)

Check for
updates

Transforming Interactive Multi-objective
Metamodel/Model Co-evolution into
Mono-objective Search via Designer’s

Preferences Extraction

Wael Kessentini® @ and Vahid Alizadeh®

College of Computing and Digital Media, DePaul University,
243 South Wabash Avenue Chicago, Chicago, IL 60604, USA
{wkessent,alizadeh}@depaul.edu

Abstract. The simultaneous evolution of metamodels and models is
called the meta-models/models co-evolution problem. While some Inter-
active/automated metamodel/model co-evolution techniques have been
proposed using multi-objective search, designers still need to explore a
large number of possible revised models. In this paper, we propose an
approach to convert multi-objective search into a mono-objective one
after interacting with the designer to identify a set of model changes
based on his/her preferences. The first step consists of using a multi-
objective search to generate different possible model edit operations by
finding a trade-off between three objectives. Then, the designer may
give feedback on some proposed solutions. The extracted preferences are
used to transform the multi-objective search into a mono-objective one
by generating an evaluation function based on the weights for the exist-
ing fitness functions that are automatically computed from the feedback.
Thus, the designer will just interact with only one solution generated by
the mono-objective search. We evaluated our approach on a set of meta-
model/model co-evolution case studies and compared it to existing fully
automated and interactive meta-model/model co-evolution techniques.
The results show that the mono-objective search after the interaction
with the users significantly improved the co-evolution changes for sev-
eral widely used metamodels.

Keywords: Model co-evolution - Interactive multi-objective search

1 Introduction

Similar to the source code of large systems, the modeling languages (i.e., meta-
models) are subject to evolution due to changing requirements and technolog-
ical constraints requiring existing models to be adapted [1,2]. Thus, a set of
changes must be applied to the initial model versions to fix the inconsisten-
cies with the new metamodel version. This process is called metamodel /model
co-evolution [1,3].

© Springer Nature Switzerland AG 2020

A. Aleti and A. Panichella (Eds.): SSBSE 2020, LNCS 12420, pp. 83-104, 2020.
https://doi.org/10.1007/978-3-030-59762-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59762-7_7&domain=pdf
http://orcid.org/0000-0002-4214-3638
http://orcid.org/0000-0002-5030-9036
https://doi.org/10.1007/978-3-030-59762-7_7

Transforming Interactive Multi-objective Metamodel/Model 89

Several co-evolution studies are proposed where most of them are providing
either a manual or semi-automated support based on pre-defined templates of
evolution scenarios [4-8|. In addition to being pre-defined, these templates are
specific to the artifact/models to co-evolve and the metamodel. Few fully auto-
mated co-evolution studies tried to find an entire edit operations sequence that
revises models in accordance with the new metamodel version [3,9,10]. How-
ever, several transformations require interactions with the user especially when
new elements are added to the new metamodel they are hard to full-automate.
Recently, an approach has been proposed to interactively evaluate the co-evolved
models using search-based software engineering [11]. The designers can provide
feedback about the co-evolved models and introduce manual changes to some
of the edit operations that revise the model. However, this interactive process
can be expensive, and tedious since designers must evaluate every recommended
set of edit operations and adapt them to the targeted design, especially in large
models where the number of possible co-evolution strategies can grow exponen-
tially. Besides, it is challenging to define upfront weights to some edit operation
since the designer needs to have a look at the generated solutions to express his
preferences.

In this paper, we propose an approach that takes advantage of existing Meta-
model/Model co-evolution works. Thus, we propose a way to convert multi-
objective search into a mono-objective one after few interactions with the devel-
oper. The first step consists of using a multi-objective search, based on the
evolutionary algorithm NSGA-II [12], to generate a diverse set of model migra-
tion strategies by finding a trade-off between three objectives of reducing the
number of edit operations, the dissimilarity with the initial models to reduce
the information loss and the number of inconsistencies between the models and
new metamodel. Then, the designer may give some feedback on the generated
solutions to express his/her preferences by selecting relevant ones. The extracted
preferences from the designer, via an analysis of the location of these solutions
in the objective space, are used to transform the multi-objective search into a
mono-objective one by generating an evaluation function based on the weights
that are automatically calculated from the selected solutions. Therefore, the
designer will interact in the next iterations with only one co-evolution solution
generated by the mono-objective search.

Our approach is taking the advantages of mono-objective search, multi-
objective search, and interactive computational intelligence. Multi-objective
algorithms are powerful in diversifying solutions and finding trade-offs between
many objectives but generate many solutions as an output. The interactive
algorithm is useful in terms of extracting designers’ knowledge and preferences.
Mono-objective algorithms are the best in terms of optimization power once the
evaluation function is well-defined and generate only one solution as an output.
We selected 16 active developers to manually evaluate the effectiveness of our
tool on four well-known metamodel /model co-evolution case studies. The results
show that the participants found their desired revised models faster and more

90

accurate than the current state of the art. A supplementary appendix materials

W. Kessentini and V. Alizadeh

can be found in the following link [13].

