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Preface

Message from the General Chair

Welcome to the 12th Symposium on Search-Based Software Engineering (SSBSE
2020). SSBSE is a premium venue dedicated to the discussion of novel ideas and
applications of Search-Based Software Engineering, a research area focused on the
formulation of software engineering problems as search problems. A wealth of engi-
neering challenges can leverage application of automated approaches and optimization
techniques from AI and machine learning research.

This year, SSBSE was organized as a virtual conference due to travel restrictions
imposed by the COVID-19 pandemic. We would like to thank the members of the
Organizing Committee for their effort in making the virtual event a success. We thank
the track chairs for their great work in creating an exciting conference program:
Aldeida Aleti and Annibale Panichella (Research Track), Tim Menzies (Journal First
Track), Jin Guo and Gregory Gay (New Ideas and Emerging Results Track), Bonita
Sharif and Juan Pablo Galeotti (Replications and Negative Results Track), and Ruchika
Malhotra and Wesley K. G. Assunção (Challenge Track). We thank Bruno Lima, our
publication chair, for his remarkable effort in coordinating the proceedings creation
process. Last but not least, we would like to thank our publicity chairs Jinghui Cheng,
Rodrigo Morales, Rebecca Moussa, and Nobukazu Yoshioka, for their job in adver-
tising SSBSE through mailing lists and social media, and Luigi Quaranta for setting up
our website.

Finally, we would like to thank the University of Bari, Italy, and Polytechnique
Montreal, Canada, for the support provided, and our sponsor, Facebook, for the gen-
erous support to SSBSE 2020 and the forthcoming 2021 instalment.

We look forward to seeing you all at SSBE 2021.

August 2020 Giuliano Antoniol
Nicole Novielli



Message from the Program Chairs

On behalf of the Program Committee, it is our pleasure to present the proceedings
of the 12th International Symposium on Search-Based Software Engineering (SSBSE
2020).

The field of Search-Based Software Engineering has grown tremendously in the last
few years, with research covering a wide range of topics in the intersection of software
engineering and search algorithms. As in the previous years, SSBSE 2020 continued to
bring together the international SBSE community to present innovations, discuss new
ideas, and celebrate progress in the field. This year, we faced an unprecedented chal-
lenge brought upon us by the global pandemic, which impacted our lives significantly.
Hence, it is more important than ever that we stay connected and support each other
through these times, even if virtually. Despite these challenges, this year we received a
record number of papers; 34 papers in total across four tracks: 24 full research papers,
2 Challenge solutions, 2 New Ideas and Emerging Results (NIER) papers, 5 Repli-
cations and Negative Results (RENE) papers, and 1 Challenge case. We would like to
thank the authors for their submissions and express our appreciation for their efforts in
advancing the SBSE field.

The success of SSBSE depends completely on the effort, talent, and energy of
researchers in the field of Search-Based Software Engineering who have written and
submitted papers on a variety of topics. Following a strict review process, where each
submission received three reviews, we accepted 18 papers: 10 papers in the Research
Track, 4 papers in the RENE Track, 1 paper in the NIER Track, 2 papers in the
Challenge solutions, and 1 paper in the Challenge cases. Thanks also go to the Program
Committee members and external reviewers who invested significant time in assessing
multiple papers, and who hold and maintain a high standard of quality for this con-
ference. Their dedicated work and support makes this symposium possible and results
in a stronger community.

Finally, the symposium would not have been possible without the efforts of the
Organizing Committee, hence we would like to thank:

– NIER Track co-chairs: Jin Guo and Gregory Gay
– Replications and Negative Results Track co-chairs: Bonita Sharif and Juan Pablo

Galeotti
– Challenge Track co-chair: Wesley K. G. Assuncao and Ruchika Malhotra
– Publicity co-chairs: Rebecca Moussa, Nobukazu Yoshioka, Jinghui Cheng and

Rodrigo Morales
– Virtualization Chair: Marios-Eleftherios Fokaefs
– Journal First Track chair: Tim Menzies
– Publication chair: Bruno Lima
– Web chair: Luigi Quaranta



In addition to a full program of research talks, SSBSE 2020 attendees had the
opportunity to listen to an outstanding keynote by Shiva Nejati on “Search-Based
Software Testing for Formal Software Verification, and Vice Versa.” In this keynote,
Shiva presented recent research that combines ideas from SBST research and the
formal verification area to improve the analysis of cyber-physical systems (CPS). Next,
the keynote focused on an empirical study that compares CPS model testing and
verification. While SBST and formal verification communities pursue the common goal
of ensuring the correctness of software systems, the interaction between the two
communities is sparse. Hence, this keynote provided an exciting opportunity to reflect
on the advancements of these two areas and help the software engineering community
to reach a common understanding of the problem of testing software systems, to
develop common benchmarks and evaluation criteria, and to build more effective
software tools.

We hope you enjoy the work contained in this volume and you can apply it to your
own work. We are proud of the program assembled this year, and are thankful for the
opportunity to present these proceedings to the SBSE research community.

July 2020 Aldeida Aleti
Annibale Panichella
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Search-Based Software Testing for Formal
Software Verification – and Vice Versa

Shiva Nejati1,2(B)

1 School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, Canada

snejati@uottawa.ca
2 SnT Centre, University of Luxembourg, Esch-sur-Alzette, Luxembourg

https://shnejati.bitbucket.io/

Abstract. “Testing can be quite effective for showing the presence of
bugs, but is hopelessly inadequate for showing their absence”. This
famous remark, which was made by Dijkstra, has often been used to indi-
cate a dichotomy between testing and verification. From a practitioner’s
point of view, however, there is not much difference in the ways test-
ing and verification techniques may be used in practice. While engineers
would try to demonstrate that their systems are correct (verification),
they often find themselves in a situation where they have to prioritize
bug finding (testing). As a result, the choice to go for formal verification
versus testing is largely driven by the practical needs and the context
specificities. In this keynote, I will focus on search-based software testing
(SBST) and review some recent research that combines ideas from the
SBST and the formal verification communities to improve the analysis
of models of cyber physical systems (CPS). I will present an empirical
study that compares CPS model testing and verification, a search-based
testing approach for compute-intensive CPS models that builds on a well-
known formal verification framework, and a technique to automatically
generate formal environment assumptions for CPS models using search
algorithms and genetic programming.

Keywords: Search-based software testing · Formal verification ·
Model testing · Model checking · Cyber physical systems

1 Introduction

Search-based Software Testing (SBST) and its parent field, i.e., Search-based
Software Engineering (SBSE), have significantly expanded since the inception of
the Symposium on Search Based Software Engineering (SSBSE) in 2008 [7]. Over
the past years, SBST has been successfully applied to many categories of software

This short paper provides an outline of the keynote talk given by Shiva Nejati at
SSBSE 2020.

c© Springer Nature Switzerland AG 2020
A. Aleti and A. Panichella (Eds.): SSBSE 2020, LNCS 12420, pp. 3–6, 2020.
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4 S. Nejati

testing (e.g., unit testing and regression testing) [6]. SBST solutions provide a
number of benefits that are crucial for producing impactful software engineering
research [15]: They scale well to large systems, make few assumptions about the
structure of their inputs and can be flexibly combined with other methods.

To date, SBST has been largely focused on code testing, and is lesser used
to test other artifacts such as software models that are prominently used in the
domain of Cyber Physical Systems (CPS) to capture system-level behaviors,
facilitate early simulation and enable code generation. CPS models are subject
to extensive verification and testing. Historically, formal verification techniques
such as model checking [5] have been considered as the main candidate to ensure
correctness of CPS requirements and design models. I believe, however, that
SBST can be effective in the domain of CPS verification since it can address
scalability issues of formal verification, can be combined with formal methods to
enhance their effectiveness, and can relax the restrictive assumptions that formal
techniques often make about their inputs as they heavily rely on the structure
of the artifacts under analysis.

In this keynote, I present recent research that aims to combine ideas from
SBST and formal methods to develop testing and verification techniques for
industrial CPS models [9,13,14]. I start by presenting an empirical study that
compares capabilities of model testing [12] based on SBST and model checking
using an industrial benchmark [14]. The models in the benchmark are described
in Simulink – a simulation language that is widely used by the CPS industry –
and for each model, a set of requirements are specified that must be satisfied by
their corresponding model. The experiment aims to compare model testing and
model checking to determine how these techniques help assess models against
their requirements. Our results show that while model checking is able to prove
correctness of Simulink models that capture relatively small and individual com-
ponents, it fails to analyse Simulink models that are more complex and capture
a whole system in a feedback loop (e.g., an autopilot controller and its envi-
ronment). The study further shows that bounded model checking [3] which is a
partial form of model checking and is meant to reveal bugs instead of proving
correctness is not as effective as search-based testing in finding bugs in Simulink
models.

I then discuss how a formal verification framework, i.e., counterexample
guided abstraction and refinement (CEGAR) [4], can be adapted to SBST and
help scale model testing to large and complex compute-intensive CPS models
from the aerospace domain [13]. CEGAR was originally proposed to help scale
model checking and to combat the state explosion problem. The framework was
the backbone of early software model checkers such as SLAM [1] developed in
early 2000. CEGAR generates a boolean abstraction of a given program using
the abstract interpretation framework [8] and iteratively refines the abstract
program until a model checker can conclusively verify or refute a given property
based on the abstract program. To adapt CEGAR, we replace model checking
with search-based model testing and, instead of abstraction interpretation, we
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use machine learning (more specifically system identification [2]) to approximate
a given CPS model.

Finally, I describe how search algorithms and SBST can solve a difficult for-
mal verification problem, i.e., the problem of synthesizing environment assump-
tions [11], for complex models that cannot typically be handled using formal
methods [9]. Specifically, existing assumption synthesis techniques are typically
applicable to CPS models expressed as state machines [10], while using search
algorithms and machine learning, we can learn assumptions for signal-based for-
malisms that include both logical and numeric components.

Even though SBST and formal verification communities pursue a common
goal, that of ensuring correctness of software systems, there are limited inter-
actions and exchanges between them. Proving correctness which is the ultimate
goal of formal verification may allow us to go without testing, but most often,
it can only be fully achieved for small-scale programs and components that are
assessed as independent units and outside their context and environment. In
most other cases, formal verification is applied partially or relies on heuristics
(e.g., bounded model checking or symbolic execution techniques), and hence,
similar to testing, it can only show the presence of bugs but not their absence.
It is, therefore, interesting to study similarities and differences between testing
based on statistical optimization (SBST) and testing based on formal verifica-
tion as they essentially automate the same task (i.e., revealing bugs). This will
help the software engineering community to reach a common understanding on
the problem of testing software systems, to develop common benchmarks and
evaluation criteria and to build more effective software tools.

Acknowledgment. This work is supported by NSERC of Canada under the Discovery
program.
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Automated Unit Test Generation
for Python

Stephan Lukasczyk(B), Florian Kroiß, and Gordon Fraser

University of Passau, Innstr. 33, 94032 Passau, Germany
{stephan.lukasczyk,gordon.fraser}@uni-passau.de, kroiss@fim.uni-passau.de

Abstract. Automated unit test generation is an established research
field, and mature test generation tools exist for statically typed pro-
gramming languages such as Java. It is, however, substantially more dif-
ficult to automatically generate supportive tests for dynamically typed
programming languages such as Python, due to the lack of type informa-
tion and the dynamic nature of the language. In this paper, we describe
a foray into the problem of unit test generation for dynamically typed
languages. We introduce Pynguin, an automated unit test generation
framework for Python. Using Pynguin, we aim to empirically shed light
on two central questions: (1) Do well-established search-based test gener-
ation methods, previously evaluated only on statically typed languages,
generalise to dynamically typed languages? (2) What is the influence
of incomplete type information and dynamic typing on the problem of
automated test generation? Our experiments confirm that evolutionary
algorithms can outperform random test generation also in the context of
Python, and can even alleviate the problem of absent type information
to some degree. However, our results demonstrate that dynamic typing
nevertheless poses a fundamental issue for test generation, suggesting
future work on integrating type inference.

Keywords: Dynamic Typing · Python · Random Test Generation ·
Whole Suite Test Generation

1 Introduction

Unit tests can be automatically generated to support developers and the dynamic
analysis of programs. Established techniques such as feedback-directed random
test generation [15] or evolutionary algorithms [7] are implemented in mature
research prototypes, but these are based on strong assumptions on the availability
of static type information, as is the case in statically typed languages like Java.
Dynamically typed languages such as Python or JavaScript, however, have seen
increased popularity within recent years. Python is the most popular program-
ming language in the category of dynamically typed languages, according to, for
example, the IEEE Spectrum Ranking1. It is heavily used in the fields of machine
1 https://spectrum.ieee.org/computing/software/the-top-programming-languages-

2019, accessed 2020–07–25.
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learning and data analysis, and it is also popular in other domains. This can be
seen, for example, from the Python Package Index (PyPI), which contains more
than 200 000 packages at the time of writing. In languages like Python, the type
information that automated unit test generators require is not available.

An automated unit test generator primarily requires type information in
order to select parameters for function calls and to generate complex objects. If
type information is absent, the test generator can only guess which calls to use
to create new objects, or which existing objects to select as parameters for new
function calls. Existing test generators for dynamically typed languages therefore
resort to other means to avoid having to make such choices in the first place, for
example by using the document object model of a web browser to generate tests
for JavaScript [14], or by targeting the browser’s event handling system rather
than APIs [3,12]. However, there is no general purpose unit test generator at
API level yet for languages like Python.

In order to allow test generation research to expand its focus from statically
to dynamically typed languages, in this paper we introduce Pynguin, a new
automated test generation framework for Python. Pynguin takes as input a
Python module and its dependencies, and aims to automatically generate unit
tests that maximise code coverage. In order to achieve this, Pynguin imple-
ments the established test generation techniques of whole-suite generation [9]
and feedback-directed random generation [15]. Pynguin is available as open
source to support future research on automated test generation for dynamically
typed programming languages. Pynguin is designed to be extensible; in this
paper we focus on established baseline algorithms for foundational experiments,
we will add further algorithms such as DynaMOSA [16] in future work.

Using Pynguin, we empirically study the problem of automated unit test
generation for Python using ten popular open source Python projects taken from
GitHub, all of which contain type information added by developers in terms of
type annotations. This selection allows us to study two central questions: (1) Do
previous findings, showing that evolutionary search achieves higher code cov-
erage than random testing [5], also generalise to dynamically typed languages?
(2) What is the influence of the lack of type information in a dynamically typed
language like Python on automated unit test generation?

In detail, the contributions of this paper are the following:

1. We introduce Pynguin, a new framework for automated unit test generation
for the Python programming language.

2. We replicate experiments previously conducted only in the context of stati-
cally typed languages to compare test generation approaches.

3. We empirically study the influence of type information on the effectiveness of
automated test generation.

Our experiments confirm that the whole-suite approach generally achieves
higher code coverage than random testing, and that the availability of type
information also leads to higher resulting coverage. However, our experiments
reveal several new technical challenges such as generating collections or iterable
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input types. Our findings also suggest that the integration of current research
on type inference is a promising route forward for future research.

2 Background

The main approaches to automatically generate unit tests are either by creat-
ing random sequences, or by applying metaheuristic search algorithms. Random
testing assembles sequences of calls to constructors and methods randomly, often
with the objective to find undeclared exceptions [6] or violations of general object
contracts [15], but the generated tests can also be used as automated regression
tests. The effectiveness of random test generators can be increased by integrat-
ing heuristics [13,17]. Search-based approaches use a similar representation, but
apply evolutionary search algorithms to maximize code coverage [1,4,9,19].

As an example to illustrate how type information is used by existing test gen-
erators, consider the following snippets of Java (left) and Python (right) code:

Assume Foo of the Java example is the class under test. It has a dependency
on class Bar: in order to generate an object of type Foo we need an instance of
Bar, and the method doFoo also requires a parameter of type Bar.

Random test generation would typically generate tests in a forward way. Start-
ing with an empty sequence t0 = 〈〉, all available calls for which all parameters can
be satisfied with objects already existing in the sequence can be selected. In our
example, initially only the constructor of Bar can be called, since all other meth-
ods and constructors require a parameter, resulting in t1 = 〈o1 = new Bar()〉.
Since t1 contains an object of type Bar, in the second step the test generator now
has a choice of either invoking doBar on that object (and use the same object also
as parameter), or invoking the constructor of Foo. Assuming the chosen call is
the constructor of Foo, we now have t2 = 〈o1 = new Bar(); o2 = new Foo(o1); 〉.
Since there now is also an instance of Foo in the sequence, in the next step also
the method doFoo is an option. The random test generator will continue extending
the sequence in this manner, possibly integrating heuristics to select more relevant
calls, or to decide when to start with a new sequence, etc.

An alternative approach, for example applied during the mutation step of an
evolutionary test generator, is to select necessary calls in a backwards fashion.
That is, a search-based test generator like EvoSuite [9] would first decide that
it needs to, for example, call method doFoo of class Foo. In order to achieve this,
it requires an instance of Foo and an instance of Bar to satisfy the dependencies.
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To generate a parameter object of type Bar, the test generator would consider
all calls that are declared to return an instance of Bar—which is the case for the
constructor of Bar in our example, so it would prepend a call to Bar() before the
invocation of doFoo. Furthermore, it would try to instantiate Foo by calling the
constructor. This, in turn, requires an instance of Bar, for which the test generator
might use the existing instance, or could invoke the constructor of Bar.

In both scenarios, type information is crucial: In the forward construction
type information is used to inform the choice of call to append to the sequence,
while in the backward construction type information is used to select generators
of dependency objects. Without type information, which is the case with the
Python example, a forward construction (1) has to allow all possible functions
at all steps, thus may not only select the constructor of Bar, but also that
of Foo with an arbitrary parameter type, and (2) has to consider all existing
objects for all parameters of a selected call, and thus, for example, also str or
int. Backwards construction without type information would also have to try
to select generators from all possible calls, and all possible objects, which both
result in a potentially large search space to select from.

Type information can be provided in two ways in recent Python versions:
either in a stub file that contains type hints or directly annotated in the source
code. A stub file can be compared to C header files: they contain, for example,
method declarations with their according types. Since Python 3.5, the types can
also be annotated directly in the implementing source code, in a similar fashion
known from statically typed languages (see PEP 4842).

3 Search-Based Unit Test Generation

3.1 Python Test Generation as a Search Problem

As the unit for unit test generation, we consider Python modules. A module is
usually identical with a file and contains definitions of, for example, functions,
classes, or statements; these can be nested almost arbitrarily. When the module
is loaded the definitions and statements at the top level are executed. While
generating tests we do not only want all definitions to be executed, but also all
structures defined by those definitions, for example, functions, closures, or list
comprehensions. Thus, in order to apply a search algorithm, we first need to
define a proper representation of the valid solutions for this problem.

We use a representation based on prior work from the domain of testing Java
code [9]. For each statement sj in a test case ti we assign one value v(sj) with
type τ(v(sj)) ∈ T , with the finite set of types T used in the subject-under-
test (SUT) and the modules imported by the SUT. We define four kinds of
statements: Primitive statements represent int, float, bool, and str variables,
for example, var0 = 42. Value and type of a statement are defined by the prim-
itive variable. Note that although in Python everything is an object, we treat

2 https://python.org/dev/peps/pep-0484/, accessed 2020–07–25.

https://python.org/dev/peps/pep-0484/
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these values as primitives because they do not require further construction in
Python’s syntax. Other simple types, such as lists, require the construction of
the list and its elements, which we do not yet handle. Constructor statements
create new instances of a class, for example, var0 = SomeType(). Value and
type are defined by the constructed object; any parameters are satisfied from
the set V = {v(sk) | 0 ≤ k < j}. Method statements invoke methods on objects,
for example, var1 = var0.foo(). Value and type are defined by the return value
of the method; source object and any parameters are satisfied from the set V.
Function statements invoke functions, for example, var2 = bar(). They do not
require a source object but are otherwise identical to method statements. This
representation is of variable size; we constrain the size of test cases l ∈ [1, L]
and test suites n ∈ [1, N ]. In contrast to prior work on testing Java [9], we
do not define field or assignment statements; fields of objects are not explicitly
declared in Python but assigned dynamically, hence it is non-trivial to identify
the existing fields of an object and we leave it as future work.

The search operators for this representation are based on those used in Evo-

Suite [9]: Crossover takes as input two test suites P1 and P2, and generates
two offspring O1 and O2. Individual test cases have no dependencies between
each other, thus the application of crossover always generates valid test suites
as offspring. Furthermore, the operator decreases the difference in the number
of test cases between the test suites, thus abs(|O1| − |O2|) ≤ abs(|P1| − |P2|).
Therefore, no offspring will have more test cases than the larger of its parents.

When mutating a test suite T , each of its test cases is mutated with prob-
ability 1

|T | . After mutation, we add new randomly generated test cases to T .
The first new test case is added with probability σ. If it is added, a second new
test case is added with probability σ2; this happens until the i-th test case is
not added (probability: 1 − σi). Test cases are only added if the limit N has
not been reached, thus |T | ≤ N . The mutation of a test case can be one of
three operations: remove, which removes a statement from the test case, change,
which randomly changes values in a statement—for example, by adding random
values to numbers, adding/replacing/deleting characters, or changing method
calls—and insert, which adds new statements at random positions in the test
case. Each of these operations can happen with the same probability of 1

3 . A test
case that has no statements left after the application of the mutation operator is
removed from the test suite T . For constructing the initial population, a random
test case t is sampled by uniformly choosing a value r with 1 ≤ r ≤ L, and then
applying the insertion operator repeatedly starting with an empty test case t′,
until |t′| ≥ r.

3.2 Covering Python Code

A Python module contains various control structures, for example, if or while
statements, which are guarded by logical predicates. The control structures are
represented by conditional jumps at the bytecode level, based on either a unary
or binary predicate. We focus on branch coverage in this work, which requires
that each of those predicates evaluates to both true and false.
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Let B denote the set of branches in the SUT—two for each conditional jump
in the byte code. Everything executable in Python is represented as a code object.
For example, an entire module is represented as a code object, a function within
that module is represented as another code object. We want to execute all code
objects C of the SUT. Therefore, we keep track of the executed code objects CT

as well as the minimum branch distance dmin(b, T ) for each branch b ∈ B, when
executing a test suite T . BT ⊆ B denotes the set of taken branches. We then
define the branch coverage cov(T ) of a test suite T as cov(T ) = |CT |+|BT |

|C|+|B| .
The fitness function required by the genetic algorithm of our whole-suite

approach is constructed similar to the one used in EvoSuite [9] by incorporat-
ing the branch distance. Branch distance is a heuristic to determine how far a
predicate is away from evaluating to true or false, respectively. In contrast to
previous work on Java, where most predicates at the bytecode level operate only
on Boolean or numeric values, in our case the operands of a predicate can be
any Python object. Thus, as noted by Arcuri [2], we have to define our branch
distance in such a way that it can handle arbitrary Python objects.

Let O be the set of possible Python objects and let Θ := {≡, 	≡, <,≤, >,≥,∈,
/∈,=, 	=} be the set of binary comparison operators (remark: we use ‘≡’, ‘=’, and
‘∈’ for Python’s ==, is, and in keywords, respectively). For each θ ∈ Θ, we define
a function δθ : O×O → R

+
0 ∪{∞} that computes the branch distance of the true

branch of a predicate of the form a θ b, with a, b ∈ O and θ ∈ Θ. By δθ̄(a, b) we
denote the distance of the false branch, where θ̄ is the complementary operator
of θ. Let further k be a positive number, and let lev(x, y) denote the Levenshtein
distance [11] between two strings x and y. The predicates is_numeric(z) and
is_string(z) determine whether the type of their argument z is numeric or a
string, respectively.

δ≡(a, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 a ≡ b

|a − b| a 	≡ b ∧ is_numeric(a) ∧ is_numeric(b)
lev(a, b) a 	≡ b ∧ is_string(a) ∧ is_string(b)
∞ otherwise

δ<(a, b) =

⎧
⎪⎨

⎪⎩

0 a < b

a − b + k a ≥ b ∧ is_numeric(a) ∧ is_numeric(b)
∞ otherwise

δ≤(a, b) =

⎧
⎪⎨

⎪⎩

0 a ≤ b

a − b + k a > b ∧ is_numeric(a) ∧ is_numeric(b)
∞ otherwise

δ>(a, b) = δ<(b, a)
δ≥(a, b) = δ≤(b, a)

δθ(a, b) =

{
0 a θ b

k otherwise
θ ∈ {	≡,∈, /∈,=, 	=}
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Note that every object in Python represents a Boolean value and can therefore
be used as a predicate. We assign a distance of 0 to the true branch of such a
unary predicate, if the object represents a true value, otherwise k. Future work
shall refine the branch distance for different operators and operand types.

The fitness function estimates how close a test suite is to covering all branches
of the SUT. Thus, every predicate has to be executed at least twice, which we
enforce in the same way as existing work [9]: the actual branch distance d(b, T )
is given by

d(b, T ) =

⎧
⎪⎨

⎪⎩

0 if the branch has been covered
ν(dmin(b, T )) if the predicate has been executed at least twice
1 otherwise

with ν(x) = x
x+1 being a normalisation function [9].

Finally, we can define the resulting fitness function f of a test suite T as

f(T ) = |C| − |CT | +
∑

b∈B

d(b, T )

3.3 The Pynguin Framework

Pynguin is a framework for automated unit test generation written in and for
the Python programming language. The framework is available as open-source
software licensed under the GNU Lesser General Public License from its GitHub
repository3. It can also be installed from the Python Package Index (PyPI)4
using the pip utility.

Pynguin takes as input a Python module and allows the generation of unit
tests using different techniques. For this, it parses the module and extracts infor-
mation about available methods in the module and types from the module and
its imports. So far, Pynguin focuses on test-input generation and excludes the
generation of oracles. A tool run emits the generated test cases in the style of the
widely-used PyTest

5 framework or for the unittest module from the Python
standard library.

Pynguin is built to be extensible with other test generation approaches and
algorithms. For experiments in this paper, we implemented a feedback-directed
random approach based on Randoop [15] in addition to the whole-suite test-
generation approach. Feedback-directed test generation starts with two empty
test suites, a passing and a failing test suite, and adds statements randomly
to an empty test case. After each addition, the test case is executed and the
execution result is retrieved. Successful test cases, that is, test cases that do
not raise exceptions are added to the passing test suite; a test case that raises
an exception is added to the failing test suite. In the following, the algorithm

3 https://github.com/se2p/pynguin, accessed 2020–07–27.
4 https://pypi.org/project/pynguin/, accessed 2020–07–25.
5 https://www.pytest.org, accessed 2020–07–25.

https://github.com/se2p/pynguin
https://pypi.org/project/pynguin/
https://www.pytest.org
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randomly chooses a test case from the passing test suite or an empty test case and
adds statements to it. We refer the reader to the description of Randoop [15]
for details on the algorithm; the main differences of our approach are that it does
not yet check for contract violations, and does not require the user to provide a
list of relevant classes and methods, which Randoop does.

4 Experimental Evaluation

Using our Pynguin test generator, we aim to empirically study automated unit
test generation on Python. First, we are interested in determining whether pre-
vious findings on the performance of test generation techniques established in
the context of statically typed languages generalise also to Python:

Research Question 1 (RQ1) How do whole-suite test generation and random
test generation compare on Python code?

A central difference between prior work and the context of Python is the
type information: Previous work evaluated test-generation techniques mainly
for statically typed languages, such as Java, where information on parameter
types is available at compile time, that is, without running the program. This is
not the case for many programs written in dynamically typed languages, such
as Python. Therefore, we want to explicitly evaluate the influence of the type
information for the test-generation process:

Research Question 2 (RQ2) How does the availability of type information
influence test generation?

4.1 Experimental Setup

In order to answer the two research questions, we created a dataset of Python
projects for experimentation. We used the ‘typed’ category of the PyPI package
index of Python projects, and selected ten projects by searching for projects that
contain type hints in their method signatures, and that do not have dependencies
to native-code libraries, such as numpy. Details of the chosen projects are shown
in Table 1: the column Project Name gives the name of the project on PyPI; the
lines of code were measured with the cloc

6 utility tool. The table furthermore
shows the absolute average number of code objects, predicates, and detected
types per module of each project. The former two measures give an insight on
the project’s complexity; higher numbers indicate larger complexity. The latter
provides an overview how many types Pynguin was able to parse (note that
Pynguin may not be able to resolve all types).

The central metric we use to evaluate the performance of a test generation
technique is code coverage. In particular, we measure branch coverage at the
level of bytecode; like in Java bytecode, complex conditions are compiled to

6 https://github.com/AlDanial/cloc, accessed 2020–07–25.

https://github.com/AlDanial/cloc
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Table 1. Projects used for evaluation

Project name Version LOCs Modules CodeObjs. Preds. Types

apimd 1.0.2 316 1 35.0 83.0 11.0
async_btree 1.0.1 284 6 9.0 8.7 6.3
codetiming 1.2.0 85 2 18.0 8.0 6.0
docstring_parser 0.7.1 608 6 12.0 15.7 9.5
flutes 0.2.0.post0 1085 9 19.0 26.0 5.0
flutils 0.6 1715 13 10.2 22.3 8.4
mimesis 4.0.0 1663 34 12.3 5.7 9.2
pypara 0.0.22 1305 6 47.2 23.5 12.0
python-string-utils 1.0.0 476 4 21.0 29.5 6.5
pytutils 0.4.1 1108 23 8.2 6.6 6.1
Total 8645 104 191.9 229.0 79.9

nested branches with atomic conditions also in Python code. In addition to the
final overall coverage, we also keep track of coverage over time to shed light on
the speed of convergence. In order to statistically compare results we use the
Mann-Whitney U-test and the Vargha and Delaney effect size Â12.

We executed Pynguin in four different configurations: First, we executed
Pynguin using random test generation and whole test suite generation; second,
we ran Pynguin with the developer-written type annotations contained in the
projects, and without them. To answer RQ1, we compare the performance of
random test generation and whole test suite generation; to answer RQ2 we com-
pare the performance of each of these techniques for the case with and without
type information.

For each project, Pynguin was run on each of the constituent modules in
sequence. We executed Pynguin in git revision 5f538833 in a Docker container
that is based on Debian 10 and utilises Python 3.8.3. In line with previous
work, we set the maximum time limit for the test-generation algorithms, that
is, the time without analysing the module-under-test and without export of the
results, to 600 s per module. We ran Pynguin 30 times on each module and
configuration to minimise the influence of randomness. All experiments were
executed on dedicated compute servers equipped with Intel Xeon E5-2690v2
CPUs and 64GB RAM, running Debian 10. All scripts and the raw data are
available as supplementary material7.

4.2 Threats to Validity

Internal Validity. The standard coverage tool for Python is Coverage.py,
which offers the capability to measure branch coverage. However, it measures
branch coverage by comparing which transitions between source lines have
7 https://github.com/se2p/artifact-pynguin-ssbse2020, accessed 2020–07–27.

https://github.com/se2p/artifact-pynguin-ssbse2020
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(a) With type information (b) Without type information

Fig. 1. Coverage per project and configuration

occurred and which are possible. This method of measuring branch cover-
age is imprecise, because not every branching statement necessarily leads to
a source line transition, for example, x = 0 if y > 42 else 1337. We thus
implemented our own coverage measurement. We tried to mitigate possible errors
in our implementation, by providing sufficient unit tests for it.

External Validity. We used 104 modules from ten different Python projects for
our experiments. It is conceivable that the exclusion of projects without type
annotations or native-code libraries leads to a selection of smaller projects, and
the results may thus not generalise to other Python projects. However, besides
the two constraints listed, no others were applied during the selection.

Construct Validity. Methods called with wrong input types may still cover parts
of the code before possibly raising exceptions due to the invalid inputs. We
conservatively included all coverage in our analysis, which may improve coverage
for configurations that ignore type information, and thus reduce the effect we
observed. However, it does not affect our general conclusions. Further, we cannot
measure fault finding capability as our tool does not generate assertions, which
is explicitly out of scope of this work.

4.3 RQ1: Whole-Suite Test Generation Vs. Random Testing

Figure 1 provides an overview over the achieved coverage per project in box
plots. Each data point in the plot is one achieved coverage value for one of the
modules of the project. Figure 1a reports the coverage values for whole-suite and
random test generation with available type hints, whereas Fig. 1b reports the
same without the usage of type hints to guide the generation.

Coverage values range from 0% to 100% depending on the project. The cover-
age achieved varies between projects, with some projects achieving generally high
coverage (for example, python-string-utils, mimesis, codetiming), and oth-
ers posing challenges for Pynguin (for example, apmid, async_btree, pypara,
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(a) Â12 effect sizes with type information (b) Â12 effect sizes without type informa-
tion

Fig. 2. Effect sizes of whole suite versus random generation. Values greater than 0.500
indicate whole suite is better than random.

flutes). For example, for the apimd project without type information the cov-
erage is slightly above 20%, which is the coverage achieved just by importing
the module. In Python, when a module is imported, the import statements of
the module, as well as class and method definitions are executed, and thus cov-
ered. Note that this does not execute the method bodies. For other projects with
low coverage, Pynguin is not able to generate reasonable inputs, for example,
higher-order functions or collections, due to technical limitations.

To better understand whether whole-suite test generation performs bet-
ter than random test generation, Fig. 2a reports the Â12 effect sizes for
the per-module comparison of the two with available type information,
whereas Fig. 2b reports the same without available type information. In both box
plots, a value greater than 0.500 means that whole-suite performs better than
random test generation, that is, yields higher coverage results. Both plots show
that on average whole-suite does not perform worse than random and, depend-
ing on the project, is able to achieve better results in terms of coverage (average
Â12 with type information: 0.618, without type information: 0.603). The effect
of these improvements is significant (p < 0.05) for six out of ten projects, most
notably for apimd (Â12 = 1.00, p−value < 0.001), python-string-utils (Â12 =
0.705, p−value < 0.001), and codetiming (Â12 = 0.636, p−value = 0.00531).

For the other projects the effect is negligible. In case of mimesis (Â12 =
0.530) this is due to high coverage values in all configurations—most method
parameters expect primitive types, which are also used for input generation
if no type information is given. Other projects require specific technical abili-
ties, for example, most methods in async_btree (Â12 = 0.535) are coroutines,
which require special calls that cannot currently be generated by Pynguin. The
consequence of this technical limitations is that Pynguin cannot reach higher
coverage independent of the used algorithm in these cases. We observed that
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Fig. 3. Average coverage development over time

methods under test often require collection types as inputs, in Python preva-
lently lists and dictionaries. Also generating these input types would allow us to
execute more parts of the code which would lead to higher coverage and thus
better results. We leave this, however, as future work.

A further current limitation of our framework lies in how the available type
information is processed. Pynguin can currently only generate inputs for con-
crete types, unions of types, and the Any type—for which it attempts to use a
random type from the pool of available types in the SUT. Future work shall han-
dle sub-typing relations as well as generic types [10]. Another prevalent parame-
ter type that limits our current tool are callables, that is, higher order functions
that can be used, for example, as call backs. Previous work has shown that gen-
erating higher-order functions as input types is feasible for dynamically typed
languages and beneficial for test generation [18]. Furthermore, Pynguin cur-
rently only has a naive static seeding strategy for constants that incorporates all
constant values from the project under test into test generation, whereas seeding
has been show to have a positive influence on the quality of test generation [8]
since it allows better-suited input values.

Figure 3 shows the development of the average coverage over all modules
over the available generation time of 600 s. The line plot clearly indicates that
whole-suite generation achieves higher coverage than random generation, which
again supports our claim. Overall, we can answer our first research question as
follows:

Summary (RQ1): Whole-suite test generation achieves at least as high coverage
as random test generation. Depending on the project it achieves moderate to
strongly higher coverage.
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(a) Â12 effect sizes for whole-suite genera-
tion

(b) Â12 effect sizes for random generation

Fig. 4. Effect sizes for type influences

4.4 RQ2: Influence of Type Information

To answer RQ2 we compare the coverage values between the configurations with
and without type annotations, again using the per-module Â12 effect sizes on
the coverage values. This time, we show the effect of type information for whole-
suite generation in Fig. 4a and for random generation in Fig. 4b. For whole-suite
generation, we observe a large positive effect on some modules, and barely any
effect for other modules when type information is incorporated; we report an
average Â12 value of 0.578 in favour of type information. For random generation,
we note similar effects, except for the pypara project (Â12 = 0.411, p−value =
0.00937); inspecting the pypara source code reveals that it uses abstract-class
types as type annotations. Pynguin tries to instantiate the abstract class, which
fails, and is thus not able to generate method inputs for large parts of the code
because it cannot find an instantiable subtype. Overall, however, we report an
average Â12 value of 0.554 in favour of random generation with type information.

The box plots in Fig. 4 indicate similar conclusions for both whole-suite
and random testing: the availability of type information is beneficial for some
projects while its effect is negligible for other projects. The docstring_parser
project, for example, requires their own custom types as parameter values for
many methods. Without type information, Pynguin has to randomly choose
types from all available types, with a low probability of choosing the correct
one, whereas with available type information it can directly generate an object
of correct type. Another effect comes in place for the python-string-utils
projects: most of its methods only require primitive input types but very specific
input values. Pynguin utilises a simple static constant seeding heuristic for
input-value generation. Due to many values in the constant pool the chance of
picking the correct value is smaller when not knowing the requested type, thus
leading to lower coverage without type information.
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On the other hand, projects such as flutes require iterables and callables as
parameters in many cases or need special treatment of their methods to execute
them properly (see coroutines in async_btree, for example). Pynguin currently
lacks support to generate these required types, which prevents larger effects but
does not limit the general approach. Thus, the type information cannot be used
effectively, which results in negligible effects between the compared configurations.

The line plot in Fig. 3 shows the average coverage per evaluated configuration
over the available time for test generation. It shows that both for whole-suite and
random generation the configuration that incorporates type information yields
higher coverage values over the full runtime of the generation algorithms, com-
pared to ignoring type information. This again supports our claim that type
information is beneficial when generating unit tests for Python programs. Over-
all, we therefore conclude for our second research question:

Summary (RQ2): Incorporating type information supports the test generation
algorithms and allows them to cover larger parts of the code. The strength of
this effect, however, largely depends on the SUT. Projects that require specific
types from a large pool of potential types benefit more, and thus achieve larger
effect sizes, than projects only utilising simple types.

5 Related Work

Closest to our work is whole-suite test generation in EvoSuite [9] and feedback-
directed random test generation in Randoop [15]. Both of these approaches
target test generation for Java, a statically typed language, whereas our work
adapts these approaches to Python.

To the best of our knowledge, little has been done in the area of automated
test generation for dynamically typed languages. Approaches such as SymJS [12]
or JSEFT [14] target specific properties of JavaScript web applications, such as
the browser’s DOM or the event system. Feedback-directed random testing has
also been adapted to web applications with Artemis [3]. Recent work proposes
LambdaTester [18], a test generator that specifically addresses the generation
of higher-order functions in dynamic languages. Our approach, in contrast, is
not limited to specific application domains.

For automated generation of unit tests for Python we are only aware of
Auger

8; it generates test cases from recorded SUT executions, while our app-
roach does the generation automatically.

6 Conclusions

In this paper we presented Pynguin, an automated unit test generation frame-
work for Python that is available as an open source tool, and showed that Pyn-
guin is able to emit unit tests for Python that cover large parts of existing code
8 https://github.com/laffra/auger, accessed 2020–07–25.

https://github.com/laffra/auger
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bases. Pynguin provides a whole-suite and a random test generation approach,
which we empirically evaluated on ten open source Python projects. Our results
confirm previous findings from the Java world that a whole-suite approach can
outperform a random approach in terms of coverage. We further showed that
the availability of type information has an impact on the test generation quality.
Our investigations revealed a range of technical challenges for automated test
generation, which provide ample opportunities for further research, for example,
the integration of further test-generation algorithms, such as (Dyna)MOSA [16],
the generation of assertions, or the integration of type inference approaches.
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Abstract. In Search-Based Software Engineering (SBSE), users typi-
cally select a set of Multi-Objective Search Algorithms (MOSAs) for their
experiments without any justification, or they simply choose an MOSA
because of its popularity (e.g., NSGA-II). On the other hand, users know
certain characteristics of solutions they are interested in. Such character-
istics are typically measured with Quality Indicators (QIs) that are com-
monly used to evaluate the quality of solutions produced by an MOSA.
Consequently, these QIs are often employed to empirically evaluate a set
of MOSAs for a particular search problem to find the best MOSA. Thus,
to guide SBSE users in choosing an MOSA that represents the solutions
measured by a specific QI they are interested in, we present an empirical
evaluation with a set of SBSE problems to study the relationships among
commonly used QIs and MOSAs in SBSE. Our aim, by studying such
relationships, is to identify whether there are certain characteristics of
a QI because of which it prefers a certain MOSA. Such preferences are
then used to provide insights and suggestions to SBSE users in selecting
an MOSA, given that they know which quality aspects of solutions they
are looking for.
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in a particular SBSE context is rarely justified [14]. At the same time, users
are aware of certain characteristics of solutions that they are interested to find
with MOSAs. Such characteristics are measured with Quality Indicators (QIs)
that are commonly employed to assess the quality of solutions produced by
MOSAs from different perspectives. Consequently, these QIs are often used by
users to select the best MOSA for their particular applications. To this end, the
motivation of this paper is to help SBSE users in selecting an MOSA, i.e., if they
are interested in the qualities of solutions preferred by a given QI, we identify
the MOSA that will likely produce solutions having these qualities.

This application context is common in practical applications, where one
knows which qualities in solutions they prefer and only wants to select one
suitable MOSA without conducting extensive experiments to compare multiple
MOSAs, which are often expensive. Indeed, in practical contexts, users have lim-
ited time budget to run experiments involving multiple MOSAs and would like
to select one that produces the “best” solutions in terms of preferred QIs. Thus,
in this paper, we aim to provide evidence that is useful for users to choose an
MOSA that is highly likely to give solutions satisfying qualities measured by a
preferred QI.

There exist surveys and studies about investigating various quality aspects
of QIs and their relationships with MOSAs in the context of SBSE. For exam-
ple, the survey of Sayyad et al. [14] reports that most of the publications in
SBSE that were included in the survey do not provide justifications on why one
or more particular MOSAs have been chosen in their experiments. The survey
also reports that, in some of the investigated publications, researchers compared
MOSAs against each other with certain QIs. This indicates that researchers were
aware of the quality aspects provided by the selected QIs, and were looking for
MOSAs that can produce solutions entailing such quality aspects. The survey
also concluded that researchers sometimes chose MOSAs only based on their
“popularity”, i.e., selecting commonly used MOSA(s).

In the literature, there are also studies on investigating relationships of QIs
and their characteristics. For instance, in our previous paper [1], we analyzed
agreements among QIs commonly used in SBSE, with the aim to provide users
with a set of guidelines on selecting QIs for their SBSE applications. Similarly,
Li and Yao [10] surveyed 100 QIs that have been used in the evolutionary com-
putation domain with the aim of studying their strengths and weaknesses. In the
current SBSE literature, however, relationships between QIs and MOSAs are not
well studied. In particular, the question of whether there are certain MOSAs that
are preferred by a given QI is not answered. Answering such research question
can help in guiding users to select an MOSA, on the basis of their preferences
of QIs.

In this paper, we present an empirical evaluation in SBSE to study relation-
ships between the QIs and the MOSAs to provide evidence indicating which
MOSA(s) are highly likely to produce solutions that entail the given quality
aspects represented by a specific QI. The empirical evaluation was performed
with various industrial, real-world, and open source SBSE problems available
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online with commonly used MOSAs and QIs in SBSE. Our results reveal that
certain QIs prefer specific MOSAs (e.g., Hypervolume prefers NSGA-II), whereas
some QIs (e.g., the ones involving the quality aspect of Cardinality [10]) do not
have any strong preference. Based on our results, we present a set of sugges-
tions and insights to select an MOSA based on a particular QI or a category of
quality aspects. The rest of the paper is organized as follows: Sect. 2 relates our
work with the existing works in the literature. Section 3 shows the design of our
empirical evaluation, and Sects. 4 and 5 describe analyses and results. Section 6
presents the discussion and our recommendations, whereas threats to validity
are presented in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related Work

Sayyad and Ammar [14] presented a survey on SBSE papers that use MOSAs
for solving software engineering optimization problems, from the perspectives
of the chosen algorithms, QIs, and used tools. The paper concludes that more
than half of the 51 surveyed papers do not provide justifications on the selec-
tion of a specific MOSA for a specific problem or simply state that an MOSA
is selected because it is often applied by others. This observation, to a certain
extent, implies that in the SBSE research community, there is no evidence show-
ing which MOSA(s) to apply, in particular in the context in which researchers do
know which QI(s) they prefer. Our current study provides evidence for guiding
researchers selecting MOSAs based on the preferences of QIs.

The most relevant work, though not in the SBSE context, was presented
by Ravber et al. in [13]. The work studied the impact of 11 QIs on the rating
of 5 MOSAs: IBEA, MOEA/D, NSGA-II, PESA-II, and SPEA2, and concluded
that QIs even with the same optimization goals (convergence, uniformity, and/or
spread) might generate different and contradictory results in terms of ranking
MOSAs. The authors analyzed the 11 QIs using a Chess Rating System for
Evolutionary Algorithms [16], with 10 synthetic benchmark problems from the
literature and 3 systems for a real-world problem. Based on the results of the
analysis, the studied QIs were categorized into groups that had insignificant
differences in ranking MOSAs. A set of guidelines were briefly discussed, con-
sidering preferred optimization aspects (e.g., convergence) when selecting QIs
for a given search problem and selecting a robust (achieving the same rankings
of MOSAs for different problems) and big enough set of QIs. To compare with
our work reported in this paper, our study differentiates itself from [13] in the
following two aspects. First, our study focuses exclusively on SBSE problems,
whereas their study was conducted in a general context, and therefore the sets of
MOSAs and QIs used in the two studies are different. The MOSAs and QIs we
selected in our study are commonly applied ones in the context of SBSE. Second,
our study aims to provide evidence on selecting an MOSA for solving an SBSE
problem, in the context in which the user is aware of the desired quality aspects
in the final solutions, and has limited time budget (in terms of running experi-
ments). Instead, their study aims to suggest which QI(s) to select for assessing
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MOSAs. When looking at the results of both studies on ranking MOSAs for each
QI, there are similarities and dissimilarities, details of which will be discussed in
Sect. 5.

Li and Yao reported a survey [10] on 100 QIs from the literature, discussed
their strengths and weaknesses, and presented application scenarios for a set of
QIs. In this survey, only two studies [9,18] related to SBSE were included, which
are about understanding QIs from various aspects. Wang et al. [18] proposed a
guide for selecting QIs in SBSE based on the results of an experiment with 8 QIs,
6 MOSAs, and 3 industrial and real-world problems. Their guide helps to deter-
mine a category of the QIs (Convergence, Diversity, Combination of convergence
and diversity, or Coverage). In our previous work [1], we conducted an extensive
empirical evaluation with 11 SBSE search problems from industry, real-world
ones, and open source ones, and automatically produced 22 observations based
on the results of the statistical tests for studying QI agreements, by considering
different ways in which SBSE researchers typically compare MOSAs. We also
provided a set of guidelines in the form of a process that can be used by SBSE
researchers. To compare with our previous work [1], in this paper, we aim to
suggest which MOSA to select given a QI that is preferred, while previously, we
aimed at suggesting which QI(s) to use for evaluating a given MOSA.

3 Design of Empirical Evaluation

The design of our empirical evaluation is shown in Fig. 1. It consists of five steps.
Steps 1–3 were performed by the authors of the papers [1,17], who afterwards
made the data publicly available. We used this public data for our empirical
evaluation and performed Steps 4–5. These steps will be described in following
subsections.

Fig. 1. Design of the experiment

3.1 Selection of Search Problems, MOSAs, and QIs

For our empirical evaluation, we chose data from SBSE search problems that are
described in details in [1]. The data consists of a mix of industrial, real-world,
and open source SBSE problems. In total, there were data available for 11 SBSE
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search problems. The data also had the results of 100 runs of commonly used
MOSAs in SBSE (Step 1 in Fig. 1), i.e., NSGA-II [5], MoCell [12], SPEA2 [20],
PAES [8], SMPSO [11], CellDE [7], and Random Search (RS). CellDE was not
applicable to one of the SBSE problems that requires Integer solutions, because
CellDE works for Real type solutions only [6]. The chosen MOSAs were run using
appropriate parameter settings of the MOSAs based on the previous experiments
provided in [1]. These parameter settings can be found in [1]. In addition, the
available data also had computed QIs for the commonly used QIs in SBSE (Step
2 in Fig. 1), i.e., Generational Distance (GD), Euclidean Distance (ED), Epsilon
(EP), Generalized Spread (GS), Pareto Front Size (PFS), Inverted Generational
Distance (IGD), Hypervolume (HV), and Coverage (C). The definition of these
QIs can be consulted in [10]. Moreover, the authors performed relevant statistical
tests to compare each pair of MOSAs using each QI (Step 3 in Fig. 1). The results
of the tests reveal which MOSA performed significantly better than the other one
with respect to a particular QI. Note that all the MOSAs performed significantly
better than RS; therefore, we did not include the results of RS. If we include the
results of RS in our experiments, it will always be the least preferred by all the
QIs.

The results of these statistical tests were used in our empirical evaluation
reported in this paper: namely, we used them to perform Step 4 and Step 5, in
order to answer the RQs defined in the next subsection.

3.2 Research Questions

Our overall objective is to study the relationships between the QIs and the
MOSAs with the aim of finding whether there are specific characteristics of
MOSAs that are preferred by a specific QI. To this end, we define the following
Research Questions (RQs):

– RQ1: How frequently a QI prefers a particular MOSA? This RQ studies the
percentage of times that a QI prefers a particular MOSA by ignoring the
differences of the SBSE problems when studying pairs of MOSAs. This RQ
helps in understanding the overall preferences of a QI.

– RQ2: How frequently a QI prefers a particular MOSA across the different
SBSE problems? This RQ studies the preferences of QIs across the problems
when studying pairs of MOSAs, whereas in RQ1 we aim to study preferences
while ignoring the differences of the problems.

3.3 Evaluation Metrics, Statistical Analyses, and Parameter
Settings

We define a set of evaluation metrics to answer the two RQs. First of all, we use
the predicate pref to indicate the preference relationship between MOSAs for a
given quality indicator and a given problem. Let Q be a quality indicator, A and
B two MOSAs, and P a search problem. pref (A,B ,Q ,P) = true iff Q prefers
MOSA A to B when these are applied to the search problem P . The preference
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relation has been computed in our previous work [1], where we compared 100 runs
of MOSA A and MOSA B over problem P using the Mann-Whitney U test and
Vargha and Delaney Â12 statistic. Note that pref (A,B ,Q ,P) = true implies
pref (B ,A,Q ,P) = false. If pref (A,B ,Q ,P) = false and pref (B ,A,Q ,P) =
false, it means that Q does not have any significant preference among the two
MOSAs.

RQ1. In order to answer RQ1 (Step 4 in Fig. 1), we introduce the following mea-
sure. Let MOSAs be the set of MOSAs, Problems the set of search problems, and
Q a quality indicator. We define the preference count as the percentage of times
Q prefers MOSA A when compared to another MOSA in any problem, formally:

PC (A,Q) =
| ∪P∈Problems {B ∈ (MOSAs \ {A}) | pref (A,B ,Q ,P)}|

(|MOSAs| − 1) × |Problems| (1)

The rationale is that if an MOSA A is consistently preferred by a QI Q (when
compared with other MOSAs and for different problems), it means that A tends
to produce solutions that have the quality aspects assessed by Q . The higher
PC (A,Q) is, the higher the probability is that, also on new problems, A will
produce solutions preferred by Q .

RQ2. In order to answer RQ2, first, we compute the preference count per problem
defined as follows (Step 5.1 in Fig. 1)1:

PC (A,Q ,P) =
|{B ∈ (MOSAs \ {A}) | pref (A,B ,Q ,P)}|

|MOSAs| − 1
(2)

Second, we also perform, for each Q , pair-wise comparisons of the selected
MOSAs across search problems (Step 5.2 in Fig. 1). We choose the Mann-
Whitney U test to determine the statistical significance of results, whereas we
choose the Vargha and Delaney Â12 statistics as the effect size measure. These
statistical tests were chosen based on the published guidelines reported in [3].
When comparing two algorithms A and B with respect to a QI Q , if the p-value
computed by the Mann-Whitney U test is less than 0.05 and Â12 is greater than
0.5, then it means that A is significantly better than B with respect to Q . Sim-
ilarly, when a p-value is less than 0.05 and Â12 is less than 0.5, it means that
B is significantly better than A. Finally, a p-value greater than or equal to 0.05
implies no significant differences between A and B with respect to Q .

The results of these tests give a more trustworthy definition of preference
between MOSAs. In order to distinguish it from the one used in RQ1, we will call
it significant preference, i.e., we will say that MOSA A is significantly preferred
over MOSA B . Note that in Step 5.1 of Fig. 1, we study preferences per problem,
whereas in Step 5.2 we study preferences across the problems. Moreover, in Step
4 we count preferences, while in RQ2 we determine the significance of preferences
with the statistical tests.

1 Note that CellDE is not applicable to one of the search problems, and so the for-
mulations of Eq. 1 and Eq. 2 should be slightly more complicated. We report the
simplified versions here, but we use the correct versions in the experiments.
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4 Results and Analyses

In this section, we present the results and analyses for our RQs. Section 4.1
presents the results of RQ1, whereas Sect. 4.2 presents the results of RQ2.

4.1 RQ1

Recall that RQ1 aims to study the percentage of times that a QI Q prefers a
particular MOSA A across all the problems when comparing pairs of MOSAs
using the relevant statistical tests (see Eq. 1 in Sect. 3.3). Answering this RQ
helps us in understanding the overall preferences of QIs.

The results are reported in Table 1. The Preferred (%) columns show the
percentages calculated with the formula PC (A,Q) presented in Sect. 3.3 (Eq. 1).
A percentage determines the preference count of a QI for each MOSA across all
the SBSE problems.

Table 1. RQ1 – Preference count

QI MOSA Preferred

(%)

QI MOSA Preferred

(%)

QI MOSA Preferred

(%)

QI MOSA Preferred

(%)

HV NSGA-II 75.93% EP NSGA-II 74.07% GS SMPSO 74.07% PFS NSGA-II 62.96%

HV SPEA2 68.52% EP SPEA2 70.37% GS CELLDE 64% PFS SPEA2 57.41%

HV SMPSO 55.56% EP SMPSO 62.96% GS SPEA2 61.11% PFS SMPSO 35.19%

HV CELLDE 42% EP CELLDE 46% GS NSGA-II 57.41% PFS PAES 31.48%

HV MOCELL 29.63% EP MOCELL 27.78% GS MOCELL 22.22% PFS CELLDE 28%

HV PAES 7.41% EP PAES 5.56% GS PAES 5.56% PFS MOCELL 18.52%

IGD NSGA-II 77.78% GD SPEA2 77.78% ED SPEA2 66.67% C SPEA2 46.3%

IGD SPEA2 77.78% GD NSGA-II 75.93% ED NSGA-II 62.96% C NSGA-II 38.89%

IGD SMPSO 46.3% GD MOCELL 42.59% ED SMPSO 44.44% C CELLDE 22%

IGD MOCELL 35.19% GD CELLDE 36% ED CELLDE 42% C MOCELL 18.52%

IGD CELLDE 34% GD SMPSO 33.33% ED MOCELL 33.33% C SMPSO 16.67%

IGD PAES 16.67% GD PAES 24.07% ED PAES 22.22% C PAES 7.41%

Based on the results, we can see that some QIs seem to prefer particular
MOSAs. For example, HV prefers NSGA-II (75.93%) and SPEA2 is preferred by
GD the most (77.78%). This observation suggests that NSGA-II may have some
characteristics that are preferred by HV, and SPEA2 has some characteristics
that are preferred by GD.

From the table, we can also observe that some QIs have low preference for
some MOSAs, e.g., EP with PAES (5.56%). This means that such MOSAs do
not usually produce solutions that have the qualities preferred by these QIs.
Some QIs don’t have strong preferences for any MOSA. For example, C has low
percentages for all the MOSAs, thus suggesting that C assesses qualities that
are not peculiar of any MOSA.
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Moreover, in Fig. 2, we present preferences of each QI for all the selected
MOSAs, sorted based on the percentages. For instance, by looking at HV and
EP, we can see that NSGA-II was the most preferred by HV and EP, followed
by SPEA2, whereas PAES was the least preferred by HV and EP. Similarly, GD,
ED, and C prefer SPEA2 the most, followed by NSGA-II, and they least prefer
PAES.
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Fig. 2. RQ1 – MOSAs sorted by preference count

We provide a summary of the results in terms of which MOSAs are most
preferred across all the QIs in Table 2. We can see from the table that NSGA-
II and SPEA2 are on the top rankings (i.e., 1 and 2), meaning that these two
MOSAs are the most preferred ones by most of the QIs, except for the cases
of SMPSO for GS for rank 1 and CellDE for rank 2. We can also observe that
PAES is least preferred by seven out of eight studied QIs. For PFS, MOCELL
was the least preferred.
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Table 2. RQ1 – Overall ranking of MOSAs

Rank Instances for each MOSA

1 NSGA-II (3), SPEA2 (3), NSGA-II/SPEA2 (1), SMPSO (1)

2 NSGA-II (3), SPEA2 (3), CELLDE (1)

3 SMPSO (4), MOCELL (2), SPEA2 (1), CELLDE (1)

4 CELLDE (5), NSGA-II (1), PAES (1), MOCELL (1)

5 MOCELL (4), SMPSO (3), CELLDE (1)

6 PAES (7), MOCELL (1)

4.2 RQ2

Figure 3 reports, for each quality indicator Q and each MOSA A, the distribution
of the metric preference count per problem PC (A,Q ,P) across search problems
P (see Eq. 2). Of course, for MOSAs having a general low preference count (see
Table 3), the variance of metric preference count per problem across problems is
low. On the other hand, for MOSAs that in general are preferred, the variance is
higher. This means that problem characteristics can influence the effectiveness of
a particular MOSA A and so some quality indicator Q may prefer MOSA A on
some problems, but not on some others. Note that the influence of the problem
characteristics on the results of QIs has been discovered in a different setting.
In our previous work [1], we discovered that the agreement between pairs of
QIs, i.e., whether they prefer the same MOSA, sometimes depends on problems
solved by MOSAs.

