consent was obtained from all subjects.

18.2.2 Measurements

The registration was initiated following a 20-min adaptation period. During the
measurements the subjects were in sitting position in a quiet room at constant room
temperature of 23± 1 °C. For each participant 7 successive recording sessions were
carried out: first and last, at spontaneous breathing rate before and after all controlled
regimes; and the five, in the regime of controlled breathing with different rates of
enforced breathing and fixed depth. The following rates of controlled breathing were
used: 0.25, 0.16, 0.1, 0.07 and 0.05 Hz. In the present study the breathing depth was
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constant and amounted to 40% of the maximal chest excursion. The duration of all
signals was 300 s.

The depth, form and rate of respiratorymovements (pneumogram)were registered
using a strip-chart detector fastened to the chest of the subject. The analog signal
from the detector was digitized and displayed at the monitor. The subject adjusted
the depth, form and rate of her chest excursions so that the breathing curve was
superposed with a reference curve demonstrated on the monitor. As the reference, a
sinusoidal curve with a given frequency and amplitude was used.

Skin blood perfusion was registered by laser Doppler flowmeter LAKK-02
(LAZMA, Russia) with two identical probes (wavelength 0.63 µm; emission power,
0.5 mW). The probes were fastened to the palmar surface of the distal phalanx of
left and right forefingers. The frequency of LDF signals sampling was 16 Hz.

During every session three signals were recorded simultaneously: pneumogram
and two LDF signals of left and right finger-pad skin (SBFleft and SBFright, respec-
tively). Figure 18.1 shows fragments of the signals registered in one of the partic-
ipants under spontaneous and controlled breathing. Between the sessions persons
were trained and adapted for 2–3 min to the corresponding breathing regime. If a
participant had difficulties under controlling breathing or felt unwell at any stage
of the examination the procedure was immediately stopped and the participant was
removed from the study.

Fig. 18.1 Fragments of a pneumogram, LDF signals from left (SBFleft) and right (SBFright) fore-
fingers registered under spontaneous (black lines) and controlled breathing with the rate 0.1 Hz
(blue lines). Drawn with the grey color on the controlled-breathing pneumogram is the reference
curve defining the breathing profile
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18.2.3 Data Analysis

The correlation degree between the phases of respiratory-related skin blood flow
oscillations of left (SBFleft) and right (SBFright) fingers was estimated from the value
of wavelet phase coherence [3, 14, 17–19, 21, 22]. We chose the complex valued
Morlet wavelet �(t) = eiω0t e(−t2/2). For each signal a spectral function X (ωk, tn) =
ak,n + ibk,n was determined, describing the spectral properties of the x(t) signal in
the time–frequency domain. The phase difference for a pair of signals x1(t) and x2(t)
at any time point tn and frequency ωk was calculated, where x1(t) and x2(t) were
SBFleft and SBFright, respectively. The coefficients were determined as

cos(�ϕk,n) = a1k,na2k,n + b1k,nb2k,n√
a21k,n + b21k,n

√
a22k,n + b22k,n

, sin(�ϕk,n) = b1k,na2k,n − a1k,nb2k,n√
a21k,n + b21k,n

√
a22k,n + b22k,n

,

and averaged over the whole signal length (N)

〈
cos(�ϕk,n)

〉 = 1

N

N∑
n=1

cos(�ϕk,n),
〈
sin(�ϕk,n)

〉 = 1

N

N∑
n=1

sin(�ϕk,n).

Subsequently an averaged over timewavelet phase coherencewas calculated for each
analyzed frequency ωk

Cϕ(ωk) =
√〈

cos(�ϕk,n)
〉2 + 〈

sin(�ϕk,n)
〉2
.

The Cϕ(ωk) function takes values from 0 to 1, containing the information on the
degree of phase coherence of the two signals x1(t) and x2(t) at frequency ωk.

The statistical analysis of the results obtained was carried out with SigmaPlot
13.0 software (Systat Software, Inc., 2014). Nonparametric statistical tests were
performed to avoid any assumption of normality. The Wilcoxon test was used to
estimate the significance of differences between the wavelet phase coherence values
obtained in spontaneous breathing and controlled regimes. The differences were
considered statistically significant at p < 0.05.

18.3 Results

Firstly, we tested reversibility of the breathing practices. The Fig. 18.2 presented
the phase coherence values for SBFleft–SBFright pair under spontaneous breathing
before and after all controlled breathing tests. There are no differences between
phase coherence calculated for oscillations registered initially and after all breathing
practices.
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Fig. 18.2 Phase coherence
of skin blood flow
oscillations of left and right
fingers under spontaneous
breathing before (red color)
and after (black color)
controlled breathing
practices

Below we provide the results of the analysis of the influence of controlled
breathingwith different frequencies on the phase coherence betweenSBFleft–SBFright
pair (Fig. 18.3). One can see that all breathing regimes caused a significant increase
in phase coherence values at the appropriate frequency.

To estimate the influence of the controlled breathing on phase correlation between
respiratory-related blood flow oscillations of left and right finger skin, we calculated
the ratio of the phase coherence value at defined frequency of controlled breathing
to the value at the same frequency during spontaneous breathing. The results are

Fig. 18.3 Phase coherence of skin bloodflowoscillations of left and right fingers under spontaneous
(black color) and controlled (blue color) breathing with the following frequencies: 0.05 Hz (a), 0.07
Hz (b), 0.10 Hz (c), 0.16 Hz (d) and 0.25 Hz (e). Vertical red lines correspond breathing rates. Areas
of significant changes are grey
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Fig. 18.4 Box-Whisker plots for the phase coherence values of skin blood flow oscillations of
left and right fingers. The asterisk symbol (*) indicates statistically significant differences between
spontaneous and controlled breathing (p < 0.05)

Table 18.1 Median values of
phase coherence function
between skin blood flow
oscillations of left and right
fingers

Frequency (Hz) Breathing regimes

Spontaneous Controlled

0.05 0.41 0.84*

0.07 0.46 0.75*

0.1 0.49 0.92*

0.16 0.31 0.89*

0.25 0.28 0.83*

*statistically significant differences between spontaneous and
controlled breathing (p < 0.05)

presented in the Fig. 18.4 and Table 18.1. There is significant increase in phase
coherence of SBFleft–SBFright pair for all breathing regimes. The maximal increase
was observed for controlled breathing at 0.25 Hz which is close to the spontaneous
breathing rate. At this frequency, the median of phase coherence value was approx-
imately three times higher under controlled breathing as compared to spontaneous
one (Table 18.1).

18.4 Discussion

We obtained the significant increase of phase coherence of skin blood flow
oscillations of left and right forefingers for all regimes of controlled breathing.
The respiratory-related variations in peripheral hemodynamics can originate from
changes in the arterial blood pressure induced by thoracic pressure changes and
passively transmitted from large to small arteries [5] or from peripheral sympathetic
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activity oscillations [15]. A tight relation between breathing and sympathetic nerve
activity is known. In particular, the sympathetic activity increases during inhala-
tion and becomes maximal at the last stage of inhalation and at the beginning of
exhalation [7, 13, 23]. The cutaneous blood flow is regulated with vasoconstric-
tion induced by a sympathetic nervous system. Moreover, the peripheral blood flow
depends on the sympathetic activity because the arteriovenular anastomoses located
in the acral parts have high sympathetic innervation. So the respiratory activity influ-
ences the peripheral blood flow indirectly, whereas the sympathetic activity induces
vasoconstriction independently from the mechanical manifestation of the respiratory
cycle [16]. We suggest that the described mechanisms are involved in the forma-
tion of respiratory-related oscillations in peripheral blood flow registered by LDF
technique. The prevalence of the mechanism regulating blood flow is caused by
the impact of an arterio-venous component on the total signal and by the regional
differences in vascular sympathetic innervation. The palmar finger skin has a large
number of arterio-venuous anastomoses, the tone of which is not affected by barore-
ceptors and is regulated exclusively by sympathetic innervation [10, 11]. There-
fore, the respiratory-related skin blood flow oscillations are mainly influenced by
respiratory-modulated sympathetic vasoconstriction.An addition, one of the possible
mechanisms for synchronization of blood flow oscillations might rest upon the reac-
tion of the muscular layer of the vascular wall on the pressure change - myogenic
response. It is known that a decrease of arterial blood pressure results in a tran-
sient artery dilatation, while its increase leads to a constriction due to the reaction
from the vascular muscle layer, the so-called Bayliss effect [4]. Thus, perhaps the
pressure wave is well propagated to the periphery, as myogenic is defined as a reac-
tion to a pressure wave. Not only may the myogenic response be involved in the
synchronization of cardiovascular oscillations, but also respiratory sinus arrhythmia
(RSA). RSA is heart rate variability in synchrony with respiration, associated with an
increase in heart rate during inspiration and a decrease during expiration [2, 20]. RSA
is a physiologic phenomenon reflecting respiratory-circulatory interactions univer-
sally observed among vertebrates. We suggest that these two mechanisms can also
influence phase interactions in microvasculature. But this assumption needs further
investigations.

It should be mentioned that only young females participated in the study. Appar-
ently, the results may be different for other participants, for instance, for women
of another age or for men. However, studying gender- and age-related features of
phase coherence of skin blood flow oscillations is beyond the scope of this study and
requires additional research.

18.5 Conclusion

In the studywepresent the results of investigationof phase interactions betweenblood
flow oscillations of left and right forefinger-pad skin under breathing controlled on
both rate and depth. It was obtained that controlled breathing leads to the significant
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increase of phase coherence between respiratory-related blood flow oscillations of
left and right fingers for all breathing regimes. The maximal increase was observed
under controlled breathing at 0.25Hz, i.e. at a frequency close to the spontaneous one.
We suggest that the observed significant increase is primarily due to an increase of
breathing depth. Spontaneous breathing depth does not exceed 15% of the maximal
chest excursion, while in the present study the depth was 40%.We suppose that under
deepbreathing the role of bothpotentialmechanismsof respiratory-relatedoscillation
generation (venous pressure variations and vascular tone regulation via autonomic
nervous system) enhance but this assumption requires additional investigation.
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Chapter 19
Complexity-Based Analysis
of Microvascular Blood Flow in Human
Skin

Marjola Thanaj, Andrew J. Chipperfield, and Geraldine F. Clough

Abstract The maintenance of an adequate microvascular perfusion sufficient to
meet the metabolic demands of the tissue is dependent on neural, humoral and local
vaso-mechanisms that determine vascular tone and blood flow patterns within a
microvascular network. It has been argued that attenuation of these flow patterns
may be a major contributor to disease risk. Thus, quantitative information on the
in vivo spatio-temporal behaviour of microvascular perfusion is important if we are
to understand network functionality and flexibility in cardiovascular disease. Time
and frequency-domain analysis has been extensively used to describe the dynamic
characteristics of Laser Doppler flowmetry (LDF) signals obtained from superficial
microvascular networks such as that of the skin. However, neither approach has
provided definitive and consistent information on the relative contribution of the
oscillatory components of flowmotion (endothelial, neurogenic, myogenic, respira-
tory and cardiac) to a sustained and adequate microvascular perfusion; nor advance
our understanding of how such processes are collectively modified in disease. More
recently, non-linear complexity-based approaches have begun to yield evidence of a
declining adaptability of microvascular flow patterns as disease severity increases.
In this chapter we review the utility and application of these approaches for the
quantitative, mechanistic exploration of microvascular (dys)function.
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Abbreviations

ARA Attractor reconstruction analysis
BF Blood flux
CVD Cardiovascular disease
ETC Effort to Compress
FFT Fast Fourier transform
LDF Laser Doppler flowmetry
LZC Lempel-Ziv Complexity
MLZC Multiscale Lempel-Ziv complexity
MSE Multiscale entropy
NO Nitric oxide
oxyHb Oxyhaemoglobin
PSD Power spectral density
PU Arbitrary perfusion units
SampEn Sample Entropy
WT Wavelet transform

19.1 Introduction

The maintenance of an adequate blood flow through a vascular network sufficient
to meet the metabolic demands of the tissue, is dependent on neural, humoral and
local vaso-mechanisms that determine vascular tone and flow patterns within the
microvasculature. It has been argued that attenuation of these flow patterns may be
a major contributor to disease risk and that quantitative information on the temporal
behaviour and spatial distribution of microvascular perfusion, in vivo, is important
if we are to understand network functionality and flexibility in cardiovascular and
metabolic disease.

To date, time and frequency domain analysis has been extensively used to assess
network functionality and to describe the dynamic characteristics of signals derived
from superficial vascular networks such as that of the skin, obtained using non-
invasive laser Doppler fluximetry [24, 54]. Variations in the amplitude and relative
contribution of spontaneous, rhythmic oscillatory fluctuations of local endothelial,
neurogenic, and myogenic origin have become widely associated with a decline in
microvascular function in a wide variety of disease states (see [19]). Impairment of
spatial and temporal regulation of network perfusion by these localised mechanisms
has been shown to give rise to amismatch betweenperfusion anddemand, particularly
at times of elevated metabolic demand [30]. The consequence of such inadequate
perfusion control is a compromised tissue function, such as that associated with
features of the metabolic syndrome, which eventually leads to the development of
retinopathy, neuropathy, skin ulcers and difficult to heal wounds [25].
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More recently, the regularity and the randomness of blood flow within microvas-
cular networks has been explored using non-linear methods such as entropy and
complexity techniques [40, 53, 75, 83, 85]. Studies in humans at risk or with
CVD have shown a reduced complexity of the blood flux signal using Lempel-Ziv
complexity algorithms [18] and altered microvascular haemodynamics associated
with diminished chaotic ischaemic flow [34]. In rodent models of cardiovascular
and metabolic disease, chaotic network attractor analysis has revealed a declining
adaptability of microvascular flow patterns [30] and altered spatial heterogeneity and
temporal stability of network perfusion to limit the adaptive ability of the microvas-
culature and so compromise its function [74]. However, the relevance of these non-
linear indices to the diagnosis and treatment of human cardiovascular disease (CVD)
has yet to be determined.

19.2 Assessment of Microvascular Blood Flow

The microvasculature comprises the small resistance arteries, arterioles, capillaries
and venules with diameter less than 200 μm that lie within the tissue parenchyma.
The primary role of the microcirculation is the optimal exchange of gases, nutri-
ents, water, and metabolites between the blood and surrounding tissues. Regulation
of microvascular perfusion is predominately achieved through changes in network
conductance, modulated at a local level by endothelial, neurogenic and myogenic
regulatory activity [74]. Together these activities determine the cyclic oscillations of
arteriolar diameter (vasomotion) [20, 77] that are related to changes in blood flow
distribution in the microvascular networks (flow motion) [65].

Microcirculatory blood flow has been non-invasively investigated using tech-
niques such as laser Doppler flowmetry (LDF) [67] laser speckle contrast imaging
[11, 70], peripheral arterial tonography [28], diffuse correlation spectroscopy [3],
side-stream dark field [31] and orthogonal polarisation spectral cameras [80], and
nailfold capillaroscopy [89]. The microcirculation of the skin offers an accessible
site in which to study the physiological mechanisms involved in the regulation of
tissue perfusion [36, 67] and LDF, based on the Doppler Effect, first described by
Christian Doppler in 1842 and applied by Buys Ballot in 1845 to sound waves [35],
is currently the most widely used method for continuous, non-invasive monitoring
of skin microcirculation under physiological and pathological conditions [24]. The
LDF signal shows vigorous temporal and spatial variability andmeasures of this vari-
ability (and/or increased stability) can provide a rich source of information relating to
the flexibility/responsiveness of the system. As LDF provides only a relative index of
microvascular perfusion in the time domain it is frequently used in conjunction with
a reactivity test to allow investigation of the mechanisms underlying local control
of vascular tone. Reactivity tests include post occlusive reactive hyperaemia, local
thermal warming and pharmacological tools such as iontophoresis of vasoactive
agents. Skin microvascular responses in the time domain to these provocations are
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comprehensively reviewed [24, 68, 69] and the signalling pathways underlying the
responses described elsewhere [68].

19.3 Analysis of Microvascular Blood Flow Signals
in the Spectral Domain

The LDF technique has been extended to explore microvascular control mechanisms
within the skin through the analysis of the component frequencies of the laserDoppler
signal [21, 38, 48]. Time series analysis of LDF signals shows spontaneous, local,
rhythmic oscillatory fluctuations of the blood flux in the microvascular network.
These periodic oscillations have been shown to reflect the influence of myogenic
(~0.05–0.15 Hz) [45], neurogenic (~0.02–0.05 Hz) [78] and both endothelial nitric
oxide (NO)-dependent (~0.0095–0.02 Hz) and -independent (<0.0095 Hz) [47, 49,
66] activity on vascular tone. Additionally, the haemodynamic effects of the heart
beat (~0.6–2.0 Hz) and respiratory activity (~0.15–0.6 Hz) [10] may be detected in
the LDF signal (Table 19.1).

The two main methods of spectral analysis that have been used to extract these
oscillatory signals are based on the Fast Fourier Transform (FFT) algorithm and on
a generalized wavelet transform (WT) [2].

Table 19.1 Periodic activity of the laser Doppler blood flux signal and its potential origins (From
[19])

Periodic activity Time constant (s) Frequency (Hz) Origin

Endothelial NO-independent >105 <0.0095 Mechanisms other than
NO-mediated originating
from endothelial cells, e.g.
endothelial derived
hyperpolarizing factor
(EDHF)

Endothelial NO-dependent 48–105 0.0095–0.02 NO production by
endothelial cells

Neurogenic 19–48 0.02–0.05 Sympathetic nervous
system

Myogenic 7–19 0.05–0.15 Vascular smooth muscle
(VSM) cells

Respiratory 1.6–7 0.15–0.620 Breathing

Cardiac 0.5–1.6 0.60–2.00 Heartbeat
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19.3.1 Fast Fourier Transform

The Fourier Transform (FT) is the decomposition of a time series into its constituent
frequency components [29, 62]. Power Spectral Density (PSD) describes the contri-
bution to the power in the frequency components across a spectrum. In FFT analysis,
the PSD of flow motion waves is obtained by computing the discrete Fourier trans-
form of the LDF signal, which itself is a discrete representation of a continuous
signal. In this way FFT analysis provides an estimate of the absolute power in the
signal at a given frequency and of the PSD contribution of a frequency band to the
total power of the signal. This is often used to evaluate the impact of each frequency
band (and their associated control mechanisms) on overall flowmotion.

19.3.2 Wavelet Transform

Generalized wavelet analysis is a scale-independent method with adjustable time
and frequency resolution. It was introduced for the analysis of LDF signals by
Stefanovska and colleagues [8]. While wavelets are not specifically designed for
spectral analysis, spectral information can be recovered by analysis of the wavelets
to produce the scalogram giving the energy contribution of each wavelet coefficient
which can then be used to express the flow motion activities in AU/Hz [79]. The
Wavelet Transform (WT) allows for the analysis of time and frequency contents of
an oscillatory signal [56] and has the advantage over the FFT in that it provides
information about changes in frequency and power of distinct oscillatory bands over
time. The WT can also be averaged over time, at a particular frequency, to yield an
average scalogram.

19.3.3 Application of Spectral Domain Analysis

Spectral analysis of the low frequency periodic oscillations in blood flux measure-
ments obtained using LDF provides mechanistic information of the processes regu-
lating microvascular perfusion [45, 71, 79]. A decline in microvascular function is
widely associated with variations in the amplitude and relative contribution of the
low frequency oscillations, with flow patterns differing according to the time course
and severity of disease [57, 65, 66]. There is, however, a lack of consensus on the
interpretation of the direction of change of the relative contributions of the oscilla-
tory signals across the spectral bands and their mechanistic origins. Direct compar-
ison of different studies is complicated by the choice of parameters for frequency
domain analysis (e.g. window size, overlap, number of bins). Furthermore, recent
work suggests that the frequency bands are not fixed and may vary, for example,
with age or pathological state [33]. Most studies use fixed non-overlapping intervals
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to define the spectral bands as originally described by Stefanovska and colleagues
[8]. It is unlikely that the boundaries of these frequency intervals remain constant
across a cohort of individuals, or for a given individual, under changing conditions
of physiological stress. State-dependent fluctuations in frequency intervals may thus
give rise to different spectral signatures within, and across, the cohorts studied.
However, frequency domain analysis remains a valuable tool in our understanding of
the processes modulating microvascular BF and their relative contribution to overall
network perfusion [55].

19.4 Information and Complexity-Based Analysis
of Microvascular Blood Flow Signals

While conventional time and frequency domain analysis techniques have proved
valuable in the understanding of blood flow within a microvascular bed they have
failed, so far, to describe mechanistically the changes in observed flow patterns
between pathological conditions or haemodynamic states. Nonlinear methods, based
on ideas from information theory, have been used to quantify the regularity and
randomness of short lengths of physiological signals and have demonstrated the
potential for diagnostic capability [6]. Recently, their application has been extended
to the LDF signal from superficial microvascular networks.

Complexity analysis quantifies the degree of variability or loss of spontaneity in
a time series and has been applied to a range of bio-signals, including electroen-
cephalograms [43] and electrocardiograms [86]. The degree of variability in these
signals reflects the physiological adaptability of the underlying system and is an
established biomarker of overall health status [1]. There is, however, no single defi-
nition of complexity. Nagaraj and Balasubramaian [58] describe three methods of
quantifying complexity which in the context of the current discussion relate to (i)
how hard it is describe the information in the LDF signal, i.e. the number of unique
patterns in the time series or model order, (ii) how hard it is to create or loosely
compress the information and (iii) the degree of organisation or structure in the
LDF signal. The most widely used measures in LDF signal analysis are Lempel-Ziv
Complexity (LZC), sample entropy and effort-to-compress (ETC) complexity. All
these approaches have successfully provided a measure of the information content
of the LDF signal [83, 85] (Fig. 19.1).

19.4.1 Lempel-Ziv Complexity (LZC)-Based Analysis

Lempel-Ziv complexity (LZC) [50] provides a measure of how difficult it is to
describe the information contained in a signal and is the length of the shortest instruc-
tion set needed to reconstruct the signal without information loss. A simple periodic
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Fig. 19.1 Changes in regularity and complexity of the LDF blood flux signals captured at 40 Hz
measured in the forearm of 15 healthy volunteers, in two haemodynamic steady states at 33 °C
(blue) and at 43 °C (red). a Sample Entropy, b Lempel and Ziv complexity, c Effort to Compress
complexity. Values are presented as means ± SEM. Adapted from [83]

signal would have low complexity as the same terms are repeated continually while a
random signal would have high complexity as there are no rules, or repeating patterns
that define it. Before LZC can be calculated the original LDF signal must be trans-
formed to a binary sequence. This can be achieved by recording a one if a sample
is greater than the median and zero otherwise [2]. Alternatively, a delta encoding
method which captures more of the variability in the signal has been used [46]. In
this latter approach a zero is recoded if a value is less than the previous value in
the time series or a one if the value is greater than the previous value. The signal is
often divided into epochs of suitable length to examine how LZC varies over time;
or a sliding window is used to detect the time of rapid spontaneous changes in the
signal. There are many challenges in applying complexity-based analysis methods
to signals in general, such as the influence of noise, signal length and quantization
method. While many of these issues are not fully resolved, there has been consid-
erable effort in developing methodologies that can be applied in clinical practice
[73, 90].

Figure 19.1b shows an example of LZC calculated for 15 × 40 s epochs of the
LDF BF signal captured at 40 Hz, from the skin of the ventral surface of the forearm
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in 15 healthy male volunteers. In this study signals were recorded initially with skin
temperature clamped at 33 °C and then when it was raised to 43 °C. As the epochs
are not synchronised, direct comparison between values at the two temperatures
in a given individual, or of group values, provides little understanding of sponta-
neous temporal activity. However, differences in the information content of the BF
signals are clearly observable, with that of signals measured at 43 °C being lower
(less variable) and having fewer unique states (a lower LZC) than those at 33 °C.
An LZC-index, calculated as the mean of the 15 × 40 s epochs, has been used to
discriminate between haemodynamic states or between “at-risk” groups [14, 17, 18].
However, towhat extent LZ based algorithms can be used as a clinical toolwithwhich
to classify disordered states within the microcirculation remains to be fully inves-
tigated. The cardiac and respiratory rhythms might be predicted to have significant
but opposite influences on signal complexity due to their generally periodic nature.
Skin sympathetic nerve activity is known to be modulated by respiration and cuta-
neous vasoconstrictor neurones are temporarily coupled to cardiac and respiratory
oscillations [26]. Heart rate variability may also contribute to the complexity of the
BF signal [72] and cardiac rhythm is modulated by respiration [76].

19.4.2 Entropy-Based and Effort to Compress Complexity
Analysis

Sample entropy (SampEn) provides an applicable finite sequence formulation that
discriminates the data sets by a measure of randomness, from totally regular to
completely random. SampEn assigns non-negative patterns in time series, with
larger values of entropy corresponding to more irregularity and smaller values corre-
sponding to more regularity in the data. The regularity of the signal can be measured
with the SampEn, by defining how often a short time series is repeated. A similar
complexity method based on the lossless compression algorithm is the Effort to
Compress (ETC) complexity, proposed byNagaraj, Balasubramanian [59]. Similar to
the LZC approach, the given sequence is also first converted to a symbolic sequence.

There have been few studies to investigate the SampEn and ETC complexity
of LDF signals from human skin blood. Figure 19.1a, c taken from Thanaj et al.
[83] gives one example of this. Such data provide strong evidence that, similar to
LZC, these algorithms showed sensitivity to a change in haemodynamic state. Here,
lower entropy and complexity indices with relatively consistent variation across the
15 epochs were observed when microvascular flow approached maximal dilation
and network perfusion during heating. However, Liao et al. [53] in a similar study
investigating the sample entropy indexes in response to local heating of the sacral skin
blood flow in people at risk of pressure ulcers, failed to find any significant correlation
with skin vasodilatory capacity. This led them to argue that nonlinear analysis is not
always a consistent method for the assessment of vasodilatory function.
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19.4.3 Application of Complexity-Based Analysis of Laser
Doppler BF Signals

Non-linear methods such as entropy and complexity analysis have been increas-
ingly used to explore the regularity and the randomness of blood flux signals derived
from microvascular networks as a possible predictor of functional dysregulation,
both in human cohorts and in animal models of human disease. One of the first
of these studies was by Tigno et al. [85] who investigated the complexity of LDF
signals from nondiabetic, prediabetic and diabetic primates. They report an LZC
that decreased with progression of diabetes [85]. Similarly, Chipperfield et al. [18]
showed that in humans with and without type 2 diabetes mellitus LZC of the LDF
signal reduced asCVDrisk increased. Together, these findings suggest that the impact
of diabetes on spontaneous oscillations in the bio-signal derived from microvascular
blood flow may be reflected in the complexity of the low frequency flowmotion
activity rather than, or as well as, in their oscillatory power content. Contrary to
the studies described above using LZC, Hsiu et al. [37] using approximate entropy
to compare beat-to-beat cardiac rhythms in the LDF signal in nondiabetic, predia-
betic and diabetic humans have shown an increased signal complexity in people with
diabetes. However, the increase in complexity reported by Hsiu et al. [37] relates
to complexity between consecutive high frequency heart beats rather than to low
frequency (flowmotion) activity. To what extent the impact of diabetes on the micro-
circulation involves a decrease in complexity of the low frequency oscillations and
an increase in complexity of conducted signals such as that of the cardiac rhythm
requires further investigation.