0..*
predecessors

pred

0.*
ecessors

State

id:Int

name : String

*
SQCCQSSOTS

(a) Initial Metamodel Version

State
id:Tnt
Name: String

T

*
SQCCESSOYS

InitialState

SimpleState

FinalState

Inv: self.predecessors-> Inv: self.successors->
isEmpty isEmpty

(b) Revised Metamodel Version

s1: State s2 : State s3 : State
predecessors predecessors
id: 1 id:2 id:3
name : “Start” SUCCESSOrs name : “51” SUCCESSors name : “End”

(c) Initial Model Version

Fig. 1. A simplified metamodel evolution example

2 Background and Motivations

Figure 1 shows an example of a simplified metamodel evolution, based on the
simple state machine language and an initial model conform to it. The meta-
model evolution comprises three steps: extract sub-classes for State class result-
ing in InitialState, SimpleState, and FinalState, make class State abstract, and
refine the cardinalities of the predecessor/successor references for the subclasses.
This evolution results in the fact that, besides other constraints violations, the
constraint which is shown in Listing 1.1 is violated when considering the initial
model of Fig. 1c and its conformance to the new metamodel of Fig. 1b.

Listing 1.1. Type/Object relationship formalized as OCL constraint

context M!Object
inv typeExists:
exists(clc.name =

MM!Class.allInstances () ->
self.type and not c.isAbstract)

To re-establish conformance for the given example, assume for now that only
two operations on models are used in this context. Non-conforming objects may
either be retyped (reclassified as instances of the concrete classes) or deleted.

Transforming Interactive Multi-objective Metamodel/Model 91

Thus, the potential solution space for retyping or deleting non-conforming ele-
ments contains (¢ + 1)© solutions (with ¢ = number of candidate classes + 1
for deletion, o = number of non-conforming objects). This means, in our given
example, we would end up with 64 possible co-evolutions.

Several co-evolution studies proposed to revise models after metamodels evo-
lution from manual to fully automated approaches [2]. Recently, few automat-
ed/interactive tools [9-11] used search-based software engineering to generate
revised models. The proposed tools refine an initial model instantiated from the
previous metamodel version to make it as conform as possible to the new meta-
model version by finding the best compromise between three objectives, namely
minimizing (i) the non-conformities with new metamodel version (ii) the changes
to existing models, and (iii) the dissimilarities between the initial and revised
models. During the process, the designer may provide some feedback on the pro-
posed solutions in order to improve them in the next iterations. The output is
several equally good solutions (edit operations that revise the model) presented
to designers to select the appropriate one based on his/her preferences.

s1: InitialState 52 : SimpleState s3 : FinalState
predecessors predecessors

id:1 id:2 id: 3

name : “Start” SUCCesSors name : “$1” SUCCeSsOrs name : “End”

(a) Revised model Version 1

sl InitialState s2 : FinalState s3 : SimpleState
predecessors — uccessor:
id:1 id:2 id:3
name : “Start” name : “S1” name : “End”
successors T

s1: SimpleState s2 : SimpleState 3 : State
—————— Dpredecessors predecessors

id: 1 successors id:2 successors id:3

name : “Start” name : “S1” name : “End”

(c) Revised model Version 3

Fig. 2. Tentative revised models

Figure2 shows modified models after applying a set of edit operations
extracted from the output of an existing tool [11]. This figure shows that there
may be several possible solutions where the user has to decide which one to
select in the search space based on the preferences.

3 Approach Overview

Our approach includes three main phases. The first phase is the multi-objective
algorithm, NSGA-II, executed for several iterations to generate a set of non-
dominated co-evolution solutions called Pareto-optimal solutions [12], defined as

92 W. Kessentini and V. Alizadeh

a set of edit operations applied to the initial model, balancing the three objectives
of minimizing the number of suggested edit operations, the deviation with the
initial model, and the number conformance errors with the revised metamodel.

The output of the first component can be a large number of possible solutions.
Thus, it is essential to provide the designers with additional support for interact-
ing with this set of solutions. In the second phase, the user can interact with the
tool at the solution level, by accepting or rejecting or modifying suggested edit
operation(s) and s/he can also give a score to a selected solution between —1 and
1 (the highest is the better). Finally, we extract the preferences automatically
and use them to transform the multi-objective problem into a mono-objective
one by generating weights for each of the three objectives based on the selected
solutions’ locations in the objective space. The output of the mono-objective
search is a single solution fitting the user’s expectations and preferences; then
the designer can interact with that solution if needed and continue the execution
of the mono-objective algorithm until selecting a final co-evolution solution. In
the following, we will explain, in detail, the phases of our approach.