Note that we cannot perform an analysis on the base of the different problem
characteristics (e.g., number of objectives), as this would require many more
problems to have enough problems for each given characteristic. For the number
of objectives, for example, we have four problems with two objectives, three
problems with three objectives, and four problems with four objectives. This
is not enough to draw any conclusion about the influence of the number of
objectives.

Table 3 reports the overall results from the statistical test we performed.
Recall from Sect. 3.3 that we performed the Mann-Whitney U test and the Â12

statistics. A number in a cell of the table means the number of times that an
MOSA (e.g., NSGA-II) was significantly preferred over other MOSAs, i.e., a p-
value with the U Test was less than 0.05 and the Â12 value greater than 0.5. For
example, with respect to GD, NSGA-II was significantly preferred over other
four MOSAs.

Based on the results, we can see that, for all the QIs, NSGA-II is significantly
preferred by all the selected QIs, since the columns for NSGA-II has either
the higher numbers (e.g., PFS) or equal numbers (e.g., EP) as compared to
other MOSAs. Followed by NSGA-II, SPEA2 is the most preferred, having all
the results the same as NSGA-II except for PFS, where NSGA-II has value 4,
whereas SPEA2 has value 3.
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Fig. 3. RQ2 – Distribution of preference count per problem over search problems

Table 3. RQ2 – Overall preferences of QIs

MOSA

CELLDE MOCELL NSGA-II SMPSO SPEA2 PAES

C 0 0 2 0 2 0

ED 0 0 2 0 2 0

EP 1 1 2 2 2 0

GD 0 0 4 0 4 0

GS 2 1 2 2 2 0

HV 1 1 3 1 2 0

IGD 0 0 4 1 4 0

PFS 0 0 4 0 3 0

Figure 4 shows a more detailed representation of the significant preference
relation. For each QI, it shows which MOSAs are significantly preferred over
others. An arrow from MOSA A to MOSA B means that A is significantly
preferred over B . We observe that some MOSAs are consistently significantly
preferred over some others, as NSGA-II and SPEA2 that are always preferred
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over PAES. The most preferred MOSAs (i.e., those with the highest numbers
in Table 3) are usually preferred over the same other MOSAs. Moreover, there
are some MOSAs that, although are worst than some MOSAs, are better than
some others. For example, MOCELL in HV, EP, and GS. These are MOSAs
that, although cannot produce optimal solutions, can still produce good ones.

NSGA-II SPEA2 SMPSO

CELLDE MOCELL

PAES

(a) HV

NSGA-IISPEA2

SMPSO CELLDE MOCELL

PAES

(b) IGD
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(g) PFS
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PAES SMPSO

(h) C

Fig. 4. RQ2 – Significant preference relation between MOSAs pairs

5 Analyses Based on Quality Aspects of QIs

At a higher level, each QI covers certain quality aspects of solutions produced by
an MOSA. Thus, we analyzed our results from a different perspective, i.e., we
checked whether an MOSA is preferred by QIs that cover certain quality aspects.

To this end, we present results of overall preferences for various categories
of quality aspects measured by QIs. Li and Yao [10] categorized such quality
aspects into four categories. The first category is Convergence that focuses on
measuring the quality of a set of solutions on a Pareto front based on how close
these solutions are to a reference Pareto front. The second category is Spread,
which measures the quality by measuring the spread of solutions. The third
category is Uniformity that measures the quality by looking at the distribution
of solutions in terms of how evenly these solutions are distributed. Finally, the
Cardinality category focuses on counting the number of solutions on a Pareto
front. We chose this classification since it is published in the recent survey by Li
and Yao [10] that studied 100 QIs from the literature. Table 4 shows which of
our selected QIs fully or partially cover which categories of quality aspects.
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Table 4. Relation between QIs and categories of quality aspects [10]

QI

C ED EP GD GS HV IGD PFS

Convergence − − + + + +

Spread + − + +

Uniformity + + + + +

Cardinality − − − +

A cell with a “+” signifies that a particular quality
aspect is fully represented by a QI, where “−” signifies
a partial representation.

Table 5. Overall preferences of QI categories

MOSA

CELLDE MOCELL NSGA-II SMPSO SPEA2 PAES

Convergence 2 2 17 4 16 0

Spread 4 3 11 6 10 0

Uniformity 4 3 11 6 10 0

Cardinality 2 2 13 4 11 0

Table 5 summarizes our results. For each MOSA A and each category, it
reports how many times A is preferred (as reported in Table 3) by a QI belonging
to the considered category. For example, for the Convergence category, NSGA-II
has the highest value, i.e., 17. In general, we can see that NSGA-II is the most
preferred one in all the four categories. However, note that these results are based
on a particular set of SBSE problems, and once additional SBSE problems are
added, these results may change.

We also checked whether QIs that cover the same quality aspects have also
the same preferences for MOSAs. Looking at Table 4, we can see that C and
ED are partially represented by the Convergence quality aspect. Now, looking
at the results of C and ED in Fig. 2, we can see partial similarity, i.e., they
both preferred SPEA2 and NSGA-II at the first and second place, whereas they
both least preferred PAES. However, the other three MOSAs were in different
positions. In addition, we can see that for C the preference count is in general
lower for all the MOSAs as compared to ED.

As a further observation, we note that the quality indicators EP, HV, and
IGD fully represent Convergence, Spread and Uniformity, and partially represent
Cardinality as shown in Table 4. For HV and EP, we observe the same results
in Fig. 2. However, for HV/EP and IGD, we see some differences. For example,
SPEA2 and NSGA-II are equally at the first place for IGD, whereas NSGA-II
is at the first place followed by SPEA2 for HV/EP. Also, MOCELL, CELLDE,
and SMPSO are at different places.
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Based on these observations, we can conclude that the QIs covering the
same quality aspects don’t necessarily have the same preferences for MOSAs.
This observation is consistent with what has been reported in [13], in which the
authors concluded that QIs with the same quality aspect(s) do not necessarily
yield the same rankings of MOSAs.

6 Overall Discussion

Here, we present an overall discussion both for the results based on individual
QIs and for the QI categories. Moreover, we provide suggestions to users for
selecting an MOSA that will likely produce solutions preferred by a given QI or
a given quality aspect.

When we look at the results based on QIs (see Table 3), we observe that
both NSGA-II and SPEA2 are highly preferred by each QI. However, one must
understand that some results provide more confidence than others when we want
to suggest to pick a specific MOSA on the base of these results. For example,
for HV, NSGA-II has a value of 3 out of 5 (i.e., 60% of the times NSGA-II was
preferred over the other MOSAs), whereas, for PFS, NSGA-II has a value of
4 out of 5 (i.e., 80%). In both cases in which a user wants solutions that are
represented by HV or PFS, our results suggest to use NSGA-II. However, in the
latter case, the user will be more confident to follow the suggestion, because this
is based on a stronger result.

Sometimes there is a tie among the MOSAs. For example, for EP, NSGA-II,
SMPSO, and SPEA2 all have a value of 2. In these situations, we suggest the
following options:

(1) selecting any MOSA, or
(2) selecting the MOSA from the category table (i.e., Table 5) by checking which

quality aspect(s) is(are) represented by the selected QI (i.e., Table 4). For
example, suppose that a user selected C. From Table 3, we see that there is a
tie between NSGA-II and SPEA2 for C (value 2). In this case, the user may
consult Table 4 and find that C represents solutions with the Convergence
quality aspect. Then, the user can see from Table 5 that, for Convergence,
NSGA-II is the preferred MOSA. Note that a QI could represent more than
one category of quality aspects (e.g., HV). In our context, the preferred
MOSA is always NSGA-II. However, when more data are available, the pre-
ferred MOSAs may be different for the different categories of quality aspects.
In this case, more complicated guidelines could be provided (e.g., taking the
MOSA scoring the highest in the majority of categories), or the user could
decide to select the MOSA associated with the quality aspect they prefer.

Now, looking at our results for QI categories (Table 5), we note that NSGA-
II is the clear option; however, once the results are updated based on additional
experimental results of other problems, the preferences may change and we may
have ties between two or more MOSAs. If such a case arises, we suggest selecting
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any of the preferred MOSAs of the tie or taking into account other aspects of
MOSAs (e.g., their time performance).

Note that, as also observed in Sect. 4.2, in our experiments we did not study
relationships between QI preferences and characteristics of the SBSE problems
(e.g., search objective types, data distributions). Such characteristics could help
us to provide a better guidance for SBSE users based on different characteristics
of SBSE problems. Please note that conducting such an experiment requires a
complete and well-planned experiment of its own, involving controlling various
characteristics of SBSE problems in a systematic way. Finding publicly available
SBSE problems that systematically cover various characteristics is challenging
and one may resort to creating synthetic problems. We plan to conduct such an
experiment in the future, where we could also study characteristics of QIs and
SBSE problems together to suggest appropriate MOSAs.

7 Threats to Validity

We here discuss threats that may affect the validity of our experiments, namely
internal validity, conclusion validity, construct validity, and external validity [19].

Internal Validity: Many MOSAs have been proposed in the literature, and a
threat to the internal validity is that we may have not considered an MOSA that
is consistently better than those considered in this paper. In order to address
such a threat, we selected the MOSAs that are commonly used in SBSE [1,17].

Another threat is related to the settings of the parameters of the selected
MOSAs. an MOSA A may perform better (i.e., preferred by a given QI) than
another MOSA B , because it has been configured better. In order to address
such threat, we have configured the selected MOSAs by following the commonly
applied guides [3,15]. Note that these same settings were used in the papers from
which we obtained the case studies, and in those papers these settings have been
proven to give good results.

In terms of selection of QIs, one may argue that we did not cover enough
QIs, given that there exist 100’s of QIs [10]. However, note that we selected
the most commonly used QIs in the SBSE literature [14], since our empirical
evaluation was focused on SBSE problems. When presenting our results based
on QI categories, one may wonder why we did not choose other QI categories,
such as the ones proposed by Wang et al. [17]. We chose the QI categories
instead from a recent survey [10], which is based on the study of 100 QIs, since
it performs extensive evaluation of the existing QIs. Moreover, the QI categories
in Wang et al. [17] are not precise as argued in [9].

Finally, we would like to mention that QIs may have different preferences
thresholds to determine the significance of preferences. Such thresholds weren’t
studied in this paper and will require additional experiments.

Conclusion Validity: One such a threat is that the input data that we used in our
experiment may not be sufficient to draw conclusions between the application
of an MOSA A on a given problem P , and its evaluation with a given QI.
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To mitigate such a threat, we have selected benchmarks in which each MOSA
has been run 100 times, in order to reduce the effect of random variations. The
conclusion whether a QI prefers an MOSA A to an MOSA B for a given problem
P , is decided using the Mann-Whitney U test over the distribution of 100 QI
values for A and B . Note that, in order to mitigate another threat related to
wrong assumption for the tests, we selected such tests by following guidelines
for conducting experiments in SBSE [3].

Construct Validity: One construct validity threat is that the measures we used
for drawing our conclusions may not be adequate. As first measure, we computed
the percentage of times that an MOSA A is preferred over another MOSA B by
a given QI Q , since our aim is to suggest an MOSA that will likely produce solu-
tions preferred by Q . Hence, we believe that this metric is adequate. Moreover,
to draw more stable conclusions, we also assessed the statistical significance of
the results with the Mann-Whitney U test and the Â12 statistics. More specif-
ically, we compared the preference counts per problem (see Eq. 2) of the two
MOSAs across the problems with the statistical tests for each QI. Note that, in
rare cases, the p-value with the Mann-Whitney U test may be less than 0.05,
but the Â12 gives a value still close to 0.5. This means that differences are not
representing an actual preference. We need to look into such cases more carefully
in the future.

External Validity: A major threat is that the results may not be generalizable
to other case studies. In order to address such a threat, we selected as many
SBSE problems as possible and ended up with 11 problems in total, trying to
cover different types of SBSE problems: rule mining in product line engineering,
test optimization, and requirements engineering. However, we are aware that
such a selection is inherently partial, and we need more case studies from more
SBSE problems to generalize the results. The lack of real-world case studies to
be used in empirical studies is recognized to be a common threat to external
validity [2,4]. Note that the work presented in this paper does not aim at giving
ultimate results, but at providing a methodology that should be followed to
build a body of knowledge about the relationship between MOSAs and QIs.
To this aim, we make our implementation publicly available2 and invite SBSE
researchers to share with us their empirical studies, so to derive more reliable
conclusions.

8 Conclusion and Future Work

We were motivated by the observation that, in the community of search-based
software engineering (SBSE), users (researchers and practitioners) often need to
select a multi-objective search algorithm (MOSA) for their application, especially
in the situation that the users do not have sufficient time budget to conduct
experiments to compare multiple MOSAs. Though in the literature there exist
2 Data and scripts are available at https://github.com/ERATOMMSD/QIsPrefer

ences.

https://github.com/ERATOMMSD/QIsPreferences
https://github.com/ERATOMMSD/QIsPreferences
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works studying QIs (their characteristics and relationships), the relationships
between QIs and MOSAs are however not sufficiently studied. Motivated by this,
in this paper, we presented an empirical evaluation and provided evidence to help
users to choose an MOSA that is highly likely to produce solutions satisfying
qualities measured by a QI preferred by the users. Specifically, we observed that
NSGA-II and SPEA2 are preferred by most of the QIs we investigated; PAES
is not preferred by most of the QIs. However, we would like to point out that,
when selecting an MOSA, in addition to the quality aspects covered in each QI,
other aspects such as time performance of MOSA should be considered as well.
In the future, we would like to include such aspects in our study.

In addition, we would also like to design experiments for studying each spe-
cific quality aspect (e.g., Convergence). Furthermore, when more data will be
available, we will conduct more analyses and update our findings. Finally, we
would also like to study the preferences of QIs together with various character-
istics of search problems. Such study can help users to select MOSAs based on
characteristics of SBSE problems.
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Abstract. Search-based techniques have been widely used for white-box
test generation. Many of these approaches rely on the approach level and
branch distance heuristics to guide the search process and generate test
cases with high line and branch coverage. Despite the positive results
achieved by these two heuristics, they only use the information related
to the coverage of explicit branches (e.g., indicated by conditional and
loop statements), but ignore potential implicit branchings within basic
blocks of code. If such implicit branching happens at runtime (e.g., if an
exception is thrown in a branchless-method), the existing fitness func-
tions cannot guide the search process. To address this issue, we introduce
a new secondary objective, called Basic Block Coverage (BBC ), which
takes into account the coverage level of relevant basic blocks in the con-
trol flow graph. We evaluated the impact of BBC on search-based crash
reproduction because the implicit branches commonly occur when try-
ing to reproduce a crash, and the search process needs to cover only a
few basic blocks (i.e., blocks that are executed before crash happening).
We combined BBC with existing fitness functions (namely STDistance
and WeightedSum) and ran our evaluation on 124 hard-to-reproduce
crashes. Our results show that BBC , in combination with STDistance
and WeightedSum, reproduces 6 and 1 new crashes, respectively. BBC
significantly decreases the time required to reproduce 26.6% and 13.7% of
the crashes using STDistance and WeightedSum, respectively. For these
crashes, BBC reduces the consumed time by 44.3% (for STDistance) and
40.6% (for WeightedSum) on average.

Keywords: Automated crash reproduction · Search-based software
testing · Evolutionary algorithm · Secondary objective

1 Introduction

Various search-based techniques have been introduced to automate different
white-box test generation activities (e.g., unit testing [9,10], integration test-
ing [7], system-level testing [2], etc.). Depending on the testing level, each of
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these approaches utilizes dedicated fitness functions to guide the search process
and produce a test suite satisfying given criteria (e.g., line coverage, branch
coverage, etc.).

Fitness functions typically rely on control flow graphs (CFGs) to represent
the source code of the software under test [12]. Each node in a CFG is a basic
block of code (i.e., maximal linear sequence of statements with a single entry
and exit point without any internal branch), and each edge represents a possi-
ble execution flow between two blocks. Two well-known heuristics are usually
combined to achieve high line and branch coverages: the approach level and the
branch distance [12]. The former measures the distance between the execution
path of the generated test and a target basic block (i.e., a basic block containing
a statement to cover) in the CFG. The latter measures, using a set of rules, the
distance between an execution and the coverage of a true or false branch of a
particular predicate in a branching basic block of the CFG.

Both approach level and branch distance assume that only a limited number
of basic blocks (i.e., control dependent basic blocks [1]) can change the execution
path away from a target statement (e.g., if a target basic block is the true
branch of an conditional statement). However, basic blocks are not atomic due
to the presence of implicit branches [4] (i.e., branches occurring due to the
exceptional behavior of instructions). As a consequence, any basic block between
the entry point of the CFG and the target baic block can impact the execution of
the target basic block. For instance, a generated test case may stop its execution
in the middle of a basic block with a runtime exception thrown by one of the
statements of that basic block. In these cases, the search process does not benefit
from any further guidance from the approach level and branch distance.

Fraser and Arcuri [11] introduced testability transformation, which instru-
ments the code to guide the unit test generation search to cover implicit excep-
tions happening in the class under test. However, this approach does not guide
the search process in scenarios where an implicit branch happens in the other
classes called by the class under test. This is because of the extra cost added
to the process stemming from the calculation and monitoring of the implicit
branches in all of the classes, coupled with the class under test. For instance,
the class under test may be heavily coupled with other classes in the project,
thereby finding implicit branches in all of these classes can be expensive.

However, for some test case generation scenarios, like crash reproduction,
we aim to cover a limited number of paths, and thereby we only need to analyse
a limited number of basic blocks [5,13,16,19,21]. Current crash reproduction
approaches rely on information about a reported crash (e.g., stack trace, core
dump etc.) to generate a crash reproducing test case (CRT).

Among these approaches, search-based crash reproduction [16,19] takes as
input a stack trace to guide the generation process. More specifically, the state-
ments pointed by the stack trace act as target statements for the approach level
and branch distance. Hence, current search-based crash reproduction techniques
suffer from the lack of guidance in cases where the involved basic blocks contain
implicit branches (which is common when trying to reproduce a crash).
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Listing 1.1. Method fromMap from XWIKI version 8.1 [17]

402 public BaseCo l l e c t ion fromMap(Map< [ . . . ] > map, BaseCo l l e c t i on ob j e c t ){
403 for ( PropertyClass property : ( Co l l e c t i on < [ . . . ] > ) g e tF i e l dL i s t ( ) ) {
404 Str ing name = property . getName ( ) ;
405 Object formvalues = map . get (name) ;
406 i f ( formvalues != null ) {
407 BaseProperty objprop ;
408 i f ( formvalues instanceof Str ing [ ] ) {
409 [ . . . ]
410 } else i f ( formvalues instanceof Str ing ) {
411 objprop = property . f romStr ing ( formvalues . t oSt r ing ( ) ) ;
412 } else {
413 objprop = property . fromValue ( formvalues ) ;
414 }
415 [ . . . ]
416 }}
417 return ob j e c t ;}

This paper introduces a novel secondary objective called Basic Block Cov-
erage (BBC ) to address this guidance problem in crash reproduction. BBC
helps the search process to compare two generated test cases with the same dis-
tance (according to approach level and branch distance) to determine which one
is closer to the target statement. In this comparison, BBC analyzes the coverage
level, achieved by each of these test cases, of the basic blocks in between the
closest covered control dependent basic block and the target statement.

To assess the impact of BBC on search-based crash reproduction, we re-
implemented the existing STDistance [16] and WeightedSum [19] fitness func-
tions and empirically compared their performance with and without using BBC
(4 configurations in total). We applied these four crash reproduction configura-
tions to 124 hard-to-reproduce crashes introduced as JCrashPack [17], a crash
benchmark used by previous crash reproduction studies [8]. We compare the
performances in terms of effectiveness in crash reproduction ratio (i.e., percent-
age of times that an approach can reproduce a crash) and efficiency (i.e., time
required by for reproducing a crash).

Our results show that BBC significantly improves the crash reproduction
ratio over the 30 runs in our experiment for respectively 5 and 1 crashes when
compared to using STDistance and WeightedSum without any secondary objec-
tive. Also, BBC helps these two fitness functions to reproduce 6 (for STDistance)
and 1 (for WeightedSum) crashes that they could not be reproduced without
secondary objective. Besides, on average, BBC increases the crash reproduction
ratio of STDistance by 4%. Applying BBC also significantly reduces the time
consumed for crash reproduction guided by STDistance and WeightedSum in
33 (26.6% of cases) and 14 (13.7% of cases) crashes, respectively, while it was
significantly counter productive in only one case. In cases where BBC has a
significant impact on efficiency, this secondary objective improves the average
efficiency of STDistance and WeightedSum by 40.6% and 44.3%, respectively.

2 Background

2.1 Coverage Distance Heuristics

Many structural-based search-based test generation approaches mix the branch
distance and approach level heuristics to achieve a high line and branch cover-
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Fig. 1. CFG for method fromMap

age [12]. These heuristics measure the distance between a test execution path
and a specific statement or a specific branch in the software under test. For that,
they rely on the coverage information of control dependent basic blocks, i.e., basic
blocks that have at least one outgoing edge leading the execution path toward
the target basic block (containing the targeted statement) and at least another
outgoing edge leading the execution path away from the target basic block. As
an example, Listing 1.1 shows the source code of method fromMap in XWIKI1,
and Fig. 1 contains the corresponding CFG. In this graph, the basic block 409
is control dependent on the basic block 407--408 because the execution of line
409 is dependent on the satisfaction of the predicate at line 408 (i.e., line 409
will be executed only if elements of array formvalues are String).

The approach level is the number of uncovered control dependent basic blocks
for the target basic block between the closest covered control dependent basic
block and the target basic block. The branch distance is calculated from the
predicate of the closest covered control dependent basic block, based on a set of
predefined rules. Assuming that the test t covers only line 403 and 417, and our
target line is 409, the approach level is 2 because two control dependent basic
blocks (404--406 and 407--408) are not covered by t. The branch distance the
predicate in line 403 (the closest covered control dependency of node 409) is
measured based on the rules from the established technique [12].

To the best of our knowledge, there is no related work studying the extra
heuristics helping the combination of approach level and branch distance to
improve the coverage. Most related to our work, Panichella et al. [14] and Rojas
et al. [15] introduced two heuristics called infection distance and propagation dis-
tance, to improve the weak mutation score of two generated test cases. However,
these heuristics do not help the search process to improve the general statement
coverage (i.e., they are effective only after covering a mutated statement).

1 https://github.com/xwiki.

https://github.com/xwiki
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In this paper, we introduce a new secondary objective to improve the state-
ment coverage achieved by fitness functions based on the approach level and
branch distance, and analyze the impact of this secondary objective on search-
based crash reproduction.

Listing 1.2. XWIKI-13377 crash stack trace [17]
0 java.lang.ClassCastException: [...]
1 at [...]. BaseStringProperty.setValue(BaseStringProperty.java :45)
2 at [...]. PropertyClass.fromValue(PropertyClass.java :615)
3 at [...]. BaseClass.fromMap(BaseClass.java :413)
4 [...]

2.2 Search-Based Crash Reproduction

After a crash is reported, one of the essential steps of software debugging is to
write a Crash Reproducing Test case (CRT) to make the crash observable
to the developer and help them in identifying the root cause of the failure [22].
Later, this CRT can be integrated into the existing test suite to prevent future
regressions. Despite the usefulness of a CRT, the process of writing this test
can be labor-intensive and time-taking [19]. Various techniques have been intro-
duced to automate the reproduction of a crash [5,13,16,19,21], and search-based
approaches (EvoCrash [19] and ReCore [16]) yielded the best results [19].

EvoCrash. This approach utilizes a single-objective genetic algorithm to gener-
ate a CRT from a given stack trace and a target frame (i.e., a frame in the stack
trace that its class will be used as the class under test). The CRT generated
by EvoCrash throws the same stack trace as the given one up to the target
frame. For example, by passing the stack trace in Listing 1.2 and target frame 3
to EvoCrash, it generates a test case reproducing the first three frames of this
stack trace (i.e., thrown stack trace is identical from line 0 to 3).

EvoCrash uses a fitness function, called WeightedSum, to evaluate the can-
didate test cases. WeightedSum is the sum scalarization of three components:
(i) the target line coverage (ds), which measures the distance between the
execution trace and the target line (i.e., the line number pointed to by the tar-
get frame) using approach level and branch distance; (ii) the exception type
coverage (de), determining whether the type of the triggered exception is the
same as the given one; and (iii) the stack trace similarity (dtr), which indi-
cates whether the stack trace triggered by the generated test contains all frames
(from the most in-depth frame up to the target frame) in the given stack trace.

Definition 1 ( WeightedSum [19]). For a given test case execution t, the
WeightedSum (ws) is defined as follows:

ws(t) =

⎧
⎨

⎩

3 × ds(t) + 2 ×max(de) + max(dtr) if line not reached
3 ×min(ds) + 2 × de(t) + max(dtr) if line reached
3 ×min(ds) + 2 ×min(de) + dtr(t) if exception thrown

(1)

Where ds(t) ∈ [0, 1] indicates how far t is from reaching the target line and
is computed using the normalized approach level and branch distance: ds(t) =
‖approachLevels(t) + ‖branchDistances(t)‖‖. Also, de(t) ∈ {0, 1} shows if the
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type of the exception thrown by t is the same as the given stack trace (0) or
not (1). Finally, dtr(t) ∈ [0, 1] measures the stack trace similarity between the
given stack trace and the one thrown by t. max(f) and min(f) denote the
maximum and minimum possible values for a function f , respectively. In this
fitness function, de(t) and dtr(t) are only considered in the satisfaction of two
constraints: (i) exception type coverage is relevant only when we reach the target
line and (ii) stack trace similarity is important only when we both reach the
target line and throw the same type of exception.

As an example, when applying EvoCrash on the stack trace from Listing 1.2
with the target frame 3, WeightedSum first checks if the test cases generated by
the search process reach the statement pointed to by the target frame (line 413
in class BaseClass in this case). Then, it checks if the generated test can throw
a ClassCastException or not. Finally, after fulfilling the first two constraints,
it checks the similarity of frames in the stack trace thrown by the generated test
case against the given stack trace in Listing 1.2.

EvoCrash uses guided initialization, mutation and single-point crossover
operators to ensure that the target method (i.e., the method appeared in the
target frame) is always called by the different tests during the evolution process.

According to a recent study, EvoCrash outperforms other non-search-based
crash reproduction approaches in terms of effectiveness in crash reproduction
and efficiency [19]. This study also shows the helpfulness of tests generated by
EvoCrash for developers during debugging.

In this paper, we assess the impact of BBC as the secondary objective in the
EvoCrash search process.

ReCore. This approach utilizes a genetic algorithm guided by a single fitness
function, which has been defined according to the core dump and the stack trace
produced by the system when the crash happened. To be more precise, this fitness
function is a sum scalarization of three sub-functions: (i) TestStackTraceDis-
tance, which guides the search process according to the given stack trace; (ii)
ExceptionPenalty, which indicates whether the same type of exception as the
given one is thrown or not (identical to ExceptionCoverage in EvoCrash); and
(iii) StackDumpDistance, which guides the search process by the given core
dump.

Definition 2 (TestStackTraceDistance [16]). For a given test case execution
t, the TestStackTraceDistance (STD) is defined as follows:

STD(R, t) = |R| − lcp− (1 − StatementDistance(s)) (2)

Where |R| is the number of frames in the given stack trace. And lcp is the
longest common prefix frames between the given stack trace and the stack
trace thrown by t. Concretely, |R| − lcp is the number of frames not cov-
ered by t. Moreover, StatementDistance(s) is calculated using the sum of
the approach level and the normalized branch distance to reach the state-
ment s, which is pointed to by the first (the utmost) uncovered frame by t:
StatementDistance(s) = approachLevels(t) + ‖branchDistances(t)‖.
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Since using runtime data (such as core dumps) can cause significant overhead
[5] and leads to privacy issues [13], the performance of ReCore in crash repro-
duction was not compared with EvoCrash in prior studies [19]. Although, two
out of three fitness functions in ReCore use only the given stack trace to guide
the search process. Hence, this paper only considers TestStackTraceDistance +
ExceptionPenalty (called STDistance hereafter).

As an example, when applying ReCore with STDistance on the stack trace
in Listing 1.2 with target frame 3, first, STDistance determines if the generated
test covers the statement at frame 3 (line 413 in class BaseClass). Then, it
checks the coverage of frame 2 (line 615 in class PropertyClass). After covering
the first two frames by the generated test case, it checks the coverage of the state-
ment pointed to by the deepest frame (line 45 in class BaseStringProperty).
For measuring the coverage of each of these statements, STDistance uses the
approach level and branch distance. After covering all of the frames, this fitness
function checks if the generated test throws ClassCastException in the deepest
frame.

In this study, we perform an empirical evaluation to assess the performance
of crash reproduction using STDistance with and without BBC as the secondary
objective in terms of effectiveness in crash reproduction and efficiency.

3 Basic Block Coverage

3.1 Motivating Example

During the search process, the fitness of a test case is evaluated using a fit-
ness function, either WeightedSum or STDistance Since the search-based crash
reproduction techniques model this task to a minimization problem, the gener-
ated test cases with lower fitness values have a higher chance of being selected
and evolved to generate the next generation. One of the main components of
these fitness functions is the coverage of specific statements pointed by the given
stack trace. The distance of the test case from the target statement is calculated
using the approach level and branch distance heuristics. As we have discussed in
Sect. 2.1, the approach level and branch distance cannot guide the search process
if the execution stops because of implicit branches in the middle of basic blocks
(e.g., a thrown NullPointerException during the execution of a basic block).
As a consequence, these fitness functions may return the same fitness value for
two tests, although the tests do not cover the same statements in the block of
code where the implicit branching happens.

For instance, assume that the search process for reproducing the crash in
Listing 1.2 generates two test cases T1 and T2. The first step for these test
cases is to cover frame 3 in the stack trace (line 413 in BaseClass). However,
T1 stops the execution at line 404 due to a NullPointerException thrown in
method getName, and T2 throws a NullPointerException at line 405 because
it passes a null value input argument to map. Even though T2 covers more lines,
the combination of approach level and branch distance returns the same fitness
value for both of these test cases: approach level is 2 (nodes 407-408 and 410)



Basic Block Coverage for Search-Based Crash Reproduction 49

Listing 1.3. BBC secondary objective computation algorithm

1 input: test T1, test T2, String method , int line
2 output: int
3 begin
4 FCB1 ← fullyCoveredBlocks(T1,method ,line);
5 FCB2 ← fullyCoveredBlocks(T2,method ,line);
6 SCB1 ← semiCoveredBlocks(T1,method ,line);
7 SCB2 ← semiCoveredBlocks(T2,method ,line);
8

9 if (FCB1 ⊂ FCB2 ∧ SCB1 ⊂ SCB2) ∨ (FCB2 ⊂ FCB1 ∧ SCB2 ⊂ SCB1):
10 return size(FCB2 ∪ SCB2) - size(FCB1 ∪ SCB1)
11 else if FCB1 = FCB2 ∧ SCB1 = SCB2:
12 closestBlock ← closestSemiCoveredBlocks(SCB1, method , line);
13 coveredLines1 ← getCoveredLines(T1,closestBlock);
14 coveredLines2 ← getCoveredLines(T2,closestBlock);
15 return size(coveredLines2) - size(coveredLines1);
16 else:
17 return 0;
18 end

and branch distance is measured according to the last predicate. This is because
these two heuristics assume that each basic block is atomic, and by covering line
404, it means that lines 405 and 406 are covered, as well.

3.2 Secondary Objective

The goal of the Basic Block Coverage (BBC ) secondary objective is to prioritize
the test cases with the same fitness value according to their coverage within
the basic blocks between the closest covered control dependency and the target
statement. At each iteration of the search algorithm, test cases with the same
fitness value are compared with each other using BBC . Listing 1.3 presents
the pseudo-code of the BBC calculation. Inputs of this algorithm are two test
cases T1 and T2, which both have the same fitness value (calculated either
using WeightedSum or STDistance), as well as line number and method name
of the target statement. This algorithm compares the coverage of basic blocks
on the path between the entry point of the CFG of the given method and the
basic block that contains the target statement (called effective blocks hereafter)
achieved by T1 and T2. If BBC determines there is no preference between these
two test cases, it returns 0. Also, it returns a value < 0 if T1 has higher coverage
compared to T2, and vice versa. A higher absolute value of the returned integer
indicates a bigger distance between the given test cases.

In the first step, BBC detects the effective blocks fully covered by each given
test case (i.e., the test covers all of the statements in the block) and saves them
in two sets called FCB1 and FCB2 (lines 4 and 5 in Listing 1.3). Then, it detects the
effective blocks semi-covered by each test case (i.e., blocks where the test covers
the first line but not the last line) and stores them in SCB1 and SCB2 (lines 6
and 7). The semi-covered blocks indicate the presence of implicit branches. Next,
BBC checks if both fully and semi-covered blocks of one of the tests are subsets
of the blocks covered by the other test (line 9). In this case, the test case that
covers the most basic blocks is the winner. Hence, BBC returns the number of
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blocks only covered by the winner test case (line 10). If BBC determines T2 wins
over T1, the returned value will be positive, and vice versa.

If none of the test cases subsumes the coverage of the other one, BBC checks
if the blocks covered by T1 and T2 are identical (line 11). If this is the case,
BBC checks if one of the tests has a higher line coverage for the semi-covered
blocks closest to the target statement (lines 12 to 15). If this is the case, BBC
will return the number of lines in this block covered only by the winning test
case. If the lines covered are the same for T1 and T2 (i.e., coveredLines1 and
coveredLines2 have the same size), there is no difference between these two
test cases and BBC returns value 0 (line 15). Finally, if each of the given tests
has a unique covered block in the given method (i.e., the tests cover different
paths in the method), BBC cannot determine the winner and returns 0 (lines
16 and 17) because we do not know which path leads to the crash reproduction.

Example. When giving two tests with the same fitness value (calculated by
the primary objective) T1 and T2 from our motivation example to BBC with
target method fromMap and line number 413 (according to the frame 3 of List-
ing 1.2 ), this algorithm compares their fully and semi-covered blocks with each
other. In this example both T1 and T2 cover the same basic blocks: the fully
covered block is 403 and the semi-covered block is 404-406. So, BBC checks
the number of lines covered by T1 and T2 in block 404-406. Since T1 stopped
its execution at line 404, the number of lines covered by this test is 1. In con-
trast, T2 managed to execute two lines (404 and 405). Hence, BBC returns
size(coveredLines2)− size(coveredLines1) = 1. The positive return value indi-
cates that T2 is closer to the target statement and therefore, it should have
higher chance to be selected for the next generation.

Branchless Methods. BBC can also be helpful for branchless methods. Since
there are no control dependent nodes in branchless methods, approach level and
branch distance cannot guide the search process in these cases. For instance,
methods from frames 1 and 2 in Listing 1.2 are branchless. So, we expect that
BBC can help the current heuristics to guide the search process toward covering
the most in-depth statement.

4 Empirical Evaluation

To assess the impact of BBC on search-based crash reproduction, we perform
an empirical evaluation to answer the following research questions:

RQ1: What is the impact of BBC on crash reproduction in terms of effec-
tiveness in crash reproduction ratio?

RQ2: What is the impact of BBC on the efficiency of crash reproduction?
In these two RQs we want to evaluate the effect of BBC on the existing fit-
ness functions, namely STDistance and WeightedSum, from two perspectives:
effectiveness on crash reproduction ratio and efficiency.
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4.1 Setup

Implementation. Since ReCore and EvoCrash are not openly available, we
implement BBC in Botsing, an extensible, well-tested, and open-source search-
based crash reproduction framework already implementing the WeightedSum
fitness function and the guided initialization, mutation, and crossover operators.
We also implement STDistance (ReCore fitness function) in this tool. Botsing
relies on EvoSuite [9], an open-source search-based tool for unit test generation,
for code instrumentation and test case generation by using evosuite-client
as a dependency. We also implement the STDistance fitness function used as
baseline in this paper.

Crash Selection. We select crashes from JCrashPack [17], a benchmark con-
taining hard-to-reproduce Java crashes. We apply the two fitness functions with
and without using BBC as a secondary objective to 124 crashes, which have
also been used in a recent study [8]. These crashes stem from six open-source
projects: JFreeChart, Commons-lang, Commons-math, Mockito, Joda-time, and
XWiki. For each crash, we apply each configuration on each frame of the crash
stack traces. We repeat each execution 30 times to take randomness into account,
for a total number of 114,120 independent executions. We run the evaluation on
two servers with 40 CPU-cores, 128 GB memory, and 6 TB hard drive.

Parameter Settings. We run each search process with five minutes budget
and set the population size to 50 individuals, as suggested by previous studies
on search-based test generation [14]. Moreover, as recommended in prior studies
on search-based crash reproduction [19], we use the guided mutation with a
probability pm = 1/n (n = length of the generated test case), and the guided
crossover with a probability pc = 0.8 to evolve test cases. We do note that
prior studies do not investigate the sensitivity of the crash reproduction to these
probabilities. Tuning these parameters should be undertaken as future works.

4.2 Data Analysis

To evaluate the crash reproduction ratio (i.e., the ratio of success in crash repro-
duction in 30 rounds of runs) of different assessed configurations (RQ1), we fol-
low the same procedure as previous studies [8,18]: for each crash C, we detect
the highest frame that can be reproduced by at least one of the configurations
(rmax). We examine the crash reproduction ratio of each configuration for crash
C targeting frame rmax. Since crash reproduction data has a dichotomic distri-
bution (i.e., an algorithm reproduces a crash C from its rmax or not), we use
the Odds Ratio (OR) to measure the impact of each algorithm in crash repro-
duction ratio. A value OR > 0 in a comparison between a pair of factors (A,B)
indicates that the application of factor A increases the crash reproduction ratio,
while OR < 0 indicates the opposite. Also, a value of OR = 0 indicates that
both of the factors have the same performance. We apply Fisher’s exact test,
with α = 0.01 for the Type I error, to assess the significance of results.
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Fig. 2. Crash reproduction ratio (out of 30 executions) of fitness functions with and
without BBC . (�) denotes the arithmetic mean and the bold line (—) is the median.
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Fig. 3. Pairwise comparison of impact of BBC on each fitness function in terms of
crash reproduction ratio with a statistical significance <0.01.

To evaluate the efficiency of different configurations (RQ2), we analyze the
time spent by each configuration on generating a crash reproducing test case.
We do note that the extra pre-analysis and basic block coverage in BBC is
considered in the spent time. Since measuring efficiency is only possible for the
reproduced crashes, we compare the efficiency of algorithms on the crashes that
are reproduced at least once by one of the algorithms. In executions that an
algorithm failed to reproduce a crash, we assume that it reached the maximum
allowed budget (5 min).

In this study, we use the Vargha-Delaney Â12 statistic [20] to examine the
effect size of differences between using and not using BBC for efficiency. For a
pair of factors (A,B) a value of Â12 > 0.5 indicates that A reproduces the target
crash in a longer time, while a value of Â12 < 0.5 shows the opposite. Also,
Â12 = 0.5 means that there is no difference between the factors. In addition,
to assess the significance of effect sizes (Â12), we utilize the non-parametric
Wilcoxon Rank Sum test, with α = 0.01 for the Type I error.

A replication package of this study has been uploaded to Zenodo [6].
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5 Results

Crash Reproduction Effectiveness (RQ1). Figure 2 presents the crash
reproduction ratio of the search processes guided by STDistance (Fig. 2a) and
WeightedSum (Fig. 2), with and without BBC as a secondary objective. This
figure shows that the crash reproduction ratio of WeightedSum improves slightly
when using BBC . However, on average, the crash reproduction ratio achieved
by STDistance + BBC is 4% better than STDistance without BBC . Also, the
lower quartile of crash reproduction ratio using STDistance has been improved
by about 30% by utilizing BBC .

Figure 3 depicts the number of crashes, for which BBC has a significant
impact on the effectiveness of crash reproduction guided by STDistance (Fig. 3a)
and WeightedSum (Fig. 3b). BBC significantly improves the crash reproduction
ratio in 5 and 1 crashes for fitness functions STDistance and WeightedSum,
respectively. Importantly, the application of this secondary objective does not
have any significant negative effect on crash reproduction. Also, BBC helps
STDistance and WeightedSum to reproduce 6 and 1 new crashes, respectively
(in at least one out of 30 runs), that could not be reproduced without BBC .

Summary. BBC slightly improves the crash reproduction ratio when using
the WeightedSum fitness function. However, on average, BBC achieves a higher
improvement when used as a secondary objective with the STDistance function.
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Fig. 4. Pairwise comparison of impact of BBC on each fitness function in terms of
efficiency with a small, medium, and large effect size Â12 < 0.5 and a statistical signif-
icance <0.01.

Crash Reproduction Efficiency (RQ2). Figure 4 illustrates the number of
crashes, in which BBC significantly affects the time consumed by the crash repro-
duction search process. As Fig. 4b shows, BBC significantly improves the speed
of crash reproduction guided by WeightedSum in 17 crashes (13.7% of cases),
while it lost efficiency in the reproduction of only one crash. In cases that BBC
significantly improves the efficiency of WeightedSum, on average, the efficiency
is improved for about 40%. Moreover, Fig. 4a shows that BBC has a higher
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Fig. 5. The effect size and the average improvement achieved by BBC on each of the
fitness functions in cases that BBC makes a significant difference in terms of efficiency.

positive impact on the efficiency of the search process guided by STDistance
It significantly reduces the time consumed by the search process in 33 crashes
(26.6% of cases), while it had an adverse impact on the reproduction efficiency
of only one crash. In cases that BBC significantly improves the efficiency of
STDistance, on average, the efficiency is improved for about 53%.

Figure 5 depicts the average improvements in the efficiency and effect sizes
for crashes where the difference in the consumed budget when using BBC or
not was significant. According to the right-side plot in Fig. 5a, BBC reduces the
time consumed by the search process guided by STDistance up to 98% (being
40.6% on average). Also, the left-side plot indicates that the average effect size of
differences between STDistance and STDistance + BBC (calculated by Vargha-
Delaney) is 0.26 (lower than 0.5 indicates that BBC improved the efficiency).
Figure 5b shows that the average improvement (right-side plot) achieved by
using BBC as the second objective of WeightedSum is 44.3%, and the average
effect size (left-side plot), in terms of the crash reproduction efficiency, is 20.5.

Summary. BBC improves the efficiency of the search process with both of the
crash reproduction fitness functions.

6 Discussion

Generally, using BBC as secondary objective leads to a better crash reproduction
ratio and higher efficiency in search-based crash reproduction. This improvement
is achieved thanks to the additional ability to guide the search process when
facing implicit branches during the search. Combining BBC with STDistance
shows an important improvement compared to the combination of BBC with
WeightedSum. This result was expected, since only one (out of three) component
in WeightedSum is allocated to line coverage, and thereby most parts of the
fitness function do not use the approach level and branch distance heuristics. In
contrast, STDistance uses the approach level and branch distance to cover each
of the frames in the given stack trace incrementally.
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Our results show that BBC helps the crash reproduction process to reproduce
new crashes. For instance, the crash that we used in this study (XWIKI-13377)
can be reproduced only by STDistance + BBC . Considering our results, we
believe that the usage of approach level and branch distance can be improved
in other areas of search-based test generation (e.g., unit testing) by taking the
implicit branches into account. However, it can be expensive to apply this sec-
ondary objective in cases where the search process tries to cover multiple paths.
Assessing the impact of BBC on other search-based test generation techniques
is part of our future research agenda.

Threats to Validity. We cannot guarantee that our implementation of Bots-
ing is bug-free. However, we mitigated this threat by testing our tool and man-
ually examining some samples of the results. We cannot ensure that our results
are generalizable to all crashes. However, we used an earlier established bench-
mark for crash reproduction containing 124 hard-to-reproduce crashes provoked
by real bugs in a variety of open-source applications. Moreover, by following the
guidelines of the related literature [3], we executed each configuration 30 times
to take the randomness of the search process into account. Finally, we provide
Botsing as an open-source tool. Also, the data and the processing scripts used
to present the results are available as a replication package on Zenodo [6].

7 Conclusion and Future Work

Approach level and branch distance are two well-known heuristics, widely used
by search-based test generation approaches to guide the search process towards
covering target statements and branches. These heuristics measure the distance
of a generated tests from covering the target using the coverage of control depen-
dencies. However, these two heuristics do not consider implicit branches. For
instance, if a test throws an exception during the execution of a non-branch
statement, approach level and branch distance cannot guide the search process
to tackle this exception. In this paper, we introduced a secondary objective
called BBC to address this issue. To assess BBC , we used it for search-based
crash reproduction due to the high chance of implicit branch occurrence and the
limited number of basic blocks that should be covered. Our results show that
BBC helps STDistance and WeightedSum to reproduce 6 and 1 new crashes,
respectively. Also, BBC significantly improves the efficiency in 26.6% and 13.7%
of the crashes using STDistance and WeightedSum, respectively.

In our future work, we will investigate the application of BBC for other
search-based test generation techniques (such as unit and integration).

Acknowledgements. The authors would like to thank Carolin Brandt for her valu-
able feedback on the paper. This research was partially funded by the EU Horizon 2020
ICT-10-2016-RIA “STAMP” project (No. 731529).
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Abstract. Block-based programming languages enable young learners
to quickly implement fun programs and games. The Scratch program-
ming environment is particularly successful at this, with more than 50
million registered users at the time of this writing. Although Scratch
simplifies creating syntactically correct programs, learners and educators
nevertheless frequently require feedback and support. Dynamic program
analysis could enable automation of this support, but the test suites
necessary for dynamic analysis do not usually exist for Scratch pro-
grams. It is, however, possible to cast test generation for Scratch as a
search problem. In this paper, we introduce an approach for automat-
ically generating test suites for Scratch programs using grammatical
evolution. The use of grammatical evolution clearly separates the search
encoding from framework-specific implementation details, and allows us
to use advanced test acceleration techniques. We implemented our app-
roach as an extension of the Whisker test framework. Evaluation on
sample Scratch programs demonstrates the potential of the approach.

Keywords: Search-based testing · Block-based programming · Scratch

1 Introduction

Visual, block-based programming languages are a popular means to introduce
young learners to programming. Programs are created by visually arranging
high-level program statements, thus allowing learners to quickly and easily cre-
ate engaging programs and fun games. There are many different programming
environments built on this idea, and the Scratch [15] programming environ-
ment is one of the most popular of these, with more than 50 million registered
users at the time of this writing1. While the visual representation ensures that
statements can only be assembled in syntactically valid ways, achieving desired
functionality can nevertheless be challenging: Testing, debugging, and fixing pro-
grams can challenge learners, as well as educators who may aim to support or
1 https://scratch.mit.edu/statistics/, last accessed 9.6.2020.
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assess them. In regular programming, this support is often provided by dynamic
analysis: Given a test suite, one can check the runtime properties of a program,
determine whether functionality is satisfied, and locate possible causes of failures.
However, test suites for Scratch programs do not typically exist.

The Whisker testing framework [22] has been introduced as a means to
automate testing of Scratch programs. Whisker-tests interact with Scratch

programs through the user interface, for example by providing key-presses and
mouse-clicks as inputs. In Whisker, these inputs have to be scripted by a tester,
or can be generated randomly. While Scratch programs are often trivially sim-
ple, this is not always the case, thus challenging the test generator. We therefore
cast the problem of generating Whisker tests as search problem.

We use many-objective optimisation to evolve sets of tests that cover as many
as possible program statements. We use grammatical evolution, where search
is applied to an integer-list representation using traditional search operators,
and the integers are decoded to UI events using a dynamically generated input
grammar for the Scratch program under test. Fitness evaluation requires test
execution, which is challenging because (1) Scratch programs are UI-centric
and often encode timed behaviour, thus making test execution slow, and because
(2) Scratch programs are interpreted by the Scratch virtual machine (VM)
based on a custom internal representation, thus making program instrumenta-
tion difficult. Our implementation overcomes these challenges by integrating an
accelerated, headless execution framework to speed up test generation.

In detail, the contributions of this paper are as follows:

– We cast Scratch testing as a many-objective search problem using gram-
matical evolution (Sect. 3.1) and many-objective search (Sect. 3.2).

– We define coverage-based fitness functions (Sect. 3.3) and provide efficient
means to evaluate fitness (Sect. 3.4).

– We illustrate the problem domain and potential of the approach using exam-
ple Scratch programs (Sect. 4).

2 Background

2.1 Scratch Programs

A Scratch program consists of the stage, which represents the application win-
dow and background image, and a collection of sprites that are rendered as
different images on top of the stage. The stage and each of the sprites contain a
number of scripts S that define the program logic. Scripts are created by visually
arranging blocks that correspond to syntactical elements of the language, such as
control-flow structures or expressions. A script s = (L,X,G, l0) ∈ S is a tuple
that represents a control-flow automaton, with the set of control locations L,
the set of data locations X, the control transition relation G ⊆ L × Ops × L
with possible program operations Ops, and the initial control location l0. Exe-
cuting a Scratch program results in the creation of a collection of concurrent
processes P , each process p ∈ P being an instance of a script s. A concrete
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state c = 〈p1, . . . , pn〉 ∈ C of a Scratch program is modelled as a list of con-
crete process states, which map a concrete value to each data location x ∈ Xp.
Scratch programs are controlled by the user, using mouse, keyboard, or micro-
phone. That is, a program can react to mouse movement, mouse button presses,
keyboard key presses, sound levels, or entering answers to “ask”-blocks. Typi-
cally, the first statement of a script s is an event handler block (hat block) that
links the execution of the script to the occurrence of an event (user events or
internally triggered events, such as broadcasts or clone events).

2.2 The Whisker Test Framework

Whisker [22] is an automated testing framework for Scratch programs. A
Whisker test consists of a test harness, which takes the role of stimulating the
Scratch program under test with inputs, and a set of Scratch observers, which
encode properties that should be checked on the program under test. To execute
tests, the Whisker virtual machine wraps the Scratch virtual machine and
its step-function. Before each execution step, the test harness is used to produce
inputs that are sent as messages/events to the Scratch program under test, and
after each execution of step the Scratch observers check whether the resulting
state satisfies the given properties. Each invocation of step executes the processes
concurrently, and it is possible that several control-flow transitions are taken in
one step. Whisker supports static test harnesses, where the system is stimu-
lated with inputs encoded in JavaScript, or dynamic test harnesses, where the
system is stimulated with randomly determined sequences of inputs. Although
random inputs are often sufficient to fully cover simple programs, previous work
has shown [22] that programs are not always fully covered. Therefore, the aim of
this paper is to use metaheuristic search to automatically generate static test har-
nesses, i.e., test suites that reach all statements of a program under test.

3 Search-Based Testing for Scratch

3.1 Encoding Scratch Tests Using Grammatical Evolution

Grammatical evolution [19] (GE) describes a form of Genetic Algorithms (GAs)
where the mapping from genotype to phenotype is performed using a problem-
specific grammar G = 〈T,N, P, ns〉: T is a set of terminals, which are the items
that will appear in the resulting phenotype; N are non-terminals, which are
intermediate elements associated with the production rules P : N → (N ∪ T )∗.
The element ns ∈ N is the start symbol, which is used at the beginning of the
mapping process.

The genotype is typically represented simply as a list of integers (codons).
The mapping of a list of codons to the phenotype creates a derivation of the
grammar as follows: Beginning with the first production of starting symbol ns of
the grammar, for each non-terminal x on the right hand side of the production
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we choose the rth production rule out of all n rules available for x. Given a
codon c and n productions for non-terminal x, the number r of the production
rule to choose is determined as follows:

r = c mod n

Each time a production rule is selected, the decoding moves on to the next codon
of the genotype. If the end of the genotype has been reached and there are non-
terminals left, then usually the selection of codons starts over at the beginning
of the genotype.

In order to instantiate GE, we need to define a grammar that represents these
tests. A test case is a sequence of user inputs (UI events). Thus, the starting
production for a test case of length n is given by the following:

testcase :: = input1 input2 . . . inputn

User inputs can be events sent via mouse, keyboard, or microphone. Therefore,
terminals in the test grammar will denote concrete mouse, keyboard, or sound
events, which may be parameterised. The following grammar thus defines possi-
ble inputs:

input :: = determineEvents(S,C)

The function determineEvents(S,C) returns a list of all events that the Scratch

program consisting of scripts S with a given concrete state C supports. In par-
ticular, we support the following events:

– KeyPress: One KeyPress event is created for each key for which an event
handler exists in S.

– KeyDown: One KeyDown event is created for each key for which a key-sensing
block exists in S.

– ClickSprite: One ClickSprite event is created for each sprite that contains a
click-event handler. Furthermore, for each such sprite we create an additional
ClickSprite event for each clone that exists of the sprite.

– ClickStage: If the stage has a click event handler, then this event is created.
– TypeText: If S uses the answer block and sensing is active at state C, then we

create one TypeText event for each concrete string contained in the program.
– MouseDown: If S contains a sensing mouse button block, this event is added,

which toggles the state of the mouse button.
– MouseMove: If S contains a sensing mouse position block, this event is added.

The x and y location of the move are determined by the two following codons
in the genotype (i.e., MouseMove implicitly contains a production with two
further non-terminals for the coordinates).

– Sound: If S contains event handlers that check the loudness, then for each
handler one such event is created, parameterised with the volume checked in
the event handler.

– Wait: We always create a Wait event with the default step duration. In addi-
tion, one Wait event is created for each distinct delay value in S (e.g., param-
eters of wait, say, think, or glide).
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Scratch programs usually contain main scripts triggered by the Greenflag event.
We trigger the Greenflag event at the beginning of each test, and therefore do
not include it in the grammar. Although the grammar for tests is quite simple,
GE offers large implementation benefits as it cleanly separates search operators
from the phenotype. For example, tests can easily be extended by modifying the
grammar, without requiring any modifications of the search operators.

(a) Stage with sprites (b) Script of the bear (c) Scripts of the cat

Fig. 1. Example Scratch program: two sprites controlling the value of a shared vari-
able with click -event handlers.

As an example of this encoding, consider the Scratch project shown in
Fig. 1, which contains two sprites, a cat and a bear, and a variable my_variable.
The cat’s script with the green flag hat-block can be seen as the main function
of the program, as Scratch programs are started by clicking a green flag in the
user interface. When the green flag is clicked, the script initialises the variable
my_variable with value 0, and then runs a forever-loop. In the forever-loop
there is an if-condition which checks if the value of variable my_variable is 10;
if so, the cat will say “Hello” for two seconds. Both, bear and cat, have event
handlers that are triggered if the user performs a mouse click on either of the
sprites. When the user clicks on the bear then my_variable is decremented by
1, if the user clicks on the cat then my_variable is incremented by 1.

The available events in this example program are independent of the concrete
program state, as there are always only the two event handlers for clicking the
two sprites. Thus, assuming a test of length 10, the following grammar describes
the possible tests for this program:

testcase :: = input1 input2 . . . input10

input :: = ClickSprite bear | ClickSprite cat | Wait default | Wait 2s
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Here, the Wait 2s event is based on the 2s delay in the say-block. Consider the
following example chromosome in integer encoding:

T = 〈4 3 5 2 2 1 4 6 3 8〉

The decoding would start with symbol testcase and codon 4. Since there are
only 4 productions for input, the decoding to a test case looks as follows:

4 mod 4 = 0 −→ ClickSprite bear
3 mod 4 = 3 −→ Wait 2s
5 mod 4 = 1 −→ ClickSprite cat

...
8 mod 4 = 0 −→ ClickSprite bear

3.2 Search Operators and Algorithm

Since the optimal number of events in a test case is problem specific and cannot
be known ahead of time, we use a variable length encoding. This also provides
an opportunity for the search to minimise the length of the tests. To generate
a random individual for the initial population we select a random length n in
the range [1..max], where max is a predetermined parameter representing the
maximum number of events in a test case. Then, we generate n random codons,
each of which is selected from the range from 0 to 480; the value 480 is the
width of the stage in pixels and thus the largest possible parameter any of
our supported events can take. The mutation operator can probabilistically (1)
replace codons with random codons, (2) insert new codons, and (3) delete codons,
each with a certain probability dependent on the length. The crossover operator
splits the two parent chromosomes into two parts at a randomly selected relative
point (i.e., [0..1]). Then the codons on the right side of that splitting point are
swapped between the chromosomes. The mutation and crossover operators are
based on prior work on variable size search [6] with the aim of avoiding test
length bloat [7].