Age-related changes in microvascular flows have been investigated by Humeau
et al. [39] usingwavelet-based representations, withHölder exponents tomeasure the
regularity of theLDFsignal and sample entropy to assess its complexity. They showed
that endothelium-related activity decreased with age while microvascular perfusion
became more regular and less complex, although not significantly. Liao et al. [52]
using a modified SampEn algorithm similarly found that the LDF signal showed a
higher degree of regularity during thermal warming as compared to the baseline in
both young (mean age 27 years) and older (mean age 72 years) individuals. The LDF
signal also showed a higher degree of regularity in the older group as compared to
the young group, attributed in part to enhanced cardiac oscillations.

SampEn of LDF signals has also been used to discriminate between normal and
abnormal skin microvascular function in diseases affecting digits, such as Raynaud’s
phenomenon and systemic sclerosis [27]. These authors found that baseline entropy
was significantly increased in patientswith systemic sclerosis compared to thosewith
Raynaud’s phenomenon and with controls, on the finger pad but not on the forearm;
consistent with the pathophysiology of the disease, which predominantly affects the
digital microcirculation.

Overall, these studies appear consistent with the premise that a greater complexity
(variability) of the blood flux signal may indicate a more effective microvascular
system, whereas a lower variability in microvascular activity corresponds to a loss of
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the system’s ability to adapt to pathophysiological conditions and/or is an indicator
of disease severity.

19.5 Multiscale Frequency, Complexity and Scale

Conventional entropy and complexity methods have the disadvantage that they can
only study behaviour at one scale. However, the physiological processes that regulate
flow motion operate across multiple temporal scales ranging from 0.001 to 2 Hz and
appear to vary under awide range of physiological and pathophysiological conditions
as discussed previously. To account for thesemultiple and potentially varying process
scales, LZ complexity and entropy has be evaluated in multiple time-scales using a
coarse-graining approach. Such multiscale analyses have been shown to be effective
in the general understanding of a wide range of physiological signals [15, 23, 40].

Costa et al. [22] applied multiscale entropy to the cardiac inter-beat interval to
determine the regularity of the cardiac properties in the young, elderly and individ-
uals with heart failure during both waking and sleeping periods. They found good
discrimination between these periods for all groups and reported that the multiscale
entropy analysis was a valid method for quantifying the complexity of biological
signals across multiple spatial and temporal scales. Kalev et al. [43] using multi-
scale LZ complexity, were able to demonstrate an 86% classification accuracy by
accounting for the different frequencies of information content in the electroen-
cephalogram. Similarly, Papaioannou et al. [63] showed that multiscale complexity
analysis of temperature signals from patients with systematic inflammation, sepsis
or septic shock could be used to determine the early presence of pathology.

In this approach, the sampling frequency is altered by a scale factor τ defining
the scale level used to resample the original signal reducing the scale of the time
series. For the time series {x1, . . . , xN }, where N is the number of samples, the
coarse-grained time series, yτ , is:

yτ
i = 1

τ

iτ∑

i=(i−1)τ+1

x j , 1 ≤ i ≤ N/τ (19.5.1)

Thus, for an LDF signal originally sampled at 40 Hz, the LZC can be evaluated
at different LDF sample rates, where the sampling frequency is fτ = 40/τ where
τ is the scale factor. At scale τ = 1 the original signal is preserved at 40 Hz and
at scale τ = 24 resampled to 1.67 Hz. At scale factor one, the time series y1 is the
original signal and the length of each coarse-grained time series {yτ } is equal to the
original signal divided by the scale factor, τ. It has been suggested that the length
of signal required to obtain viable complexity measures and reported that a signal
length > 1000 samples are required which equates to 10 min captured at 40 Hz at
scale τ = 24 [83].

An example of the application of the multiscale approach is shown in Fig. 19.2



19 Complexity-Based Analysis of Microvascular Blood … 301

Fig. 19.2 Averagemultiscale analysis of skin blood flux signalsmeasured at the forearm using laser
Doppler fluximetry at 33 °C (blue) and at 43 °C (red). a multiscale sample entropy, b multiscale
Lempel-Ziv complexity, cMultiscale Effort to Compress complexity. Values are presented as mean
± SEM for n = 15 healthy individuals. From [83]

taken from Thanaj et al. [83]. Overall, the reduction in the information content of
the signals analysed acrossmultiple sampling frequencies (lower sampling frequency
corresponding to higher time-scale) seen during the vasodilator response towarming,
is similar to that using conventional uni-scale analysis. However, as sampling
frequency decreases LZC can also be seen to increase as does the separation between
the groups until the Nyquist frequency of the original BF signal is reached or passed.
Assuming the Nyquist frequency is the upper limit of the cardiac band of 1.6 Hz, then
this sampling frequency will be 3.2 Hz (τ = 12). Below this sampling frequency,
the influence of the relatively periodic heart rate will be reduced and the informa-
tion content of the signal increased. At lower sampling frequencies the resampled
BF signal covers a longer time period and the lower frequencies associated with
flow motion contribute proportionally more to signal variability resulting in higher
complexity.

In an attempt to address the physiological interpretation of the complexity of
BF signals Chipperfield et al. [18] have explored how the spectral components of
the BF signal influence its information content and hence complexity. They exam-
ined the correlations between the power content of the five frequency intervals and
MLZC over sampling frequencies of 40–1.67 Hz [18]. They showed that endothelial,
neurogenic, myogenic and respiratory band activity all contributed positively, and
the relatively regular cardiac band activity negatively, to the information content of
the resting BF signal measured at the forearm. This contribution appeared to vary
with haemodynamic state [14] and with pathology [18]. Used in combination with
time- and frequency-domain metrics this approach could potentially discriminate
between the varying mechanistic influences that determine network perfusion [17].
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However, entropy measures do not show the same changes through scales as
complexity. Humeau et al. [41] in a recent study of the multiscale entropy (MSE)
analysis of LDF signals in healthy subjects, showed a similar behaviour of the MSE
of the BF signal when filtered for the frequencies associated with heart rate (∼0.6–
2 Hz). These authors suggested that the increase and then decrease of the MSE over
the scales may be due to the non-periodic nature of the signals and therefore the
progression of complexity in multiple scales cannot be stable [41].

19.6 Other Descriptors of Time- and Frequency-Domain
Characteristics of the Microvascular Blood Flux
Signal

There are a growing number of publications on the analysis of other time and
frequency characteristics of LDF signals. For example, empirical mode decomposi-
tion is a method of decomposing a signal in the time domain, whichmay be nonlinear
and non-stationary, into a set of functions allowing the varying frequencies in time
to be preserved. Humeau-Heurtier and Klonizakis [42] used this approach to find
instantaneous frequencies from intrinsic mode functions, in healthy subjects and
patients with varicose veins. Liao and Jan [51] analysed nonlinear properties of
LDF signals in subjects at risk of pressure ulcers using ensemble empirical mode
decomposition to examine the self-phase synchronisation between the component
frequencies of blood flow oscillations. However, two of the most promising areas
of current investigation are time localised phase coherence and the use of attractor
reconstruction.

19.6.1 Time Localised Phase Coherence

Phase coherence is another approach to studying interactions between different
time series. High phase coherence synchronisation can be understood as connec-
tivity/congruence between studied signals. This approach has been applied by
Bernjak et al. [9] to simultaneously recorded skin blood flux and tissue oxygena-
tion signals measured at the forearm of healthy volunteers. The phase coherence was
estimated as the difference in instantaneous phases at each frequency and each time
point, using a wavelet transform. A major finding using this approach was that the
phase difference changed over time and with the microvascular bed sampled. The
authors observed a significant phase coherence between the two signals in the low
frequencies and also in the cardiac frequency band in the superficial dermal vascular
bed. They reported no significant phase coherence in deeper tissues [9]. Similarly,
Tankanag et al. [82] investigating wavelet phase coherence of oscillations between
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two different skin sites, also in healthy individuals, demonstrated both local and
central mechanisms regulating low-frequency blood flow oscillations.

19.6.2 Attractor Reconstruction

Attractor reconstruction analysis has been used previously to determine changes
in the shape and variability of quasi periodic signals, achieving a two-dimensional
attractor and providing features such as density and symmetry. Attractor reconstruc-
tion has been previously applied to various physiological data including blood pres-
sure [5, 60, 61], plethysmographic [87], electroencephalographic (EEG) [88] and
blood flow signals [7, 12, 32, 64]. The attractors reconstructed from these times
series, using a suitable time delay and embedding dimension, contain properties that
can be used to define the dynamics of the system and provide a visual representation
of the system’s stability [44].

In this approach, the signals are first reconstructed in three-dimensional space
with a time delay, τ , computed using the mutual information analysis where the
average mutual information between two instances i and i + τ reaches its first local
minimum [44, 81] and the first local maximum is the average period,T , of the signal.
Then, the ideal time delay will be either τ = T/3 or τ = 2T/3. So, for a time series
x(t), the two additional variables will be:

y(t) = x(t − τ) and z(t) = x(t − 2τ).

The reconstructed phase space can be now plotted as (x, y, z). Then, the variation
of the time series of the (x, y, z) attractor is removed by projecting the attractor in
two-dimensional space, referred as plane (v, w) perpendicular to the vector (1, 1, 1)
forming two new variables:

v = 1√
6
(x + y − 2z) and w = 1√

2
(x − y).

The two-dimensional plane (v, w) will be defined as periodic, with period T = 3τ
when a symmetric triangular shape is observed.

Recently, Aston et al. [5] have applied a new approach, attractor reconstruction
analysis (ARA), which quantifies the changes in the morphology and variability of a
quasi-periodic signal without affecting the signal information, to arterial blood pres-
sure signals, photoplethysmogram signals and electrocardiogram signals captured
from animals and humans. ARA provides a two-dimensional colour-scaled repre-
sentation of the signal producing features like density and symmetry by which Aston
and colleagues [4, 5, 16, 60] were able to identify changes in the shape and variability
of the signal associated with cardiovascular function. Similarly, González et al. [32]
investigating the attractors of rheoencephalographic signals in human volunteers,
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found that nonlinear features derived from the attractors were able to detect the
changes in the cerebral blood flow during apnoea.

LDF BF signals are also quasi-periodic and quasi-stationary and may also lend
themselves to the attractor reconstruction method as a potential method by which
to identify changes in the microvascular functionality. Thanaj et al. [84] showed a
significant drop of the maximal density derived from the ARA, during increased
flow, with a good discrimination of the blood flow signals between two functional
haemodynamic states (Fig. 19.3).

For example, Fig. 19.3 shows the attractors generated from the entire BF signal
obtained from one individual, under thermoneutral conditions, randomly selecting a
window during a steady state at 33 °C, during transition and during a steady state at
43 °C, that illustrate the changes in different haemodynamic states. The windows of
the blood flow signal in Fig. 19.3a shows the segments from the signal in Fig. 19.3b
corresponding to the attractors in Fig. 19.3c. The window of the BF signal at 33
°C is shown to result in a dense attractor with many overlaps. The window at the
transition time illustrates the BF signal during the last 40 s of the transition, showing
the increase of the signal amplitude and therefore the attractor becomeswider and less
dense. Similarly, the window at 43 °C shows the BF signal at 43 °C corresponding
to larger attractor as the amplitude of the signals is increased as it represents the
increased amplitude of the signal. This finding is consistent with the recent studies

Fig. 19.3 a Windows of 20 s each derived from the blood flow signal at 33 °C, during transition
time and at 43 °C. b A blood flow signal of one healthy volunteer at baseline temperature, at 33 °C,
during transition time from 33 to 43 °C and during local warming at 43 °C. Lines indicate the end
of each window. c The reconstructed attractors for each of these windows. From [84]
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Fig. 19.4 a Schematic representation of an arteriolar bifurcation showing the keymeasured param-
eters of arteriolar diameter and erythrocyte velocity (measured using optical Doppler velocimetry)
used to calculate blood flow volumes. Perfusion distribution volumes are given as the proportion-
ality parameter γ and (1 − γ) in the two daughter arterioles arising from a parent. RBC, red blood
cell. b Presentation of the chaotic attractor describing the overall spatial-temporal behaviour of γ at
1A-2A arteriolar bifurcations in the lean Zucker rat (blue) and obese Zucker rat (red) under control
conditions (A). The attractors are presented as iterated maps, where the respective value for γ is
presented at multiple successive time points within that condition. Taken from Butcher et al. [13]

[4, 5, 16, 60] using attractor reconstruction analysis in arterial blood pressure signals,
suggesting that the size of the attractor is related with the signal amplitude.

In a not unrelated fashion, Frisbee and colleagues, using chaotic network attractor
analysis to describe perfusion heterogeneity (γ) at arteriolar bifurcations, have
described the spatial and temporal shifts in perfusion distribution within the skeletal
muscle microcirculation of rodents at risk of CVD (Fig. 19.4a, b for details) [13].
Frisbee et al. [30] went on to demonstrate that this attractor is a strong predictor of
functional outcomes within animal models of cardiovascular and metabolic disease
risk of increasing severity.

19.7 Concluding Remarks

The analysis of complex physiological time series is the focus of considerable atten-
tion as it has proved difficult to describe such signals using simple mathematical
models. One such signal is that derived from the superficial microvascular network
of the skin, sampled using non-invasive laserDoppler flowmetry. Time and frequency
domain analysis, used to assess network functionality and to describe the dynamic
characteristics of signals, has offered invaluable insight into the variations in the
amplitude and relative contribution of spontaneous, rhythmic oscillatory fluctua-
tions of local and systemic origin. Impairment of spatial and temporal regulation of
network perfusion by these localised mechanisms has informed our understanding
of how a mismatch between perfusion and demand, particularly at times of elevated
metabolic demand, may contribute to disease risk or severity. Recently, nonlinear
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analysis of the blood flux signals has begun to shed new light on the flexibility of the
system in response to standard haemodynamic perturbations and in human cohorts
at increasing risk and severity of cardiovascular and metabolic disease. Nonlinear
complexity methods have been used to quantify the regularity of the blood flux signal
by evaluating the presence of repeated patterns, providing complexity variants at
single and across multiple spatial and temporal scales. Further, the new approach of
attractor reconstruction analysis offers quantitative measures of the microvascular
system in phase space and a visual representation in the shape and variability of
the signal producing a two-dimensional attractor with features such as density and
symmetry. Nonlinear analysis thus provides a better characterisation of the flexibility
of the system in a range of pathophysiological conditions.

In conclusion, these mathematical approaches are able to identify changes in
microvascular function and have utility in understanding the fundamental mecha-
nistic contributors to microvascular (dys)function. To what extent they can be used
to discriminate between (patho)physiological states and in the understanding of the
effectiveness of interventions for reversing established vasculopathy and perfusion
impairments has yet to be determined. They have yet to be used to inform treatment
regimens or to predict clinical outcomes. With machine learning techniques these
novel approaches may, in future, support a more effective and mechanism-based
classification of tissue perfusion, providing a use in clinical assessment.
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Chapter 20
Sleep-Related Modulations of Heart
Rate Variability, ECG,
and Cardio-Respiratory Coupling

Thomas Penzel, Yaopeng Ma, Jan Krämer, Niels Wessel, Martin Glos,
Ingo Fietze, and Ronny P. Bartsch

Abstract Background: Integrated physiological systems following regular rhythms
are a prime example of biological oscillators. Such systems include the heart with an
oscillatory activity on a time scale of 1-second and the circadian pacemaker leading
to a close to 24 h sleep-wake rhythm. Other prominent physiological oscillations
each characterized by specific time scales are brain waves, respiration, blood pres-
sure and vascular activity, and sleep-stage transitions with non-REM/REM cycles. In
the healthy organism, these oscillators interact with each other, and studying those
interactions during physiological transitions and in patients with disorders helps
to uncover and better understand the underlying mechanisms. Methods: In order
to investigate the coupling of these oscillators, sleep studies with cardiorespiratory
polysomnography are performed on persons with healthy sleep and with sleep disor-
ders. Polysomnography includes the recording of the electrocardiogram (ECG), the
sleep-electroencephalogram (EEG), respiration, blood pressure/pulse wave, oxygen
saturation, and movement activity by means of electromyogram (EMG). The anal-
ysis is performed visually by sleep experts, and computer assisted with time domain,
frequency domain, and non-linear methodologies. Results: The parameters obtained
provide information on the regulation of the autonomic nervous system (ANS) during
sleep. TheANS is regulated totally different during slow-wave (non-REM) and REM
sleep. Beat-to-beat heart-rate variations allow us to estimate a scoring of sleep stages.
To some degree it is possible to track transitions from wakefulness to sleep by solely
analyzing heart-rate variations. ECG and heart rate analysis allow assessment of
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sleep disorders as well. Cyclical variations of heart rate combined with respira-
tion-modulated changes in ECG morphology (amplitude of R wave and T wave)
provides reliable detection of sleep-disordered breathing. Conclusions: The assess-
ment of signals being easily accessible like ECG and heart rate can help to assess
sleep, sleep stages and sleep disorders with an acceptable accuracy, even if reflecting
physiological functions indirectly.

Keywords Sleep stages · Autonomic function · Heart rate variability · ECG ·
Cardiovascular regulation · Sleep apnea · Cardiorespiratory coupling

20.1 Introduction

Sleep takes about one third of human life and is important for rest and for recovery
from daytime activities. Sleep is not a homogenous state but comprises different
stages such as light sleep, deep sleep and rapid eye movement (REM) sleep, which
serve different physiological functions. For example, deep sleep seems to be most
important for physical recovery and for removing waste metabolites from the brain
[11]. Growth hormone is secreted during deep sleep, and this sleep stage is most
important for immune system build-up. REM sleep is associated with dreaming
and memory functions, and thus REM sleep is thought to be important for mental
recreation and mood. During the process of sleep, these different sleep stages follow
one after the other in a well-defined order and sequence starting with light sleep,
followed by deep sleep and then REM sleep. This sequence is called a sleep cycle
and has a duration of 80 to 110 min in general. Over the course of the night, there
are between 4 and 6 such sleep cycles. In the beginning of the night a sleep cycle
contains much more deep sleep and very short REM sleep, while towards the end
of the night, a sleep cycle has little, if any deep sleep and much longer REM sleep.
As such, the beginning of sleep and the end of sleep are very different. The entire
‘sleep cycle program’ is sensitive to behavior, external influences (e.g., light, noise,
temperature), internal influences (e.g., food, stress, drugs, medications), and is much
influenced by disease. Of particular importance in this context are sleep disorders
that originate out of the sleep process itself. Sleep medicine has defined 66 distinct
sleep disorders, among which insomnia (the inability to fall or stay asleep) and
sleep apnea (respiratory cessations during sleep) are the two most prevalent and
well-known examples.

In order to investigate sleep, in healthy subjects and in patients with sleep
disorders, polysomnography (PSG) is commonly used in a sleep laboratory. PSG
recordings include several electroencephalography (EEG) electrodes placed on well-
defined locations on the scalp. To recognize REM sleep and to distinguish the
different sleep stages, in addition to EEG, the electrooculogram (EOG) and the
electromyogram (EMG) of the chin are recorded. A screen shot of these signals
is depicted in Fig. 20.1a. In order to detect sleep disorders, such as sleep apnea,
additional signals need to be recorded. At first, cardiac and respiratory signals were
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added in the 1980’s, coining the term cardio-respiratory polysomnography. However,
respiration as recorded during sleep needs a longer time window to be evaluated as
depicted in Fig. 20.1b. Only with the help of cardio-respiratory polysomnography,
sleep apneas could be detected and classified into obstructive sleep apnea (OSA)
and central sleep apnea (CSA) (Fig. 20.2). Nowadays, PSGs containing all these
raw data are recorded in hundreds of sleep centers worldwide. The matured disci-
pline of sleep medicine trains sleep physicians and sleep scientists to diagnose all
the different kinds of sleep disorders based on their PSG characteristics as well as
clinical symptoms and consequences.

The cardiac component of cardio-respiratory polysomnography is covered by
electrocardiography (ECG) and heart rate recordings. However, cardio-respiratory

Fig. 20.1 a Polysomnography recording in a sleep laboratory. On top the ‘Hypnogram’, the
sequence of sleep stages over the course of the entire night is depicted. The blue arrow marks
the time point for which the raw signal traces are presented just below. The time window presented
for the raw sleep traces is 30 s. The raw signal traces show from top to bottom, first the sleep stage
‘N2’ which is ‘light sleep’. Then there follows the sleep EOG traces, the sleep EEG traces, the
EMG of the chin muscle and the lowest trace is the ECG over the chest wall. The EEG traces do
show sleep spindles and K-complexes which are characteristic and required to score sleep stage
N2. b Polysomnography recording in a sleep laboratory. On top the hypnogram is depicted which
shows the time course of sleep stages over the entire sleep recording. The blue arrows (almost at
the end of the night) show the time window for which the raw signal traces are depicted below.
The time window for the raw signal traces is 5 min. This window length is usually chosen to score
respiratory events such as sleep apnea and hypopnea (marked by red bars), and oxygen desaturation
events (marked by blue bars). The sleep EEG (shown in the upper raw traces), which was the subject
of attention in a, are too small to be evaluated here visually. Therefore, the polysomnography is
typically analyzed twice using 30 s and 5 min time windows to score sleep stages and respiratory
events, respectively



314 T. Penzel et al.

Fig. 20.1 (continued)

evaluation is often underrepresented in clinical sleep reports albeit their important
diagnostic information for autonomic nervous system activity during sleep. In this
chapter, we present major methodological developments in sleep research regarding
ECG, heart rate variability and cardio-respiratory coupling, and we outline physi-
ological and pathophysiological aspects related to sleep medicine obtained by new
approaches. We will describe the related technical developments and new possibili-
ties, as well as the present status of limitations of such approaches. At the same time,
however, it has been possible to consider only a highly restricted number of studies
and, consequently, of approaches and algorithms.

20.2 Nocturnal Electrocardiography (ECG) Recordings
to Monitor Changes in Autonomous Nervous System
Activity During Sleep

In addition to electrophysiological parameters measured at the head by electroen-
cephalography (EEG), electrooculography (EOG), and electromyography (EMG),
investigations of physiological functions in sleep require recordings of respiration,
bodily movement, and—as a reflection of the cardiovascular system—the ECG
[5]. With respect to its signal amplitude of about 1 millivolt, the ECG represents
the strongest electrophysiological signal of the human body. It is recorded with a
sampling frequency of at least 100 Hz and, with modern equipment, with 500 Hz
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Fig. 20.2 Examples of respiratory events as scored in cardiorespiratory polysomnography. The
top panel depicts epochs of obstructive sleep apnea (OSA—marked by purple bars), whereas the
bottom panel shows central sleep apnea (CSA—pink bars) and hypopnea (grey bars). OSA andCSA
are both characterized by sleep-disordered breathing but have very different physiological origins.
While OSA is caused by obstruction of the upper airways, CSA is due to absent respiratory drive
from the brain stem. This can be seen in the three simultaneously recorded respiratory signals from
airflow, abdomen and thorax. During OSA, thorax and abdominal movements are still detected by
respiratory belts, however, no breathing is taking place and the airflow signal stays flat. In contrast,
for CSA no activity is detected in all three respiratory signals. The top trace of each panel shows the
simultaneously recorded signal of RR interval durations (i.e., inverse heart rate) that significantly
changes during apnea events

[5]. ECG recordings below 500 Hz, to be sure, are associated with restrictions
involving the detection of minor but important changes in beat-to-beat heart-rate
variations (‘heart rate variability’—HRV). With respect to amplifier technology, and
in comparison to EEGs and EMGs, ECGs are relatively simple to measure owing to
their pronounced signal amplitudes. Consequently, and based on knowledge of the
fundamental physiology of the autonomic nervous system, interest arose in applying
the ECG as a simple diagnostic tool for studying sleep and sleep disorders, in the
sense of a surrogate parameter.

During sleep, the autonomic nervous system is subject to pronounced changes
and variability [37]. The activity of many physiological systems is greatly reduced
during sleep, including the metabolic system, which causes all functions of the auto-
nomic system to adapt accordingly. Indeed, such pronounced alterations are linked
to the stages of sleep in a profound way, with the result that sleep itself has been
characterized as a serious trial for the autonomic nervous system [45]. Moreover,
the particular sleep stages have specific effects on heart rate. As we know from
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Snyder’s physiological investigations, heart rate continuously falls with sleep depth
and reaches lowest values in deep sleep [37]. In parallel, during deep sleep, sympa-
thicotonic nervous activity falls to very low levels, and the parasympathetic nervous
system dominates [38]. In contrast, during REM sleep, the brain and other physio-
logical systems show higher levels of activity (comparable to relaxed wakefulness)
associated with increased sympathicotonia [38]. Consequently, the mean heart rate
and HRV during REM are higher compared to light and deep sleep. In addition to
these sleep-stage influences, heart rate and HRV are subject to circadian modulation
and are also evidently influenced by prior extensive phases of wakefulness or sleep
deprivation leading to increased sleep drive [12].

Variations in heart rate obtained from nocturnal ECG recordings can detect
changes in the functions of the sympathetic and parasympathetic nervous systems,
and analysis of alterations in this context can be performed by classical techniques
such as spectral analysis of HRV [1]. Nowadays, it is common knowledge that the
spectral power in the low-frequency range (LF, 0.04–0.15 Hz) mostly relates to
sympathetic activity, whereas the high-frequency range (HF, 0.15–0.4 Hz) is associ-
ated with respiration and the activity of the parasympathetic nervous system (HRV
[40]). Discussion on the significance of very low frequencies (VLF, below 0.04 Hz)
is still taking place. Here, in conjunction with sleep-related breathing disorders, these
frequencies play a major role as pointed out in a recent systematic review [8].

Based on spectral power and other statistical methods of HRV analysis, sleep
stages can be estimated through the differences in autonomic nervous system regu-
lation. Furthermore, up to some degree, it is possible to track transitions from wake-
fulness to sleep by analysis of heart-rate variations alone. In addition, an ECG during
cardiorespiratory polysomnography enables the monitoring of other vital functions
during nocturnal sleep studies [27] because it is sensitive enough to detect brady-
cardia or tachycardia, paroxysmal atrial fibrillation, AV block and in some cases
nocturnal coronary ischemia [7]. ECG also enables initial evaluation of nocturnal
arrhythmia in the sense of HRV and ectopic beats [7]. As a result, typical procedures
involve the recording of only one single-channel ECG, which can provide support
for a more comprehensive examination by multi-channel ECG diagnosis or by long-
term ECG. ECG and HRV analysis allow the assessment of selected sleep disorders
as well. For example, sleep disordered breathing can be detected reliably by studying
cyclical variation of heart rate combined with respiration-modulated changes in ECG
morphology (amplitude of R wave and T wave).

