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Abstract. In this paper, we consider the task of predicting travel times
between two arbitrary points in an urban scenario. We view this problem
from two temporal perspectives: long-term forecasting with a horizon of
several days and short-term forecasting with a horizon of one hour. Both
of these perspectives are relevant for planning tasks in the context of
urban mobility and transportation services. We utilize tree-based ensem-
ble methods that we train and evaluate on a data set of taxi trip records
from New York City. Through extensive data analysis, we identify rele-
vant temporal and spatial features. We also engineer additional features
based on weather and routing data. The latter is obtained via a routing
solver operating on the road network. The computational results show
that the addition of this routing data can be beneficial to the model per-
formance. Moreover, employing different models for short and long-term
prediction is useful as short-term models are better suited to mirror cur-
rent traffic conditions. In fact, we show that good short-term predictions
may be obtained with only little training data.

Keywords: Travel time prediction · Tree-based ensembles · Taxi
dispatching

1 Introduction

Predicting travel times of road trips is especially challenging in urban areas,
as travel times considerably depend on the weekday, the time, and the current
situation on the roads [18,19]. For both, the individual transport of people, and
the transport of goods in urban areas, high quality predictions are necessary for
planning reliable tours. For operators of classic taxi services as well as providers
of shared economy services such as Uber or Lyft a good prediction of arrival
times is crucial, not only for creating efficient tours but also for having satisfied
customers who do not have to wait longer than expected. This is especially true
if ride sharing services are offered, i.e., if different customers share one taxi in
order to increase car utilization and decrease the price per person.
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Predictions for a time horizon of several days are necessary if guests book
trips several days in advance and the taxi provider plans these tours ahead of
time in order to guarantee a reliable service. Predictions of driving times for the
next minutes or hour are necessary for dispatching, i.e., when assigning guests,
who ask for an ad hoc service, to taxis on the short-term. Similar problems exist
for other sectors such as same day deliveries of goods or food to consumers, but
also deliveries to commercial customers such as restaurants, pharmacies, or shops
which are often located in the city center. Hence, reliable travel time estimations
in urban areas are necessary to (a) determine feasible plans, for example with
respect to working time limits of drivers or opening hours of customers, and (b)
to guarantee customer satisfaction. A good overview of applications for planning
vehicle routes in an urban context is given in [20].

Historically, large traffic flow models (e.g., simulation, queuing theory) were
built, calibrated with data from stationary devices such as induction loops or
traffic cameras, to derive speed profiles for every section of the street network
and to calculate the fastest route based on these profiles. Today, GPS tracks –
referred to as floating car data – are available from cars, and navigation systems.
This considerably improves the availability of data for a larges share of road sec-
tions, and in some cases additional information such as speed data are available.
Routing services such as Google directions1 or PTV Drive&Arrive2 determine
travel times based on these data for cars and trucks, respectively. Even if the
travel time prediction of these services are of a high quality, the usage of a web
API is often not possible: For dispatching decisions, the travel time for many
relations is determined to assign a trip request to an adequate vehicle. If ride
sharing services are offered, even more relations need to be considered. Since dis-
patching decisions are extremely time sensitive, web service calls are prohibitive.
Also the pay per call plans are usually expensive. Finally, the predictions are
provided for cars, pedestrians, or trucks but not for taxis, or small buses which
are allowed to use special lanes in urban areas. In contrast to approaches based
on complex traffic models estimating speed patterns on a link basis, we focus on
simpler origin-destination based predictions: We only rely on information such as
the location of the pickup and the deliveries and the corresponding time stamps.
These data are, usually, available even if not all cars are equipped with track-
ing systems. If trajectories are available, selected nodes of the trajectory can be
added as additional origin-destination data to the data base. Due to the various
advantages of tree-based learning methods, we investigate their suitability for
predicting the travel times in the described setup.

The remainder of this paper is organized as follows: In Section 2, we intro-
duce the tree-based learning methods most appropriate to our problem at hand.
Section 3 is dedicated to the computational study and evaluation of the meth-
ods for long-term prediction with a horizon of several days, and a short-term
prediction for the next hours. We conclude the paper with a short discussion.