The goal of the optimisation is to produce a set of test cases such that
each program statement is covered, thus there is one objective function for
each program statement. We therefore use the many-objective sorting algorithm
(MOSA) [20], which overcomes the scalability problems of traditional many-
objective algorithms. The initial random population evolves toward better pop-
ulations through subsequent generations until a stopping condition is reached. In
each generation an offspring population of the same size is created by selecting
test cases from the parent population and modifying them using crossover and
mutation. For this, rank selection is used, which gives better test cases a higher
probability of being selected.

During evolution, the test cases in the parent and offspring populations are
classified into different fronts. At first, for each uncovered statement, the shortest
test case, that is closest to covering the statement, is computed and added to
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Fig. 2. Control flow graph created for the example program from Fig. 1.

front0. The remaining test cases are sorted according to Pareto dominance: A
test case x dominates another test case y, if x is better or equal than y for all
uncovered statements and better than y for at least one uncovered statement. All
test cases not dominating each other are assigned the same front. The obtained
Pareto fronts front1, . . ., frontn are sorted in descending order by dominance,
meaning test cases in lower fronts dominate test cases in higher fronts. After
ranking all test cases a new parent population is formed by adding the test cases
in front0 gradually followed by the subsequent fronts until the population size
is reached. If the front is too big to add all test cases, a test case with a greater
distance to other test cases is preferred in order to promote diversity. With this
approach the search focuses towards the uncovered statements, because the best
test cases for these statements are likely to survive. Furthermore, there exists an
archive, which stores the shortest covering test case for each covered statement.
The test cases in the archive are updated in each generation and form the test
suite at the end of the algorithm.

3.3 Fitness Function

As basic coverage criterion we consider statement coverage, such that for each
statement in a program under test we derive a separate fitness function. The
fitness function for a given target statement is encoded using the traditional
combination of approach level [26] and branch distance [13]. Given a test t and
target statement s, the fitness function is defined as:

f(t, s) = approachLevel(t, s) + α(branchDistance(t, s))

where α denotes a normalisation function in the range [0..1] [3].
A given target Scratch program consists of a number of scripts S (see

Sect. 2); for each script s = (L,X,G, l0) ∈ S we derive the control flow graph
(CFG), defined as CFG = (L∪{entry, exit}, G), i.e., a directed graph consisting
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of nodes L as well as dedicated entry and exit nodes, and edges G. We combine
these intraprocedural CFGs to an interprocedural super-CFG as follows:

– For each event handler, we add an artificial node with edges to the event
handler (hat block) as well as the exit node, effectively turning event nodes
into branching nodes in the CFG. We further add an edge from entry to this
artificial node for event handlers of user inputs.

– For each broadcast statement, we add an edge from the broadcast to all scripts
that start with a matching receive event handler block.

– For each create clone statement, we add an edge from the create clone block
to all scripts that start with a matching When I start as clone event handler
block for the corresponding sprite.

– For each procedure call statement, we add an edge from the call to the start
block of the procedure (custom block), and a return edge from the end of the
procedure to the successor node in the calling script.

Figure 2 shows the interprocedural CFG for the program in Fig. 1. This CFG
contains three artificial event nodes (thisspriteclicked:Cat, thisspriteclicked:Bear
or flagclicked), each of which effectively is a branching statement depending on
whether the event occurs. These branches turn the occurrence of events into
control dependencies of the statements in the event handler code.

In order to measure the fitness, we instrument program executions to produce
traces of the branching statements executed. Given a trace, the control depen-
dence graph is used to calculate the approach level for a given target node.
For each branch, the execution trace further contains information about the
minimum branch distances (for evaluation to true and to false). For the fitness
evaluation we then use the minimum branch distance of the branching node with
the lowest approach level for our target node.

A particularly interesting aspect of Scratch programs is that predicates
in the code often refer to the locations and interactions of the sprites on the
stage, in particular to check whether a sprite touches another sprite. We instru-
ment the corresponding reporter block such that it produces not just a binary
true/false result, but an actual distance measurement. In case the sprites are
touching the branch distance for the true evaluation is 0 by definition; if they
are not touching we use the distanceTo function in Scratch to determine the
distance between the sprites, and use that as the branch distance. Similarly, if
the condition checks if a sprite is touching the edge of the stage, we can gather
the position information and calculate the distance to all edges, and use the
minimal distance as the branching distance. Further predicates (e.g., touching
colour) can be approximated with branch distances similarly.

3.4 Headless Accelerated Test Execution

Scratch tests are executed by running a Scratch program and applying events
encoded in a test to the Scratch VM. This kind of test mimics a normal
execution of Scratch, which is as fast as the regular execution when a user
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runs the program. The result is that running tests can be very time consuming.
We added two modifications to the Scratch VM to increase its execution speed,
which in turn decreases the time to execute tests.

The Scratch VM updates its internal state and the UI representation with
a given interval. The first modification introduces an acceleration factor which
reduces the default update interval. By simply reducing the interval, the VM
updates its state more often which leads to faster execution of regular blocks.

However, only increasing the number of state updates of the VM is not suf-
ficient: Blocks that use time (e.g., waiting for x seconds) measure time not in
state updates but in real time, and simply accelerating the state updates does
not speed up the perceived time of blocks. A block that is waiting for 2 s will
still wait 2 s even if we speed up that execution by a factor of 10.

To solve this problem we instrumented blocks that use time to speed up
their waiting time according to the acceleration factor. The following example
shows the waiting function of the control_wait Scratch block. By default, the
control block makes the application wait for the amount of seconds defined in
args.DURATION:

1 wait (args , util) {
2 if (util.stackTimerNeedsInit ()) {
3 const duration = Math.max(
4 0,
5 1000 * Cast.toNumber(args.DURATION)
6 );
7 ...

To reduce the waiting time of the block the args.DURATION has to be reduced
by the acceleration factor. For example, to run the application with an accel-
eration factor of 10 instead of 1, the duration has to be divided by factor 10.
Instrumentation of this function is achieved by dynamically replacing the func-
tion with a modified version as follows:

1 const accelerationFactor = 10;
2 const original = this.vm.runtime._primitives.control_wait;
3 const instrumented = (args , util) => {
4 const clone = {... args};
5 clone.DURATION = args.DURATION / accelerationFactor;
6 return original(clone , util);
7 };
8 this.vm.runtime._primitives.control_wait = instrumented;

As a third modification the Servant front-end was created for Whisker.
The Servant is a Node.js based command-line interface (CLI) which is based
on Puppeteer2, a Headless Chrome Node.js API. This new front-end makes it
possible to use Whisker in headless environments (i.e., without a graphical user
interface), so that tests can be executed on computing clusters.

2 https://pptr.dev/, last accessed 9.6.2020.

https://pptr.dev/
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4 Case Study Examples

To illustrate the proposed approach, we use three example Scratch programs
shown in Fig. 3. The Ping Pong game is a classical Scratch tutorial example,
and represents the types of programs commonly created by early learners. It
consists of 36 blocks in 4 scripts, and is controlled by five different key events.
We modified the Ping Pong game to initialise all variables (missing variable
initialisation is a common bug in Scratch [8]). The Fruit Catching game was
used by Stahlbauer et al. [22] as part of their evaluation of Whisker, and is
taken from an educational context. It consists of 49 blocks in 4 scripts, and is
controlled by the cursor keys. Green Your City is part of the popular CodeClub
collection of example projects. It consists of 8 scripts and 52 blocks.

(a) Ping Pong (b) Fruit Catching (c) Green Your City

(d) Code excerpt of the
Fruit Catching game

(e) Code excerpt of the Green Your City game

(f) Code excerpt of the Ping Pong game

Fig. 3. Case study programs and code examples.
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(a) Branch distance 284 (b) Branch distance 188 (c) Branch distance 87

Fig. 4. Fitness values for statements within the if-condition shown in Fig. 3d. The
approach level is 0 in all cases, but the branch distance of the if-condition depends on
the distance between the bowl and the banana.

(a) Branch distance 190 (b) Branch distance 224 (c) Branch distance 37

Fig. 5. Fitness values for statements within the first if-condition shown in Fig. 3f. The
approach level is 1 if x > 225 or x < −225, otherwise it is 0. Given that the ball faces in
direction −75 (such that the branch distance for−75 > 90 is 90−−75+1 = 166, and the
branch distance for −75 > −90 is 0) and is between the paddles, the branch distance is
calculated as min(distance(ball, right_paddle)+166, distance(ball, left_paddle)+0)).

(a) Branch distance 136 (b) Branch distance 128 (c) Branch distance 297

Fig. 6. Fitness values for statements within the first if-condition shown in Fig. 3e,
which is duplicated for each flower. The approach level is 0 if the green flag is clicked;
the branch distance is calculated based on the y-position and the distance to the closest
water drop. Given that a flower needs to be below y = −150, the branch distance for
the flower in Fig. 6a is distance(flower,water)+(−129−−150+1) = 136. The flower in
Fig. 6b is below y = −150, therefore the branch distance is distance(flower, water) +
0 = 128, and for Fig. 6c it is 297. (Color figure online)
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Fig. 7. Coverage over time, averaged over 30 runs.

In a typical Scratch program, many statements are trivially covered, but
there can always be tricky code that poses challenges for automated testing.
Figure 3d shows an excerpt of the code of the Fruit Catching game, taken from
the banana sprite: In order to execute the statements in the then-block of the
shown branch, the player-controlled bowl needs to touch the banana. The touch-
ing predicate is reflected by a branch distance that guides the test generator
towards achieving this, as illustrated in Fig. 4 for different states of the game.

The if-condition of the Ping Pong game shown in Fig. 3f requires a branch
distance calculation by applying the rules on nested logical expressions to combine
the distances between the ball and the two paddles, as well as the required and
current orientation of the ball. As suggested by the example states shown in Fig.
5, the fitness landscape induced by the complex expression is less convenient than
in the simple touching-predicate shown in Fig. 4. Green Your City also contains
logical expressions combining various distance measurements; in particular each
of the flowers contains the code shown in Fig. 3e. Flowers grow vertically each time
they touch a water drop, the example branch is covered once this has happened
sufficiently often to let the flower grow above y = −150 and it touches a water
drop again; Fig. 6 shows examples of this distance for different flowers.

To see the search in action, Fig. 7 shows the coverage over time, averaged
over 30 runs of Whisker using the original configuration [22] (“Random”, i.e.,
60 s, events every 250ms, program reset every 10 s), and the search extension
(“Search”, 60 s runtime, population size 10, 250ms default event duration, accel-
eration factor 5, crossover probability 0.8, initial length 2). The improvement of
the search over random testing after 60 s is statistically significant with p < 0.001
in all three cases: For Ping Pong the Vargha-Delaney effect size Â12 = 0.7, for
the Fruit Catching game Â12 = 1.0, and for Green Your City Â12 = 1.0. For Ping
Pong (Fig. 7a) the search covers most statements quickly, but generally needs
longer (≈30 s) to cover the two branches discussed in example Fig. 5. Random
testing sometimes hits the ball by accident, but generally needs to play much
longer before that happens. Similarly, for the Fruit Catching game Fig. 7b shows,
while again many statements are easy to cover, the search needs about 30 s to
succeed in catching both types of fruit, while random takes substantially longer.
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The results for Green Your City (Fig. 7c) are similar, in that the search requires
around 30 s until all statements are covered, while random usually takes longer;
the tricky branches are those requiring to hit flowers with water drops, as well
as one statement that requires the helicopter to reach the bottom, and thus
a longer play time than random testing used would be necessary. While these
are promising initial results, a more thorough evaluation on a larger number
of Scratch projects is planned as future work. The randomised and game-like
nature of most Scratch projects can be a cause for test flakiness; however, this
flakiness can be easily contained [22].

Note that an automatically generated coverage test suite is only one of the
stepping stones towards providing automated feedback to learners: The gener-
ated tests tend to be short and their randomised nature potentially makes them
difficult to understand, and so we do not expect that the tests would be shown
directly to learners. The tests are rather meant as input to further dynamic
analysis tools, for example in order to serve as test harness for Whisker [22],
where manually written Scratch observers would provide insight into which
aspects of the functionality are correctly implemented in a concrete learner’s
implementation of a predefined programming challenge. We envision that the
concrete feedback to learners will be provided in terms of textual hints or code
suggestions [21,25], and the generated tests are a prerequisite for achieving this.

5 Related Work

The rising popularity of block-based programming languages like Scratch cre-
ates an increased demand for automated analysis to support learners. It has
been shown that learners tend to adopt bad habits [17] and create “smelly”
code [1,11,24]; these code smells have been shown to have a negative impact on
understanding [10]. To counter this, automated tools can help to identify and
overcome such problems. For example, the Dr. Scratch [18] website points out
a small number of code smells to learners, using the Hairball [4] static analy-
sis tool, and similar smells are identified by Quality hound [23] and SAT [5].
LitterBox [8] can identify patterns of common bugs in Scratch programs.
Besides pointing out possible mistakes, it is desirable to also identify helpful
suggestions and feedback, such as what step to take next [21] or how to remove
code smells [25]. The majority of existing approaches are based on static pro-
gram analysis, and can therefore only provide limited reasoning about the actual
program behaviour. The Itch tool [12] translates a small subset of Scratch

programs to Python programs (textual interactions via say/ask blocks) and then
allows users to run tests on these programs. Whisker [22] takes this approach
a step further and, besides execution of automated tests directly in Scratch,
also provides automated property-based testing.

We introduce search-based testing as a means to fully automate the genera-
tion of test suites for Scratch programs. These test suites are intended to be
the input to dynamic analysis tools that can then use the dynamic information
to produce hints and feedback. Our approach is based on evolutionary search,
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which is common for API-level test generation [6], but has also been applied to
GUI testing [9,14,16]. The concept of grammatical evolution [19] has not been
thoroughly explored in the context of test generation yet [2].

6 Conclusions

In this paper, we have introduced the idea to apply search-based testing for the
problem of generating coverage-oriented test suites for Scratch programs. The
use of Grammatical Evolution allows a clean separation between aspects of the
meta-heuristic search, and the technical challenges posed by the testing environ-
ment. The specific graphical nature of Scratch programs provides opportunities
for guidance beyond those common in regular programs. Our extension of the
Whisker test generator has demonstrated its potential on a number of example
programs. However, there are remaining challenges to be addressed in future
work, such as refined support for all user actions, better integration of seeding,
consideration of program state (which, for example, is often encoded by the cos-
tumes/backdrops in use), and many others, permitting a larger scale evaluation.
Furthermore, future work will be able to build on the test suites generated by our
approach for further analysis and for generating actionable feedback to users. For
example, we anticipate that an example application scenario will be that where
a teacher produces a golden solution, then generates a test suite for it, and this
test suite then serves for fault localisation or repair suggestions. To support this
future work, our extensions to Whisker are available as open source at:

https://github.com/se2p/whisker-main
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Abstract. Real-time system design involves proving the schedulability
of a set of tasks with hard timing and other constraints that should run
on one or several cores. When those requirements are known at design
time, it is possible to compute a fixed scheduling of tasks before deploy-
ment. This approach avoids the overhead induced by an online scheduler
and allows the designer to verify the schedulability of the taskset design
under normal and degraded conditions, such as core failures. In this con-
text, we propose to solve the schedulability problem as a state space
exploration problem. We represent the schedulings as partial functions
that map each task to a core and a point in time. Partial functions can
be efficiently encoded using a new variant of decision diagrams, called
Map-Family Decision Diagrams (MFDDs). Our setting allows first to cre-
ate the MFDD of all possible schedulings and then apply homomorphic
operations directly on it, in order to obtain the schedulings that respect
the constraints of the taskset.

Keywords: Search problems · Decision diagrams · Schedulability ·
Real-time systems · Resilient systems · Multi-core architectures

1 Introduction

Multi-core architectures have become ubiquitous, as an answer for the expo-
nential growth in computer performance required by modern applications. This
observation obviously applies to small-scale real-time and cyber-physical systems
as well. Unlike more general applications, these systems often have to run tasks
with hard deadlines, to interact with their hardware components. It follows that
one of their essential requirements is to guarantee that they are able to perform
all their tasks on time, by providing a scheduling that assigns each task to a spe-
cific core at a specific point in time. Such a scheduling can be built along with
the execution of the system, according to some heuristics [11], or pre-computed
statically to avoid the overhead induced by an online scheduler. An additional
advantage of the latter approach is that it allows to study the system’s perfor-
mance under various scenarios, not only to make sure it is actually capable of
c© Springer Nature Switzerland AG 2020
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running its workload, but also to check whether it can be resilient to hardware
faults (e.g. the failure of one of its cores).

Typically, each task has timing constraints, such as a release time, after which
it can be executed, a worst-case execution time, which is the most pessimistic
assumption for the time it takes to complete, and a deadline for its completion.
Other non-timing constraints may exist and should also be taken into account in
the scheduling. Common constraints include precedence, which indicates that a
predecessor task has to be completed before a successor task starts. Schedulabil-
ity analysis verifies that a feasible scheduling exists for a given taskset respecting
all the timing, precedence, and other constraints. Roughly speaking, it suffices
to check that all tasks will complete before their deadline.

Several analysis tools have been used to solve the multicore schedulability
problem. For example, utilization bound checks [12] have been proposed for test-
ing the schedulability of a taskset analytically. Though these checks are efficient,
they inherently are pessimistic, often rejecting valid tasksets. Furthermore, they
cannot handle multiple constraints over tasks. Other tools have been developed
to analyze tasksets with complex constraints [14], and rely on simulation to
check schedulability. However, simulation is known to cover only a sample of
possible scenarios, thus it can lead to falsely feasible schedulings, which is not
acceptable for critical real-time systems.

The aforementioned approaches in the literature target a specific variation of
the problem, such as the existence of task parallelism or interference among tasks
that cause delays. In this paper, we opt for a different, more generic approach,
which relies on model checking. Unlike simulation, model checking explores the
entire space of possible states. In our case, this translates into an enumeration
of all possible schedulings, that we can filter to remove specific instances for
which the constraints are not satisfied. In practice, such an approach is often
intractable due to the state-space explosion problem. However, we mitigate this
issue with decision diagrams, a data structure that encodes large sets of data
into a memory-efficient representation by exploiting the similarities between each
element. Our work is related to the technique proposed in [17]. The authors solve
the schedulability problem as a state-space exploration using Data Decision Dia-
grams [6], which encode sets of variable assignments. We use a slightly different
flavor of decision diagrams, called Map-Family Decision Diagrams (MFDDs),
that encode sets of partial functions, and allow for a more direct translation of
the problem. Each constraint is represented as a homomorphic operation that is
applied directly on the encoded form, in a fashion reminiscent to Fourier filters.

This paper offers the following contributions:

1. An exhaustive search methodology for the multi-core schedulability prob-
lem, based on inductive homomorphisms, i.e. structure-preserving transfor-
mations, that compute all solutions at once.

2. A compact, human-readable representation of the solution set, which can be
easily inspected during design and efficiently stored as a database of pre-
computed schedulings in production.
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3. A refinement of the seminal work proposed in [17] that fixes a flaw in the
authors’ method, offers a simpler way to define filters and supports additional
constraints, such as transient core failures.

2 Related Work

In this section, we include works related to the offline computation of global mul-
ticore scheduling for time-triggered tasks. In particular, we discuss approaches
that employ model checking, linear programming and decision diagrams.

Model checking has been a reliable tool for schedulability verification. Its
inputs are a model of the system (e.g., tasks, scheduler) with finite reachable
states and a set of properties that characterize the valid reachable states, e.g.,
states where no task has missed its deadline. Properties may be expressed as tem-
poral logic formulae or be designated as error states in the model. An exhaustive
search explores the reachable states of the system model and checks if properties
hold. Violating states are returned as counter-example, which can be used to
refine the model.

In [1], periodic tasksets are modeled as timed automata and schedulability
holds if a certain state can be reached within an expected time window. In
a similar approach [8], each task and its constraints are modeled as a timed
automaton, on which it is verified that the task can meet its deadline. Interac-
tions between tasks are modeled by composing their corresponding automata.
Another work [18] for self-suspending tasks models each task as a set of segments,
the end of which corresponds to a suspension point. Generally, model checking
can model complex factors on schedulability, such as stochastic execution times.
However, it is computationally expensive and therefore only able to handle small
tasksets. Moreover, the generated solutions are independent to each other and
can not be narrowed down efficiently to account for additional task constraints or
be compactly stored. In [7], statistical model checking is proposed to reduce the
undecidability of symbolic (i.e., more efficient but over-approximating) model
checking for the scheduleability of tasks with uncertain response and blocking
times. In this setting, the system is simulated for a finite number of runs to
test the satisfaction probability of a given property. Tasksets that were found
unschedulable by symbolic model checking can be probed for useful information,
such as the probability of a certain violation, or bounds on blocking times. Other
timed automata extensions, such as Priced Automata [2], have been suggested
to efficiently identify subsets of feasible schedulings.

Other approaches to schedulability rely on linear programming. In [16],
schedulability for multi/many-core architectures is studied for three different
platform architectures using integer linear programming (ILP). Cache conscious
real-time schedulability using ILP has also been the target in [15]. In their set-
ting, they assume that all tasks are connected by the dependency relation, which
reduces candidate solutions, compared to our setting that does not assume that.
Linear programming uses heuristics algorithms to efficiently compute schedul-
ings close to the optimal ones, but it does not return all schedulings.



76 D. Racordon et al.

Decision diagrams have been proposed for representing and solving schedu-
lability In [10] the authors find an optimal schedule for tasks with arbitrary
execution times using a breath firth search on a Binary Decision Diagram. How-
ever, their representation considers uniform cores, while our model can be also
applied to non-uniform cores, e.g., when not all cores are suitable for every task.
In another work [5], the authors proposed searching for the optimal single-core
scheduling, using a Multi-Valued Decision Diagram that represents an overap-
proximated set of possible schedulings. As opposed to theirs, our method handles
many cores and computes all feasible solutions.

3 Background

Decision diagrams were originally proposed as a data structure to represent
and manipulate Boolean functions [4]. Since then, numerous variants have been
developed that suit other domains (see [13] for a survey). Nonetheless, all of them
share the same principle; they encode each element as a path in a finite directed
acyclic graph (DAG), from its root to a terminal node (i.e. a node without
successors). Non-terminal nodes are labeled with a variable, and arcs are labeled
with the value assigned to this variable. Our approach uses one specific variant
of decision diagrams, named MFDDs, which we developed to encode sets of
partial functions f : A → B, where A and B are any sets and dom(f) ⊆ A
is finite. Partial functions typically correspond to dictionaries or mappings in
regular programming languages, and are well-suited to encode various kinds of
data structures. For instance, a list can be seen as a partial function that maps
numerical indices to the list’s elements.

In a MFDD that encodes a set of partial functions A → B, all non-terminal
nodes are labeled with a value from A, while arcs are labeled with a value from
B ∪{ε}, where ε represents the absence of any value. A diagram may have up to
two terminal nodes, labeled with � and ⊥, representing the acceptance of a path
from the root and its rejection, respectively. Hence, a function is encoded as a
path from the root to the accepting terminal node.
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Fig. 1. Example of a (non-canonical) MFDD
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Example 1. Figure 1 depicts a decision diagram that encodes a set of seven
different partial functions from a domain A = {a, b, c, d, e} to a codomain B ⊆ N.
Circles denote domain values, while squares denote terminal nodes. Dashed edges
represent ε-arcs, while solid ones are labeled with a number. The path highlighted
with thick, green arrows encodes a function f such that dom(f) = {b, c} (i.e., it
is undefined for any other value in A) and f(b) = 3, f(c) = 1.

Any path that leads to the rejecting terminal (i.e., ⊥) is said rejected and
denotes a function that is not present in the encoded set. If some domain value v
is absent from a path, then it is assumed that the corresponding function is not
defined for v. All functions that cannot be associated with any accepted path in
the diagram are considered absent from the encoded set. It follows that a given
set of functions can have multiple representations1.

Definition 1 (Map-Family Decision Diagram). Let A and B be a domain
and a codomain set, respectively. The set of Map-Family Decision Diagrams
MA,B that encode families of partial functions A → B is inductively defined as
the minimum set, such that:

– {⊥,�} ∈ MA,B are terminal nodes,
– 〈a, s〉 ∈ MA,B is a non-terminal node labeled with a ∈ A, whose successors

are given by the partial function s : B ∪ {ε} → MA,B.

Efficient implementations of decision diagrams rely on representation unique-
ness to share identical sub-graphs, in order to reduce the memory footprint and
cache the result of each homomorphic operation. We provide a canonical rep-
resentation of MFDDs by applying some constraints. Firstly, we require that
domain A be associated with a total order, and that all successors of a node be
either a terminal node or a node labeled with a greater value. This is the case in
the MFDD of Fig. 1, assuming that the members in A are ordered lexicographi-
cally. Secondly, we require that all non-terminal nodes have at least one arc not
labeled with ε. Nodes that do not satisfy this constraint can be safely removed,
as they do not carry any information. For instance, node b at the bottom path of
Fig. 1 is redundant. Finally, we require that all rejected paths be removed. Recall
that functions which cannot be associated with an accepted path are assumed
to be rejected (i.e. absent from the encoded set). Hence, rejected paths, like the
two top paths of Fig. 1, do not add any information. Note that we cannot get
rid of the rejecting terminal itself, as it is necessary to represent the empty set
of functions. The canonical form of the MFDD from Fig. 1 is shown in Fig. 2a.

Definition 2 (Canonicity). Let A be a domain set with a total order < ⊆
A × A and B be a codomain set. A MFDD d ∈ MA,B is canonical if and only if:

1 Incidentally, as MFDDs are finite graphs, it follows that all encoded functions f
have a finite domain dom(f) ⊆ A, represented by the non-terminal nodes along an
accepting path, even if A is infinite.
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– d ∈ {⊥,�} is a terminal node, or
– d = 〈a, s〉 is a non-terminal node such that ∃b ∈ dom(s), b �= ε and ∀b ∈

dom(s), s(b) ∈ M{x∈A|a<x},B − {⊥}.
Let 〈a, s〉 be a non-terminal node. The first canonicity constraint is enforced

by s(b) ∈ M{x∈A|a<x},B , which prescribes that successor nodes be labeled with
greater domain values. The second constraint is enforced by ∃b ∈ dom(s), b �= ε.
Finally, although the third constraint is not enforced explicitly, it is easy to show
that requiring s(b) �= ⊥ inductively prevents rejected paths to be encoded.

a

b c

d

�

2

1

3

2

1

3

a c

d

d

�

2

1

1

3

3

Fig. 2. Two examples of canonical MFDDs

Example 2. Consider the MFDD shown in Fig. 2a. The root node is a tuple
〈a, sa〉, where sa is a function such that dom(sa) = {ε, 1, 2} and sa(ε) = sa(1) =
〈b, sb〉 and sa(2) = 〈d, sd〉. The function sb is defined such that dom(sb) = {ε, 3}
and sb(ε) = � and sb(3) = 〈c, sc〉. Finally, sc (resp. sd) is defined such that
sc(1) = � (resp. sd(3) = �) and is undefined for any other value in B ∪ {ε}.

In addition to their compact representation, another advantage of MFDDs is
that they can be manipulated by the means of homomorphisms. These operations
can modify multiple elements at once, as any alteration of a prefix has a direct
impact on all elements encoded by its suffixes.

Example 3. Suppose we were to remove b from the domain of all partial functions
encoded by the MFDD in Fig. 2a. Rather than enumerating all seven instances
to apply the filter, we could define a homomorphism that simply removes the
node corresponding to b’s bindings, and rewires its incoming arcs to existing or
new nodes, as shown in Fig. 2b. In other words, a homomorphism can modify
the domain of all encoded functions by rewriting the decision diagram.

A key property of MFDD homomorphisms is that they preserve set-theoretic
operations, such as union and intersection. More formally, let d1, d2 ∈ MA,B be
two MFDDs, and Φ be a homomorphism, then Φ(d1 ∪ d2) = Φ(d1) ∪ Φ(d2). This
allows homomorphisms to be rearranged for efficient computations.
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4 Methodology

In the context of search based problems, MFDDs present the advantage that they
can be used to both store and compute sets of solutions efficiently. Their compact
representation is able to encode large sets with minimal memory footprint, while
homomorphisms on map families allows the construction of solutions with a
smaller computational overhead than traditional approaches.

There are two main approaches to use MFDDs in search based problems.
The first consists of exploring the state space of a problem to build its solution
set incrementally, augmenting it with new instances that satisfy the problem’s
constraints as they are found. This process ends when a fixpoint is reached or
if the entire space has been visited. The second technique, more reminiscent of
Answer Set Programming (ASP), proposes to start from a MFDD representing
the entire state space of the problem before filtering out instances that do not
satisfy the problem’s constraints.

The n-queens puzzle is a simple example of a problem that can be solved
with the second approach. The puzzle consists of finding all possible ways that
n different queens can be placed on a n × n chessboard without being able to
attack each other. More formally, let Coln = {a, b, . . . } denote a set of column
identifiers for some n × n chessboard. Similarly, let Rown = {1, 2, . . . , n} denote
row identifiers. Let Cn = Coln × Rown denote the set of coordinates on the
board. Let I ∈ P(Cn) denote a set of coordinates at which queens are placed,
and R denote a relation on coordinates which indicates whether a position can
be reached from another by a queen, according to the rules of chess. (d, 3) ∈ I
indicates for example that a queen lies at row d and column 3 of the board,
and 〈(d, 3), (g, 6)〉 ∈ R, because the position (g, 6) can be reached from (d, 3) by
a queen. A configuration I is said to be a solution to the n-queens puzzle if it
contains exactly n coordinates, and if for all a ∈ I, there is no b ∈ I such that
〈a, b〉 ∈ R. Hence, the set of all solutions S is formally given as:

S = {I | (‖ I ‖= n) ∧ (∀a, b ∈ Cn, a ∈ I ∧ 〈a, b〉 ∈ R ⇒ b �∈ I}

Using MFDDs, one can express the n-queens puzzle as the following algorithm:
1: Sn ← P(Cn)
2: for all a ∈ Cn do
3: Sn ← {I ∈ Sn | a ∈ I ⇒� ∃b ∈ I, 〈a, b〉 ∈ R}
4: end for
5: Sn ← {I ∈ Sn |‖ I ‖= n}

At line 1, all possible configurations are computed, as the powerset of the
coordinates Cn, and added to the set of candidate solutions Sn. Then, at line 3,
the set of candidate solutions is refined by removing all configurations in which
a queen can attack another. Finally, at line 5, all sets with cardinality other than
n are filtered out, so as to keep in Sn only the actual solutions to the puzzle.

Implementing such an algorithm with MFDDs can be quite efficient, thanks
to the use of homomoprhisms. As mentioned in the previous sections, they allow
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to perform filtering directly on the shared structure of a MFDD, therefore mod-
ifying large subsets of the encoded family at once. For instance, in the above
algorithm, the actions performed on Sn operate on each map it contains in
parallel, without the need to iterate over each one of them separately. In addi-
tion, MFDDs allow the maps in Sn to share nodes, so as to keep the overall
representation compact. Although a 8 × 8 chessboard has roughly 1019 configu-
rations, it takes only 2.5 KB to store in memory.

5 Multi-core Schedulability

The multi-core schedulability problem [17] can be viewed as an assignment prob-
lem that consists of verifying whether a set of tasks can be executed on a multi-
core system, with respect to task-specific timing constraints and dependencies
between the tasks. We focus on the most common type of precedence dependen-
cies, where the predecessor must finish before the successor can start.

We define tasks T with associated triples 〈r, c, d〉, where r denotes their
release time, c denotes their worst-case execution time and d denotes their (abso-
lute) deadline. We assume that all tasks can potentially meet their deadline, i.e.,
r + c ≤ d. A task model M = 〈T, μ,D〉 is a DAG consisting of a set of tasks T as
its vertices, a function μ : T → N

3 defining tasks characteristics and a relation
D ⊆ T × T describing direct dependencies between tasks as its edges.

Consider the task model depicted in Fig. 3, that features five tasks. Task t0
can be scheduled at time 0, i.e., immediately when it is released, since it has no
dependencies. Tasks t2 and t4 cannot be scheduled at time 0, even though they
have no dependencies, because they are released at times 4 and 8, respectively.
Task t1 depends on both t0 and t2. Hence, it cannot start before they have
completed, even though its release time is earlier. Finally, task t3 depends on t1,
meaning that it also indirectly depends on t0 and t2 (i.e. t1’s dependencies).

t0

〈0, 3, 4〉

t1

〈0, 2, 10〉

t2

〈4, 3, 8〉
t4

〈8, 3, 12〉

t3

〈5, 4, 15〉

Fig. 3. Example of a task model consisting of 5 tasks.

Given a task model M = 〈T, μ,D〉 and a set of cores C, a scheduling is a
partial function s : T → C × N, that assigns a task to a core at a specific time.
Notice that this definition assumes that tasks cannot be preemptively suspended
to execute another task on the same core, effectively meaning that all tasks are
assumed to be executed from beginning to end. A scheduling is feasible if:
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– all tasks are scheduled after their dependencies have finished;
– all tasks are scheduled after their release time; and
– the deadlines of all tasks are met.

Moreover, a scheduling is consistent if there are no tasks scheduled on the same
core at the same time.

Figure 4 illustrates two examples of schedulings for the task model in Fig. 3.
Both schedulings are consistent, since tasks do not overlap. However, only the
left one is feasible, since the right one does not satisfy t3’s dependencies.

[Feasible and consistent.]

c0

c1

t0 t2 t1 t3

t4
[Non-feasible but

consistent.]

c0

c1

t0 t2 t1 t4

t3

Fig. 4. Two examples of schedulings.

Definition 3 (Schedulability problem). Given a task model and a set of
cores, the schedulability problem consists of determining whether there exists at
least one feasible and consistent scheduling.

5.1 Schedulings as Decision Diagrams

Recall that MFDDs encode sets of partial applications. Since a scheduling is a
partial function mapping each task to a core and a start time, encoding a set
of schedulings with a MFDD is straightforward: tasks are represented by non-
terminal nodes, whereas the start time and the core on which they are scheduled
label the arcs. There are however two issues to address, which relate to the same
limitation of decision diagrams. Because they are DAGs, extracting information
from suffixes is usually challenging. Not only it initiates recursive explorations,
which are costly on large diagrams, it also requires complex transformations to
preserve the consistency of the prefix that leads to a particular node, when a par-
ent is mutated. Such operations are usually avoided, in favor of homomorphisms
that depend on values which are read on a prefix to a given node.

This limitation impacts the initial construction of the MFDD. Scheduling a
task on a given core necessitates to know when the core is next available, which
is an information that depends on the suffix of a given path. One way to tackle
this issue is to lift the necessary information at the root of the MFDD. That
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way, we can first collect the next available time for a given core, before inserting
a new mapping and schedule a new task on it.

The second issue relates to the handling of task dependencies. In order to
decide if a scheduling is feasible, we need to determine whether each task is sched-
uled after all its dependencies. Consequently, the order in which tasks appear
along a path in the MFDD must be chosen carefully, so that dependencies are
laid out deeper. That way, we can first dive to the nodes representing a spe-
cific task, and then remove all suffixes for which its dependencies are either not
scheduled or finish too late.

Figure 5 represents the two schedulings depicted in Fig. 4. The top path
(resp. bottom path) corresponds to the left (resp. right) scheduling. The shared
suffix shows how similarities between different schedulings can be exploited to
compact the representation of a large set of possibilities.

c0

c1

c1

t4

t4

t3

t3

t1 t2 t0 �

13

11 c1, 8

c0, 9

12 12 c0, 9 c1, 8

c0, 7 c0, 4 c0, 0

Fig. 5. Two schedulings represented as a MFDD.

Note that the order in which the tasks are laid out has a direct impact on
sharing. Despite the constraint we mentioned earlier, namely that tasks should
appear before their dependencies, there is a lot of freedom to pick this order.
This is generally a difficult problem in the context of decision diagram optimiza-
tions [3, Chapter 7]. There are nonetheless some intuitions about what consti-
tutes a good order. Indeed, sharing is most likely to occur on the bottom of
the MFDD. Thus, tasks that are more loosely constrained, in terms of depen-
dencies, release times and deadlines, should appear closer to the top. That way,
more tightly constrained tasks, which will intuitively have less possible different
assignments, will be found in the suffixes of more nodes.

The reader will notice that our encoding does not handle sporadic tasks.
Such tasks are common in real-time systems, and corresponds to actions that
must be executed periodically. As we chose to formalize schedulings in the form
of partial functions T → C × N , representing sporadic tasks would require T to
be an infinite set. However, our definition of a task model is sufficient to describe
a time window, in which occurrences of sporadic tasks can be enumerated. As a
result, any feasible and consistent scheduling can represent one time window in
the unbounded behavior of the system, consisting of repeated time windows.
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5.2 Computing Schedulings

We now describe the computation of the set of all possible schedulings by
a MFDD of MT∪C,N∪(C×N). In a nutshell, the method consists of iteratively
scheduling one task, at one possible time slot, in all schedulings that have been
computed so far. This produces a new subset of schedulings at each iteration,
that is merged with the original set, until a fixed point is eventually reached.
The process is guaranteed to terminate, as we can assume that all tasks have a
finite deadline. This limitation is consistent with the idea of using task models
as a way to represent slices of a system’s behavior. It follows that there is a finite
number of time slots at which the algorithm should attempt to schedule a task.

The following pseudo-code describes our algorithm:
1: S ← enc({[c �→ 0 | c ∈ C]})
2: S′ ← ⊥
3: while S �≡ S′ do
4: S′ ← S
5: for all 〈t, c〉 ∈ T × C do
6: for all tr ≤ i ≤ td − tc do
7: S ← S ∪ (sch(t, c, i) ◦ fltr(t))(S)
8: end for
9: end for

10: end while
11: S ← check(S)
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c1 c1
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0

c0, 1

c0

c1 c1c1

t0 t0
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0 34

0

00

c0, 1 c0, 0

fltr(t0) sch(t0, c0, 1) S ← S ∪ . . .

Fig. 6. One iteration of the scheduling construction algorithm’s the inner loop

Line 1 creates a MFDD representing a singleton set which contains a function
that maps all cores to 0 (i.e., their next available time). Then, most of the work is
carried out at line 7, where a task’s mapping (on a given core, at a specific time)
is added to all schedulings. This process is illustrated for one single iteration
in Fig. 6. Assume S to be the MFDD depicted on the left, which encodes the
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empty scheduling, as well as one mapping in which a task t0 is being scheduled
on core c0. The first step consists of filtering out the mappings for which the
task is already defined, with the fltr homomorphism, producing the MFDD in
which the corresponding paths have been grayed out. The remaining mappings
are then fed into the sch morphism, that actually inserts the task at the correct
position in all paths. Finally, we compute the union of the resulting MFDD with
S, effectively merging all new schedulings into the previous ones.

Note that task dependencies are not taken into consideration until line 11,
where a third morphism check removes all non-feasible schedulings. This final
step boils down to another filter that removes the paths that do not schedule all
tasks, as well as those in which task constraints are not satisfied.

6 Experimental Results

We implemented our schedulability analysis technique with DDKit, a library to
manipulate MFDDs. We tested it on several randomly generated task models
of various sizes, for a 2-cores, a 3-cores and a 4-cores architecture. Our imple-
mentation closely follows the algorithm presented in Sect. 5.2. All tests were ran
on a intel i9 at 2.3 GHz. Sources as well as the randomly generated datasets we
used are available on GitHub2, and distributed under the MIT license.

Test runs showed that our technique can quickly determine if a given model
is not schedulable due to timing constraints alone. This is because schedulings
are built incrementally, by adding a new unscheduled task at each pass. Paths in
which a task is not schedulable due to timing constraints (i.e. its deadline cannot
be met) are cut from the MFDD as soon as they are detected, actually reducing
its size. As a result, subgraphs that were only reachable from such paths need no
longer to be explored for scheduling the remaining tasks. This is akin to pruning
in a classical backtracking algorithm. Filtering out dependency constraints is
also efficient, and amounts to about only 5% of the total execution time. This
can be explained by our encoding strategy. As dependent tasks tend to appear
closer to the MFDD’s root, filtering out a path in which its dependency is not
scheduled removes a lot of subgraphs at once, and with them, a lot of possible
solutions that no longer need to be explored. Furthermore, this mechanism deals
gracefully with chains of dependencies.

Results are summarized in Fig. 7. As tasksets are generated randomly, com-
putation times may vary from one task model to the other. Hence, we averaged all
results on three different test cases, for each size of task model. We also removed
models for which no schedulings can be found, as those are significantly faster to
process. We measured the running time as well as the total memory consumed
throughout the execution. Runs whose computation exceeded twelve hours were
aborted, explaining missing results for both the 3-cores and 4-cores architectures.

As we can see, our algorithm scales much better with the number of tasks
than with the number of cores. Although it took on average 4 min and a half

2 https://github.com/kyouko-taiga/Schedulability.

https://github.com/kyouko-taiga/Schedulability
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Fig. 7. Experimental results

to compute 150’000 solutions for a model consisting of 5 tasks on a 4-cores
architecture, we were able to compute nearly 40 times more schedulings (i.e.,
roughly 5.5 millions) for a model of 10 tasks on a 2 core-architecture. This
asymmetry can be explained by the way operations are optimized on decision
diagrams. Recall that outgoing arcs of nodes that represent tasks are labeled
with a pair denoting a core and a time. Increasing the number of cores increases
the size of the domain from which these labels will be picked, which leads to
reducing the possibility of sharing identical subgraphs. As a result, applying a
homomorphism on the diagram is more expensive, as caching gets less efficient.

This scaling problem could be tackled by the means of anonymization [9].
Anonymization is an optimization technique for decision diagrams which aims
to reduce the properties that make two configurations distinguishable, so as to
leverage caching more aggressively. In our case, the specific core on which a task
is scheduled could be forgotten, so that arcs would be labeled only by the start
time. Obviously, this loss of information would make the encoded schedulings
less precise, as we could only know when a task is scheduled, and not where.
However, this would be sufficient to determine the number of solutions (if any)
there exists to schedule a task model on a given architecture.

Our approach is a refinement of another similar work [17], which purposes
the use of Data Decision Diagrams for computing sets of schedulings. Our tech-
nique brings a number of improvements. Firstly, we are able to compute all
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possible schedulings for a given time window, including those in which some
cores may be idling (i.e., inactive in a period of time), which was suggested as
future work in [17]. Hence, we are able to check for schedulability in the pres-
ence of transient errors, whereas the original method can only model permanent
core failures. This refinement also solves an issue related to the handling of
dependencies. Since their technique is not able to model idling, it is not able to
schedule a task after its dependencies have been executed, on any core whose
next available time precedes the completion of the dependency. Secondly, exper-
imental results show that our approach is roughly twice as efficient in terms
of computation time. We explain this disparity by the fact that we filter for
dependency inconsistencies after having built the set of all possible schedulings,
rather than after the addition of a new task. This alleviates the filtering effort
and maintains a smaller MFDD during the task addition phase.

7 Conclusion

We presented a transformation of the multi-core schedulability problem as a
state space exploration problem, in a style reminiscent to model checking. We
showed how to build the set of all possible schedulings of a given taskset with
Map-Family Decision Diagrams, a variant of decision diagrams that we designed
to encode large sets of partial functions into a compact representation. We used
homomorphic operations, in particular filters, to manipulate the set of schedul-
ings and illustrated how to use these operations to analyze solution sets.

We envision future works along two main axes. The first one is to refine our
encoding, so as to improve on the performance of our algorithm. A promising
lead in this direction is to find better heuristic for task ordering, to maximize
sharing. Another idea would be to exploit symmetries between schedulings, so as
to prune the state space exploration. Finally, as mentioned in Sect. 6, anonymiza-
tion could also be leveraged for specific analysis, for instance, to more quickly
identify non-schedulable models [9]. The second axis for future works relates to
the development of a framework to analyze scheduling sets. We already demon-
strated that filtering homomorphisms can be efficiently leveraged to exclude
schedulings based on dependency constraints. Other kind of constraints could be
translated into filters as well, and applied on solution sets to check schedulability
under more elaborate constraints. For instance, one could exclude schedulings
in which two given tasks are not executed at the same time, on different cores,
so as to account for possible communications.
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Abstract. The simultaneous evolution of metamodels and models is
called the meta-models/models co-evolution problem. While some Inter-
active/automated metamodel/model co-evolution techniques have been
proposed using multi-objective search, designers still need to explore a
large number of possible revised models. In this paper, we propose an
approach to convert multi-objective search into a mono-objective one
after interacting with the designer to identify a set of model changes
based on his/her preferences. The first step consists of using a multi-
objective search to generate different possible model edit operations by
finding a trade-off between three objectives. Then, the designer may
give feedback on some proposed solutions. The extracted preferences are
used to transform the multi-objective search into a mono-objective one
by generating an evaluation function based on the weights for the exist-
ing fitness functions that are automatically computed from the feedback.
Thus, the designer will just interact with only one solution generated by
the mono-objective search. We evaluated our approach on a set of meta-
model/model co-evolution case studies and compared it to existing fully
automated and interactive meta-model/model co-evolution techniques.
The results show that the mono-objective search after the interaction
with the users significantly improved the co-evolution changes for sev-
eral widely used metamodels.

Keywords: Model co-evolution · Interactive multi-objective search

1 Introduction

Similar to the source code of large systems, the modeling languages (i.e., meta-
models) are subject to evolution due to changing requirements and technolog-
ical constraints requiring existing models to be adapted [1,2]. Thus, a set of
changes must be applied to the initial model versions to fix the inconsisten-
cies with the new metamodel version. This process is called metamodel/model
co-evolution [1,3].
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Several co-evolution studies are proposed where most of them are providing
either a manual or semi-automated support based on pre-defined templates of
evolution scenarios [4–8]. In addition to being pre-defined, these templates are
specific to the artifact/models to co-evolve and the metamodel. Few fully auto-
mated co-evolution studies tried to find an entire edit operations sequence that
revises models in accordance with the new metamodel version [3,9,10]. How-
ever, several transformations require interactions with the user especially when
new elements are added to the new metamodel they are hard to full-automate.
Recently, an approach has been proposed to interactively evaluate the co-evolved
models using search-based software engineering [11]. The designers can provide
feedback about the co-evolved models and introduce manual changes to some
of the edit operations that revise the model. However, this interactive process
can be expensive, and tedious since designers must evaluate every recommended
set of edit operations and adapt them to the targeted design, especially in large
models where the number of possible co-evolution strategies can grow exponen-
tially. Besides, it is challenging to define upfront weights to some edit operation
since the designer needs to have a look at the generated solutions to express his
preferences.

In this paper, we propose an approach that takes advantage of existing Meta-
model/Model co-evolution works. Thus, we propose a way to convert multi-
objective search into a mono-objective one after few interactions with the devel-
oper. The first step consists of using a multi-objective search, based on the
evolutionary algorithm NSGA-II [12], to generate a diverse set of model migra-
tion strategies by finding a trade-off between three objectives of reducing the
number of edit operations, the dissimilarity with the initial models to reduce
the information loss and the number of inconsistencies between the models and
new metamodel. Then, the designer may give some feedback on the generated
solutions to express his/her preferences by selecting relevant ones. The extracted
preferences from the designer, via an analysis of the location of these solutions
in the objective space, are used to transform the multi-objective search into a
mono-objective one by generating an evaluation function based on the weights
that are automatically calculated from the selected solutions. Therefore, the
designer will interact in the next iterations with only one co-evolution solution
generated by the mono-objective search.

Our approach is taking the advantages of mono-objective search, multi-
objective search, and interactive computational intelligence. Multi-objective
algorithms are powerful in diversifying solutions and finding trade-offs between
many objectives but generate many solutions as an output. The interactive
algorithm is useful in terms of extracting designers’ knowledge and preferences.
Mono-objective algorithms are the best in terms of optimization power once the
evaluation function is well-defined and generate only one solution as an output.
We selected 16 active developers to manually evaluate the effectiveness of our
tool on four well-known metamodel/model co-evolution case studies. The results
show that the participants found their desired revised models faster and more



90 W. Kessentini and V. Alizadeh

accurate than the current state of the art. A supplementary appendix materials
can be found in the following link [13].

Fig. 1. A simplified metamodel evolution example

2 Background and Motivations

Figure 1 shows an example of a simplified metamodel evolution, based on the
simple state machine language and an initial model conform to it. The meta-
model evolution comprises three steps: extract sub-classes for State class result-
ing in InitialState, SimpleState, and FinalState, make class State abstract, and
refine the cardinalities of the predecessor/successor references for the subclasses.
This evolution results in the fact that, besides other constraints violations, the
constraint which is shown in Listing 1.1 is violated when considering the initial
model of Fig. 1c and its conformance to the new metamodel of Fig. 1b.

Listing 1.1. Type/Object relationship formalized as OCL constraint

context M!Object
inv typeExists: MM!Class.allInstances () ->

exists(c|c.name = self.type and not c.isAbstract)

To re-establish conformance for the given example, assume for now that only
two operations on models are used in this context. Non-conforming objects may
either be retyped (reclassified as instances of the concrete classes) or deleted.
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Thus, the potential solution space for retyping or deleting non-conforming ele-
ments contains (c + 1)O solutions (with c = number of candidate classes + 1
for deletion, o = number of non-conforming objects). This means, in our given
example, we would end up with 64 possible co-evolutions.

Several co-evolution studies proposed to revise models after metamodels evo-
lution from manual to fully automated approaches [2]. Recently, few automat-
ed/interactive tools [9–11] used search-based software engineering to generate
revised models. The proposed tools refine an initial model instantiated from the
previous metamodel version to make it as conform as possible to the new meta-
model version by finding the best compromise between three objectives, namely
minimizing (i) the non-conformities with new metamodel version (ii) the changes
to existing models, and (iii) the dissimilarities between the initial and revised
models. During the process, the designer may provide some feedback on the pro-
posed solutions in order to improve them in the next iterations. The output is
several equally good solutions (edit operations that revise the model) presented
to designers to select the appropriate one based on his/her preferences.

Fig. 2. Tentative revised models

Figure 2 shows modified models after applying a set of edit operations
extracted from the output of an existing tool [11]. This figure shows that there
may be several possible solutions where the user has to decide which one to
select in the search space based on the preferences.

3 Approach Overview

Our approach includes three main phases. The first phase is the multi-objective
algorithm, NSGA-II, executed for several iterations to generate a set of non-
dominated co-evolution solutions called Pareto-optimal solutions [12], defined as
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a set of edit operations applied to the initial model, balancing the three objectives
of minimizing the number of suggested edit operations, the deviation with the
initial model, and the number conformance errors with the revised metamodel.

The output of the first component can be a large number of possible solutions.
Thus, it is essential to provide the designers with additional support for interact-
ing with this set of solutions. In the second phase, the user can interact with the
tool at the solution level, by accepting or rejecting or modifying suggested edit
operation(s) and s/he can also give a score to a selected solution between −1 and
1 (the highest is the better). Finally, we extract the preferences automatically
and use them to transform the multi-objective problem into a mono-objective
one by generating weights for each of the three objectives based on the selected
solutions’ locations in the objective space. The output of the mono-objective
search is a single solution fitting the user’s expectations and preferences; then
the designer can interact with that solution if needed and continue the execution
of the mono-objective algorithm until selecting a final co-evolution solution. In
the following, we will explain, in detail, the phases of our approach.

Fig. 3. Solution representation.

3.1 Phase 1: Multi-objective Metamodel/Model Co-evolution

Solution Representation. A co-evolution solution consists of a sequence of
n edit operations to revise the initial model. The vector-based representation
is used to define the edit operations sequence. Each vector’s dimension has an
operation, and its index in the vector indicates the order in which it will be
applied. Consequently, vectors representing different solutions may have different
sizes, i.e., the number of edit operations.

Table 1 shows the possible edit operations that can be applied to model ele-
ments. The instances of classes are called objects, instances of features are called
slots, and instances of references are called links. These operations are inspired
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by the catalog of operators for metamodel/model co-evolution presented in [14].
The catalog includes both metamodel and model changes. Thus, we selected
from it all the edit operations that can be applied to the model level since we
are not changing the metamodels in this paper. Figure 3 represents a solution
that can be applied to the initial model of our motivating example described in
Sect. 2.

Table 1. Model edit operations.

Operations Element Description

Create/delete Object, link, slot Add/remove an element in the initial model.

Retype Object Replace an element by another equivalent element
having a different type.

Merge Object, link, slot Merge several model elements of the same type into
a single element.

Split Object, link, slot Split a model element into several elements of the
same type.

Move Link, slot Move an element from an object to another.

Fitness functions. The investigated co-evolution problem involves searching for
the best sequence of edit operations to apply among the set of possible ones. A
good solution s is a sequence of edit operations to apply to an initial model with
the objectives of minimizing the number of non-conformities f1(s) = nvc(s) with
the new metamodel version, the number of changes f2(s) = nbOp(s) applied to
the initial model, and the inconsistency f3(s) = dis(s) between the initial and
the evolved models such as the loss of information.

The first fitness function nvc(s) counts the number of violated constraints
w.r.t. the evolved metamodel after applying a sequence s of edit operations. We
apply, first, the sequence of edit operations (solution) on the initial model, then
we load the evolved model on the target metamodel to measure the number of
conformance errors based on the number of violated constraints. We consider
three types of constraints, as described in [15]: related to model objects, i.e.,
model element (denoted by O.*), related to objects’ values (V.*), and related
to objects’ links (L.*). We use the implementation of these constraints in our
experiments inspired by Schoenboeck et al. [3] and Richters et al. [15] with
slight adaptations. The constraints are hard-coded in the implementation of
the algorithm, and most of them are from the EMF conformance verification
constraints that already exist in EMF. The full list constraints can be found in
this link [13].
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For the second fitness function, which aims to minimize the changes to the
initial models, we simply count the number of edit operations, nbOp(s) of a
solution s (size of s). The third fitness function dis(s) measures the difference
between the model elements in the initial and revised model. As the type of a
model element may change because of a change in the metamodel, we cannot
rely on elements’ types. Alternatively, we use the identifiers to assess whether the
information was added or deleted when editing a model. In this case, the renamed
or extracted model elements will be considered different than the initial model
element. Thus, we considered the assumption that two model elements could be
syntactically similar if they use a similar vocabulary. Thus, we calculated for
the textual similarity based on the Cosine similarity [16]. In the first step, we
tokenize the names of initial and revised model elements. The textual and context
similarity between elements are grouped together to create a new class, which
is an essential factor in evaluating the revised model’s cohesion. The initial and
revised models are represented as vectors of terms in n-dimensional space where
n is the number of terms in all considered models. For each model, a weight is
assigned to each dimension (representing a specific term) of the representative
vector that corresponds to the term frequency score (TF) in the model. The
similarity among initial and revised model elements is measured by the cosine
of the angle between its representative vectors as a normalized projection of
one vector over the other. This function will compare each of the initial model
elements and all the elements of the revised model to find the best matching.

3.2 Phase 2: Interaction and Preference Extraction

Fig. 4. User interactions with the solutions of the multi-objective search
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Fig. 5. The output of phase 2 (interactions with the user). (Color figure online)

The main goal of this step is to enable the designer’s interactions with the solu-
tions generated by the first phase of the multi-objective search. The interaction
can be performed at the solution and edit operation levels depending on the
user’s desire. The feedback is quantified to a continuous score in the range of
[−1, 1]. The user can evaluate a solution by modifying its edit operations (edit,
add, delete, re-order) or just rate the whole solution, as shown in Fig. 4. After
the designer’s interaction, solution scores (Scoresi) are computed as the average
score of edit operations in a solution. The solutions with the highest score are
considered as the region of interest. It indicates the preferred objectives and edit
operations. The line chart of Pareto-front solutions after interactions is shown
in Fig. 5. The color of each line indicates user preferences (green as preferred
solutions versus red as non-preferred solutions.

3.3 Phase 3: Preference-Based Mono-objective Co-evolution

One of the main contributions of this paper is the ability to convert a multi-
objective algorithm into a mono-objective one after interacting with the designer
to extract his/her preferences. Mono-objective algorithms are known to be the
best in terms of optimization but require that the fitness function should be
well-defined based on the decision maker’s preferences. The Multi-objective Evo-
lutionary Algorithm used in Phase 1 might not provide high-quality solutions in
the region of interest of the developer because of the high dimensionality nature
of the problem and the need to find trade-offs. Therefore, it is important to
consider the user preferences extracted in Phase 2.

The goal of this phase is to use the preferences extracted from the designer
after the multi-objective optimization to transform the problem into a single
objective optimization problem by aggregating objectives according to the user’s
preferences. This transformation gives the decision maker a single solution. Con-
sequently, our proposed approach is a combination of all three categories of
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preference-based search where the preferences are expressed after the first evo-
lutionary process, then they are incorporated to guide the single-objective opti-
mization.