20.3 Non-linear Analysis of Heart Rate Variability

Attempts to identify sleep stages and sleep apnea on the basis of heart rate and
with the help of computer-aided techniques, have encountered problems because
of the non-stationary, intermittent characteristics of heart rate interval recordings
that violate the preconditions of classical frequency-analysis procedures. This has
led to consideration and trial of new techniques taken from statistical physics. These
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techniques are otherwise applied in the analysis of weather data, water-level informa-
tion, and stock-exchange prices, and are widely considered to be methods of fractal
analysis and chaos theory. For these approaches, the objectives are to analyze data
that appear coincidental and to detect an inner structure and patterns of order that
deviate frompure randombehavior and that demonstrate phenomena of determinism.
One primary attempt here is to analyze the extent to which one value depends on
preceding values that happened seconds, minutes or even hours earlier. If there is
such non-random dependence among the values of a time series, the data are termed
to be auto-correlated.

One of the first applications of non-linear dynamics evaluated the complexity of
HRV throughout an entire night by analyzing beat-to-beat variability by means of
Wavelet- and Hilbert transform and found differences between healthy subjects and
patients with sleep apnea [17]. Subsequent studies on HRV applied detrended fluc-
tuation analysis (DFA) to quantify short and long-term correlations but encountered
difficulties due to sudden jumps and fluctuations in the signals’ dynamics caused by
changes in sleepers’ positions at night, and during transition from one sleep stage to
the next. Such alterations render it impossible to find uniform patterns of behavior for
beat-to-beat variability in the heart rate. To enhance analysis, therefore, the course of
nocturnal heart rates was broken down according to the various sleep stages, and the
disturbances resulting from stage transitions were disregarded [6]. In other words,
sequences of pure sleep stages were prepared for study of heart rate. It was only in
the second step that the beat-to-beat sequences of heart rate were once again investi-
gated for variability and sleep apnea. Investigations took place to quantify the extent
to which one heartbeat interval is correlated with subsequent heartbeats and revealed
distinct and highly pronounced differences between the sleep stages. Specifically, in
deep sleep, there is a virtually uncorrelated behavior pattern from heartbeat to heart-
beat, whereas extensively correlated heartbeat behavior exists during REM sleep.
These differences were greater between the various sleep stages than the differences
found for episodes of heart rate with and without sleep apnea [6].

Initially, these results were surprising, since the influence of sleep apnea on heart
rate appears to be pronounced and distinct. However, the marked changes in sympa-
thetic tone throughout the sleep stages provide a possible explanation. Changes in
sympathetic tone with respect to heart rate are not distinctly visible, since they are
smaller in amplitude. Still, they are highly apparent in the beat-to-beat variation
in heart frequency. This also explains why differences between the sleep stages as
determined by frequency analysis could in fact be determined. Indeed, in frequency
analysis, not only the frequencies are taken into account, but precisely also their
amplitudes (i.e., spectral power). Furthermore, our investigations of heart rate vari-
ability during sleep indicate that influences of autonomic tone on heart-rate regu-
lation are so dominant that they still prevail during sleep apnea, and that they also
allow distinction to be drawn between sleep stages among these patients as well [6].
Therefore, with respect to beat-to-beat variability, the cyclical variation in heart rate
caused by sleep apnea merely signifies a relatively minor additional disturbance.
Accordingly, the results revealed the feasibility of a new procedure for determining,
from beat-to-beat regulation of heart rate, differences between sleep stages [28] with
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the greatest differences arising between deep sleep on the one hand—with virtually
uncorrelated beat-to-beat regulation—and REM sleep on the other, with extensively
correlated beat-to-beat regulation of the heart rate.

20.4 Cyclical Variation of Heart Rate with Sleep Apnea

Very shortly after Guilleminault described sleep-related breathing disorders, it
became apparent that characteristic alterations in heart rate take place during obstruc-
tive apnea events [14]. This phenomenon was described as cyclical variation in heart
rate, and the proposal arose to utilize this characteristic pattern for diagnosis of sleep
apnea [14]. Many diagnostic devices were developed to detect and diagnose sleep
apnea outside the context of a sleep lab utilizing this heart-rate pattern [25].

During each individual apnea phase, relative bradycardia becomes apparent, with
relative tachycardia occurring during each subsequent increased respiratory activity.
These patterns in heart rate—arising from alterations in sympathetic nervous activity
during each apnea event—are, in their temporal course, directly linked to breathing.
As a result, it is possible to count the number of apnea events based on heart rate
data alone. For example, the MESAM system and its successors, as well as new
polygraph devices, employ heart rate for diagnosis of sleep apnea in an outpatient
setting [25].

Since the cyclical variation in heart rate presents an impressive periodic pattern,
it became obvious to apply methods of frequency and spectral power analysis once
again to quantitatively assess cyclical variations in heart rate—and thus, potentially
determine the degree of severity of sleep-related breathing disorders. To this end,
various teams have employed the method of Fourier analysis, however, limitations
arose in the attempt to evaluate the periodic patterns automatically [17]. This is
because the cyclical variations are not strictly periodic since apneas and hypopneas
show large variation in duration especially when occurring in various sleep stages.

Period analyses in the time domain or by classical spectral methods quickly reach
their limits. The cyclical variation in heart rate remains dependent to greater or
lesser degree on physical training condition, age, weight, and concomitant diseases
(e.g., diabetes). Often, there are individual characteristic patterns of bradycardia and
tachycardia that are influenced by several factors such as concomitant cardiologic
diseases, arrhythmia, pacemaker ECGs, and heart failure—whichmake themdifficult
to be interpreted. For these reasons, a fully automated assessment of sleep-related
breathing disorders cannot take place reliably if it is based on cyclical heart-rate
variation alone. Determination of oxygen saturation, changes in ECG morphology
and more direct recordings of breathing disorders are essential for greater reliability.
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20.5 Detection of Sleep Apnea Through Changes in Heart
Rate and ECG Morphology

In 2000 at the Computers in Cardiology Conference in Boston, USA, public compe-
tition took place as part of a congress held by engineers of biomedical technology
who are involved with ECG analysis. This competition involved solving a problem
encountered in ECG analysis, i.e., recognition of sleep apnea by study of nocturnal
ECGs [29]. ECGs from healthy test subjects, patients with moderate sleep apnea, and
patients with severe degree of sleep apnea were made available on a server of PHYS-
IONET [13]. A total of 35 nocturnal ECG recordings were provided for training
purposes, and 35 recordings were provided to competition participants for purposes
of analysis. Two teams succeeded in correctly classifying all patients and were even
able to correctly identify sleep apnea epochs in 92 and 94% of cases.

In addition to data on the cyclical variation in heart rate, these teams had also
analyzed the corresponding ECG plots [29]. This indeed revealed that respiration
modulates the amplitudes of the R- and T-waves of the ECG—a phenomenon that
was observed earlier but had not been assessed in the context of apnea detection [19].
The so-called electrocardiographically derived respiration signal (EDR)—i.e., data
on respiration as derived from an ECG—enables evaluation of the respiration plot
and, in turn, detection of apnea andhypopnea events.Althoughwhen employed alone,
EDR also demonstrates weaknesses in recognition of such events, in combination
with data on the cyclical variation in heart rate, it offers an astonishingly high level
of certainty in detection of sleep-related breathing disorders from ECGs.

Morphological alterations of the ECG during sleep apnea arise from the fact that
the influence of breathing on an ECG is mechanical in nature, and it is therefore
independent of factors that affect the eloquence of the cyclical variation in heart
rate. As a result, combining the evaluation of autonomic influences on the ECG
(i.e., heart rate) and assessment of the mechanical, respiration-mediated influences
on the ECG (i.e., EDR) enables good detection of sleep apnea events. If additional
physiological measures are included such as oxygen saturation, snoring, and body
movement during sleep, a polygraph system can be applied that can achieve a high
degree of sensitivity and specificity for detection of sleep-related breathing disorders
even without direct registration of respiration [9].

20.6 Cardiopulmonary Coupling and Cardiorespiratory
Phase Synchronization

The regulation of breathing and heartbeat is coupled [18], and cardiopulmonary
coupling (CPC) is studied mostly in the context of respiratory sinus arrhythmia
(RSA), which leads to variations in the heart rate and constitutes a portion of HRV.
Respiratory sinus arrhythmia describes the respiratory-gated fluctuation of the heart
rate: during inhalation, heart rate increases and during exhalation, it again subsides.
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Petr Einbrodt, in 1860,was thefirst to describe this formof cardiorespiratory coupling
[10]. During daytime activity and exercise, RSA is usually not visible, or much atten-
uated. In contrast, at rest and during sleep, RSA is pronounced and easily recogniz-
able [31]. Early studies were even able to describe correlation between the extent of
coupling and the various sleep stages.

An additional coupling phenomenon was found in the synchronization of heart
beats and respiratory phases. Phase synchronization as the adjustment of the phases of
self-sustained oscillators due to their weak interaction was described for the first time
in the seventeenth century in conjunction with pendulum clocks [16, 30]. In the case
of cardiorespiratory phase synchronization (CRPS), heartbeats occur in increased
numbers during certain phases of the respiratory cycle: e.g., at the beginning of the
inhalation phase, at the end of the inhalation phase, and in themiddle of the exhalation
phase [3, 4, 35, 39, 44].

These two coupling phenomena—respiratory sinus arrhythmia (RSA) and phase
synchronization (CRPS)—can occur independently of each other (Fig. 20.3). In addi-
tion, the twocouplingmechanisms are variously influencedbydifferent physiological
parameters. A prominent example is the respiratory frequency that largely impacts
the extent of RSA but not CRPS [4].

The physical training condition of the persons examined is thought to influence
the extent of CRPS [35]. Athletes have demonstrated pronounced synchronization
between respiration and heartbeat, which led to the conclusion that the occurrence of
CRPS represents ergonomically effective regulation. The influence of the extent and
the effectiveness of this coupling on physical or mental performance have not yet
been determined. In this context, such coupling could also represent a good surrogate
parameter fore recovery after physical exertion.

Further studies have systematically investigated CRPS during sleep for different
age groups of healthy subjects and among sleep-apnea patients [4, 20, 21, 32].Among
healthy persons, the dependence of the extent of synchronization on the various
sleep stages becomes evident and CRPS is most distinctly pronounced during deep
sleep, and least pronounced in REM sleep [4]. This sleep-stage dependency is many
times greater for phase synchronization than for respiratory sinus arrhythmia and is
likewise much greater than the variations in mean heart rate, HRV, and respiratory
rate. However, as soon as sleep apnea occurs, exertion takes place in the regulation
of the breathing and circulatory system. As a result, the phase relationship between
these two systems is impaired to the extent that CRPS can no longer be detected.

In order to study cardiorespiratory coupling during sleep apnea, cardiorespiratory
coordination was introduced recently [32]. Cardiorespiratory coordination is a time
domain measure quantifying chronological interrelations between respiration and
heartbeat that is not affected even by epochs of hyperventilation following apnea
events [32]. Additionally, cardiorespiratory coordination is less sensitive to cardio-
respiratory disturbances in general and therefore may be more suitable for sleep
apnea detection than CRPS. This is also because for CRPS, each respiratory cycle
is transformed into phase space, which means that during apneas (i.e., prolonged
periods of time until the next respiratory onset occurs), many more heartbeats will
fall into the ‘apnea’ respiratory cycle than during ‘normal’ respiration. This results in
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Fig. 20.3 Respiratory sinus arrhythmia (RSA) and cardiorespiratory phase synchronization (CRPS)
represent different forms of cardiorespiratory coupling. RSA leads to periodic modulation of the
heart rate within each breathing cycle (sinusoid least-squares-fit line through the data points—green
color), and CRPS (highlighted by red ovals) is characterized by clustering of heartbeats at particular
phases ϕr of the breathing cycle. Shown are consecutive heartbeats over a period of 90 s. The x
axis indicates the corresponding respiratory phases ϕr where heartbeats occur; the y axis shows the
deviation of each heartbeat interval RRI from the mean RR calculated by averaging all RRI within
a given breathing cycle. Heartbeats are plotted over pairs of consecutive breathing cycles, to better
visualize rhythmicity. Data are selected from the same subject during deep sleep and show in the
top panel a segment with RSA and no CRPS (i.e., heartbeats are homogeneously distributed across
all phases of the respiratory cycles) as well as RSA and CRPS occurring simultaneously (lower
panel) (adapted from [4] with different data)

diagonal lines in the cardiorespiratory synchrogram as seen in Fig. 20.4 that disrupt
any indication of coupling that might be present in phase space. However, in the
cardiorespiratory coordigram, prolonged respiratory cycle lengths due to apnea do
not disturb the plot itself and the corresponding heartbeats are merely situated farther
away from �t= 0 (i.e., the respiratory onset) (Fig. 20.4). Overall, cardiorespiratory
coordination increases during and after obstructive sleep apnea [32] as well as central
sleep apnea. Figure 20.5 shows an example of cardiorespiratory coordination during
Cheyne-Stokes respiration with central sleep apnea.

Cardiopulmonary coupling parameters based on RSA, cardiorespiratory phase
synchronization and the coordination of respiration and the circulatory system are
therefore important additional markers for cardiovascular regulation, similar to HRV
[42, 43], blood-pressure variability [23], and baroreceptor sensitivity [22].



322 T. Penzel et al.

Fig. 20.4 Cardiorespiratory synchronisation versus coordination during central sleep apnea.
Breathing frequency and amplitude both influencing the synchrogram as well as the coordigram.
Apneas mean prolonged time to the next respiratory onset and thus are represented as disruptive
diagonal lines of heartbeats in the cardiorespiratory synchrogram. In the coordigram however, the
corresponding heartbeats are plotted farther away from �t = 0 and thus do not disrupt the plot
(adapted from [4] with different data)

Fig. 20.5 Increase in cardiorespiratory coordination across central sleep apnea. The airflow clearly
shows the begin and the end of the apnea and red horizontal lines in the coordigram indicate
increased cardiorespiratory coordination
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20.7 Discussion

New attempts are being undertaken with procedures involving more cost-effective
equipment and with easily accessible devices—such as with smartphones—to record
heart and pulse rates. From data gathered in this manner, spectral analysis and proce-
dures from nonlinear dynamics are used to calculate heart rate variability. Attempts
are likewise being made to apply findings from the above-described studies to work
with the signals involved. Other endeavors with smartphone applications use simply
recorded signals to detect not only the respective sleep stages but also the occurrence
of sleep apnea.

These often inexpensive applications have found extensive use, since they offer
insights into sleep, from analysis conducted simply at home, of nocturnal sleep and
sleep apnea. In contrast to cardiorespiratory polysomnography among healthy and
sleep-apnea patients, none of these algorithms has until now been validated in clinical
studies. Clarification is still required of the extent to which these possibilities offer
diagnostic and prognostic potential.

Unfortunately, until now there is no analysis standard for the one-channelECG that
goes beyond simple statistics such as mean heart rate and maximum and minimum
heart rate values. Current clinical practice does not apply established or new algo-
rithms for HRV or cardiorespiratory coupling analysis, and therefore lags behind
the state-of-the-art techniques and knowledge of basic sleep research. In case of
HRV this may be due to the known interference between respiration and heart rate
variability parameters and only controlled conditions in terms of paced breathing
would allow a comparison of inter and intra individual changes. However, cardiores-
piratory coupling does influence both interdependent systems and therefore could
be very useful for clinical interpretation of PSG recordings. A necessary step in
expediting translational research might be a closer interaction between clinicians
and researchers on this topic. This may also help to interpret changes in parameters
as observed during autonomous arousals, which are not observed in EEG leads as
central nervous activations. Such arousals can be a consequence of brief movements
and respiratory irregularities such as sighs or other phenomena observed during
sleep that lead to short alterations in ECG and heart rate as well as blood pressure.
Currently, these brief events are not further evaluated and may be disregarded as
simple perturbations and noise although short transient events may be important for
a differential diagnosis and furthermore for a decision in treatment of persons with
sleep disorders.

New methods for the evaluation of ECG and blood pressure will allow to better
distinguish between subjects being healthy or disturbed sleepers, as already seen
in subjects with obstructive snoring, bruxism, or periodic leg movements without
cortical arousals. These people do suffer without obvious indications in conventional
sleep EEG parameters.

This uncertainty is especially significant in light of the necessary assumption
that this form of investigation is being conducted not only with healthy subjects
and with patients definitely suffering from sleep apnea, but also with persons who
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merely snore and others who represent mixed forms of snoring and sleep apnea. The
importance of HRV and cardiorespiratory coupling analyses becomes particularly
evident in the context of such borderline cases, which are even more widespread
than cases of unequivocal sleep apnea itself. For this reason, reliable validation
of such applications must be required before diagnostic employment. Otherwise,
they represent merely one more general application intended to measure data from
individuals and to expand their personal digital environment, without sustainable
background and without the possibility of specific and well-founded intervention.

First attempts in this direction are being made with recordings of single-channel
ECGs based on which HRV and EDR are determined, and from these data cardiopul-
monary coupling (CPC) is estimated [41]. It is also possible to analyze various
frequency bands—i.e., low-frequency coupling (LFC) and high-frequency coupling
(HFC)—to evaluate sleep (e.g., stable sleep, instable sleep, and REM sleep/wake)
and the occurrence sleep-related breathing disorders (SRBD) that lead to an elevated
share of LFC. It is furthermore possible to characterize existing SRBD on the basis of
various patterns in LFC. An initial study has revealed greater likelihood of a narrow-
band sample in LFC for periodically central apnea events—whereas, in contrast, a
more pronounced broad-band pattern is characteristic of predominantly obstructive
sleep apnea [36]. However, prospective studies are required to verify the extent to
which these indications hold true.

20.8 Summary

Analysis of ECG data and heart rate during sleep provides an appreciable diversity
of information on the physiology and the pathophysiology of sleep-wake regula-
tion. Assessment of nocturnal ECGs with respect to cyclical fluctuations of heart
rate, combined with studies of respiration-dependent alterations in ECGmorphology
(e.g., amplitudes of the R waves and T waves), allows reliable recognition of sleep-
related breathing disorders. The quality of sleep itself can also be evaluated by anal-
ysis of heart-rate variations. Deep sleep and REM sleep, to be sure, demonstrate
characteristic properties in heart-rate variability.

Even now, newmethods are being applied in practice by presenting sleep findings
that already include analysis of healthy sleep and sleep disorders with the aid of long-
term ECG systems, data from pacemaker ECGs, multi-night actigraphy data as well
as information from innovative, reduced-scale recording systems [2, 15]. To arrive at
solid diagnostic and therapeutic conclusions from these results, it will be necessary
to conduct prospective validation studies and to perform clinical evaluation with
parallel polygraphy and polysomnography. In addition, new algorithms are needed
which allow automated processing of heart rate and heart rate variability which
results in a conclusive report, similar to the report created from sleep-stage scoring
or respiration scoring.
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Chapter 21
Brain Morphological and Functional
Networks: Implications for
Neurodegeneration

Vesna Vuksanović

Abstract The highly complex architecture of brain networks has been characterised
bymodular structures at different levels of its organisation. Here, the focus is onmod-
ular properties of brain networks from in vivo neuroimaging of cortical morphology
(e.g., thickness, surface area) and activity (function). In this chapter, I review findings
on the mapping of these networks, including the time-varying functional networks,
and describe some recent advances in mapping the macro- and micro-scales of brain
organisation. The aim is to focus on cross-level and cross-modal organisational units
of the brain, with reference to their modular topology. I describe recent approaches
in network sciences to form bridges across different scales and properties. These
approaches raise great expectations that cross-modal neuroimaging and analysis may
provide a tool for understanding brain disorders at the system level.

Keywords Brain networks · Cortical morphology · Functional networks ·
Neurodegeneration

21.1 Introduction

Traditional approaches to the analysis of experimental recordings of brain activ-
ity have focused on the localization of function to specific regions of the brain.
While such approaches have enabled progress in understanding neuronal processes
in the healthy and diseased human brain, recent work suggests that the description of
the brain as a set of independent functional elements is an oversimplification. Each
brain region—far from acting in isolation—is functionally connected to other regions

V. Vuksanović (B)
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through structural white matter connections and through coherent activity [30, 58],
creating complex groups of interconnected functional units. The connectivity archi-
tecture of these units exhibits an extraordinary level of complexity, whose properties
can be analysed across multiple scales—spatial, temporal or topological. To address
these different levels of complexity, significant attention over the past decade has
focused on mapping the large-scale networks of the human brain extracted from
brain scans using Magnetic Resonance Imaging (MRI) [42, 63, 64]. The aim is to
provide a picture of the brain and its connections at the system level.

A common simplified form for brain networks maps is a graph, in which brain
regions (nodes) are linked to one another by network connections (edges) [13, 14].
The definition of a node or an edge is of critical importance to the relevance of the
resulting brain network models [4, 17, 84]. Inspired by neuroanatomy, the definition
of nodes and edges is commonly inferred from diffusion, structural or functional
MRIs [17]. For example, nodes are defined byBrodmann areas [37], gross anatomical
landmarks [25, 69], or increased functional activation [34]. Likewise, the number of
streamlines identified between MRI voxels via diffusion of water along the axons
[35], coherent/synchronized activity between voxels time series [55] or correlated
morphological characteristics [1] are defined as network edges.

Another level of brain network complexity is the arrangement of nodes and edges,
which defines network topology. Evidence has accumulated that large-scale brain
networks are characterized by modular topology. This means that they contain com-
munities – groups of nodes that are more densely connected to members of their own
group than to members of other groups [65]. Modular architecture, with anatomi-
cally segregated and functionally specialised communities, is potentially naturally
selected because it reduces metabolic costs [56]. From the graph theory perspective,
these networks are preferred since they reduce the wiring cost (the average length
and number of connections), which enables more efficient information processing
[65]. Moreover, recent findings demonstrate that functional networks are enabled
not only by critical modular interactions between brain areas, but also by swiftly
reconfiguring patterns of these interactions [16, 43, 68]. Whether the subject is at
rest [41], or performing either cognitively demanding or simplistic task, the patterns
of functional connections between brain areas change, revealing mutli-layered com-
munity structures in time-varying brain activity. Time-varying dynamics of these
networks accompany neurological disorders [45], brain injury [47], and psychiatric
disease [18, 82].

The estimation of brain structural and functional connections is confounded by
experimental limitations of MRI techniques. For example, limitations of diffusion
MRIs to accurately reconstruct crossing-fibers within white matter is well docu-
mented. More importantly, diffusion MRI, which is predominately used as a surro-
gate for structural brain connectivity (i.e., physical links between the nodes based
on white-matter fiber tracking), lacks tools for reconstruction of axonal connections
within gray matter [57]. Given that functional connectivity maps gray matter net-
works, there is a growing interest in anatomical MRI, (i.e., 3D T1-weighted images)
and gross morphological features that can be extracted from both gray and white
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matter using these images [2]. Anatomical MRIs are simple to acquire and are not
limited by artifacts to the same degree as other MRI-based techniques.

To bridge the above experimental limitations, and provide a new insight into
macro-scale brain connectivity and its advantages, my focus in this review is on
corticocortical networks extracted from anatomical and functional MRI, namely
morphological and functional networks. Corticocortical morphological networks are
extracted using T1-weighted anatomical MRI, which is a non-invasive assessment of
the brain’s structures at a sub-millimeter spatial resolution. Likewise, corticocortical
functional networks are extracted using functional MRI (fMRI), which records brain
activity via Blood-Oxygen-Level-Dependent (BOLD) signal as a proxy of neural
activity at the whole brain level. For the purpose of this article, I will review evidence
of (i) the corticocortical connections that are mediated by similarities in the cortical
morphology (i.e., cytoarchitecture) (ii) the relationship between functionally relevant
regional co-activity and underlying cytoarchitecture that may induce synchronized
plastic changes among related brain areas (i.e., activity-dependent plasticity) and (iii)
implications of this relationship for neurodegenerative syndromes. From the graph
theory perspective, my focus is (i) on the modular organisation of brain functional
and anatomical (morphological) networks, (ii) the time-varying modular topology of
functional interactions and (iii) on describing the potential of modular interactions
to inform theoretical and practical approaches to problems in neurodegenerative
syndromes.

21.2 Graph Theory and the Brain

One of the mathematical frameworks for studying the human brain structural (and
functional) organisation is graph theory. The brain network (graph) is modeled as a
set of nodes and edges. Nodes and edges are elementary building blocks of networks
and the definition of a node or an edge is of critical importance to the resulting
brain network models [15, 83]. The arrangement of nodes and edges defines the
organisation of the network, whose topology is quantified using statistical tools of
graph theory. Another major property of brain networks is the discovery that they are
modular by their topological organisation—they can be decomposed into groups of
nodes that are more densely connected to each other than with the rest of the network.
Inwhat follows, I will describe in greater details these critical brain network elements
and their topological properties, with reference to the two brain networks in focus.

21.2.1 Brain Network Node

A challenging question in the field of large-scale MRI-based brain network anal-
ysis is: how to define meaningful nodes for a brain network? The solutions range
from defining nodes using the native resolution of the MRI technique (i.e., voxel-
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Fig. 21.1 Brain networks fromMagnetic Resonance Images (MRI). (Top panel) creating the struc-
tural correlation matrix on morphological features measured at different brain regions. From left to
right: anatomical MRI, reconstruction of cortical anatomy from images and atlas-based parcellation
of the cortex (regions are colour-coded), extraction of themorphological features (thickness, surface
area etc.) and creation of the correlation matrix (colour-coded are edge weights). (Bottom panel)
creating the functional correlation matrix on regional time series. From left to right: functional
MRI, atlas-based parcellation of the cortex (regions are colour-coded), extraction of the regional
time series and creation of the correlation matrix from pair-wise correlations between them (color-
coded are edge weights). Time-varying functional correlation matrices are shown in the middle of
the panel—each matrix is calculated as explained using a sliding window approach

wise resolution) [71], validated parcellations of the cortex based on anatomical or
functional landmarks [25, 69] to using random parcellation to ensure equal size for
each node [28, 36].More data-driven approaches include connectivity-defined nodes
[34], multivariate decomposition of MRI signal (using statistical techniques such as
independent component analysis) [44, 55], or an a priori definition of nodes based
on meta-analysis [26] (Fig. 21.1).

Most of the studies on anatomical and functional MRI networks use validated
parcellations (brain atlases) to define nodes. The advantage of these methods is that
they are informed by measures of brain function and anatomy and tailored to test
specific hypothesis about brain networks of interest. The limitation is that they are not
always transferable across different imaging modalities. Nevertheless, findings show
consistency in measures of network topology across different parcellation schemes
andMRImodalities. Also, the basic estimates of brain networks organization such as
node degree (number of nodal edges), clustering (number of triangles in the network)
or path length (average number of edges between two nodes) are consistent across
different parcellations with the same number of nodes. Modular organization, which
is of interest here, is also consistent across anatomical and functional parcellations
andmodalities [20, 49, 74]. Futurework could corroborate these findings by utilizing
available random parcellations of the cortex and multimodal MRI techniques.
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21.2.2 Brain Network Edge

In functional and morphological brain networks, edges are defined through an asso-
ciation matrix that captures relations (e.g. cross-correlation, mutual information etc.)
between nodal features. The matrix maps all possible pair-wise statistical associa-
tions between either regional morphological features or time series of their activ-
ity. For the purpose of estimation of network topological organization, these matri-
ces can be binarised—mapping presence (and absence) of associations (edges); or
weighted—mapping strengths of association (edge strengths). There are differences
in approaches to analyse these networks. Binarised networks are analysed over a
range of binarisation thresholds to control for robustness and consistency of topo-
logical properties [5] and also for spurious/weak associations or noise [77]. Although
arbitrary by its nature, threshold is usually determined by network’s deviation from
random, null-model topology [60] and the presence of small-world and scale-free
topological properties [4]. Network edges can beweighted by the level (i.e., strength)
of association between nodal interactions. In functional networks, edges areweighted
by pair-wise temporal interactions, which are quantified either by correlation, coher-
ence or synchronicity between time series [55]. In anatomical networks, the edges are
weighted by statistical associations (e.g., correlations) between different regional fea-
tures: thickness, surface area, volume or curvature [3, 62, 79], usually across groups
of individuals.