Retype DeleteSlot Retype DeleteObject
(State s1, InitialState (State s2, name) (State s2, SimpleState (State s3)
s1) 52)

(a) Solution Representation

1
i
s1: State s2 : State !
predecessors H
= 1
id: 1 id:2 ! s1:InitialState |, Predecessors | sj : simplestate
name : “Start” successors | hame : “S1 : <
1 id:1 id:2
i :,Start"
successors predecessors | name : ,Sta successors
E
s3 : State 1
i
id:3 |
name : “End” H
1
|
1
1

(b) Initial Model Version (c) Revised Model Version

Fig. 3. Solution representation.

3.1 Phase 1: Multi-objective Metamodel/Model Co-evolution

Solution Representation. A co-evolution solution consists of a sequence of
n edit operations to revise the initial model. The vector-based representation
is used to define the edit operations sequence. Each vector’s dimension has an
operation, and its index in the vector indicates the order in which it will be
applied. Consequently, vectors representing different solutions may have different
sizes, i.e., the number of edit operations.

Table 1 shows the possible edit operations that can be applied to model ele-
ments. The instances of classes are called objects, instances of features are called
slots, and instances of references are called links. These operations are inspired

Transforming Interactive Multi-objective Metamodel/Model 93

by the catalog of operators for metamodel/model co-evolution presented in [14].
The catalog includes both metamodel and model changes. Thus, we selected
from it all the edit operations that can be applied to the model level since we
are not changing the metamodels in this paper. Figure 3 represents a solution
that can be applied to the initial model of our motivating example described in
Sect. 2.

Table 1. Model edit operations.

‘ Operations ‘ Element ’ Description

Create/delete |Object, link, slot [Add/remove an element in the initial model.

Retype Object Replace an element by another equivalent element
having a different type.

Merge Object, link, slot |Merge several model elements of the same type into
a single element.

Split Object, link, slot |Split a model element into several elements of the
same type.

Move Link, slot Move an element from an object to another.

Fitness functions. The investigated co-evolution problem involves searching for
the best sequence of edit operations to apply among the set of possible ones. A
good solution s is a sequence of edit operations to apply to an initial model with
the objectives of minimizing the number of non-conformities f1(s) = nvc(s) with
the new metamodel version, the number of changes fa(s) = nbOp(s) applied to
the initial model, and the inconsistency f5(s) = dis(s) between the initial and
the evolved models such as the loss of information.

The first fitness function nvc(s) counts the number of violated constraints
w.r.t. the evolved metamodel after applying a sequence s of edit operations. We
apply, first, the sequence of edit operations (solution) on the initial model, then
we load the evolved model on the target metamodel to measure the number of
conformance errors based on the number of violated constraints. We consider
three types of constraints, as described in [15]: related to model objects, i.e.,
model element (denoted by O.*), related to objects’ values (V.*), and related
to objects’ links (L.*). We use the implementation of these constraints in our
experiments inspired by Schoenboeck et al. [3] and Richters et al. [15] with
slight adaptations. The constraints are hard-coded in the implementation of
the algorithm, and most of them are from the EMF conformance verification
constraints that already exist in EMF. The full list constraints can be found in
this link [13].

94 W. Kessentini and V. Alizadeh

For the second fitness function, which aims to minimize the changes to the
initial models, we simply count the number of edit operations, nbOp(s) of a
solution s (size of s). The third fitness function dis(s) measures the difference
between the model elements in the initial and revised model. As the type of a
model element may change because of a change in the metamodel, we cannot
rely on elements’ types. Alternatively, we use the identifiers to assess whether the
information was added or deleted when editing a model. In this case, the renamed
or extracted model elements will be considered different than the initial model
element. Thus, we considered the assumption that two model elements could be
syntactically similar if they use a similar vocabulary. Thus, we calculated for
the textual similarity based on the Cosine similarity [16]. In the first step, we
tokenize the names of initial and revised model elements. The textual and context
similarity between elements are grouped together to create a new class, which
is an essential factor in evaluating the revised model’s cohesion. The initial and
revised models are represented as vectors of terms in n-dimensional space where
n is the number of terms in all considered models. For each model, a weight is
assigned to each dimension (representing a specific term) of the representative
vector that corresponds to the term frequency score (TF) in the model. The
similarity among initial and revised model elements is measured by the cosine
of the angle between its representative vectors as a normalized projection of
one vector over the other. This function will compare each of the initial model
elements and all the elements of the revised model to find the best matching.