One way to convert a multi-objective optimization problem to a mono-
objective problem and achieve a single solution is called the Weighted Sum
Method (WSM). In this method, the single preference fitness function is com-
puted as a linear weighted sum of multiple objectives. The main drawback of the
WSM method is that it needs the weights parameters to be given. Fortunately,
in our case, those parameters are computed automatically from the decision-
maker preferences of the interactive optimization process (preferred solutions
based on the interaction scores) in the objectives space. Thus, the weight of one
or more objectives can get the value 0 (or almost) if the selected solution(s) by
the developer penalized them while favoring other objectives. Also, the WSM is
not computationally expensive, unlike the other scalarization methods.

In order to solve the converted mono-objective problem, we adopted a stan-
dard Genetic Algorithm (GA). To adapt the GA algorithm to our co-evolution
problem, we use the same solution representation and fitness functions as
reported in phase 1. The importance (weights) of the objectives are based on
the preferred solutions by the user with an interaction score higher than 0.5.
The obtained single fitness function is employed to evaluate the solutions in the
execution of adapted GA. Thus, the weight of each objective is calculated as
the average of the objective values of the preferred solution(s) by the user. We
note that all the objectives of the multi-objective search are normalized using
the min-max function.

Instead of generating the initial population randomly, we acquire the user
preferred solutions as the elite set of solutions from which the search process is
initiated. Thus, we do not generate solutions randomly for the mono-objective
GA, but we take the preferred solutions as the initial population, so we do
not lose the knowledge extracted from the developer. If the number of preferred
solutions is low, then we apply the mutation operator to generate more solutions.
The solutions are evaluated via the preference function aggregated from multiple
objectives. When the stopping condition is satisfied, the single optimal solution
is recommended to the user. Similar to Phase 1, the user can interact with this
solution via editing/adding/removing the edit operations.

4 Evaluation

4.1 Research Questions and Experimental Setup

– RQ1: Search validation. How does our approach perform compared to
random search (RS)?

– RQ2: Benefits. To what extent can our approach make relevant recommen-
dations for designers compared to existing metamodel/model co-evolution
techniques including multi-objective search and an existing deterministic
method?
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– RQ3: The relevance of designers’ preferences extraction. To what
extent can our approach reduce the interaction effort comparing to existing
metamodel/model co-evolution techniques?

Studied Metamodels and Models. To answer the research questions, we con-
sidered the evolution of GMF covering a period of two years and the UML Class
Diagram metamodel evolution from [17,18]. These case studies are interesting
scenarios since they represent real metamodel evolutions, used in an empirical
study [19] and studied in other contributions [20–22]. For GMF, we chose to
analyze the extensive evolution of three Ecore metamodels. We considered the
evolution from GMF’s release 1.0 over 2.0 to release 2.1, covering a period of two
years. For achieving a broad data basis, we analyzed the revisions of three meta-
models, namely the Graphical Definition Metamodel (GMF Graph for short),
the Generator Metamodel (GMF Gen for short), and the Mappings Metamodel
(GMF Map for short). Therefore, the respective metamodel versions had to be
extracted from GMF’s version control system and, subsequently, manually ana-
lyzed. We created different scenarios based on the number of changes introduced
at the metamodel level from the different metamodel releases of GMF and UML.
We merged the releases that did not include extensive changes, and we generated
two evolution scenarios per metamodel type.

The different models and metamodels can be classified as small-sized through
medium-sized to large-sized. In our experiments, we have a total of 7 different
co-evolution scenarios where each scenario included eight different models to
evolve for the GMF case-studies. The percentage of changes between the differ-
ent releases is estimated based on the number of modified metamodel elements
divided by the size of the metamodel. The created models for our experiments
are ensuring metamodels coverage. Furthermore, we used an existing set of 10
generated models for the case of UML metamodel class diagram evolution from
the deterministic work of [17,18]; thus, we were not involved in the selection
of models and metamodel changes. To ensure a fair comparison with Wimmer
et al. [17], we only compared both approaches to the existing UML dataset.
Table 2 describes the statistics related to the collected data.

Table 2. Statistics related to the collected data of the investigated cases.

Metamodels Models

Release #of elements #of changes %of changes #of models #of model
elements
(Min,Max)

#of expected
edit

operations
(Min, Max)

GMF Gen 1.41 to 1.90 From 885 to 1120 347 31% 8 389, 744 39, 70

GMF Gen 1.90 to 1.248 From 1120 to 1216 362 27% 8 433, 686 66, 83

GMF Map 1.45 to 1.52 From 382 to 413 62 15% 8 203, 394 46, 69

GMF Map 1.52 to 1.58 From 413 to 428 10 1.8% 8 347, 402 57, 81

GMF Graph 1.25 to 1.29 From 278 to 279 14 5% 8 142, 283 34, 55

GMF Graph 1.25 to 1.33 From 279 to 281 42 14% 8 149, 301 29, 43

UML CD [17] From 23 to 29 8 8% 10 28, 49 11, 23
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Evaluation Metrics. The quality of our results was measured by two methods:
automatic correctness (AC) and manual correctness (MC). Automatic correct-
ness consists of comparing the proposed edit operations to the reference ones,
operation by operation using precision (AC-PR), and recall (AC-RE). For an
operation sequence corresponding to a given solution, precision indicates the
proportion of correct edit operations (w.r.t. the baseline sequence) in a solution.
The recall is the proportion of correctly identified edit operations among the set
of all expected operations. Both values range from 0 to 1, with higher values
indicating good solutions. AC method has the advantage of being automatic
and objective. However, since different edit operation combinations exist that
describe the same evolution (different edit operations but same target model),
AC could reject a good solution because it yields different edit operations from
reference ones. To account for those situations, we used MC measured by the
designers. It consists of the number of relevant edit operations identified by the
designer over the total number of edit operations in the selected solutions. In
addition, we report the number of interactions (NI) required on the Pareto front
comparing to the one required once the mono-objective search is executed. This
evaluation will help to understand if we efficiently extracted the developer pref-
erences after the Pareto-front interactions. We decided to limit the comparison
to only the interactive multi-objective work of Kessentini et al. [11] since it is the
only approach offering interaction with the user, and it will help us understand
the real impact of the knowledge extraction and mono-objective features (not
supported by existing studies) on the recommendation and interaction effort.
We also report the computation time (T) for the different evolution scenarios to
estimate the effort required to obtain the best co-evolution solutions.

Study Participants. Our study involved 16 master students in Software Engi-
neering. All the participants are volunteers and familiar with model-driven engi-
neering and co-evolution/refactoring since they are part of a graduate course on
Software Testing & Quality Assurance and most of them participated in similar
experiments in the past, either as part of a research project or during gradu-
ate courses. Furthermore, 12 out of the 16 students are working as full-time or
part-time developers in the software industry. Participants were first asked to
fill out a pre-study questionnaire containing five questions. The questionnaire
helped to collect background information such as their role within the com-
pany, their modeling experience, and their familiarity with model-driven engi-
neering and co-evolution/refactoring. In addition, all the participants attended
two lectures about model transformations and evolution, and passed six tests to
evaluate their performance in evaluate and suggest model evolution solutions.
We formed 4 groups, each composed of 4 participants. The groups were formed
based on the pre-study questionnaire and the test results to ensure that all the
groups have almost the same average skill level. We divided the participants into
groups according to the studied metamodels, the techniques to be tested, and
the developers’ experience. The participants were asked to co-evolve the different
models manually and evaluate the results of the different approaches based on
a counter-balanced design [23].
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Statistical Tests. Our experimental study is performed based on 30 indepen-
dent simulation runs, and the obtained results by the alternative approaches are
compared using the Wilcoxon rank-sum test [24] with a 95% confidence level.
Roughly speaking, this test verifies the null hypothesis H0 that the observed dif-
ferences between the alternative results were obtained by chance or if they are
statistically significant (alternative hypothesis H1). The p-value of the Wilcoxon
test corresponds to the probability of rejecting the null hypothesis H0 while it is
true (type I error). A p-value that is less than or equal to 0.05) means that we
reject H0 and accept H1. A p-value that is less than or equal to α(≤ 0.05) means
that we accept H1, and we reject H0. However, a p-value that is strictly greater
than α(> 0.05) means the opposite. In this way, we could decide whether the
superior performance of NSGA-II to one of each of the others (or the opposite)
is statistically significant or just a random result.

Parameter Settings. The stopping criterion was set to 100,000 evaluations
for all search algorithms to ensure fairness of comparison (without counting the
number of interactions since it is part of the users’ decision to reach the best
solution based on his/her preferences). The mono-objective search was limited
to 10,000 evaluations after the interactions with the user. The other parameters’
values are as follows for both the multi-objective and mono-objective algorithms:
crossover probability = 0.4; mutation probability = 0.7, where the probability
of gene modification is 0.5. Each parameter has been uniformly discrete in some
intervals. Values from each interval have been tested for our application. Finally,
we pick the best values for all parameters. Hence, a reasonable set of parameters
values have been experimented.

4.2 Results

Results for RQ1: Search Validation. Figure 6 confirms that using NSGA-II
produces results by far better (and statistically significant) than just randomly
exploring a comparable number of solutions based on the three different metrics
of precision, recall, and manual correctness on all the different evolution case
studies. NSGA-II has precision (AC-PR and MC) and recall (AC-RE) more
than twice higher than the ones of random search, as shown in Fig. 6 (∼96% vs.
∼42%). The difference in execution time in favor of random search (Table 3), due
to the crossover and mutation operators, is largely compensated by the quality
of the obtained results.

RS is not efficient in generating good co-evolution solutions using all the
above metrics in all the experiments. Thus, an intelligent algorithm is required
to find good trade-offs to propose efficient solutions. We conclude that there
is empirical evidence that our multi-objective formulation surpasses the perfor-
mance of RS search; thus, our formulation is adequate, and the use of meta-
heuristic search is justified (this answers RQ1).

Results for RQ2: Benefits. We report the results of the empirical evalua-
tion in Fig. 6. The majority of the co-evolution solutions recommended by our
approach were correct and validated by the participants on the different case
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Fig. 6. The median evaluation scores on the four metamodel evolution scenarios with
95% confidence level (α = 5%)

Table 3. Median execution time, in minutes, on the different metamodel/model
co-evolution scenarios and the number of interaction proposed by both interactive
approaches

Approaches
IMMO I-NSGA-II NSGA-II RS Deterministic

Metamodels T NI T NI T T T

GMF Gen 44 18 71 32 38 30 31

GMF Map 30 16 55 25 28 22 17

GMF Graph 25 24 83 35 21 18 14

Class Diagram 20 8 39 5 16 14 12

studies. On average, for all of our four studied metamodels/models, our app-
roach was able to recommend 96% of generated edit operations correctly. The
remaining approaches have an average of 89% and 81%, respectively, for the
interactive multi-objective approach [11] and the fully automated multi-objective
approach [10]. Both of the interactive tools outperformed fully-automated ones,
which shows the importance of integrating the human in the loop when co-
evolving models. The deterministic approach defines generic rules for a set of
possible metamodel changes that are applied to the co-evolved models. Figure 6
shows that our approach clearly outperforms, on average, the deterministic tech-
nique based on all measures: precision, recall, and manual correctness.

Results for RQ3: The relevance of Designers’ Preferences Extraction.
Table 3 summarizes the time, in minutes, and the number of interaction (for the
interactive approaches) with the participants to find the most relevant solutions
using our tool (IMMO), the interactive approach (I-NSGA-II) [11], the auto-
mated approach [10], Random search and the deterministic approach [17]. All
the participants spent less time finding the most relevant model edit operations
on the different metamodels than I-NSGA-II. For instance, the average time is
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reduced from 71 min to just 44 min for the case of GMF Gen. The time includes
the execution of IMMO and the different phases of interaction until the designer
is satisfied with a specific solution. It is clear as well that the time reduction is not
correlated with the number of interaction. For instance, the deviation between
IMMO and I-NSGA-II for GMF Graph in terms of the number of interactions
is limited to 9 (24 vs. 35), but the time reduction is 58 min. The time includes
the execution of the multi-objective and mono-objective search (if any) and the
different phases of interaction until the designer is satisfied with a specific solu-
tion. The drop of the execution time is mainly explained by the fast execution
of the mono-objective search and the reduced search space after the interactions
with the designer.

It is clear that our approach reduced as well as the number of interaction
comparing to I-NSGA-II. IMMO required much fewer designer interactions. For
instance, only 16 interactions to modify, reject, and select solutions were observed
on GMF Map using our approach, while 25 interactions were needed for I-NSGA-
II. The reductions of the number of interactions are mainly due to the move from
multi-objective to mono-objective search after one round of interactions since the
designers will not deal anymore with a set of solutions in the front but only one.

5 Related Work

In one of the early works [25], the co-evolution of models is tackled by design-
ing co-evolution transformations based on metamodel change types. In [7,8],
the authors compute differences between two metamodel versions, which are
then input to adapt models automatically. This is achieved by transforming the
differences into a migration transformation with a so-called higher-order trans-
formation, i.e., a transformation that takes/produces another transformation as
input/output. In [26], the authors proposed an approach that compromises mul-
tiple steps for model co-evolution: change detection either by comparing between
metamodels or by tracing and recording the changes applied to the old version of
the metamodel. The second step is a classification of the changes in metamodel
and their impact in its instances. Finally, an appropriate migration algorithm for
model migration is determined. For initial model elements for which no trans-
formation rule is found, a default copy transformation rule is applied. This algo-
rithm has been realized in the model migration framework Epsilon Flock [27]
and in the framework described in [28].

A comprehensive survey of interactive SBSE approaches can be found in [29].
The problems of contextualization to developer’s regions of interest during the
recommendation process have been treated in recent SBSE papers for the code
refactoring problem [30–34]. Han et al. proposed in [32] an approach to enable
the interactions with the user, then a Delta Table can select the next refactoring
quickly to improve a specific objective without calculating a fitness function.
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6 Conclusion

In this paper, we proposed a novel approach to extract designers’ preferences to
find good recommendations to co-evolve models. We combined the use of multi-
objective search, mono-objective search, and user interaction in our approach.
To evaluate the effectiveness of our tool, we conducted an evaluation with 16
participants who evaluated the tool and compared it with the state-of-the-art
techniques. As part of our future work, we are planning to evaluate our approach
on further metamodel evolution cases and a more extensive set of participants.
We will also adapt our approach to address other problems requiring designers’
interactions, such as model transformation rules.
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Abstract. A fuzzer provides randomly generated inputs to a targeted
software to expose erroneous behavior. To efficiently detect defects, gen-
erated inputs should conform to the structure of the input format and
thus, grammars can be used to generate syntactically correct inputs. In
this context, fuzzing can be guided by probabilities attached to compet-
ing rules in the grammar, leading to the idea of probabilistic grammar-
based fuzzing. However, the optimal assignment of probabilities to indi-
vidual grammar rules to effectively expose erroneous behavior for indi-
vidual systems under test is an open research question. In this paper, we
present EvoGFuzz, an evolutionary grammar-based fuzz ing approach
to optimize the probabilities to generate test inputs that may be more
likely to trigger exceptional behavior. The evaluation shows the effec-
tiveness of EvoGFuzz in detecting defects compared to probabilistic
grammar-based fuzzing (baseline). Applied to ten real-world applications
with common input formats (JSON, JavaScript, or CSS3), the evaluation
shows that EvoGFuzz achieved a significantly larger median line cover-
age for all subjects by up to 48% compared to the baseline. Moreover,
EvoGFuzz managed to expose 11 unique defects, from which five have
not been detected by the baseline.

Keywords: Grammar-based fuzzing · Probabilistic fuzzing · Software
testing

1 Introduction

Software security vulnerabilities can be extremely costly [30]. Hunting down
those issues has therefore been subject of intense research [10,25,31]. A typical
example are internet browsers that combine a wide variety of interconnected
components, using different interpreters and languages like JavaScript, Java,
CSS, or JSON. This makes web browsers extremely prone to exploiting the
growing set of embedded parsers and interpreters to launch malicious attacks.
Hallaraker et al. [12] have shown that in particular the JavaScript interpreter,
which is used to enhance the client-side display of web pages, is responsible
for high-level security issues, allowing attackers to steal users’ credentials and
lure users into divulging sensitive information. Unfortunately, due to the steady
increase in complexity, interpreters become increasingly hard to test and verify.
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Fuzzing [8,22] has shown great success in finding vulnerabilities and erro-
neous behavior in a variety of different programs and software [34,35]. A fuzzer
generates random input data and enhances or mutates them to trigger potential
defects or software vulnerabilities. In general, fuzzing comes in various flavors:
blackbox, whitebox, and greybox fuzzing [8]. While blackbox fuzzers have no
knowledge about the internals of the application under test and apply random
input generation, whitebox fuzzers can unleash the full power of program analy-
sis techniques to use the retrieved context information to generate inputs. Grey-
box fuzzing strikes a balance between these two cases: it employs a light-weight
instrumentation of the program to collect some feedback about the generated
inputs, which is used to guide the mutation process. This approach reduces the
overhead significantly and makes greybox fuzzing an extremely successful vul-
nerability detection technique [4]. Nevertheless, greybox fuzzers still struggle to
create semantically and syntactically correct inputs [29]. The lack of the struc-
tural input awareness is considered to be the main limitation. Since greybox
fuzzers usually apply mutations on the bit level representation of an input, it is
hard to keep a high level, syntactically correct structure. Yet, to detect vulner-
abilities deep inside programs, complex input files are needed.

Recently, Pavese et al. [28] presented an approach to generate test inputs
using a grammar and a set of input seeds. By using the input seeds to obtain a
probabilistic grammar, Pavese et al. generate similar inputs to the seeds, or by
inverting probabilities of the grammar, generate dissimilar inputs. Similar input
samples can be very useful, for instance, when learning from failure-inducing
samples, while dissimilar inputs can be very useful for testing less common,
and therefore less evaluated parts of a program. We pick up this general idea
of generating inputs based on a probabilistic grammar and propose evolution-
ary grammar-based fuzzing (EvoGFuzz), which combines the technique with
an evolutionary optimization approach to detect defects and unwanted behav-
ior in parsers and interpreters. By using a probabilistic grammar, the fuzzer is
able to generate syntactically correct inputs. Furthermore, our concept of an
evolutionary process is able to generate interesting (i.e., failure-inducing inputs)
and complex input files (e.g., nested loops in JavaScript or nested data struc-
tures in JSON). Utilizing the probabilistic grammar to generate new populations
allows for good guiding properties. By selecting the most promising inputs of a
population and by learning and evolving the probabilistic grammar accordingly,
essentially favoring specific production rules from the previous population, this
process allows the directed creation of inputs towards specific features. Addi-
tionally, EvoGFuzz aims to be language and grammar independent to appeal
to a broader testing community.

To examine the effectiveness of our approach, we implemented EvoGFuzz
as an extension of the tool by Pavese et al. [28] and conducted experiments
on several subjects for three common input languages and their parsers: JSON,
JavaScript, and CSS3. We compared EvoGFuzz with the original approach and
observed that within the same resource budget our technique can significantly
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increase the program coverage. Moreover, EvoGFuzz has been able to trigger
more exception types (EvoGFuzz 11 vs. the original approach 6).

In summary, this paper makes the following contributions:

– We propose an evolutionary grammar-based fuzzing approach (EvoGFuzz)
that combines the concept of probabilistic grammars and evolutionary algo-
rithms to generate test inputs that trigger defects and unwanted behavior.

– We implement EvoGFuzz as an extension of an probabilistic grammar-based
fuzzer [28] and the ANTLR parser generator.

– We demonstrate the effectiveness of EvoGFuzz on ten real-world examples
across multiple programming languages and input formats, and provide a
comparison with the original approach [28].

2 Related Work

EvoGFuzz focuses on the generation of test inputs to reveal defects and
unwanted behavior. Existing approaches in this area can be separated in search-
based, generative, learning-based, and combined techniques [1,26].

Search-Based Input Generation. Test input generation can be formulated
as a search problem to be solved by meta-heuristic search [14,38]. A simple way
is to randomly generate inputs, as employed in the original work on fuzzing by
Miller et al. [22]. More sophisticated random testing strategies are directed by
feedback [27]. Evolutionary search applies fitness functions to select promising
inputs, while the inputs are generated by mutating an initial population. Recent
advances in fuzzing show the strength of such search-based techniques [5,19,34].
One of the most popular greybox fuzzers is AFL [34] that applies a genetic algo-
rithm guided by coverage information. While these techniques can successfully
generate error-revealing inputs, they miss required information about a program
to generate syntactically and semantically correct inputs [29,33].

Generative Input Generation. Hanford [13] introduced grammar-based test
generation with his syntax machine. Recent advances in grammar-based fuzzing
pick up this idea and use a grammar to generate inputs that are syntactically
correct [9,15]. The main focus of grammar-based fuzzers are parsers and compil-
ers [15,37]. Having grammar production rules augmented with probabilities (aka
probabilistic grammars) allows to generate inputs based on rule prioritization.
Pavese et al. [28] employ this notion: they take an input grammar, augment it
with probabilities and generate structured inputs that represent common or very
uncommon inputs. In general, generative approaches require the input grammar
or language specification, which might not always be a available or accurate
enough. Therefore, Höschele and Zeller [16] proposed input grammar mining.

Learning-Based Input Generation. In addition to grammar mining, machine
learning is increasingly applied for software testing [6,11,20]. Those techniques
learn input structures from seed inputs and use them to generate new testing
sequences. They target web browsers [11], compilers [6], and mobile apps [20].
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Combined Techniques. Recently, a lot of research efforts focus on the com-
bination of grammar-based and coverage-based fuzzing (CGF) with the goal to
use the grammar to generate valid inputs but to use CGF to further explore
the input space. Le et al. [18] propose a fuzzer that generates inputs for the
worst-case analysis. While they leverage a grammar to generate seed inputs for
a CGF, they continuously complement/refine the grammar. Atlidakis et al. [3]
propose Pythia to test REST APIs. They learn a statistical model that includes
the structure of specific API requests as well as their dependencies across each
other. While Pythia’s mutation strategies use this statistical model to generate
valid inputs, coverage-guided feedback is used to select inputs that cover new
behavior. Other fuzzing works aim to incorporate grammar knowledge within
their mutation strategies [29,33]. Similarly to Pythia, we use seed inputs to gen-
erate an initial probabilistic grammar. However, with every iteration we retrieve
new probabilities for the grammar while also mutating these probabilities, which
enables evolution of the grammar and a broad exploration of the input space.
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Fig. 1. Overview of EvoGFuzz.

3 Evolutionary Grammar-Based Fuzzing (EvoGFuzz)

In this section, we will present EvoGFuzz, a language-independent evolutionary
grammar-based fuzzing approach to detect defects and unwanted behavior.

The key idea of EvoGFuzz is to combine probabilistic grammar-based
fuzzing and evolutionary computing. This combination aims for directing the
probabilistic generation of test inputs toward “interesting” and “complex”
inputs. The motivation is that “interesting” and “complex” inputs more likely
reveal defects in a software under test (SUT). For this purpose, we extend an
existing probabilistic grammar-based fuzzer [28] with an evolutionary algorithm
(Fig. 1).

Similarly to the original fuzzer, EvoGFuzz requires a correctly specified
grammar for the target language, that is, the input language of the SUT. From
this grammar, we create a so-called counting grammar (Activity 1 in Fig. 1) that
describes the same language but allows us to measure how frequently individual
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choices of production rules are used when parsing input files of the given lan-
guage. Thus, the counting grammar allows us to learn a probabilistic grammar
from a sampled initial corpus of inputs (Activity 2). Particularly, we learn the
probabilities for selecting choices of production rules in the grammar, which cor-
respond to the relative numbers of using these choices when parsing the initial
corpus. Consequently, we use the probabilistic grammar to generate more input
files that resemble features of the initial corpus, that is, “more of the same” [28]
is produced (Activity 3). Whereas this activity is the last step of the approach by
Pavese et al. [28], it is the starting point of the evolutionary process in EvoG-
Fuzz as it generates an initial population of test inputs. An individual of the
population therefore corresponds to a single input file for the SUT.

The evolutionary algorithm of EvoGFuzz starts a new iteration with ana-
lyzing each individual using a fitness function that combines feedback and struc-
tural scores (Activity 4). By executing the SUT with an individual as input, the
feedback score determines whether the individual triggers an exception. If so,
this input is considered as an “interesting” input. The structural score quanti-
fies the “complexity” of the individual. If the stopping criterion is fulfilled (e.g.,
a time budget has been completely used), the exception-triggering input files
are returned. Otherwise, the “interesting” and most “complex” individuals are
selected for evolution (Activity 5). The selected individuals are used to learn a
new probabilistic grammar, particularly the probability distribution for the pro-
duction rules similarly to Activity 2 that, however, used a sampled initial corpus
of inputs (Activity 6). Thus, the new probabilistic grammar supports generating
“more of the same” interesting and complex inputs. To mitigate a genetic drift
toward specific features of the selected individuals, we mutate the new proba-
bilistic grammar by altering the probabilities for randomly chosen production
rules (Activity 7). Finally, using the mutated probabilistic grammar, we again
generate new input files (Activity 8) starting the next evolutionary iteration.

Assuming that inputs similar to “interesting” and “complex” inputs more
likely reveal defects in the SUT, EvoGFuzz guides the generation of inputs
toward “interesting” and “complex” inputs by iteratively generating, evaluating,
and selecting such inputs, and learning (updating) and mutating the probabilistic
grammar. In contrast to typical evolutionary algorithms, EvoGFuzz does not
directly evolve the individuals (test input files) by crossover or mutation but
rather the probabilistic grammar whose probabilities are iteratively learned and
mutated. In the following, we will discuss each activity of EvoGFuzz in detail.

3.1 Probabilistic Grammar-Based Fuzzing (Activities 1–3)

Pavese et al. [28] have proposed probabilistic grammar-based fuzzing to gener-
ate test inputs that are similar to a set of given inputs. Using a (context-free)
grammar results in syntactically correct test inputs being generated. However,
the production rules of the grammar are typically chosen randomly to generate
inputs, which does not support influencing the features of the generated inputs.
To mitigate this situation, Pavese et al. use a probabilistic grammar, in which
probabilities are assigned to choices of production rules. The distribution of these
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probabilities are learned from a sample of inputs. Consequently, test inputs pro-
duced by a learned probabilistic grammar are therefore similar to the sampled
inputs. Pavese et al. call this idea “more of the same” [28] because the produced
inputs share the same features as the sampled inputs.

Technically, a given context-free grammar for the input language of the SUT
is transformed to a so-called counting grammar by adding a variable to each
choice of all production rules (Activity 1). Such a variable counts how often its
associated choice of a production rule is executed when parsing a given sample
of inputs. Knowing how often a production rule is executed in total during
parsing, the probability distribution of all choices of the rule is determined.
Thus, using the counting grammar to parse a sample of nsample input files,
the variables of the grammar are filled with values according to the executed
production rules and their choices (Activity 2). This results in a probabilistic
grammar, in which a probability is assigned to each choice of a production rule.
Using this probabilistic grammar, we can generate new input files that resemble
features of the sampled input files since both sets of input files have the same
probability distribution for the production rules (Activity 3). Thus, EvoGFuzz
uses the approach by Pavese et al. to initially learn a probabilistic grammar from
nsample input files (Activities 1 and 2), and to generate |P | new input files for
the (initial) population P (Activity 3), which starts an evolutionary iteration.

3.2 Evolutionary Algorithm (Activities 4–8)

The evolutionary algorithm of EvoGFuzz evolves a population of test input files
by iteratively (i) analyzing the fitness of each individual, (ii) selecting the fittest
individuals, (iii) learning a new probabilistic grammar based on the selected indi-
viduals, (iv) mutating the learned grammar, and (v) generating new individuals
by the mutated grammar that form the population for the next iteration.

Analyze Individuals (Activity 4). Our goal is to evolve individuals toward
“complex” and “interesting” test inputs as such inputs more likely detect defects
and unwanted behavior. To achieve this goal, we use a fitness function that
quantifies both aspects, the complexity and whether an input is of interest.

Concerning complexity, we focus on the structure of test input files assum-
ing complex structures (e.g., nested loops in JavaScript) have a higher tendency
to reveal uncommon behavior in the SUT (e.g., a JavaScript parser) than sim-
ple ones. However, we can make only few assumptions about the complexity of
input files since EvoGFuzz is language independent and thus, it has no seman-
tic knowledge about the language of test inputs besides the grammar. Thus, we
can only rely on generic features of test input files and grammars to quantify the
complexity of an input file. A straightforward and efficient metric to use would
be the length of an input file in terms of the number of characters contained
by the file. However, a fitness function maximizing file length would favor pro-
duction rules that produce terminals being longer strings (e.g., “true” or “false”
in JavaScript) over rules that produce more expansions through non-terminals
to obtain complex structures (e.g., “if” branches or “for” loops). To mitigate
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this effect, we further use the number of used expansions to derive an input file
because using more expansions to generate an input file makes the input file more
complex. Thus, we build the ratio of the number of expansions to the length of
an input file x to favor input files that were produced by more expansions and to
punish lengthy input files that contain long strings of characters. Depending on
the language of the input files, this ratio can be controlled by the parameter λ.

ratio(x) =
expansions(x)
λ × length(x)

(1)

Using this ratio, we score the structure of an input file x by multiplying the
ratio and the number of expansions to put more weight on the expansions while
a good ratio (>1) increases the score.

scorestructure(x) = ratio(x) × expansions(x) (2)

Benefits of this score are its efficient computation and independence of the input
language, although controlling λ allows accommodation of a specific language.

Concerning the “interesting” inputs, we rely on the feedback from executing
the SUT with a concrete input x. Being interested in revealing defects in the
SUT, we observe whether x triggers any exception during execution. If so, such
an input will be assigned the maximum fitness and favored over all other non-
exception triggering inputs. This results in a feedback score for an input file x:

scorefeedback(x) =

{
∞ if x triggers any exception
0 otherwise

(3)

Moreover, EvoGFuzz keeps track of all exception-triggering inputs throughout
all iterations as it returns these inputs at the end of the evolutionary search.

Finally, we follow the idea by Veggalam et al. [32] and combine the structural
and feedback scores to a single-objective fitness function to be maximized:

fitness(x) = scorefeedback(x) + scorestructure(x) (4)

Using this fitness function, all |P | input files generated by the previous activity
(Activity 3) are analyzed by executing them and computing their fitness.

Select Individuals (Activity 5). Based on the fitness of the |P | input files, a
strategy is needed to select the most promising files among them that will be used
for further evolution. To balance selection pressure, EvoGFuzz uses elitism [7]
and tournament selection [23]. By elitism, the top erate% of the |P | input files
ranked by fitness are selected. Additionally, the winners of ntour tournaments of
size stour are selected. The stour participants of each tournament are randomly
chosen from the remaining (100 − erate)% of the |P | input files. In contrast to
typical evolutionary algorithms, the selected individuals are not directly evolved
by crossover or mutation, but they are used to learn a new probabilistic grammar.

Learn New Probabilistic Grammar (Activity 6). The selected input files
are the most promising files of the population and they help in directing the
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further search toward “complex” and “interesting” inputs. Thus, these files are
used to learn a new probabilistic grammar, particularly the probability distri-
butions for all choices of production rules, by parsing them (cf. Activity 2 that
learns a probabilistic grammar, however, from a given sample of input files).
Thus, the learned probability distributions reflect features of the selected input
files, and the corresponding probabilistic grammar can produce more input files
that resemble these features. But beforehand, EvoGFuzz mutates the learned
grammar.

Mutate Grammar (Activity 7). We mutate the learned probabilistic gram-
mar to avoid a genetic drift [36] toward specific features of the selected individu-
als. With such a drift, the grammar would generate only input files with specific
features exhibited by the selected individuals from which the grammar has been
learned. Thus, it would neglect other potentially promising, yet unexplored fea-
tures. Moreover, mutating the grammar maintains the diversity of input files
being generated, which further could prevent the search from being stuck in
local optima. In contrast to typical evolutionary algorithms, we do not mutate
the individuals directly for two reasons. First, mutating an input file may result
in a syntactically invalid file (i.e., the file does not conform to the given gram-
mar). Second, a stochastic nature of the search is already achieved by using a
probabilistic grammar to generate input files.

Therefore, we mutate the learned probabilistic grammar by altering the prob-
abilities of individual production rules. The resulting mutated grammar produces
syntactically valid input files whose features are similar to the selected individu-
als but that may also exhibit other unexplored features. For instance, a mutation
could enable choices of production rules in the grammar that have not been used
yet to generate input files because of being tagged so far with a probability of 0
that is now mutated to a value larger than 0. This increases the genetic variation.

For a single mutation of a probabilistic grammar, we choose a random pro-
duction rule with n choices for expansions from the grammar. For each choice,
we recalculate the probabilities pi by selecting a random probability ri from
(0, 1]—we exclude 0 to enable all choices by assigning a probability larger than
zero—and normalizing ri with the sum of all of the n probabilities to ensure∑n

i=1 pi = 1 (i.e., the individual probabilities of all choices of a production rule
sum up to 1). Thus, a probability pi for one choice is calculated as follows:

pi =
ri∑n
j=1 rj

(5)

Finally, EvoGFuzz allows multiple of such mutations (nmut many) of a
probabilistic grammar in one iteration of search by performing each mutation
independently from the other ones.

Generate Input Files (Activity 3). Using the learned and mutated grammar,
EvoGFuzz generates |P | new input files that resemble features of the recently
selected input files but still diverge due to the grammar mutation. With the
newly generated input files, the next iteration of the evolutionary process begins.
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4 Evaluation

In this section, we evaluate the effectiveness of EvoGFuzz by performing experi-
mentation on ten real-world applications.1 We compare EvoGFuzz to a baseline
being the original approach by Pavese et al. [28] (i.e., probabilistic grammar-
based fuzzing), and ask the following research questions:

RQ1. Can evolutionary grammar-based fuzzing achieve a higher code coverage
than the baseline?

RQ2. Can evolutionary grammar-based fuzzing trigger more exception types
than the baseline?

4.1 Evaluation Setup

To answer the above research questions, we conducted an empirical study, in
which we analyze the achieved line coverage and the triggered exception types.
Line or code coverage [24] is a metric counting the unique lines of code of the
targeted parser (i.e., the SUT) that have been executed during a test.

In order to examine the effectiveness of EvoGFuzz we evaluate our approach
on the same test subjects that Pavese et al. have originally covered with their pro-
posed probabilistic grammar-based fuzzing approach. These test subjects require
three, in complexity varying input formats, namely JSON, JavaScript, and CSS3.
ARGO, Genson, Gson, JSONJava, JsonToJava, MinimalJson, Pojo, and json-
simple serve as the JSON parsers, whereas Rhino and cssValidator serve as the
JavaScript and CSS parser, respectively. All parsers are widely used in browsers
and web applications. A further description of all subjects along with their gram-
mars can be found in the work of Pavese et al. [28]. All experiments have been
performed on a virtual machine with Ubuntu 20.04 LTS featuring a Quad-Core
3 GHz Intel(R) CPU with 16 GB RAM.

4.2 Research Protocol

Giving both approaches the same starting conditions, we considered the same
randomly selected input files from Pavese et al. to create the initial probabilistic
grammar. The baseline uses this probabilistic grammar to generate “more of
the same” inputs, whereas EvoGFuzz uses this grammar to generate the initial
population followed by executing its evolutionary algorithm. In our evaluation,
we observe the performance of both approaches for all subjects over a time frame
of 10 min, that is, each approach runs for 10 min to test one subject.

For EvoGFuzz, a population consists of 100 individuals (|P | = 100) and one
mutation of the grammar (nmut = 1) is performed in each iteration of the search.
The elitism rate erate is set to 5%, and for each generation ten tournaments of
size ten were held (ntour = 10 and stour = 10). In the fitness function, λ is
set to 1.5 for JSON and 2.0 for JavaScript and CSS. Since the goal is to find

1 Data and code artifacts are available here: https://doi.org/10.5281/zenodo.3961374.

https://doi.org/10.5281/zenodo.3961374
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exceptions, we configured the baseline to perform iterations of generating and
executing 100 “more of the same” input files for 10 min. After 10 min the baseline
and EvoGFuzz return all found exceptions and the exception-triggering test
inputs. For each test subject and approach, we repeated these experiments 30
times.

4.3 Experimental Results

Figures 2(a) to (j) show the coverage results for the ten subjects. For each subject,
we plot a chart showing the comparison of EvoGFuzz and the baseline with
regard to the achieved line coverage. The vertical axis represents the achieved
line coverage in percent, and the horizontal axis represents the time in seconds
(up to 600 s = 10 min). The median runs for both approaches are highlighted,
with all individual runs being displayed in the background.

RQ1 - Line coverage. To answer RQ1, we compare the line coverage achieved
by both approaches. In particular, we investigate whether EvoGFuzz achieves
at least the same percentage of line coverage than the baseline. Figs. 2(a) to (h)
show the results for the JSON parsers, and Figs. 2(i) and (j) show the results for
the JavaScript and CSS3 parser, respectively.

The results show that EvoGFuzz improves the coverage for all subjects and
is able to increase the median line coverage for JSON by up to 18.43% (json-
simple, Fig. 2(h)), for JavaScript by up to 47.93% (Rhino, Fig. 2(i)), and for
CSS3 by up to 8.45% (cssValidator, Fig. 2(j)). These numbers are also listed in
the column “Median increase” of Table 1.

The detailed investigation of Figs. 2(a) to (h) shows that for almost all JSON
parsers both approaches eventually reach a plateau with regard to the achieved
line coverage. The baseline reaches this plateau relatively early in the input
generation process: there is no further improvement after only approximately
10 s. For EvoGFuzz, the point in time when reaching the plateau varies from
parser to parser: between 10 s (Pojo, Fig. 2(g)) and 450 s (json-simple, Fig. 2(h)).
In contrary, for Rhino (Fig. 2(i)) both approaches cannot achieve a plateau within
10 min as they are able to continuously increase the line coverage over the time.

Table 1 shows the accumulated coverage results for each subject and approach
over all 30 repetitions. For both approaches, Table 1 shows the maximum and
median line coverage, the standard deviation as well as the number of generated
input files, along with the increase of the median line coverage of EvoGFuzz
compared to the baseline. The improvement of the median line coverage ranges
from 1.00% (Pojo) to 47.93% (Rhino). Additionally, the standard deviation (SD)
values for the baseline in Table 1 indicate the existence of plateaus because all
repetitions for each JSON parser show a very low (and often 0%) SD value.

To support the graphical evaluation, we do a statistical analysis to increase
the confidence in our conclusions. As we consider independent samples and can-
not make any assumption about the distribution of the results, we perform a non-
parametric Mann-Whitney U test [2,21] to check whether the achieved median
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Fig. 2. Median and raw line coverage results for the ten subjects.
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Table 1. Coverage results for each subject and approach over 30 repetitions.

Subject LOC EvoGFuzz Baseline Median p-value

Max Median SD #files Max Median SD #files Increase

ARGO 8,265 49.78% 48.48% 0.60% 11,900 43.19% 43.19% 0% 13,900 12.25% 0.000062

Genson 18,780 19.65% 19.09% 0.19% 8,100 16.17% 16.17% 0% 9,000 18.06% 0.000063

Gson 25,172 26.92% 26.67% 0.15% 9,800 24.08% 24.08% 0% 11,200 10.76% 0.000064

JSONJava 3,742 21.09% 18.47% 0.59% 12,700 16.72% 16.72% 0% 15,000 10.47% 0.000064

JsonToJava 5,131 18.58% 17.90% 0.39% 11,400 17.58% 17.45% 0.09% 13,400 2.58% 0.020699

minimalJSON 6,350 51.06% 50.83% 0.26% 14,000 46.38% 46.38% 0% 16,600 9.59% 0.000055

Pojo 18,492 32.33% 32.17% 0.07% 10.600 31,88% 31.88% 0.02% 12,100 1.00% 0.000061

json-simple 2,432 34.44% 33.80% 0.33% 14,200 28.54% 28.54% 0% 16,700 18.43% 0.000059

Rhino 100,234 15.42% 13.95% 0.43% 3,200 10.20% 9.43% 0.28% 3,800 47.93% 0.000183

cssValidator 120,838 7.53% 7.06% 0.21% 1,000 6.62% 6.51% 0.06% 2,500 8.45% 0.000183

line coverage of both approaches differ significantly for each subject. This sta-
tistical analysis confirms that EvoGFuzz produces a significantly higher line
coverage than the baseline for all subjects (cf. last column of Table 1).

The #files columns in Table 1 denote the average number of input files gen-
erated by one approach when testing one subject for 10 min. For all subjects,
the baseline is able to generate on average more files than EvoGFuzz. These
differences indicate the costs of the evolutionary algorithm in EvoGFuzz being
eventually irrelevant due to the improved line coverage achieved by EvoGFuzz.

Fig. 3. Line coverage of Rhino. Fig. 4. Unique exceptions triggered by
EvoGFuzz (11) and the baseline (6).

Since both approaches managed to continuously increase the line coverage
for the Rhino parser (Fig. 2(i)), we conducted an additional experiment with the
time frame set to one hour and again repeated the experiment 30 times. The
results can be seen in Fig. 3. The chart shows that both approaches managed to
further improve their (median) line coverage. EvoGFuzz was able to improve
its previously achieved median line coverage of 13.95% to 16.10% with 18,500
generated input files, while the baseline improved from 9.43% to 10.23% with
22,700 generated input files, separating botch approaches even further.
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Based on our evaluation, we conclude that EvoGFuzz is able to achieve
a significantly higher line coverage than the baseline.

RQ2 - Exception Types. To answer RQ2, we compare the number of times a
unique exception type has been triggered. Table 2 shows the thrown exception
types per subject and input language. If neither approach was able to trigger
an exception, the subject is not included in the table. For the Gson, JsonJava,
simple-json, minimal-json, and cssValidator parsers no defects and exceptions
have been found by both approaches. The ratios in the 4th and 5th column
relate to the number of experiment repetitions in which EvoGFuzz and the
baseline were able to trigger the corresponding exception type.

Table 2. Exception types that have been triggered by both approaches.

Input

language

Subject Exception

types

EvoGFuzz Baseline

JSON ARGO argo.saj.InvalidSyntaxException 30/30 0/30

Genson java.lang.NullPointerException 30/30 30/30

jsonToJava org.json.JSONException 30/30 30/30

jsonToJava java.lang.IllegalArgumentException 30/30 30/30

jsonToJava java.lang.ArrayIndexOutOfBoundsException 30/30 30/30

jsonToJava java.lang.NumberFormatException 6/30 0/30

Pojo java.lang.StringIndexOutOfBoundsException 30/30 30/30

Pojo java.lang.IllegalArgumentException 30/30 30/30

Pojo java.lang.NumberFormatException 22/30 0/30

JavaScript Rhino java.lang.IllegalStateException 26/30 0/30

Rhino java.util.concurrent.TimeoutException 15/30 0/30

CSS3 No exceptions triggered

Total exception types 11 6

Table 2 and Fig. 4 show that during each experiment repetition, EvoGFuzz
has been able to detect the same exception types than the baseline. Further-
more, EvoGFuzz was able to find five additional exception types that have
not been triggered by the baseline. However, apart from the exception type
argo.saj.InvalidSyntaxException, found in the ARGO parser, the other four
exception types have not been identified by EvoGFuzz in all repetitions.

Overall, 11 different exception types in five subjects have been found
in our evaluation, incl. just two custom types (org.json.JSONException
and argo.saj.InvalidSyntaxException). Out of these 11 exception types,
five have not been triggered by the baseline. Figure 4 shows that all six
exception types triggered by the baseline were also found by EvoGFuzz.
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4.4 Threats to Validity

Internal Validity. The main threats to internal validity of fuzzing evaluations
are caused by the random nature of fuzzing [2,17]. It requires a meticulous
statistical assessment to make sure that observed behaviors are not randomly
occurring. Therefore, we repeated all experiments 30 times and reported the
descriptive statistics of our results. To match the evaluation of Pavese et al. [28],
we used the same set of subjects and seed inputs. Furthermore, we automated
the data collection and statistical evaluation. Finally, we did not tune the param-
eters of the baseline and EvoGFuzz to reduce the threat of overfitting to the
given grammars and subjects. Only for the fitness function of EvoGFuzz, we
determined appropriate λ values for the three input grammars by experiments.

External Validity. The main threat to external validity is the generalizability
of the experimental results that are based on a limited number of input grammars
and systems under test. However, similar to Pavese et al. [28], practically relevant
input grammars with different complexities (small-sized grammars like JSON,
and rather complex grammars like JavaScript and CSS) and widely used subjects
(e.g., ARGO and Rhino) have been selected. As a result, we are confident that
our approach will also work on other grammars and subjects.

5 Conclusion and Future Work

This paper presented EvoGFuzz, evolutionary grammar-based fuzzing that
combines the technique by Pavese et al. [28] with evolutionary optimization
to direct the generation of complex and interesting inputs by a fitness func-
tion. EvoGFuzz is able to generate structurally complex input files that trig-
ger exceptions. The introduced mutation of grammars maintains genetic diver-
sity and allows EvoGFuzz to discover features that have previously not been
explored. Our experimental evaluation shows improved coverage compared to the
original approach [28]. Additionally, EvoGFuzz is able to trigger more exception
types undetected by the original approach. As future work, we want to investi-
gate cases of having no precise grammar of the input space (cf. [18]) and using
semantic knowledge of the input language to tune mutation operators. Finally,
we want to compare EvoGFuzz with other state-of-the-art fuzzing techniques.
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Abstract. Various search-based test generation techniques have been
proposed to automate the generation of unit tests fulfilling different cri-
teria (e.g., line coverage, branch coverage, mutation score, etc.). Despite
several advances made over the years, search-based unit test generation
still suffers from a lack of guidance due to the limited amount of infor-
mation available in the source code that, for instance, hampers the gen-
eration of complex objects. Previous studies introduced many strategies
to address this issue, e.g., dynamic symbolic execution or seeding, but do
not take the internal execution of the methods into account. In this paper,
we introduce a novel secondary objective called commonality score, mea-
suring how close the execution path of a test case is from reproducing a
common or uncommon execution pattern observed during the operation
of the software. To assess the commonality score, we implemented it in
EvoSuite and evaluated its application on 150 classes from JabRef, an
open-source software for managing bibliography references. Our results
are mixed. Our approach leads to test cases that indeed follow common
or uncommon execution patterns. However, if the commonality score can
have a positive impact on the structural coverage and mutation score of
the generated test suites, it can also be detrimental in some cases.

Keywords: Search-based software testing · Automated unit testing ·
Common paths coverage · Secondary objective

1 Introduction

Search-based test case generation enables the automated generation of test cases
according to predefined criteria. Among the different approaches, white-box
search-based test case generation [13,15,29] relies on evolutionary algorithms to
generate test cases from source code and maximize structural coverage [15,29]
or mutation score [16]. Previous research has shown that automatically gener-
ated tests are effective for coverage and fault finding [3,23,28], can also find real
faults [2], and are useful for debugging [5].
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Despite several advances, search-based unit test generation still faces many
challenges. Among those are (i) the crafting of complex objects and values used
during test generation [2], and (ii) the indirect coverage of encapsulated elements
(e.g., private methods and class attributes) through the invocation of specific
paths in public methods [32]. Various approaches address those challenges by
relying on dynamic symbolic execution to generate complex objects and values
using constraint solvers [18,19,21,24]; seeding to identify objects and values from
the application source and test code that are later reused during the search [31];
or class usages, learned from static analysis of the source code [8,17] and dynamic
execution of the existing tests [8], and used to generate realistic objects.

However, if complex objects and values can indeed lead to an improvement
in the coverage, it does not always succeed in covering all the elements of a class
under test. For instance, if the indirect coverage of a private method requires
specific executions paths in a public method, the current fitness functions will
not be able to provide sufficient guidance to the search process [32].

In this paper, we hypothesize that common and uncommon execution paths,
observed during the actual operation of the system, can lead to better guidance
of the search process, and hence, better coverage. Complementing previous work
on seeding [31], which is aimed at triggering different execution paths in the
methods under test, we consider the commonality of those execution paths. For
that, we approximate commonality using weights for the different code blocks,
and define a secondary objective called the commonality score, denoting how
close an execution path is from common or uncommon executions of the software.

We implemented the commonality score in EvoSuite [13] and evaluated it
on 150 classes from JabRef, an open-source bibliography reference manager, for
common and uncommon behaviors. We compare the commonality score (RQ.1),
the structural coverage (RQ.2), and the fault-finding capabilities (RQ.3) of the
thus generated tests to tests generated by the standard EvoSuite implementa-
tion. Our results are mixed but show that this secondary objective significantly
improves the number of covered common paths in 32.6% of the classes. Although
the average structural coverage remains stable, the commonality score signifi-
cantly improves the line (resp. branch) coverage in three (resp. four) classes, but
also negatively impacts the coverage for eight (resp. nine) classes. Finally, the
commonality score impacts the number of killed mutants for 22 classes (11 pos-
itively and 11 negatively). Our implementation is openly available at https://
github.com/STAMP-project/evosuite-ramp, and the replication package of our
evaluation and data analysis have been uploaded to Zenodo [11,12].

2 Background and Related Work

2.1 Search-Based Unit Test Generation

Search-based unit test generation has been extensively investigated by prior
studies [13,15,29]. These studies have confirmed that it achieves a high level of
coverage [15,29], detects faults in real-world applications [2,16], and reduces the

https://github.com/STAMP-project/evosuite-ramp
https://github.com/STAMP-project/evosuite-ramp
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debugging costs [30]. Most search-based unit test generation approaches abstract
the source code of a method to a control flow graph:

Definition 1 (Control Flow Graph (CFG) [1]). A control flow graph for a
method m is a directed graph G = (B,E), where B is the set of basic blocks (i.e.,
sequences of statements that do not have any branch before the last statement),
E is the set of control flow edges connecting the basic blocks.

For instance, for the method with the pseudo-code presented in Fig. 1(a), the
corresponding CFG for this method is depicted in Fig. 1(b).

Search-based software unit test generation approaches use meta-heuristics
to evolve a set of test cases. These techniques start with generating an initial
population of randomly produced test cases. The fitness of each individual in
the population is evaluated using a fitness function, which is usually defined
according to the coverage in the CFGs of the target class. Next, a subset of
the fittest individuals is selected for evolution and leads to the generation of a
new population. The evolving process contains three steps: (i) crossover, which
randomly mixes two selected individuals to generate new offspring; (ii) mutation,
which randomly changes, adds, or removes a statement in an individual; and (iii)
insertion, which reinserts the modified individuals into the population for the
next iteration of the algorithm. This process continues until either satisfactory
individuals are found, or the time budget allocated for the search is consumed.
Among the different approaches, EvoSuite [13] uses genetic algorithms to evolve
Java test suites in order to cover a class under test.

MOSA [27] and DynaMOSA [29] are two new many-objectives genetic algo-
rithms proposed for unit test generation. These algorithms consider test cases
as individuals and incorporate separate fitness functions for separate coverage
goals (e.g., covering each branch in the CFGs will be an independent search
objective). They use non-dominated fronts to generate test cases in the direc-
tion of multiple coverage goals in parallel, and thereby generate tests aiming to
cover specific goals, while not letting the test generation be trapped for covering
a single goal. Panichella et al. [27] show that MOSA outperforms the original
EvoSuite approach in terms of structural coverage and mutation score.

In this paper, we use MOSA to automatically generate test cases according
to the collected logs during the production phase. Future work includes the
evaluation of our approach with other multi and many-objectives algorithms,
like DynaMOSA.

2.2 Usage-Based Test Generation

The majority of search-based test generation techniques aim to achieve high cov-
erage for various metrics (e.g., line coverage, branch coverage, or more recently
mutation coverage). Despite their considerable achievements, they do not con-
sider the execution patterns observed in production use for automatic generation
of unit tests. Hence, Wang et al. [37] investigated how developer-written tests
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and automatically generated tests represent typical execution patterns in pro-
duction. Their study confirms that these tests are not a proper representation
of real-world execution patterns.

The behavior of actual users may reveal faults, which are not detected by
the existing test cases. For instance, a piece of code in the software under test
that is not often used in practice may be left relatively untested because it is
rarely exercised in production. A recent method from Wang et al. [38], based on
symbolic execution, recreates users behaviors using log data from a system run
in production, which has allowed to find the same faults in a system encountered
by a user. This paper aims to expand upon generating tests based on the actual
usage of a system at the unit level. In contrast to Wang et al. [38], where the aim
is to replicate a full behavior executed by a user by using symbolic execution,
we aim to guide the search process in a genetic algorithm towards executing
common or uncommon behaviors. In the same vein as Wang et al. [38], log data
is used to determine the execution counts of code branches.

Other approaches consider user feedback [20], or usage models of the appli-
cation and statistical testing [9,22,34,35] to generate and prioritize test cases at
the system level. A usage model consists in a state machine where transitions
have been labelled with a probability of being executed. Unlike those approaches,
we consider test case generation at the unit level.

3 Test Generation for Common and Uncommon
Behaviors

Intuitively, commonality describes to what extent a test exercises code branches
that are executed often during the normal operation of the system under test. If
a test executes branches that are often (respectively rarely) executed in practice,
it will have a high (respectively low) commonality score. The commonality score
has a value between 0 and 1 and is computed based on an annotated control
flow graph [1]:

Definition 2 (Annotated Control Flow Graph). An annotated control flow
graph is a directed graph G = (B,E, γ), where G = (B,E) is a control flow
graph, and γ : B → R is a labelling function giving for the basic blocks in B an
execution weight denoting how often the block is executed during operations.

The execution weights can be derived from the operation logs of the system, an
instrumented version of the system (like in our evaluation), or assigned manually.

Let us define the commonality score. For a test case, its commonality score
depends only on the branches it covers and on the highest and lowest execution
weights in the class under test. Branches without execution weights are ignored
and branches covered multiple times (e.g., in a loop) are counted only once.
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/* Branch 1 */

1 if condition1 then
/* Branch 2 */

2 ...;
3 else

/* Branch 3 */

4 ...;
5 if condition2

then
/* Branch 4

*/

6 ...;

/* Branch 5 */

7 ...;

/* Branch 6 */

8 ...;

(a) Pseudo-code.

b1

b2 b3

b4

b5

b6

(b) CFG.

b1

γ1: 10

b2

γ2: 3

b3

γ3: 7

b4

γ4: 1

b5

γ5: 7

b6

γ6: 10

(c) ACFG.

Fig. 1. Example of pseudo-code and its corresponding annotated control flow graph.
The γi indicate to the execution weight of the node.

Definition 3 (Commonality score). For a test case t executing n basic blocks
bi labelled by a function γ, the highest execution weight in the class under test
h, the lowest execution weight in the class under test l, the commonality score
of t, denoted c(t) is defined as:

c(t) =
∑n

i=1 (γbi − l)
n × (h − l)

The commonality score for a test suite s is defined as the average of the com-
monality scores of its test cases: c(s) =

(∑
ti∈s c(ti)

)
/|s|.

For instance, considering a class containing a single method with the pseudo-
code presented in Fig. 1(a), the corresponding annotated control flow graph in
Fig. 1(b), and a test suite containing three test cases t1 covering (b1, b2, b6), t2
covering (b1, b3, b5, b6), and t3 covering (b1, b3, b4, b5, b6). The commonality
scores are c(t1) = ((10 − 1)) + (3 − 1) + (10 − 1)) / (3 × (10 − 1)) = 20/27 ≈
0.741, c(t2) = 5/6 ≈ 0.833, and c(t3) = 2/3 ≈ 0.667.

3.1 Commonality as a Secondary Objective

Secondary objectives are used to choose between different test cases in case of a
tie in the main objectives. For instance, the default secondary objective used by
MOSA [27] minimizes the test case length (i.e., the number of statements) when
two test cases satisfy the same main objectives (e.g., cover the same branches).
Using test case length minimization as a secondary objective addresses the bloat-
ing effect [33] by preventing the search process from always generating longer
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test cases. Since this is a desirable property, we combine the test case length
minimization with the commonality of the test case using a weighted sum when
comparing two test cases.

Definition 4 (Commonality secondary objective). For two test cases t1,
t2 with lengths l1, l2, the comparison between the two test cases is done using
the following formula:

common(t1, t2) =

(
α

(
l1
l2

)
+ β

(
1−c(t1)
1−c(t2)

))

(α + β)

If common(t1, t2) ≤ 1, then t1 is kept, otherwise t2 is kept.

Similarly, for the uncommonality between two test cases, we will have the fol-
lowing definition.

Definition 5 (Uncommonality secondary objective). For two test cases
t1, t2 with lengths l1, l2, the comparison between the two test cases is done using
the following formula:

uncommon(t1, t2) =

(
α

(
l1
l2

)
+ β

(
c(t1)
c(t2)

))

(α + β)

If uncommon(t1, t2) ≤ 1, then t1 is kept, otherwise t2 is kept.

In our evaluation, we use commonality and uncommonality with MOSA to
answer our different research questions.

4 Empirical Evaluation

To assess the usage of commonality as a secondary objective for test case gen-
eration, we performed an empirical evaluation using 150 classes from JabRef1,
an open source bibliography reference manager, to answer the following research
questions:

RQ.1. How does the commonality score of the generated tests compare when
using the common, uncommon, and default secondary objectives?

RQ.2. How does the line and branch coverage of the generated tests compare
when using the common, uncommon, and default secondary objectives?

RQ.3. How does the mutation score of the generated tests compare when using
the common, uncommon, and default secondary objectives?