1 https://developers.google.com/maps/documentation/directions/start (13.05.2020).
2 https://www.ptvgroup.com/en/solutions/products/ptv-driveandarrive/

(13.05.2020).
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2 Methodology: Tree-Based Learning

Travel time prediction can in principle be performed by any regression technique
for metric outcomes. In particular, consider a theoretic model of the form

y = f(x1, . . . , xp) + ε = f(x) + ε,

where y denotes the travel time and x1, . . . , xp are corresponding features,
also called explanatory variables, containing, e.g., information on historic travel
times, destination or even weather data which are stacked in the vector x =
(x1, . . . , xp). Moreover, ε is an error term and f an unknown regression function
that needs to be estimated to describe the relationship between y and x. To
this end, related applications on travel prediction have utilized approaches from
time series analyses [7] or Artificial Intelligence and Machine Learning. Here,
support vector machines [11], k-nearest neighbors [2] or neural networks and
deep learning [5,10] have been proposed. We focus on methods that use trees
as base learners. In particular, we study the performance of several tree-based
methods such as CART and bagged or boosted ensembles. This includes Ran-
dom Forests [1], Extra (randomized) Trees [6] as well as the recently proposed
XgBoost and LightGBM algorithms [3,9]. These procedures are (i) known for
being robust against feature co-linearity and high-dimensionality, (ii) usually
more easy to train3 and (iii) also need a lower computational burden than more
enhanced deep learning algorithms, see also [4,12] for similar arguments. In fact,
Random Forests or Stochastic Gradient Boosting models have already exhibit
accurate predictions in the context of travel times [4,12,13]; though for other
data sets and domains (e.g., travel time of buses or on free ways). In contrast to
existing literature, we investigate whether more recent proposals (as XgBoost)
are more appropriate than established methods (as Random Forest). Moreover,
we compare all methods’ accuracy for both, long and short term predictions
for which we introduce additional features. A novel example for the latter is
the travel time of the fastest route calculated with a routing engine assuming a
street network without traffic.

For ease of presentation, we only summarize the basic ideas behind these
methods and refer to the cited literature for the explicit definitions, see also the
monograph [8] for further details. As all methods are based upon trees, let us
first recall the idea behind a single tree.

2.1 Classification and Regression Trees

Let D = {(y1,x1), . . . , (yn,xn)} denote the observed data with xi =
(xi1, . . . , xip) representing the feature vector of the i-th observation. We focus
on regression trees from the CART class. The key idea is to greedily split the
feature space into disjoint regions, say R1, . . . , Rm, until a certain stop criterion

3 At least compared to deep neural networks.
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is fulfilled. At the end, for each of the resulting disjoint regions, also called termi-
nal nodes, a separate prediction of the target variable (travel time) is performed
by

ĉj =
1

Nj

∑

xi∈Rj

yi, (1)

where Nj = |{xi : xi ∈ Rj}|. That is, the travel time of a new feature vector x ∈
Rj is predicted by taking the mean over all yi with feature vector xi belonging
to the region that contains x. To obtain the mentioned partition, binary splits
are performed recursively, starting with the complete feature set (root node) and
continuing with the resulting nodes etc. as follows: For each node, the observed
feature value that minimizes the total variance of the two nodes after splitting
is selected. A toy example is given in Fig. 1 below, where we have chosen a tree
depth of two. Here, the feature ‘Weekday’ with value ‘Weekend’ was chosen as
first splitting point. Thus, two subsequent nodes partition the complete feature
space into the observations belonging to Weekends (left node in the first row) and
all other days (right node), respectively. Thereafter, the variable ‘Time of day’
with feature value ‘7 am’ was chosen to split the data belonging to weekends. The
two resulting sets are terminal nodes and the corresponding prediction values
ĉ1 = 25, 7 min and ĉ2 = 7, 8 min were calculated according to (1). Similarly, for
weekdays the feature ‘Temperature’ with the freezing point as splitting value
was chosen and ĉ3 = 17, 4 min and ĉ4 = 9, 2 min were calculated.