3.2 Phase 2: Interaction and Preference Extraction

User Feedback X
File Edit View Window
L2/ Solution 1 | Pareto-front 1 ' = @E
: > —
a W al|©F 0| B LR B
Open Export Charts | Add Edit Remove | Evaluate
OK Cancel

D Edit Operations User Feedback

0D Employer:Class;;[references];[1) ol
1 SplitModelElement(Employer:Class; Class_1;[references];[]) 0
2Retype(Employer:Class;Class_2;[isAbstract];[setReferences]) 1
3MergeModelElement(Class_1;Class_3;[];[setReferences]) 0.8
4C lass_3;Class_1;[1)} 0595

5 SplitModelElement(Class_1;Class_4;[];[getReferences]) 0
6 SplitModelElement(Class_1;Class_S;[references];[]) 0
7MergeModelElement(Class_5; Class_6;[];[setReferences]) 0
0
0
0

8 DeleteModelElement(IDnumber:ID_Attribute;;[typel; 1)
9 CreateModelElement(Employer:Class; Class_2;[class_1];(])
10 SplitModelElement(IDnumber:ID_Attribute; Class_7;[];[setType])

Fig. 4. User interactions with the solutions of the multi-objective search

Transforming Interactive Multi-objective Metamodel/Model 95

|£) Model Coevolution Tool - o X
File Edit View Window
|/ Pareto-front 2 E 3 3

o B /¢

Continue Export Clear

Chart Table Settings

Values

Number OF Non Conformities Dissimilarity From Initial Model Number Of Edit Operations

Fig. 5. The output of phase 2 (interactions with the user). (Color figure online)

The main goal of this step is to enable the designer’s interactions with the solu-
tions generated by the first phase of the multi-objective search. The interaction
can be performed at the solution and edit operation levels depending on the
user’s desire. The feedback is quantified to a continuous score in the range of
[—1, 1]. The user can evaluate a solution by modifying its edit operations (edit,
add, delete, re-order) or just rate the whole solution, as shown in Fig.4. After
the designer’s interaction, solution scores (Scores,) are computed as the average
score of edit operations in a solution. The solutions with the highest score are
considered as the region of interest. It indicates the preferred objectives and edit
operations. The line chart of Pareto-front solutions after interactions is shown
in Fig.5. The color of each line indicates user preferences (green as preferred
solutions versus red as non-preferred solutions.

3.3 Phase 3: Preference-Based Mono-objective Co-evolution

One of the main contributions of this paper is the ability to convert a multi-
objective algorithm into a mono-objective one after interacting with the designer
to extract his/her preferences. Mono-objective algorithms are known to be the
best in terms of optimization but require that the fitness function should be
well-defined based on the decision maker’s preferences. The Multi-objective Evo-
lutionary Algorithm used in Phase 1 might not provide high-quality solutions in
the region of interest of the developer because of the high dimensionality nature
of the problem and the need to find trade-offs. Therefore, it is important to
consider the user preferences extracted in Phase 2.

The goal of this phase is to use the preferences extracted from the designer
after the multi-objective optimization to transform the problem into a single
objective optimization problem by aggregating objectives according to the user’s
preferences. This transformation gives the decision maker a single solution. Con-
sequently, our proposed approach is a combination of all three categories of

96 W. Kessentini and V. Alizadeh

preference-based search where the preferences are expressed after the first evo-
lutionary process, then they are incorporated to guide the single-objective opti-
mization.

One way to convert a multi-objective optimization problem to a mono-
objective problem and achieve a single solution is called the Weighted Sum
Method (WSM). In this method, the single preference fitness function is com-
puted as a linear weighted sum of multiple objectives. The main drawback of the
WSM method is that it needs the weights parameters to be given. Fortunately,
in our case, those parameters are computed automatically from the decision-
maker preferences of the interactive optimization process (preferred solutions
based on the interaction scores) in the objectives space. Thus, the weight of one
or more objectives can get the value 0 (or almost) if the selected solution(s) by
the developer penalized them while favoring other objectives. Also, the WSM is
not computationally expensive, unlike the other scalarization methods.

In order to solve the converted mono-objective problem, we adopted a stan-
dard Genetic Algorithm (GA). To adapt the GA algorithm to our co-evolution
problem, we use the same solution representation and fitness functions as
reported in phase 1. The importance (weights) of the objectives are based on
the preferred solutions by the user with an interaction score higher than 0.5.
The obtained single fitness function is employed to evaluate the solutions in the
execution of adapted GA. Thus, the weight of each objective is calculated as
the average of the objective values of the preferred solution(s) by the user. We
note that all the objectives of the multi-objective search are normalized using
the min-max function.

Instead of generating the initial population randomly, we acquire the user
preferred solutions as the elite set of solutions from which the search process is
initiated. Thus, we do not generate solutions randomly for the mono-objective
GA, but we take the preferred solutions as the initial population, so we do
not lose the knowledge extracted from the developer. If the number of preferred
solutions is low, then we apply the mutation operator to generate more solutions.
The solutions are evaluated via the preference function aggregated from multiple
objectives. When the stopping condition is satisfied, the single optimal solution
is recommended to the user. Similar to Phase 1, the user can interact with this
solution via editing/adding/removing the edit operations.

4 Evaluation

4.1 Research Questions and Experimental Setup

— RQ1: Search validation. How does our approach perform compared to
random search (RS)?

— RQ2: Benefits. To what extent can our approach make relevant recommen-
dations for designers compared to existing metamodel/model co-evolution
techniques including multi-objective search and an existing deterministic
method?