We implemented the secondary objectives from Sect. 3 in EvoSuite [13], a
state-of-the-art white-box unit test generator tool for Java. Our implementation
is openly available at https://github.com/STAMP-project/evosuite-ramp, and
the replication package of our evaluation and data analysis have been uploaded
to Zenodo [11,12].
1 https://www.jabref.org.

https://github.com/STAMP-project/evosuite-ramp
https://www.jabref.org
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4.1 Subject and Execution Weights

Collecting Execution Weights. For our evaluation, we choose JabRef (46
KLOC), an open-source Java bibliography reference manager with a graphi-
cal user interface working with BibTex files. To determine the execution weights
of the different branches, we instrumented JabRef using Spoon2 and added log
statements producing a message with a unique identifier each time a branch is
executed. These identifiers are then mapped to a source code location, identified
by the class name, the method name, and the line number. Furthermore, the
number of occurrences of the identifier in the log messages is established. We
then asked five people (including the first author) to use our modified JabRef
implementation to perform various tasks (adding a reference, updating a refer-
ence, removing a reference, etc.) and collected the produced logs. In an industrial
context, operations logs can be analyses and traced back to the source code to
identify the execution weights [39].

Classes Under Test. We sampled 150 classes. We excluded classes from the org.-
jabref.gui and org.jabref.logic.importer.fileformat packages as they
respectively work with JavaFX and perform input-output operations. From the
remaining classes and following the best practices of the search-based unit testing
community [26], we selected 75 classes with the highest cyclomatic complexity,
as classes with a higher cyclomatic complexity are harder to process for unit
test generation tools and 38 classes with the largest number of lines of code.
Additionally, we selected 37 classes that were executed the most by our modified
JabRef implementation.

Configuration Parameters. We ran EvoSuite with the default coverage criteria
(line, branch, exception, weak mutation, input, output, method, method with-
out exceptions, and context branch) and three different secondary objectives:
(i) default, minimizing the test case length, (ii) commonality, as described in
Definition 4, and (iii) uncommonality, as described in Definition 5. We executed
EvoSuite on each class under test 30 times with the MOSA algorithm [27] and
a search budget of three minutes, offering a good compromise between runtime
and coverage [15,28]. All other configuration parameters were left to their default
value.

4.2 Data Analysis

For each of the 13,500 execution (150 classes × 30 repetitions × 3 configurations),
we collected the commonality score and structural coverage information from
EvoSuite. Additionally, we performed a mutation analysis of the generated test
suites using Pit [7]. For 46 classes (out of 150), EvoSuite could not complete 30
executions using our different configurations. We excluded those classes to keep
the comparison fair and performed our analysis on the 104 remaining classes.

2 http://spoon.gforge.inria.fr/.

http://spoon.gforge.inria.fr/


128 B. Evers et al.

To compare the commonality score, the structural coverage, and the muta-
tion score, we used the non-parametric Wilcoxon Rank Sum test, with α = 0.05
for Type I error, and the Vargha-Delaney statistic Â12 [36] to evaluate the effect
size between two configurations. An Â12 value lower than 0.5 for a pair of con-
figurations (A,B) indicates that A increases the score or coverage compared to
B, and a value higher than 0.5 indicates the opposite. The Vargha-Delaney mag-
nitude measure also allows partitioning the results into three categories having
large, medium, and small impact [36].
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Fig. 2. Test cases commonality values and comparison to default. Diamonds (�) indicate
mean values and horizontal bars (–) indicate median values.
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5 Results

5.1 Commonality Score (RQ.1)

In this section we answer the question: How does the commonality score of the
generated tests compare when using the common, uncommon, and default sec-
ondary objectives?

Figure 2 illustrates the impact of using commonality and uncommonality, as
the secondary objective, on the commonality score of the generated test cases.
Figure 2(a) shows that the average and median of the commonality score is
improved by 8% and 12%, respectively, compared to default when using com-
monality as secondary objective. In parallel, using uncommonality as secondary
objective reduces the commonality score by, on average, 5% (2.5% for median)
compared to default. Moreover, Fig. 2(c) presents the number of cases (i.e.,
classes used as the target class for unit testing), in which the application of
commonality and uncommonality significantly (p-value < 0.05) changes the com-
monality score with effect size magnitude of large, medium, or small. As we can
see in this figure, utilizing commonality always leads to a significant improve-
ment in the commonality score (blue bars), and in contrast, using uncommonality
always reduces this score (red bars). In total, commonality significantly improves
the commonality score in 34 cases (32.6% of classes), and uncommonality signif-
icantly reduces this score in 21 classes (20.1% of cases). Figure 2(b) depicts the
effect sizes of differences observed in these cases. Consistent with the previous
figures, the average effect size (Â12) achieved by commonality is higher than 0.5
(i.e., commonality score has been improved). However, this value is lower than
0.5 for uncommonality.

Summary. Using commonality as secondary objective in the EvoSuite search-
based test case generation process leads to test cases that exhibit an improved
commonality score. In parallel, the application of uncommonality leads to the
reduction of the commonality score.

5.2 Structural Coverage (RQ.2)

In this section we provide an answer to the following research question: How
does the line and branch coverage of the generated tests compare when using the
common, uncommon, and default secondary objectives?

Figure 3 shows the line and branch coverage achieved by using com-
monality and uncommonality as secondary objectives compared to default.
Figure 3(a) indicates that the average coverage is the same for all of the assessed
configurations.

Looking at the comparison of the structural coverage values achieved by
each secondary objective in each class, we can see that the line and branch
coverage is significantly impacted by commonality and uncommonality in some
cases. Figure 3(c) presents the number of cases that these secondary objectives
significantly (p-value < 0.05) reduce (Â12 < 0.5) or increase (Â12 > 0.5) the
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line and branch coverage with effect size magnitude small, medium, or large.
According to this figure, in general, utilizing commonality leads to a significant
improvement for line and branch coverage in three and four classes, respectively.
Nevertheless, this secondary objective reduced the line and branch coverage in
eight and nine classes, respectively. A list of these classes is provided as the
supplementary material to this submission.

Also, we can see a similar result for uncommonality : significant improvements
in three and five classes and significant reductions in seven and nine cases for
line and branch coverage. Since the number of cases in which commonality and
uncommonality lead to a significantly lower structural coverage is higher than
the number of cases in which we see a significant improvement in coverage, the
average effect size of differences (Fig. 3(b)) is slightly less than 0.5 for both line
(0.47 for both secondary objectives) and branch coverage (0.46 for both).

Summary. On average, using commonality or uncommonality does not impact
the line and branch coverage. However, these two secondary objectives can sig-
nificantly impact the structural coverage in specific cases.

Branch coverage Line coverage Mutation score

default common uncommon default common uncommon default common uncommon

0.00

0.25

0.50

0.75

1.00

Configuration

Va
lu

e

(a) Test suites coverage and mutation score.

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

Branch coverage Line coverage Mutation score

common uncommon common uncommon common uncommon

0.25

0.50

0.75

1.00

Configuration

VD

(b) Effect sizes ̂A12.

4 1
5

3

4 1
5 1

3

3 1
5

2

3 1
4

2

3 2
3 1

5 8

8
4 1

7

Branch coverage Line coverage Mutation score

5 0 5 5 0 5 5 0 5

common large

common medium

common small

uncommon small

uncommon medium

uncommon large

# of cases

VD
 m

ag
ni

tu
de

 p
er

 c
on

fig
.

status
Lose
Win

Fig. 3. Test suites coverage and mutation score, and comparison to default. Diamonds
(�) indicate mean values and horizontal bars (–) indicate median values.

5.3 Mutation Analysis (RQ.3)

In the final research question we reflect on How does the mutation score of
the generated tests compare when using the common, uncommon, and default
secondary objectives?
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Figure 3(a) depicts the mutation score achieved by using commonality and
uncommonality compared to default. Like line and branch coverage, the aver-
age mutation scores achieved by these secondary objectives is similar to the one
achieved by default. However, Fig. 3(c) shows that commonality and uncommon-
ality can significantly (p-value < 0.05) impact the mutation score achieved by
unit test generation. The commonality secondary objective significantly increases
the number of mutants killed for 11 classes but, at the same time, also decreases
the mutation score in another 11 cases. Moreover, uncommonality significantly
changes the mutation score in 20 cases (8 wins against 12 losses). Figure 3(b)
shows the effect size of differences in these cases for both commonality and
uncommonality secondary objectives. According to this Figure, the average Â12

estimations are 0.49 and 0.47. Since these values are lower than 0.5, on average,
the difference achieved by these two secondary objectives is negative. However,
the outliers in this figure show us that the effect sizes of commonality above
0.75 in some specific cases. Hence, the graphs in Fig. 3(c) indicate that using
commonality and uncommonality can improve the mutation score in specific
cases.

Summary. On average, using commonality or uncommonality does not have any
effect on the mutation score achieved by the generated test suites. However,
these two secondary objectives can significantly change the killed mutants in
some cases.

6 Discussion

6.1 Execution Weights

In our evaluation, we collected execution weights using an instrumented version
of JabRef distributed to five different users. As a result, a large number of
log messages allowed us to have execution weights for many different classes.
Such data collection is not realistic in an industrial setting as the collection and
analysis of log data is challenging for large applications [4]. It is likely that the
collected data will not cover the complete system but only a subset of its classes.

However, we believe that the development of scalable software analytics prac-
tices [25] represents an opportunity to include information from the software
operations environment in various development activities, including testing [4,6].
For instance, Winter et al. [39] recently brought information about the number
of times a log statement is executed to the developer’s IDE to raise awareness
about the load it represented during the operations of the system. Similar infor-
mation can be collected for seeding [8,31] or annotating a control flow graph,
like in our approach, and allow developers to generate new tests from their IDE.

Finally, our current approach considers execution weights individually to
approximate usages, which allows us to compute a commonality score quickly.
Different definitions of the commonality score based, for instance, on full and
partial execution paths identified from the operations logs are possible. Those
finer grained definitions of commonality would allow to take multiple executions
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of the same code blocks (like loops) into account, at the expense of a higher
computational cost. Exploration and evaluation of such definitions are left for
future work.

6.2 Impact on Mutation Analysis

After manual investigation of the generated tests3, we saw that the classes on
which commonality performs relatively well are often executed. The class on
which the performance was especially good compared to default was an enum
class (org.jabref.logic.util.StandardFileType). In a large majority of the
cases (25 out of 30), the tests generated using the commonality secondary objec-
tive contain a method sequence that is not present in the tests generated by
default. We inspected the execution counts of individual branches stemming
from the operational use of the system. From this inspection, we found a single
branch in the code of method getExtensions that has been executed as part of
the usage scenarios from all participants.

This method is consistently involved in the test cases that kill the mutants
that the tests generated by default fail to kill most of the time. This supports
our initial assumption that using commonality can drive the search process to
cover the code in a different way, possibly finding different kinds of faults.

6.3 Usefulness for Debugging

The end-goal of any test suite is to identify faults in source code and help the
developer during her debugging activities. Our evaluation measured the fault-
finding capabilities of the generated test suites, but did not investigate their
usefulness for debugging. Previous research has confirmed that automatically
generated tests can find faults in real software [2] and are useful for debugging [5].

However, there remain several challenges, like the understandability of the
generated tests [2,14]. Since the commonality and uncommonality secondary
objectives aim to influence how the lines in a method are covered, we expect
that it will also have an impact on the understandability of the generated tests.
Future research will include the assessment of the debugging capabilities of the
generated tests (e.g., understandability, performance, readability, etc.).

6.4 Threats to the Validity

Internal Validity. We repeated each execution of EvoSuite 30 times to take the
randomness of the generation process into account in our data analysis. We have
tested our implementation of the commonality and uncommonality secondary
objectives to reduce bugs’ chance of influencing our results.

3 The results and complete manual analysis are available online [10–12].
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External Validity. We gathered execution data needed from a small number of
people in a relatively structured manner. We cannot guarantee that those exe-
cutions are representative of all the usages of JabRef. However, we believe that
the diversity of the tasks performed by our users is enough for this evaluation.
Also, the evaluation was performed using only one case study. Future research
includes the repetition of the assessment on other Java applications.

Construct Validity. We relied on the reports produced by EvoSuite for struc-
tural coverage and the reports produced by Pit for mutation analysis to com-
pare our different secondary objectives. The usage of those standard metrics
allows the comparison of our results with other search-based unit test genera-
tion approaches.

Conclusion Validity. Our conclusions were only drawn based on statistically
significant results with α = 0.05. We used the standard non-parametric Wilcoxon
Rank Sum test for significance and the Vargha-Delaney statistic for the effect
size.

7 Conclusion and Future Work

In this paper, we introduced the commonality score, denoting how close an execu-
tion path is from common or uncommon executions of the software in production,
and the commonality and uncommonality secondary objectives for search-based
unit test generation. We implemented our approach in EvoSuite and evaluated
it on JabRef using execution data from real usages of the application. Our
results are mixed. The commonality secondary objective leads to an increase
of the commonality score, and the uncommonality secondary objective leads to
a decrease of the score, compared to the default secondary objective (RQ.1).
However, results also show that if the commonality score can have a positive
impact on the structural coverage (RQ.2) and mutation score (RQ.3) of the
generated test suites, it can also be detrimental in some cases. Future research
includes a replication of our evaluation on different applications and using dif-
ferent algorithms (e.g., DynaMOSA) to gain a deeper understanding of when
to apply commonality and uncommonality secondary objectives; the exploration
and assessment of different definitions of commonality; and an assessment of the
generated tests regarding their usefulness for debugging.
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Abstract. Users of highly-configurable software systems often want to
optimize a particular objective such as improving a functional outcome or
increasing system performance. One approach is to use an evolutionary
algorithm. However, many applications today are data-driven, meaning
they depend on inputs or data which can be complex and varied. Hence,
a search needs to be run (and re-run) for all inputs, making optimization
a heavy-weight and potentially impractical process. In this paper, we
explore this issue on a data-driven highly-configurable scientific appli-
cation. We build an exhaustive database containing 3,000 configurations
and 10,000 inputs, leading to almost 100 million records as our oracle, and
then run a genetic algorithm individually on each of the 10,000 inputs.
We ask if (1) a genetic algorithm can find configurations to improve
functional objectives; (2) whether patterns of best configurations over
all input data emerge; and (3) if we can we use sampling to approximate
the results. We find that the original (default) configuration is best only
34% of the time, while clear patterns emerge of other best configura-
tions. Out of 3,000 possible configurations, only 112 distinct configura-
tions achieve the optimal result at least once across all 10,000 inputs,
suggesting the potential for lighter weight optimization approaches. We
show that sampling of the input data finds similar patterns at a lower
cost.

Keywords: Genetic algorithm · Data-driven · SSBSE

1 Introduction

Many scientific applications are heavily data-driven, meaning their function (or
behavior) is dependent on the specific data used to run the application and
the data is often complex and varied. At the same time, these systems are
often highly-configurable; the end user can modify a myriad of configuration
options that control how the system behaves. The options may induce simple
changes such as controlling how output formatting is handled, or they can change
underlying algorithms and the algorithm’s parameters, returning entirely differ-
ent results [2]. Some options may also change system performance, causing the
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application to run faster, or to utilize fewer resources such as bandwidth and
energy. There has been a lot of focus on highly-configurable software with the
goal of optimizing or finding options to improve quality [7,8,20].

To assist with configuration selection, some state of the art techniques use
prediction [20], building models of behavior of the configuration space. An alter-
native approach is to use optimization, or search-based techniques [5,17,21].
Instead of modeling the configuration space to ask how a particular config-
uration will behave, search-based methodologies work to find an optimal (or
near-optimal) configuration for a particular input data set.

However, as we demonstrate in this paper, and something that has been
eluded to by Nair et al. [16], optimization in data-driven systems carries addi-
tional challenges. In these systems, different configuration options may be opti-
mal for different data in the input data set, making optimization a heavy-weight
process – it needs to be run each time new data is utilized and this may be
impractical in practice. In our case study, optimization on a single input takes
minutes. Although an individual run over a single configuration takes millisec-
onds, this is magnified if optimization needs to be run for each input in the
dataset. Instead, we want to re-optimize as little as possible. Furthermore, as
configuration spaces grow, the time for optimization will continue to be ampli-
fied. Research on transfer learning for system performance in highly-configurable
software has suggested that some models provide information which can be re-
used as workloads change [7,8,10]. However, workloads define the load on a sys-
tem; they are not system inputs, and they impact performance, not functionality.
As far as we know, there has been little focus on the problem of optimization
for a data-driven application, when the optimization goal is to improve system
functionality.

In this paper we explore the problem of functional optimization for data-
driven applications. We ask how different inputs from a data set change the
functional results of configuration optimization in a scientific application. In
order to establish ground truth to ask our questions, we design an experimen-
tal testbed that contains exhaustive data of 3,000 configurations (all possible
configurations from our model) and 10,000 different input sets. While this is a
small configuration space, it provides us with a rich set of data – an exhaustive
set of data of almost 100 million records.1 We use this database to first eval-
uate the quality of our genetic algorithm. We then ask if there is a pattern of
best configurations. We see a reduction from 3,000 to 112 configurations (or only
3.7%) appearing as the best configurations, therefore we ask if we can sample
the input data and achieve similar results. Our study finds that samples as small
as 10 inputs can produce similar results, suggesting a light-weight optimization
approach is possible.

1 Each run of the application can return multiple answers leading to many more records
than 3,000 × 10,000.
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The contributions of this work are:

1. A study on using a genetic algorithm to optimize configurations to improve
the functional behavior of a popular data-driven scientific software applica-
tion;

2. An exhaustive database containing almost 100 million records for a set of
10,000 different inputs;

3. Results on sampling input data, suggesting that the observed patterns hold
over even small random samples.

In the next section we present some motivation. In Sect. 3 we present an
overview of our experimental database framework. We follow that with a case
study in Sects. 4 and 5. We then present some related work (Sect. 6) and end in
Sect. 7 with conclusions and future work.

2 Motivating Example

We present a small motivating example based on our case study application in
this section. BLAST stands for the Basic Local Alignment Search Tool [1], and
is a widely used data-driven application. Bioinformatics users utilize BLAST to
ask questions about sequences of deoxyribonucleic acid (DNA) fragments that
they observe in nature or in the lab. When using BLAST, the user selects a
database of known sequences and then inputs their unknown sequence. The
application returns hits which are a set of matches found in the database. Note,
that most of these sequences are not exact matches, but are partial matches of
the sequence. There are some key quality objectives that many users rely on.
The e-value (expected value) is a number that describes how many times you
would expect a match by chance in a database of that size. The lower the value
is, the more significant the match. In many cases users filter for only e-values
of zero (optimal). Another key metric called percent identity is a number that
describes how similar the query sequence is to the target sequence (how many
characters in each sequence are identical). The higher the percent identity is,
the more significant the match. Users sometimes filter by a value of 100 or 99%
(100% is optimal).

One common use case of a BLAST search is to obtain as many quality hits as
possible so that the user can explore those and find out what is known about their
input sequence. Underneath the covers BLAST uses a dynamic programming
algorithm for matching, and this algorithm has been highly tuned over the years.
The current version of BLAST [1] has over 50 configuration options that a user
can modify. We only explore a part of this in our case study.

Suppose we want to optimize a BLAST query with the goal of obtaining
the best e-value and percentage identity, while at the same time increasing the
number of hits. An obvious first choice is to just run the default configuration.
If we choose for instance, the second input sequence from this study, the default
BLAST configuration returns 1 hit and has the max percentage identity and
smallest e-value; it is the best we can do. If we optimize with a genetic algorithm,
we will be unable to improve further; the default configuration is the best.
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However, if we instead optimize using input sequence number 84, we see
different behavior. The default configuration returns 3 hits with a median e-
value of 0 and percentage identity of 100. But if we change 4 of the configuration
options (away from the default) we can improve the number of hits to 8 while
maintaining the minimal median e-value and maximum median percent identity
possible. We have increased our quality hits by 5, therefore a user might want to
consider using the new parameters. In our case study, only one-third of 10,000
input sequences returns the default configuration as the optimal result (using
our objective value), meaning the other two-thirds have an opportunity to be
improved.

After running these two experiments, we have a conundrum. If we use the
results from the genetic algorithm of input sequence number 2, we won’t opti-
mize correctly for input sequence number 84, and vice versa. We may also want
to consider other user preferences such as the distance from the default config-
uration. As we can see, tuning this configuration space is complex and may be
data dependent.

As we started building a genetic algorithm for optimization of this program,
we were left with many open questions. For instance: (1) How can we confirm
a genetic algorithm is working, given the range of behavior for different input
data? (2) Can we find patterns of genetic algorithm behavior across sequences?
(3) Do we need to run our genetic algorithm for all different inputs? As we
iterated to tune the fitness and landscape that can guide a genetic algorithm for
this program, the data dependency made this time consuming and ad-hoc. We
learned that data-driven applications are difficult to tune and reason about when
building a search algorithm, and asked if instead, we can find a better approach.
We hypothesized the need for an exhaustive data set that can be easily queried.
We present and use such a framework in the following section.

3 A Framework for Data-Driven Exploration

We present our design of a Framework for a Data-driven Exploration in a search
environment (FrDdE) that will help us understand the quality of our genetic
algorithm, and the variability of optimizations within our dataset. Figure 1 shows
an overview of FrDdE. We note that we only implemented this for a single data
set in our case study, but the approach is general and we plan to build additional
data sets for other data-driven systems as future work.

FrDdE begins (#1) with a model of the configurations and a set of inputs.
The Cartesian product of these are generated as pairs (configurations, inputs)
and then run against the application (#2). It is not necessary to define an
exact fitness function yet, but to capture key measurements that can be used to
build different fitness functions for this application. The relational data model is
shown in Fig. 2. We have a table of the configuration models where the primary
key (Pk) is the configuration number and the other fields are the individual
configuration options and their possible choices. Table 2 (outputs) contains the
results of running the configurations and inputs. In this table we have a three-way
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Fig. 1. Overview of the FrDdE framework. It starts with a set of configurations and
input data (#1) and populates the database (#2). A genetic algorithm can then be
run #3 and the database can be used to answer questions #4.

Fig. 2. FrDdE schema showing only the primary keys (Pk) and foreign keys (Fk).
Table 1 contains the configuration model. It has one row for each of the configurations
in the model. Table 2 is raw data from the application. Each returned hit has a record.
It has a composite primary key, consisting of the configuration, input sequence and
the number of the returned output (generated). The last table (Table 3) is a generated
fitness table containing a fitness value along with the individual components of the
fitness for each configuration and each input.

primary key which we see as inputNo, configNo, and outputNo. This three-way
key allows for applications which can return more than one output per run (many
data-driven applications such as the one we use, do not return a single result).
This table has a foreign key (Fk) which can be joined with Table 1. The other
fields contain detailed information relevant to the use case and fitness which
can be used during exploration. The last table is an aggregate table built from
Table 2. It has one record per inputNo and configNo and uses the configNo as
a foreign key. We can use this to build different fitness values and to explore
different parts of the search space.

The next phase (#3) of FrDdE is to run a genetic algorithm (or other
evolutionary algorithm) using the sample application and configuration model.
This can be run on all inputs or a sample of inputs. In the last phase (#4), we
can interactively ask questions and compare results from the database against
the runs of the genetic algorithm.
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Once FrDdE is complete, the goal is to use what we have learned to expand
the configuration space and or data set, where an exhaustive analysis is no longer
possible, with information learned from the exploration. We present an example
exploration with FrDdE in the next section. We leave the expansion of our
configuration space for future work.

4 Case Study

We present a case study leveraging FrDdE.2 While the long-term goal is to
understand how useful FrDdE is in a data-driven search based environment,
we perform this case study as an exemplar of its use. The questions we ask are:

RQ1: How effective and efficient is a genetic algorithm across all input data?
RQ2: What patterns, if any, emerge across all input data?
RQ3: How well does sampling capture patterns seen in the exhaustive data?

Table 1. Configuration Model for BLAST from [2]. The names of options are followed
by the number of choices and their values. Default values are shown in bold.

Option name Abbr. No. of choices Configuration values

dust dust 3 yes, no, ‘20 64 1’

lcase masking lcase 2 true, false

soft masking soft 2 true, false

ungapped ungap 2 true false

xdrop gap xdgap 5 0, 0.1, 0.5, 30, 100

xdrop gap final xdgfin 5 0, 0.1, 0.5, 10, 100

xdrop ungap xdugap 5 0, 0.1, 0.5, 20, 100

4.1 Object of Study

As our software subject we use the popular bioinformatics tool, BLAST. We
use the nucleotide sequencer (BLASTn), version 2.6.0. This is the same sub-
ject studied by Cashman et al. [2] and was sensitive to changing configurations.
We use their configuration model (shown in Table 1). The BLAST model has 7
configuration options. Three are binary, one has 3 choices, and the other three
have 5 choices. This leads to an exhaustive configuration space of 3,000 config-
urations. This is not the complete configuration space for BLAST, but one that
is tractable to study exhaustively. Their input data set contains 10,000 input
sequences from the yeast genome. We use these as our input data set.

2 Supplementary data website: https://github.com/LavaOps/ssbse-2020-FrDdE.

https://github.com/LavaOps/ssbse-2020-FrDdE
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4.2 Genetic Algorithm Implementation

Our chromosome has seven genes (one for each configuration option). The alleles
are configuration choices.

Fitness. The fitness for this case study is based on the scientific use case pre-
sented earlier. However, we can theoretically use alternative fitness functions
within FrDdE. When using BLAST, a biologist may want to increase the num-
ber of quality hits they match from the database. Often, users restrict two quality
values, e-value and the percentage identity. Instead of filtering these values, we
use them for optimization, since a value that is close to the optimal may be of
interest. We also include another component in our fitness, the distance from the
default configuration. It has been documented that users prefer not to change
too many settings [4], hence our goal is to stay close to the original configuration.

Since we are attempting to maximize the number of hits (and expect more
than one), the e-value and percentage identity are aggregate values. We chose the
median for this (we have also experimented with the mean and observe similar
results). Putting these together our fitness is shown next. We are maximizing.
The various weights for the components were determined heuristically.

we-val =

⎧
⎨

⎩

10, if median e-value = 0
1

median e-value
, otherwise

(1)

wdistance =

⎧
⎨

⎩

10, if distance = 0
7

distance
, otherwise

(2)

fitness = hits × 10 + we-val + median(percent identity)/2 + wdistance (3)

Equation 1 shows the weighted e-value, (or we-val) which takes a value of
10 when the median e-value is 0. Otherwise it is the inverse. Equation 2 is the
calculation of the weighted distance (wdistance). Under the default configuration
this value is set to 10, otherwise we normalize by the number of configuration
options (7). Last, Eq. 3 weights these together. Hits are weighted by 10 to make
them as important as we-val and distance. The percent identity is reduced by
one half. Although not part of this study, we made use of the database to help
tune the weights.

Genetic Algorithm Parameters. We heuristically tuned our algorithm. We
ended with a population size of 16. When we seed the initial random population
we generate all but one chromosome randomly. The last chromosome is made up
of default values for the program to ensure its existence in each population. We
use one point crossover selecting a random point (within the middle two thirds
of the chromosome for each pair). We pair even and odd numbered chromosomes
in rank order (e.g. the best with the third best and second best with the fourth
best) to maintain some diversity.

We use a rank selection with elitism. This has an important effect for our
use case. If the default configuration is the best fitness, this will propagate to be



144 U. Sinha et al.

the best overall at the end. We tuned the mutation rate and settled on a value
of 0.5 for this program. We randomly select 50% of the genes in the population
and change the value randomly (with replacement). We do not mutate genes of
the two fittest (elite) chromosomes. We experimented with different numbers of
generations. We usually see convergence relatively quickly (within 20–30 genera-
tions), therefore we chose 50 which will balance the need to solver harder cases,
with being tractable with respect to runtime.

4.3 Experimental Setup

All experiments are run on a parallel computing RedHat Enterprise Linux 7
Server with Intel(R) Xeon(R) Gold 6244 CPU 2.60 GHz nodes. We collected the
exhaustive data by running BLASTn on 10,000 input sequences against the yeast
database. The experiments were run such that each input sequence was tested
under all 3,000 possible configuration options. These led to a total of 30 million
BLASTn calls. 100 of these jobs were executed in parallel to make this scalable.
Each job was allocated 1 node with 5 GB memory. The following outputs were
collected post every BLASTn call: the sequence number, its corresponding con-
figuration number, the blast sequence id, total hits generated, the percentage
identity and e-value observed, and the start and end positions of the subject
sequence against which the match was observed.

Next, we used a MariaDB fork of MYSQL, version 5.5.56 in a singularity
container version 2.6.0. We constructed a database having three primary tables,
which are concrete instantiations of the FrDdE tables. Additional temporary
and derived tables were used for intermediate computations and to fetch results
from the database.

In total we have 96,875,728 records in FrDdE. This is because we have a
record for each hit. We also recorded the combination of configuration num-
bers and the sequences against which no hits were reported by BLASTn. All
such sequence numbers along with their configurations were stored in a separate
table. Next, we constructed the fitness table which is derived from the output
table. We store the count of hits returned per configuration for a specific input
sequence. We compute the median percentage identity and e-value over all hits
recorded for a sequence under a given configuration number, the distance from
the default configuration, and the computed fitness value. We annotated each
possible distinct configuration set across its 3,000 possibilities with an integer
number for ease of reference and access across tables. These annotations along
with the combination of 7 individual configuration options such as dust = “20
64 1”, specific to a configuration number, was also stored in the configuration
table.

4.4 Threats to Validity

With respect to generalization we used only a single software subject, a single
type of input file, and a single fitness for this study. However, we use 10,000 inputs
and this is a common scientific application that is widely used and has been
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studied in other papers on configurable software. We used the same configuration
space and input files as another paper to avoid bias due to our selection. With
respect to threats to internal validity, we wrote programs to perform many of
the parts of this experiment and acknowledge there could be errors. We did
extensive checking of the results and compared the database against the genetic
algorithm. We also make the data and artifacts from these experiments publicly
available on our supplementary website so the community can validate and reuse
our results.

5 Results

In this section we present results for each of our research questions in order.

5.1 RQ1: Effectiveness

To evaluate the effectiveness of the genetic algorithm we compare the config-
urations reported in the final population of the genetic algorithm to the best
configurations found in the database. Of the 10,000 input sequences, 19 of them
never find any hits in any configuration. We remove these from our analysis,
leaving 9,981 input sequences. We then analyze for 9,981 input sequences if the
fitness of the best configuration returned by the genetic algorithm is the same
as the best fitness from the database. Results over two runs of the genetic algo-
rithm can be seen in Table 2. The first result column provides the number of
cases where we match the best fitness (9,721 and 9,713). This is also shown as a
percentage (97.4% and 97.3%). For 3,382 of the inputs (34%), the default is the
best fitness. We discuss this implication in RQ2. For the remaining sequences
where a best configuration was not found by the genetic algorithm, we ask if
the returned configuration has a higher fitness than the default. In all cases (260
and 268) the answer is yes. While we were not able to find the optimal, we
still improved over the default. Hence, we conclude that our genetic algorithm
is working well on this data set; finding an optimal solution for more than 97%
of the inputs.

To confirm the genetic algorithm is useful even in this small configuration
space, we randomly selected 500 inputs and randomly generated five sets of
1,000 chromosomes for each input. Our rationale is that each run of our genetic
algorithm would evaluate a maximum of 800 chromosomes after 50 generations
with our population size of 16 (we usually converge by generation 20–30). One
of the chromosomes is seeded as the default configuration. 67.5% of the time,
we find the best configuration option across all runs for all 500 inputs. There
is also little variation (standard deviation of 8.7 for the number of times the
maximum is found). However, for 185 inputs (or 37%), the default already is
the best fitness. If we remove those inputs from our data, random finds the best
fitness 48.38% of the time. However, in almost all cases, when the best fitness
is not found, we can improve on the default (99.3%). We conclude that while
random does relatively well and almost always finds the best or a better fitness
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than random, the genetic algorithm performs better overall. As the configuration
size grows, we expect the gap in performance to increase.

To evaluate the efficiency we observe the runtime (in minutes) of the genetic
algorithm. On average it takes approximately 1 min for the genetic algorithm
to run on a single input sequence, with a maximum of 2.8 min. If we sum the
runtimes across all of the genetic algorithms (these were run in parallel) it took
8.11 days for the first run and 7.84 days for the second run. Note, these are
sequential times. The actual clock time was faster due to parallelization.

Summary RQ1: We conclude that the genetic algorithm is effective. While it
is relatively efficient for a single input, it takes days to run the entire data set.

Table 2. Comparison of matches of maximum fitness of the genetic algorithm on 10,000
sequences compared against database (known maximum). 19 returned no hits in any
configuration and are removed. Remaining # > default are runs which did not match
the best fitness, but still improve on default. Times is shown for the genetic algorithm
in minutes.

No. of best Percent Remaining # Avg. Std Min Max

(of 9981) > default runtime deviation runtime runtime

Run 1 9721 97.40 260 1.17 0.76 0.26 2.78

Run 2 9713 97.31 268 1.13 0.66 0.23 2.71

5.2 RQ2: Patterns

We utilize the database information to ask if there are patterns in the data.
Of the possible 3,000 configurations, only 112 unique configurations achieve the
best fitness for at least one of the 9,981 input sequences. This indicates that
only 3.7% of the configurations are considered optimal for this fitness and set
of inputs. We sorted these configurations by the times they occur. Since a max-
imal fitness for a particular input sequence may have more than one possible
configuration, we normalize the counts so that each input sequence is accounted
for once. For example, if the sequence has two configurations with the optimal
fitness, we weight each of them by 1/2. Table 3 shows the top configurations,
sorted in descending order by count of occurrences. These make up 92.4% of the
best configurations. The first configuration (#1724) is the default. This occurs
3,382 or 34% of the time. 66% of the time, another configuration is optimal.
We highlight the changes from the default in each of the other commonly seen
configurations.

We can identify certain configuration option values that are important, such
as ungap. Combining ungap (TRUE) with xdugap (0.1 or 0.5) account for the
two next best configurations overall. Interestingly, neither of these options are
set to these values in the default. We also see options like lcase which do not
appear to have a strong effect. To analyze this further we look at the distribution
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Table 3. Most frequent configurations (top 9 out of 112) appearing as the best config-
uration. The left most column is the configuration number, followed by the normalized
times the configuration is seen. The rest of the columns indicate the configuration
options selected. Bold indicates a change from the default configuration (#1724)

Default Config no. Count dust lcase soft ungap xdgap xdgfin xdugap

YES 1724 3382 20 64 1 FALSE TRUE FALSE 30 100 20

– 1597 998 20 64 1 FALSE TRUE TRUE 30 100 0.1

– 1598 998 20 64 1 FALSE TRUE TRUE 30 100 0.5

– 1847 828 20 64 1 FALSE FALSE TRUE 30 100 0.1

– 1848 828 20 64 1 FALSE FALSE TRUE 30 100 0.5

– 1974 820 20 64 1 FALSE FALSE FALSE 30 100 20

– 1599 784 20 64 1 FALSE TRUE TRUE 30 100 20

– 2724 300 No FALSE TRUE FALSE 30 100 20

– 1849 227 20 64 1 FALSE FALSE TRUE 30 100 20

of each configuration option’s values in Fig. 3. We can see that in most cases the
default values will work well for any given input (the black bars). This matches
what we see in the best configurations as the default is the best overall. We
see that options such as ungap, soft, and xdugap seem to have influence, which
others (like lcase) have no influence.

Fig. 3. Number of times each value for the seven configuration options appear (nor-
malized) in the configuration with the highest fitness. Black solid bars indicate the
default value for that configuration option. Other colors are alternative choices. Spaces
indicate that the value does not appear.

Summary RQ2: We observe a set of patterns for the input data, demonstrating
that it may be possible to sample the inputs. No single configuration works best
across all input sequences, however we have reduced our configuration space from
3,000 to 112 (by 96.3%).

5.3 RQ3: Sampling

We now examine the effectiveness of sampling, i.e. can identify the same pattern
of best configurations as we did in RQ2? We use random sample sizes of 10, 100
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Table 4. Counts of the occurrences of the top configurations in the database. For
each of the best configurations from Table 3 we show the number of times found in the
five runs (R1–R5) for different sample sizes (10,100,1000). The percentage of the best
configurations found by the GA sample relative to the ground truth best configurations
found are displayed in the last row.

DB Sample Size 10 Sample Size 100 Sample Size 1,000

ConfigID Occur. R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

1724 3382 3 4 5 4 4 34 24 35 30 46 336 328 348 352 340

1597 998 2 0 1 0 2 8 10 13 7 10 94 101 88 117 111

1598 998 1 1 1 0 2 12 15 7 8 6 117 92 100 86 92

1847 828 0 1 1 1 1 2 11 7 7 8 77 88 85 89 65

1848 828 0 0 1 1 1 11 9 7 9 5 71 85 83 75 90

1974 820 1 0 1 1 0 11 7 8 9 7 78 75 68 76 74

1599 784 1 1 0 0 0 5 14 9 12 5 78 58 69 43 74

2724 300 0 0 0 0 0 4 2 3 4 0 28 35 29 20 26

1849 227 0 0 0 2 0 2 0 1 3 1 10 21 15 22 17

% of Best 80 70 100 90 100 89 92 90 89 88 88.9 88.3 88.5 88 88.9

and 1,000. While the genetic algorithm’s search space is not reduced, we can
potentially avoid running it against all 10,000 inputs, which may provide a sig-
nificant time savings. We repeat each sample 5 times. Table 4 reports how many
times a sample run was able to identify any of the best (or top) 9 configurations
seen in Table 3. Ideally, the majority of configurations reported by the sampled
GAs would be from that set. In a sample size of 10 we see between 70–100% of
reported configurations appearing from the top 9 configurations. As we move to
a sample size of 100, 88–92% are from the top 9. We see slightly less (88.8%)
in a sample size of 1,000. This may be due to more opportunities for noise; a
sequence leading to a less common configuration is more likely to be selected.

Table 5. Average and standard deviation across five runs of each sample size. We report
the percentage of occurrences of the default configuration. Uniqueness is measured as
the percentage of unique configurations. We report the total runtime in hours.

# Default Uniqueness Runtime (hrs)

AVG STD AVG STD AVG STD

Sample size 10 40.00 7.07 60.00 7.07 0.06 0.00

Sample size 100 33.80 8.07 16.60 1.67 3.39 0.10

Sample size 1,000 34.08 0.95 4.38 0.27 15.94 2.91

Table 5 shows another view of this data. The first two columns show the
average and standard deviation of the percent of times the default configuration
is selected. Remember, the default appeared in 34% of the exhaustive data in the
database. The next two columns, represents a metric we call Uniqueness. This
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shows convergence of a configuration pattern (lower is better). It is the percent
of unique configurations observed as the best fitness. For instance, if we have a
sample of 10 inputs, the maximum number of best configurations returned is 10
(all are unique). If we see 6 unique configurations, then uniqueness is 60%. As
we move from samples of 10 to 1,000 uniqueness drops from 60% to 4.38%. The
uniqueness from the database (RQ2) is 112/3,000 or 3.73%. The last two columns
show the total sequential runtime to complete the sample, when we re-ran the
genetic algorithm on each input in the sample. A sample of 10 takes on average
about 3 min, 100 about 3.4 h, and a sample of 1,000 takes just under 16 h. To
compute the complete data set on 10,000 inputs as in RQ1 takes approximately
8 days. Sampling can reduce the runtime to find the best configuration patterns
by over 90% while still identifying over 80% of the best configurations reducing
uniqueness.

Summary RQ3: Sampling input data provides similar patterns to the exhaus-
tive data set while compressing the percentage of unique results and runtime
significantly.

6 Related Work

In the closest work to ours, Nair et al. define the notion of data-driven search-
based software engineering (DSE) [16]. They call for combining data mining and
search-based software engineering and present a set of challenges and research
in this domain. While they discuss techniques such as parameter tuning and
transfer learning, they do not explicitly examine implications for using search
under specific data inputs while tuning configurations as we do in this work.

The largest body of work using search algorithms for configurable software
falls into two main categories. The first is in testing of software configurations
where search is used to find samples [3,6,9] that are representative of configura-
tions which are likely to find faults. The general idea of configurability in software
which can lead to different faults is also well studied (e.g. [14,15,19,22]). There
has also been extensive research on optimizing configurations that satisfy sets of
constraints [5,17,18,21]. While all of this research uses search-based algorithms,
none that we know of focus on the problem of changing input data.

Another line of research is for system performance which involves building
prediction or influence models for configurable systems [20]. The goal is to build a
model that describes the configuration space. This work differs in that it focuses
primarily on quality attributes (not functional as in our work) and describes the
configuration space for prediction, rather than optimization. Some research in
this domain examines the notion of transfer learning [7,8], which attempts to
use knowledge from one workflow for a different workflow. This has a similar
flavor to our work, but the focus is on performance and we do not use learning
techniques. Nair et al. proposed the idea of bellwether configurations; those
which are indicative of good or bad performance across all workflows [10,11,17].
Interestingly, we see similar results where there are specific configurations that
seem to matter across all input data, although our objective goals differ. With
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respect to functionality, Garvin et al. [4] documented the locality of failures
within a configuration space, however they do not explore faults in a data-driven
environment. Cashman et al. [2] presented problems related to configurability in
bioinformatics tools. The work suggests the need for optimization, but does not
go as far as to provide an optimization technique. We use their software subject
(BLAST) and model in this work.

Finally, Landgon et al. have proposed the use of program data for evaluation
as a fitness function in genetic improvement [12,13]. The difference with that
work is that the data is the fitness function, where as we use a traditional fitness
function, but are looking at results across different input data.

7 Conclusions and Future Work

In this paper we presented FrDdE, an approach for optimizing functional objec-
tives in a highly-configurable data-driven application. We built a database of
almost 100 million records using an exhaustive configuration space which is a
part of the BLAST bioinformatics tool, and studied its behavior on 10,000 dif-
ferent input sequences. We find that our genetic algorithm is effective, and see
patterns emerge across input sequences. While we don’t find a single configu-
ration that is best, the configuration space is reduced from 3,000 to 112 and
only 9 configurations account for over 92% of the results. We demonstrate that
sampling inputs can find similar patterns to the full data set which leads us to
believe we can develop a light-weight technique for data-driven search based con-
figuration optimization. Our ultimate goal is to use FrDdE to tune optimization
techniques and to explore data sets before moving to larger configuration spaces
where exhaustive enumeration is not possible.

In future work we plan to expand FrDdE further by (1) increasing the
experimental configuration space to see if results learned still hold, (2) applying
FrDdE to additional input data sets and (3) using FrDdE for different data-
driven applications. We also plan to incorporate learning into FrDdE to see if
we can learn more about the patterns of optimal configurations.
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and by The Center for Bioenergy Innovation (CBI) which is supported by the Office
of Biological and Environmental Research in the DOE Office of Science.
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Abstract. Genetic algorithms (GAs) have been demonstrated to be
effective at generating unit tests. However, GAs often suffer from a loss
of population diversity, which causes the search to prematurely converge,
thus negatively affecting the resulting code coverage. One way to prevent
premature convergence is to maintain and increase population diver-
sity. Although the impact of population diversity on the performance of
GAs is well-studied in the literature, little attention has been given to
population diversity in unit test generation. We study how maintaining
population diversity influences the Many-Objective Sorting Algorithm
(MOSA), a state-of-the-art evolutionary search algorithm for generating
unit tests. We define three diversity measures based on fitness entropy,
test executions (phenotypic diversity), and Java statements (genotypic
diversity). To improve diversity, we apply common methods that fall into
two groups: niching (such as fitness sharing and clearing) and non-niching
(such as diverse initial populations). Our results suggest that increasing
diversity does not have a beneficial effect on coverage in general, but it
may improve coverage once the search stagnates.

Keywords: Search-based test generation · Population diversity

1 Introduction

As software testing is a laborious and error-prone task, automation is desirable.
Genetic Algorithms (GAs) are frequently employed to generate tests, especially
in the context of unit testing object oriented software. However, a common
general issue when applying GAs is premature convergence: If the individuals
of the search population all become very similar and lack diversity [6,25,26],
then the search may converge on a local optimum of the objective function.
This reduces the effectiveness of the GA, and in the case of search-based test
generation, premature convergence would imply a reduced code coverage.

To avoid such premature convergence, it is important to maintain diversity
in the population. Different techniques have been proposed to achieve this at the
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genotype and the phenotype levels [6,26]. For example, diversity can be achieved
by scaling an individual’s fitness based on the density of its niche or by eliminating
duplicate individuals from the population. While diversity maintenance has been
extensively investigated within different domains of evolutionary algorithms (e.g.,
[6]), much less is known about diversity in search-based unit test generation.

We empirically investigate the impact of population diversity on the gener-
ation of unit tests for Java programs. More specifically, we aim to see whether
increasing population diversity leads to a better GA performance, i.e., generat-
ing unit tests that achieve higher code coverage. We first adapt common diversity
measurements based on phenotypic and genotypic representation to the search
space of unit test cases (Sect. 3). We then study the effects of different diver-
sity maintenance techniques (Sect. 4) on population diversity and code coverage
(Sect. 5).

2 Search-Based Unit Test Generation

In the context of generating tests for object-oriented programs, a solution is rep-
resented as a test case τ which consists of a sequence of calls τ = 〈s1, s2, . . . , sn〉
on the class under test (CUT) [9]. That is, each sj is an invocation of a construc-
tor of the CUT, a method call on an instance of the CUT, a call on a dependency
class in order to generate or modify dependency objects, or it defines a primi-
tive value (e.g., number, string, etc.) As the ideal test case size is not known a
priori, the number of statements in a test case is variable and can be changed by
the search operators. Consequently, crossover and mutation not only modify the
individual statements of a sequence, but can also remove or insert statements.

The fitness functions commonly used are based on code coverage [21]. We
focus on branch coverage as it is one of the most common coverage criteria
in practice [9], and fitness functions for other criteria are typically based on
branch coverage fitness calculations. In the many-objective representation of
the unit test generation problem [17], each branch in the CUT forms a single
objective. The fitness function of a test τ on branch bi is f(τ, bi) = al(bi, τ) +
α(bd(bi, τ)) [13], where bd is the branch distance, α is a normalization function
mapping the branch distance to the range [0, 1], e.g. x/(x + 1), and al is the
approach level, the distance between the closest control dependency of the target
node executed by a test and the target node in the control dependency graph.

A common approach lies in evolving sets of unit tests [9] using single-objective
optimization, or individual test cases using many-objective optimization [17]. The
Many-Objective Sorting Algorithm (MOSA) has been shown to generally perform
best [3]. MOSA (Algorithm 1) starts with an initial population of randomly gener-
ated test cases (line 4), and applies standard genetic operators (line 7). To generate
the next generation, parents and offspring are combined (line 8) and sorted using
the preference criterion and non-dominance relation (line 9). The preference crite-
rion identifies a subset of test cases that have the lowest fitness values for uncov-
ered branches, which are assigned rank 0, while the traditional non-dominated
sorting used by NSGA-II is applied to rank the remaining test cases into further
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Algorithm 1: Many-Objective Sorting Algorithm (MOSA)
1 Input: Population size n, Stopping criterion C
2 Output: An archive of best test cases T
3 t ← 0 ; � current iteration

4 Pt ← GenerateRandomPopulation(n)
5 T ← UpdateArchive(Pt)
6 while ¬C do
7 Po ← GenerateOffspring(Pt)
8 Pu ← Pt ∪ Po

9 F ← PreferenceSorting(Pu)
10 r ← 0
11 Pt+1 ← {}
12 while |Pt+1| + |Fr| ≤ n do
13 AssignCrowdingDistance(Fr)
14 Pt+1 ← Pt+1 ∪ Fr

15 r ← r + 1

16 end
17 CrowdingDistanceSort(Fr)
18 Pt+1 ← Pt+1 ∪ Fr ; � size n − Pt+1

19 T ← UpdateArchive(T, Pt)
20 t ← t + 1

21 end
22 return T

fronts. Selection is then applied based on the assigned ranks starting at the first
front, until reaching the population size n (lines 12–16). When the number of
selected test cases exceeds the population size n, the individuals of the current
front Fr are sorted based on the crowding distance (line 17) and only those indi-
viduals with higher distance are selected. At the end of each generation, MOSA
updates an archive with test cases that cover uncovered branches with the lowest
possible length (line 19).

3 Measuring Population Diversity

Population diversity refers to the variety in a population based on the differences
at the genotype (i.e., structural) or phenotype (i.e., behavioural) levels. The
genotypic diversity measures the structural (i.e., syntactic) differences among
the individuals of a population. In contrast, the phenotypic diversity is based on
the behavioural (i.e., semantic) differences in the population’s individuals.

However, these levels differ among different domains [6], e.g., the structure of
an individual in the case of genetic programming (GP) is not similar to the one
with other evolutionary algorithms (EAs). For example, McPhee and Hopper [14]
considered the number of different nodes in a GP as structural difference among
the individuals. In the case of phenotypic diversity, the fitness of the population’s
individuals can be mainly used to measure the behavioural differences among the
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Table 1. Two examples (cases) of two test cases (TC1 and TC2) that vary in how
often they execute the predicates (pj) of the CUT.

Case 1 p1 p2 p3 p4

TC1 2 1 0 3
TC2 3 4 2 1

Case 2 p1 p2 p3 p4

TC1 1 1 0 2
TC2 1 2 0 1

individuals where the diversity rate is based on the spread of fitness values [10].
A well-known fitness-based measure is the entropy measure, first proposed by
Rosca [23]. The entropy represents the amount of disorder of a population, where
an increase in entropy leads to an increase in diversity in the population. Rosca
defines diversity based on the entropy as E(P ) = −∑

k pk · log pk, where the
population P is partitioned according to the fitness value which will result in a
proportion of the population pk that is occupied by the partition k.

In order to determine the influence of the diversity of populations of test
cases, a prerequisite is to measure diversity. For this, we adapted three tech-
niques based on the phenotypic and genotypic levels: We measure the phenotypic
diversity based on the fitness entropy and test execution traces, and we define a
genotypic measurement based on the syntactic representation of test cases.

3.1 Fitness Entropy

The entropy measure adapts the aforementioned principle of fitness entropy. It
constructs buckets that correspond to the proportions of population that are
partitioned based on the fitness values of test cases τs in the population μ as:

Bucket(f) ← |{τi | fitness(τi) = f
} | (1)

where f is the fitness value that partitioning is based on and τi is each individual
in the population whose fitness value equals to f . In this case, each bucket of
fitness holds the number of individuals that are in the same fitness interval (e.g.,
the interval of fitness values that are similar in the first five decimal points). The
entropy is then calculated based on each bucket of fitness as:

Entropy =
B∑

i=1

Bucketi

μ
· log

(
Bucketi

μ

)

(2)

where B is the number of buckets. However, in a multiobjective context, the fit-
ness entropy is applied on a set of buckets that is constructed for each objective,
and then all entropies are added up to calculate the overall entropy.

3.2 Predicate Diversity

As the fitness value in test case generation is mainly based on the branch distance
(and other similar measurements), there is the potential issue that fitness entropy
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Fig. 1. Two automatically generated example test cases to illustrate statement
difference.

is dominated by a few statements that achieve the best coverage. For example,
the fitness value considers only the minimal branch distance for each branch,
but ignores all other executions of the same branch. Therefore, we define an
alternative phenotypic diversity measurement that takes more execution details
into account. The idea behind this measure is to quantify the diversity of the
individuals based on an execution profile of the conditional statements in the
class under test. To illustrate this, assume two individuals (TC1 and TC2) and a
class under test (CUT) that has four conditional statements (pj). Each individual
test case covers each predicate in the CUT as shown in Table 1.

The diversity in this case is measured based on how often each predicate
is executed by each individual, e.g., p3 is covered 2 times by TC2, while it is
not covered by TC1 as shown in Case 1. Predicate diversity is calculated by
counting the number of times each predicate pj in CUT is covered by each indi-
vidual TCi, resulting in vectors V1 and V2. The distance between TC1 and TC2

is calculated using the Euclidean distance between V1 and V2, which is also
calculated for each pair of individuals in the population. The use of Euclidean
distance as a population diversity measure is shown to be effective in measur-
ing the behavioural diversity, and controlling the evolution process [1,20]. The
diversity of the two cases shown in the example are 4.243 for Case 1 and 1.414
for Case 2, which means that the first two test cases are more different than
the second two. Therefore, the overall population diversity is the average of all
pairwise distances between all individuals, and is calculated as follows:

diversity(P ) =

∑|P |
i=0

∑|P |
j=0,j �=i dist(Ti, Tj)

|P | (|P | − 1)
(3)

where P is the population of individual test cases and dist is the Euclidean
distance between a pair of test cases.

3.3 Statement Diversity

Genotypic diversity aims to measure the structural differences among the indi-
viduals of a population. In our case, the genotypes are the sequences of state-
ments. We measure syntactic difference based on the profile of statements, with
normalised variable names. This is important since identical statements at dif-
ferent positions of tests will have different variable names. For example, consider
the two test cases in Fig. 1: Line 5 in test1 and Lines 5 and 7 in test2 are the
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same except for variable names. To normalise a statement, all variable names
are replaced with a placeholder.

To calculate the distance between two test cases test1 and test2, we deter-
mine the set of normalised statements contained in both test cases, and then create
two vectors representing the number of occurrences of each statement (i.e., for the
tests in the example: V1 = (2, 2, 1, 1, 0, 0) and V2 = (1, 1, 1, 2, 1, 2), where the 2’s in
V2 result from Lines 5 and 7 being counted as the same statement). The distance
between two test cases is calculated as Euclidean distance between these two vec-
tors (i.e. 2.82), and the overall diversity is the average distance between all pairs
of test cases in the population that is calculated similar to Eq. 3.

4 Maintaining Population Diversity

Techniques for maintaining population diversity are typically classified as nich-
ing and non-niching techniques [6,25]. Niching techniques try to divide the pop-
ulation into subpopulations to locate multiple optimal solutions. Non-niching
techniques maintain diversity in other ways, for example, by increasing the popu-
lation size, changing the selection pressure, or applying replacement restrictions.

Fitness Sharing (FS) is the most popular niching technique [24] and was
proven to be effective in pseudo-Boolean optimisation [15]. It aims to find multi-
ple peaks in the solution space by defining niches around peaks where individuals
share the same resource (i.e., fitness value). The idea is to decrease the value of
the resource that is shared by the individuals of a niche when the number of indi-
viduals is high, and increase it when there are few individuals in a niche, which
gives these individuals higher probability to be selected for next generations.
The shared fitness of each individual is

f
′
i =

fi

mi
with mi =

μ∑

j=1

sh(dij) (4)

where mi is the niche count, which is defined by measuring the distance among
the individuals: here μ is the population size and dij is the distance between
individual i and individual j (e.g., Euclidean distance [24]). The function sh
measures the distance between each two individuals in the population as follows:

sh(dij) =

{
1 − (dij/σs)α, if d < σs

0, otherwise
(5)

where σs is the peak radius (i.e., sharing radius) and α is the parameter that
regulates the form of the sharing function, commonly equal to 1.

Since the fitness function is minimised in our case, the division in Eq. (4) is
replaced with a multiplication, i.e., f

′
i = fi · mi. This will maximise the shared

fitness of the individuals that are dominant in the population and make them less
attractive for selection, encouraging other, dissimilar individuals to be selected.

The niche count can be based on any type of distance measurement. In the
basic version, the distance is defined as difference between fitness values; for
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predicate diversity the distance between the predicate execution vectors is used
to determine niches, and for statement diversity the distance in statement counts.

Clearing (CL): Clearing is similar to fitness sharing, except that it shares the
available resources among the best individuals of each subpopulation rather than
all individuals of a subpopulation. That is, it keeps the fitness of the best individu-
als (i.e., dominants) in each subpopulation as they are, and the fitness of the other
individuals is cleared (e.g., set to zero). This technique is found to be promising
for solving challenging multimodal functions [5] and, in addition, outperforms fit-
ness sharing in dealing with genetic drift [19]. Since we are minimising and the
optimal fitness is zero, we set the fitness of cleared individual to a higher fitness
value other than zero (e.g., Integer.MAX INT). In order to define a niche, we use
the distance between the predicate execution vectors for predicate diversity, and
the distance in statement counts for statement diversity. Both fitness sharing and
clearing are calculated for each objective, and when the niche count is based on fit-
ness (i.e., fitness-based sharing), the distance is computed based on fitness values
of each objective. However, the two techniques are applied in two steps of Algo-
rithm 1: They are applied on the initial population (after line 4), and on the union
of parents and offspring population (after line 8).

Diverse Initial Population (DIP): The initial population is known to have
an impact on convergence [11,27], and its diversity can potentially enhance the
performance of the GA [7]. The initial population is diversified by generating a
population of random individuals with a size m larger than the intended popula-
tion size n, and then selecting the most distant n individuals from the population
of m individuals based on a diversity measure [28]. We modify Line 4 in Algo-
rithm1 to generate random individuals of size m and then select only the most
n distant individuals to form Pt.