Fig. 1. A simple regression tree with tree depth equal to 2.

One of the most important questions with CART is the choice of the tree
size. A strategy is to grow a large tree B0 first, than reduce the size of the
tree by using a pruning technique. Here, several pruning techniques exist and
we have chosen to use the Cost of Complexity Pruning (CCP) introduced by
Breiman [14]. To describe this technique we define B ⊂ B0 to be any sub-tree
of B0, which can be obtained by collapsing any number of its internal nodes.
Let Qj(B) =

∑

(xi,yi)∈Rj
(yi − ĉp)2/Nj be the mean squared error in region Rp.

Then the CCP is defined as Cα(B) =
∑m

j=1 NjQj(B)+αm, where α is a tuning
parameter for a trade-off between tree size and goodness of fit. The sub-tree
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with a minimal Cα(B) will be selected, so that large α values lead to smaller
tree sizes. This is an important point as a major advantage of trees is their
interpretability as illustrated in the example from Fig. 1. However, if the tree
size is too large, interpretation can become cumbersome. Moreover, trees come
with the cost of a rather simple prediction model which can usually be enhanced
in terms of accuracy by turning to ensemble techniques.

2.2 Ensemble Techniques: Bagging and Boosting

Bagged ensembles as the Random Forest [1] or Extra Trees [6] usually improve
the predictive accuracy of a single tree by following the wisdom of crowds prin-
ciple: The basic idea is to randomly draw multiple subsamples, say B, from
the (training) data and to grow a single tree for each of them and finally
take the average tree prediction as random forest or Extra Tree prediction. To
be a little bit more concrete, let Db be a subsample (for the Random Forest
this is usually of size �.632n� and drawn with replacement from the training
data D) and x �→ f̂b(x) the corresponding single tree predictor based upon
Db, b = 1, . . . , B. Then a bagged ensemble regression predictor is given by
x �→ ∑B

b=1 f̂b(x)/B = ̂f(x). The motivation behind this approach is that aver-
aging reduces the variance. In fact, due to

V ar( ̂f) =
1

B2

⎛

⎝

B
∑

b=1

V ar(f̂b) +
∑

b1 �=b2

Cov(f̂b1 , f̂b2)

⎞

⎠

the trees should not be too correlated to further reduce the variance. That is
why Random Forest as well as Extra Trees do not consider the same explanatory
variables for each tree construction but draw random subsamples of feature
variables. An example for the Random Forest is given in Fig. 2. For simplicity,
we only considered an ensemble of B = 3 different stumps (trees). For each
stump, we decided to randomly draw only one feature: The feature ‘Weekday’
for the first, the feature ‘Time of day’ for the second and ‘Temperature’ for the
third tree. The numeric example below the trees explains the averaging principle.
Random Forest and Extra Trees follow different approaches to generate (un-
)correlated trees. The key difference is that in Random forest the single trees are

Fig. 2. A simple Random Forest with B = 3 trees.
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constructed as CARTs while the Extra Tree algorithm uses a different, even more
random cut criterion to grow the trees. Roughly speaking, this should reduce the
variance much faster (i.e. for smaller B) compared to Random Forests.

Different to these bagged ensembles, boosting is a more complex, iterative
procedure. Therefore, we only explain some basic ideas and do not go too much
into detail. One of its most common implementation is the gradient boosting
algorithm [8] which can be interpreted as a gradient descent implementation for
the optimization of a loss function. Roughly speaking, it computes a sequence of
trees, where each new tree is fitted on a modified version of the data (so-called
pseudo-residuals) in order to reduce the value of a pre-specified loss function.
Due to the iterative nature, the final model prediction is the sum from all tree
predictions at each step. There exist several different boosting implementations
which are all equipped with certain techniques for regularization and stopping
rules. For our purposes we have chosen two boosting methods: XgBoost [3] as it
has recently been crowned the current Queen of machine learning [21] due to its
dominating performance in many applied Machine Learning and Artificial Intel-
ligence competitions, as e.g., on Kaggle. In addition, we considered Microsoft’s
LightGBM which is advertised as being highly efficient and accurate [9].