Although neither functional nor morphological correlation networks are con-
structed on direct neural (axonal) connections between the regions involved, both
networks are largely constrained by underlying structural network [38]. For that rea-
son, numerous studies have been focused on functional interactions that mirror the
local (segregated) brain anatomy and axonal links between such interactions [38].
However, the two networks organisations and their (within-networks) interactions
suggest complex, many-to-one function-structure mapping [32, 54]. Here, the focus
is on how the brain cytoarchitecture underpins these patterns of structural-functional
network associations. The relation betweenmorphological and functional corticocor-
tical connections, which are mapped by cytoarchitectonic and functional networks
is discussed in the Sect. 21.3.

21.2.3 Brain Network Modules

Modular topology is one ubiquitous characteristic of complex networks (including
the human brain). Networks can be divided into modules by grouping the densely
intra-connected sub-sets of nodes into a single sub-group (i.e., module). Algorithms
for the division of a (real-world) network intomodules are usually optimized to allow
for sparse connections between groups (i.e., detection of overlapping communities)
[29, 52]. Furthermore, detecting modules in the network may help to identify those
nodes and their connections thatmay perform different functionswith some degree of
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independence. At the same time, detecting modular structures that underpin specific
function can be identified by characterizing interactions between those nodes that
show relatively similar activity/dynamics [29]. Likewise, meta-analysis onmore than
1000 fMRI has shown the existence of functional modules specialized for specific
cognitive processes [21].

The brain appears to be divided into ’functional modules’ whose intra-modular
connectivity reflects the underlying structural (axonal) connections [38]. However,
although functionalmodules usuallymirror local brain anatomy, they also incorporate
long-range interactions (i.e., those between spatially distant brain areas) [31, 75,
78]. More pertinent to this paper, the modular topology of brain functional (MRI)
networks is documented across different parcellations of the cortex (i.e., brain atlases)
[7, 49, 74]. Modularity as a property of morphology has been widely studied in the
context of evolution and development [48]. Recent neuroimaging studies suggest
modular organization of cortical morphology across regional thickness [74, 79],
surface area [61] or volume [3]. There is consistency in the organisation of these
networks whether they are based on correlating these features across individuals
within one group [61, 73, 74] or correlating regional features of an individual brain
[62]. The brain modular, yet integrated, functional organisation lowers the wiring
cost (i.e., the average length and number of connections) of the network [6], thus
potentially lowering metabolic costs [8] while providing more efficient information
processing [65]. More importantly, modularity, as mapped by large-scale brain fMRI
networks, is cognitively and behaviorally relevant; for example, it correlates with
variations in working memory [81] (Fig. 21.2).

21.2.4 Dynamical Functional Networks

An additional ‘layer’ to modular organisation of brain networks is the notion of
dynamical functional networks. In this context, the focus is on how likely regions are
to change their “module allegiance” and synchronize their activity with a different
set of nodes. The analysis of changes in network interactions over time utilises
non-stationary, time-varying dynamics of neuro-imaging recordings. Up to this
point, I have reviewed someofmethods tomap functional connectionswhichpredom-
inantly utilize static network approaches (in which network edges remain constant
throughout time) derived from graph theory [14, 24]. However, such approaches
are unable to characterize or identify changes in regional interactions over time.
Furthermore, the emergence of dynamic functional networks from static structural
connections may resolve a fundamental understanding of how structure and function
map onto each other.

A promising way to obtain a fundamental understanding of how patterns of func-
tional connectivity change over time is the simulation of brain dynamics using a
sophisticatedmodeling framework that implements nonlinearKuramoto-like dynam-
ics on a physical network backbone informed by both structural (white matter)
and functional (fMRI) connectivity maps [11, 76, 78]. At the same time, the
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Fig. 21.2 Characterizing theway that different brain regions connect to each other. A brain network
can be depicted using association matrix or graphs where the nodes are the brain regions and
the edges are statistical associations (connections) between regions. Arrangement of nodes in the
network defines its topology. a The example of an association matrix with the weighted edges
(represented by heat-map colours) between brain regions. This matrix can be binarized at a given
threshold (black-white matrix) and/or reordered according to modular connections between the
nodes (as in the matrix indicated by the right arrow). In this example network has four modules
(colored in magenta, green, blue and cyan). b Another way to visualize this same network is in
the form of a graph. Nodes within one module are colored with different colours (same as in the
matrix). In more general representation, topology of the network can be separated into segregated
modules (magenta) (c and integrative nodes and interactions (blue) (d). e Brain view (sagittal) of
the network. In this example nodes and edges, that connect nodes within the same module, are
visuilised using the same colour, grays are edges that connect nodes across different modules

computational models represent a powerful approach to bridge microscale and
macroscale brain organization by simulation of large-scale biophysical models of
coupled brain regions. Drawing on the same inspiration as the Virtual Brain Project
[59], this approach builds on prior work with nonlinear models of neuronal activity
(e.g., of Wilson-Cowan oscillators [23], Kuramoto oscillators [10] or neural mass
models [22]) by placing oscillators on an empirically-derived anatomical connec-
tion network, thereby directly accounting for heterogeneous connectivity between
cortical and subcortical areas. The resulting large-scale circuit models can be used
to simulate complex neural dynamics that are transformed into realistic resting-state
fMRI (rs-fMRI) signals via an additional biophysical hemodynamic model [33].
Optimization of these models for use in neuroscience, however, requires extensive
alterations, additions, and improvements [53] and may benefit from integration of
approaches across brain imaging modalities [46] and/or of information on brain
interactions other than functional connectivity [54].
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21.3 Morphology and Function

Corticocortical interactions form a communication system which underpins sensory
and higher cognitive and behavioural processes in the brain. It is important to iden-
tify specific network properties and how they facilitate this communication; are there
general rules that govern organisation of these interactions? In this context, the hier-
archical, modular organization is widely documented across neural systems. A well
studied example at the micro-level is the modular columnar organisation of the neo-
cortex (i.e., micro-scale of brain organisation related to functionally divided vertical
formations of the cortical surface or cortical columns representing the basic func-
tional units of the cortex). Although spatially distant, columns in cytoarchitectural
areas usually share some common properties, which are repeated iteratively within
each area, and are most commonly grouped into entities by sets of dominating long-
range, intracortical connection [50].

While corticalmicrostructure ismostly used to describe local properties of individ-
ual areas, studies investigating cortical connections focus on the relationship between
areas (i.e., their structural—morphological—features). Organization of long-range
cortical connections across different brain areas can inform our understanding of
how the cortical function emerges from structural constraints [40]. MRI studies take
a simplified view of cortical morphology by reducing it to a single measure: the mean
volume, cortical thickness, surface area, gyrification index or curvature. In contrast to
functional networks, computed on correlations of regional fMRI across time within
an individual brain, morphological networks are computed on correlations among
regional morphological properties across subjects. Only recently, morphometric sim-
ilarity networks were extracted on an individual brain [62]. The connectivity archi-
tecture of these networks is shaped by genetic and environmental factors (that are
variable across individuals) [19, 40] and is related to human cognitive performances
(e.g, general intelligence) [62].

Mapping a cross-scale organisation at micro- (cytoarchitectonic) and macro-
(regional) levels, has shown evidence of a significant association between cytoar-
chitectonic features of human cortical organization and whole-brain corticocortical
connectivity [72, 80]. Findings suggest that aspects of microscale cytoarchitecton-
ics and macroscale connectomics are related and may have the potential to reveal
more about the etiology of neuropathological processes in the diseased brain (see
Sect. 21.4). There is a number of studies regarding genetic influences upon the coor-
dinated growth of spatially segregated areas during development (see for example
[67]) or longitudinal (although) focal changes in morphology following training and
learning new skills [9, 27]. With the exceptions of two recent studies [70, 74], com-
parative studies of whole-brain functional and morphological networks are lacking.
Recent findings from fMRI studies, suggest that interindividual variability in func-
tional connectivity is not uniformly distributed across the cortex: the association
regions, including language, executive control, and attention networks, are likely
more variable than the unimodal regions, such as the visual and sensorimotor cor-
tices [51]. It is known that these cortices share similar morphology and projecting
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neural connections, whichmay pave theway to cross-analysis of these networks. Pre-
cisely because they cannot be reduced to spatially close regions, functional modules
contain information about non-structural level of neural organisation, which can only
be investigated via analysis of time series of neural function. An additional dimension
to this investigation are temporal fluctuations in functional networks characterized
by striking differences in network organization, in particular nodal affiliations with
different modules. Understanding whether these time-varying behaviours of func-
tional networks reflects a discrete cytoarchitecture organisation, may encourage a
shift from descriptive correlations to predictive mechanisms. If the later is true, each
cytoarchitecture components and switching modules should exhibit similar spatial
organisation.

21.4 Implications for Neurodegeneration

MRI studies assessing correlated changes in anatomical or functional regional prop-
erties have argued that neurodegeneration targets those networks that are highly
correlated in healthy individuals [66], leading to a so called “disconnected network
syndrome” hypothesis [12].Moreover, recent findings on cross-correlatedmicro- and
macro-architectures, in particular the size of layer 3 neurons (known to be affected
in Alzheimer’s disease) [72], may inform new approaches in studying neurodegen-
erative syndromes. Similar approaches have been successful in revealing patterns
of distinct involvement of the two cortical features (thickness and surface area) in
Alzheimer’s disease and behavioral variant FrontoTemporalDementia (bvFTD) [79].
However, more work is needed for these approaches to be validated in clinical set-
tings. I suggest that for the initial application of these methods, in line with [79],
the connectome can be sampled at the resolution of anatomical landmarks to exam-
ine macro-scale organisational units of the cortex and the role of each unit in the
neurodegeneration. By formulating the problem of vulnerability to neurodegenera-
tion as a problem of network topology, one can investigate how different regional
morphological features contribute to this vulnerability. When the nature of this vul-
nerability is clarified, the cross-scale networks could be studied [72] to evaluate
micro-scale connectivity. Finally, the roles in network vulnerability can be validated
against functional and anatomical networks examined across a range of parcellations
schemes, including random parcellation. Thus, the joint properties of functional and
morphological brain networks may offer better estimates of vulnerability to neurode-
generative syndromes. The examination of these networks across multiple temporal
and spatial scales would represent dynamic network mechanisms underlying not-so-
easily differentiated clinical states in these syndromes. These dynamic network inter-
actions and their underpinning morphological properties could inform treatments in
these diseases and may mediate treatments outcome.
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21.5 Conclusion

Large-scale brain networks providemathematical tools to assess functional and struc-
tural brain organisation upon simple network parcellation schemes and simplified
network dynamics. This approach has been successful at providing the different
functional and structural topologies of healthy and diseased brain [39, 66]. Here I
have provided a support for studies of cross-modal functional and anatomical (mor-
phological) networks, which provide the opportunity to promote a basis for applying
a unified network approach that can be extended beyond current approaches. Imple-
mentation of the network strategies suggested here will test: (i) how modular archi-
tecture of functional network is mediated by structural configuration at the meso-
and micro-scales, (ii) that is possible to provide the link of functional network organ-
isation with the cytoarchitecture and (iii) that research in these network properties
will inform neurodegenerative models and treatments.

21.6 Glossary

Association Matrix: A means of displaying the nodes of a network and the edges or
relationship between each pair of nodes

Anatomical MRI: Single 3D volume of the brain, usually acquired as standard in
most MRI protocols by utilising so called T1-weighted acquisition
sequence

Functional MRI: Specific 4D sequence sensitive to BOLD contrast reflecting hemo-
dynamic response of neuronal activity. Reasonably high temporal
and good spatial resolution

Diffusion MRI: Specific sequence using gradients to measure free water diffusion as
a surrogate measure of white matter tracts. Reconstruction of tracts
can be used to imply structural connectivity between brain regions,
albeit with some restrictions

Complex Network: A network with non-trivial features, usually taken to refer to small-
world or scale-free topology

Connectome: A term that describes the structural architecture of the brain that
guides the functional connections

Cost: Ameasure of the connection density of a network; usually displayed
as a percentage of themaximumnumber of connections in a network;
theoretically related to the wiring length cost involved in forming
connections between nodes

Degree: The number of connections a node has with other nodes in the net-
work

Module: A conglomeration of nodes that are more strongly connected to each
other than nodes outside themodule, often defined using hierarchical
clustering algorithms

Resting-state: Refers to the brains activity when not engaging in a task
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75. V.Vuksanović, P.Hövel, Dynamic changes in network synchrony reveal resting-state functional
networks. Chaos25, 023116 (2015)
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Chapter 22
Predicting Epileptic Seizures—An
Update

Klaus Lehnertz

Abstract Epilepsy is a malfunction of the brain that affects about 0.8% of the world
population. Epileptic seizures are the cardinal symptom of the disease and are usually
related to an overly synchronized firing of neurons, as reflected by oscillations on the
electroencephalogram (EEG). Seizures often appear as a transformation of otherwise
normal brain rhythms, and the exact mechanisms underlying seizure generation are
still as uncertain as are mechanisms underlying seizure spreading and termination.
Identifying precursors of seizures from brain dynamics could drastically improve
therapeutic possibilities and thus, the quality of life of people with epilepsy. Over
the last three decades, an improved characterization of the complex spatial-temporal
dynamics of the epileptic brain could be achieved with methods from nonlinear
dynamics, statistical physics, synchronization and network theory. Thesemethods are
capable of identifying seizure precursors from EEG recordings in a large number of
subjects and with high sensitivity and specificity. This chapter provides an overview
of the progress that has been made in the field: from preliminary descriptions of
preseizure phenomena to implantable seizure prediction and prevention systems.

22.1 Introduction

Epilepsy is a group of neurological disorders that is characterized by more than 15
different seizure types and over 30 epilepsy syndromes [20]. It is defined as a disorder
of the brain characterizedbyan enduringpredisposition to generate epileptic seizures
and by the neurobiologic, cognitive, psychological, and social consequences of this
condition [43]. An epileptic seizure is defined as a transient occurrence of signs
and/or symptoms due to abnormal excessive or synchronous neuronal activity in the
brain [40, 43]. It may be accompanied by an impairment or loss of consciousness,
psychic, autonomic or sensory symptoms, or motor phenomena. Generalized-onset
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seizures are believed to instantaneously involve almost the entire brain [40], whereas
focal-onset seizures appear to originate from a circumscribed region of the brain
(epileptic focus [61, 134]).

Epilepsy affects more than 50 million people worldwide [111] and is associated
with severe comorbidity, including depression, anxiety and increased mortality [127,
153]. Despite more than 30 licensed epilepsy therapies (anti-epileptic drugs [35, 93],
neuromodulation devices [89, 142]), seizures remain poorly controlled in approxi-
mately 25% of people with epilepsy. Epilepsy surgery offers the chance of seizure
remission for about 50% of these people, though there is still some hesitation because
of the associated side effects [41, 58]. For the person with epilepsy, it is the apparent
unpredictability of seizures that is central to the burden of an uncontrollable epilepsy.
If it were possible to reliably identify seizure precursors, a novel approach to con-
trol previously uncontrollable seizures would consist of a precursor-identification-
triggered, on-demand delivering a suitable counteracting influence (e.g., neuromod-
ulation, local cooling, local drug perfusion, or behavioral intervention [101, 116,
123]) to prevent the generation of the extreme event [67, 85]. Research over the last
three decades provides strong evidence for seizures in many people with epilepsy to
be preceded by ameasurable changes in brain dynamics, which constitute a precursor
of sufficient duration [77]. This review summarizes the advances made in studies on
seizure prediction during this time and highlights open issues that would need to be
addressed in future studies.

22.2 Seizure Prediction and Time Series Analysis

Seizure prediction is an interdisciplinary research field that targets at predicting (or
forecasting or anticipating; these terms are often used interchangeably) the occur-
rence of epileptic seizures with the aim to enable timely modifications of brain
dynamics that prevent seizure generation [77, 91, 106]. Lacking detailed knowledge
about the exact mechanisms underlying seizure generation in humans (and the same
holds true for seizure spreading and seizure termination, despite many decades of
intense research efforts worldwide), there are currently two types of scenarios of
how a seizure could occur [92]. The first scenario considers a sudden and abrupt
transition between two brain states (normal and seizure) and would be conceivable
for the initiation of generalized-onset seizures. The second scenario considers the
transition to the seizure state as a gradual change (or a cascade of changes) in dynam-
ics which could in theory be detected. This type of transition could be more common
for focal-onset seizures.

Lacking an adequate model of the human brain that is capable of mimicking the
immense functionality, and—as in the case of brain pathologies—coexisting normal
and abnormal functions [27, 97, 163], seizure prediction mostly relies on time series
analysis of accessible observables to identify a preseizure state of sufficient duration,
well enough in advance and with high sensitivity and specificity. Most often used
are time series of brain dynamics (e.g., invasively and/or non-invasively recorded
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electroencephalogram (EEG), single neuron activities and local field potentials, blood
oxygenation), followed by/or together with heart activities (e.g., electrocardiogram,
heart rate), body movements (e.g., muscle activities) or behavioral symptoms. Given
only fragmentary knowledge about why, when and how the human epileptic brain
transits from apparently normal dynamical regimes to a preseizure and eventually to
a seizure state, time series analysis techniques should be sensitive enough to identify
even subtle modifications in the dynamics of observables recorded during normal
conditions and similarly account for the large inter- and intraindividual variability.
For brain dynamics, a further obstacle arises from its scale-free behavior coexisting
with an oscillatory one [87].

The spatial-temporal onset of a seizure is usually defined on the EEG (so called
electrographic onset as opposed to the clinical onset, which either coincides with or
follows the electrographic onset). One should be aware that a time-series-analysis-
based identification of modifications in the dynamics of observables in the order of
a few to a few tens of seconds prior to seizure onset merely reflects a seizure-onset
detection but not an identification of a preseizure state, taking into account the known
uncertainties in reliably and reproducibly defining seizure onset [49, 145, 149, 161].

Time series analysis techniques that are applied to identify a preseizure state
using the EEG or other modalities (for an overview, see [26, 32, 45, 77, 106, 123,
156]) can be divided into three main categories: univariate, bivariate and multivariate
techniques, depending upon whether data from a single system or a single recording
site are analyzed independently or whether data from two or more systems or sites
are analyzed for possible interactions. These approaches can further be subdivided
into the categories linear and nonlinear.

Univariate linear analysis techniques [115] allow one to draw inferences about
preseizure-state-associated alterations of amplitude-, interval-, or period-distributions
along with their statistical moments, of properties of the auto-correlation function
or of power spectral estimates [14, 19, 44, 60, 117]. Univariate nonlinear analysis
techniques allow amore detailed characterization of the dynamics in state space [62],
particularly when used in conjunctionwith surrogate-based tests for nonlinearity [80,
141]. Quantities such as an effective correlation dimension [86], correlation den-
sity [98], entropy-relatedmeasures [90, 157], Lyapunov exponents [55], or quantities
based on recurrence quantification analysis [99, 114] allow one to draw inferences
about preseizure-state-associated alterations of the number of degrees of freedom,
the amount of order/disorder, or of the degree of chaoticity or predictability in a sin-
gle time series. Other univariate nonlinear techniques aim at discriminating between
deterministic and stochastic dynamics [8] or stationary and non-stationary dynam-
ics [22, 128–130] to identify a preseizure state.

Bivariate analysis techniques allow investigating (linear/nonlinear) relationships
between two (linear/nonlinear) systems (e.g., two brain regions or two organs) and
aim at characterizing strength and direction of an interaction [24, 118, 119]. Com-
mon bivariate linear approaches comprise estimating the linear correlation coeffi-
cient, cross-correlation or cross-spectral functions or (linear) partial coherence [33,
166]. These techniques, however, can mostly provide information about the strength
of an interaction since correlation does not imply causation. As with univariate linear
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techniques, parametric approaches provide an alternative way to estimate (single and
joint) properties of the power spectra [95]. Multivariate and/or vector autoregressive
models form the basis of techniques such as Granger causality [112, 144, 158] or
partial directed coherence [13, 135] that can index the direction of an interaction.
Bivariate nonlinear analysis techniques can be subdivided into two main categories
depending on the underlying concept for interaction: information-theory-based [52]
and synchronization-based techniques [24, 119, 151]. As with univariate nonlinear
methods, findings achieved with bivariate techniques need to be interpreted with
great care. Although extensions and new development of surrogate techniques can
help to avoid misinterpretations about the strength of an interaction [6, 80], causal
relationships are notoriously difficult to identify and we are still lacking reliable
surrogate techniques for directionality indices. Nevertheless, particularly estimates
for the strength of interaction (either using phase-based [110] or state-space-based
approaches [11, 36, 121]) were repeatedly shown to reliably identify a preseizure
state preceding focal-onset seizures (see, e.g., Refs. [1, 16, 38, 42, 69, 73–75, 83–
85, 105, 107, 108, 120, 137, 147, 168, 170]). Interestingly and probably contrary
to expectations, decreased levels of the strength of an interactions frequently char-
acterized a preseizure state. Moreover, most of these studies identified interactions
between brain regions far off the epileptic focus and even from the opposite brain
hemisphere to indicate a preseizure state.

Multivariate analysis techniques (together with graph-theoretical concepts) pro-
vide a means to quantify structure and dynamical evolution of complex networks.
Network theory has contributed significantly to advance understanding of complex
systems, with wide applications in diverse fields, ranging from physics to biology
and medicine [3, 10, 23, 25, 30, 113, 124, 152]. In epileptology, the concept of
an epileptic network [15, 21, 82, 88, 125, 126, 148] received strong impetus from
network-theoretical concepts and multivariate analysis techniques. An epileptic net-
work comprises anatomically, and more importantly, functionally connected cortical
and subcortical brain structures and regions. Seizures (and other related pathophys-
iologic dynamics) may emerge from, may spread via, and may be terminated by
network constituents that generate and sustain normal, physiological brain dynam-
ics during the seizure-free interval [148]. So called functional brain networks are
supposed to reflect the interaction dynamics between brain regions [30] and such
a representation requires identification of vertices and edges. Vertices are usually
associated with sensors that are placed to sufficiently capture the dynamics of given
brain regions. Interactions between the vertices’ dynamics are considered as network
edges, and properties of interactions can be characterized with the aforementioned
bivariate analysis techniques. Graph theory then provides a large number of concepts
and measures to characterize macroscopic (such as clustering, average shortest path
length, or assortativity), mesoscopic (such as communities, motifs, or core-periphery
structure), andmicroscopic network properties (such as centrality of single vertices or
edges). Studies investigating macroscopic characteristics of time-evolving epileptic
networks provided first clues for certain network reconfigurations to promote the for-
mation of a preseizure state [48, 70, 78, 138, 140]. Likewise, this approach allowed
to formulate a network mechanism by which most focal epileptic seizures stop spon-
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taneously within a fewminutes [59, 71, 139, 140]. Recent research into the epileptic
network’s local characteristics provides increasing evidence that the epileptic focus—
widely referred to as the seizure-generating or seizure-initiating brain area [94]—is
not even a distinguished part of the network, neither during the seizure-free interval,
nor during the preseizure period, and not even during seizures [31, 46, 47, 132,
159, 165]. Rather, these studies suggest that a rearrangement of the network’s path
structure—possibly triggered by endogenous and/or exogenous factors—and that
results in a formation of bottlenecks [132] which induces the generation of a pre-
seizure state. Earliest indications for such a formation (with lead times up to hours)
can be observed in network verticeswhich generate and sustain normal, physiological
brain dynamics during the seizure-free interval.

All the aforementioned characteristics can further be used—either independently
or in some combinedway—as input to pattern recognition systems,machine learning
algorithms or classifiers (such as artificial neural networks) to identify a preseizure
state [2, 67, 105, 155].

22.3 Performance Evaluation of Seizure Prediction
Algorithms

Predictability of seizures with above-chance performance of prediction algorithms
was claimed by many studies published before and around the turn of the millen-
nium. Follow-up studies indicated, however, that these were mostly over-optimistic
findings obtained by applying highly optimized algorithms to small, selected data
sets and could not be reproduced on unselected, more extended EEG recordings that
are more closely related to the real-life challenge of predicting seizures prospectively
from the continuous EEG [106, 109]. This key fault of historic literature continues to
pervade the field, despite (a) well known minimum requirements to ensure that pub-
lished prospective and retrospective seizure prediction studies are comprehensible,
comparable and assessable (see guidelines in [77, 106]) as well as (b) availability of
rigorous frameworks to evaluate the performance of seizure prediction techniques.
These frameworks are based on Monte Carlo simulations [5, 7, 72, 109, 146] or on
comparison with analytical results derived from naive (random or periodic) predic-
tion schemes [136, 167, 169]. Awareness of the importance of statistical evaluation
of seizure prediction algorithms—beyond estimating sensitivity and specificity—as
well as adherence to published guidelines is critical for understanding the value of the
results of seizure prediction studies and is indispensable to avoid making too strong
claims that may raise false hopes in professionals and in people with epilepsy [77].

There are similar concerns about the significance of recent seizure-forecasting
contests [28, 76]. Despite availability of large, high-quality databases that pro-
vide a pseudo-realistic test bed with continuous, multichannel, multi-day EEG data
recorded during sleep, wakefulness and activities of daily life [56, 76, 160], these
contests solely investigated preselected, small, discontinuous pieces of data. More-
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over, it is to be expected that an approach that inputs a large (>100) number of
(mostly correlated) characteristics into various machine-learning algorithms but that
does not reasonably control the type-I error (due to multiple testing) will indeed
perform better than some random predictor. Even the testing against a random pre-
dictor is a debatable point, given that the probability of occurrence of seizures and
other epilepsy-related pathophysiologic phenomena is influenced and modulated by
various cycles (hormonal, sleeps-wake, circadian, multidien) [17, 50, 51, 63, 66,
72, 78, 81, 137, 143, 154]. Monte-Carlo-based approaches that preserve such peri-
odicities [72] are better suited for such cases.