Adaptive Crossover and Mutation Rates (AR): Adaptively changing
mutation and crossover rates [6] based on the diversity level is thought to help
avoiding convergence to a local optimum. The crossover probability is increased
when diversity is high to allow for more exploitation, whereas the mutation prob-
ability is increased when diversity is low to allow for more exploration [12]. The
crossover probability is adapted as:

Pc =

[(
PD

PDmax
· (K2 − K1)

)

+ K1

]

(6)

where K2 and K1 define the range of Pc, PD is the current diversity level, and
PDmax is the possible maximum diversity level. The mutation probability is
adjusted using the following equation:

Pm =
PDmax − PD

PDmax
· K, (7)

where K is an upper bound on Pm. Since a variable size representation tends to
have multiple different mutation types, i.e., adding, changing, removing state-
ments, the probability of these three operations is adapted by increasing by a
random value when the mutation probability increases, and vice versa.
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Duplicate Elimination (DE): The purpose of this technique is to remove
the similarity between individuals of the population, which has been shown to
enhance population diversity and GA performance [4,22]. Two individuals are
considered similar when their distance to each other is zero. To ensure enough
diversity in the population, the eliminated individual is replaced with a new
generated individual. However, the two similar individuals are evaluated, and
the one with the best fitness is kept. This technique is applied after generating
the offspring, and more specifically on the union of parents and offspring (after
line 8 in Algorithm 1).

Diversity-Based Ranking (DR): In the ranking assignment, test cases are
selected to form the first non-dominated front based on their objective values
such that a test case x is preferred over a test case y if fi(x) < fi(y) where
fi(x) denotes the objective score of test case xi for branch bi. When two test
cases result in a similar lowest fitness value for a given branch bi, one of them
is chosen randomly to be included in the first non-dominated front. Instead of
the random selection, we modify the selection to be based on the diversity such
that the test case with high distance from other individuals in the population is
preferred to be selected. The distance can be based on the predicate execution
vectors (predicate-based) or the statement counts (statement-based).

Diversity-Based Selection (DS): Once a rank is assigned to all candidate test
cases, the crowding distance is used to make a decision about which test case to
select. The basic idea behind the crowing distance is to compute the Euclidean dis-
tance between each pair of individuals in a front based on their objective value.
In this case, the test cases having a higher distance from the rest of the popula-
tion are given higher probability of being selected. To investigate the influence of
distance-based measures on the selection, we replace the crowding distance with
our two measures (i.e., statement-based and predicate-based measures) to calcu-
late the distance between any pair of individuals in each front.

All the previously mentioned techniques can be generalised to any form of
Evolutionary Algorithms (EAs), except the last two techniques (i.e., DR and
DS) that are designed specifically for MOSA.

5 Empirical Study

The goal of our study is to investigate the evolution of unit tests, and whether
maintaining the population diversity during the search has an influence on the
performance of GAs. We therefore aim to answer the following research questions:

RQ1: How does population diversity change throughout evolution in MOSA?
RQ2: How effective are diversity maintenance techniques in MOSA?
RQ3: What are the effects of increasing population diversity in MOSA?

For experiments we use EvoSuite [9], which generates JUnit test suites
for a given Java CUT and target coverage criterion using different evolution-
ary algorithms, with MOSA being the most effective algorithm for JUnit test
generation [3]. Since open source Java code contains many classes that are either
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trivially easy to cover, or impossible to cover by EvoSuite, we used the selection
of 346 complex classes from the DynaMOSA study [18].

To better understand the influence of the population diversity on the gen-
eration of JUnit tests, we conducted an experiment that involves (i) applying
each of the three diversity measures defined in Sect. 3 on each CUT to measure
the diversity level throughout the evolution, (ii) applying each of the diversity
maintaining techniques defined in Sect. 4 on each CUT to promote the diversity
throughout the evolution. Each of diversity maintaining techniques is integrated
into MOSA where its performance compared to the performance of the default
MOSA, i.e., without using diversity techniques. Note that each of the diversity
techniques is run separately, and therefore the total number of runs is 8 (i.e., a
single MOSA run with each of the 7 techniques and one run of default MOSA).

We used the following values for the parameters of the diversity techniques
based on preliminary experiments: The sharing radius σs = 0.1; the number of
dominants for clearing is set to 1; the parameters of the diverse initial population
are m = 80 and n = 50; the parameters of adaptive mutation rate are K1 = 0.6
and K2 = 0.8 and the adaptive crossover rate was set to K = 0.8.

5.1 RQ1—How Does Population Diversity Change Throughout
Evolution in MOSA?

A first step towards understanding the influence of population diversity on the
evolution is to measure how the diversity is changed throughout the evolution.
For that, we measure the diversity in MOSA to get an idea of whether MOSA is
able to maintain a high level of diversity during the search. However, as different
CUTs result in different patterns of coverage during the evolution, it is necessary
to look at the diversity based on the different coverage patterns.

Past experiments with EvoSuite considered search durations of 1–2 minutes;
in order to study the effects on convergence we use a substantially larger search
budget. We first performed runs of 30 min to observe the development of coverage
(the best coverage achieved in the current population) over a long period of time
and we used this data to classify CUTs into four disjoint groups as follows:

– Evolving contains CUTs where the coverage after 30 min is higher (by more
than 0.01) than after 10 min (93 CUTs).

– Flat is the set of CUTs where the coverage never changes (60 CUTs).
– Stagnating contains CUTs for which the coverage stagnates after 10 min:

it is higher than after 2 min, but increases by less than 0.01 from 10 min to
30 min (43 CUTs).

– Plateauing contains the remaining CUTs for which the coverage after two
minutes is constant (115 CUTs).

We then started 30 runs for each CUT with a search budget of 10 min and
applied our proposed measures defined in Sect. 3 to measure the diversity level
for each of the four groups, as shown in Fig. 2. It is obvious that the diversity
behaviour is different among the four groups, and the difference can be seen with
the three diversity measures. For the evolving group, coverage keeps growing
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throughout the entire 10 min, and this group also shows a continuous growth
of entropy and phenotype diversity. In terms of genotype diversity, there is a
reduction after an initial sharp growth phase, but less than in all other groups.
For the flat group, the phenotype diversity is overall lowest; this is because
only very few predicates are covered in the first place, as shown in the coverage
plot, and the low entropy. For the stagnating group, once the coverage increase
slows down, all three diversity measurements go down as well. For the plateauing
group, once the search converges all diversity measurements drop sharply, and
notably the genotypic diversity is lowest of all groups. Overall it seems that, as
long as coverage grows, MOSA does well at maintaining diversity. Once coverage
stagnates, the population loses diversity. To some extent, this can be explained
by EvoSuite’s ranking mechanism: If two individuals have the same fitness value,
then the shorter of the two is preferred; this is also used in MOSA’s rank-based
preference sorting. Shorter individuals by construction will have less diversity.

RQ1: MOSA maintains high diversity while coverage increases, but diversity
drops once a maximum coverage has been reached.
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Fig. 2. Average values for coverage and population diversity throughout evolution in
MOSA for the four groups of CUTs.
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5.2 RQ2—How Effective Are Diversity Maintenance Techniques in
MOSA?

In RQ1 we saw a general tendency that diversity drops once the coverage stops
increasing. We therefore would like to see which diversity maintenance techniques
succeed at increasing the population diversity during evolution. For that, we
apply the techniques mentioned in Sect. 4 on all classes.

Table 2. Average diversity over time when applying diversity maintenance techniques
based on different distance measures

Technique Phenotype Genotype Entropy

MOSA 0.7206 0.6825 0.6761

AR (predicate) 0.5719 0.7854 0.9126

AR (statement) 0.6708 0.7702 0.7005

CL (predicate) 0.8740 0.9470 0.8769

CL (statement) 0.8388 0.9075 0.8503

DE (predicate) 0.7696 0.9350 0.8675

DE (statement) 0.7020 0.9051 0.8095

DIP (predicate) 0.7675 0.6593 0.6976

DIP (statement) 0.7179 0.6851 0.7084

DR (predicate) 0.7996 0.7749 0.7387

DR (statement) 0.6142 0.7775 0.6798

DS (predicate) 0.8737 0.9331 0.7422

DS (statement) 0.8368 0.9053 0.8543

FS (fitness) 0.8893 0.7402 0.9534

FS (predicate) 0.8877 0.9022 0.9353

FS (statement) 0.8881 0.9364 0.8836

Table 2 summarises the results of the average diversity among the four groups
with each technique based on different distance measures (i.e., predicate, state-
ment, and fitness). We can clearly see that the three diversity measures indicate
that many of the diversity maintenance techniques are able to promote diversity
higher than MOSA. The entropy measure indicates that diversity is the lowest
with MOSA compared to all other techniques although the difference is negligi-
ble when compared to the statement-based Diversity-based Selection (DS), and
fitness-based fitness sharing increases entropy the most. A similar trend can be
observed for phenotypic diversity, where fitness-based fitness sharing results in
the overall highest diversity. In contrast to entropy, not all techniques succeed
in increasing phenotypic diversity; for example, predicate-based Adaptive Rates
(AR) results in the lowest diversity. The genotype measure indicates a wide
range of effectiveness, with Clearing (CL) based on predicate distance and the
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statement-based fitness sharing as the most successful in promoting genotypic
diversity. However, several other techniques lead to a reduction on genotypic
diversity, surprisingly in particular Diverse Initial Population (DIP).

RQ2: Most diversity maintenance techniques succeed at increasing diversity,
but there are exceptions. Fitness sharing achieves the most consistent

increase.

5.3 RQ3—What Are the Effects of Increasing Population Diversity
in MOSA?

To investigate the impact of diversity on the performance of MOSA, we look at
the achieved coverage and the average size of the individuals in the population
throughout the evolution. We focus on fitness sharing (using all three diversity
metrics), since RQ2 suggested that this is the most effective technique to increase
diversity. In addition to the naive application of fitness sharing at all times, we
also consider an adaptive version, where we apply fitness sharing only when
diversity drops below a certain threshold, and once the diversity level exceeds
the threshold, the diversity technique is not applied. We empirically determined
a threshold of 60%. Figure 3 shows the results of the best coverage in the pop-
ulation and the average length of all test cases in the population for MOSA
with and without fitness sharing (FS (fitness/predicate/statement)) during the
evolution.

For the flat group, there is a small difference in coverage as MOSA and fitness-
based fitness sharing result in slightly higher coverage than the other techniques.
The length plot shows how MOSA removes all redundancy from the population,
while adding diversity leads to larger individuals. In particular, genotype-based
fitness sharing has quite dramatic effects on size. Fitness-based sharing (adap-
tive and non-adaptive) has the smallest effects on size. For the evolving group,
MOSA achieves the highest coverage, while maintaining a somewhat constant
population size. Generally, fitness sharing slightly increases size, quite dramati-
cally so for genotype-based fitness sharing. Adaptive fitness-based sharing even
leads to smaller individuals than MOSA. Non-adaptive fitness sharing using
genotype and phenotype diversity leads to a notably lower coverage. For the
stagnating group, the non-adaptive fitness sharing using genotype and pheno-
type diversity again lead to a notably lower coverage and larger size. This time,
however, adaptive fitness-based sharing consistently leads to a higher average
coverage than MOSA, and even smaller individuals than MOSA. The plateau-
ing group shows similar results to the stagnating group, with larger coverage
improvement of adaptive phenotype-based sharing. While genotype and pheno-
type based non-adaptive sharing again lead to lower coverage initially, in this
group the size remains large but constant, and the coverage catches up and even
overtakes MOSA in the end.

Adaptive fitness sharing leads to higher coverage when the search in MOSA
stagnates (e.g., when coverage does not increase). To see whether adaptive fit-
ness sharing is always beneficial, Table 3 shows the number of classes where it
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Table 3. Number of classes where adaptive fitness sharing has an increased/de-
creased/equal coverage compared to MOSA, the average effect size Â12 and the number
of classes for which this comparison is statistically significant (α = 0.05).

Technique Increased coverage Decreased coverage Equal

#classes #sig. Â12 #classes #sig. Â12 #classes

Fitness 99 6 0.52 87 27 0.48 125

Predicate 52 2 0.51 141 39 0.48 118

Statement 77 4 0.51 116 33 0.49 118

increases, decreases, or results in equal coverage with MOSA. Adaptive fitness-
based sharing (AFS-fitness) increases coverage on 99 classes and decreases it
on 87 classes, albeit having only 6 significant increases as opposed to 27 signif-
icant decreases. For adaptive sharing based on predicate (AFS-predicate) and
statement (AFS-statement) differences we found more decreases than increases.

The negative effect of diversity on coverage can be explained by the increase
in length: Execution of longer tests takes more time, thus slowing down the
evolution. Within the time limit of 10 min, MOSA executed 629 generations
on average. Always applying fitness sharing decreases the average number of
generations (457, 344, and 339 generations with FS-fitness, FS-predicate, and
FS-statement respectively), but these figures improve when using the adaptive
approach (631, 538, and 519 generations with AFS-fitness, AFS-predicate and
AFS-statement, respectively). Consequently, applying adaptive fitness sharing
can be beneficial, but the question of when it does so is more subtle. Iden-
tifying the context in which it can help will be the focus of future research.

RQ3: Promoting diversity generally leads to larger tests and reduces coverage.
However, when coverage stops growing, adding diversity may improve MOSA.

6 Related Work

There have been several studies that considered diversity when generating test
cases [8,16]; however, the aim is to increase the diversity of the tests within
the final test suite, rather than the individuals in the search population. More
recently, Vogel et al. [28] studied the population diversity when evolving tests
for mobile applications where they used a distance-based genotypic measure to
quantify the diversity of the population. Applying four diversity maintenance
techniques on a multi-objective algorithm shows that diversity does not have
an effect on coverage, but it finds more faults. However, the negative impact of
increasing diversity on the length is also noticed in previous studies [2,28].

7 Conclusions

Measuring the diversity of generated unit test cases based on entropy, genotypic,
and phenotypic levels suggest that diversity maintenance techniques are very
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effective at promoting diversity throughout the evolution. Looking at their effect
on the performance of MOSA, we see that increasing diversity leads to reduced
coverage, and a possible increase in the length. However, preliminary results
of the adaptive approach suggest that adaptive fitness sharing with a fitness
distance metric has a positive impact on coverage on CUTs on which standard
MOSA tends to stagnate or plateau during early stages of the evolution. Further
work is required to better understand the reasons behind this effect.
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Abstract. Search heuristics, particularly those that are evaluation-
driven (e.g., evolutionary computation), are often performed in sim-
ulation, enabling exploration of large solution spaces. Yet simulation
may not truly replicate real-world conditions. However, search heuris-
tics have been proven to be successful when executed in real-world con-
strained environments that limit searching ability even with broad solu-
tion spaces. Moreover, searching in situ provides the added benefit of
exposing the search heuristic to the exact conditions and uncertainties
that the deployed application will face. Software engineering problems
can benefit from in situ search via instantiation and analysis in real-
world environments. This paper introduces Search@Home, an environ-
ment comprising heterogeneous commercial off-the-shelf devices enabling
rapid prototyping of optimization strategies for real-world problems.

Keywords: Real-world systems · Evolutionary search · In-situ
search · Search-based software engineering

1 Introduction

Commercial off-the-shelf (COTS) microcomputers (e.g., Raspberry Pi, Arduino,
BeagleBone, etc.1) are democratizing access to many-core distributed computing
environments. Such devices are generally constrained in terms of available pro-
cessing power and hard drive space, limiting their ability to individually carry
out complicated tasks quickly. Moreover, such devices will generally consume
far less power than a typical device used for simulation (e.g., server blade).
We posit that a microcomputing environment is therefore beneficial in terms of
rapidly prototyping search heuristics, in real-world conditions, yet may require

1 See https://www.raspberrypi.org/, https://www.arduino.cc/, and https://beagle
board.org, respectively.
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additional time to complete complex computing tasks. Specifically, we highlight
search-based software engineering (SBSE) as an attractive domain for real-world
search.

Optimization performed in real-world situations allows the system to analyze
relevant information from data specific to its operating context (i.e., combination
of system and environmental parameters) rather than simulating such param-
eters [2]. Self-adaptation has been applied to cyber-physical systems enabling
reconfiguration at run time in response to uncertainty, including those systems
considered to be safety critical [8]. Online evolutionary optimization has been
previously performed in fields such as robotics, where a (1 + 1) evolutionary
strategy searches for optimal neural network configurations [3]. Given the diffi-
culties in performing speculative, evaluation-driven optimizations at run time,
continuous optimization methods such as Markov chains and Bayesian methods
have also been applied [4,10]. Regardless of the method, an online optimization
strategy must consider the implications of updating an executing system within
its production environment.

This paper introduces and demonstrates Search@Home, a framework for
quickly prototyping in-place search-based software engineering (SBSE) tech-
niques using COTS hardware. Search@Home is intended to provide a low-cost
testbed that can be deployed in a target environment to rapidly prove out online
search heuristics (e.g., run-time requirements monitoring/optimization). While
a longer evaluation time is to be expected with low-power hardware, the ben-
efits of performing search in a real-world environment far outweigh the speed
gains of using a simulation that may be misconfigured or inaccurately describe
the environment-to-be. We next describe background and related work, demon-
strate Search@Home on a proof-of-concept optimization problem, and outline
future experiments.

2 Real-World Systems

This section presents relevant information on microcomputers and how SBSE
techniques can be effective within constrained environments

Microcomputers: Consumer-grade microcomputers have been widely propa-
gated at inexpensive price points with the recent explosion of interest in Maker-
related topics (e.g., hacking home electronics, 3D printing, etc.), many of which
are targeted at STEM education and non-production projects. Moving from sim-
ulation to reality in constrained environments requires addressing concerns in:

– Power : Beyond power optimization, microcomputers often supplied by sub-
standard power cables, resulting in undervoltage (i.e., slow/erratic behavior).

– Temperature : Heat can negatively impact devices without active (i.e., fans)
or passive (i.e., heat sinks) cooling, leading to CPU throttling.

– Memory : Microcomputers are constrained with the amount of available
memory for handling computing tasks. While the newest Raspberry Pi (4B)
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has up to 8 GB of available RAM, older models have significantly less mem-
ory. Edge devices exist specifically for heavy-duty computing (e.g., Google
Coral2), however they are generally used for only specialized purposes.

– Disk space : Depending on the device, permanent storage (e.g., EEPROM,
ROM, flash memory, etc.) is often at a premium in terms of availability.
Devices such as the Arduino and BeagleBone rely on programmable memory
space for long-term storage, whereas the Raspberry Pi uses a microSD card
for its storage.

– Timing constraints: While the devices used in this paper do not use real-
time operating systems, timing constraints must be explicitly handled by the
engineer, else faults can occur when software deadlines are violated.

Online/Hardware-Based Optimization: One common theme across opti-
mization algorithms is that there exists no “free lunch” as there are always
limiting factors in the application or environment [13]. Limitations for online
optimization will be readily-noticeable in run time, memory overhead, etc. In
constrained systems these impacts are exceedingly noticeable given their lower
operating capabilities. Care must be taken when performing optimization in
constrained systems.

In situ optimization has been applied to wireless sensor network applica-
tions, where run-time reconfiguration and programming models enable optimiza-
tion [11]. Li et al. minimized power consumption of test suites in low power
systems using an integrated linear programming approach [6]. Continuous opti-
mization is a common feature in other domains as well. Wang and Boyd applied
an online optimization technique (a primal barrier method) to model-predictive
control applications [12]. Mars and Hundt combined static and dynamic opti-
mization strategies to direct online reconfiguration based on scenarios [7]. Opti-
mization has also been applied online in a data-driven capacity, where uncer-
tainty models can inform decision making [2].

Search heuristics have also been deployed in silica. Genetic algorithms
(GA) have been deployed to field-programmable gate arrays (FPGA) for
hardware-based optimization [9], enabling rapid prototyping of fast, low-power
search. Energy management is another concern for metaheuristics, specifically
those involving smart power grids [5]. With additional hardware modules,
Search@Home can be extended to use in silica search and act instead as a con-
troller, and moreover, monitor energy consumption with appropriate sensors.

3 Search@Home Overview

For the purposes of this paper (and its initial implementation), Search@Home
was implemented as an IoT environment comprising two Raspberry Pi 3B
devices, a Raspberry Pi 4B (4 GB model), a spare 2010-era netbook (acting
as a point of entry to the network), and a wireless router (flashed with Tomato

2 See https://www.coral.ai/.

https://www.coral.ai/
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firmware) to provide a sandboxed network. Devices can be interchangeable – as
long as the device can connect to the network it can participate in the environ-
ment. For example, an Arduino Duo could be included as long as an appropriate
communication channel to the rest of the network is established (i.e., a WiFi
shield is installed).

We applied a string optimization problem demonstrating the feasibility of
deploying a search algorithm to a heterogeneous collection of devices. The algo-
rithm was developed with Python 3.7 and each Raspberry Pi used Raspbian
as its operating system. Given that Raspbian is a full Linux-based operating
system, libraries such as DEAP and DisPy can facilitate development of multi-
ple search heuristics or distributed cluster computing, respectively.3 To allow
for replication, we have made our parts list, source code, and results publicly
available on GitHub.4

String Search Configuration: The string search application leverages a stan-
dard GA to search for a given string, where this particular GA was released as
a GitHub.5 To increase the difficulty of this task, we specified a complex string
(OPT) comprising ASCII characters sampled between indices 32 and 64 and a
total length of 84.6 OPT is defined in Eq. 1:

OPT = ′12th Symposium for Search−Based Software

Engineering | http : //ssbse2020.di.uniba.it/′ (1)

The fitness function defined for this study is defined as follows in Eq. 2, where
ord represents a character’s Unicode integer value:

ffstring =
len(OPT )∑

i=0

|ord(TARGET [i]) − ord(OPT [i])| (2)

This particular GA uses single-point crossover, single-point mutation, and a
weighted-fitness selection function (i.e., fitness directly correlated to the proba-
bility that an individual is selected). Mutation is automatically applied to the
children generated by the crossover operation, where a random gene is modified.
The GA was configured to run for a maximum of 500, 000 generations, with
a population size of 500, a crossover rate of 0.5, and a mutation rate of 1.0.
The GA can converge early if the correct string is discovered. We performed
25 experimental replicates to ensure statistical significance, using the Wilcoxon-
Mann-Whitney U-test with a significance level of p < 0.001. We compared the
GA to random search as specified by Arcuri et al. [1].

For this feasibility study, we are interested in the amount of time required
before convergence to the expected solution and the number of generations nec-
essary to reach that value, as the number of generations is set very high to ensure
3 See https://deap.readthedocs.io/ and http://dispy.sourceforge.net/, respectively.
4 See https://github.com/efredericks/SearchAtHome.
5 See https://gist.github.com/josephmisiti/940cee03c97f031188ba7eac74d03a4f.
6 There exist 2.7 ∗ 10126 possible combinations based on string length and characters.

https://deap.readthedocs.io/
http://dispy.sourceforge.net/
https://github.com/efredericks/SearchAtHome
https://gist.github.com/josephmisiti/940cee03c97f031188ba7eac74d03a4f
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convergence. To focus on execution time, we intentionally did not introduce par-
allelism or distributed processing, however such a procedure can be used on
a microcomputer (e.g., Python’s multiprocessing package). Figure 1(a) com-
pares the number of generations required for the algorithm to converge and
Fig. 1(b) compares the amount of time (seconds) required to reach convergence
between a current-generation laptop7 and the Raspberry Pis. As can be seen from
these figures, there exists no difference in the number of generations required to
converge to the optimal solution. However, a significant difference exists between
the execution times required for convergence between each device (p < 0.001).
Moreover, each experimental replicate resulted in convergence. These results are
expected given the disparity in processing capability. However, the Raspberry
Pi was able to successfully execute optimization in all cases within a reasonable
amount of time, proving feasibility of optimization on constrained devices.

(a) Number of generations. (b) Execution time.

Fig. 1. Comparison of string search results between laptop and Raspberry Pis.

SBSE Implications: We now highlight three future experiments for in situ
optimization research.

1. Distributed processing of search algorithms
2. Power concerns resulting from search
3. Implications of SBSE in production environments

Item (1) can be an interesting study of offloading SBSE tasks (e.g., require-
ments monitoring, fitness evaluation, etc.) to distributed nodes. Item (2) demon-
strates the implications of modeling power consumption as a first-class citizen in
a software model (e.g., non-functional requirements). Item (3) uses optimization
in situ to investigate the interaction of search, software artifacts, and expressed
behaviors.

4 Discussion

This paper presents Search@Home, an open-source framework for enabling
in situ SBSE research within constrained environments. Search@Home uses
7 Intel Core i7 quad-core 2.8 GHz 64-bit processor, 16 GB RAM, 1 TB hard drive space.
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inexpensive COTS hardware providing an environment in which students and
researchers can quickly and effectively prototype and deploy applications that
would benefit from using real-world data to support an online search proce-
dure. For this paper, we targeted evolutionary computation, however extension
to other optimization domains (e.g., continuous optimization) is feasible as well.

We demonstrate the effectiveness of Search@Home on a string search exem-
plar to demonstrate basic search feasibility, where optimal solutions are discov-
ered in a reasonable amount of time. Future research directions for this project
include incorporation of low-cost robotics environments (e.g., iRobot Roomba,
Turtlebot, Lego Mindstorms, etc.), usage of a compute cluster (e.g., Beowulf
cluster, high-performance compute cluster, etc.), and incorporation of cloud tech-
nologies offsetting the cost of heavy evaluations (e.g., Google Cloud Functions,
Amazon Web Services Lambda functions, etc.).

Acknowledgements. This work has been supported in part by grants from the
National Science Foundation (CNS-1657061), Oakland University, and Grand Valley
State University. The views and conclusions contained herein are solely those of the
authors.
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Abstract. Search-based approaches have been successfully used as clus-
tering algorithms in several domains. However, little research has looked
into their effectiveness for clustering tasks commonly faced in Software
Engineering (SE). This short replication paper presents a preliminary
investigation on the use of Genetic Algorithm (GA) to the problem of
mobile application categorisation. Our results show the feasibility of GA-
based clustering for this task, which we hope will foster new avenues for
Search-Based Software Engineering (SBSE) research in this area.

Keywords: Software clustering · Mobile applications · Replication
study

1 Introduction

Automatic software categorisation is an ongoing research problem which aims to
find similarity among software artefacts [4]. Such similarity can aid, for exam-
ple, in detecting malicious software [8], requirements discovery [3,19] and mining
similar software behaviour and analytics [2,14,18]. Mobile applications (apps)
present a particularly interesting domain since the app store categorisation has
been deemed unsuitable and alternative automated categorisations are advo-
cated [2,8]. Furthermore, app stores boast various metadata that can be lever-
aged for this task [9,12].

Al-Subaihin et al. [1,2] have shown that categorising mobile apps according
to their functionalities can provide a better categorisation than the current app
store ones. However, their work focuses on comparing the effectiveness of vari-
ous feature extraction techniques from textual corpora, and thus only uses one
clustering algorithm: hierarchical clustering.

In this paper, we carry out a partial replication of the original study [1] to
investigate whether the results can be improved using a Genetic Algorithm-based
clustering algorithm, as evolutionary approaches were shown to be successful as
clustering techniques in other application domains [10]. Specifically, we investi-
gate four of the five research questions posed in the original study, but we shift
the focus on the clustering approach rather than the feature extraction method.
c© Springer Nature Switzerland AG 2020
A. Aleti and A. Panichella (Eds.): SSBSE 2020, LNCS 12420, pp. 181–187, 2020.
https://doi.org/10.1007/978-3-030-59762-7_13
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Firstly, as a sanity check, we measure the degree of difference between the two
clustering solutions. Then we report the degree of improvement on the origi-
nal app store clustering. We also report partial results of investigating the best
value of K for the GA-clustering algorithm (GAC) and, finally, we report the
efficiency of using the GA-clustering technique compared to hierarchical cluster-
ing. Our results reveal that using a GAC produces significantly better clustering
of mobile applications than those observed in the app store categorisation, and
those produced by hierarchical clustering. However, GAC fails to surpass the
quality of the hierarchical clustering solution at higher K values. To the best of
our knowledge, our study is the first to explore the viability of GA-based clus-
tering solutions for mobile app categorisation, and, more in general, few studies
have investigated search-based clustering in SE research (e.g., [5,6,11,15]). This
study shows the viability of search-based clustering solutions for SE tasks, and
we hope can open further avenues for SBSE research.

2 Replication Study Design

The original study extracted features from mobile apps descriptions using four
different techniques and compared their effectiveness for clustering apps by
using these features and only one clustering approach, i.e. hierarchical clustering
[1]. The study found that extracting features using Latent Dirichlet Allocation
(LDA) consistently performs well among the investigated feature extraction tech-
niques. Therefore, this replication uses LDA as a feature extraction technique,
investigates the effectiveness of GA as a clustering technique, and compares it to
the LDA-based hierarchical clustering results as reported in the original study.
In the following, we report further details on the empirical study design.

2.1 Research Questions

We investigate four of the five research questions from the original study.
RQ 0. How similar is the GA-based clustering solution to its hier-

archical counterpart? Investigating how similar GAC results are to the hier-
archical clustering solution is a sanity check before proceeding further in this
study. If the results are identical or very similar, there is no value in investigat-
ing GAC further. As in the original study, the similarity is measured by using
the Jaccard index, which is a commonly used measure for the agreement of two
partitions. Jaccard index ranges from 0 (complete dissimilarity) to 1 (identical).

RQ 1. Can GAC improve on current app store categorisation and
hierarchical clustering? This research question compares the quality of the
GAC results to the original app store, which has 24 categories (K = 24). The
answer will confirm whether the use of GAC can actually improve the status
quo (app store categorisation) and the state-of-the-art (original study). As done
in the original study, we measure the quality of the clustering solutions using
the Silhouette score [17]. A Silhouette score is assigned to each data point (i.e.
app) in the dataset based on its similarity to the apps in the same cluster and its
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dissimilarity to apps in other clusters. The Silhouette score of an entire clustering
solution is the mean scores of all data points in the dataset, and it ranges from
−1 (complete mis-assignments) to 1 (perfect assignments).

RQ 2. How does the choice of K affect the clustering quality of
GAC? Selecting a suitable K (i.e. number of clusters) is an ongoing problem in
cluster analysis. This RQ explores how much the choice of K affect the quality
of the resulting clusters. Due to the large cost of running GAC, we initially test
the quality of the randomly generated populations at the possible values of K.
This is then further explored by running GAC over three different values of K
(23, 98 and 397), and by comparing it to the Hierarchical clustering solution. As
in RQ1, we use the Silhouette score to measure the clustering solution quality.

RQ 3. How efficient is GAC compared to Hierarchical clustering?
It is well known that a GA can be costly to fine-tune and evolve. Therefore, it is
important to report its efficiency in terms of run-time in order to properly weigh
benefits over its costs.

2.2 Dataset

In order to answer these RQs, we used the same dataset as the original study
[1]1. This dataset contains 12,664 Android mobile applications belonging to 24
categories, which have been randomly sampled from the Google Play app store.
A detailed description of how this data was collected can be found elsewhere [1].

2.3 GA Approach

Fig. 1. RQ 2: Max (solid line) and mean
(dashed line) silhouette scores (y-axis) of
500 random solutions at different values
of K (x-axis) starting from k = 2 to k =
dataset size/2 and a step of 250.

In this study, we opted to use the GA
clustering approach proposed by Maulik
and Bandyopadhyay [13]. This algo-
rithm was shown to be able to find a
global optimum, and its variations are
widely available as code libraries. In our
experiment we used the GAMA R pack-
age (v. 1.0.3) [16], and modified it to
enhance the initial population genera-
tion and the penalty function (see Sect.
2.3 for the problem at hand2).

Solution Representation and Eval-
uation. The dataset of mobile apps is
represented such that each mobile appli-
cation is coded in terms of its LDA top-
ics. The original study used 273 topics,

1 http://clapp.afnan.ws/data/.
2 Modified GAMA code can be found here: https://github.com/afnan-s/gama.

http://clapp.afnan.ws/data/
https://github.com/afnan-s/gama
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thus, the dataset is a 12,664 by 273 matrix with each cell containing the relat-
edness of the app to the topic. Each individual is a clustering solution, which is
encoded as a vector of real values, each representing a cluster centre3 (with K
known a priori). As the original study used the Silhouette score to measure the
quality of a clustering solution, we have used this measure as fitness function
for GAC. Upon generating the initial population of cluster centres randomly,
they are evolved using linear rank selection, blend crossover and non-uniform
mutation [13,21].

Empty Clusters Problem. Upon generating the initial random population
(i.e. random cluster centres), GAC looks at each gene and generates a uniformly
random number between the upper and lower bounds found in the dataset. How-
ever, as our dataset represents topic relatedness (i.e. each gene in the individual
is the relatedness of that individual to one specific topic), the dataset is a very
sparse matrix, and the initial population of random centres can be very far from
the actual data points in the dataset. As a result, many of the initial random
solutions have mainly empty clusters as finding viable random cluster centres
that are sufficiently close to the data points is unlikely. In order to address this
limitation, we have modified the random population generation such that it uni-
formly samples from the set of pre-observed values for each gene. In addition,
we have adopted a penalty function that deducts the fitness of an individual
proportionally to the number of empty clusters it contains.

Table 1. RQ 1: Silhouette width scores of

existing app store categorisation, hierarchical

clustering and GAC (k = 24, which is the

number of categories in the app store).

Min. Max. Mean Median
Existing categorisation −0.54 0.59 0.003 −0.01
Hierarchical clustering −0.64 0.99 0.02 −0.01
GAC −0.49 1.00 0.52 0.55

Parameter Tuning and Setting. We
have explored running the GA with pop-
ulation sizes as low as 5, 10, 25, and 100.
However, the cost significantly increases
as the population size increases, since each
individual consists of 273 (number of top-
ics/genes) values multiplied by K (number
of cluster centres). We have found that a

good compromise is using population = 500 and generations = 1000, crossover
rate = 0.9, mutation rate = 0.1. We also investigated decreasing crossover rate
and increasing mutation rate, however, this did not produce better results.

3 Results and Discussion

This section presents the results for each of the investigated RQs, in addition to
a discussion of the comparison to the original study and possible implications.

RQ 0. Similarity of Clustering Solutions. When comparing the GAC clus-
tering solution to the hierarchical clustering solution at K = 24 (with GAC hav-
ing 1 empty cluster), the Jaccard similarity score is 0.37. This suggests that the
3 The cluster centre is the arithmetic mean of all the points belonging to the cluster.
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solutions bear some similarity, however, as will be reported in following RQs,
the GAC solutions are of significantly higher quality. This shows that GAC’s
solution does not stray much from the hierarchical clustering one, but indeed
improves upon it.

Table 2. RQ 2: Mean Silhouette scores at

three different levels of K using random clus-

ter centres, hierarchical clustering, and GAC.

Categorisation solution K = 23 K = 98 K = 397
Random - Mean −0.12 −0.05 0.13
Random - Best 0.13 0.05 0.19
Hierarchical cluster 0.03 0.13 0.3
GAC cluster 0.46 0.13 0.17

RQ 1. Evaluation of Clustering
Quality at Low K. Table 1 shows sum-
mary statistics of the silhouette scores
of each of the three clustering solutions.
We observe that the GAC algorithm is
able to produce significantly higher qual-
ity segmentation of the dataset at the
same granularity of the app store. While

in the original study, the hierarchical clustering solution improved upon the
existing app store classification by 1.7%, the GAC solution improved it by 51.5%
(note that 100% improvement means reaching a Silhouette score of 1). Indeed,
the quality of the GAC-based solution exceeds that of the hierarchical-based
one at its best selected K. We conclude that, upon requiring a coarser granu-
larity clustering technique, GAC is a more suitable solution than a hierarchical
technique, for this dataset.

RQ 2. Best Overall K. Upon studying the resulting clustering solutions of
GAC for higher cluster numbers (i.e., higher K), the algorithm fails to produce
solutions with high mean silhouette scores at the given parameters, as shown
in Table 2. This could provide evidence that, for the studied dataset, GAC
may not be suitable for finer clustering granularity, though very competent at
coarser ones. In order to gain further insight regarding the silhouette trend as K
increases, we have investigated the mean silhouette score for random initial pop-
ulations at different levels of K. The results (see Fig. 1) suggest that silhouette
scores are higher at lower K values and remain stagnant as K increases.

Table 3. RQ 3: Running time of the
two clustering algorithms (measured on
a standard laptop with an Intel Core i7
3.1GHz and 16 GB RAM; d = days, h =
hours, m = minutes, s = seconds).

No. Steps Hierarchical GAC
1 Data preprocessing 5.4 d 5.4 d
2 DTM construction 3.0 h 3.0 h
3 Distance matrix 21.0 s 1.3 m
4 Clustering 6.0 s 1.7 d

RQ 3. Efficiency. Using LDA to repre-
sent the dataset of mobile app descriptions
requires an upfront cost to search for the best
LDA parameters that represent the data (fur-
ther details can be found in [1]). Therefore,
both GAC and Hierarchical clustering cost
exactly the same for the first two steps (see
Table 3). As GAC uses squared euclidean dis-

tance, as opposed to cosine distance used by the Hierarchical algorithm, it
requires slightly longer to calculate the distance matrix. The major difference,
however, can be observed in the time taken to produce the clustering solution.
While Hierarchical clustering can produce a dendrogram in 6 s, from which a
solution can be produced at any desired K (by cutting the denrogram), GAC
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can require several days on the same machine to produce a solution at any given
K4. This shows that GAC might be too costly an option especially for larger
K values, especially when considering the time taken to tune the parameters.
However, due to the large improvement of the cluster quality over low K (from
0.02 produced by Hierarchical to 0.52 produced by GAC), this trade-off might be
worthwhile. Moreover, the use of parallelisation when running GA can mitigate
these costs [7,20].

4 Conclusion and Future Work

This paper reports the initial results of our replication in which we investigate
the efficacy of adopting a GA-based clustering approach to find a latent segmen-
tation of mobile apps in the app store. We have found that GAC can be costly
to run over a dataset comprising of a sparse matrix as typical of text analysis
datasets. However, given a low enough K, GAC can exceed the results of hier-
archical clustering with low enough cost given the improvement. On the other
hand GAC did not produce clustering solutions over larger values of K that have
higher quality than random search, possibly rendering it an unsuitable choice
for finer granularity clustering. We plan to continue the line of investigation
to fully replicate the original study and extend it. This includes investigat-
ing other similarity measurement techniques: vector space model, collocation-
and dependency-based feature extraction methods as they might produce differ-
ent results when combined with GAC. Also, we aim to further tune the GAC
parameters to increase the confidence of the findings. Additionally, applying
other search-based approaches may yield interesting results, including solving
the empty cluster problem when generating random cluster centres by using a
multi-objective GA that aims to maximise both the cluster quality and achiev-
ing different desired granularities (K). Our study sheds light on the feasibility of
GA-based clustering for the SE task of mobile app categorisation. We hope this
will foster further avenues for SBSE research in this area, as well as for many
other clustering and classification tasks in SE [4].
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Abstract. Genetic Improvement (GI) uses automated search to improve
existing software. It can be used to improve runtime, energy consump-
tion, fix bugs, and any other software property, provided that such prop-
erty can be encoded into a fitness function. GI usually relies on testing to
check whether the changes disrupt the intended functionality of the soft-
ware, which makes test suites important artefacts for the overall success
of GI. The objective of this work is to establish which characteristics of
the test suites correlate with the effectiveness of GI. We hypothesise that
different test suite properties may have different levels of correlation to
the ratio between overfitting and non-overfitting patches generated by
the GI algorithm. In order to test our hypothesis, we perform a set of
experiments with automatically generated test suites using EvoSuite and
4 popular coverage criteria. We used these test suites as input to a GI
process and collected the patches generated throughout such a process.
We find that while test suite coverage has an impact on the ability of
GI to produce correct patches, with branch coverage leading to least
overfitting, the overfitting rate was still significant. We also compared
automatically generated tests with manual, developer-written ones and
found that while manual tests had lower coverage, the GI runs with man-
ual tests led to less overfitting than in the case of automatically generated
tests. Finally, we did not observe enough statistically significant correla-
tions between the coverage metrics and overfitting ratios of patches, i.e.,
the coverage of test suites cannot be used as a linear predictor for the
level of overfitting of the generated patches.

Keywords: Genetic Improvement · Search-based software
engineering · Overfitting

1 Introduction

Genetic Improvement (GI) uses automated search to improve existing soft-
ware [18]. GI navigates the search space of mutated program variants in order to
find one that improves the desired property. This technique has been successfully
used to fix bugs [1,14], add an additional feature [3,19], improve runtime [12],
energy [7], and reduce memory consumption [5,23].
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In the vast majority of GI work, each software variant is evaluated using a
test suite, which is treated as a proxy for correctness. Although this assumption
cannot prove absence of bugs in the evolved software, it has been good enough
to evolve useful patches that have been adopted into development [13]. On the
other hand, the generated patches have been criticised for overfitting, i.e., passing
the tests used during the GI search process, but not producing actual fixes that
generalise to unseen scenarios [20]. This triggers the question about:
What feature should a given test suite have to aid the GI process in producing
useful, correct patches?

The current state-of-the-art uses existing test suites, together with the given
program, as input to the GI process. In the case of functional improvement, such
as program repair, such a test suite would contain some failing tests that reveal
a given property (such as a bug, or a feature not yet present in the software)
that needs amending. The objective is to find a semantic change to the program
so that the evolved software would pass all the provided test cases. In both
functional and non-functional improvement branches of GI the test suite serves
as an oracle for whether the evolved software has the desired semantics. Note,
however, that in order to achieve improvement with respect to a functional prop-
erty, its semantics needs to change, by definition. In contrast, in non-functional
improvement we want to preserve the semantics of the original software, whilst
improving a property of choice, such as running time. This has consequences in
how test suites can be used in GI.

In order to improve a program using GI, we need a test suite that will faith-
fully capture the desired software behaviour. However, finding such test suites is
a non-trivial task. Frequently in GI work the test suite needs to be usually manu-
ally improved before the GI process can begin [3]. If the test suite is too weak, GI
will keep on deleting code (it can access) that contains uncovered functionality.
Therefore, traditional software metrics, such as branch coverage, have been used
to estimate how good a given test suite is before inputting them into the GI pro-
cess [3]. This can be very costly, especially in the functional improvement case,
where one has to devise test cases manually, as an automated approach treats the
current implementation as the test case oracle [4]. However, in non-functional
improvement, automated test case generation tools can be utilised.

Regardless of whether a given test suite has been generated manually or auto-
matically, the question still remains: which features should it have that would
lead to least overfitting when used within a GI process? Smith et al. [20] took
the first step by investigating the amount of overfitting by comparing manual vs.
automated tests for the purpose of test-based automated program repair. Assiri
and Bieman [2] sampled from existing test suites to show that statement-covering
and random test suites lead to introduction of new faults in the automatically
‘repaired’ software. More recently, Yi et al. [24] tried to correlate various test
metrics in existing test suites with their ability to lead to a non-overfitting patch.

In this work we aim to measure the correlation between traditional test suite
metrics and the given test suite’s impact on overfitting in the GI process. In
contrast to previous work, we focus on non-functional improvement (runtime, in
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particular), and the Java program space. Hence, we use EvoSuite [11] to auto-
matically generate test suites that achieve a given test suite coverage. We thus
consider one test suite metric at a time, in order to provide a more systematic
view of the metrics’ impact. In this study we additionally measure the level of
overfitting during the GI search process. We also re-run GI 20 times for each
test suite – program pair (due to the non-deterministic nature of the GI search
process we use). This way we can investigate a larger space of plausible software
variants in order to establish a correlation between a given test suite coverage
measure and the amount of overfitting. We also provide a replication package,
available at: https://github.com/justynapt/ssbse2020RENE.

2 Background

Genetic Improvement (GI) uses automated search to improve existing soft-
ware [18]. In a typical scenario, the input to GI is a program and a test suite.
GI then uses a set of mutation operators and a meta-heuristic, such as genetic
programming, to evolve thousands of software variants, to be evaluated using
a given fitness measure. In functional improvement fitness is based on the test
suite alone, while in non-functional improvement an additional evaluation needs
to be made against a property of choice, such as running time. The process runs
until a given criterion is met. For the purpose of program repair, for instance,
the search can be stopped when a program variant passes all the given tests, or
only after a specified number of generations of the search algorithm of choice.

There have been several metrics presented in the literature to evaluate the
strength of a test suite [8]. We focus on those that are implemented in the
arguably most successful automated test case generation tool for Java, i.e., Evo-
Suite [11]. This tool implements a total of 8 coverage metrics. In this work we
focus on 4, as the other ones are either not applicable to the benchmarks we use
(for instance, our programs have a single method with no exceptions thrown,
so there’s no need to consider these) or is not fully supported for our purpose
(output diversity measure cannot currently be automatically calculated for an
existing test suite using EvoSuite). Therefore, we consider line, branch, condi-
tional branch, and weak mutation coverage.

Line and branch test suite coverage metrics are self-explanatory, i.e. the test
suite aims to cover the largest number of lines or branches of the program,
respectively. Conditional branch coverage aims to cover all branches with the
right conditions, e.g., for an IF statement with an OR condition on 2 Boolean
variables, 4 tests would have to be generated to cover all conditions, while branch
coverage would only need 2 tests (for the false and any true evaluation of the
if condition). In Mutation Analysis [17], a mutant program is said to be killed
(i.e. covered) if its output differs from the output of the original program. The
more mutants killed by a test suite, the better it is in revealing the faults. Unlike
conventional mutation, Weak Mutation does not compare the final output of the
mutated program, but rather compares intermediate states to decide whether
a mutant is dead or not [15]. Offutt and Lee showed that weak mutation can
produce stronger test suites [15,16] than strong mutation though.

https://github.com/justynapt/ssbse2020RENE
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3 Methodology

Our aim is to investigate the impact of various test suite coverage metrics on
overfitting in the GI process. We also want to know if automatically generated
tests, using such metrics, could yield to low overfitting rate and thus be used for
the purpose of non-functional software improvement in GI.

In contrast to previous work, we do not analyse only the resulting patch of
each GI run, but also all the valid (i.e., test-suite adequate) patches generated
during the GI search process. We analyse all of them because, even though
they have been discarded during the search process (as not leading to better
improvement than the final patch found), they are still valid and could still be
used as feasible solutions. This gives us better statistical power during analysis,
and thus more conclusive evidence from thousands of patches as opposed to a
few hundreds.

Furthermore, we focus on Java programs, as they have not been investigated
in this context before. We also use a non-functional property, namely, program’s
execution time as the goal for improvement.

3.1 Research Questions

In order to answer the question about which criteria should a given test suite
satisfy in order to lead to least overfitting in the genetic improvement process,
we generate test suites that achieve maximum coverage with respect to a given
metric and compare them with respect to the amount of overfitting when input
into the GI process. In particular, we pose the following research questions:

RQ1 (Validity) Given a particular test suite, can GI find a valid non-
overfitting patch?

We want to know whether GI is able to find a non-empty, potentially runtime-
improving patch1 in the first place, given a particular input test suite. As done
in related work [20], this question focuses on the final patch output by the GI
process. This step checks how well GI can find a non-overfitting patch, regardless
of how much overfitting might have occurred during the search process, and forms
a baseline comparison with previous work (albeit in Java rather than C program
space).

RQ2 (Overfitting) How does the overfitting rate vary with the input test
suite during search?

We want to know how often produced patches overfit to the training test suite.
Given that GI usually uses a heuristic approach, we conduct repeated runs and
additionally report on the overfitting rates during the different runs. As men-
tioned at the beginning of this section, for this RQ (and RQs 3–4 too), we look
at all valid patches generated during the whole GI search process.
1 We use the word ‘potentially’ here, as although the patch might improve upon our

training and test set, it does not mean the runtime improvement will generalise to
all possible usages of software. Manual check is thus necessary.
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RQ3 (Metric vs. Overfitting) How does the non-overfitting rate correlate with
the changes in coverage?

This question is designed to answer how fragile is the GI process to the change
in the coverage for a given test suite. Although we do not test for causation,
we are interested to discover if any of the coverage measures can be used as a
reliable predictor for the overall ratio of non-overfitting patches. If so, one can
aim at improving their test suite with regards to that specific measure, in order
to reduce the amount of overfitting.

RQ4 (Automated vs. Manual) How often do the automatically generated test
suites overfit with respect to the manually generated ones?

The same question was asked by Smith et al. [20], though in the C domain
and in the automated program repair context. We want to check if the same
conclusions hold in our scenario. In order to answer this question, we perform
a cross-validation using the automatically generated test suites using a set of
coverage criteria, against manually curated test suites.

With the above research questions in mind we set up our experiments. The
next subsections describe the datatset, tools, and experimental procedure in
more detail.

3.2 Dataset and Tools

We used the genetic improvement toolbox Gin v2.0 [6] in our experiments. Gin
fulfills all our requirements: it is open-source, targets Java programs, uses run-
time improvement as fitness by default, and its second release provides integra-
tion with EvoSuite [11].

Unlike in the automated program repair field, there is no standard benchmark
for runtime improvement using GI. We also require the programs to be relatively
small, so we could run thousands of experiments in reasonable time and avoid
the, often very costly, profiling stage of the GI process [6], targeting the whole
software instead. With those restrictions in mind, we chose to use the set of 9 sort
algorithms and the triangle example provided with the first release of Gin [22]
in our study, for which improvements have previously been found using GI [9].

All experiments were run on a Mac Mini with a 3.2 GHz 6-core Intel Core i7.

3.3 Experimental Procedure

We will now outline the details of the empirical study aimed at answering our
research questions.

For each program and for each test suite coverage criterion (i.e., branch, line,
conditional branch, and weak mutation) we generate a test suite using EvoSuite.
Additionally, we generate a test suite that aims to cover all 4 coverage criteria
at once. Next, we input the program and the given test suite to the GI process.

Gin uses a simple hill climber by default. It first generates a random mutation
(which could be a delete, copy or replace operation), applies it to the code
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and evaluates it. If the change is beneficial in terms of runtime, it is retained,
otherwise it is retained with 50% probability. The process continues for 100
iterations. Since this is a heuristic approach we repeat the GI cycle 20 times. We
extended the algorithm to make changes at the statement rather than the default
line-level (to allow for known improvements from previous work to be found).
Moreover, we used Gin’s PatchAnalyser to evaluate generalisability and runtime
improvement of each generated non-empty patch on a held-out test suite.

In order to get variation in the coverage percentage for the various metrics,
from each automatically generated test suite we sample uniformly at random
25%, 50%, and 75% of its tests, creating new test suites of varying coverage. We
repeat the GI process with these as well. In order to check for overfitting we use
the manual test suite, provided with the programs, as an oracle.

Altogether, we ran 20 rounds of GI on each of the 10 programs and 20
generated test suites (5 coverage criteria [4 single + 1 combined] × 4 samples),
for a total of 400 GI runs per program. Finally, we also generated a test suite
with the 4 coverage criteria as goals to treat as an oracle for GI runs on the
manual test suite, to compare the impact of manual vs automated test suites on
overfitting in GI. Therefore, a total of 4 200 GI runs was conducted, with 420 000
patches generated (4 200 × 100 steps of each local search run).

Pseudo-code for our experimental procedure is found in Algorithm 1. Note
that whenever a patch passed the training suite during a GI run, it was evaluated
against a test suite.

Algorithm 1: Pseudo-code for the experimental procedure. Each GI run
consists of 100 steps of local search.
for each Program P do

for Coverage metric C from [line, branch, conditional branch, weak
mutation, all4] do

Generate test suite T using C as coverage goal
for perc in [100%, 75%, 50%, 25%] do

T ′ = Select perc of tests from T
for i = 1; i <= 20; i + + do

Run GI with P and T ′ as input
end

end
for i = 1; i <= 20; i + + do

Run GI with P and Tmanual as input
end

end

end
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4 Results

In this section we present the results of our experiments and provide answers to
research questions posed in Sect. 3.1. We deem a resultant patch as overfitting
if it fails on the held-out test suite. For the runs where the manual test set was
used as input, we generated tests using EvoSuite with the four coverage goals
previously considered, i.e., branch, line, conditional branch, and weak mutation.
For all the other test suites we used the manual test suite as the test set, to
check for overfitting.

The experiments took a total of 16 h to complete. All the data (and the
modified Gin code to facilitate the experiments) is available as a replication
package on GitHub: https://github.com/justynapt/ssbse2020RENE.

4.1 RQ1 – Validity

To recap, for each of the 10 subject programs we generated 21 test suites: 4
satisfying 100% coverage of the test suite criterion; one that aimed to satisfy
all 4 goals at once; and the manual one; the 5 automatically generated test
suites were sampled at 100% 75%, 50% and 25%. This yielded 210 experimental
scenarios. In answer to RQ1, a patch was found in all scenarios. That is, for
each (test suite, program) pair GI found a non-empty patch in at least one run.
Moreover, in 203 scenarios a patch was found in at least one of the GI runs that
generalised to the held-out test suite (Table 1).

Table 1. Number of all and non-overfitting patches found in at least one of the 20
repeated GI runs for each program.

Program LoC Test sizes Test suites Patch found Non-overfitting

SortMerge 52 1–8 21 21 19

Triangle 40 1–10 21 21 21

SortQuick 32 1–9 21 21 21

SortBubbleDouble 24 1–7 21 21 21

SortRadix 24 1–7 21 21 21

SortSelection 19 1–7 21 21 21

SortBubbleLoops 17 1–7 21 21 21

SortSelection2 17 1–7 21 21 19

SortBubble 15 1–7 21 21 19

SortInsertion 14 1–7 21 21 20

Total 254 1–10 210 210 203

With these results, we can positively answer RQ1 and state that, within our
experimental setup, GI can indeed find valid and non-overfitting patches.

https://github.com/justynapt/ssbse2020RENE
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4.2 RQ2 – Overfitting

We provide more detailed results on the rate of overfitting throughout the search
process (i.e., including intermediate solutions) in Tables 2 and 3, and Fig. 1. Here
we report on all intermediate patches found during all 4 200 GI runs.

Table 2. Number of all intermediate and non-overfitting patches found during improve-
ment for all 4 200 GI runs, aggregated by each test suite type. Summative results shown
for the 10 programs investigated.

Criterion Sample% Patch found Non-overfitting Ratio

Branch 100 4 407 1 481 0.34

75 3 907 1 443 0.37

50 4 160 1 338 0.32

25 4 651 1 486 0.32

Line 100 4 989 1 366 0.27

75 5 009 1 412 0.28

50 4 907 1 141 0.23

25 5 122 1 374 0.27

W. Mutation 100 4 983 1 196 0.24

75 4 455 1 356 0.30

50 4 498 1 447 0.32

25 4 902 1 138 0.23

C-Branch 100 4 719 1 253 0.27

75 4 666 1 526 0.33

50 4 826 1 167 0.24

25 4 995 1 257 0.25

All 4 criteria 100 5 360 1 413 0.26

75 4 620 1 625 0.35

50 4 670 1 234 0.26

25 5 098 1 312 0.26

Manual 100 2 491 2 410 0.97

The ratios yielded by the generation criteria average from approximately 0.23
to 0.37, with the branch criterion yielding a better ratio overall. Moreover, there
is no apparent trend in the changes in sample percentages to the ratio, i.e., in
some cases even sampling as few as 25% of the test cases yielded a non-overfitting
ratio similar to that of using the whole test suite. However, when we group the
data by program (Table 3), a higher variation in ratios becomes apparent. This
may be an indication that the overfitting ratio is more dependent on the program
being improved, rather than on the criteria used to create the test suites.
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Fig. 1. Boxplot with the ratio between non-overfitting patches/total patches found (y-
axis) per generation criterion (x-axis). Each box presents the ratios for the 10 programs.

Table 3. Number of all intermediate and non-overfitting patches found during improve-
ment for all GI runs for each program. Data presented for all test suites investigated.

Program Patch found Non-overfitting Ratio

SortBubble 12 131 3 213 0.26

SortBubbleDouble 12 632 8 537 0.68

SortBubbleLoops 12 466 3 366 0.27

SortInsertion 10 129 2 048 0.20

SortMerge 5 228 2 588 0.50

SortQuick 3 005 2 690 0.90

SortRadix 9 622 1 090 0.11

SortSelection 11 548 1 472 0.13

SortSelection2 12 081 1 187 0.10

Triangle 8 593 3 184 0.37

We applied the Fisher’s exact test [10] on the data in order to determine if the
differences in proportion of overfitting and non-overfitting patches obtained by
the test generation criteria are statistically significant. Figure 2 presents the
ranks of each generation criterion over the 10 programs. The results of the
Fisher’s exact test were used to perform the rank computation, such that two
criteria are considered “statistically tied” p ≥ 0.05 for their pair comparison (i.e,
the difference in their proportions of non- and overfitting patches is not statisti-
cally significant). In such a case, the rank of a criterion is given by the average of
the ranks of all criteria to which it ties (including its own). We adopted this anal-
ysis because it would be infeasible to report all the 150 p-values (10 programs
× 15 pairwise combinations), and because it can easily depict rank superiority
with statistical significance. We refer to this method herein as “statistical rank”.
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Fig. 2. Boxplot with the statistical ranks of non-overfitting ratio (y-axis) per generation
criterion (x-axis). Each box presents the ranks for the 10 programs. Statistical ties are
averaged.

The branch criterion presented the best results among all criteria, with a
mean rank of 3.35 (median 2.75). Line coverage presented the worst results, with
an average rank of 4.20 (median 4.50). Surprisingly, using all available criteria
to guide the creation of test suites yields the second worst ratio and rank (mean
and median 4.20 and 4.25), even though it provides the best coverage.