3 Travel Time Prediction

From common knowledge it may be apparent that travel time is affected by
several variables such as the weekday, the time of the day, or the weather. In
this section we start describing the used data sets, and show selected results
from descriptive analyzes. For planning or dispatching transports, both, long-
term predictions for travel times in several days, and short-term predictions for
the next hour are necessary. Therefore, we consider different planning horizons
and compare the resulting quality. For the short-term prediction, we also evaluate
how much data for training (the last hour or the last couple of hours) is needed
to reach good short-term predictions with acceptable run times.

3.1 Core Data Set and Data Enrichment

As data set for our computational study, we use the “TLC Trip Record Data”
containing trip information of the yellow and green taxis in New York provided
by the NYC Taxi and Limousine Commission for the last 10 years [22]. Since the
information provided differs slightly between the years – for example, the records
provided later than 2016 do no longer contain location data – we restrict our
study to the period between January 2016 and June 2016. To avoid data sparsity,
we furthermore filtered our data set to trips which started and ended in Manhat-
tan, which corresponds to the vast majority of trips. In this period, the average
number of trips per day is around 326 000, which results in an average number
of trips per month of 9 949 000. Each trip is described by the date and the time,
and the longitude and latitude value for its pickup and drop-off, respectively (in
the following referred to as pickup datetime, dropoff datetime, pickup longitude,
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pickup latitude, dropoff ongitude, dropoff latitude). Longitude and latitude val-
ues are given on five decimal places, which corresponds to an accuracy of about
one meter. Furthermore, the duration of the trips in seconds (trip duration), the
distance in miles (trip distance), the number of passengers (passenger count),
and a code indicating the taxi provider (vendor id) are provided.

Figure 3 shows the distribution of the trip duration, our target variable, for
the area of Manhattan. The distribution seems to follow a log-normal distribution
with a peak of trips lasting around 16 min (around 1 000 s). The trips with less
than 10 s or with more than 100 000 s or more than 24 h do not appear plausible.
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Fig. 3. Distribution of the trip duration in seconds (x-axis on logarithmic scale).
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In this case we assume incorrect measurements. The explanatory variables can be
divided into three categories, namely temporal variables, spatial variables, and
others. The temporal variables are the pickup datetime and dropoff datetime.
As expected, the day of the week, as well as the time of the day influence the
travel time. To understand this interaction we plotted the travel speed for each
combination of “weekdays” and “hours of the day” in Fig. 4 with a heat-map.
It shows that the combination created a “low speed region” in the middle of
the day and week. Such speed profiles over the course of the days are typical
for urban areas, and they correlate negatively with the number of taxi trips.
The speed goes down with an increase of road users during the day. During
the night the speed, usually, corresponds to the so called free flow speed and
is close to the legal speed limit for each road section. We also investigated the
influence of weather on the speed using data provided by the National Weather
Service4. The impact of heavy snowfalls in January on the travel speed was
significant. Other weather phenomena, such as rainfall, do not have a similar
impact on the travel speed. However, the reason can also be the shortcoming
of our weather data set: It contains only average values per day, even though
rainfall changes considerably over the course of the day. The spatial variables
in our data set are the longitude and latitude values for the pick-up and the
drop-off, and the distance of the trip. As shown in Fig. 5, the trip distance has
a strong positive correlation with our target variable trip duration. The actual
trip distance can only be measured ex-post, since the traffic situation influences
the concrete route, and often taxi drivers use their geographical knowledge and
use shortcuts. However, we can calculate the fastest route between the pick-up
and the drop-off location with a routing algorithm assuming free flow speed
on all road sections and use the resulting distance as an estimator for the trip
distance which is available ex-ante. For our study, we applied the Open Source
Routing Machine (OSRM)5 on open street map data for New York. Besides the
distance, referred to as osrm distance, the response generated by the OSRM
engine also contains the following information for the fastest (not necessarily
shortest) route: the duration (osrm duration), the total number of left-, right-,
and u-turns (total turns), the total number of left-turns (total left), the total
number of navigation instructions (total steps), the name of the street with the
longest duration (main street), and the fraction of travel time on the main street
(main street ratio).

