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Abstract. This paper considers a rich vehicle routing problem in which
a combination of transportation costs and customer perceived waiting
times should be minimized and a differentiation is made between priority
and non-priority customers. We illustrate the problem using a case study
of a wholesaler with its own last-mile delivery network where customers
can have pickup and delivery demand and are served by a heterogeneous
fleet of vehicles. We propose a bi-objective mathematical problem formu-
lation, minimizing the combination of transportation costs and customer
dissatisfaction. We model customer dissatisfaction using a non-linear
function that approximates the perceived waiting time of the customers.
To be able to solve realistically sized problems in reasonable time, we
propose a Simulated Annealing heuristic, Variable Neighborhood Search,
and a combination of these. We perform various experiments considering
different customer preferences (visit as soon as possible or at a specific
time) and problem settings. For the combined objective, we see an aver-
age costs reduction for the dissatisfaction function approach compared
to the standard time window approach of 48% over all experiments. Fur-
thermore, we observe an average reduction in perceived waiting time of
48% and 20% for priority and non-priority customers, respectively.

Keywords: Vehicle Routing Problem · Customer satisfaction ·
Simulated Annealing · Variable Neighborhood Search · Time windows

1 Introduction

In this study, we consider a Vehicle Routing Problem (VRP) in which a com-
bination of transportation costs and customer perceived waiting times should
be minimized. Two types of customers have to be served: priority and non-
priority customers. Customers are served from a depot with a heterogeneous
fleet of vehicles having varying driving time limits. Also, customers have two
types of demand: pickup demand from the customers to the depot and deliv-
ery demand from the depot to the customers. For this problem, we propose a
bi-objective mathematical programming formulation, minimizing a combination
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of transportation costs and customer dissatisfaction. We model customer dis-
satisfaction with a non-linear function that approximates the perceived waiting
time of customers, as opposed to modeling standard time windows. We aim to
find solution generation methods that can find good solutions within reasonable
computational time.

To illustrate the problem and to test our proposed solution methods, we use
a case study of a wholesaler with its own last-mile delivery network. Using het-
erogeneous vehicles, this company aims to serve its customers within 1.5 h after
order acceptance. Therefore, the time required for creating the transportation
schedules should be limited. The company has 12 warehouses with more than
3000 customers, of which on average 1200 order products on a daily basis. To
test our proposed solution methods, we use several real-life instances from this
company with varying problem sizes and customer characteristics. These prob-
lem instances contain both priority and non-priority customers. Compared to
non-priority customers, priority customers have smaller time windows in which
they prefer to be served, and the penalty costs for serving customers outside
these time windows increase faster as time elapses.

The contribution of this work is threefold. First, we provide a new formulation
for this problem, extending existing formulations by including heterogeneous
vehicles, customer prioritization, and various customer dissatisfaction functions.
Second, to solve realistically sized problem instances, we propose a Simulated
Annealing heuristic, Variable Neighborhood Search, and a combination of these.
Third, we illustrate our approach using multiple instances from our real-life case
study, providing insights into the benefits of our solution methods for various
problem settings.

The remainder of this paper is structured as follows. Section 2 presents a
literature review about exact mathematical problem formulations and heuristics
that can find good solutions to this problem. Section 3 presents the mathematical
problem formulation. Section 4 presents the heuristics used to solve the problem.
Section 5 presents experiments that were conducted on several problem instances
and Sect. 6 concludes on these experiments and provides directions for further
research.