22.4 Devices for Seizure Prediction

Following studies that demonstrated the feasibility of hardware implementations
of seizure prediction algorithms [79, 122], between 2010 and 2012 an Australian
group enrolled 15 participants in the first and to date only prospective clinical trial
of a fully functioning, ambulatory seizure prediction system [37, 39]. The system
consisted of 16 intracranial electrodes that were directly in contact with one brain
hemisphere and were connected by subdermal wires to a subdermal telemetry unit
implanted in the chest, which wirelessly transmitted the EEG data to a hand-held
unit. The system enabled data processing in real time and issued warnings in the
form of colored lights indicating an impending seizure, intermediate, or safe states.
In a few subjects with epilepsy, recordings were performed over a period of up to
three years. For nine subjects above-chance warnings could be issued if subject-
specific seizure prediction algorithms were employed that were trained on a great
amount of data. Together with many previous studies, this trial demonstrated that
not all people with epilepsy have seizures that can be predicted and that not all of
a subject’s seizures are predictable. Future work will be needed to define epilepsy
phenotypes or endophenotypes that are associatedwith predictability [85]. This study
demonstrated that long-term recordings are possible, that people with epilepsy are
willing to volunteer for such studies and that research ethics committees see the
benefits of these trials. Although this scientifically successful study opened a door
for more long-term prospective trials, the device was never commercialized due to a
lack of investment.

Currently, other clinical trials explore the feasibility of personalized forecasts
from a mobile seizure diary app [64] and of wearables to better understand epilepsy
at a large scale [29]. There are also developments towards sub-scalp minimally inva-
sive EEG devices [162] that—if feasible clinically—could represent an interesting
alternative to invasive recording techniques that are not without risk [57].
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22.5 Open Questions and Outlook

The field of seizure prediction has made remarkable progress over the last three
decades. Proceeding from preliminary descriptions of preseizure phenomena, the
formulation of guidelines, standardizations, build-up of large databases, prediction
contests, and developments of novel analysis concepts together with rigorous statisti-
cal tests for performance evaluation resulted in seizure prediction algorithms suitable
for clinical applications. These innovations led to the first in-man proof-of-concept
study of an implantable seizure prediction system. It can be expected that further
miniaturization of electronics, development of connected devices and advances in
engineering of neural systems will continue in the coming years; seizure prediction
is thus not unthinkable anymore [77, 150]. The field has also impacted on other
advances such as single neuron recording techniques in humans [34], brain control
techniques based on neuromodulation [4], and the paradigm shift from the concept
of an epileptic focus to a network theory of seizure generation [77]. Despite the many
achievements, there are important issues that would need to be addressed in the near
future.

Most of the time series analysis techniques presented in Sect. 22.2 allow an inter-
pretation of findings in terms of a physiologic and/or pathophysiologic correlate.
They are thus important to elucidate mechanisms underlying seizure dynamics and
its interactions with normal physiology as well as to derive generic models. Find-
ings achieved so far suggest that physiological understanding of the preseizure state
must be improved to determine whether there are universal mechanisms that lead to
the variety of observed preseizure states. A better understanding of the underlying
mechanisms will also improve understanding of seizure generation, will allow better
translation of the information collected into methods for the detection, prediction,
and control of seizures, and eventually will allow a better understanding of what
a seizure is. Current artificial-intelligence-based approaches, though commendable
for their pragmatism, do not readily reveal which physiological aspects underlie the
predictive characteristics of EEG or other modalities and have resulted in a limited
understanding of the mechanistic underpinnings of the preseizure state. A meaning-
ful combining of data from different modalities requires identification and matching
of the relevant though vastly different spatial and temporal scales.

There are similar challenges for computational modeling approaches [97, 163].
The information gained frommulti-scale and multi-modal studies of epilepsy results
in increasingly sophisticated modeling approaches that are used to gain insights into
possible mechanisms of seizure generation and of controlling seizures. Models are
important for identifying changes in network or other control parameters or of inputs
(environmental and/or endogenous) that might not always be evident or accessible
to an observer but are associated with or cause the initiation of seizures. Moreover,
models allow to test in silico hypotheses concerning preseizure brain dynamics and
their relation to endogenous and exogenous parameters as well as the effectiveness of
control strategies [96]. Nevertheless, we are still lacking appropriate tools to bridge
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the various temporal and spatial scales assessed with the different computational
models in order to finely balance model simplification with biological realism.

Epilepsy is considered a dynamical brain disease [103], and the transition to
seizure is often conceptualized as a (critical) phase transition [68, 104]. Such a
transition can be heralded by the phenomenon of critical slowing down, and the
human brain is among the many natural systems in which critical slowing down has
been repeatedly claimed to provide early warning signals for transitions into (and
out of) epileptic seizures (see, e.g., [100] and references therein). Recent studies
[102, 164], however, could not corroborate these claims when evaluating the predic-
tive performance (cf. Sect. 22.3) of widely used early warning indicators (variance,
lag-1 autocorrelation) on large samples. Thus the assumed mechanism behind the
critical transition (bifurcation-induced tipping) may be too simplistic for the human
epileptic brain which calls for techniques that allow identification of early warn-
ing indicators for other transition scenarios [12, 133]. Switching between different
states may emerge as a result of multistability of the brain [65] and recent findings
indicate that switching might also be induced by changes in the gross connections
of the neuronal network [9] and not only by altered properties of neurons or groups
of neurons. Notwithstanding the high relevance of improving our understanding of
mechanisms underlying the transition to seizure, future studies would also need to
address the mechanism underlying the transition to the preseizure state.

The probably most important—but as yet unsolved issue—of prediction and pre-
vention of epileptic seizures centers around the controllability of the human epileptic
brain. It is a nonlinear, open, dissipative and adaptive system, innately designed to
learn. Learning is not only tightly related to neuronal plasticity [53] but also linked to
brain disorders such as epilepsy [18]. One might thus speculate that seizures present
an abnormal learned response to recurrent perturbations—such as seizures [54]. If
epilepsy is indeed a “earned” disease, it will be a challenging endeavor to identify
powerful control strategies to prevent the epileptic brain from generating seizures.
Part of this difficulty may be attributed to the brain’s stability properties with respect
to the aforementioned endogenous and/or exogenous inputs. Indeed, recent find-
ings indicate that in many subjects with epilepsy brain resilience increases rather
than decreases prior to seizures and that this preseizure increase clearly exceeds
physiologically induced fluctuations of brain resilience [131]. Research along these
lines is urgently needed to better understand how, when, and why the epileptic brain
efficiently defies control by virtue of its intrinsic plasticity and adaptiveness.
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Chapter 23
General Anaesthesia and Oscillations
in Human Physiology: The BRACCIA
Project

Johan Raeder

Abstract General anaesthesia may be induced by a number of different types of
drugs, and no clear-cut, single mechanism of action is recognized. Traditional moni-
toring of general anaesthesia is based on surrogate measures of adequate degree of
unconsciousness during painful stimuli; such as heart rate , blood-pressure, respira-
tion, muscle activity and, in recent years, EEG. The dose need of anaesthetic drugs
must be adjusted to the individual patient and the surgical invasiveness. The idea
of the BRACCIA project was to monitor concomitantly the most relevant physio-
logical changes, to distinguish objectively between awake and general anaesthesia,
and between propofol versus sevoflurane anaesthesia in a setup of 27 patients. ECG,
respiration, skin temperature, pulse and skin conductivity were recorded. Both raw
data, oscillations and interactions between parameters were tested, new hardware and
software were developed. A total of 28 different physiological outputs were tested.
With a best selection of 11 attributes, 9 from the EEG, 1 from ECG and 1 from respi-
ratory rate we were able with 97% precision to distinguish the state of being awake
from the state of general anaesthesia. For the distinction between general anaesthesia
caused by either sevoflurane or propofol the precision was 87%.

Until the advent of anaesthesia during the nineteenth century, extensive surgery was
almost impossible to do with success; due to intense pain, vigorous movements and
muscle spasm, aswell as life-threatening cardiovascular responses. Thebasic require-
ments for surgery, in this context, is a non-moving patients with relaxed muscles and
minor patient discomfort. This may be achieved with local anaesthesia infiltration for
minor procedures or regional anaesthetic nerve-blocks, including spinal or epidural
anaesthesia, for somemore extensive procedures. However, the use of general anaes-
thesia is a dominating technique for most of the 4–500 million surgical procedures
which are performed world-wide every year. Even though general anaesthesia is very
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widespread and frequent in use, there are still many controversies to this concept,
such as: How is general anaesthesia defined? What is the mechanism of general
anaesthesia? What drugs are useful for the purpose and which are best? How do we
measure and or quantify general anaesthesia?

23.1 Definition and Mechanisms

Definition of anaesthesia and mechanisms of general anaesthesia are linked, as for
most biological phenomena there is a relationship between mechanism of action
and resultant physiological effects, leading to the physiologic response or state of
function which is in question. Not quite so simple with general anaesthesia, even
though some distinct receptors and biological actions may be identified for most of
the drugs which produce the state of general anaesthesia. Still, general anaesthesia
seems to be a fundamental physiologic state of living animals and even plants [7],
being the result of a number of very different measures. If we look at immobility and
unconsciousness as the two major features, these may be the results of, for instance;
diabetic coma, liver coma, a hard blow to the head, overdose of most psychoactive
drugs etc. However, the features of clinical general anaesthesia are, in addition to
unconsciousness and immobility, rapid reversibility of the condition without any
damage of the organism. This may be accomplished by inhalational anaesthetic
agents, some iv agents, and hypnotic acting agents in combination with opioids.
Still, looking at the molecular structures and their potential actions on human nerve
cells, these anaesthetic drugs are quite different from each other. Their actions may
be described in terms of cellular targets, but also in terms of altered intercellular
interactions, altered neuronal network modes and specific anatomical regions [5].

As to cellular actions we know that most of the hypnotics acts at the GABA
receptor, the opioids at the opioid my-receptor [15], ketamine at the NMDA receptor,
whereas inhalational agents have a more complex and diversified action. We know
that attenuation of neuronal activity in the dorsal spinal horn is a major player in
immobility, and attenuation of reflex actions to nociceptive (i.e. painful in the awake)
stimuli is important for attenuation of discomfort. Further, downregulation of activity
in the cerebral cortex is a major feature of unconsciousness, although in the state
of anaesthetic induced unconsciousness there are areas in the deeper brain with
increased activities as well. Thus, this brings in the important concept of general
anaesthesia and unconsciousness as altered signal patterns within the very complex
neuronal network in the central nervous system.

23.2 Monitoring of General Anaesthesia

Monitoring of general anaesthesia is conceptually very difficult, both because of
the variety of different drugs and drugs actions involved, as well as the extreme
complexity of the target organ: the central nervous system. In the brain and spinal
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cord there are a two-digit billion number of neurons, each one of which has hundreds
to thousands of contacts with neighbouring cells. Thus, how should these cells and
their interactions be monitored in terms of identifying general anaesthetic action, or
even more difficult: to determine degree of action in a quantitative way? The answer
throughout the soon 175 years of history of general anaesthesia has been to monitor
surrogate or secondary signs of unconsciousness and diminished reflex actions. The
very simple end logic monitoring will just be to test unconsciousness and immobility
when you make a small wound in the skin with the scalpel: Does the patient move?
Does the patient moan or show any signs of discomfort? If no—the surgeon may
go ahead, if yes—more anaesthetic drug effect is needed. While this may work
in some way, there are three problems with this approach: (1) The testing has to
be done frequently during a procedure, because different types of surgical activity
will require different level of anaesthetic drug effect. (2) Frequent testing will delay
and complicate surgery, and there is a risk for discomfort as well as vigorous and
dangerous movements if the stimuli is too strong (3) There is no good way to ensure
that anaesthesia is not overdosed: a non-moving patient may be a sign of adequate
dose level or a profound overdose.

Thus, other signs of low, medium or strong anaesthetic effect without necessarily
testing with a knife have to be looked for. Also, the term “effect” becomes problem-
atic, as anaesthetic effect should be determined in a situation with ongoing surgery.
This has lead to use of the term “anaesthetic depth” to define quantitatively the total
impact of anaesthetic dosing in the individual. The idea is that an adequate depth
of anaesthesia should be established without testing before start of surgery, and still
ensure close to 100% guarantee of no movement or moaning during subsequent
surgery.

During the first decade of ether as a the mono-anaestetic drug, the position and
size of the pupils were used as a surrogate sign of anaesthetic effect on the brain,
together with signs of respiratory and circulatory depression. With the advent of
intravenous agents, i.e. hypnotics and opioids, often used in mixture with inhala-
tional agents; the pupil signs became less specific and the baseline monitoring of
anaesthetic effect shifted towards simple general features of unconsciousness: low
blood-pressure, low heart rate, attenuation or cessation of spontaneous ventilation,
no gross movements upon vigorous surgical stimulation etc. Signs of sympathetic
stimulation; such as sweating [4], tear production, together with increased heart rate
and blood-pressure were taken as signs of inadequate depth of anaesthesia with the
need of either increased anaesthetic drug dosing or reduced surgical stimulation, or
both.

Because minor movements or muscle contractions may occur even if the depth
of anaesthesia is otherwise adequate (i.e. the patient is unconscious), the use of
curare drugs became popular from the mid 20th-century in order to reduce the dose
of anaesthetic drugs, resulting in less hemodynamic depression and faster recovery
after end of anaesthesia. Curare is also needed when even a slight movement of the
patient during surgery may have serious consequences, such as during neurosurgery,
eye surgery, middle ear surgery or other areas of microsurgery. However, with the
successful advent and use of curare a new problem emerged: some patients got too
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low doses of anaesthetic drugs, and were awake during surgery without being able to
open eyes or move, thus they could be left in a state of intense anxiety during ongoing
surgery without anyone noticing. This phenomenon of so-called “awareness” was
reported in about 1 patient per 2000 general anaesthetics with curare, not in any
way life-threatening or frequent, but very traumatic for those involved [11]. In most
of these cases opioids were used as anti-nociceptive agents, ensuring stable and low
readings of BP andHR, but not reliable sleep. Thus, both the awareness cases but also
cases of overdosing with subsequent slow recovery called for better monitoring than
just looking at BP, HR, minor movements and signs of sympathetic stimulation. It
has also been shown in the elderly patients that overdose of general anaesthetic drugs
may increase the incidence of postoperative delirium [12] and cognitive decline [2].
As the central nervous system is the target organ of general anaesthetic drugs, ways
of monitoring brain function directly, such as the EEG [6], were looked for.

The raw EEG is basically a continuous flow of electrical signals from 20–40 elec-
trodes placed scattered across the full scalp. The spontaneous EEG have some char-
acteristics which allow the expert to define which state the individual patient belongs
to along an axis from: excited → quiet awake → asleep → unconscious. However,
the complete EEG is very cumbersome to both register and interpret, thus simplified
ways of looking at EEG were looked for. One approach was to look at the frontal
EEGresponse (amplitude, frequency anddelay) to a standardized stimulus, e.g. sound
click, as with the auditory avoked potential (AEP). Another approach was to look
for ways to interpret the spontaneous EEG by automatic computer algorithms, basi-
cally looking at frequencies, amplitudes and phase positions during different states
of depth of anaesthesia. Fortunately, the single and easily accessible frontal EEG lead
was useful in this context, as there is a frontal shift of EEG power during general
anaesthesia. However, it was soon evident that the EEG changes were complex
and not linear with dose, and EEG changes were different with different drugs and
drug mixtures, even though they produced the same clinical depth of general anaes-
thesia [1, 10] Also, there were problems of electrical signals from forehead muscles
interfering with the EEG and problems of surgery and nociception interfering with
the EEG algorithms. The problems were attempted to be solved by complex signal
analyses, such as with the entrophy, narcotrend, cerebral state monitor and other
devices [9]. The most successful device proved to be the BIS monitor, launched in
the 1990ties, with a single frontal EEG reading, a secret and patented algorithm for
EEG interpretation, and a simple output of a score from 0–100. With a score value
below 60 the patient was asleep, and with a value of more than 60 for more than
5 min there was a high chance of the patients being awake and aware, while values
in the 90–100 range were seen in fully awake individuals. Although the BIS has
gained widespread use and proved to reduce the incidence of awareness [3] as well
as avoiding cases of inadvertent overdosing, there are problems with this device as
well. The signal is delayed with 1–2 min, it may be disturbed by muscle activity, it
may be inaccurate with low-power EEG in the elderly, it does not work predictably
with nitrous oxide or ketamine and it is inaccurate in monitoring the antinociceptive
part of general anaesthesia.
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Thus, the search for better tools to monitor anaesthetic depth has gone on, along
different conceptual routes. One straightforward and quite successful approach has
simply been to monitor the exhaled end-tidal concentration of inhalational agents.
If the concentration of e.g. sevoflurane is at 1% or higher (or 3% with desflurane),
one can almost with 100% certainty assume that this patient will be asleep. Also,
refinements in looking at changes in sympathetic outflow have been promising [9]:
looking for subtle variations in the beat-to-beat interval on the EEG, measuring
pulse-plethysmography in the finger, looking at sweat-bursts in the palm of the hand
[14].

Still, none of these devices has even close to 100% specificity or sensitivity for
the state of general anaesthesia, in fact; most of them have not even been tested for
these features.

23.3 The Braccia Concept: Anaesthesia
Monitoring—Bringing it All Together?

The Braccia concept was developed as a result of physicists looking at the charac-
teristics of numerous bio-rhythms in the body, noting that these change somewhat
predictably during sleep and general anaesthesia. Although these changes are not by
themselves highly specific or sensitive, the idea came up that bringing a number of
different low-specific changes together may increase the sensitivity and specificity.
The higher the number of relevant and different changes brought together, the higher
the chance of high specificity/sensitivity. The challenge in such a process will be to
first determine which changes and bio functions are relevant and non-overlapping.
Then build up an algorithm of bringing them together in a unified output for clinical
use.

The idea of combining different measures in this way is not new or original, and
attempts have been made and are being launched in this direction such as the PSI,
NOL index and others; using combinations of pulse-plethysmography signals and/or
EEG for a potentially more precise evaluation of anaesthetic depth.

The feature of the Braccia project was to start out very broadly, including most of
the documentedmeasures of anaesthetic depth, refine the hardware for eachmeasure,
measure simultaneously allmeasures in the same patients, then developing a complex
software program in order to sort out which measures were useful and in which way.
The first phase was the development of the hardware and the software for collecting
and analysing biorhythmic waves raw signals properly.

The second phase was to apply this prototype devices on a series of patients. The
clinical setup was highly standardized: All patents were monitored for about 30 min
in the awake state with relaxed and very quiet environment. Then general anaesthesia
was induced with either sevoflurane or propofol as a mono anaesthetic. After general
anaesthesia was established, the test battery was applied again for about 30 min
period of stable general anaesthesia with spontaneous ventilation.
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The research questions were fairly simple and straightforward:

(1) What characterises (in the test battery) the awake versus the general anaesthetic
state?

(2) What characterises general anaesthesiawith propofol versus general anaesthesia
with sevoflurane?

For these questions the software development looked for ways to pick out relevant
raw signals and signals of biorhythms which were useful for answering the question,
and then make an optimal synthetises of the relevant methods in terms of optimal
sensitivity and specificity.

The goal was to find a algorithm with 100% sensitivity and specificity in terms of
putting each individual patient into the categories above: Awake or asleep? Propofol
or sevoflurane?

The measurements were taken from the EEG signal, and also from a number
of other oscillating neuronal networks in the body: the heart, the vasculature, the
skin, the ventilation. The concept evolved not just on studying how they change, but
also on how their interactions and oscillations change during general anaesthesia.
For this purpose, soon after the start of this millennium, Aneta Stefanovska and
colleagues were able to collect a major European Union research grant, and set up an
extensive group of physicists, mathematicians and anaesthesiologists from a number
of different European countries, in the BRACCIA Project.

The practical parts of the project were:

(1) To set up and develop a number of tools, including new monitoring devices, for
extensive mapping of neuronal functions and networks.

(2) To use this basket of tools in real patients during either inhalational (sevoflurane)
or intravenous (propofol) general anaesthesia, and comparewith the awake state.

(3) To apply extensive and complicated tools of signal- and wave-analyses to
the collected data, in order to develop a targeted, essential algorithm for
characterizing general anaesthesia with 100% specificity and sensitivity.

23.4 The Braccia Results, so far

The BRACCIA project has produced new knowledge, published in major journals.
In the first publication the use of non-EEG measures was evaluated [8].

We recorded ECG, respiration, skin temperature, pulse and skin conductivity
before and during general anaesthesia in 27 subjects in good cardiovascular health,
randomly allocated to receive propofol or sevoflurane. Each subject served as their
own control for the awake to anaesthetized state, whereas in-group differences was
determined for propofol anaesthesia versus sevoflurane anaesthesia. All changes
described (below) was statistically significant at < 0.05 level (Fig. 23.1).

For the mean values; respiratory rate, skin conductivity and skin temperature
changed with sevoflurane, and skin temperature with propofol. Pulse transit time
increased by 17% with sevoflurane and 11% with propofol. Sevoflurane reduced the
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Fig. 23.1 Example of a short segment of signals recorded during anaesthesia (from top to
bottom): electrical activity of the heart (ECG); respiration as a percentage of the sensor range;
skin conductivity; skin temperature from the wrist (upper) and ankle (lower) and piezoelectric
pulse

wavelet energy of heart and respiratory rate variability at all frequencies, whereas
propofol decreased the heart rate variability below 0.021 Hz. The phase coherence
was reduced by both agents at frequencies below 0.145 Hz, whereas the cardiores-
piratory synchronisation time was increased. When putting all awake data together
into an optimal set of discriminatory parameters algoritm, we were able to clas-
sify 98% of the patients as correctly awake, when awake. When anaesthetized with
sevoflurane 93% were classified correctly anaesthetized with sevoflurane, whereas
7%were classified as being awake. Of those being anaesthetized with propofol 100%
were classified correctly versus the awake state. In terms of distinguishing between
sevoflurane and propofol the classification was less accurate, being correct in 80%
of the cases.

However, as the brain is the major target organ of general anaestetic drugs, the
second part of the study program involved the frontal raw EEG signal as well a
computing of cross-frequency coupling functions between neuronal, cardiac, and
respiratory oscillations in order to determine theirmutual interactions [13]. The phase
domain coupling function reveals the form of the function defining the mechanism of
an interaction, as well as its coupling strength. Using a method based on dynamical
Bayesian inference, we identified and analyzed the coupling functions for six rela-
tionships. By quantitative assessment of the forms and strengths of the couplings,
we revealed how these relationships were altered by anaesthesia, also showing that
some of them are differently affected by propofol and sevoflurane (Fig. 23.2).
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Fig. 23.2 Schematic of the main aims of the study. We seek to investigate the interactions between
oscillatory processes in the brain, lungs and heart, and to establish how they are affected by general
anaesthesia. The interactions are assessed by reconstruction of the coupling functions. The analyses
are performed on non-invasive measurements of the electroencephalogram (EEG), the respiration
signal fromexpansion of the thorax and the electrocardiogram (ECG). Samples of rawmeasurements
are shown adjacent to each of the organs, as are also the relevant cross-frequency intervals

In the final paper (in preparation) we have tried to put everything together, in order
to include those measurements and algorithms which are useful for the purpose,
excluding those which are not. The signals of EEG, ECG, respiration, temperature,
pulse transit time and skin conductivity were analyzed for raw output, frequency
distribution and variability, power of oscillations, wavelet phase coherence, wavelet
phase synchronization, coupling strength and coupling functions.

A total of 28 different physiological outputs were tested. With a best selection
of 11 attributes, 9 from the EEG, 1 from ECG and 1 from respiratory rate we were
able with 97% precision to distinguish the state of being awake from the state of
general anesthesia. For the distinction between general anesthesia caused by either
sevoflurane or propofol the precision was 87%.

In conclusion: The combination of sophisticated analyses on EEG, ECG and
respiration rate may thus provide a useful approach in the further strive for increased
precision on monitoring depth of anesthesia with objective means.

However, there remain many challenges with the BRACCIA hardware and soft-
ware. It has to prove its robustness in large and mixed patient materials during a
combination of surgery and general anaesthesia, as well as during combinations of
different anaesthetic drugs.

Also, there is a challenge in developing the new tools into practical devices that
can be embraced and used by busy anaesthesiologists in everyday use.
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Chapter 24
Processed EEG as a Measure of Brain
Activity During Anaesthesia

EEG Oscillations Under Anaesthesia

Pablo Martínez-Vázquez, Pedro L. Gambús, and Erik Weber Jensen

Abstract Introduction to depth of anaesthesia monitoring, a crucial tool to guide
anaesthesiologist for safer surgical procedures. Description of the main EEG activity
changes induced by hypnotic anaesthetic agents and the distinct analysis perspec-
tives in their characterizations. Design principles, minimal validation requirements,
limitations and current challenges.

24.1 Introduction. The Need of Anaesthesia Monitoring

Despite the widespread clinical use of general anesthetics from their evident benefit
for the patients undergoing surgery, since the beginning of its modern history, their
use has been recognized as a hazardous endeavour with potential adverse effects to
the patients [32]. Unconsciousness, analgesia and immobility (muscle relaxation)
are the fundamental components of General Anaesthesia (GA). For safe surgical
procedures it is crucial for the anaesthesiologist to possess objective methods to esti-
mate the level of each GA component continuously along the different phases of the
surgical procedure, in particular, the unconsciousness or hypnosis and the analgesia
or nociception. With around 250 million worldwide surgeries per year, any enhance-
ment in the perioperative care preventing anaesthesia adverse effects is amajor public
health issue. Traditional parameters such as tachycardia, hypertension, sweating or
movements between others have shown low sensitivity and specificity in estimating
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sedation levels and detecting nociceptive stimuli. This limitation becomes crucial
under potential unintentional Awareness with Recall (AWR) not predicted by phar-
macological models. In the last decades, there has been a significant increase in the
research and development of non-invasive neuromonitoring technologies based on
the Electroencephalogram (EEG), guiding anaesthesiologists during surgical proce-
dures where the traditional hemodynamic and clinical signs may not be reliable. This
research and development followed a Depth of Anaesthesia-Effect site concentration
(DoA-Ce) approach, which links the Depth of Anaesthesia (DoA) to the drug effect
site concentration (Ce), the concentration at the biophase (the place where the drug
actuates), and where the EEG has the binding role. This approach allows tailoring
drug administration to each patient and surgical context, to prevent AWR events due
to underdoses [11, 36, 57] and excessive concentrations (overdoses), optimizing the
anaesthesia drug consumption [46, 50, 56], and improving patients‘ outcomes. [8,
25, 28, 44, 55].

24.2 Main EEG Patterns During Anaesthesia

The general anaesthetics, inhaled or intravenous, mediate at the neuronal level by
inhibiting or blocking excitatory neurotransmissions, acting on specific neutrotrans-
mitters and voltage-gated ion channels. Roughly, the general anaesthetics produce a
widespread neurodepression in the central nervous system (CNS), causing multiple
behavioural responses such as unconsciousness (hypnosis), analgesia and immobil-
ity depending on which specific neurotransmitters, synaptic receptors and neuronal
pathways the drugs target to. Since the EEG reflects the activity of hundreds of
thousands of synchronized cortical pyramidal cells [23], the net inhibitory induced
changes in neural neurotransmission by GA drugs, affect the synchronization of the
pyramidal neurons, inhibiting their communication with other neurons and other
brain areas such as thalamus and hippocampus. The drug-induced changes of the
EEG wave patterns depend on multiple factors such as the intrinsic mechanism of
action of each drug, the Ce, potential drug interactions with other drugs, patients vari-
ability and many other factors that might take place during the surgical procedure.
Understanding the main qualitative changes of the EEG wave patterns is complex,
but current depth of anaesthesia monitoring technologies track quantitatively the
EEG pattern changes summarizing them into useful indexes describing the patient’s
hypnosis or sedation state.