Considering the analysis of this section, the answer to RQ2 is somewhat
mixed. First, the differences in non-overfitting ratio are not that striking as
shown in Fig. 1 and Table 2, but the results by program in Table 3 vary quite
widely. However, when considering the statistical ranks of the criteria, test suites
generated with branch coverage are slightly (but significantly) better than the
others in the proportions. Hence, using only branch coverage as opposed to the
other options can give the engineer a slight advantage on the result of GI in
regards to overfitting, although it depends on the program being improved.

4.3 RQ3 – Metrics vs. Overfitting

To answer this question, we collected all the results from all GI executions and
applied the Spearman’s rank correlation coefficient test (Spearman’s ρ) [21]. We
use this non-parametric correlation test because we cannot assume the normal
distribution of data. In fact, we checked for normality and could not reject the
hypothesis that the data does not follow a normal distribution.

We aim at assessing if there is any correlation between the non-overfitting
ratio and the coverage metrics of the test suites. In order to cater for the different
confounding variables, we have also applied the correlation test on the data by
sampling them based on their program, criteria, and sampling percentages. By
isolating these variables and making them constant in each sample, we can unveil
whether any of them can have some influence on the outcome of the correlation.
Table 4 presents the correlation results.

Only 24 out of 100 tested correlations showed statistical significance (p-value
< 0.05), and only 4 of those showed large correlation (Spearman’s ρ > 0.5). For
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Table 4. Spearman’s ρ correlation coefficient results. Each sub-table shows the results
for a different grouping. Each row represents a group of test suites and each column
represents a measure of coverage. A given cell [R, C] shows the correlation result
for all test suites in the group of row R, between their ratio of non-overfitting and
their measure of column C. For instance, the first cell [SortBubble, Size] indicates
a Spearman’s correlation ρ = 0.29 between the ratio of non-overfitting and the size
of test suites applied to program SortBubble. ‘*’ highlights significant correlations
(p-value < 0.05).

Grouped by program

Groups Size Branch Cov. Line Cov. Weak Mut. Cov. C-Branch Cov.

SortBubble 0.29 0.40 *0.45 0.29 0.40

SortBubbleDouble 0.42 −0.11 −0.14 −0.31 −0.11

SortBubbleLoops 0.27 0.37 *0.53 *0.54 0.37

SortInsertion 0.07 0.27 0.17 0.44 0.27

SortMerge −0.18 0.19 0.10 0.15 −0.15

SortQuick −0.23 −0.24 −0.22 −0.27 −0.22

SortRadix 0.42 *0.62 *0.49 *0.46 *0.62

SortSelection −0.08 −0.14 −0.31 −0.31 −0.14

SortSelection2 0.10 0.15 0.09 0.09 0.15

Triangle 0.05 0.11 0.04 0.14 0.11

Grouped by test suite generation criterion

Groups Size Branch Cov. Line Cov. Weak Mut. Cov. C-Branch Cov.

All 4 Criteria 0.22 0.15 0.07 0.07 −0.03

Branch 0.24 −0.04 −0.04 0.02 −0.05

C-Branch *0.37 −0.01 −0.23 0.05 −0.02

Line 0.21 *0.35 0.22 *0.41 0.19

W. Mutation 0.21 *0.40 *0.46 0.21 −0.05

Grouped by test suite sample %

Groups Size Branch Cov. Line Cov. Weak Mut. Cov. C-Branch Cov.

25% *0.28 0.21 0.17 0.25 −0.04

50% *0.29 *0.35 *0.28 *0.36 0.12

75% *0.41 *0.30 0.19 0.25 0.10

100% *0.28 −0.17 *−0.30 −0.22 −0.21

No data grouping

Groups Size Branch Cov. Line Cov. Weak Mut. Cov. C-Branch Cov.

Whole Data *0.24 *0.18 0.10 *0.17 0.03

instance, when GI is applied to SortRadix, the levels of Branch coverage and the
C-Branch coverage of the test suites showed large correlation to the ratio of non-
overfitting patches generated using the test suites. This also happened to Line
and Weak Mutation coverage of the test suites when applied to SortBubbleLoops.

However, due to the low frequency of significant results and stronger correla-
tions, our answer to RQ3 is rather negative. We could not find any consistency
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from a specific coverage metric in linearly predicting the level of non-overfitting
ratio yielded by the test suites during improvement. Furthermore, the correlation
is significant only for a few programs, which may indicate that the properties of
the programs are more important variables for the overfitting of GI.

4.4 RQ4 – Automated vs. Manual

Table 5 presents the non- and overfitting results for the manual created test suites
and to the test suites created with all 4 criteria (test suites that yielded the best
coverage overall). To recap, we perform a cross-validation, where the patches
generated with the aid of one type of test suite (automatically generated/manual)
are validated with the other type of test suites.

The first observation is that automatically generated test suites always have
the best coverage, for all coverage metrics and in all programs, with only two
ties. Moreover, automatically generated test suites always lead to more valid
patches during GI optimisation. However, manually created test suites always
produce more non-overfitting patches, despite generating fewer patches overall.

Table 5. Coverage measures and cross-validation overfitting results for Manually vs.
Automatically (abbreviated as “Aut.”) generated test suites. T. Suite – type of test
suite. Branch, Line, Weak Mutation (abbreviated “W. Mut.”), and C-Branch – cov-
erage obtained by the test suites. Patches – number of valid patches found during
improvement. Non-Overf. – number of non-overfitting patches found during improve-
ment. Ratio – ratio of number of non-overfitting by number of patches. Best values are
highlighted in bold.

Program T. Suite Branch Line W. Mut. C-Branch Patches Non-Overf. Ratio

SortBubble Manual 86% 88% 97% 86% 276 276 1.00

Aut. 100% 100% 99% 100% 537 212 0.39

SortBubbleDouble Manual 85% 71% 81% 85% 618 618 1.00

Aut. 92% 79% 83% 92% 643 497 0.77

SortBubbleLoops Manual 89% 89% 97% 89% 345 344 1.00

Aut. 100% 100% 98% 100% 523 192 0.37

SortInsertion Manual 86% 86% 97% 86% 218 218 1.00

Aut. 100% 100% 99% 100% 660 89 0.13

SortMerge Manual 94% 97% 96% 6% 118 118 1.00

Aut. 100% 100% 97% 67% 439 29 0.07

SortQuick Manual 93% 95% 97% 7% 152 152 1.00

Aut. 100% 100% 97% 100% 153 132 0.86

SortRadix Manual 93% 93% 97% 93% 122 114 0.93

Aut. 100% 100% 98% 100% 428 50 0.12

SortSelection Manual 86% 92% 97% 86% 178 178 1.00

Aut. 100% 100% 98% 100% 788 5 0.04

SortSelection2 Manual 86% 91% 96% 86% 178 178 1.00

Aut. 100% 100% 97% 100% 704 49 0.07

Triangle Manual 89% 92% 98% 89% 286 214 0.75

Aut. 100% 96% 98% 100% 485 128 0.26
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Consequently, the proportion of non-overfitting patches is considerably and sig-
nificantly better for manual test suites (Fisher’s exact test [10], p-value < 0.05).

These results indicate that in fact, better coverage does not translate to
better patches regarding overfitting. This analysis serves as further evidence for
the lack of correlation between coverage and non-overfitting.

Finally, answering RQ4, manually created test suites generate patches that
overfit significantly less than patches generated with automatically generated
test suites. The non-overfitting ratio of manual test suites is almost always 1.0
of the valid patches, whereas the ratio for automatically generated test suites
varies from 0.04 to 0.86 but never greater than their counterpart.

5 Threats to Validity

In this section we discuss threats to validity of the presented work.
Firstly, the programs investigated are quite small thus the results might not

generalise. There were several reasons for choosing this small set. There’s no
standard benchmark for GI for runtime, yet improvements for the programs we
use have been found in previous work. We also investigated the rate of over-
fitting during the search process, yielding 420 000 patches generated, roughly a
quarter of those being re-run to check for overfitting. With this small sample the
experiments took a non-trivial but feasible 16 h to complete. Moreover, similar
size programs with similar size test suites were used in previous work [20]. We
believe that for a preliminary study these were good enough.

Next, we used EvoSuite and Gin, thus inherited any limitations of the tools.
For instance, EvoSuites generation of test suites is non-deterministic, thus mul-
tiple runs might yield different results. However, Gin’s test case generator2 sets
EvoSuite to produce the same results for each seed3. We have then re-done the
experiments with a few different seeds and found the results consistent with the
ones reported in this paper. We did not conduct enough to report on statistical
significance of those though. Furthermore, different results might be obtained
with other mutation strategies than the default in Gin’s local search imple-
mentation. However, these mutation operators are currently standard ones in
test-based GI.

6 Conclusions

In this paper we evaluate the levels of non- and overfitting patches obtained
by different test suites during the GI optimisation process. The goal of our
experiments is to show the differences between manually and automatically gen-
erated test suites, and the correlations between coverage and the ratios of non-
overfitting patches.

2 See gin.util.TestCaseGenerator at https://github.com/justynapt/ssbse2020RENE.
3 Following advice given here: https://github.com/EvoSuite/evosuite/issues/48.

https://github.com/justynapt/ssbse2020RENE
https://github.com/EvoSuite/evosuite/issues/48
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Our results unveiled that, regardless of the criterion used to guide the auto-
matic generation of test suites, the ratios of overfitting differ slightly between
each other, with branch coverage being significantly better than the other crite-
ria, but only by a small margin. Moreover, we could only find 4 significant and
large correlations amongst a set of 100 tested correlations, which is not enough
scientific evidence to consider any of the tested coverage measures as accurate
predictors for the ratio of non-overfitting patches. Finally, our results showed
that even though automatically generated test suites cover significantly more
the programs under test and generate more valid patches throughout the search
process, manually curated test suites yield a significantly better proportion of
non-overfitting patches with almost no overfitting at all. This shows that clas-
sical automated test suite measures seem to have no bearing on how good a
test suite is for the purpose of applying genetic improvement. Thus, a question
of which characteristics a test suite should have so that useful, non-overfitting
variants are produced during the GI search process, remains unanswered.

As future work, we intend to extend the study with larger programs as well
as evaluate whether the properties of the programs under improvement play a
bigger role in the overfitting of patches than the properties of tests suites.
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Abstract. Anyone working in the technology sector is probably famil-
iar with the question: “Have you tried turning it off and on again?”, as
this is usually the default question asked by tech support. Similarly, it
is known in search-based testing that metaheuristics might get trapped
in a plateau during a search. As a human, one can look at the gradient
of the fitness curve and decide to restart the search, so as to hopefully
improve the results of the optimization with the next run. Trying to
automate such a restart, it has to be programmatically decided whether
the metaheuristic has encountered a plateau yet, which is an inherently
difficult problem. To mitigate this problem in the context of theoretical
search problems, the Bet and Run strategy was developed, where mul-
tiple algorithm instances are started concurrently, and after some time
all but the single most promising instance in terms of fitness values are
killed. In this paper, we adopt and evaluate the Bet and Run strategy for
the problem of test case generation. Our work indicates that use of this
restart strategy does not generally lead to gains in the quality metrics,
when instantiated with the best parameters found in the literature.

Keywords: Search based testing · Test case generation · Bet and Run

1 Introduction

Software testing plays an important role in providing evidence for the qual-
ity of software [17]. Due to the costs and complexity of writing tests manually,
automating the generation of tests by metaheuristic search techniques is an active
field of research [16,17,21]. A popular example for such a search-based approach
to automated test case generation (TCG) is EvoSuite [5,6]. EvoSuite has shown
its practical relevance by producing tests that achieve “good levels” of code cov-
erage [7, p. 1] and detect real faults in open-source software [8]. The metaheuristic
used by EvoSuite has evolved over time according to the state of the art, which
is currently the Dynamic Many-Objective Sorting Algorithm (DynaMOSA) [18].

Due to the stochastic nature of metaheuristics, such algorithms are approxi-
mate and therefore “find in a reasonable computation time a solution that is as
good as possible, but not necessarily optimal” [2, p. 242]. Exploring the search
space stochastically, a metaheuristic typically yields different results with every
run, and might get trapped in an inferior part of the search space (e.g., a plateau
or local optimum) which leads to suboptimal results. As for any metaheuristic,
this also applies to DynaMOSA in the context of TCG.
c© Springer Nature Switzerland AG 2020
A. Aleti and A. Panichella (Eds.): SSBSE 2020, LNCS 12420, pp. 204–219, 2020.
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One way to improve the search results is to restart the metaheuristic when-
ever it is trapped in a plateau or local optimum to try out another run [12,13].
However, such a restarting approach requires an appropriate strategy to be inte-
grated in the metaheuristic that determines the trap and restarts the search [10].
To avoid such a metaheuristic-specific strategy and explicit restarts, Friedrich
et al. [10] proposed generic Bet and Run, an approach that starts multiple short
sample runs of a metaheuristic, evaluates the intermediate results of these runs
after a certain point in time, and bets on the most promising run to continue the
search until the search budget is used. This approach is generic as it is indepen-
dent of the metaheuristic being used. This is in contrast to the original Bet and
Run that is intertwined with the metaheuristic [4]. Thus, by starting multiple
instances of a metaheuristic and selecting the most promising one, Bet and Run
turns the problem of repeatedly restarting an instance on its head. First, there
is no need to determine when a metaheuristic is trapped in an inferior part of
the search space to trigger a restart. Second, the effect of repeated restarts is
still obtained by starting and trying out multiple runs of the metaheuristic. The
generic Bet and Run has been successfully evaluated on two theoretical prob-
lems (Traveling Salesperson and Minimum Vertex Cover) that are structurally
different, so that Friedrich et al. [10] expect that Bet and Run is generally help-
ful.

In this paper, we adopt the idea of the generic Bet and Run strategy, transfer
it to the TCG problem using EvoSuite/DynaMOSA, and evaluate its general
feasibility for TCG and its effectiveness in comparison to the state of the art,
being EvoSuite/DynaMOSA. In our Bet and Run approach, we split the total
time budget for generating test cases for a subject into two phases. In the first
phase, we start multiple instances of EvoSuite/DynaMOSA concurrently, each
with the same configuration but a different seed. Since Bet and Run is generic,
we can treat EvoSuite/DynaMOSA as a black box without having to change the
metaheuristic. At the end of the first phase, we sample the intermediate results
(test cases) in terms of the fitness score provided by EvoSuite. After the first
phase, we bet on the most promising instance that continues generating test cases
during the second phase, whereas all of the other instances will be terminated.
Accordingly, variants of Bet and Run in terms of how many instances will be
started concurrently, and how the total time budget is split into the two phases,
are possible and will be investigated in this paper. EvoSuite as the state-of-the-
art approach serves as our baseline. It starts a single instance of DynaMOSA
to generate test cases for a subject over the total time budget. We evaluate the
effectiveness—in terms of achieved code coverage—of our Bet and Run approach
in a head-to-head comparison with this baseline, giving both approaches the
same time budget to generate tests for 107 Java classes.

To the best of our knowledge, no previous study has applied a generic Bet and
Run approach to a search-based software engineering problem, let alone TCG.
Several TCG approaches in the literature, however, have considered restarts
of search. The Alternative Variable Method (AVM), a variant of hill climbing,
restarts the search with a randomly selected solution candidate to overcome local



206 S. Müller et al.

optima, that is, when the fitness cannot be improved (cf. [1,9,11]). Chan et al. [3]
use a restart (complete reset) as one way to forget test cases in adaptive random
testing, which should reduce overheads of restricting the search space. Mathesen
et al. [14] propose a metaheuristic whose global search proposes locations where
the local search is restarted if a local minimum has been found. Finally, a genetic
algorithm has been proposed that produces the offspring (test suites) randomly
in a generation rather than by evolution if the current population lacks diver-
sity, which has an effect of restarting the search [22]. All of these approaches
provide metaheuristic-specific restart strategies that are intertwined with the
metaheuristic. In contrast, Bet and Run lifts the restart strategy to a generic
level that is independent of the metaheuristic being used.

The main goal of this paper is to evaluate the feasibility and effectiveness
of a generic Bet and Run approach for the TCG problem. For this purpose, we
investigate the following two research questions:

RQ1 Can generic Bet and Run be adapted to work on the TCG
problem?
RQ2 Does generic Bet and Run show a significant improvement in
the quality of the generated tests as measured by coverage metrics?

Accordingly, the primary contributions of this paper are:

(1) As the first study, we investigate the applicability of generic Bet and Run on
the TCG problem using EvoSuite and DynaMOSA. This will answer RQ1.

(2) We conduct an empirical study to compare Bet and Run and default Evo-
Suite/DynaMOSA on real-world 107 Java classes from the SF110 corpus [7].

(3) We provide a statistical analysis of the effectiveness of Bet and Run and
EvoSuite/DynaMOSA. This will answer RQ2.

2 Test Case Generation with EvoSuite and DynaMOSA

The context of our work is the automated test case generation (TCG) problem
that is about generating good quality tests for a given software. Particularly, we
focus on generating unit tests, for which we use EvoSuite. EvoSuite is a popular
search-based “tool that automatically generates test cases with assertions for
classes written in Java code.” [5, p. 416]. The metaheuristic used in EvoSuite
has evolved over time from whole test suite generation [6] to DynaMOSA [18].

The Dynamic Many-Objective Sorting Algorithm (DynaMOSA) [18] is the
state-of-the-art many-objective genetic algorithm to solve the test case gener-
ation problem by redefining it into a many-objective problem. Conceptually,
DynaMOSA works on each statement (i.e., target to cover) of the class under
test individually, instead of trying to generate a test suite for all statements
simultaneously. Thus, it breaks the complex task of generating a test suite for
an entire class into more manageable smaller pieces. DynaMOSA also only com-
putes test cases for targets that can be reached immediately: All branches that
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are still nested below other uncovered control flow nodes are temporarily ignored.
Thereby, DynaMOSA reduces the number of targets that are to be covered simul-
taneously and thus decreases computational complexity.

t = 0

Instance #

1
2
3
...
n

tk t
time

tf

Fig. 1. Example: Behavior of Bet and Run with n instances and a given run time
ttotal = tf + n · tk with a maximum initial run time tk for each instance. In this case
instance #2 showed the most promise at tk and was left running.

3 Bet and Run for Test Case Generation

Any metaheuristic can get stuck in local optima. Once trapped, such algorithms
do not tend to break free of such a plateau for a while. Friedrich et al. [10]
adopted and evaluated the approach Bet and Run for two general theoretical
computer science problems. Bet and Run was initially presented by Fischetti
and Monaci [4] for a sequential tree search method. Friedrich et al.’s approach
is no longer metaheuristic-specific and makes use of the typical multi-processing
architecture of modern hardware. The strategy is characterized by first starting
a number of algorithm instances that are identical in terms of call parameters
but contain different starting populations. After some time only the instance
that showed the most promise in terms of fitness values is then kept running.

Currently in the field of TCG, no restart strategies are automatically applied.
Unless the end-users intervene themselves, the optimization algorithm is simply
run once, and once only. But since the typically used optimization algorithms in
state-of-the-art tools such as EvoSuite are employing heuristics, the observations
above hold true in this field as well. Therefore, Bet and Run strategies are
generally applicable to the Test Case Generation problem as well.

In their 2018 paper [18], Panichella et al. state that DynaMOSA quickly
increases test suite quality, once it starts to generate tests. Therefore,
DynaMOSA is a good candidate for Bet and Run, as we can select the most
promising instance early in the search process.

In our study, we adapt the general Bet and Run approach as follows:
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Definition 1. Bet and Run adaptation to TCG : Let ttotal be the full time
budget available to the optimization.

(i) Starting phase. First we start n instances of DynaMOSA simultaneously,
for some fixed n. While all typical run parameters are held fixed, the seed
for the random number generator used for the optimization is varied across
all n instances.

(ii) Evaluation phase. After the initially selected but fixed time tk has passed,
we evaluate all n instances for their fitness in terms of the overall fitness
score computed by EvoSuite for the tests generated so far.

(iii) Elitism phase. We then kill the least fit n− 1 instances. If there are two or
more candidates with the exact same fitness score, we continue the first of
those candidates.

(iv) Run phase. Let the single remaining (and so far most promising) instance
continue until ttotal is fully used up. That is, the remaining instance runs
for tf := ttotal − n · tk.

This means n, tk, and ttotal are free parameters of our adaptation of the general
Bet and Run approach. An intuitive visualization is shown in Fig. 1.

Notation: Let p be the percentage so that tk := p · ttotal. We then say
RESTARTSn

p when we use n instances of the algorithm during the starting
phase and tk = p · ttotal as the evaluation time.

4 Implementation

In this section we provide an overview of the TCG project EvoSuite [5], as well
as the adaptations made by us, so that we may answer RQ1. We used EvoSuite
from a self-compiled 1.0.7 snapshot from the git repository1. This was done as
the -generateMO API option to use the state-of-the-art DynaMOSA algorithm
is not available yet in the official 1.0.6 release version of EvoSuite.

To answer RQ1, the first requirement is to make use of the EvoSuite frame-
work so as to extend its functionality with the generic Bet and Run restart
strategy. As this approach works on top of the tool itself, we do not need to
change any code of EvoSuite directly. Instead, we may use it as a blackbox tool,
that is, by using its command-line API we are able to get it to run tasks for us.

Therefore, it suffices to concentrate on providing a runner script implement-
ing the Bet and Run strategy, along with a set of tools needed for saving and
evaluating raw data. Apart from those scripts, all other program functionalities
(i.e., genetic operators, metrics, problem encoding, etc.) are those implemented
in the EvoSuite tool.

In most real-world tools, there is one limitation present: One cannot simply
“pause” a given algorithm run at some arbitrary point during computation,
evaluate the fitness at that point, and then decide whether to continue that run

1 Download of EvoSuite after commit https://github.com/EvoSuite/evosuite/
commit/e26a6b725539370aa22976f041f3304972e201a1 on January 10, 2020.

https://github.com/EvoSuite/evosuite/commit/e26a6b725539370aa22976f041f3304972e201a1
https://github.com/EvoSuite/evosuite/commit/e26a6b725539370aa22976f041f3304972e201a1
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or not. Instead, many tools provide a timeout function, that allows the user to
specify a runtime, after which the optimization is stopped and evaluated. For
implementing the Bet and Run approach, one therefore needs to fully restart the
most promising instance after the given evaluation. This, however, leads to two
main strategies of coping with the tool limitation in terms of remaining runtime:

– It is possible to give the remaining instance after the full restart a maximum
runtime of tf + 1·tk, in order to emulate the theoretical idea of the generic Bet
and Run approach, where “pausing” the initial n instances would be possible.
However, this implies that Bet and Run has tk more computation time, when
compared to the normal algorithm run without the restart strategy.

– A second possibility is to give the most promising instance after the full
restart a maximum runtime of tf . In this case, the time limit ensures, that
both the normal algorithm and Bet and Run do not take more than ttotal.

In this paper, we decided to use the latter approach, so as to not give Bet and
Run any more runtime than the baseline is given. This helps to make the results
between both approaches comparable.

To run the prototype implementation of Bet and Run, EvoSuite as a stand-
alone, blackbox tool only requires a runner script to build the command-line
API calls. This paper provides two such runner scripts: the evosuiteRunner, and
the evosuiteBARRunner. Both of those runners are automatically called by the
main experiments.py. While the first runner simply provides an interface for
running the standard EvoSuite implementation on many classes in parallel (i.e.,
the RESTARTS1

100%), the second one includes all changes necessary for the Bet
and Run variants. Both runners also collect data provided by EvoSuite and write
the raw values to a checkpoint file per class. Additionally, both scripts are able
to parse this raw data and thus compress the verbose output to the metrics.

All used scripts, parameter and settings files, as well as the used EvoSuite
sources are made available publicly with the online resources of this paper2.

5 Evaluation

In this section, we present our experimental set up, lay out the methodology
with which we analysed the raw data gathered, present and discuss the results
of our analysis, and finally we briefly discuss threats to validity. We provide both
of the interesting raw data sets with the online resources of this paper.

5.1 General Experimental Set-Up

All experiments of this paper, and the algorithms they are based upon, are
implemented in either Java OpenJDK 1.8.0 or Python 3.6.10. Additionally, for
building the EvoSuite files, a Maven installation is required. All other tool ver-
sions are listed in the online resources accompanying this paper.

2 https://www.doi.org/10.5281/zenodo.3903206.

https://www.doi.org/10.5281/zenodo.3903206
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Computational Resources: The experiments were run concurrently on a Dell
R920 compute server with 4 Intel Xeon E7-4880 v2 processors (60 cores) @
2.5 GHz, 1024 GB RAM, and a Suse Leap 15 OS (running Linux kernel 4.12.14).
For both experimental approaches we used 40 parallel worker threads.

Baseline Selection: To investigate both the applicability (RQ1) as well as the
effectiveness (RQ2) of the Bet and Run strategy, DynaMOSA is the natural
baseline to compare with. Not only is it the current state-of-the-art algorithm
in the field of Test Case Generation, it is also the algorithm extended in this
study: We implemented the restart strategy using the EvoSuite tool (by use of
its command-line API) and its implementation of the DynaMOSA algorithm.

Data Set Generation: Finding a set of classes that is both large enough to
be representative of the state of the art in software development, as well as
comparable to the studies in the field presents a certain challenge, as the adapted
data sets are often not made easily available for the public.

The SF100 corpus of classes is a collection of 100 Java projects from www.
sourceforge.net. The data set was designed to be statistically representative. In
2014 Fraser et al. [7] accounted for the fact that SourceForge is home to a large
number of older (and thus stale) projects, by revising the data set and adding
the 10 most popular projects to it. This resulted in the data set now known
as SF110 3. This benchmark has been used in many studies in the field [19,20],
and most relevant to this study, it is also the main source of subjects for the
study by Panichella et al. [18], in which they introduced DynaMOSA. Thus, to
be comparable to their results, we chose to adopt the SF110 benchmark. As we
could not find the exact list of classes used by Panichella et al. in their 2018
study, we followed their class selection algorithm:

1. Compute McCabe’s cyclomatic complexity [15] for each method in the SF110
dataset using the CKJM library4.

2. Discard any project that only contains trivial methods (i.e., classes that only
contain methods with a cyclomatic complexity of 1).

3. Randomly sample from the remaining projects.

Applying the above algorithm to the SF110 corpus of classes resulted in a
dataset of 107 different, non-trivial classes from 68 projects as provided by the
SF110 corpus of classes. The projects vary widely in size and difficulty: from
a mere 18 branches on average (with 122 statements) in project lavalamp, to
an average of 2515 branches in a medial 5887 statements in project jmca. This
dataset was used for all experiments of this study. A complete list of all selected
classes are made public with the online resources accompanying this paper.

3 http://www.evosuite.org/experimental-data/sf110/.
4 http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/.

www.sourceforge.net
www.sourceforge.net
http://www.evosuite.org/experimental-data/sf110/
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
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5.2 Experimental Set-Up for RQ1

RESTARTS1
100% is the standard run of a given algorithm without any restarts

– and is thus ideally suited as a baseline. Friedrich et al. [10] have shown that
RESTARTS40

1% is the parameter set that yields the best results for both theo-
retical problems in their study. Of the non-trivial settings, we thus initially try
RESTARTS40

1%, RESTARTS20
2%, and RESTARTS8

5%.
Therefore, to answer RQ1 and understand whether Bet and Run actually can

work in the field of TCG, we ran an experiment using the above-mentioned com-
putational settings, baseline, and dataset to test the four Bet and Run strategies.

The parameters for the Bet and Run experiments were thus set as follows:
n = 1, 40, 20, and 8 initial runs, as well as tk = 100%, 1%, 2%, and 5% of ttotal.
The total time budget (ttotal) was set to 5 min. In any run of the Bet and Run
strategies ttotal is split into n·tk and tf for the two phases (cf. Definition 1). Seeds
for the initial state of the random number generator were selected at random
for both the baseline and the initial phase of all employed Bet and Run strategy
executions. For the Bet and Run experiments, we set the timeout tk for all initial
instance runs via the -Dglobal timeout API parameter. On reaching time tk, we
evaluate each instance using the overall fitness score as provided by EvoSuite.
This fitness score is an approach level (i.e., a distance) and means “lower is
better”. After that evaluation, we only run the single most promising candidate
by restarting that instance with the timeout now set to tf , in an effort to not
give Bet and Run more runtime than the baseline. All four approaches were
tested 10 times each in order to account for the pseudo-random nature of the
employed DynaMOSA algorithm. A single experimental run of any given class
took between approximately 60 s to 5 min. The entire experiment for answering
RQ1 took about 3 full days per tested approach, when we used 40 concurrent
worker threads.

5.3 Answering RQ1

In our first experiment, neither RESTARTS40
1% nor RESTARTS20

2% managed
to generate any usable data. This is true for all 107 classes in the dataset.
This problem is due to the fact that the requested test case generation time
of the initial phase (tk) – as required by the respective restart strategy – was
too short for DynaMOSA to have managed to produce any tests while within
the actual generation phase of EvoSuite. The restart strategy thus could not
select any seed for the continued computation past tk and therefore failed. In
the RESTARTS8

5% experiment, this particular problem happened to two of the
selected classes: Evaluation of project weka, and MethodWriter of project jiprof.
For all other classes RESTARTS8

5% did manage to generate at least one test
suite over the ten experimental runs and thus qualified for further evaluation.

Answer to RQ1: The Bet and Run approach can indeed be adapted to
yield usable results within the field of TCG, as shown by our experimental
runs of RESTARTS8

5%.
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5.4 Experimental Set-Up for RQ2

Using the result from RQ1, we select RESTARTS8
5% for the statistical com-

parison to the baseline. To determine the effectiveness of the selected Bet and
Run strategy, we keep the dataset, computational set-up, and the parameters of
both strategies the same as they were set to in the experiment for RQ1. We do,
however, in order to generate a robust statistical evaluation repeat the execution
of each strategy 30 times. Furthermore, we also log for evaluation the following
fitness metrics upon fully using the time budget for each class.

Fitness Metrics: EvoSuite provides a number of different fitness metrics for
each run by default: An overall fitness score, as well as Line, Branch, Exception,
Weak Mutation, Output, Method, Method No Exception, and C Branch cover-
ages. Additionally, we also track per class and per experimental run if EvoSuite
encountered any internal errors during computation.

The overall fitness score is an aggregated approach level of the test suite to
covering the remaining targets. As this approach level is a distance, it is to be
read as “lower is better”. Any coverage metric is a percentage of reached coverage
and all are thus to be read as “higher is better.” The according definitions used
by EvoSuite may be found in [19], as well as in the source code of the tool. The
number of internal EvoSuite errors, which is also tracked, is an absolute value,
thus “lower is better”.

The full experiment for RQ2 took another 18 days. Note, that these times
do not include script run times for the subsequent evaluation of the raw data
gathered.

5.5 Evaluation Methodology for RQ2

The first step in answering RQ2, is to provide an overview over the actual behav-
ior of the collected measures with regards to the two experiments. For mean
values given in this paper the reader can safely assume “higher is better” for
every metric, with the exception of the two measures Time and Fitness Score.
The two excluded indicators need to be handled differently: The Fitness Score
is an approach level of the test suite (cf. Sect. 5.4), where “lower is better”. The
measure Time has only informative character and shows how long each of the
final instances spent in the actual generation phase.

In the subsequent statistical analysis (see Sect. 5.7), we employ the non-
parametric Wilcoxon Rank Sum hypothesis test to determine statistical signifi-
cance of our results for each class and each measure taken.

5.6 Answering RQ2

Generally, the results of our second experiment are structurally very similar
across the different classes, as well as metrics logged. Raw data from both the
baseline and the RESTARTS8

5% for all classes (that generated at least one test
case) and for all metrics are made available in the accompanying online resources.
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There we provide the *.zip of all raw data gathered, as well as a *.txt file with
aggregated raw data, which was used in the evaluation below in this section.

We note that in the baseline experimental runs, 14 of the original 107 selected
classes are rendered unusable for statistical evaluation, due to an excessively
high number of internal EvoSuite errors. Of the original set of classes in the
RESTARTS8

5% experiments, 15 are failures due to internal errors of the tool.
Of all failures 12 classes fail too often for both approaches, 3 only when using
DynaMOSA, and 4 only using Bet and Run. Of those 12 classes failing for both
approaches 1 class completely fails to generate any test cases for either approach
(class Evaluation of project weka). In total, this problem leads to 17 of the 107
classes not being eligible for statistical evaluation, apart from looking at which
of the approaches was able to execute EvoSuite more stably.

5.7 Statistical Analysis and Discussion

In this section, we will present the results of the statistical analysis for the
complete experiments of DynaMOSA and RESTARTS8

5%. We obtained the p-
values using the non-parametric Wilcoxon Rank Sum hypothesis test, as provided
by SciPy. Note that of the 107 initially selected classes only 90 were eligible for
statistical evaluation due to internal EvoSuite errors. Table 1 shows per metrics
collected the number of classes for which Bet and Run (BAR) is (i) identical
to, (ii) worse than, and (iii) better than the baseline (BL). In each column,
within the brackets we also show the number of statistically significant results
of the total number of classes within that field. For instance, the first line is
to be read as: For the metric Fitness Score there were a total of 28 classes
that led to identical results in both approaches. Of those 28, 28 are statistically
significant. Further there were 19 classes where the baseline outperformed the
Bet and Run approach, of which 2 were statistically significant. Finally, there
were 43 instances, where Bet and Run outperformed the baseline approach, of
which only 4 classes were statistically significant.

Table 1 shows that neither approach was significantly better than the other
overall. In fact, in most cases the p-value either does not reach statistical signif-
icance or even indicates that both approaches reach statistically the exact same
result. Over all 9 metrics and all 90 evaluated classes there were only 25 results
that show any statistically significant difference between the two approaches.
Of those, Bet and Run was 18 times significantly better than the baseline, and
7 times significantly worse (cf. Table 2). In contrast, over all 9 metrics and all
90 classes, we see 460 instances in which both approaches yield the exact same
result. This means, when looking at all 810 results (i.e., 9 metrics × 90 classes)
785 instances are either only marginally different, or yield the exact same result.

We argue that this is indicative of a limitation of the approach: In a real-
world setting in the TCG context, runs typically are strictly limited in their
computation times. This strict and more importantly short time budget for the
genetic algorithm appears to mitigate the plateauing problem quite effectively.
Furthermore, the use of the state-of-the-art DynaMOSA algorithm with its opti-
mization mechanisms that work on minimizing the initial number of coverage
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Table 1. Shown here are the aggregated results of the statistical analysis over
all metrics when comparing the baseline DynaMOSA (BL) and the Bet and Run
RESTARTS8

5% strategy (BAR), where BAR = BL means both approaches show sta-
tistically the same result (p-value = 1.0), BAR < BL means the Bet and Run approach
was worse than the baseline, and BAR > BL means Bet and Run was better than the
Baseline. Any value inside of brackets indicate the number of statistically significant
results in that field. Note that of the 107 initially selected classes only 90 were eligible
for statistical evaluation due to internal EvoSuite errors.

Metric BAR = BL BAR < BL BAR > BL

Fitness score 28 (28) 19 (2) 43 (4)

Line coverage 39 (39) 13 (1) 38 (3)

Branch coverage 35 (35) 16 (2) 39 (4)

CBranch coverage 36 (36) 16 (2) 38 (4)

Method coverage 78 (78) 6 (0) 6 (0)

Method no exception coverage 69 (69) 11 (0) 10 (1)

Exception coverage 80 (80) 5 (0) 5 (0)

Output coverage 57 (57) 12 (0) 21 (1)

Weak mutation coverage 38 (38) 19 (0) 33 (1)

targets (i.e., only search solutions for branches that can actually be covered
at this time) help to further decrease the potential of getting stuck in a local
optimum.

Panichella et al. state in their 2018 paper [18] that DynaMOSA quickly
increases test suite quality, once it starts to generate tests. We can confirm
this behavior: In our early experiments for RQ1, we saw that after a short ini-
tialization phase the algorithm managed to quickly improve fitness scores across
all metrics for the population. We believe this quick improvement phase at the
beginning is due to the fact that DynaMOSA only works on targets that can
possibly be covered currently, instead of working immediately on every single
target (i.e., the mechanism that the algorithm does not start working on targets
that are still restricted by higher level, yet uncovered targets). This behavior is
also a possible explanation for what we stated above: Neither RESTARTS40

1%,
nor RESTARTS20

2% managed to generate any tests. When we are using these
settings, no candidate instance can be chosen to survive past the decision time
tk, as tk was too short to get past the above-mentioned initialization phase.
We note that while RESTARTS40

1% was shown in Friedrich et al. [10] to be the
best strategy, we cannot confirm this finding here. Moreover, we also cannot
safely confirm quality increases in the test suite generated by EvoSuite. In fact,
we would argue that the additional computational overhead is indeed an argu-
ment against usage of that particular restart strategy in the field of Test Case
Generation, when also looking at the achieved results.

We have, however, seen a significant increase (p = 0.002930) in tool sta-
bility over all selected classes, when employing the Bet and Run strategy
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Table 2. Shown here are the classes that reached a significant difference when com-
paring the baseline DynaMOSA and the Bet and Run RESTARTS8

5% strategy.

Metric Stat. sig. worse
classes

Stat. sig. better classes

Fitness score 99 newzgrabber:
Downloader
12 dsachat: Handler

19 jmca: JMCAAnalyzer
61 noen: ProbeInformation
82 ipcalculator: BinaryCalculate
86 at-robots2-j: RobotRenderer

Line coverage 12 dsachat: Handler 19 jmca: JMCAAnalyzer
82 ipcalculator: BinaryCalculate
86 at-robots2-j: RobotRenderer

Branch coverage 39 diffi:
IndexedString
12 dsachat: Handler

19 jmca: JMCAAnalyzer
61 noen: ProbeInformation
82 ipcalculator: BinaryCalculate
86 at-robots2-j: RobotRenderer

CBranch coverage 39 diffi:
IndexedString
12 dsachat: Handler

19 jmca: JMCAAnalyzer
61 noen: ProbeInformation
82 ipcalculator: BinaryCalculate
86 at-robots2-j: RobotRenderer

Method coverage – –

Met. no exc. cov. – 86 at-robots2-j: RobotRenderer

Exception cov. – –

Output coverage – 50 biff: Scanner

Weak mut. cov. – 61 noen: ProbeInformation

RESTARTS8
5%. While the baseline showed a total of 578 internal errors of the

tool, the Bet and Run approach showed 500 errors across all classes. This differ-
ence of exactly 78 errors occurred over all 3210 experimental runs per approach
(30 repetitions × 107 classes). That means in 15.6% of all experimental runs,
the EvoSuite tool encountered errors during the RESTARTS8

5% experiments,
in comparison with 18.0% in the normal behavior EvoSuite experiments. This
difference can be explained by the transience of internal EvoSuite errors, where
a simple restart may fix the problem thanks to the selection of a new random
seed value. As these transient internal tool errors usually happen very early dur-
ing computation and since the Bet and Run restart strategy never selects any
seed value that showed an error, this is expected behavior of the employed strat-
egy. We assume the rather high number of internal errors by EvoSuite is due to
the fact that we employed a self-compiled (and thus potentially unstable) tool
snapshot, instead of an actual release of the software. We therefore argue, that
unless tool stability is of particular importance to the use case, the statistically
significant gains in this metric do not outweigh computational overhead needed
for those increases.
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Answer to RQ2: Apart from statistically significant increases in tool
stability, we cannot confirm any gains in the remaining nine metrics when
using Bet and Run with the best parameters found in literature. In fact,
we question the effectiveness of Bet and Run in the field of TCG, as time
constraints and highly specialized algorithms (e.g., DynaMOSA) in this
field effectively mitigate the typical plateauing problem of metaheuristics.

5.8 Threats to Validity and Future Work

In this paper, we rely on a search-based approach with a restart strategy to
solve the Test Case Generation Problem. As such we see the following potential
threats to the validity of our work.

Internal: In all genetic algorithms, a fair amount of (pseudo-)randomness is
involved in the generation of their respective results. In DynaMOSA, the ran-
domness problem is somewhat alleviated by the use of the archiving function
– a test case covering some new target is never lost due to future mutations
again. Additionally, we try to mitigate this threat by (i) sampling 30 runs per
selected class and evaluating all results only in the average case; as well as (ii)
providing online the seed values for all runs, both in the normal EvoSuite and
the Bet and Run experiments (in the latter we provide the seeds that showed the
most promise at time tk). The seed values are made available in the aggregated
result data files of the online resources. Furthermore, there exists the possi-
bility of faults within our strategy implementation. We tried to minimize this
threat by use of standard components (such as the EvoSuite implementation
of DynaMOSA or the SciPy libraries for the statistical testing) wherever possi-
ble. All implementations, codes, and scripts are made available for inspection,
review, and validation with the online resources accompanying this study.

External: Our evaluation is based upon the benchmark data set “SF110 Corpus
of Classes” as provided by Fraser et al. [7]. While Fraser et al. argue that they
selected 100 statistically representative SourceForge projects and even further
enhanced this set with another 10 “popular” projects, the possibility that the
heterogeneous nature of software is indeed not fully accounted for still exists:
The restart strategy might behave differently for a different set of real classes.
We leave for future work to revisit the use of the restart strategy with a different
data set.

Construct: The first threat in this category that we can see is the possibility
of the experiments not yet having encountered any plateaus. This threat could
only be mitigated by redoing the entire set of experiments with a much higher
timeout. However, this would go against real world usage of the EvoSuite tool.
In practical settings, the tool is used to quickly generate a test suite for project
classes – extremely high timeouts are thus the exact opposite of the intended use.
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We will, however, leave for future work a confirmation study with those increased
timeouts: It is a matter of running the provided implementation with a new set
of parameters. A second threat of this family is that while we selected restart
strategy parameters that were shown to be “good” in the study by Friedrich
et al. [10], “good” in the context of TCG might be something else entirely. In
our case, it may be the case that most of tk is in fact used for tool initializa-
tion, and no significant test generation is performed so as to correctly estimate
the “best” performing one. Similarly to the first threat to construct validity, a
parameter tuning study with a new set of parameters is left for future work, as
even more parameters for the restart strategy would go beyond the scope of this
initial study. And thirdly, by forcing us to restart the most promising instance
completely, the implementation limited us to choose between either giving the
remaining instance in the run phase a maximum run-time of (i) tf + tk, or (ii)
tf . We chose the latter, so that both Bet and Run and the baseline do not use
more than ttotal. This leads to the evaluated instance having p% less run-time,
while the total run-time of the Bet and Run approach is 100% of ttotal. Had we
used approach (i), however, Bet and Run would have had a total run-time of
ttotal + tk.

6 Conclusion

In this study, we provided a tool to run and evaluate the generic restart strategy
Bet and Run in the context of Test Case Generation using EvoSuite and the
state-of-the-art DynaMOSA algorithm. To the best of our knowledge this was
the first study that applies the generic Bet and Run approach to this field.
Our work indicates that use of a restart strategy instantiated with the best
parameters found in the literature does not generally lead to gains in the quality
metrics: Not a single metric was improved by the Bet and Run restart strategy
when compared with the EvoSuite/DynaMOSA as the baseline. In fact, for most
selected classes, both approaches showed statistically the exact same results.

Only the stability of runs showed statistically significant improvements when
Bet and Run was employed, as the number of internal EvoSuite errors decreased
in the final generation process. However, from what we saw in our experiments,
most of the internal EvoSuite errors are transient: In a real-world setting where
the tool did not generate a test suite immediately, it is more than likely that a
second (manually started) run with the same parameters would fix the problem.

Our results indicate, that (contrary to the promising results in the 2017
study by Friedrich et al. [10]) the restart strategy Bet and Run is not suited for
improving the quality of automatically generated test suites using EvoSuite and
its state-of-the-art DynaMOSA implementation considering the best Bet and
Run parameters found in literature.
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Abstract. Masking occurs when one condition prevents another from
influencing the output of a Boolean expression. Adequacy criteria such
as Multiple Condition Coverage (MCC) overcome masking within one
expression, but offer no guarantees about subsequent expressions. As a
result, a Boolean expression written as a single complex statement will
yield more effective test cases than when written as a series of simple
expressions. Many approaches to automated test case generation for Java
operate not on the source code, but on bytecode. The transformation to
bytecode simplifies complex expressions into multiple expressions, intro-
ducing masking. We propose Bytecode-MCC, a new adequacy criterion
designed to group bytecode expressions and reformulate them into com-
plex expressions. Bytecode-MCC should produce test obligations that
are more likely to reveal faults in program logic than tests covering the
simplified bytecode.

A preliminary study shows potential improvements from attaining
Bytecode-MCC coverage. However, Bytecode-MCC is difficult to opti-
mize, and means of increasing coverage are needed before the technique
can make a difference in practice. We propose potential methods to
improve coverage.

Keywords: Search-based test generation · Adequacy criteria ·
Coverage criteria

1 Introduction

For any reasonably complex software project, testing alone cannot prove the
absence of faults. As we cannot know what faults exist a priori, dozens of ade-
quacy criteria—ranging from the measurement of structural coverage to the
detection of synthetic faults [8]—have been proposed to judge testing efforts. In
theory, if the goals set forth by such criteria are fulfilled, tests should be ade-
quate at detecting faults related to the focus of that criterion. Adequacy criteria
such as Statement or Branch Coverage have proven popular in both research
and practice, as they are easy to measure, offer clear guidance to developers,
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and present an indicator of progress [9]. Adequacy criteria also play an impor-
tant role in search-based test generation, as they offer optimization targets that
shape the resulting test suite [16].

Masking occurs when one condition—an atomic Boolean variable or
subexpression—prevents another condition from influencing the output of the
expression. Even if a fault in a Boolean expression is triggered, other parts of that
expression—or future expressions encountered along the path of execution—can
prevent that fault from triggering an observable failure during test execution.

Sophisticated logic-based adequacy criteria such as Multiple Condition Cov-
erage (MCC) or Multiple Condition/Decision Coverage (MC/DC) are designed
to overcome masking within a single expression. However, they can offer no guar-
antees about masking in subsequent expressions. As a result, such criteria are
sensitive to how expressions are written [8]. A Boolean expression written as a
single complex statement will more effective test cases than the same expression
written as multiple simple expressions, as the adequacy criterion will not prevent
masking between expressions.

Many approaches to automated analysis and test case generation for Java
operate not on the source code, but on the resulting bytecode [4,19]. The trans-
formation from source to bytecode translates complex expressions into multi-
ple simple expressions, introducing the risk of masking between expressions.
This could limit the fault-finding potential of bytecode-based adequacy criteria.
To overcome this limitation, we propose a new variant of Multiple Condition
Coverage.

Our approach, Bytecode-MCC, is a new test coverage criteria that pre-
scribes a set of test obligations—goals that must be satisfied by test cases—for
a class-under-test. Bytecode-MCC groups related Boolean expressions from the
bytecode, reformulates the grouping into a single complex expression, and calcu-
lates all possible combinations of conditions within the constructed expression.
Bytecode-MCC should produce test obligations that—when satisfied—are more
likely to reveal faults in the program logic than tests providing simple coverage
over the simplified bytecode.

Bytecode-MCC can be used to measure the power of existing test suites or
as a target for automated test generation. To examine both scenarios, we have
implemented an algorithm to generate test obligations and measure coverage in
the EvoSuite search-based test generation framework [4]. We have also imple-
mented a fitness function within EvoSuite intended to enable the automated
generation of test suites.

We conducted a preliminary study examining the effectiveness of test gener-
ation targeting Bytecode-MCC on 109 faults from Defects4J—a database of real
faults from Java projects [10]. Results attained for the “Time” system, where
targeting the combination of Bytecode-MCC and Branch Coverage yields an
average of 92% Bytecode-MCC coverage, yield an average 32.50%–35.00% likeli-
hood of fault detection—well over the overall average. This suggests the potential
of approaches that can attain high Bytecode-MCC coverage.
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However, the results for other systems are more negative. Bytecode-MCC is
difficult to optimize, and our fitness function does not offer sufficient feedback
to guide test generation. Additional search budget does not guarantee higher
levels of coverage. This suggests that Bytecode-MCC may be best used as a
method of judging test suite quality, rather than as a direct generation target.
Simultaneously targeting Bytecode-MCC and Branch Coverage improves cov-
erage of Bytecode-MCC and improves the likelihood of fault detection, as the
fitness function for Branch Coverage offers more feedback to the search process.
Therefore, other fitness functions may offer the means to satisfy Bytecode-MCC.
Bytecode-MCC has potential to yield effective test suites if the identified limi-
tations can be overcome. We propose suggestions on how to proceed in future
work and make our implementation available.

2 Background

Adequacy Criteria: Adequacy criteria are important in providing developers
with the guidance they need to test efficiently, as they identify inadequacies in
the test suite. For example, if a given test does not reach and execute a statement,
it is inadequate for finding faults in that statement.

Each adequacy criterion prescribes a series of test obligations—goals that
must be met for testing to be considered “adequate” with respect to that crite-
rion. Often, such criteria are structured around particular program elements and
faults associated with those elements, such as statements, branches of control
flow, or Boolean conditions [8]. When a criterion has been satisfied, the system is
considered to be adequately tested with respect to that element. Adequacy cri-
teria have seen widespread use, as they offer objective, measurable checklists [9].

In this study, we are concerned with adequacy criteria defined over Boolean
decisions, complete Boolean expressions within a program. Decisions can be
broken into simple conditions—atomic Boolean variables or subexpressions—
connected with operators such as and, or, xor, and not.

– Decision Coverage: This simple criterion requires that all decision state-
ments evaluate to both possible outcomes—true and false. Given the
expression (A or B), the test suite (TT), (FF) attains decision coverage
over that expression.

– Branch Coverage: The source code of a program can be broken into basic
blocks—sets of statements executed sequentially. Branches are decision state-
ments that can decide which basic blocks are executed, such as if, loop, and
switch statements. Branch Coverage requires that the test suite cover each
outcome of all branches. Improving branch coverage is a common objective
in test generation [13].

– Multiple Condition Coverage (MCC): MCC requires test cases that
guarantee all possible combinations of condition outcomes within the deci-
sion to be executed at least once. Given expression (A or B), MCC cover-
age requires the value combinations (TF), (TT), (FF), (FT). MCC is more
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expensive to attain than Decision Coverage, but offers greater potential fault-
detection capability. Note that, in the presence of short-circuit evaluation,
infeasible outcomes are not required. In the previous example, short-circuit
evaluation would reduce the required test suite to (FF), (FT), (T-).

Search-Based Software Test Generation: Selection of test inputs is gener-
ally a costly manual task. However, given a measurable testing goal, input selec-
tion can be framed as a search for the input that achieves that goal. Automation
of input selection can potentially reduce human effort and the time required for
testing [13].

Meta-heuristic search provides a possible solution for test input generation.
Given scoring functions denoting closeness to the attainment of those goals—
called fitness functions—optimization algorithms can sample from a large and
complex set of options as guided by a chosen strategy (the metaheuristic). Meta-
heuristics are often inspired by natural phenomena. For example, genetic algo-
rithms evolve a group of candidate solutions by filtering out bad “genes” and pro-
moting fit solutions [4]. Due to the non-linear nature of software, resulting from
branching control structures, the search space of a real-world program is large
and complex. Metaheuristic search—by strategically sampling from that space—
can scale effectively to large problems. Such approaches have been applied to a
wide variety of testing scenarios [2]. Adequacy criteria are ideal as test genera-
tion targets, as such criteria can be straightforwardly translated into the fitness
functions used to guide the search [16].

3 Bytecode-Based Multiple Condition Coverage

Version 1: Complex
Implementation

out_1 = (in_1 or in_2) and in_3;

Version 2: Simple Imple-
mentation

expr_1 = in_1 or in_2;
out_1 = expr_1 and in_3;

Masking occurs when a condition,
within a decision statement, has no
effect on the value of the decision
as a whole. As an example, consider
the trivial program fragments to the
right. The program fragments have
different structures, but are function-
ally equivalent.

Version 1 presents the full, com-
plex expression. Version 2 is defined
using intermediate variable expr 1.
Given a decision of the form in 1 or in 2, the truth value of in 1 is irrele-
vant if in 2 is true, so we state that in 1 is masked out. Masking can have
negative consequences on the testing process by preventing the effect of a fault
from propagating to a visible failure.

MCC is able to overcome masking within a single expression by requiring that
all possible combinations of condition values be attempted, meaning that non-
masking test cases must exist. However, MCC is sensitive to how expressions are
written. Variable in 3 can have a masking effect—when it is false, it determines
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the value of the decision it is in. In the complex implementation, MCC would
require test cases that overcome this masking effect, showing the effect that
in 1 and in 2 have on the overall decision. In the simple, multi-line case, we
only require that in 3 be evaluated with the overall expression expr 1.

Suppose this code fragment is faulty and the correct expression should have
been in 1 and in 2. Tests over the simplified implementation may miss this
fault, while any test set providing coverage of the complex implementation would
reveal this fault. This can have significant ramifications with respect to fault find-
ing of test suites [7,8,18]. The simplified version can be more trivially satisfied,
with fewer test cases, than cases where the code is structured into fewer, more
complex expressions. The complex version will have more complex test obliga-
tions and will generally require more test cases, but those test cases will generally
have more fault revealing power [8].

Many approaches to automated analysis and test case generation for Java
operate not on the source code, but on the bytecode [4,19]. Bytecode is often
easier to instrument than the source code—for instance, it can be obtained with-
out the source code being present—and bytecode-based techniques are often
more efficient and scalable than source code-based techniques [19]. Many state-
of-the-art techniques compute coverage and generate test cases by monitoring
the instrumented bytecode [4].

Fig. 1. A complex Boolean expression. Source code is shown on the left, and its equiv-
alent bytecode is shown on the right.

The transformation from source to bytecode requires a similar simplification.
Consider the example depicted in Fig. 1, where the source code is shown on the
left and the bytecode is shown on the right. The complex statement on the left
is translated into a series of simple expressions. As a result of this transforma-
tion, the risk of masking is introduced between expressions. As all expressions
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are maximally simplified, a straight-forward implementation of MCC would be
equivalent to Branch Coverage over each individual statement.

Given concerns over the fault-revealing power of tests generated over sim-
plified representations of Boolean expressions [7,8]—as well as concerns over
whether code coverage attained over bytecode accurately predicts coverage over
the source code [12]—test generation approaches able to account for this simpli-
fication may yield more effective and representative testing results.

To overcome the limitations imposed by the translation to a simplified pro-
gram structure, we propose a new variant of MCC for bytecode, Bytecode-
MCC. Bytecode-MCC groups related Boolean expressions, reformulates the
grouping into a single complex expression, and calculates all possible combi-
nations of conditions within the constructed expression. Bytecode-MCC should
produce test obligations that—when satisfied—are likely to reveal faults in pro-
gram logic.

Bytecode-MCC can be used to assess existing test suites as well as as a tar-
get for automated test generation. To examine both scenarios, we have imple-
mented an algorithm to generate test obligations and measure coverage in the
EvoSuite test generation framework [4]. We have also implemented a fitness func-
tion intended to enable the automated creation of Bytecode-MCC-satisfying test
suites.

Our implementation of Bytecode-MCC as a fitness function and coverage
measurement mechanism in EvoSuite is available from https://github.

com/Srujanab09/evosuite.

3.1 Test Obligation Generation

To formulate the test obligations for Bytecode-MCC, we perform the following
process:

1. Search the bytecode for Boolean expressions.
2. When an expression is detected, begin building a group of related expressions.
3. Add any subsequent Boolean expressions in the same bytecode label—a basic

block of sequentially executed expressions—to the grouping.
4. When a new label is reached, add any new Boolean expressions to that

grouping.
5. Stop when a label is reached with no Boolean expressions.
6. Formulate a truth table containing all evaluations of the gathered expressions.
7. Translate each row of the truth table into a test obligation.

For a given class and method, we inspect the bytecode to gather related
Boolean expressions. In the bytecode, expressions are grouped into labels.
A label indicates the start of a series of sequentially-executed expressions, and is
a point that another control-altering expression can jump to. While monitoring

https://github.com/Srujanab09/evosuite
https://github.com/Srujanab09/evosuite
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Fig. 2. A simple Java class. Source code is on the left and bytecode is on the right.

the bytecode, we start a grouping when we detect a Boolean expression. Each
Boolean expression in bytecode is represented using a form of if-statement
where a true outcome causes a jump to another label. We add this if-statement
to our grouping, noting the label that is jumped to if the statement evaluates
to true and where we resume execution if the statement evaluates to false.
We then continue to iterate over the code in the current label, if any, adding
additional if-statements to the table. We continue parsing any labels jumped
to by recorded statements for additional if-statements, and subsequent labels.
Once we reach a label without additional if-statements, we stop collecting. For
the sample code in Fig. 2, we extract the following grouping:

Next, we can connect the grouped statements through the order they are
executed based on their evaluation: (1) We record the current label, where the
expression resides. (2) We record the label that is jumped to if the expression
evaluates to true. (3) We record where execution resumes if the expression
evaluates to false. This is either a continuation of the current label, or a new
label that is reached immediately after the current expression. For the grouping
above, we extract the following:
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Expression Location True jump location False jump location

I4 L1899798671 L1871531303 L717117575

I9 L717117575 L1871531303 L1866234461

I14 L1866234461 L1871531303 L2064685037

I19 L2064685037 L1871531303 L1871531303

I4 I9 I14 I19 Outcome
jump
location

True – – – L2089187484
False True – – L2089187484
False False True – L2089187484
False False False True L2089187484
False False False False L2089187484

This information indicates the
order in which expressions are evalu-
ated, and the outcome once they are
evaluated. Using this information, we
can form a truth table containing all
possible paths through the gathered
expressions. Each row of this truth
table corresponds to a concrete test
obligation that we impose for the Bytecode-MCC criterion. In order to achieve
Bytecode-MCC, we need to cover all of the rows of the table. The truth table for
the gathered expressions is shown to the right. From this table, the test obliga-
tions for the simple class in Fig. 2 are: (I4 = True), (I4 = False ∧ I9 = True),
((I4 = False∧I9 = False)∧I14 = True), (((I4 = False∧I9 = False)∧I14 =
False) ∧ I19 = True), and (((I4 = False∧ I9 = False) ∧ I14 = False) ∧ I19 =
False)

3.2 Automated Test Generation to Satisfy Bytecode-MCC

Effective approaches to search-based generation require a fitness function that
reports not just the percentage of goals covered, but how close the suite is to
covering the remaining goals [15]. This feedback allows the search to efficiently
maximize coverage of the chosen criterion.