Figure 5 shows that the osrm distance and osrm duration of the fastest
route are highly correlated with the actual duration and distance. The
main street ratio is weekly (negative) related to the actual trip duration. The
total steps, total left, total turns and main street ratio from OSRM are highly
correlated with each other. Thus, it’s not necessary to use all these features for
prediction.

4 The data can be downloaded from https://www.weather.gov.
5 http://project-osrm.org/.

https://www.weather.gov
http://project-osrm.org/
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Fig. 5. Pairwise correlations of the features.

3.2 Long-Term Forecasting

Cleaning. Each model was trained on data from 1st June 2016 to 20th June
2016 (training data) and its prediction ability was evaluated in terms of RMSE
on the data form 21st June 2016 to 30th June 2016 (test data). The training
and test data contain 6,355,770 and 3,105,839 trips respectively, with 16 features
for each trip. In Machine Learning, it is usually recommended to clean up the
data before training. To this end, we first removed all trips with untrustworthy
feature values, e.g., 10,000 trips with less than 10 s or more than three hours
duration within Manhattan as well as 2,000 trips with an average speed of more
than 60 mile per hour (noting that Manhattan’s maximum speed limit is 50 mile
per hour). In addition, we did a descriptive analysis of all feature variables
to identify features without significant impact. Beyond summary statistics and
graphical illustrations (not shown) we thereby also calculated the feature impor-
tance of all untuned models on the trip duration. Due to similarity we only show
the resulting plots for the two boosting approaches in Fig. 6. Here, vendor id
and passenger count had the least impact. As the exploratory analyses (bar-
and boxplots) agree with this assessment, we excluded both from our further
analyses. Moreover, total steps, total left, total turns and main street ratio from
OSRM express the next lowest feature importance. As Fig. 5 already revealed
that these four features were highly correlated, we only keep the main street ratio
and removed the other three.

Based on the remaining training data on these p = 11 features x and the
target variable y, we performed an independent hyperparameter tuning for each
of the five different modeling approaches. These were done on Python [16]. In
particular, for CART and Extra Trees we used the library scikit-learn [15], for
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Fig. 6. Feature importance of (a) XgBoost and (b) lightGBM.

Random Forest and XgBoost the XgBoost-library from [3]6 was utilized and for
lightGBM we turned to the Microsoft library7. As computational complexity
can become an issue with boosting algorithms, we additionally compared the
performance of the two boosting algorithms on both, CPUs and GPUs. For the
latter, we turned to the plug-in GPU implementation of [17]. As this library only
supports the faster histogram-based implementation of the XgBoost algorithm,
we also restricted the CPU based XgBoost-implementation to this. This leaves
us with seven different models to train.

Parameter Tuning. Starting with the single decision tree CART we tuned the
size of the tree bymax depth andmin child weight. To this end,we run a grid search
for max depth ∈ {3, 8, 13, 18, 23, 38, 33} and min child weight ∈ {10, 20, ..., 130}
resulting in the choices max depth = 23 and min child weight= 100. For Ran-
dom Forest, the main parameters to be tuned are the subsampling rate on the
training data (subsample), the subsampling rate on the features when building
each tree (colsample bytree) and the total number of trees (n trees). Apart from
these bagging parameters, we also tuned the value max depth for each single
tree. We created a grid for these four parameters with subsample and colsam-
ple bytree in {0.6, 0.7, 0.8, 0.9, 1.0}, n trees ∈ {20, 40, 60, 80, 100} and max depth
∈ {8, 13, 18, 23, 28}. The resulting best parameters with a minimal training
RMSEof 254.21weremax depth= 28, colsample bytree= 0.8, subsample= 0.9 and
n trees= 80. A similar grid search for the Extra Trees parameters (for which
subsample is redundant) with colsample bytree ∈ {0.6, 0.7, 0.8, 0.9, 1.0}, n trees