The most widely used drugs to induce and maintain the hypnotic component
of GA are broadly divided as intravenous and inhalation agents according to their
route of administration. While intravenous agents such as propofol or barbiturates
act mainly at the GABA receptor complex systems, the mechanisms of action of
inhalation agents such as sevoflurane, desflurane or isoflurane are, additionally to a
GABA agonist mechanism, different and probably related to transient alterations of
lipid membrane of neurons. Even though, for the mentioned drugs, their surrogate
effects at the cortical level, and thus, on the EEG, are very similar.
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This chapter focuses exclusively on this widely used hypnotic drugs that elicit
commonwell-known patterns on the EEG. Other drugs such as opioids operate under
very different mechanisms, and agents such as nitrous oxide, dexmedethomidine and
ketamine among others, possess an ambivalent effect, both hypnotic and analgesic,
all inducing distinct effects on EEG outside the scope of this chapter, see [29, 32]
for more details.

The twomain EEG induced effects observed under propofol, similarly for sevoflu-
rane, desflurane and isoflurane, are shown from an example case under a Total
Intravenous Anaesthesia (TIVA) procedure with propofol and remifentanil (opiod).
Figure24.1 shows segments ofEEGcollected at different propofolCe concentrations.
Clearly, the changes in the EEG activity regarded to the hypnotic drug concentrations
are not following a continuous transitional pattern [30, 32], but two major changes
regarded to the preservation of the statistical stationary properties of the signal,1

which will require consequently two different major signal processing approaches.
The two main type changes are:

EEG changes preserving signal stationary. In these circumstances, there is
a continuous wise modification of the EEG signal spectral components related to
the drug concentration. For lower and moderate propofol concentrations the EEG
induced changes vary continuously without affecting signal stationary properties
(strict sense) in mean and variance. See some EEG example segments in Fig. 24.1a,
for several propofol Ce levels (Ce = 2.2µg/ml andCe = 3µg/ml) respect to the awake
state, Ce = 0µg/ml. As drug concentration increases the EEGbecomes “smoother” in
time, with its corresponding translation in the frequency representation, shifting the
spectrum content to lower frequencies, diminishing the beta and gamma components,
see Fig. 24.1b.Additionally, at some concentrations, propofol induces strong periodic
oscillations around 10Hz (α-band) and low frequencies, δ-band.2 Similar effects
occur under other agents such as sevoflurane, desflurane and isoflurane.

Non-stationary time preservation induced patterns. At higher concentrations
of propofol, a strong disruption from the previous “smoothing“ transition pattern
takes place, see Fig. 24.1c for Ce = 5.8 µg/ml. High doses induce major temporal
changes in the EEG waveform, losing the time stationary properties since the signal
variance changes abruptly along time. The EEG activity alternates with periods of no
activity, low signal amplitude periods consistently less than 5 μV for more than 500
ms (clinical definition), a pattern known as Burst Suppression (BS). Traditionally,
the BS is quantified coarsely with the Burst Suppression Rate (BSR), defined as the
percentage of periods with no activity, isoelectric EEG, respect to the total time, a
measurement proportional to the drugs Ce [13]. As before, the BS takes place at high
concentrations under other GABA agents such as sevoflurane and isoflurane.

1A stationary process (strict sense), is a stochastic process preserving the unconditional joint prob-
ability distribution across shifts in time. Under second-order statistics, this implies that mean and
variance do not change over time [41].
2Despite, GA agents (such propofol) provoke a broad neurodepression, the activity in some fre-
quency bands may increase due to the networks deviation from their natural dynamics, altering
(thalamocortical) loops and leading to synchronous (α and δ) activities [9].
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Fig. 24.1 Example of the two coarse changes induced by propofol: stationary and non-stationary
changes. EEG signals under different concentration levels of propofol. Induced changes preserving
signal stationary properties. a Three raw EEG activities of 3 s at different propofol concentrations,
from awake to the loss of consciousness (LOC) and a surgical level. b Their three power spectral
density, in decibels (dB), with the conventional EEG frequency bands. As the drug concentration
increases the EEG spectra shift to lower frequencies and a narrow band frequency component
rises around α-band. Induced non-stationary changes in the signal. Temporal changes in the signal
variance. c EEG activity (30 s) under high concentrations of propofol, with BS periods and a BSR
= 32. These EEG segments were extracted from a patient case under GA shown in Fig. 24.2b

These two EEG induced patterns under different drug concentration levels usu-
ally require different, signal processing approaches for feature extractions. While
there are well-known effects of the anaesthetics agents on the EEG power spectral
density such as the spectral shift to lower components or alpha power increase, other
effects were described regarded to the synchronization activities [10, 38, 45]. Sig-
nificant frequency widespread changes in synchronization appear under propofol
administration, in particular, synchrony increments in α (8–10 Hz) and β2 (18.5–21
Hz).

Themodels based on themechanism of action of propofol acting GABA receptors
[4, 5] showed that an increasing in the GABA conductance and decay time [9, 54]
resulting in coherent α activity, which facilitates the involvement of the thalamus
in a highly coherent thalamocortical α oscillation loop. Thus, at the cortical level,
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Table 24.1 Qualitative summary of the main EEG changes by propofol. Similar to sevoflurane,
desflurane and isoflurane

EEG frequency bands

LF δ α β1 β2 γ

f(Hz) (0.1–1) (1–4) (8–12) (18.5–21) (21–30) ≥32

Amplitude ↑ ↑ ↑ ↓ ↓ ↓
Coherence – ↑ ↑ ↓ ↑ ↓

unconsciousness under propofol is characterized by α oscillations which are strongly
coherent across the frontal cortex, in addition to a substantial coherence in the δ (1–4
Hz)waves. On the other hand, propofol attenuates the coherence at other frequencies,
especially at γ and β1, in parallel with their power attenuation. Despite propofol
induces high slow (0.1–1Hz) oscillations, these are incoherent [10, 45]. Table24.1
summarizes qualitatively the main EEG changes for propofol. Similar oscillatory
coherence patterns were described for sevoflurane [3], desflurane and isoflurane, but
the frequency band behaviour and range might differ slightly.

24.3 Algorithms and Monitoring Design Approaches

In the last decades, there has been intensive research and development of systems to
monitor DoA. Multiple distinct approaches were followed to quantify the previously
described changes of the EEG activity induced by the anaesthetic drugs. The different
approaches covered a wide range of quantification methods of stochastic processes,
from linear techniques in the spectral domain to non-linear techniques such as entropy
measurements. In Table24.2 are shown a list of different methods applied to the EEG
signals under anaesthesia.

Despite several studies have indicated that the EEG exhibit some non-linear or
chaotic behaviour under anaesthesia and physiological sleep stages [1, 12, 43, 58],
still, non-linear analysis method applied to the DoA such as entropy, Hurst exponent,
fractal analysis among others, have shown significant enhancement in performance
respect the linear based methods. Similarly, to the research approaches, the dominant
techniques implemented in the current commercial systems in clinical daily use 3 and
with more extensive validation studies, are based on linear theory. In that respect,
while BIS, qCON and PSI indices are based on linear methods (Bispectrum and
Fourier Transform, respectively) the unique non-linearmethod commercially applied
is the spectral entropy in the SEmodule, with comparable results [35], andwith small
differences attributable mostly to the systems artefact management [2, 42].

3Main commercial DoA indices: The Bispectral index (BIS)T M (Medtronic, USA), the index of
hypnosis/sedation (qCON) c© (Fresenius Kabi, GmbH, Germany), (PSI) SEDLineT M (Masimo,
Irvine CA, USA), and State Entropy index (SE)® (Datex-Ohmeda, GE).
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Table 24.2 EEG feature
extraction algorithms under
GA. Commercial DoA
monitors main approach (see
Footnote 3)

Methods Commercial monitors

Spectral domains analysis

Bispectrum [22] BIS

Fourier transform [16, 18] qCON, PSI

Time domain-algorithms

Entropy measurements

Approximate entropy [7, 24]

Lempel-Ziv entropy [14, 58]

Shannon entropy [15, 20]

Spectral entropy [51, 53, 56] SE

Chaos and long term correlation analysis

Hurst [26]

DFA [21]

Fractal analysis [40]

Time-frequency analysis

Wavelets [34, 37]

Independently of the methodology applied, any method, in general, summarizes
the complexity of the EEG information into a continuous single value ranging in an
accessible scale easy and fast to interpret. Typically, the depth of hypnosis indexes
provided by different manufacturers such as BIS, qCON, PSI, are dimensionless
indexes ranging continuously from 100 to 0, with values near 100 representing the
“awake” state while 0 denoting isoelectric EEG. In between, different ranges cor-
relate with important clinical endpoints. While BIS and qCON define the ranges
as: [99–80]—awake state, [80–60]—light hypnotic state, [60–40]—GA, [40–20]—
deep hypnotic state and [20–0]—EEG with Burst Suppression. The definition of
other manufactures might differ slightly. In that respect, the SE is defined from 91
(awake) to 0 (isoelectric), and the PSI establishes the recommended GA range from
50 to 25.

The basic design scheme, shown in Fig. 24.2a, consists of an acquisition stage
followed by a preprocessing and artefact rejection stage. This stage is crucial since
these monitors operate in a hostile environment under very distinct types of inter-
ferences. Thus, to the common artefacts present in any EEG recording [39] such as
Electromyography (EMG), eye movements and blinking, ECG, mains interference,
among others, in the surgical environment a wide variety of strong interferences
coming from distinct electrical medical devices and apparatus must be detected and
filtered out: electrocautery, ventilators, infusion pumps, pacemakers, orthopaedic
surgery drills, etc. Due to the hostility of the surgical environment and how criti-
cal is the information that a DoA monitor provides to the practitioner any depth of
anaesthesia monitor must provide continuously a Signal Quality Index (SQI). The
SQI measures the quality of the acquired EEG signal and usually is provided as a
percentage of the number of artefacts during a fix period of time. Additionally, the
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electrode-to-skin impedance is measured and included in the SQI calculation. The
EMG, which also acts on the SQI, is also provided as a monitor parameter since per
se since it is an indicator of potential significant biases on the DoA estimation as
well as a continuous indicator of the patient muscular relaxation under neuromuscu-
lar blocking agents (NMBAs). It is worth mentioning that EMG activity measured
from the EEG recording refers to the facial muscular activity which is not entirely
linked to the body muscular relaxation. Following the artifact rejection and the pre-
processing stage, feature extraction is performed to characterize the EEG activity. At
this point any algorithm such as the ones in Table24.2 extracts the necessary features
to be integrated into an index. The BS is also quantified at this step, commonly as
the percentage of time where the EEG is isoelectric, BSR. Despite the simplicity of
this measure, it works nicely with the anaesthetic agents under deep anaesthesia [6,
52], and it is easy to interpret and visually inspect by the anaesthesiologists. Anaes-
thesiologists generally try to avoid deep anaesthesia levels, where the BSR is high,
since lighter monitor-guided depth of anaesthesia level conducted to improved post-
operative outcomes [8, 25, 28, 55]. Finally, the latest step integrates the extracted
features into an easy and fast to interpret scale correlated with: (1) the clinical assess-
ment, e.g. scores like the Observer Assessment of Alertness/Sedation scale (OAA/S)
or Ramsay scale [32], and (2) the pharmacological information obtained from the
pharmacokinetic/pharmacodynamic models (PK/PD) models.

Figure24.2b shows the time evolution of the propofol Ce under the Schnider
PK/PD model [48, 49] on a patient during GA and under remifentanil (analgesic).
Thepanel belowshows theDensitySpectralArray (DSA) for thewhole intraoperative
procedure where it is possible to observe the characteristic effects of propofol on the
EEG. A strong elicited α-band activity with a decrease of β and γ activities respect
to the awake state. In lower panel, it is shown two simultaneously recorded Processed
EEG (pEEG) neuromonitoring indices, BIS and qCON, lower panel. Clearly, both
EEG indexes follow relatively well the Ce. The anaesthesia induction, in intravenous
and volatile anaesthesia, usually is performed inducing high concentrations in a short
time; a fast induction is generally more pleasant and less problematic in the hemody-
namic stability. Independently of the anaesthesiologist procedure any monitor index
must be fast enough to track fast changes in the patient hypnotic state. Fast inductions
induce periods of BS, as it is shown in this example, with BSR reaching 32. After the
induction, the common practice is to keep the patient into a stable adequate balanced
anaesthesia level, until the end of the surgery.

Current example shows a novel index, qNOX® (FreseniusKabi,GmbH,Germany)
[18], linking the EEG to the patient probability of response to noxious stimulation.
This index was formulated, similarly to the qCON hypnotic index with those spectral
features of the EEGwhich integrated into a model produced the best correlation with
the remifentanil Ce (analgesic) given by the Mintos‘ PK/PD model [33] and the
response of the patients to noxious stimuli, in this case, different types of airway
intubation: laryngoscopy, LMA insertion and tracheal intubation. See [18, 19] for
more details.
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Fig. 24.2 a Flow diagram procedure of DoA monitors. General scheme approach to estimate the
patient’s depth of anaesthesia level. b Example of the time evolution of anaesthetic drugs Ce for
a patient during an intraoperative procedure with propofol and remifentanil. c Density Spectral
Array (DSA) for the whole intraoperative procedure, representing the power spectral density every
second. d Time evolution of two pEEG derived indices for sedation, BIS and qCON, the BSR and
a probability of response to noxious stimulation index qNOX. LOC—Loss of consciousness

24.4 Depth of Anaesthesia Monitoring Validation

There are several methodologies to validate any DoA index. Without considering
technical aspects between different definitions and implementations, one of the
validations rely on the correlation between the index and the hypnotic drug Ce.
Figure24.3a, shows the relation between the qCON index and the propofol Ce con-
centration for n = 660 patients in gynecologic surgery who underwent intravenous
anesthesia with remifentanil, giving a high Prediction probability (Pk) value of 0.825
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Fig. 24.3 a Correlation of the qCON index with the propofol Ce concentration provided by the
PK/PD model (n = 560 patients). b qCON index vs. the expired propofol (ppb-parts per billion) (n
= 12 patients) (unpublished data). c Scatter plot between two DoA indices, BIS and qCON.

(0.004, p < 0.001). A novel complementary evaluation of the Ce concentration can
be obtained bymeasuring the expired concentration of propofol (Cbreath), measured
in parts per billion (ppb). Preliminary results for n = 12 patients showed also a high
correlation between this index, Fig. 24.3b, Spearman corr. Rs = −0.69 (p < 0.001).
The latter data was collected during a TIVA with propofol and remifentanil in elec-
tive routine surgery. Accordingly, other studies have confirmed a good agreement
between other indexes such as BIS with the propofol Ce [13, 47]. Despite some
differences among the monitors [2, 42], in general, the available processed EEG
monitors show strong similarities [35] in the assessment of the hypnotic patient‘s
state. The fact that different approaches have similar performances can be thought
as another indicator that these methods are approaching to the desired estimation
with all limitations of this statement, since, unfortunately, there is no gold standard.
Considerable differences in the performances, without a gold standard, would put
directly under doubt any approach. The agreement across different indices, such
as BIS and qCON can be evaluated under a correlation measurement. Figure24.3c
shows a scatter plot between the two indexes for a large dataset of patients (n = 560).
Both exhibit high correlations values measured with the prediction probability (Pk)
and the Spearman correlation (rs). Other similar analysis with different datasets and
surgeries showed comparable results between BIS and qCON, for instance, rs = 0.89
[35] or Pk = 0.92 [18].

Especially for the commercial systems, which are used constantly in the daily
practice, there is an extensive evaluation of their performance at different surgi-
cal conditions and different anaesthesiology procedures and drug combinations.
However, despite the good performances, there are other situations where these
technologies need to be enhanced with new knowledge of the brain behaviour
under GA.



380 P. Martínez-Vázquez et al.

24.5 Advantages and Challenges in Depth of Anaesthesia
Monitoring

TheDoAmonitoring is a relatively recent technology in constant development, updat-
ing to the newer research findings in neuroscience, pharmacology and anaesthesiol-
ogy. The main advantages of these technologies are: (1) Reduction the incidence of
AWR [11, 31, 36, 57]. (2) Tailoring the anaesthetic agents to the present patient‘s
condition and surgical context, optimizing drug consumption [46, 50], attenuating
potential adverse effects from overdose and facilitating faster recovery [17, 27].
(3) Potential reduction of anaesthetic exposure decreasing the risk of postoperative
delirium and cognitive declines [8]. Yet, the limitations of processed EEGmonitoring
come basically from the lack of complete knowledge of all the complex mechanisms
involved during the anaesthesia procedure, and the lack of a gold standard. Some of
the current challenges in the depth of anaesthesia monitoring are: (1) Attenuation
of the electromyographic (EMG) interference activity present in all EEG record-
ings. (2) Enhancement of the discrimination between the different components of
the balanced anaesthesia: the hypnosis, the analgesia and the areflexia as well as the
interaction between their different associated drugs. (3) Currently, there is no reliable
solution to deal with ketamine , and some volatile agents as the nitrous oxide and
halothane among others. (4) Development of robust closed-loop control system to
titrate the anaesthetics, to continuously optimize automatically the drug-delivering
according to the patient‘s context.

24.6 Conclusions

In this chapter, we introduced the basic changes and patterns of the EEG oscilla-
tions induced by anaesthetics. Due to the complexity of the EEG oscillations, their
characterization followed multiple distinct perspectives, from linear system theory
to non-linear methods. Despite there is no gold standard on the estimation of the
patient state, the different perspectives point to similar estimations. Independently
of the taken approach any EEG based DoA index must agree with the pharmaco-
logical and clinical assessment information. Processed EEG, for DoA monitoring,
is a multidisciplinary field in constant research and development for newer methods
to support for preventing AWR episodes and reduce other adverse effects such as
postoperative cognitive declines in elderly and new-borns.
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Chapter 25
Medical Products Inspired by Biological
Oscillators: Intermittent Pneumatic
Compression and the Microcirculation

Clare Thorn and Angela Shore

Abstract To sustain life oxygen must be transported from the lungs to the heart
and then out to the trillions of cells that make up the human body. This process is
dependent upon many oscillatory systems that exquisitely respond to the fluctuating
needs of each cell. The interplay between these systems that oscillate between an
active and passive state provides the unique balance of a healthy life. To circulate
blood to each cell in the body there is an intricate network of vessels. Blood leaves
the heart through a ~2 cm diameter aorta and branches down to <10 µm capillaries
at a cellular level before returning to the heart through the venae cavae. In these
non-rigid vessels haemodynamic regulation is controlled by complex oscillatory
systems that determine the resistance of vessels and therefore the local blood flow.
These mechanisms are also supported by the presence of valves that ensure venous
return and cyclical muscle pumps such as in the foot and calf that aid the circulation
whilst walking. However, inadequate circulation can arise from the narrowing of
vessels such as atherosclerosis, diseases such diabetes, incompetent valves and lack
of mobility. This chapter reviews how medical products have been developed to
enhance circulation including microcirculation, through the external application of
intermittent pneumatic compression.

25.1 The Microcirculation

25.1.1 Overview

Many medical products have been developed to support the cardiovascular system
when our innate biological oscillatory system fails. When the heart is incapable
of sustaining these oscillations a pacemaker can be fitted. When these systems are
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temporarily suppressed such as under anaesthesia then a ventilator can be imple-
mented. These medical products are systems that can substitute or support these
innate fluctuations of life. Here we look at the effects of a particular medical product,
intermittent pneumatic compression and its effect on microcirculation.

The viability of all biological tissue is dependent upon dynamic changes in the
delivery of nutrients and removal of metabolic waste products through the microcir-
culation, both to maintain homeostasis and meet fluctuating needs. Albert Szent-
Györgyi (Nobel Prize, Physiology or Medicine, 1937) succinctly states “Life is
nothing but an electron looking for a place to rest”. To sustain life in any aerobic
systems undergoing respiration such as in man, electrons pass through an electron
transport chain and the final electron acceptor is oxygen. Therefore to sustain life at
a cellular level, the transport of oxygenated blood from the heart to trillions of cells
in the body is achieved through an exquisite complex system of microscopic blood
vessels known as the microcirculation.

A resin cast of horse skin microcirculation in Fig. 25.1 demonstrates vessels of
sizes less than 50 µm in diameter, less than the size of a human hair. In theory, blood
needs to be transported to within 100µm of every living cell in the body as this is the
limit of diffusional transport of oxygen in tissue, beyond which necrosis can occur
(Franko and Sutherland 1979). Convective transport of blood is therefore required
for distances greater than 100 µm and this is provided by this microcirculation of
arterioles, capillaries and venules. These microscopic vessels are not only conduit
vessels but also play an integral role in the control systems that ensures adequate
delivery of oxygen to tissue to match fluctuating oxygen demands. This is achieved
through spontaneous local oscillations in the smooth muscle tone of blood vessels
known as vasomotion [50] and readers are referred to Part 3 Biological Oscillators
for a more detailed description.

Fig. 25.1 Resin cast of the microcirculation of horse skin
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25.1.2 Structure and Function of the Microcirculation

An understanding of in vivomicrocirculation inman has predominantly been derived
using non-invasive optical techniques to study both the structure and function of
these vessels [25]. Skin is surprising transparent to visible light and provides access
to ~1.7 m2 of microcirculation that lies just below an avascular surface of stratum
corneum and epidermis. Unfortunately light attenuation in Caucasian skin is domi-
nated by scattering rather than absorption (transport scattering coefficient µ’

s = 2.73
± 0.54 mm−1 versus absorption coefficient µa = 0.033 ± 0.009 mm−1 at 633 nm)
thus hindering the direct visualisation of all vessels in the microcirculation. The skin
microcirculation consists of a mesh of vessels <300 µm predominantly laid out as
two parallel horizontal plexi. Due to the high scattering of light in skin these plexi
cannot be visualised directly. However, there are capillary loops rising perpendic-
ular to the surface from the superficial plexus that can be observed simply using a
microscope and a camera or video recorder. These capillary loops supply oxygen
and nutrients to the avascular epidermis. As can be seen in Fig. 25.2a only the tips of
the capillary loops are visualised in the majority of skin and quantitative measures
are predominantly confined to capillary density, this being the number of capillary
tips in one square millimetre. An exceptional site is at the nailfold on fingers and
toes where these capillaries run parallel to the skin surface Fig. 25.2b. In visual-
ising these nailfold capillaries over time it is possible to study the haemodynamics
of red blood cells as they travel through these smallest vessels, demonstrating the
continuous fluctuations in blood flow induced by vasomotion. Similarly, there are
a few uniquely accessible sites in the body such as sublingual tissue in the mouth
(Fig. 25.2c) and the retina of the eye where there is a thin epithelial layer covering
the microcirculation and images of arterioles and venules can be obtained directly
by light microscopy [68]. A measure of capillary density changes in chronic venous
insufficiency has also been made by imaging the “visual” capillaries that come into
focus in supra-malleolar skin 5 cm proximal to the medial malleolus [33].

Access to the microcirculation of deeper tissues includingmuscle can be achieved
using longer wavelengths of light such a near infrared. With a reduced transport scat-
tering coefficientµ’

s = 1.63mm−1 at 900 nm compared toµ’
s = 2.73mm−1 at 633 nm

[66] it is possible for near infrared light to penetrate up to ~6 cm of tissue. Tech-
niques such as laserDoppler fluximetry (LDF) and near infrared spectroscopy at these
longer wavelengths cannot produce images but can interrogate the haemodynamics
of microcirculation in deeper tissues even with high melanin concentrations [2] and
can derive a measure of the oxygen content of the blood in the microcirculation [3].

25.2 Endogenous Vascular Oscillators

With advances in optical techniques and digital imaging it is now possible to under-
take non-invasive, in vivo research in man to study both the dynamic changes in the
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Fig. 25.2 a Video image of dorsal finger skin showing capillary tips (Microscan, MicroVision
Medical, Amsterdam). b Video image of skin nailfold capillaries that run parallel to skin surface
(CapiScope HVCS, KKTechnology, UK). c Video image of the sublingual microcirculation in
mouth where thin epithelial layer enables the visualisation of arterioles, capillaries and venules
(Microscan, MicroVision Medical, Amsterdam)

diameters of blood vessels and the effects, in the microcirculation. Oscillations in
intrinsic vascular tone are observed as a change in vessel diameter and is known as
vasomotion whilst oscillations in blood flow (flowmotion) result from many mech-
anisms including vasomotion. For a current overview of the specific mechanisms
involved in vasomotion readers are directed to review articles [15, 1] and Part 3
Biological Oscillators. Historically, vasomotion has been studied in vitro with tech-
niques such as myography but with the development of new optical techniques it is
now possible to monitor both the anatomy and physiology of the microcirculation
in situ.

The regulation of blood flow to organs is primarily driven by a need to main-
tain a rapid transport of nutrients to the tissues and washout of metabolic waste
products. In a living system, the regulation of a variable is maintained through a
dynamic balance between activation and deactivation—a basic principle of an oscil-
lator [71]. This is predominantly achieved by the dilation and constriction of blood
vessels thus altering their resistance. From the structure of the vascular walls it
can be seen that this can be mediated through either a neurogenic, myogenic or
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endothelial response. The local control of vascular resistance is primarily achieved
through vascular smooth muscle activity changing the arteriolar diameter to regulate
local blood flow, arterial pressure and capillary filtration. However, vascular resis-
tance may also be altered through vascular smooth muscle activity in venules and the
potential dilate of capillaries by actively relaxing pericytes [31]. The dynamic interac-
tion of pressure-dependent vasoconstriction, flow-dependent endothelium-mediated
vasodilation, metabolic vasodilation and spontaneous myogenic activity acting on
basal vascular tone produces local changes in blood volume and blood flow. Oscil-
lations can be observed as fluctuations in blood volume, blood flux (flowmotion)
and oxygenation in microcirculation when studied with optical techniques such as
laser Doppler fluximetry and reflectance spectroscopy. It is hypothesised that these
oscillations are generated at different frequencies depending upon the regulatory
control mechanism. In quantifying the amplitude and proportion of these oscilla-
tions by Fourier and wavelet analysis it is believed that it is possible to monitor the
changes in myogenic, neurogenic and endothelial activity regulating blood flow and
oxygen delivery. Pioneering work by Stefanovska using LDF in forearm skin has
revealed five characteristic frequencies of oscillation in blood flux in microcircula-
tion at around 1 Hz (heart rate), 0.3 Hz (respiration), 0.1 Hz (myogenic activity),
0.04 Hz (sympathetic activity) and 0.01 Hz (endothelial activity) [12–39].