Transforming Interactive Multi-objective Metamodel/Model 97

— RQ3: The relevance of designers’ preferences extraction. To what
extent can our approach reduce the interaction effort comparing to existing
metamodel/model co-evolution techniques?

Studied Metamodels and Models. To answer the research questions, we con-
sidered the evolution of GMF covering a period of two years and the UML Class
Diagram metamodel evolution from [17,18]. These case studies are interesting
scenarios since they represent real metamodel evolutions, used in an empirical
study [19] and studied in other contributions [20-22]. For GMF, we chose to
analyze the extensive evolution of three Ecore metamodels. We considered the
evolution from GMF’s release 1.0 over 2.0 to release 2.1, covering a period of two
years. For achieving a broad data basis, we analyzed the revisions of three meta-
models, namely the Graphical Definition Metamodel (GMF Graph for short),
the Generator Metamodel (GMF Gen for short), and the Mappings Metamodel
(GMF Map for short). Therefore, the respective metamodel versions had to be
extracted from GMF’s version control system and, subsequently, manually ana-
lyzed. We created different scenarios based on the number of changes introduced
at the metamodel level from the different metamodel releases of GMF and UML.
We merged the releases that did not include extensive changes, and we generated
two evolution scenarios per metamodel type.

The different models and metamodels can be classified as small-sized through
medium-sized to large-sized. In our experiments, we have a total of 7 different
co-evolution scenarios where each scenario included eight different models to
evolve for the GMF case-studies. The percentage of changes between the differ-
ent releases is estimated based on the number of modified metamodel elements
divided by the size of the metamodel. The created models for our experiments
are ensuring metamodels coverage. Furthermore, we used an existing set of 10
generated models for the case of UML metamodel class diagram evolution from
the deterministic work of [17,18]; thus, we were not involved in the selection
of models and metamodel changes. To ensure a fair comparison with Wimmer
et al. [17], we only compared both approaches to the existing UML dataset.
Table 2 describes the statistics related to the collected data.

Table 2. Statistics related to the collected data of the investigated cases.

‘ Metamodels | Models |
Release #of elements #of changes|%of changes||#of models| #of model |#of expected
elements edit
(Min,Max) | operations
(Min, Max)
GMF Gen 1.41 to 1.90 |From 885 to 1120 347 31% 8 389, 744 39, 70
GMF Gen 1.90 to 1.248 |From 1120 to 1216 362 27% 8 433, 686 66, 83
GMF Map 1.45 to 1.52 |From 382 to 413 62 15% 8 203, 394 46, 69
GMF Map 1.52 to 1.58 |From 413 to 428 10 1.8% 8 347, 402 57, 81
GMF Graph 1.25 to 1.29|From 278 to 279 14 5% 8 142, 283 34, 55
GMF Graph 1.25 to 1.33|From 279 to 281 42 14% 8 149, 301 29, 43
UML CD [17] From 23 to 29 8 8% 10 28, 49 11, 23

98 W. Kessentini and V. Alizadeh

Evaluation Metrics. The quality of our results was measured by two methods:
automatic correctness (AC) and manual correctness (MC). Automatic correct-
ness consists of comparing the proposed edit operations to the reference ones,
operation by operation using precision (AC-PR), and recall (AC-RE). For an
operation sequence corresponding to a given solution, precision indicates the
proportion of correct edit operations (w.r.t. the baseline sequence) in a solution.
The recall is the proportion of correctly identified edit operations among the set
of all expected operations. Both values range from 0 to 1, with higher values
indicating good solutions. AC method has the advantage of being automatic
and objective. However, since different edit operation combinations exist that
describe the same evolution (different edit operations but same target model),
AC could reject a good solution because it yields different edit operations from
reference ones. To account for those situations, we used MC measured by the
designers. It consists of the number of relevant edit operations identified by the
designer over the total number of edit operations in the selected solutions. In
addition, we report the number of interactions (NI) required on the Pareto front
comparing to the one required once the mono-objective search is executed. This
evaluation will help to understand if we efficiently extracted the developer pref-
erences after the Pareto-front interactions. We decided to limit the comparison
to only the interactive multi-objective work of Kessentini et al. [11] since it is the
only approach offering interaction with the user, and it will help us understand
the real impact of the knowledge extraction and mono-objective features (not
supported by existing studies) on the recommendation and interaction effort.
We also report the computation time (T) for the different evolution scenarios to
estimate the effort required to obtain the best co-evolution solutions.