6 The source code of this library is available at https://github.com/dmlc/xgboost.
7 The source code is available at https://github.com/microsoft/LightGBM.

https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
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∈ {20, 40, 60, 80, 100} and max depth ∈ {3, 8, 13, 18, 23, 28, 33} led to a min-
imal RMSE of 261.3 for the choices n trees= 60, max depth= 28 and colsam-
ple bytree= 0.6. Compared to these bagging method, XgBoost and lightGBM need
eight parameters to tune including, e.g., the minimum loss reduction to make an
additional partition at each node (gamma), the coefficient of L2 regularization
(lambda) and the learning rate (learning rate). As an 8-dimensional grid search
would have needed the investigation of more than 72 Mio values (6 Mio for each of
the 11 features and the target variable), we performed a step by step approach: at
each step we only tuned some of the parameters with grid search while keeping the
others fixed with the value we received from previous steps. The minimal training
RMSE after this parameter tuning approach was 253.7 for the Xgboost approach
and 256.46 for lightGBM.

Model Comparison. The performance of the resulting ‘best’ tree-based mod-
els were compared with respect to their predictive accuracy (measured in RMSE)
on the test set and their computational effort needed for training. For a baseline
comparison, a naive prediction was computed which uses the average trip dura-
tion for each combination of pickup and drop-off zipcode under the same hour of
the same week day. The results are summarized in Table 1. Regarding computa-
tional time we considered two situations: The training time to obtain the corre-
sponding ‘best’ model (second last column) and for illustration also the training
time under the same tree and ensemble sizes (last column). These determine the
complexity of the model and were set to max depth= 16 and n trees= 60. All
computations were performed on an Intel Core i7-8700 3.20 GHz× 12 (CPUs)
with GeForce GTX 1080/PCIe/SSE2 (GPUs) and 48 GB RAM.

It is apparent that the performance of all tree-based ensemble models were
much better than the naive method and also better than the single CART tree.
Among them, XgBoost on CPU was the model with the best RMSE (253.37) on
test data directly followed by its GPU implementation (253.74). Moreover, Ran-
dom Forest (254,21) and both lightGBM implementations (≈256) only showed
slightly worse accuracies while needing much less time for training. In fact, turn-
ing from XgBoost on its faster GPU implementation to the well-established Ran-
dom Forest reduced the computational burden to train the best model by the
factor 13.5. Turning to lightGBM (GPU implementation) even resulted in the
factor 42.9. Finally, Extra Trees exhibits the worst RMSE among all ensembles
while needing more time to train than lightGBM and the Random Forest.

To assess the effect of adding OSRM data for predictive modeling, we trained
an XgBoost model without this auxiliary information resulting in a higher RMSE
of 260.95 after parameter tuning. Thus, adding OSRM data can help to improve
the accuracy in travel time prediction without incurring extra cost for buying
map data or software.
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Table 1. Comparison of the Tree-based Models. Some of the models, whose parameter
haven’t been tuned, have no data for the best models.

Model RMSE Training time [s] of
best model

Training time [s] under
same parameters

Naive 368.97 – –

CART 271.23 72 –

Random Forest 254.21 442 (with 80 trees) 442

Extra Trees 261.3 825.6 493

XgBoost(GPU) 253.74 5916 (with 1685 trees) 72

XgBoost(CPU) 253.37 7240 (with 1662 trees) 196

LightGBM(GPU) 256.59 139 (with 597 trees) 9

LightGBM(CPU) 256.46 159 (with 524 trees) 11

We conclude that the tree based methods reach an improvement of around
30% compared to our naive estimator: The RMSE of the naive model of 368.97 s
or 6.1 min is reduced to around 4.3 min in case of XgBoost and lightGBM. Con-
sidering an average trip duration of 10 to 15 min, this improvement is consider-
able. In combination with their low training times this justifies the application
of XgBoost and lightGBM.