2 Literature Review

The core of the studied VRP is best described by a Pickup and Delivery VRP
(PDVRP). In this variant, customers require simultaneous pickup and delivery,
all transported to and from a single depot [3]. During the route, the vehicle’s load
is a mix of pickup and delivery loads, constrained by the vehicle’s capacity. Cao
and Lai [3] provide a mathematical model for the PDVRP; an improved version
of this model includes time windows in which customers are to be served [11].
Zhang, et al. [22] also provide a model for the PDVRP; however, service times at
customers are not considered. Finally, Zhang, et al. [23] model the PDVRP with
service times at customers and time windows for customers. Compared to the
standard PDVRP, our problem also includes prioritization amongst customers
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and customer satisfaction should be taken into account. In practice, firms often
create tiered service levels and assign customers to these tiers based on, e.g.,
their sales (potential) [21]. Firms often benefit from implementing a prioritiza-
tion strategy [6, p. 126]. To facilitate a prioritization strategy, one should first
identify what influences customer satisfaction (i.e., service levels) [6, p. 126]. In
literature, customer satisfaction related to the delivery service of logistics compa-
nies can be described by short waiting times, as customers often prefer to receive
their orders as soon as possible [20]. However, customer satisfaction is typically
modeled using a standard time window, see, e.g., Zhang, et al. [23], resulting
in either maximum satisfaction when the order arrives within the time window,
or minimum satisfaction when the order arrives outside the time window. Cus-
tomer satisfaction can also be modeled by fuzzy time windows [1]. In fuzzy time
windows, customer satisfaction is a function with values ranging between a min-
imum and maximum customer satisfaction. Fuzzy time windows are suitable to
express the subjective function of satisfaction as they typically lead to maximum
customer satisfaction [1, p. 532]. Ghannadpour, et al. [5] show that the width of
the fuzzy time window can be adjusted to customer importance, where a smaller
interval indicates a more important customer.

As our problem originates from the real-world and consists of a combination of
known variants of the traditional VRP, it can be described as a Rich VRP (RVRP)
[2]. These problems are NP-hard [10] and typically heuristics are being used to find
good solutions in reasonable computational time [17]. Popularmeta-heuristics that
are used to solve RVRPs are, amongst others, Local Search and Variable Neighbor-
hood Search (VNS) [2, p. 17]. Local Search methods, such as Simulated Annealing
(SA) and Tabu Search (TS), are shown to provide good solutions for the VRP [13].
Tavakkoli-Moghaddam, et al. [18] show that SA provides good solutions for the
VRP in reasonable computational time. Robusté, et al. [15] show that SA is an
effective heuristic to solve VRPs, particularly when the problem is too large or too
complex to be solved with traditional combinatorial optimization techniques. Kuo
and Wang [8] use VNS in combination with SA, and show it is efficient and effec-
tive in solving VRPs. Stenger, et al. [16] show that VNS provides high-quality solu-
tions to the VRP within short computational time. These improvement heuristics
improve a given solution by making local changes. The starting solution is created
by a so-called construction heuristic. Suitable construction heuristics for VRPs are
theClark andWright savings,Cluster FirstRoute Second,RouteFirstCluster Sec-
ond, Nearest Neighbor, Nearest Insertion, and Farthest Insertion.

The mathematical model proposed by Cao and Lai [3] is used as the base
model for the studied problem. To tailor this model to the studied problem,
homogeneous vehicles are replaced by heterogeneous vehicles. To model customer
satisfaction and prioritization among customers, we extend the base model. We
combine the idea of fuzzy time windows as suggested by Afshar-Bakeshloo, et al.
[1] with the ability to change the width of the interval to prioritize customers,
as introduced by Ghannadpour, et al. [5]. To model the customer prioritization
related to the shortest waiting time, we let customer satisfaction of priority
customers decrease faster over time compared to non-priority customers, such
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that the priority customers are likely being served earlier, as done by Wang, et al.
[19]. As the transportation costs should be minimized and customer satisfaction
should be maximized, we minimize a combination of transportation costs and
customer dissatisfaction. We model customer dissatisfaction with a non-linear
function approximating the perceived waiting time of the customers.

To be able to solve realistic problem instances and to find good solutions in
a short amount of time, we propose to use the metaheuristics SA, VNS, and
a combination of SA and VNS. Furthermore, we propose a modified version of
SA. The starting solution will be generated by a modified version of the Nearest
Neighbor Heuristic, in which we not only take into account distances between
customers, but also the perceived waiting times of customers.