Why vasomotion occurs is still very much a matter of debate but it has been
suggested that vasomotion is beneficial for tissue oxygenation [50, 15–73]. Tissue
oxygenation can be improved by increasing the surface area available for exchange
i.e. capillary recruitment or by optimising oxygen delivery. How vasomotion might
ensure adequate oxygen delivery to all tissues has come primarily from theoretical
modelling [75, 30, 37]. These models suggest that pO2 transients caused by vaso-
motion can oxygenate tissue domains which under steady-state conditions would
remain anoxic [75]. Therefore vasomotion appears to play a role in improving oxygen
perfusion especially to hypoxic tissue. It has been shown that ischaemia elicits an
amplification of skin blood flow oscillations besides an increment of skin perfusion
[57, 58].

25.3 Medical Products Inducing Oscillations Through
Intermittent Impulse Compression

For over two hundred years external applied pressure systems have been wrapped
around limbs with the aim of improving the circulation of blood. A historical review
of these methods designed to improve peripheral blood flow can be found in The
Venous System in Health and Disease by A.M.N. Gardner and R.H. Fox (IOS Press,
The Netherlands, 2001). In the past, compression bandages and hosiery have been
themost effective tool to treat impaired blood flow due to venous insufficiency. These
techniques continue to provide clinical benefits in conditions such as venous hyper-
tension and chronic venous insufficiency [24] and have been found to improve ulcer
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healing rates [9, 43]. There is good evidence that compression bandages and hosiery
heal more ulcers compared with no compression [44, 51] and evidence from one trial
that compression hosiery reduces rates of re-ulceration of venous ulcers compared
with no compression [45]. The first pneumatic devices appeared around the end of the
19th century automating the uniform, sequential or graded sequential compression
to the limbs provided by compression bandaging. Intermittent pneumatic compres-
sion has found clinical application in the management of advanced chronic venous
disease, specifically venous ulceration [46], lymphedema [63], and the prevention
of deep vein thrombosis [62]. IPC devices consist of an electrical pneumatic pump
that inflates a cuff around the foot/hand or calf/thigh, compressing the deep veins
and improving venous return to the heart. Upon cuff deflation the veins refill with
arterial blood assuming that the venous valves are competent. External compression
to the peripheral circulation displaces blood proximally increasing arteriovenous
pressure gradient [22], however intermittent pneumatic compression also augments
vascular homeostasis [7] through the perturbation of blood flow, which stimulates
the release of endothelium-derived vasoregulatory signals [35]. A schematic diagram
of the setup for intermittent impulse compression to the hand can be seen in Fig. 25.3
including methods to measure its effect on skin microcirculation. Interestingly in a
clinical study, IPC has been shown to restore vasomotion in skin [54].

The benefits of an oscillatory compression system in the peripheral circulation
was first highlighted by Gardner and Fox who identified a venous foot pump that
enhanced venous return from the plantar venous plexus by the rhythmic motion
of walking [27, 28]. IPC mimics these physiological fluctuations through cyclical
pneumatic mechanical compression, to the limb or venous plexus of the hand or
foot, from a fast inflating cuff at frequencies around 0.03–0.05 Hz (2–3 cycles per

Fig. 25.3 Setup for intermittent impulse compression to the hand via fast intermittent cuff inflation
to the palm with methods to measure its effect on finger skin microcirculation
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minute). Although blood is indeed displaced proximally it is the oscillatory nature
of IPC inducing intermittent fluctuations in shear stress to the endothelium that is
now thought to induce further clinical benefits [48].

Human studies on the physiological effects of IPC on circulation have predomi-
nantly focused on large vessels such as the popliteal artery [22, 39–40] and vein [23]
in the leg and brachial artery in the arm [56]. Scanning and Doppler ultrasound are
non-invasive techniques that are frequently used to provide measures of large vessel
diameter, blood flow, velocity and also to provide an indirect measure of shear rate on
the vascular endothelium [64, 5], a useful approximation of shear stress that does not
account for blood viscosity. In these large vessels it has been shown that IPC induces
periods of increased arterial inflow [64, 40] and enhanced venous outflow [23] that
have been attributed to both mechanical effects and enhanced shear stress [64, 10].
In summary, IPC intermittently compresses deep compliant veins facilitating venous
emptying by accelerating blood forward, distending that section of the vessel. As
the vessel wall stretches strain occurs in the vascular endothelium with the change
in diameter [10]. Using haemodynamic modelling of flow in a flexible tube, Dai
concluded that an external pressure of 50 mmHg would induce strains at the vessel
lumen border of approximately 20% [19]. In turn, the increase in arterial-venous
pressure gradient significantly increases arterial inflow and hence shear stress to the
vascular endothelium [8]. It is the consequences of these changes in strain and shear
stress to the vascular endothelium induced by IPC that are thought to provide many
of the observed clinical benefits. It is now recognised that the cyclical compression
of IPC increases the shear and compressive strain on the vascular endothelial cells
resulting in the release of biochemical vasoactive mediators [10]. For many decades
compression strain to vessels in the limbs has been associated with a reduction in the
incidence of deep vein thrombosis (DVT) and pulmonary embolism indicative of the
release of anti-thrombotic, pro-fibrinolytic agents [45–17]. The induction of vasodi-
lation by shear stress on vascular endothelial cells has beenwell documented. In vitro
cell culture systems have demonstrated a rapid release of nitric oxide in response to
shear stress induced by both compression and pulsatile flow [20]. In animal studies
IPC increased the expression of endothelial nitric oxide synthase (eNOS), inhibiting
smooth muscle cells contraction and inducing vasodilation [50–11]. In a rat model
IPC has also been shown to upregulate VEGF mRNA in skeletal muscle but only at
a higher frequency of compressions (2 s on/2 s off) and seemingly independent of
compression pressure [55]. It can therefore be seen that to optimise the clinical bene-
fits of IPC it is important to consider the parameters that influence venous emptying,
arterial inflow and the shear and strain induced in the vascular endothelium.Although
themechanistic effects of IPChave been studied and clinical benefits reportedwidely,
single sessions of IPC have not be shown to impact vascular function [64].

Commercial IPC devices have been developed using a wide range of not only
compression pressures but also varying compression cycles (Table 25.1). Readers
are directed to literature reviews on the comparative effectiveness of these devices
[53, 79].

The number of pneumatic compressions perminute has predominantly been deter-
mined by the need for adequate venous refilling time following compression [29]



392 C. Thorn and A. Shore

Table 25.1 Commercial Intermittent Impulse Compression devices and compression parameters

Intermittent
pneumatic
compression device

Inflation type and
pressure (mmHg)

Inflation time
(s)

Compression
duration (s)

Cycles per
minute

VADOplex
Oped

130 foot constant
60–200

<0.4 1 3

VenaFlow® Aircast
DJO Global

52/45 calf
distal/proximal

<0.5 6 1

A-V Impulse™ Foot
Compression
CardinalHealth™

60–200 constant rapid 1–3 3

Kendell SCD 700
Covidien
CardinalHealth™

130 foot constant
30-45 leg
sequential

– 5
11

1–3
Vascular refill
detection

Flowtron®

Huntleigh
130 foot constant
30-60 calf/thigh
constant

–
–

3
12

2
1

VasoPress®

Zimmer Biomet
80 foot constant
40 calf constant

– 12 1

and is most often set at 1–3 cycles per minute or every 20–60 s. These frequencies
occur in vasomotion and encompass vascular oscillations considered to be induced
by endothelial and neurogenic activity. Sheldon compared IPC cycles of 3 and 12 per
minute and during the first 5 minutes of IPC for both protocols there was a twofold
increase in mean popliteal artery blood flow. However after 45 minutes of IPC blood
flow fell significant during the deflation period at the higher inflation frequency of
12 cycles per minute [64]. This would suggest inadequate time for venous refilling.
However, it is noteworthy that refilling of coronary vessels during the cardiac cycle
occurs in less than a second and in a similar timeframe deep veins in the leg refill
during walking. The rate of cuff inflation with IPC devices also affects the enhanced
blood flow and subsequent shear stress and strain on the vascular endothelium. This
has led to the term intermittent impulse compression insteadof intermittent pneumatic
compression. IPC systems can be adapted to change both the rate and amplitude of
cuff inflation pressure. It has been shown that optimal venous emptying by IPC from
the lower limb occurs with a higher applied pressure (120–140 vs 60–100 mmHg)
and a higher frequency (3–4 vs 2 impulses per minute) [21]. Intermittent pneumatic
compression with a cuff inflation of 0.5 s has been shown to heal more venous leg
ulcers in 6 months of IPC then with a cuff inflation over 60 s [49]. This is consistent
with findings that during IPC of rat cremaster muscle, vasodilation is only induced
with inflation rates of 0.5 s but not 10 s, independent of peak pressure [41]. However
there has been no systematic review of the many complex physiological mecha-
nism activated by IPC that contribute to these known clinical benefits. Although IPC
devices differ in practical features and in effects on physiology, current evidence
does not show a clear difference in effects on clinically important outcomes [52].
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Fig. 25.4 Effect of
30 minutes of intermittent
impulse compression applied
to the palm of the hand on
the blood flux in dorsal
finger skin as measured by
laser Doppler fluximetry
(data collected at 0.5 Hz)

Research on the effects of IPC at a microcirculatory level has been limited by
available technology. In skin, laser Doppler fluximetry is an excellent non-invasive
tool for studying the microvascular haemodynamic changes that arise from IPC and
significant increases in skin flux at themicrocirculatory level have been observed [40,
74, 4]. Examples of the effect of 30 minutes of IPC to the palm of the hand on blood
flux in dorsal finger skin are shown in Figs. 25.4 and 25.5 (authors’ unpublished
data).

The combination of LDF along with spectroscopic techniques has identified an
increase in the oxygenation status of the enhanced microcirculatory blood flow
induced by IPC indicating enhanced arterial inflow in the microcirculation [74]. This

Fig. 25.5 Cyclical changes in flux induced in dorsal finger skinmicrocirculation during intermittent
impulse compression with a cuff inflation of 3 cycles per minute (data collected at 40 Hz). Cuff was
inflated to 130 mmHg in <0.5 s and held for 1 s before deflation. A temporary surge in flux can be
seen upon each cuff inflation due to mechanical compression followed by a steady increase of flux
indicative of vasodilation in response to shear stress [74]
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is in agreement with the findings of a study where transcutaneous oxygen tension
wasmonitored at the skin surface during IPC and the partial pressure of oxygen in the
skin was shown to significantly increase [4]. Furthermore the enhanced blood flow
induced by IPC has also been observed by capillaroscopy to increase the capillary
density in the skin [74]. Research on the effects of IPC on skeletal muscle perfusion
shows some similarities with the well-known exercise induced hyperaemia observed
following a single muscle contraction [42, 14]. Contract-induced rapid onset vasodi-
lation results from a rapid increase in blood flow within the first second attributed
to an acute mechanical effect of muscle contraction (muscle pump) followed by
an additional active dilatation of resistance vessels [65, 76] induced by vasoactive
metabolites released from contracting fibres [67–18] and the vascular endothelium
[18]. Endothelial signalling pathways induce upstream vasodilation in feed arteries
known as conducted vasodilation [67]. The relative contribution of the muscle pump
versus interstitial or endothelial vasodilators to this contract-induced vasodilation is
still a matter of debate. In studies in rat muscle IPC has been shown to increase the
production of endothelial vasodilator nitric oxide [72, 11]. The upregulation of eNOS
mRNA not only occurred in compressed muscle but also in adjacent uncompressed
muscle and it is suggested that this is induced by IPC-mediated shear stress. The
upregulation of VEGF mRNA in rat skeletal muscle by IPC suggests it may also
encourage new vessel growth and improved perfusion. Single impulse cuff inflation
to 200 mmHg to the forearm muscle has also been shown to evoke vasodilation in
the muscle bed increasing the forearm vascular compliance [36].

Intermittent pneumatic compression has therefore found a range of clinical appli-
cations both from the improved venous return and the effects of changing shear stress
and strain on the vascular endothelium. These mechanisms not only induce vasodi-
lation but also induce a cascade of biochemical responses which downregulate the
expression of adhesion molecules, inflammatory and chemokine genes; and promote
the inhibition of white blood cell adhesion and platelet aggregation [7, 13, 16]. It
can therefore be seen that IPC devices can activate physiological mechanisms that
have a wide range of clinical applications. Intermittent pneumatic compression is a
well-established technique in the management of advanced chronic venous disease,
specifically venous ulceration [46, 16, 6]. The IPC devices can enhance venous return
and prevent stasis, especiallywhere valves are not compromised. Exploiting themany
biochemical response induced by IPC has led to it also being widely used for the
prevention of deep venous thrombosis (DVT) and pulmonary embolism [47, 34, 12]
both during surgery [47, 79, 34, 26] and whilst on bed rest. In 11 non-orthopaedic
surgical randomised controlled trials, IPC reduced the incidence of asymptomatic
DVT from 25% in the control group to 7.9% in the IPC group [47]. In 11 multi-
modality studies, combining IPCwith anticoagulantmedication further decreased the
incidence of DVT from 4.1%with IPC alone to 2.19%with IPC and pharmacological
prophylaxis [34].

IPC systems have also been shown to reduce oedema [10] and are therefore used
in the treatment of lymphedema [78, 61]. This reduction in oedema through IPC
has further been shown to increase dermal oxygen tension [38], possibly through
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increased perfusion pressure and hence the potential for improved wound healing
[45, 16, 6].

In terms of IPC use in venous leg ulcers a Cochrane review of nine randomised
controlled trials looked at the effects of IPC compared to no IPC, and between IPC
with and without other treatment regimens in venous ulcer management. In 4 out
of 9 studies IPC was shown to enhance the healing of venous leg ulcers suggesting
that IPC may increase the healing of venous leg ulcers compared with no compres-
sion. However it was unclear whether IPC can be used instead of compression
bandages [46].

Despite these observed clinical benefits of IPC and the exceedingly large clinical
usage of the device, there is a lack of evidence from randomised controlled trials
to establish exactly which of the impulse pressure sequences provide the greatest
therapeutic effects [79]. Whilst the mechanistic effects of IPC have predominantly
been studied locally in large vessels it is also the systemic changes in shear stress that
are likely to enhance these clinical benefits. For IPC to improve perfusion to tissue
for complications such as venous leg ulcers; to promote angiogenesis and to mitigate
the risk of DVT and pulmonary embolism it is essential that we also fully understand
the effects of IPC at a microcirculatory level, this requires further research.

In health many oscillatory mechanisms alter their periodicity to accommodate the
changing demands of life such as heart rate variability, respiratory sinus arrhythmia,
vasomotion, muscle contraction and muscle pumps. A greater understanding of the
integration of these oscillators in health along with the mechanisms induced by IPC
that generate clinical benefits in DVT, venous disease and oedema may enable us
to optimise the application of externally applied oscillatory devices to support and
enhance these mechanisms when they are compromised.
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Chapter 26
Phase Coherence Between
Cardiovascular Oscillations in Malaria:
The Basis for a Possible Diagnostic Test

Yunus A. Abdulhameed, Abdulrazaq G. Habib, Peter V. E. McClintock,
and Aneta Stefanovska

Abstract We show how a non-autonomous dynamics approach using time-resolved
analyses of power spectra and phase coherence can help in the noninvasive diagnosis
ofmalaria. Thework is based on studying oscillations in bloodflowand the variability
of the heart and respiratory frequencies. The model used assumes that the heart and
respiration are two oscillatory pumps with variable frequencies and that the vascular
resistance also changes in an oscillatory manner. Red blood cells circulating through
the system deliver oxygen to each cell. Malaria changes the red blood cells so that
this delivery is compromised. The oscillatory properties of both pumps are also
affected. We quantify the latter and compare three groups of subjects: febrile malaria
patients (37); non-febrile malaria patients (10); and healthy controls (51). For each
subject, time series of skin blood flow, respiratory effort, cardiac activity (ECG) and
skin temperature were recorded simultaneously over an interval of 30 minutes. The
oscillatory components within the range 0.005–2Hz were analysed and their degree
of coordination throughout the cardiovascular systemwas assessed by wavelet phase
coherence analysis. It is shown thatmalaria, either febrile or non-febrile, substantially
reduces the coordination.
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26.1 Introduction

Malaria is a life-threatening mosquito-borne disease [41], involving changes in the
dynamical properties of blood flow. There are still more than 200 million cases of
malaria annually, resulting in about 600,000 deaths. The disease is treatable when
arrested soon enough, so early diagnosis is highly desirable. Despite the development
of non-invasive alternatives [22], the current gold standards in malaria diagnosis are
still antigen-based rapid diagnostic tests (RDTs) and the microscopic examination of
blood films by a trained microscopist. Results vary widely in diagnostic sensitivity
and specificity.

To our knowledge, malaria-related impairment of cardiovascular oscillation has
not been investigated. To try to understand such effects, and to assess their potential
for detecting malaria, the present study involves simultaneous monitoring of blood
flow, skin temperature, respiration and electrocardiography. The time series are anal-
ysed using wavelet-based methods to establish, not only the intensity of oscillatory
processes involved in cardiovascular regulation, but also their degree of coordination
which, as we will see, is adversely affected by malaria.

Physiological oscillations and their potential for characterising cardiovascu-
lar dynamics in malaria. Measurements of blood flow and oxygenation in human
subjects reveal several co-existing oscillatory processes, covering a very wide range
of frequencies. Use of the continuous wavelet transform reveals at least six such
processes [34, 36]; with the same oscillations being seen at different sites and for
different measured quantities, not only in blood flow and oxygenation. Their phys-
iological attribution has been established. Briefly: hemodynamic oscillations near
1 Hz (frequency interval FI-I) and 0.25 Hz (FI-II) are due to cardiac and respira-
tory activity respectively; the oscillation near 0.1 Hz (FI-III) is attributable to the
natural properties of smooth muscle which oscillates at about 0.1Hz even in vitro;
that near 0.03 Hz (FI-IV) is neurogenic, associated with autonomic nervous activity;
and those near 0.01 Hz (FI-V) and 0.007 Hz (FI-VI) arise [23] from NO-related and
NO-independent endothelial activities respectively. The underlying physiological
oscillatory processes suggested the introduction of a coupled-oscillator model of the
cardiovascular system [36, 37, 39]. Understanding the nature of these oscillations in
healthy subjects allows their sometimes distinctive differences in pathological states
to be identified. This approach has not yet been applied to malaria, however, even
though the disease may be expected to cause significant changes in microvascular
dynamics.

Possible effects of malaria on the oscillations in blood flow. The increased
stiffness of the membrane of an infected erythrocyte (red blood cell, or RBC) [19],
and its tendency to stick to the endothelial cells lining all the blood vessels, cause
infected cells to pass less easily through the capillaries. The cell also changes shape,
and its ability to transport/release oxygen is compromised. Consequently, the vis-
cosity, flow properties, and oxygenation of blood are all changed by malaria in ways
that do not occur in other diseases. Hemodynamics is altered [18] on account of the
spatial distribution of erythrocytes [33] and merozoites, and it is reasonable to infer
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that endothelial reactivity is affected too. Erythrocytes are an important factor deter-
mining the hemorheological properties of blood, its corresponding shear-thinning
and increased shear stress at walls [46]. We therefore hypothesise that the oscillatory
properties and their degree of coherence between different parts of the system will
be altered in malaria. Blood flow takes place in a thermodynamically open system,
and therefore the oscillations are time-varying. Time series analysis methods for
non-autonomous dynamics [8, 9] must therefore be employed.

26.2 Materials and Methods

Here we summarise salient features of the measurements and data analysis, which
are described in fuller detail by Abdulhameed [1]. The anthropomorphic data for the
subjects used in the study are listed in Table26.1.

Table 26.1 Anthropometric data for the subjects, presenting their: ages; body mass index (BMI);
skin temperature (ST); core temperature (CT); instantaneous heart rate (IHR); instantaneous respi-
ration rate (IRR); systolic blood pressure (SBP); diastolic blood pressure (DBP); and blood packed
cell volume (PCV). Median values and their ranges (25th and 75th percentiles) are shown, with
significant differences (p < 0.05) highlighted in grey. p1, p2 and p3 are values obtained from the
sign rank test for FM–NFM, FM–NM and NFM–NM comparisons respectively

FM NFM NM p1 p2 p3
(n = 37) (n = 10) (n = 51)

Age (years) 20(18–25) 23(20–27) 22(20–24) 0.08 0.169 0.382
BMI (kg/m2) 19.8 20 21.1 0.53 0.058 0.6

ST (oC) 38.2 35.5 35.9 2× 10−6 10−9 0.514

CT (oC) 38.9 37.80 36.15 10−9 2× 10−5 7× 10−5

IHR (Hz) 1.72 1.36 1.14 0.002 0.00009 0.00009

IRR (Hz) 0.44 0.35 0.33 0.02 3× 10−7 0.325

SBP (mm Hg) 112 113 124 0.79 0.039 0.07

DBP (mm Hg) 63 73 77 0.03 0.00014 0.45

PCV (%) 42 44 44 1 0.02 0.17

18.1–21.8 19.5–21.5 19.1–22

37.6–38.9 35.1–36.4 35.7–36.1

38.2–39.2 37.6–38.0 35.9–36.5

1.53–1.85 1.28–1.55 1.02–1.26

0.37–0.49 0.32–0.45 0.30–0.37

106–125 106–118 110–128

57–70 68–80 69–82

40–43 41–45 42–47
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26.2.1 Subjects and Plan of the Study

Consecutive adult male patients presenting to Murtala Mohammed Specialist Hos-
pital, Kano, Nigeria with acute ailments and fever during August–November 2017
were evaluated by taking clinical history and examination. Blood samples for tests
were collected from patients considered likely to have malaria for subsequent
malarial smear microscopy, rapid diagnostic tests (RDT), haematocrit level and for
haemoglobin genotype. These tests were conducted later, but the physical data acqui-
sition was conducted immediately in a cool and quiet place as detailed in Sect. 26.2.2
on patients considered likely to have malaria. Where the results of the medical tests
subsequently confirmed presence of malaria, absence of anaemia (low haematocrit)
and AA genotype, patients were retained in the study and categorized as febrile
malaria (FM) (37) or non-febrile malaria (NFM) (10). The results of 20 patients who
did not fit the criteria were discarded, regardless of malarial status, because anaemia
and/or abnormal haemoglobin genotype are known to affect blood flowdynamics and
RBCmorphology, and consequently the physical parameters being studied. A control
group of 51 healthy non-malaria (NM) male subjects was also recruited.

For all subjects, the inclusion criteria included: (i) informed consent for partic-
ipation in the study, under a protocol approved by the Ethical Committees of both
the Kano State Ministry of Health, Nigeria and Bayero University Kano, Nigeria;
(ii) absence of overt alternative/superadded cause of febrile illness; (iii) absence of
significant co-morbidity/complications known to affect the test, e.g. hypertension
or peripheral vascular disease; (iv) absence of sickle cell anaemia in a blood group
genotype test; and (v) having the AA genotype blood group.

For the FM and NFM groups, additional inclusion criteria were: (vi) presence
of malarial parasites in blood film microscopy; and (vii) a positive malarial Rapid
Diagnostic Test (RDT). The difference in the inclusion criteria for febrile malaria
and non-febrile malaria group was body temperature. Malaria patients presenting
with a core temperature above 38.0 ◦C were defined as FM, while those with lower
temperatures were defined as NFM.

For the NM group, the additional inclusion criteria were: (vi) no acute febrile
illness (temperature < 37.0◦C); (vii) absence of malarial parasites in blood film
microscopy; and (viii) a negative malarial RDT.

In the FM group, 30% of the patients had taken antimalarial and antipyretic drugs
before presenting; 40% had taken antipyretic drugs only, and 30% had not taken any
drugs. In the NFM group, all patients had taken antimalarial and/or antipyretic drugs
for at most 3 days.

26.2.2 Data Acquisition

Themeasurements were all made between 09:00 and 18:00 in a quiet air-conditioned
room, with a controlled ambient temperature and constant low illumination.
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Microvascular blood flowwas recorded by laser-Doppler flowmetry (LDF), which
provided a continuous measurement of the microcirculation in the skin, thus reflect-
ing the perfusion in the capillaries, arterioles, venules and dermal vascular plexus.
The instrument (moorLAB, Moor Instruments Ltd, UK) used in the present study
transmits a near-IR laser light from a temperature-stabilized laser diode operating at
a wavelength of 780nm and with a maximum power of 2.5 mW into the skin through
anMP1-V2 probe (Moor Instruments Ltd, UK), which has two optical fibres. A time
constant of 0.1 s was selected and the LDF processor bandwidth was between 18Hz
and 22.5 KHz. A flexible probe holder (PH1-V2, Moor Instruments Ltd., UK) was
attached to the skin surface on the outer side of each ankle (lateral malleolus) using
double-sided adhesive discs. One fibre delivers light to the site under observation,
while the backscattered (reflected) light is collected by the other fibre. The light
reflected back from moving RBCs is Doppler-shifted in frequency by an amount
related to the blood flow in the illuminated volume of tissue, the frequency shift
being proportional to red cell speed, while the frequency of the light reflected from
stationary cells and tissue remains unchanged [29]. The difference between incident
light and the Doppler-shifted back-scattered light yields the LDF signal, known as
the blood perfusion signal. The LDF output is semi-quantitative and is expressed in
perfusion units (PU) of output voltage (typically 1 PU = 10 mV) [29]. The sampling
frequency was 40 Hz.

An electrocardiogram (ECG) was used to record the electrical activity of the
heart with a sampling frequency of 1kHz. The ECG was measured using a bipolar
precordial lead. The electrodes were attached on both shoulders and the lowest left
rib, as this maximizes the sharpness of the R-peak.

The respiration was measured using an elasticated belt fastened across the chest
and fitted with a Biopac TSD201 Respiratory Effort Transducer (Biopac Systems
Inc., CA, USA).

Skin temperature was monitored using two high-sensitivity, low-heat-capacity
thermistors—YSI 709B Thermilinear sensors (YSI Inc, Yellow Springs, OH, USA)
of 8.5mm diameter, which were taped onto the skin. The thermistors were positioned
outside the left ankles, over the lateral malleolus, close to the LDF probes.

The individual time series were recorded simultaneously using a signal condi-
tioning system (Cardiosignals, Institute Jožef Stefan, Slovenia) over an interval of
30min.

Blood pressurewasmeasured prior to the initiation of signal acquisition. ADigital
Automatic Blood Pressure Monitor (Omron, M10-IT) was used, with a cuff wrapped
on the subjects’ upper right arm while they were seated. The subject then moved to
a supine position on a comfortable bed, where the necessary sensors were installed.
In this way, subjects relaxed in a supine position for 15–20min of acclimatisation,
prior to the recordings. The equipment was either battery supplied or connected to
the electrical supply via a mains filter.
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26.3 Analysis of Cardiovascular Time Series

Prior to analysis, time-serieswere inspected in order to detect any apparent anomalies,
e.g. movement artefacts or rhythmic patterns clearly different from the blood flow
oscillations of interest. Such effects might be expected to stem from methodological
or physiological factors including poor electrode placement or poor electrical contact
due e.g. to dry skin. The intention was that time series that were demonstrably
defective would be discarded. In practice, this occurred only once: data from one
febrile malaria patient were removed from the data set on account of a defective
respiratory signal, seemingly because the respiratory belt had not been properly
fastened around the patient’s thorax.