3.3 Short-Term Forecasting

Besides long-term predictions, short-term predictions for the next hours that
react on recent conditions are needed. Here, an important question, especially
with respect to storage and computation cost, is: how much information from the
past is needed for training to obtain reasonable short predictions? To evaluate
this, we trained several different XgBoost models, that only use the informa-
tion from the last i hours. Moreover, we compare the obtained predictions with
the one calculated by using the long-term forecasts. To this end, we randomly
selected the week from 2016-06-23 to 2016-06-29 and separately considered the
trips from every hour of this week as a single test data set. This resulted in
168 (7 d × 24 h/day) different test data sets. For each test data, we trained an
XgBoost model on the trips in its past i hours, i = 1, . . . , 24 as described in
the last section excluding the temporal features weekday and all weather data.
Thus, we trained 4,032 (168 × 24) XgBoost models in total. Their performance
is shown in Fig. 7, in which each point represents a single model.

Here, several things stand out: First, for most hours of day and days of the
week, the RMSE was almost constant over the different amounts of training
data (1−24 h). This means that the trip duration of most hours and days have a
rather short memory and mostly depend only on the trips from the last hour. An
exception is given by the rush hours (5:00–8:00 on workdays), where the RMSE
on test data was the lowest when using the past 24 h as training data. Beside
that, all models exhibit the best performance on early morning hours (1:00–4:00)
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Fig. 7. Predictive accuracy (y-axis, measured in RMSE) of the 4,032 different XgBoost
models corresponding to different days of the week (as indicated by different colors),
hours of the day (header) and different amount of training data (x-axis, given in pre-
vious hours from 1–24). (Color figure online)



Travel Time Prediction Using Tree-Based Ensembles 425

with RMSEs around 150 for all hour × day combinations. However, on Sundays
between 10:00 to 18:00, the trip duration was relatively hard to predict resulting
in RMSEs around 450 or even larger. The average training times for XgBoost
(CPU) are very low: They range from below one second for the case, in which
only trips of the last hour were considered, to around 9 s for the case in which
data of the last 24 h were considered.

3.4 Short vs. Long-Term Prediction

The long-term prediction models can in principle also be used to predict the
travel time for the trips in this randomly selected week. Choosing, the best
CPU-based XgBoost long-term prediction model (Table 1), we also computed
its RMSE for each of the 168 different test data sets (hours of this specific
week). A comparison with the best short-term model is given in Fig. 8. It is
surprising, that there is not much difference for most of the time. In fact, the
short-term models are slightly better than the long-term model from Monday
to Thursday and even much better on Sundays. An explanation may be that
short-term models react more directly to the current traffic condition which is
more hidden in the much larger training set of the long-term model. Thus, if the
aim is short-term prediction, the consequences are very positive and save a lot
of computation time: Simply use the short-term models.

Fig. 8. Comparison of the RMSE of the best CPU-based XgBoost long-term prediction
model and the best short-term model.

4 Discussion and Outlook

The results of our computational study show that ensemble tree methods deliver
good travel time forecasts for both planning horizons, especially, if in addition to
the core trip data, data related to the fastest route assuming a free flow speed,
are considered. For short-term predictions, only data from the last few hours
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contain the information, which is necessary for a result outperforming models
trained on a larger data set. Due to the relatively small training data sets, the
resulting training times are very short, and allow for regular training runs on
the most recent data. That means, at the same time, that for different planning
horizons different models should be provided.

In future work we want to investigate how much data is needed for reliable
forecasts for both time horizons, since there are significantly more trip data
available for New York than for most other cities in the world. Especially in
cases with less data records, different ways of integrating the short-term state of
the traffic might be promising such as the global average speed of the last half
an hour or the average speed of trips with similar origin destination locations.
For many applications, it is also interesting to deliver arrival time (prediction)
intervals or distributions expressing the uncertainty of the forecast.
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