Study Participants. Our study involved 16 master students in Software Engi-
neering. All the participants are volunteers and familiar with model-driven engi-
neering and co-evolution/refactoring since they are part of a graduate course on
Software Testing & Quality Assurance and most of them participated in similar
experiments in the past, either as part of a research project or during gradu-
ate courses. Furthermore, 12 out of the 16 students are working as full-time or
part-time developers in the software industry. Participants were first asked to
fill out a pre-study questionnaire containing five questions. The questionnaire
helped to collect background information such as their role within the com-
pany, their modeling experience, and their familiarity with model-driven engi-
neering and co-evolution/refactoring. In addition, all the participants attended
two lectures about model transformations and evolution, and passed six tests to
evaluate their performance in evaluate and suggest model evolution solutions.
We formed 4 groups, each composed of 4 participants. The groups were formed
based on the pre-study questionnaire and the test results to ensure that all the
groups have almost the same average skill level. We divided the participants into
groups according to the studied metamodels, the techniques to be tested, and
the developers’ experience. The participants were asked to co-evolve the different
models manually and evaluate the results of the different approaches based on
a counter-balanced design [23].

Transforming Interactive Multi-objective Metamodel/Model 99

Statistical Tests. Our experimental study is performed based on 30 indepen-
dent simulation runs, and the obtained results by the alternative approaches are
compared using the Wilcoxon rank-sum test [24] with a 95% confidence level.
Roughly speaking, this test verifies the null hypothesis HO that the observed dif-
ferences between the alternative results were obtained by chance or if they are
statistically significant (alternative hypothesis H1). The p-value of the Wilcoxon
test corresponds to the probability of rejecting the null hypothesis HO while it is
true (type I error). A p-value that is less than or equal to 0.05) means that we
reject HO and accept H1. A p-value that is less than or equal to «(< 0.05) means
that we accept H1, and we reject HO. However, a p-value that is strictly greater
than a(> 0.05) means the opposite. In this way, we could decide whether the
superior performance of NSGA-II to one of each of the others (or the opposite)
is statistically significant or just a random result.

Parameter Settings. The stopping criterion was set to 100,000 evaluations
for all search algorithms to ensure fairness of comparison (without counting the
number of interactions since it is part of the users’ decision to reach the best
solution based on his/her preferences). The mono-objective search was limited
to 10,000 evaluations after the interactions with the user. The other parameters’
values are as follows for both the multi-objective and mono-objective algorithms:
crossover probability = 0.4; mutation probability = 0.7, where the probability
of gene modification is 0.5. Each parameter has been uniformly discrete in some
intervals. Values from each interval have been tested for our application. Finally,
we pick the best values for all parameters. Hence, a reasonable set of parameters
values have been experimented.

4.2 Results

Results for RQ1: Search Validation. Figure 6 confirms that using NSGA-II
produces results by far better (and statistically significant) than just randomly
exploring a comparable number of solutions based on the three different metrics
of precision, recall, and manual correctness on all the different evolution case
studies. NSGA-II has precision (AC-PR and MC) and recall (AC-RE) more
than twice higher than the ones of random search, as shown in Fig. 6 (~96% vs.
~42%). The difference in execution time in favor of random search (Table 3), due
to the crossover and mutation operators, is largely compensated by the quality
of the obtained results.

RS is not efficient in generating good co-evolution solutions using all the
above metrics in all the experiments. Thus, an intelligent algorithm is required
to find good trade-offs to propose efficient solutions. We conclude that there
is empirical evidence that our multi-objective formulation surpasses the perfor-
mance of RS search; thus, our formulation is adequate, and the use of meta-
heuristic search is justified (this answers RQ1).

Results for RQ2: Benefits. We report the results of the empirical evalua-
tion in Fig.6. The majority of the co-evolution solutions recommended by our
approach were correct and validated by the participants on the different case

100 W. Kessentini and V. Alizadeh

0.9

.8
.7
.6
0

AC-Precision AC-Recall MC

O © © © © © © ©°
BN W R W

M Interactive NSGA-II/GA W Interactive NSGA-l W NSGA-II RS W Deterministic

Fig. 6. The median evaluation scores on the four metamodel evolution scenarios with
95% confidence level (a = 5%)

Table 3. Median execution time, in minutes, on the different metamodel/model
co-evolution scenarios and the number of interaction proposed by both interactive
approaches

Approaches
IMMO I-NSGA-IT ||[NSGA-II ||RS Deterministic
Metamodels T NI T NI T T T
GMF Gen 44 18 71 32 38 30 31
GMF Map 30 16 55 25 28 22 17
GMF Graph 25 24 83 35 21 18 14
Class Diagram 20 8 39 5 16 14 12

studies. On average, for all of our four studied metamodels/models, our app-
roach was able to recommend 96% of generated edit operations correctly. The
remaining approaches have an average of 89% and 81%, respectively, for the
interactive multi-objective approach [11] and the fully automated multi-objective
approach [10]. Both of the interactive tools outperformed fully-automated ones,
which shows the importance of integrating the human in the loop when co-
evolving models. The deterministic approach defines generic rules for a set of
possible metamodel changes that are applied to the co-evolved models. Figure 6
shows that our approach clearly outperforms, on average, the deterministic tech-
nique based on all measures: precision, recall, and manual correctness.