In the case of Branch Coverage, the fitness function calculates the branch dis-
tance from the point where the execution path diverged from a targeted expres-
sion outcome. If an undesired outcome is reached, the function describes how
“close” the targeted predicate was to the desired outcome. The fitness value of
a test suite is measured by executing all of its tests while tracking the distances
d(b, Suite) for each branch.

FBC(Suite) =
∑

b∈B

v(d(b, Suite)) (1)

Note that v(...) is a normalization of the distance d(b, Suite) between 0–1. The
value of d(b, Suite), then, is calculated as follows:

d(b, Suite) =

⎧
⎪⎨

⎪⎩

0 if the branch is covered,

v(dmin(b, Suite)) if the predicate has been executed at least twice,

1 otherwise.

(2)
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The cost function used to attain the distance value follows a standard for-
mulation based on the branch predicate [13]. Note that an expression must be
executed at least twice, because we must cover the true and false outcomes of
each expression.

In order to measure coverage of Bytecode-MCC and generate test cases
intended to satisfy the produced obligations, we can make use of the same branch
distance calculation. To obtain the fitness of a test suite, we calculate the branch
distances for each expression (and desired outcome) involved in each obligation.
Then, the fitness for an individual obligation is the sum of fitness values of all
expressions (and desired outcomes) present in the obligation.

For each Boolean expression, we can calculate the minimal branch distance
achieved by that suite. For each obligation, we calculate the branch distance for
each targeted expression and outcome, then score that obligation as the sum of
the branch distances for its targeted expression and outcome combinations. As
execution comes closer to satisfying the obligation, the fitness should converge
to zero. This fitness formulation can be used as a test generation target, or to
measure coverage of existing test suites.

4 Study

We hypothesize that the simplified nature of bytecode instructions limits
the effectiveness of tests by introducing the potential for masking, and that
Bytecode-MCC-satisfying tests will be effective at overcoming this masking
effect. Specifically, we wish to address the following research questions:

1. Does the Bytecode-MCC fitness function attain high coverage of the
Bytecode-MCC test obligations?

2. Are test suites generated targeting Bytecode-MCC more effective at detecting
faults than suites targeting Branch Coverage?

3. Does targeting the Bytecode-MCC and Branch Coverage fitness functions
simultaneously yield higher levels of Bytecode-MCC coverage?

4. Does targeting the Bytecode-MCC and Branch Coverage fitness functions
simultaneously yield higher levels of fault detection?

To address these questions, we have performed the following experiment:

1. Collected Case Examples: We have used 109 real faults, from five Java
projects, as test generation targets.

2. Generated Test Cases: For each fault, we generated 10 suites targeting
Bytecode-MCC, Branch Coverage, and a combination of both Bytecode-MCC
and Branch Coverage for each class-under-test (CUT) using EvoSuite. We
perform this process with both a two-minute and a ten-minute search budget
per CUT.

3. Removed Non-Compiling and Flaky Tests: Any tests that do not com-
pile, or that return inconsistent results, are automatically removed.
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4. Assessed Effectiveness: For each fault and fitness target, we measure like-
lihood of fault detection (proportion of suites that detect the fault to the
number generated).

5. Measured Bytecode-MCC Coverage: For each generated suite, we mea-
sure the attained Bytecode-MCC Coverage over the CUT.

Case Examples: Defects4J is a database of real faults extracted from Java
projects [10]. The version used in this research, 1.20, consists of 395 faults from
six projects: Chart (26 faults), Closure (133 faults), Lang (65 faults), Math (106
faults), Time (27 faults), and Mockito (38 faults). As our focus is on complex
Boolean expressions, we selected examples where the source code contains either
a large number of Boolean expressions (at least 30), complex Boolean expressions
(at least three conditions), or both. Following this filtering, we selected a subset
of 109 faults: Chart (1), Closure (66), Lang (28), Math (11), and Time (4). For
each fault, Defects4J provides access to the faulty and fixed versions of the code,
developer-written test cases that expose the faults, and a list of classes and lines
of code modified by the patch that fixes the fault.

Each fault is required to meet three properties. First, a pair of code versions
must exist that differ only by the minimum changes required to address the fault.
The “fixed” version must be explicitly labeled as a fix to an issue, and changes
imposed by the fix must be to source code, not to other project artifacts. Second,
the fault must be reproducible—at least one test must pass on the fixed version
and fail on the faulty version. Third, the fix must be isolated from unrelated
code changes such as refactoring.

Test Suite Generation: We generate tests using EvoSuite targeting both
Bytecode-MCC and Branch Coverage1. EvoSuite can also simultaneously target
multiple criteria, with fitness evaluated as a single combined score. Therefore,
we have also targeted a combination of Bytecode-MCC and Branch Coverage to
evaluate whether the combination can achieve higher Bytecode-MCC coverage
or detect more faults.

Test suites are generated that target the classes reported as relevant to the
fault by Defects4J. Tests are generated using the fixed version of the CUT and
applied to the faulty version because EvoSuite generates its own assertions for
use as oracles. In practice, this translates to a regression testing scenario, where
tests are generated using a version of the system understood to be “correct” in
order to guard against future issues [17]. Tests that fail on the faulty version,
then, detect behavioral differences between the two versions2.

Two search budgets were used—two minutes and ten minutes per class.
This allows us to examine whether an increased search budget benefits cov-
erage or fault detection efficacy. These values are typical of other testing exper-
iments [16]. To control experiment cost, we deactivated assertion filtering—all
1 Specifically, the onlybranch fitness function, which omits branchless methods. This

was chosen as our implementation of Bytecode-MCC also omits branchless methods.
2 Note that this is identical practice to other studies using EvoSuite with Defects4J,

i.e. [16,17].
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possible regression assertions are included. All other settings were kept at their
default values. As results may vary, we performed 10 trials for each fault, crite-
rion, and search budget.

Generation tools may generate flaky (unstable) tests [17]. We automatically
removed non-compiling test suites and tests that return inconsistent results over
five trials. On average, less than one percent of the tests are removed from each
suite.

5 Results and Discussion

The goal of our preliminary study is to determine whether search-based test
generation is able to satisfy the test obligations of Bytecode-MCC within a
typical search budget. We also wish to evaluate the fault-detection performance
of the suites generated under that budget, regardless of the attained level of
coverage.

5.1 Attained Bytecode-MCC Coverage

Table 1. Average Bytecode-MCC coverage
(%) attained by test suites.

System Two-minute budget Ten-minute budget

MCC MCC/BC MCC MCC/BC

Overall 23.31 40.47 25.53 43.36

Chart 8.70 35.20 15.40 39.70

Closure 13.52 20.81 16.33 23.97

Lang 31.97 66.07 32.55 68.89

Math 41.00 67.04 44.22 69.22

Time 69.58 92.88 70.68 93.33

Table 1 lists the average Bytecode-
MCC coverage attained given two-
minute and ten-minute search
budgets when targeting Bytecode-
MCC alone and when targeting
both Branch and Bytecode-MCC.
From Table 1, we can see that
the attained coverage is generally
quite low. Overall, only 23.31% of
obligations are covered on average
under a two-minute budget, and
only 25.53% under the ten-minute budget. On a per-system basis, the aver-
age ranges from 8.70% (Chart) - 69.58% (Time) under the two-minute budget
and 15.40% (Chart) - 70.68% (Time) under the ten-minute budget.

Table 2. Average Branch Coverage (%)
attained by test suites targeting Branch Cov-
erage.

System Two-minute budget Ten-minute budget

Overall 39.95 47.67

Chart 33.10 54.41

Closure 13.30 21.36

Lang 81.59 87.99

Math 73.00 77.36

Time 68.50 86.27

We can compare this to the
attained Branch Coverage when
targeting Branch Coverage as the
optimization target, as detailed
in Table 2. While these suites
fail to attain 100% coverage of
their targeted goal, these figures
are much higher. Given two min-
utes for generation, these suites
attain 71.39% more coverage of
their stated goal (Branch Cover-
age) on average than suites targeting Bytecode-MCC (Table 1). Under a ten-
minute budget, this increases to 86.72%.
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What this shows is that Bytecode-MCC is a more difficult criterion to satisfy
than Branch Coverage. Given the same period of time, we can naturally expect
higher attainment of Branch Coverage than Bytecode-MCC coverage. There-
fore, “typical” generation time frames like two minutes may not be enough to
attain reasonable levels of Bytecode-MCC coverage. However, moving from two
minutes to ten minutes offers only a 9.52% average improvement in attained
Bytecode-MCC coverage, compared to an average improvement of 19.32% in
Branch Coverage. The limited improvement suggests that an increased budget
alone may not be enough to overcome the difficulty of satisfying Bytecode-MCC
obligations.

This idea is further reinforced by examining the Bytecode-MCC coverage
results when Branch Coverage and Bytecode-MCC are targeted simultaneously,
as listed in Table 1 for each system and budget. Overall, targeting Branch and
Bytecode-MCC coverage simultaneously yields a 73.62% increase in attained
Bytecode-MCC coverage under a two-minute budget over targeting Bytecode-
MCC on its own, and a 69.84% improvement under a ten-minute budget. Target-
ing Branch Coverage in addition to Bytecode-MCC offers easier-to-cover inter-
mediate goals that, ultimately, result in improved Bytecode-MCC coverage. Cov-
erage is still lower than desired, but the situation is improved over single-target
optimization of Bytecode-MCC by introducing feedback (using Branch Cover-
age) that the test generator can work with.

5.2 Fault Detection

Table 3 lists the average likelihood of fault detection for suite generated to tar-
get Bytecode-MCC, Branch Coverage, and a combination of Bytecode-MCC and
Branch Coverage, divided by system and overall, for each search budget. Over-
all, Branch-targeting suites have a 21.20–22.13% likelihood of detection. This
is consistent with previous experiments using this set of faults, and reflects the
complex nature of the studied faults [16]. Overall, Bytecode-MCC-targeting tests
only have a 4.27% average likelihood of detection under a two-minute budget,
and a 3.47% average likelihood of detection under a ten-minute budget—far
lower than when Branch Coverage is targeted.

Table 3. Average likelihood of fault detection (%) for
each generation target and budget, broken down by sys-
tem and overall.

System Two-minute budget Ten-minute budget

MCC Branch MCC/BC MCC Branch MCC/BC

Overall 4.27 21.20 16.67 3.47 22.13 19.33

Chart 20.00 100.00 90.00 1.00 100.00 90.00

Closure 0.00 1.33 1.00 0.00 3.67 2.33

Lang 8.28 41.72 28.28 7.24 43.79 32.41

Math 5.46 20.91 16.36 3.64 16.36 19.09

Time 0.00 2.50 32.50 0.00 0.00 35.00

This drop is likely
due to the low cov-
erage of Bytecode-MCC
when it is the sole opti-
mization target. Results
improve when Bytecode-
MCC and Branch Cov-
erage are targeted simul-
taneously. Targeting both
yields an overall average
likelihood of detection of
16.67% (two-minute budget) and 19.33% (ten-minute budget). Still, this is lower
than when Branch Coverage is targeted alone. Previous research indicates that
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multi-objective optimization can be more difficult than single-objective optimiza-
tion [16], and it is likely that the additional burden of satisfying Bytecode-MCC
results in lower Branch Coverage as well when both are targeted.

However, if we examine results on a per-system basis, we can see that
Bytecode-MCC satisfaction may have some promise for improvement in fault-
detection. For the Time examples, targeting the combination of Branch Coverage
and Bytecode-MCC yields over 92% Bytecode-MCC coverage on average. The
combination also has an average likelihood of detection of 32.50–35.00%—well
over the overall average. In this case, targeting the combination makes it possible
to detect faults completely missed when targeting Branch Coverage alone.

On average, the Time examples contain more complex Boolean expressions
than the other systems, with an average of 3.25 conditions per decision (com-
pared to an overall average of 2.29). These are not trivial examples, and the
performance when targeting the combination of Branch Coverage and Bytecode-
MCC is promising. If systems contain complex Boolean expressions and high
Bytecode-MCC coverage can be achieved, then we may also see improvements
in fault detection. However, it is also clear that we must first find the means to
improve attained Bytecode-MCC coverage.

5.3 Discussion

Even if Bytecode-MCC attainment is theoretically able to overcome issues with
masking, we cannot test its abilities without first finding ways to improve cov-
erage. The Time examples were the only ones where Bytecode-MCC coverage
was reasonably high—particularly with the boost offered by simultaneously tar-
geting Branch Coverage. While those showed promising improvements in fault
detection as well, such improvements require increased ability to attain coverage.

Some criteria are inherently more difficult to satisfy than others [18]. It will
be more difficult—and will require more test cases—to satisfy MCC over Branch
Coverage. It may not be reasonable to expect equal coverage of Branch Coverage
and Bytecode-MCC given the same time budget. Still, there may be means of
improving coverage.

Reformulating the Fitness Function: A complicating factor in search-based
test generation comes from the fitness function and its ability to offer feed-
back. When attempting to achieve Branch Coverage, the branch distance is used
instead because it offers clear feedback, suggesting whether one solution is closer
to covering the remaining obligations than another. It is possible that a fitness
formulation other than the one employed in this work would yield better results.
In the proposed function, each Bytecode-MCC obligation is a combination of
smaller Boolean conditions. Fitness is measured by scoring each condition inde-
pendently and linearly combining the resulting scores. Progress towards covering
any of the individual conditions will yield a better fitness score. This, in theory,
should offer reasonable feedback. However, there may exist cases where the inde-
pendent subgoals conflict, and the choice of input may improve the coverage of
one condition while increasing the distance for another condition.
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A linear combination of condition distances may not be an ideal mechanism
for judging fitness for Bytecode-MCC obligations, and other fitness formulations
may yield better results. For example, it may be better to weight conditions based
on the order they must be satisfied in. Alternatively, rather than combining the
distances into a single score, each obligation could be treated as a set of distance
scores to be optimized independently. This would be a more complex approach,
but could potentially yield better results in cases where goals conflict.

Use Bytecode-MCC to Measure Adequacy Instead of a Direct Gen-
eration Target: Some criteria could yield powerful test cases, but lack suffi-
cient feedback mechanisms to drive a search towards high levels of coverage. For
example, Exception Coverage rewards test suites that throw many exceptions.
However, there is no feedback mechanism that suggests “closeness” to throwing
more exceptions [1]. This criterion yields poor suites when targeted as the sole
fitness function, but offers great utility as a means of judging adequacy, and as a
stopping criterion to determine when to finish testing. Likewise, we could target
other fitness functions, but use Bytecode-MCC to assess the final test suites as
a means to determine when to stop test generation.

Research has suggested that targeting unrelated fitness functions like Branch
Coverage, or combining additional fitness functions with uninformative ones—
i.e., Branch and Exception Coverage—results in higher Exception Coverage of
the final suite [16]. Likewise, we could choose alternative optimization targets,
then measure the attained Bytecode-MCC of the resulting tests. If we can find
fitness functions that yield higher levels of Bytecode-MCC, we will be better able
to evaluate the potential of the criterion for overcoming masking and improving
the fault-detection potential of test suites.

Recent work explored the use of reinforcement learning to improve attain-
ment of Exception Coverage [1]. The proposed approach was able to strategically
adjust the targeted fitness functions over time in service of improving Exception
Coverage. A similar adaptive fitness function selection approach could be used to
discover combinations of fitness functions that attain high coverage of Bytecode-
MCC.

We may wish to also consider other forms of test generation, beyond search-
based generation. For example, (dynamic) symbolic execution techniques use
sophisticated solvers to attain input designed to drive program execution towards
particular paths [2]. Such approaches suffer from limitations in terms of the type
of programs and language features they can handle, and in terms of scalabil-
ity [5]. However, they can be very effective at producing the input needed to
traverse specific paths—which is required for Bytecode-MCC satisfaction. The
use of symbolic execution—or approaches that combine search and symbolic
execution—may be required to achieve high levels of Bytecode-MCC coverage.

6 Threats to Validity

Internal Validity: Because EvoSuite’s test generation process is non-
deterministic, we have generated ten test suites for each combination of fault,
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budget, and fitness function. It is possible that larger sample sizes may yield
different results. However, we believe that this is a sufficient number to draw
stable conclusions.

External Validity: Our study has focused on only five systems. We believe
that such systems are representative of, at minimum, other small to medium-
sized open-source Java systems. We believe that we have chosen enough examples
to gain a basic understanding of Bytecode-MCC, and that our results are gen-
eralizable to sufficiently similar projects. In this study, we have implemented
Bytecode-MCC within EvoSuite. Results may differ using a different test gen-
eration algorithm. However, we believe that EvoSuite is sufficiently powerful to
explore our proposed ideas.

7 Related Work

Hayhurst et al. observed sensitivity to statement structure, stating that “if a
complex decision statement is decomposed into a set of less complex (but log-
ically equivalent) decision statements, providing MC/DC for the parts is not
always equivalent to providing MC/DC for the whole” [11]. Gargantini et al.
have also observed the sensitivity of structural coverage metrics to modifica-
tion of the code structure and proposed a method of automatically measuring
the resilience of a piece of code to modification [6]. Chilenski further made the
observation that “If the number of tests M is fixed at N + 1 (N being the num-
ber of conditions), the probability of distinguishing between incorrect functions
grows exponentially with N, N > 3” [3]. This observation is based on the number
of tests, but notes that testing power grows with statement complexity.

In past work, we empirically demonstrated the effects of expression structure
on coverage and suite effectiveness, clearly illustrating the negative impact of
statement simplification on a series of industrial case examples [8]. Our results
supported the previous observations. We also proposed a set of “observabil-
ity” extensions for source-based coverage criteria to overcome masking between-
expressions [14,18]. Our proposed method, Bytecode-MCC acts in a similar—but
more limited—manner to the notion of “observability”, requiring that masking
be overcome in closely-connected statements. To date, ours is the first approach
to address masking in search-based test generation or when considering bytecode
representations of programs.

8 Conclusions

Masking occurs when one condition prevents another from influencing the output
of a Boolean expression. Adequacy criteria such as Multiple Condition Coverage
(MCC) overcome masking within one expression, but offers no guarantees about
subsequent expressions. As a result, a Boolean expression written as a single
complex statement will yield more effective test cases than when written as a
series of simple expressions. Many approaches to automated test case generation



Bytecode-Based Multiple Condition Coverage 235

for Java operate not on the source code, but on bytecode. The transformation
to bytecode simplifies complex expressions into multiple expressions, introduc-
ing masking. We propose Bytecode-MCC, a new adequacy criterion designed
to group bytecode expressions and reformulate them into complex expressions.
Bytecode-MCC should produce test obligations that are more likely to reveal
faults in program logic than tests covering the simplified bytecode.

A preliminary study conducted over 109 faults from Defects4J indicate the
potential of the technique. Results attained for the “Time” system, where tar-
geting the combination of Bytecode-MCC and Branch Coverage yields high
Bytecode-MCC coverage, show fault detection well above the overall average.
However, there are multiple research challenges to be overcome. Bytecode-MCC
is more difficult to achieve than Branch Coverage, and its fitness function
does not offer sufficient feedback to guide test generation. This suggests that
Bytecode-MCC may be best used as a method of judging test suite quality,
rather than as a direct generation target. Simultaneously targeting Bytecode-
MCC and Branch Coverage improves coverage of Bytecode-MCC and the like-
lihood of fault detection. It may be possible to identify other fitness functions
that are effective at attaining Bytecode-MCC.

In future work, we will explore methods of improving Bytecode-MCC cover-
age. In particular, we plan to: (1) Explore alternative formulations of the fitness
function for Bytecode-MCC, such as applying weights based on the order that
sub-obligations must be solved. (2) Examine the use of Bytecode-MCC as a way
to judge test suites generated targeting other criteria, as well as its use as a
stopping condition for test generation. (3) Investigate the use of reinforcement
learning to automatically identify alternative generation targets that will yield
higher attainment of Bytecode-MCC than direct targeting of Bytecode-MCC
during test generation. (4) Vary the algorithms used to generate Bytecode-MCC-
covering test suites.
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Abstract. Model seeding is a strategy for injecting additional informa-
tion in a search-based test generation process in the form of models,
representing usages of the classes of the software under test. These mod-
els are used during the search-process to generate logical sequences of
calls whenever an instance of a specific class is required. Model seeding
was originally proposed for search-based crash reproduction. We adapted
it to unit test generation using EvoSuite and applied it to Gson, a Java
library to convert Java objects from and to JSON. Although our study
shows mixed results, it identifies potential future research directions.

Keywords: Model seeding · Search-based software testing · Case
study

1 Introduction

Over the years, several techniques have been developed to generate unit tests
by applying search-based algorithms to source code. Among the existing tools,
EvoSuite is one of the references in the state-of-the-art for Java unit test gen-
eration [5]. It has been developed and maintained over the years and received
several contributions to improve code coverage and mutation score of the gen-
erated tests or to generate tests for specific purposes. Despite the numerous
improvements, one of the challenges still faced by EvoSuite is the generation
of complex objects with logical (i.e., not random) sequences of method calls.
There exist several strategies to address this challenge partially. Among those,
seeding [7] consists of the injection of additional information that will be used
during the search. For instance, constant values collected from the source code,
and the usage (as-is) of objects collected from an existing test suite.

In their recent study, Derakhshanfar et al. [3] propose to abstract the behavior
of the different classes of the system under test (SUT) using a transition system
model. For each class, one transition system describes the sequences of method
calls previously observed on the instances of that class. They seeded those models
to a search-based crash reproduction algorithm to generate complex objects and
found that it improved the overall crash reproduction rate. Crash reproduction
c© Springer Nature Switzerland AG 2020
A. Aleti and A. Panichella (Eds.): SSBSE 2020, LNCS 12420, pp. 239–245, 2020.
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does not seek to cover all the elements of a class under test (CUT) but rather
to generate a test exercising a specific behavior causing the software to crash.

For unit test generation, the coverage of different elements of a CUT also
requires specific objects that might be difficult to generate randomly. In this
paper, we applied model seeding for unit test generation using EvoSuite on
a set of eight classes from the Gson library. We compare model seeding to the
default configuration of EvoSuite w.r.t. the branch coverage and mutation
scores achieved by the generated tests.

2 Evaluation Setup

Classes Under Test. Gson is a Java serialization and deserialization library
to convert Java Objects into JSON and back.1 It is used as a dependency by
more than 222 000 projects on GitHub. We used Gson v.2.8.7 (5924 LOC) and
selected 8 classes with at least one method (with the exception of the toStr-
ing and equals method) with a cyclomatic complexity above 3: Gson, Json-
Reader, JsonTreeReader, JsonTreeWriter, JsonWriter, LinkedHashTreeMap,
LinkedTreeMap, and TypeAdapters. The overall branch coverage of the existing
manually written tests is 79%, and the overall mutation score is 75%.

Learning the Models. We followed Derakhshanfar et al.’s [3] approach and
generated our models using the existing source code and tests of the Gson
library. For each class used in the project, each time an object is created, we
collected the sequence of methods called on this object. For that, we statically
analyzed the source code of Gson and dynamically executed (a heavily instru-
mented version of the) existing test cases. The models are then learned from the
collected call sequences using a 2-gram inference. Learning the models is a one-
time operation. Models are then seeded to the different executions of EvoSuite.
In total, we collected 328 models for 328 different classes. The average number of
states is 7 and the average number of transitions is 15. We rely on the implemen-
tation of Derakhshanfar et al. [3] to collect call sequences and learn the different
models, and on EvoSuite-RAMP,2 a customized version of EvoSuite [5] for
unit test generation.

Configurations. Model seeding works either online or offline. In the offline
mode, during the initialization of the search, for each model, EvoSuite-RAMP
creates a fixed number of objects by selecting abstract behaviors from the model.
For each selected abstract behavior, it instantiates the object, calls the corre-
sponding methods, and adds the result to an object pool. Whenever an object is
required, the search process copies (with a defined probability p object pool)
one object and its method calls from this object pool. Additionally, during the
initialization of the population, EvoSuite-RAMP can also copy (with a defined
probability seed clone) an instance of the CUT (as-is) from the object pool

1 https://github.com/google/gson.
2 https://github.com/STAMP-project/evosuite-ramp.

https://github.com/google/gson
https://github.com/STAMP-project/evosuite-ramp
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and use it as a plain (initial) test. In the online mode, objects are created dur-
ing the search process using the same procedure. The main difference with the
offline mode is that the objects are created on demand, slightly overloading
the search process. For our evaluation, we used the online mode as it does not
overload the initialization and generates only objects required by the search
(and therefore leaves more budget for the search itself). We used probabilities
p object pool = 0.3, and seed clone = 0.3, following Derakhshanfar et al. [3].

To select abstract behaviors, EvoSuite-RAMP supports random selection,
corresponding to random walks in the models, and dissimilarity selection, try-
ing to increase diversity in the selected behaviors. For our evaluation, we used
random selection as it gave slightly better results in our initial trial.

In our evaluation, we compare unit test generation with model seeding acti-
vated (model s.) to the default EvoSuite configuration (default). For both con-
figurations, we used DynaMOSA [6] with the default set of objectives (i.e., bran-
ch, line, weak mutation, input, output, method, and exception coverage) and a
search budget of 180 s. Additionally, we deactivated model seeding after 90 s to
increase exploration. We ran our evaluation (1600 runs) on a server with 12 CPU
cores @ 3.50 GHz. The total execution time for unit test generation took around
40 min. Our replication package is available on Zenodo [4].

Data Analysis. For each class under test, we compare the generated test suites
w.r.t. their branch coverage (reported by EvoSuite-RAMP) and their mutation
score, computed using Pit v1.4.3 [1] with ALL mutation operators activated. The
total execution time for the mutation analysis of the 1600 generated test suites
took around 2 days. We used the the non-parametric Wilcoxon Rank Sum test
(α = 0.05) for Type I error, and the Vargha-Delaney statistic Â12 to evaluate
the effect size between model s. and default .

3 Results

Figure 1 presents the branch coverage and mutation score of the test suites
generated using the default and model s. configurations. On average, the highest
branch coverage is achieved by the default configuration for the class JsonTree-
Reader with 92.04%. The lowest branch coverage is, on average, also achieved
by the default configuration for the class TypeAdapters with 50.04%. For the
mutation score, the highest average mutation score is achieved by the model
s. configuration for the TypeAdapters class with a score of 93.75%, and the
lowest average mutation score is also achieved by model s. configuration on the
LinkedHashTreeMap class with an average of 35.91%.

For each class, we compared the coverage and mutation score of the generated
test suites. The configuration model s. achieved significant better results (α ≤
0.05) for three classes (with two small and one large Â12 magnitudes). It performs
worse compared to the default configuration for two classes (with one small and
one medium Â12 magnitudes). For the mutation score, the model s. configuration
performed significantly better (α ≤ 0.05) on three classes (with two small and
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Fig. 1. Coverage of the tests generated using the default and model s. configurations.

one large Â12 magnitudes). The default configuration performed better for two
classes (with one small and one medium Â12 magnitudes).

In general, our results are mixed. The model s. configuration can lead to
an improvement of the mutation score with, in general, a lower variability than
the default configuration. The most interesting class of our evaluation is the
JsonReader class for which model s. achieves a significantly worse branch cov-
erage (p-value = 4.98 × 10−15) with a large magnitude (Â12 = 0.180) than
default , but, in the same time, also achieves a significantly better (p-value =
9.26 × 10−25) mutation score, also with a large magnitude (Â12 = 0.92). We
focus our discussion on the JsonReader class.

4 Discussion and Future Work

Code Complexity and Model Generation. From analyzing the project using
CodeMR,3 we see that the JsonReader class is the most complex class of the
project with a very-high complexity rate and a Weighted Method Count (WMC)
of 359 for 891 lines of code (LOC). Complex code is a well-known challenge for
search-based testing algorithms.

At the same time, the model generated from the collected call sequences for
JsonReader is highly connected with an average degree (i.e., the average number
of incoming and outgoing transitions per state) of 9.0, 252 transitions for only
28 states, and a BFS height of 6 (i.e., number of levels when navigating the
3 https://www.codemr.co.uk.

https://www.codemr.co.uk
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model using a breadth-first search algorithm). This permissiveness of the model
tends to indicate that the usages are not well captured and that the model
can provide only limited guidance. Future research will investigate the usages of
other learning approaches (including higher-values of n for the n-gram inference)
to better reflect the usages of the classes. Additionally, the models are created
from the source code and the existing tests. We followed the procedure defined
by Derakhshanfar et al. [3] with the same assumption that the existing tests are
representative of valid usages of the classes (for crash reproduction). However,
this assumption might not be right for unit testing. Therefore, future research
will investigate other sources of call sequences, like projects using Gson, as well
as including information about object and parameter values for those calls.

1642
(25.3%)

280
(4.3%) 37

(0.6%)

107
(1.6%)

3917
(60.4%)

477
(7.4%)

25
(0.4%)

Manual Default

Model s.

Fig. 2. Combined mutation analysis of the JsonReader class with the number and
percentage of mutants killed by the manually written, model s., and default test suites.

Mutation Analysis. To further investigate the mutants killed by the generated
tests, we performed a combined mutation analysis on the JsonReader class. For
that, we used all the tests generated out of the 10 rounds of execution and the
manually written tests from the JsonReaderTest and JsonReaderPathTest test
suites. Figure 2 presents the number of mutants killed, grouped by the source of
the test suite. Mutants killed by more than one test suite coming from different
sources are placed at intersections in the diagram.

We see that between 7.8% and 8% of the mutants are killed only by a
generated test suite. Additionally, we see that between 62% and 64.7% of the
mutants are killed by both manually written and automatically generated tests,
which tends to confirm that effort on testing can be reduced using automated
approaches. Figure 2 also shows that the largest amount of mutants only killed
by EvoSuite (7.4%) are killed both by the default and the model s. configura-
tions. This tends to indicate that the randomness of the evolution process helps
to explore new areas of the search space, compared to manually written tests.
We also see that 25 mutants are killed only by the model s. configuration, and
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37 mutants are killed only by the default configuration. Finally, from Figs. 1 and
2, we see that the default configuration achieves a significantly lower mutation
score, compared to model s., but kills a larger diversity of mutants (at least once)
when the 10 test suites are merged together.

Test Case Understandability. In this case study, we only consider the func-
tional properties (i.e., branch coverage and mutation score) of the generated
tests. Recent studies have investigated other aspects of generated tests, like the
readability and understandability by a developer [2]. We believe that, by gener-
ating objects with common usages, model seeding can contribute to improving
test case readability and understandability. From the manual analysis of the
test cases killing 25 mutants only killed by the model s. configuration, we could
retrace the usages of the JsonReader class observed in the test case in the usage
model of the class. The confirmation that having such usages in the test cases
helps in reading and understanding them is left for future work.

5 Conclusion

In this case study, we applied model seeding for unit test generation using
EvoSuite-RAMP on eight classes from the Gson library. We compared model
seeding to the default configuration of EvoSuite. Overall, results are mixed.
Using model seeding can lead to an improvement of branch coverage and muta-
tion score in some cases. We also discussed several aspects of model seeding for
unit test generation and identified potential future research directions regard-
ing the collection of call sequences and generation of the models, and the usage
of model seeding to improve the understandability of automatically generated
tests.

Acknowledgement. This research was partially funded by the EU Horizon 2020 ICT-
10-2016-RIA “STAMP” project (No. 731529).
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Abstract. Many fitness functions—such as those targeting test suite
diversity—do not yield sufficient feedback to drive test generation. We
propose that diversity can instead be improved through adaptive fitness
function selection (AFFS), an approach that varies the fitness functions
used throughout the generation process in order to strategically increase
diversity. We have evaluated our AFFS framework, EvoSuiteFIT, on a set
of 18 real faults from Gson, a JSON (de)serialization library. Ultimately,
we find that AFFS creates test suites that are more diverse than those
created using static fitness functions. We also observe that increased
diversity may lead to small improvements in the likelihood of fault
detection.

Keywords: Search-based test generation · Fitness function ·
Reinforcement learning

1 Introduction

In search-based test generation, testers seek input that attains their testing
goal. An optimization algorithm systematically samples the space of possible
test input in search of a solution to that goal, guided by feedback from one or
more fitness functions—numeric scoring functions that judge the optimality
of the chosen input [8].

During this search, the fitness functions embody the high-level goals of the
tester [1]. Feedback from the fitness function will shape the resulting test suite,
and we choose fitness functions based on their suitability for those goals. For
example, a common goal is to attain Branch Coverage—to ensure that all out-
comes of control-diverging statements have been executed. Search-based test gen-
eration generally attains this goal using a fitness function based on the branch
distance—a fine-grained measurement of how close we came to covering each
branch outcome. If our goal is Branch Coverage, we know how to attain it
through search-based test generation. For other goals, we may not be so for-
tunate. Many goals do not have an effective fitness function formulation.
c© Springer Nature Switzerland AG 2020
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One such goal is test suite diversity. When testing, it is generally impossible
to try every input. It follows, then, that different test cases are more effective
than similar ones [2,9]. This intuition has led to effective automated test genera-
tion, prioritization, and reduction [2]. While numerous diversity metrics exist—
for example, the Levenshtein distance [9]—these metrics serve as poor fitness
functions, as they may no present sufficient actionable feedback to optimize.

This does not mean that test suite diversity cannot be attained. Rather,
we do not yet know what fitness functions will be effective. There are many
fitness functions used in search-based test generation for attainment of other
goals. Careful selection of one or more of those functions—paired with, or even
excluding, a diversity metric—could provide that missing feedback. In fact, we
may even attain higher diversity by reevaluating our choice of fitness functions
over time based on the test suite population.

We previously introduced adaptive fitness function selection (AFFS)—a
hyperheuristic that adapts the test generating process, using reinforcement learn-
ing [7], to adjust the fitness functions in service of optimizing attainment of a
higher-level goal [1]. We used AFFS to increase the number of exceptions thrown
by test suites [1]. In this study, we extend our AFFS framework, EvoSuiteFIT,
to a new goal—increasing test suite diversity. We have implemented the Lev-
enshtein distance as both a fitness function and as a target for reinforcement
learning in EvoSuiteFIT, and made improvements to the two implemented RL
approaches, UCB and DSG-Sarsa [7].

As a case study to evaluate the ability of AFFS to increase test suite diversity,
we perform a case study on the Gson library1. Gson is an open-source library
for serializing and deserializing JSON input, and is an essential tool of Java and
Android development [5]. A set of 18 real-world faults from Gson are available in
the Defects4J fault database [3]. Previous work has found that this framework
is a challenging target for test generation [3]. We evaluate EvoSuiteFIT on these
examples in terms of attained test suite diversity and fault detection, comparing
against two static baselines.

Ultimately, we find that EvoSuiteFIT creates test suites that are more diverse
than those created using static fitness functions. While results on fault detection
are inconclusive, we observe that diversity may lead to small improvements in the
likelihood of fault detection. We make EvoSuiteFIT available for use in research
and practice.

2 Adaptive Fitness Function Selection

Careful selection and reevaluation of fitness functions could result in test suites
that are more diverse than those generated targeting a single diversity metric
alone or a naively chosen set of fitness functions. Identifying this set of fitness
functions is a secondary search problem—one that can be tackled as an additional
step within the normal test generation process using reinforcement learning (RL).
This process is known as adaptive fitness function selection (AFFS) [1].
1

https://github.com/google/gson.

https://github.com/google/gson
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Due to space constraints, we present only a brief overview of AFFS2. Adjust-
ing the set of fitness functions can be considered as an instance of the n-armed
bandit problem [7]. Given a measurement of diversity, each action—a choice
of fitness functions—has an expected reward—increase in diversity—when it is
selected. The modified test generation process is illustrated in Fig. 1. At a defined
interval, the RL agent will reevaluate the set of fitness functions and refine its
estimation of their ability to increase diversity. Because the population of test
suites at round N depends on the population from round N − 1, RL can not
only choose effective fitness functions, but can strategically adjust that choice
based on the test suite state.

AFFS has been implemented within the standard Genetic Algorithm in the
EvoSuite test generation framework [8]. Two RL algorithms—Upper Confidence
Bound (UCB) and Differential Semi-Gradient Sarsa (DSG-Sarsa) [7]—have been
implemented. UCB is a classic reinforcement learning approach that works well
for many problems, while DSG-Sarsa is an approximate approach adapted for
problems with large state spaces [7]—i.e., test generation. We refer to the overall
framework as EvoSuiteFIT3.

Fig. 1. Overview of the test generation process with AFFS.

Diversity-Based Fitness Function: We have implemented a fitness func-
tion to measure test suite diversity based on the Levenshtein distance [9]. The
Levenshtein distance is the minimal cost of the sum of individual operations—
insertions, deletions, and substitutions—needed to convert one string to another
(i.e., one test to another). The distance between two tests (ta and tb) can be
calculated as follows [9]:

levta,tb(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(i, j) if min(i, j) == 0

min

⎧
⎪⎨

⎪⎩

levta,tb(i − 1, j) + 1

levta,tb(i, j − 1) + 1

levta,tb(i − 1, j − 1) + 1(tai �=tbj)

otherwise
(1)

where i and j are the letters of the strings representing ta and tb. To calcu-
late the diversity of a test suite (TS), we calculate the sum of the Levenshtein
2

For full details, refer to our prior work [1].
3

EvoSuiteFIT is available from https://github.com/HusseinAlmulla/evosuite/tree/evosuitefit.

https://github.com/HusseinAlmulla/evosuite/tree/evosuitefit
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distance between each pair of test cases: div(TS) =
∑TS

ta,tb levta,tb. To attain a
normalized value between 0–1 for use in a multi-fitness function environment,
we then calculate and attempt to minimize the final fitness as 1

1+div(TS) .

RL Implementation in EvoSuiteFIT: Every five generations, EvoSuiteFIT
will select one to four fitness functions from the following: Diversity, Exception
Count, Branch Coverage, Direct Branch Coverage, Method Coverage, Method
Coverage (Top-Level, No Exception), Output Coverage, and Weak Mutation
Coverage. Rojas et al. provide more details on each [8]. To constrain the number
of combinations, we (1) use only the combinations that include the diversity
score, and (2), remove a small number of semi-overlapping combinations (i.e.,
Branch and Direct Branch). Ultimately, the RL agent can choose from 44 com-
binations of fitness functions. To seed reward estimates, EvoSuiteFIT will make
sure that all the actions have been tried (in a random order) before it starts
using the UCB or DSG-Sarsa selection mechanisms. After selecting fitness func-
tions, EvoSuiteFIT will proceed through the normal population evolution mech-
anisms. After five generations, the reformulated population is used to calculate
the reward and update the expected reward. This allows sufficient population
evolution to judge the effect of changing fitness functions. Over time, the com-
bination that gains the highest reward will be more likely to be selected again
until reaching convergence.

Related Work: Hyperheuristic search—often based on reinforcement
learning—has been employed to improve search-based test generation. For
instance, it has been used to tune the metaheuristic during Combinatorial Inter-
action Testing [6] or for addressing the test ordering problem [4]. In all of these
cases, the hyperheuristic is used to tune the algorithm, and not the fitness func-
tions. Although AFFS has been performed in other domains, such as production
scheduling, we were the first to apply this concept in test generation [1]. We
extend our earlier approach to test suite diversity.

3 Case Study

We have assessed EvoSuiteFIT using 18 real faults from the Gson project in order
to address the following research questions: (1) Is EvoSuiteFIT able to yield more
diverse test suites than static fitness function choices? (2) Does increased test
suite diversity lead to greater likelihood of fault detection?

In order to investigate these questions, we have performed the following
experiment:
(1) Collected Case Examples: We use 18 real faults from the Gson project
from the Defects4J fault database. We target the affected classes for each fault
for test generation.
(2) Generated Test Suites: For each class, we generate 10 suites per app-
roach (the two reinforcement learning algorithms—UCB and DSG-Sarsa—and
two baselines—generation guided by diversity score alone and a combination of
all eight fitness functions). A search budget of 10 min is used per suite.
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(3) Removed Non-Compiling and Flaky Tests: Any tests that do not
compile, or that return inconsistent results, are removed.
(4) Assessed Results: We measure the diversity of each test suite and the
likelihood of fault detection (proportion of failing suites to the number generated)
for each fault.
Case Examples: Defects4J is an extensible database of real faults extracted
from Java projects4. For each fault, Defects4J provides access to the faulty and
fixed versions of the code, developer-written test cases that expose each fault,
and a list of classes and lines of code modified to fix the fault. The current ver-
sion contains 18 faults mined from the Gson framework [3]. We target the classes
affected by faults for test generation.

Baselines: We have generated test suites using both reinforcement learning
approaches, UCB and DSG-Sarsa. In addition, we generate tests for two base-
line approaches representing current practice. The first is the diversity score
alone. This would be the likely starting point for a tester interested in improv-
ing suite diversity. The second is the combination of all eight functions that are
used in this study. This configuration represents a “best guess” at what would
produce effective test suites, and would be considered a reasonable approach in
the absence of a known, informative fitness function.

Test Generation: Tests are generated using the fixed version of the class and
applied to the faulty version because EvoSuite generates assertions for use as ora-
cles. Tests that fail on the faulty version display behavioral differences between
the two versions5. To perform a fair comparison between approaches, each is allo-
cated a ten minute search budget. To control experiment cost, we deactivated
assertion filtering—all possible regression assertions are included. All other set-
tings were kept at their default values. As results may vary, we performed 10
trials for each approach and fault. We automatically remove tests that return
inconsistent results over five executions and non-compiling test suites. On aver-
age, less than one percent of tests are removed from each suite.

4 Results and Discussion

Below, we illustrate the final diversity fitness score attained by each test suite, the
median fitness for each technique, and the median likelihood of fault detection
for the four detected faults (faults 4, 9, 12, and 17). Because we minimize fitness,
lower scores indicate higher diversity.

4
Available from http://defects4j.org.

5
This is the same practice followed by other studies using EvoSuite, i.e. [1,3].

http://defects4j.org
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DSG-Sarsa UCB Combination Diversity-only

Diversity 1.47E−06 9.99E−07 1.93E−06 3.91E−06

Fault detection likelihood 0.60 0.75 0.60 0.05

We can clearly see that the diversity score
is a difficult fitness function to optimize on its
own. When the sole target of test generation, the
diversity score gives the worst final results. There
is also a wide variance (distance between first
and third quartile) in its results. Diversity alone
not offer actionable feedback to the test genera-
tion algorithm. The combination of all eight fit-
ness functions attains more stable results, with
a better median. By adding additional fitness
functions, we offer the test generation framework
detailed feedback, leading to improvements in the
final diversity.

Both RL approaches outperform the static approaches. DSG-Sarsa attains
a 62% median improvement over diversity-only and 24% improvement over the
combination. UCB is even better, attaining a 75% median improvement over
diversity-only and 49% over the combination. UCB also attains a 33% median
improvement over DSG-Sarsa. Both RL approaches also demonstrate lower vari-
ance in the results they attain.

A one-sided (strictly lesser) Mann-Whitney-Wilcoxon rank-sum (α = 0.05)
confirms (p-values < 0.01) that UCB outperforms all other approaches and that
DSG-Sarsa outperforms the static approaches. The Vargha-Delaney A measure
indicates that UCB outperforms DSG-Sarsa with small, the combination with
medium, and diversity-only with large effect size. DSG-Sarsa outperforms the
combination with small and diversity-only with large effect size. Both Evo-
SuiteFIT techniques—particularly UCB—increase test suite diversity
over static fitness function choices with significance.

There is limited evidence that we can use to assess the impact of diversity
on the likelihood of fault detection. Only four faults are detected by any of the
approaches—faults 4, 9, 12, and 17. We identified several factors impacting fault
detection in Gson, including faults that are easier to expose through system-level
testing, complex datatypes, and faults exposed through stronger test require-
ments [3]. Increased diversity may not overcome these broader issues. However,
our observations suggest a positive impact from increased diversity.

Examining fault detection across the four faults, we see that (1) all
approaches outperform diversity-alone, and (2) the approach with the greatest
diversity—UCB—also attains the highest likelihood of fault detection. In addi-
tion, Fault 17 is uniquely detected by DSG-Sarsa. This fault is based around
serialization of date values6. Increased diversity could lead to a wider range of

6
See https://github.com/google/gson/issues/1096.

https://github.com/google/gson/issues/1096
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attempted input and method calls. AFFS may improve likelihood of fault
detection. However, more examples are needed to draw clear conclu-
sions on the impact of diversity.

5 Conclusions

We find that AFFS creates test suites that are more diverse than those created
using static fitness functions. While results on fault detection are inconclusive,
we also observe that increased diversity may lead to small improvements in the
likelihood of fault detection. However, additional research is needed to tackle the
particular challenges presented by Gson. Future work on AFFS will extend this
study beyond Gson to a greater pool of faults and examine other goals that can
be optimized in a similar manner. We make the EvoSuiteFIT available for use
in test generation research or practice.
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Abstract. Defects4J is a collection of reproducible bugs, extracted from
real-world Java software systems, together with a supporting infrastruc-
ture for using these bugs. Defects4J has been widely used to evaluate
software engineering research, including research on automated test gen-
eration, program repair, and fault localization. Defects4J has recently
grown substantially, both in number of software systems and number of
bugs. This report proposes that Defects4J can serve as a benchmark for
Search-Based Software Engineering (SBSE) research as well as a cata-
lyst for new innovations. Specifically, it outlines the current Defects4J
dataset and infrastructure, and details how it can serve as a challenge
case to support SBSE research and to expand Defects4J itself.
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1 Introduction

Each year, the Symposium on Search-Based Software Engineering (SSBSE) hosts
a Challenge Track. This track presents a series of challenge cases, often centered
around particular software systems or research domains, and tasks researchers
with applying their tools, techniques, and algorithms to those challenge cases.
The Challenge Track has attracted great attention and competition, and has
been a powerful mechanism for highlighting the applicability of state-of-the-art
SBSE research to complex, real-world problems [5–7,13,17,23].

This report proposes that Defects4J can serve as a compelling challenge case for
future editions of SSBSE. Defects4J is a collection of reproducible bugs, extracted
from real-world Java software systems, together with a supporting infrastructure
for using these bugs [9]. The current version (v2.0.0) contains 835 bugs from 17
Java software systems as well as supporting infrastructure for conducting exper-
iments in software testing and debugging research. For example, Defects4J has
been used to evaluate automated test generation [18,20], automated program

c© Springer Nature Switzerland AG 2020
A. Aleti and A. Panichella (Eds.): SSBSE 2020, LNCS 12420, pp. 255–261, 2020.
https://doi.org/10.1007/978-3-030-59762-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59762-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-59762-7_19


256 G. Gay and R. Just

repair [11,12], and fault localization [16] research. Furthermore, past contributions
to the SSBSE Challenge Track have expanded the Defects4J dataset [2,5,6].

The inclusion of Defects4J in the SSBSE Challenge Track can serve as a
benchmark for SBSE research as well as a catalyst for new innovations. This
report outlines the current version of Defects4J (Sect. 2), and details how it can
support SBSE research and inspire extensions to Defects4J itself (Sect. 3).

2 Defects4J

Defects4J is an extensible collection of reproducible bugs from Java software sys-
tems, together with a supporting infrastructure, and aims at advancing software
engineering research [9]. Defects4J is available at: https://defects4j.org.

The Bugs: The current version of Defects4J (v2.0.0) targets Java 8 and consists
of 835 reproducible bugs from 17 projects: Chart (26 bugs), Cli (39), Closure
(174), Codec (18), Collections (4), Compress (47), Csv (16), Gson (18), Jack-
sonCore (26), JacksonDatabind (112), JacksonXml (6), Jsoup (93), JxPath (22),
Lang (64), Math (106), Mockito (38), and Time (26). The 835 bugs span more
than a decade of development history, and the 17 projects span a wide range
of domains, including compilers, parsers, testing infrastructure, and a variety of
libraries.

Each bug in Defects4J has the following three properties:

1. Each bug consists of a buggy and a fixed source code version. The fixed
version is explicitly labeled as a fix to an issue reported in the project’s issue
tracker, and the changes imposed by the fix must be to source code, not to
other project artifacts such as configuration or build files.

2. Each bug is reproducible: all tests pass on the fixed version and at least one
of those tests fails on the buggy version, thereby exposing the bug.

3. Each bug is isolated: the buggy and the fixed version differ only by a minimal
set of changes, all of which are related to the bug. That is, the difference is
free of unrelated code changes, such as refactoring or feature additions.

For each bug, Defects4J provides the following artifacts and metadata:

– A pair of source code versions—the buggy and the fixed version.
– A set of classes and source-code lines modified by the patch that fixes the

bug.
– A set of developer-written tests that expose the bug—called “trigger tests”.
– A stacktrace for each trigger test, when executed on the buggy version.
– A set of classes loaded by the classloader during execution of the trigger tests.
– A set of tests that are relevant to the bug—tests that load at least one class

modified by the patch that fixes the bug.

Supporting Infrastructure: Defect4J offers a command-line utility to execute
a set of common tasks for each bug, including the following: print information

https://defects4j.org
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about a bug, checkout a buggy or fixed source code version, compile a source
code version, execute tests and (optionally) monitor the classloader, perform
coverage or mutation analysis, export metadata such as classpaths, directories,
or sets of tests, and a utility that queries the metadata to support automated
analyses.

By default, Defects4J commands use the developer-written tests that come
with each project. However, each command can be executed for an arbitrary
JUnit test suite, including those created by automated test generation tools.
Defects4J offers a uniform interface for automated test generation. Concrete
instantiations of that interface are provided for EvoSuite [4], a search-based
test generator, and Randoop [14], a feedback-directed random test generator.
Defects4J provides a template to ease incorporation of additional test generators
into the infrastructure. Coverage and mutation analyses are provided through
Cobertura [1] and the Major mutation framework [8], respectively.

Expanding Defects4J: Defects4J can be expanded along different dimensions.
First, testing and debugging tools can be integrated into the supporting infras-
tructure, through well-defined interfaces.

Second, a semi-automated process1 supports mining candidate bugs from an
existing project’s version control system and issue tracker. This process requires
the creation of a meta build file that can compile any source code version of the
project (generally by calling that version’s existing build script). An automated
step mines candidate bugs by cross-referencing the project’s version control his-
tory with its issue tracker, identifying commits that fix a reported and closed
issue. This step also compares each fix commit with its predecessor commit to
determine whether at least one trigger test exists that reliably passes on the fixed
version and fails on the buggy version. Each reproducible bug is then subject to a
manual minimization process that eliminates irrelevant code changes (i.e., refac-
toring or feature additions). Finally, an automated step adds all reproducible,
minimized bugs to the dataset and computes their metadata.

3 Research Challenges

Defects4J can serve as a challenging and diverse benchmark for SBSE research
as well as a catalyst for new innovations. Past research has successfully used
Defects4J to evaluate software testing and debugging approaches. For example,
past research used Defects4J to assess the effectiveness of automated test gen-
eration and corresponding fitness functions [20], automated program repair [11],
and fault localization [16].

This section outlines three concrete areas in which Defects4J can serve as a
challenge case. These areas and their corresponding challenges do not form an
exhaustive set, but are intended to provide inspiration. Defects4J can be used

1 The entire process is documented at https://github.com/rjust/defects4j/tree/
master/framework/bug-mining/README.md.

https://github.com/rjust/defects4j/tree/master/framework/bug-mining/README.md
https://github.com/rjust/defects4j/tree/master/framework/bug-mining/README.md
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to validate and extend work presented in prior editions of SSBSE or to explore
new SBSE-based approaches.

3.1 Empirical Validation

Genetic Improvement: Search-based approaches have been used to improve
system performance [17]. These performance improvements should be semantics
preserving—that is, not alter the functional behavior of a system. Defects4J can
support the empirical validation of performance improvement research by pro-
viding a supporting infrastructure for integrating tools and a thorough set of
tests for assessing generated patches.

Hyper-Parameter Tuning: Search-based approaches often have many param-
eters that can, and need to, be tuned to increase effectiveness on particular
problem instances. Examples include crossover and mutation rates of a genetic
algorithm [22]. A fair and comprehensive assessment of automated tuning pro-
cesses requires a well-defined dataset. Defects4J provides such a dataset, fosters
replicability of experiments, and supports validation of in-project and cross-
project generalization of hyper-parameter settings.

Longitudinal Studies and Software Evolution: Software evolves over time,
and Defects4J’s artifacts capture this evolution. With a diverse set of projects
and multiple artifacts per project, spanning multiple years of development his-
tory, Defects4J supports longitudinal studies that, e.g., investigate the effective-
ness and generalizability of SBSE approaches over time.

Test Suite Diversity: Prior work hypothesized that diverse test suites are more
effective than those that contain similar tests [21]. Defects4J supports controlled
experiments that can assess the impact of increased or decreased diversity on
fault detection. The use of a common dataset also offers common grounds for
researchers to compare different diversification techniques.

3.2 Novel SBSE Techniques

Predictive Modeling: Search-based approaches can be used to tackle predic-
tion problems, such as defect prediction [19]. The 835 bugs in Defects4J corre-
spond to over 1000 buggy Java classes. Features of those classes and the isolated
bugs themselves can be used to develop or train predictive models.

State Space Exploration in Program Repair: Search-based approaches for
automated program repair often have difficulty traversing the search space due
to a costly fitness evaluation. Recent work addressed this challenge by capturing
dependencies between source code statements and high-level differences between
patch variants [3]. Defects4J is a natural benchmark for novel program repair
research, as the dataset includes both buggy and fixed versions of a variety of
complex bugs.
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Topic Modeling: Recent work examined the extraction of information from
textual artifacts, such as bug reports [10,15]. Defects4J provides many examples
for topic modeling and can serve as a basis for linking code and textual artifacts,
since each bug in Defects4J is linked to a bug report and the projects and classes
themselves often include detailed documentation.

The topics above capture only a portion of the research presented at SSBSE
2019. Defects4J can also support other research areas, such as crash reproduc-
tion (Defects4J provides trigger tests, detailed stacktraces, and isolated bugs,
all of which can be used to assess crash-reproduction approaches) or mutation
testing (Defects4J’s real bugs can serve as templates for evolving new mutation
operators and generation techniques).

3.3 Extending Defects4J

In addition to providing a challenging benchmark for assessing SBSE research,
extending Defects4J also poses interesting challenges that may inspire new
approaches. In particular, researchers may wish to consider the following:

– Automated build script creation and repair: Adding bugs to Defects4J
currently requires the manual creation of a meta build file. Genetic program-
ming could be used to automate this step. Some of the associated challenges
include gathering dependencies and inferring necessary properties to build
each source code version.

– New projects and bugs: The set of software systems in Defects4J is diverse,
but many domains are not accounted for. New projects and additional bugs
would increase the range of research that could be supported. Of particular
interest are AI-based systems, concurrent systems, and systems in difficult-
to-test domains.

– New test generation approaches: Defects4J includes a standardized inter-
face for automated test generation. This interface allows researchers to quickly
integrate and evaluate new approaches.

– Interface for automated patch generation: Similar to the standardized
interface for test generation, Defects4J would benefit from a well-defined inter-
face for tools that generate patches, including tools for automated program
repair and genetic improvement. For example, tools for automated program
repair are routinely benchmarked on Defects4J [11]. A standardized interface
for executing such tools would facilitate reproducability and comparability.

– Support for newer Java versions: The current version of Defects4J sup-
ports Java 8. Newer version of Java may result in unexpected compilation
errors, test failures, or metadata inconsistencies. Novel approaches for auto-
matically migrating source code and tests to newer Java versions would be a
welcome contribution.

In addition to the examples above, researchers may identify other needs and chal-
lenges that require attention to support different research areas or experimental
protocols.
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4 Conclusions

This report proposes that Defects4J can serve as a challenge case for SBSE
research as well as a catalyst for new innovations. Among the topics explored in
work published at the 2019 Symposium on Search-Based Software Engineering,
Defects4J could benefit research in genetic improvement, hyper-parameter tun-
ing, test suite diversity and generation, predictive modeling, state space explo-
ration, and topic modeling. Furthermore, extending Defects4J poses additional
challenges that can be tackled through SBSE.
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