26.3.1 Spectral Analysis

Traditionally, representations of time series in the frequency domain are obtained
with the fast Fourier transform, which constitutes a periodic function in terms of
sines and cosines. This makes it suitable for analysing time series whose components
are strictly periodic in nature, but it is unsuitable for LDF blood flow signals whose
spectral content is inherently non-periodic. Although the limitations of the Fourier
transform can partially be addressed by dividing the time series into shorter time-
windows within which there is not much time variation, a better way forward is by
the use of wavelet analysis [38] which, by using an adaptive window length that
simultaneously analyses time series at each moment in time, provides both optimal
frequency resolution and time localisation [8, 14].

Wavelet analysis is a scale-independent method comprising an adaptive window
length allowing low frequencies to be analysed using longer wavelets, and higher
frequencies with shorter wavelets. The continuous wavelet transform Ws(s, t) of a
signal f (t) is defined as

Ws(s, t) = |s|−1/2
∫ ∞

−∞
ψ

(u − t

s

)
f (u)du, (26.1)

where s is the scaling factor, t is the temporal position on the signal, and the wavelet
function is built by scaling and translating a chosen mother wavelet ψ which, in this
study, was chosen to be the complexMorlet wavelet, Eq. (26.2), because itmaximizes
joint time-localisation and frequency-resolution [38]

ψ(u) = 1√
π

(
e−iω0u − e−ω0

2/2)e−u2/2. (26.2)
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26.3.2 Extracting the Instantaneous Heart Frequency

The instantaneous heart rate (IHR) was extracted from the data using both time-
frequency and time domain analysis techniques [16]. The methods used included
nonlinear mode decomposition (NMD) [17], a technique that decomposes a signal
into a set of components, or modes. Using NMD, the instantaneous frequency of
the heart beat was extracted from the wavelet transform of the ECG, thus yielding
the IHR. The IHR was also derived from the LDF signals using the same technique.
Note that in the literature [15, 26] IHR is often referred to as HRV and, occasionally,
as IHF.

26.3.3 Wavelet Phase Coherence

While waves can be coherent in space, oscillations can be coherent in time. Quite
generally, correlation properties between physical quantities, whether at a single
or several oscillation frequencies, can be studied by investigating their coherence in
time. If we observe oscillations at the same frequency in two different time series and
find that the differencebetween their instantaneous phasesφ1k,n andφ2k,n is constant,
then the oscillations are said to be coherent at that frequency [3, 5, 32].Aphenomenon
closely related to phase coherence is that of phase synchronization [13, 20, 28, 30].
While oscillations can be coherent without necessarily being directly coupled, the
existence of coupling is fundamental for synchronization [8]. For example, if we
have an n:m relationship between the frequencies of two signals, this implies that
there are n oscillation cycles in one time series per m cycles of the other time series:
1:1 phase synchronization may equally be considered as phase coherent oscillations.
Thus phase coherence can be used directly to investigate 1:1 synchronization between
two signals, such as the two blood flow signals used in the present study. The wavelet
phase coherence (WPC) γ( f ) between the two signals f1(t) and f2(t) is estimated
from their respective wavelet transforms as obtained in Eq. (26.1), i.e. Ws1,2(t, f )
[38] as

γ( f ) =
∣∣∣∣ 1T

∫ T

0
ei arg[Ws1 (s,t)W

∗
s2

(s,t)]dt
∣∣∣∣ , (26.3)

where T is the duration of the signal. This equation reflects the extent to which the
phases φ1k,n and φ2k,n of both signals at each time tn and frequency f are entirely
correlated. Unlike the usual coherence measures, wavelet phase coherence takes no
account of the amplitude dynamics of the signals. This is appropriate because (i) the
amplitudes of most physiological signals are subject to artefacts and noise, and (ii)
the amplitudes of common physiological oscillations can often bemixed. In all cases,
however, the relationship between their phases remains the same (up to a constant
phase shift). Their relative phase difference is thus calculated as
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Δφkn = φ2k,n −φ1k,n . (26.4)

The phase coherence function Cφ( fk) is obtained by calculating and averaging in
time the components of the sine and cosine of the phase differences for the whole
signal, effectively defining the time-averaged WPC as

Cφ( fk) =
√

〈cosΔφkn〉2 + 〈sinΔφkn〉2. (26.5)

The idea behind Eq. (26.5) is that, while we are considering individual times and
frequencies, these come from a discrete set (since all the signals in the present study
are discrete and finite-time), and so the subscripts k and n just reflect this discreteness.
The phase coherence function Cφ( fk) as defined in Eq. (26.5) is exactly the discrete
version of the phase coherence formula Eq. (26.3), where φ is the phase difference
between the signals in question.

The function Cφ( fk) characterises the tendency of Δφkn to remain constant, or
not, at a certain frequency. Its value lies between 1 implying perfect coherence, and
0 implying total incoherence.

26.3.3.1 Effective (or Significant) Coherence

Note that the coherence computed in the first instance does not necessarily reflect
a genuine phase relationship and requires careful evaluation. The problem arises
because some of the coherence values obtained can be less than zero (although
formally coherence values range between 0 and 1). These negative coherence values
are then subtracted. Following this procedure, the very low frequency oscillations
may appear to have a coherence values close to 1, because of bias resulting from the
use of recordings that are too short to encompass the content at low frequencies.

Even in the case of two noisy signals, there is a tendency for there to be some
apparent coherence in the sense thatCφ( fk) rarely approaches 0 at very low frequen-
cies. The degree of apparent phase coherence depends on frequency. So the coherence
baseline will not be the same for all scales. The low-frequency components, partic-
ularly for signals of finite length (like those recorded in this study) are evaluated
using fewer periods than for the higher frequency components [5]. The result can
be an artificially increased coherence �1 even where, in reality, the dynamics of the
signals are completely unrelated.

To minimise random effects giving rise to apparent (but spurious) coherence,
whether at low or high frequency, we checked/tested the significance of the computed
coherence using the method of surrogates [24, 31]—by setting as a null hypothesis
that, for all frequencies, the phases in the signals are independent. We used iterative
amplitude-adjusted Fourier transform (IAAFT) surrogates to estimate the signifi-
cance level of the apparent coherence, thereby avoiding the bias associated with the
power spectrum of the more commonly used amplitude-adjusted Fourier transform
(AAFT) surrogates. First, the IAAFT surrogates are constructed by randomizing all
the properties of the signals in question, whilst keeping only the phases unshuffled.
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Subsequently, this is accomplished in an iterative fashion, simply by using the appro-
priate value and re-scaling the distribution to substitute Fourier amplitudes, which
allows us to obtain resemblance between the distributions and power spectra of the
surrogates and the original signals. At each frequency we took the coherence thresh-
old to be 95% of the highest value of 100 random realisations of IAAFT surrogates.

Finally, the effective/significant coherence was estimated by subtracting the 95th
percentile of the 100 surrogate values, thus yielding the extent to which the phases
of the two signals at each frequency are correlated.

26.3.4 Statistical analysis

Non-parametric statistical tests were used, implying that no assumptions were being
made about any underlying distributions, thus allowing robust conclusions to be
drawn. The Wilcoxon rank sum test [43] was used to test for possibly significant
differences between blood flow and other signalsmeasured frommalarial and control
subjects, respectively, as the corresponding time-series do not match. The Wilcoxon
rank sum test is used to determinewhether twounmatched samples come from similar
distributions, whilst the sign rank test requires that the samples are matched. In all
cases, p < 0.05 was considered as being statistically significant.

26.4 Results

26.4.1 Effect of Malaria on Blood Pressure, Respiration
Frequency, and Skin Temperature

As summarised in Table26.1, the FM group differed from the NM group in all
parameters, including skin and core temperatures, heart and respiratory rates, systolic
and diastolic blood pressures, and blood packed cell volume. The NFM group, on the
other hand, differed in some parameters but not in all. FM differed from NFM in all
parameters except SBP and PCV. NFM differed from NM only in core temperature
and IHR.

26.4.2 Detecting Oscillations Using Time-Frequency Analysis

The signals were transformed to the time-frequency domain by wavelet analysis with
a Morlet wavelet of f0 = 1.5 Hz, using custom Matlab codes. The time-averaged
power was then calculated and normalised in each case. Note that, even where the
time-averaged values of two signals are the same, computation of their time-evolving
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properties using wavelet transforms can often reveal statistically significant differ-
ences. A similar scenario was observed in the subsequent analysis of cardiovascular
dynamics in malaria and non-malarial states in some of the characteristic frequency
intervals.

The power spectra within individual frequency intervals are usually normalized
by dividing by their total powers. In the present case, this was done for the frequency
rage 0.005–2 Hz.

The differences observed in power spectra betweenmalaria states and non-malaria
were further investigated in order to ascertain whether they could be used to distin-
guish between groups. Machine learning algorithms were then applied to parameters
extracted by spectral and coherence analysis to classify the FM, NFM andNM states.

26.4.2.1 Spectral Power in Blood Perfusion Fluctuations

The normalized time-averaged wavelet powers of left (BF1) and right (BF2) blood
flow oscillations for the three groups are shown in Fig. 26.1.

For the left ankle and right ankle blood flows, the febrile malaria group had
significantly lower normalized power than NM in the 0.07–0.1 and 0.8–1.4 Hz fre-
quencies associated with the myogenic and cardiac activities respectively, and a
significantly higher normalized power than NM in 0.13–0.16 Hz, the neurogenic
and NO-dependent endothelial frequency intervals. A major shift was seen in the
cardiac oscillatory peak between the febrile malaria and non-malaria groups, with
that of the febrile malaria and non-malaria groups found at ∼1.83, ∼1.02 Hz in the
left ankle blood flow and at ∼1.8, ∼1.04 in the right ankle blood flow respectively
(Fig. 26.1a, b). As was the case for the febrile malaria group, the cardiac peak fre-
quency was slightly higher in non-febrile malaria (found at ∼1.44 Hz, ∼1.45 Hz in
left ankle and right ankle blood flow respectively) than non-malaria. In a similar pat-
tern to that of febrile malaria, non-febrile malaria exhibits a lower normalized power
in the 0.07–0.1 Hz but was not statistically significant, and a higher normalized
power around the neurogenic and NO-dependent endothelial frequency intervals all
of which are statistically significant except at ∼0.02 Hz in left ankle blood flow and
0.14–0.16 Hz in right ankle blood flow, when compared to non-malaria (Fig. 26.1c,
d).

Comparisons of the normalized power between FMandNFM revealed differences
in the cardiac interval, with the difference being significant only in right ankle blood
flow—noting that the frequencies of their cardiac peaks also differ. At frequencies
0.04–0.05 Hz within the neurogenic interval, NFM was found to exhibit a higher
normalized power although this was only statistically significant in the right ankle
blood flow (Fig. 26.1e, f).

The box-plots in Fig. 26.1 compare the normalised power spectral component of
the LDF blood flows within the intervals investigated for different groups. The FM
group was found to have cardiac oscillations of lower power than either the NFM
or NM groups in blood flow recorded from the right ankle, and a similar significant
difference in the febrile malaria group was observed in the left ankle blood flow
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Fig. 26.1 Normalised wavelet power: a–f Normalised time-averaged wavelet power of left (first
column) and right (second column) ankle blood flow for each group. Significant differences (p <

0.05) in pair comparisons are highlighted in brown. The frequency intervals FI–I... FI–VI on the
abscissae of the lower panel are specified in Sect. 26.1. The upper and lower limits of each box
represent the 75th and 25th percentiles, respectively; the line between these is the median value.
The FM group is represented in red, NFM in gold, and NM in blue

cardiac band power only for the FM–NM comparison. For the respiratory interval,
no significant difference was found between groups in left ankle blood flow, but
respiratory normalized power in the right ankle blood flow significantly increased in
non-febrile malaria only when compared with non-malaria. In contrast, values of the
myogenic band power in the left ankle blood flow are less widely separated; yet they
are significantly lower in the febrile and non-febrile malaria groups for the FM–NM
and NFM–NM comparisons, although no such significant differences were found
in the right ankle blood flow. Comparisons between FM and NM revealed striking
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differences in the neurogenic and NO-dependent endothelial intervals, with their
band powers being markedly increased in FM patients. No significant differences
were found during the same comparisons for normalized band power within the
NO-independent endothelial interval.

26.4.2.2 Spectral Power in Instantaneous Heart Frequency
Fluctuations

The IHF analysis results are summarised in Fig. 26.2 (lower panel). Fluctuations
in the IHF signal (derived from the ECG) in the frequency intervals associated with
myogenic (FI-III), nitric oxide-dependent endothelial activity (FI-V) andnitric oxide-
independent endothelial activity (FI-VI) (p = 0.000006, p = 0.003 and p = 0.003),
respectively decreased significantly in febrile malaria compared to NM (Fig. 26.2),
although the spectral power around 0.021Hz tended to be lower for FM (Fig. 26.2a).
But in the FI-II frequency interval associated with respiratory activity, FM exhibited
a significantly higher normalised spectral power (p = 0.0001) compared to NM
(Fig. 26.2), a similar finding being evident in the IHF absolute power (although not
shown here). In a similar manner, the power of the IHF oscillations of the NFMgroup
was significantly higher (p = 0.004) within the FI-II respiratory frequency interval
when compared to NM, but markedly lower in the frequency intervals associated
with myogenic (FI-III), neurogenic (FI-IV) and NO-related endothelial activity (FI-
V) (p = 0.017 and p = 0.018 respectively). No significant difference was observed
in any of the frequency intervals of IHF normalised spectral power in the FM and
NFM comparison.

26.4.2.3 Coherence Between Fluctuations in IHF in Left and Right
Ankles

Figure26.3 presents the averaged coherence between IHF1 and IHF2, showing that
there is significant coherence in the oscillations reflecting respiratory (II), myogenic
(III), neurogenic (IV) and NO-independent endothelial activity (VI), but most pro-
nounced in the NM group, whilst within the high frequencies (> 0.1 Hz) the coher-
ence is diminished in NFM and extremely small in FM (Fig. 26.3a). The coherence in
frequency intervals II, III, IV,V andVI is significantly smaller in FM (p= 0.000000, p
= 0.00000, p = 0.0000000 , p = 0.000000 and p = 0.00000004, respectively) andNFM
(p = 0.0008, p = 0.0005, p = 0.0038, p = 0.0021 and p = 0.0068, respectively) when
compared to the NM group. In the FM–NFM comparison, however, the coherence
did not differ significantly in any frequency interval.
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Fig. 26.2 Comparisons of normalised time-averagedwavelet power of the IHF extracted fromECG
recordings. Each curve is obtained as a median over all subjects. a Febrile malaria (FM) compared
with non-malaria (NM). b Non-febrile malaria (NFM) compared with non-malaria (NM). c FM
compared with NFM. Red shading indicates the range between 25th and 75th percentiles in FM,
blue shading indicates the range between 25th, and 75th percentiles in NM, gold shading indicates
the range between 25th, and 75th percentiles in NFM, and brown shading indicates significant
(p<0.05) differences between the FM–NM and NFM–NM comparisons. The lower panel divides
the results into the six characteristic frequency intervals. The upper and lower limits of each box
represent the 75th and 25th percentiles, respectively; the line between these is the median value. *p
< 0.05, **p < 0.001. The FM group is represented in red, NFM in gold, and NM in blue. The FI-II
to FI-VI frequency intervals are specified in Sect. 26.1
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Fig. 26.3 Effective phase coherence: Wavelet phase coherence (minus surrogate thresholds)
between IHF derived from left ankle blood flow and IHF extracted from right ankle blood flow,mean
over groups, where a indicates comparisons between groups: the first column is the FM–NM, with
NFM–NM (second column) and FM–NFM (third column). Red, blue and gold shading indicates
respectively the ranges between the 25th and 75th percentiles for the FM, NM, and NFM groups;
brown shading indicates significant (p < 0.05) differences between groups. b Box-plots showing
coherence between the IHF signals within the frequency intervals FI-II to FI-VI (see Sect. 26.1).
∗ p < 0.05, ∗∗ p < 0.005

26.5 Non-invasive Diagnosis of Malaria

Detection and classification between malaria and non-malaria.We have found that
there is a set of attributes that identifies malaria efficiently, arguably providing the
basis of a dynamical biomarker for malaria:

• The area under the curve showing phase coherence between the instantaneous
heart frequencies (extracted from the left/right ankle LDF blood flow signals, i.e.
IHF1–IHF2) in the 0.005–1 Hz frequency interval <0.0254.

• The area under the curve showing phase coherence between the blood flow signals
in the 0.6–1.6 Hz frequency interval <0.2013.

• The area under the curve showing phase coherence between respiration and the
instantaneous heart frequency in 0.145–1 Hz frequency interval extracted from
the ECG <0.0245.

Combining these characteristic attributes and using five classification algorithms
from Waikato Environment for Knowledge Analysis (WEKA): J48, LMT, Random
forest, Bagging and boosting-AdaBoos results in a high predictive performance with
a classification accuracy (i.e. instances correctly classified) of 83%, 82%, 84%, 85%
and 89% respectively in discriminating between FM, NFM and NM, based on the
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Table 26.2 Confusion matrix, giving both the numbers and likelihoods of correct and incorrect
classifications, using a Boosting algorithm

Classified state

Febrile malaria (%) Non-febrile malaria
(%)

Non-malaria (%)

92 3 5 Febrile malaria

50 40 10 Non-febrile malaria

4 0 96 Non-malaria

Correctly classified instances 87 88.7755%

Incorrectly classified instances 11 11.2245%

Total number of instances 98

available training data (with the corresponding confusion matrix expressed in per-
centages in Table26.2). The determining step of the diagnostic test involves detecting
whether the markers are below the normal values of 0.0254, 0.2013, 0.0245 respec-
tively for each of the markers.

26.6 Discussion

Uncomplicated malaria presents with acute periodic episodes of fever, chills, rigors,
sweating and headache. These episodes reflect infection of the RBCs by the malarial
organism, its subsequent multiplication within RBCs and later bursting of RBCs to
release more organisms into blood. This cyclical process coincides with the episodes
of fever. In addition the blood platelets are often affected and reduced, and abnormal
adhesion of RBCs to themicrovasculature results. Combinedwith changes in plasma,
these changes lead to clogging of the microvasculature, with resulting low oxygen
tension in surrounding tissues. The underlyingmechanisms and pathologic processes
described are unique and highly characteristic of malaria. It is probable that the
physical findings observed from the study are equally specific to malaria, thereby
providing an avenue for non-invasive diagnosis of malaria in the future.

Based on the hypotheses proposed above, clear distinctions have been demon-
strated in the cardiovascular dynamics of subjects with febrile malaria, non-febrile
malaria and healthy non-malaria, contributing to an understanding of the physio-
logical processes occurring within the microvasculature in malaria. Furthermore,
a diagnostic test has been developed based on recordings of LDF, respiration and
ECG. Analyses by wavelet phase coherence and nonlinear mode decomposition
enable malaria and non-malaria to be differentiated with 88 % accuracy, as classified
by machine learning algorithms, based on the training data presented. Note that, we
use “malaria” to describe both the febrile and non-febrile malaria patients, while
“controls” or “non-malaria” are healthy subjects without malaria.
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As demonstrated in earlier studies on malarial microvascular function
[18, 19, 45], it was observed that febrile malaria resulted in a significantly increased
respiratory rate and instantaneous heart frequency, compared to healthy subjects.
Skin temperature was significantly higher in malaria. Skin temperature is believed
to be a determining factor of respiratory rate, and of heart rate [10]. This increase in
instantaneous heart frequency alongside skin temperature in malarial subjects may
perhaps result in a mixture of vasodilation, resulting in hypovolaemia, and high
metabolic rate due to pyrexia. It is worth noting that a significant increase in skin
temperature also leads to more vasodilation, and lowers diastolic and systolic blood
pressure as observed in the malaria patients. This decrease in blood pressures of
malarial patients demonstrates significant effects of the disease on both the heart’s
pumping function and the systemic resistance. The striking reduction in the diastolic
pressure may perhaps be associated with the tachycardia observed in malaria.

Hematological examination showedadecrease ofPCV inmalaria. This is probably
due to the compromised red blood cell deformation, and ineffective erythropoiesis
within malarial vasculature [2, 42]. In terms of cardiovascular dynamics, malaria
resulted in significantly reduced blood flow spectral power in the frequency interval
associated with cardiac and myogenic activity. This effect is probably associated
with the compromised delivery of oxygen and nutrients observed in malaria [4, 7].
Furthermore, the lactic acidosis in the malarial state is exacerbated by inadequate
removal of metabolic waste products, resulting from increased production of lactic
acid by the parasites as well as reduced clearance by the liver [11].

It has also been reported thatmany treatments fail due to the reduced oxygen deliv-
ery in malaria, resulting in metabolic acidosis (through stimulation by cytokines),
leading in turn to respiratory distress [40]. Significantly higher normalised spectral
power was observed in the blood flow frequency intervals related to neurogenic (IV)
and NO-dependent endothelial (V) activity in febrile malaria, compared to healthy
non-malaria (Fig. 26.1a, b). However, no such effects were found in the same fre-
quency intervals for non-febrile malaria. This might imply that these physiological
processes are not markedly affected in non-febrile malaria due the absence of fever.

Coherence provides additional insight into the changes that occur with malaria
in the modulation of the heart rate by the respiratory frequency. The significant
attenuation of cardiac interval coherence between IHF (derived from the ECG) and
breathing in malaria implies an impairment in respiratory sinus arrhythmia (RSA),
given that the high frequency component in IHF reflects the influence of breathing
on the heart rate [12, 21, 44], an inference that is supported by an additional finding:
significantly decreased blood flow coherence in the frequency interval associated
with cardiac activity. In addition, the results may also signify destruction of both the
sympathetic and parasympathetic modulations that critically influence the oscilla-
tions in heart beat intervals. These modulations are widely known to contribute to
the oscillatory components manifesting in IHF [6, 25, 27, 35]. Hence this finding
may perhaps explain the alteration we observed in the power spectra of skin blood
flow cardiac oscillations.

As mentioned above in the introduction, there are drawbacks associated with
existing methods for assessing and diagnosing malaria. These have made the quest
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for real-time techniques for noninvasive malaria diagnosis an active area of research.
Based on our findings, a cut-off was established in line with differences in cardio-
vascular dynamics between malarias and healthy non-malaria, with a classification
accuracy of 88% (Table26.2). Early cases of non-febrile malaria, where subjects had
started taking antimalarial or antipyretic drugs, were also considered as malaria in
this study, due to its similarity to febrile malaria in terms of blood properties: the
cytoadherence andmicrovasculature characteristics, including the increased stiffness
of the membrane of an infected erythrocytes and their abnormal tendency to stick to
endothelial cells lining the blood vessels. Consistent with this similarity, no signif-
icant differences were found in mean blood flow recorded from the extremities of
the body, or in respiratory rate, between febrile malaria and non-febrile malaria. In
addition, there was no significant difference in the blood flow or IHF dynamics in
any of the six frequency intervals between febrile and non-febrile malaria. On the
contrary, febrile malaria and non-febrile malaria differed mainly in terms of their
mean skin temperature and IHF.

In summary, this study demonstrated changes in both the average values and
oscillatory components of cardiovascular dynamics in malaria, in comparison with
healthy non-malaria subjects, providing a better understanding of the cardiovascular
physiology of malaria. A diagnostic cut-off for the early distinction between malaria
and non-malaria is presented, based on differences observed in both IHF, blood flow
and IHF dynamics, extracted through wavelet based analysis and nonlinear mode
decomposition. Whilst this approach looks promising, as it has potential for identi-
fying malaria noninvasively within a short period of time, future studies are needed
to compare the physical findings in malaria with those in other febrile infections.
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Chapter 27
Physics of Biological Oscillators: Outlook

Robert S. MacKay, Aneta Stefanovska, and Constantino Tsallis

Abstract The volume closes with a brief summary of highlights and pointers to
further directions for the physics of biological oscillators.

To understand living systems requires more than just traditional dynamical systems
theory.

Living systems are subject to a time-varying environment, so a key first step is
to use and further develop the theory of non-autonomous dynamical systems. Also,
they do not last forever, so practical versions of dynamical systems concepts like
limit cycles are required that make sense for long but finite time-intervals.

Secondly, a lot of the environmentmay not be known explicitly, so it is appropriate
to model the residual effects by a stochastic process. There are many candidates,
however, and it is unlikely to be enough to consider only Weiner processes. Many
processes inNature that serve as perturbations of living systems are in fact oscillatory.

Thirdly, for systems where discreteness plays a role, for example at the level
of biomolecules or at the level of individuals in a population, the dynamics of the
system itself may require a stochastic formulation. Alternatively, individuals in a
population can be treated as oscillatory systems and analysed as networks of coupled
non-autonomous oscillators.

Finally, living systems operate far from thermodynamic equilibrium. Principles
are required to treat this realm of physics. Theminimumentropy production rate prin-
ciple of Glansdorff and Prigogine is valid only near equilibrium. Maes and Netocny
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[4] have come up with an extension that is valid for all Markov processes, namely
that the stationary distribution maximises the Donsker-Varadhan large deviation rate
function for fluctuations in the occupation probabilities, but more work is required
to make this physically meaningful. See [3] for a recent survey.

Another principle, that goes back to Helmholtz, then Ashby in the days of cyber-
netics, and has been extended by Friston [2], is the free energy principle. It states
that systems act to minimise “surprise”: the discrepancy between observations and
beliefs. See the Wikipedia page for more. On the other hand, a totally opposite prin-
ciple has been promoted, the future state maximisation principle, that individuals act
to keep their options open as much as possible (for an application, see [1]).

Although various of the above phenomena in living organisms are describable
within the realm of statistical mechanics and thermodynamics, they cannot be
described in terms of the Boltzmann–Gibbs theory. This is because, in one way
or another, the latter requires the microscopic dynamics to be strongly chaotic, i.e.,
basically mixing and ergodic, being consistently based on the usual additive entropic
functional. Living and living-like organisms and systems (economics, linguistics,
geophysics, astrophysics), with their subtle nature, usually evolvewithinweak chaos,
at the edge of chaos, between strong chaos and order (typically with vanishing
Lyapunov exponents). This feature usually mandates nonadditive entropic func-
tionals, and, consequently, an entire reformulation and mesoscopic interpretation
of thermodynamics itself (see, for instance, [5]).

This volume has concentrated on the physics of biological oscillations. The perva-
siveness of oscillations in living systems suggest that none of the above principleswill
really get to the heart of how living systems function. Their dynamical nature must
be taken into account. So also must the continuous exchange of energy and matter,
which is the key characteristic of living systems. It occurs on all scales ranging from
exchange across the cell membrane to exchanges at organ and system levels. So,
conservation of matter (mass) is not an appropriate principle. It is the exchange of
matter that results in the continuous sustained oscillations that are observed, with
frequencies that are non-constant. Perhaps one can focus on the interactions between
different parts of the system to develop new principles based on the phase differ-
ences between non-autonomous oscillatory systems, or networks of such systems.
This scenario seems realistic in view of the studies that have already pointed to the
stabilising effect of non-autonomicity.
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