Results for RQ3: The relevance of Designers’ Preferences Extraction.
Table 3 summarizes the time, in minutes, and the number of interaction (for the
interactive approaches) with the participants to find the most relevant solutions
using our tool (IMMO), the interactive approach (I-NSGA-II) [11], the auto-
mated approach [10], Random search and the deterministic approach [17]. All
the participants spent less time finding the most relevant model edit operations
on the different metamodels than I-NSGA-II. For instance, the average time is

Transforming Interactive Multi-objective Metamodel/Model 101

reduced from 71 min to just 44 min for the case of GMF Gen. The time includes
the execution of IMMO and the different phases of interaction until the designer
is satisfied with a specific solution. It is clear as well that the time reduction is not
correlated with the number of interaction. For instance, the deviation between
IMMO and I-NSGA-II for GMF Graph in terms of the number of interactions
is limited to 9 (24 vs. 35), but the time reduction is 58 min. The time includes
the execution of the multi-objective and mono-objective search (if any) and the
different phases of interaction until the designer is satisfied with a specific solu-
tion. The drop of the execution time is mainly explained by the fast execution
of the mono-objective search and the reduced search space after the interactions
with the designer.

It is clear that our approach reduced as well as the number of interaction
comparing to -lNSGA-II. IMMO required much fewer designer interactions. For
instance, only 16 interactions to modify, reject, and select solutions were observed
on GMF Map using our approach, while 25 interactions were needed for I-NSGA-
II. The reductions of the number of interactions are mainly due to the move from
multi-objective to mono-objective search after one round of interactions since the
designers will not deal anymore with a set of solutions in the front but only one.

5 Related Work

In one of the early works [25], the co-evolution of models is tackled by design-
ing co-evolution transformations based on metamodel change types. In [7,8],
the authors compute differences between two metamodel versions, which are
then input to adapt models automatically. This is achieved by transforming the
differences into a migration transformation with a so-called higher-order trans-
formation, i.e., a transformation that takes/produces another transformation as
input/output. In [26], the authors proposed an approach that compromises mul-
tiple steps for model co-evolution: change detection either by comparing between
metamodels or by tracing and recording the changes applied to the old version of
the metamodel. The second step is a classification of the changes in metamodel
and their impact in its instances. Finally, an appropriate migration algorithm for
model migration is determined. For initial model elements for which no trans-
formation rule is found, a default copy transformation rule is applied. This algo-
rithm has been realized in the model migration framework Epsilon Flock [27]
and in the framework described in [28].

A comprehensive survey of interactive SBSE approaches can be found in [29].
The problems of contextualization to developer’s regions of interest during the
recommendation process have been treated in recent SBSE papers for the code
refactoring problem [30-34]. Han et al. proposed in [32] an approach to enable
the interactions with the user, then a Delta Table can select the next refactoring
quickly to improve a specific objective without calculating a fitness function.

102 W. Kessentini and V. Alizadeh

6 Conclusion

In this paper, we proposed a novel approach to extract designers’ preferences to
find good recommendations to co-evolve models. We combined the use of multi-
objective search, mono-objective search, and user interaction in our approach.
To evaluate the effectiveness of our tool, we conducted an evaluation with 16
participants who evaluated the tool and compared it with the state-of-the-art
techniques. As part of our future work, we are planning to evaluate our approach
on further metamodel evolution cases and a more extensive set of participants.
We will also adapt our approach to address other problems requiring designers’
interactions, such as model transformation rules.

References

1. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel
evolution in MDE. J. Object Technol. (2012)

2. Hebig, R., Khelladi, D.E., Bendraou, R.: Approaches to co-evolution of metamodels
and models: a survey. IEEE Trans. Softw. Eng. 43(5), 396-414 (2017)

3. Schoenboeck, J., et al.: CARE: a constraint-based approach for re-establishing
conformance-relationships. In: Proceedings of APCCM (2014)

4. Meyers, B., Wimmer, M., Cicchetti, A., Sprinkle, J.: A generic in-place
transformation-based approach to structured model co-evolution. In: Proceedings
of MPM Workshop (2010)

5. Meyers, B., Vangheluwe, H.: A framework for evolution of modelling languages.
Sci. Comput. Program. 76(12), 1223-1246 (2011)

6. Cicchetti, A., Ciccozzi, F., Leveque, T., Pierantonio, A.: On the concurrent version-
ing of metamodels and models: challenges and possible solutions. In: Proceedings
ITWMCP (2011)

7. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by
precise detection of metamodel changes. In: Paige, R.F., Hartman, A., Rensink, A.
(eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34-49. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02674-4_4

8. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: Proceedings of EDOC (2008)

9. Kessentini, W., Sahraoui, H., Wimmer, M.: Automated metamodel/model co-
evolution using a multi-objective optimization approach. In: Wasowski, A., Lonn,
H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 138-155. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42061-5-9

10. Kessentini, W., Sahraoui, H.A., Wimmer, M.: Automated metamodel/model co-
evolution: a search-based approach. Inf. Softw. Technol. 106, 49-67 (2019)

11. Kessentini, W., Wimmer, M., Sahraoui, H.A.: Integrating the designer in-the-
loop for metamodel/model co-evolution via interactive computational search. In:
Wasowski, A., Paige, R.F., Haugen, @. (eds.) Proceedings of MODELS, pp. 101-
111 (2018)

12. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849-858. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3_-83

https://doi.org/10.1007/978-3-642-02674-4_4
https://doi.org/10.1007/978-3-319-42061-5_9
https://doi.org/10.1007/3-540-45356-3_83

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Transforming Interactive Multi-objective Metamodel/Model 103

Immo. https://sites.google.com/view/ssbse2020/

Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of
operators for the coupled evolution of metamodels and models. In: Malloy, B.,
Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163-182.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5_10
Richters, M.: A precise approach to validating UML models and OCL constraints.
Technical report (2001)

Muflikhah, L., Baharudin, B.: Document clustering using concept space and cosine
similarity measurement. In: Proceedings of ICCTD (2009)

Wimmer, M., Kusel, A., Schoenboeck, J., Retschitzegger, W., Schwinger, W.: On
using inplace transformations for model co-evolution. In: Proceedings of MtATL
Workshop (2010)

Cicchetti, A., Ciccozzi, F., Leveque, T., Pierantonio, A.: On the concurrent version-
ing of metamodels and models: challenges and possible solutions. In: Proceedings
of IWMCP (2011)

Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language evolution in practice:
the history of GMF. In: van den Brand, M., Gasevié, D., Gray, J. (eds.) SLE 20009.
LNCS, vol. 5969, pp. 3—22. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12107-4_3

Herrmannsdoerfer, M.: GMF: a model migration case for the transformation tool
contest. In: Proceedings of TTC (2011)

Rose, L.M., et al.: Graph and model transformation tools for model migration
- empirical results from the transformation tool contest. SoSym 13(1), 323-359
(2014)

Di Ruscio, D., Lammel, R., Pierantonio, A.: Automated co-evolution of GMF editor
models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 143-162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19440-5_9

Pollatsek, A., Well, A.D.: On the use of counterbalanced designs in cognitive
research: a suggestion for a better and more powerful analysis. J. Exp. Psychol.
Learn. Mem. Cogn. 21(3), 785 (1995)

Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering. In: Proceedings of ICSE (2011)
Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evo-
lution. J. Vis. Lang. Comput. 15(3-4), 291-307 (2004)

Gruschko, B.: Towards synchronizing models with evolving metamodels. In: Pro-
ceedings of MoDSE Workshop (2007)

Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with
epsilon flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp.
184-198. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13688-
7-13

Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic
domain model migration to manage metamodel evolution. In: Schiirr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 706-711. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04425-0_57

Ramirez, A., Romero, J.R., Simons, C.L.: A systematic review of interaction in
search-based software engineering. IEEE Trans. Softw. Eng. 45(8), 760781 (2018)
Morales, R., Chicano, F., Khomh, F., Antoniol, G.: Efficient refactoring scheduling
based on partial order reduction. J. Syst. Softw. 145, 25-51 (2018)

https://sites.google.com/view/ssbse2020/
https://doi.org/10.1007/978-3-642-19440-5_10
https://doi.org/10.1007/978-3-642-12107-4_3
https://doi.org/10.1007/978-3-642-12107-4_3
https://doi.org/10.1007/978-3-642-19440-5_9
https://doi.org/10.1007/978-3-642-19440-5_9
https://doi.org/10.1007/978-3-642-13688-7_13
https://doi.org/10.1007/978-3-642-13688-7_13
https://doi.org/10.1007/978-3-642-04425-0_57

104 W. Kessentini and V. Alizadeh

31. Morales, R., Soh, Z., Khomh, F., Antoniol, G., Chicano, F.: On the use of devel-
opers’ context for automatic refactoring of software anti-patterns. J. Syst. Softw.
128, 236-251 (2017)

32. Han, A.R., Bae, D.H., Cha, S.: An efficient approach to identify multiple and
independent move method refactoring candidates. IST 59, 53-66 (2015)

33. Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., Ouni, A.: A cooperative
parallel search-based software engineering approach for code-smells detection. TSE
40(9), 841-861 (2014)

34. Alizadeh, V., Fehri, H., Kessentini, M.: Less is more: from multi-objective to mono-
objective refactoring via developer’s knowledge extraction. In: SCAM, pp. 181-192.
IEEE (2019)

	Transforming Interactive Multi-objective Metamodel/Model Co-evolution into Mono-objective Search via Designer's Preferences Extraction
	1 Introduction
	2 Background and Motivations
	3 Approach Overview
	3.1 Phase 1: Multi-objective Metamodel/Model Co-evolution
	3.2 Phase 2: Interaction and Preference Extraction
	3.3 Phase 3: Preference-Based Mono-objective Co-evolution

	4 Evaluation
	4.1 Research Questions and Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References