3 Problem Formulation

Our proposed mathematical model minimizes a weighted average of the trans-
portation costs and the perceived waiting times of customers while satisfying the
following four conditions for each delivery moment: (i) each customer is visited
exactly once, (ii) each vehicle can only be used once, (iii) the total driving time
of a vehicle and its total service time at its customers should not exceed its
driving time limit, and (iv) the vehicle’s load capacity cannot be exceeded.

The following assumptions are used for the mathematical model: (i) the depot
is always operational, has infinite capacity, and does not suffer from stockouts,
(ii) freights cannot be divided and each customer is visited once, (iii) vehicles
cannot go back to the depot for a refill, (iv) the service time at the customer and
the travel time between two nodes are independent of the vehicle and the driver,
(v) all vehicles are always operational, (vi) the transportation costs are fixed
meaning that fuel consumption is equal for every driven kilometer, (vii) pickup
and delivery demand is fixed implying that these demands cannot be canceled,
(viii) travel times, distances, and service times are deterministic, meaning that
no online changes occur, and (iv) customers are always ready to hand over pickup
demand and to receive delivery demand.

To model the perceived waiting times, we propose a customer dissatisfaction
function f̂i,t, which denotes the perceived waiting time of customer i ∈ N at
time t ∈ T , where N represents the set of customers and T represents the set of
discrete time units. This dissatisfaction function is input for the mathematical
model. The mathematical model determines the arrival time Ai,k at customer i
by vehicle k ∈ K, where K represents the set of vehicles. Furthermore, we use
the binary variable λi,t, which indicates whether a vehicle arrives at customer i
at time t. The perceived waiting time of customer i can then be calculated as
follows:

∑
t∈T λi,tf̂i,t. We propose the following constraints to ensure that λi,t is

set to 1 when Ai,k = t (with Ai,k = 0 when vehicle k is not serving costumer i):
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∑

t∈T
tλi,t = Ai,k ∀i ∈ N , ∀k ∈ K

∑

t∈T
λi,t = 1 ∀i ∈ N

λi,t ∈ {0, 1} ∀i ∈ N , ∀t ∈ T

We propose two types of dissatisfaction functions as shown in Table 1: a
quadratic function and a step function, where the latter corresponds with the
typical approach considered in the VRP literature. Furthermore, we evaluate our
dissatisfaction functions under two different situations for customer preferences:
(i) customers prefer to be served as soon as possible (ASAP) and (ii) customers
prefer to be served at a specific time (AST). We use several parameters in these
dissatisfaction functions.

For the step function, we consider a fixed penalty vi for visiting customer i
outside its time window. In case of AST, this time window is given by [lbi, ubi],
where the middle point of this time window is mi and the width of the time
window is wi. In case of ASAP, this window is given by [ei, ei + wi], where ei
represents the earliest possible visiting moment of customer i, which depends on
the driving time from the depot to this customer. For the quadratic function,
we penalize the time after earliest visit time ei or the deviation from a preferred
visit time mi in case of ASAP and AST, respectively. To distinguish between
different priority customers, these time deviations are penalized by a factor ai.
The equations for the two dissatisfaction functions for both situations are given
in Table 1 and an illustration is given in Fig. 1.

Table 1. Proposed dissatisfaction functions for two situations of customer preferences.

Situation Quadratic function Step function

ASAP f̂i,t = ai(t − ei)
2, t > ei f̂i,t = vi, t > ei + wi

f̂i,t = 0, otherwise f̂i,t = 0, otherwise

AST f̂i,t = ai(mi − t)2, t < mi f̂i,t = vi, t < lbi

f̂i,t = ai(t − mi)
2, t > mi f̂i,t = vi, t > ubi

f̂i,t = 0, otherwise f̂i,t = 0, otherwise

When using the quadratic dissatisfaction function in the ASAP situation, cus-
tomer dissatisfaction increases rapidly with increasing waiting times. This is also
experienced in practice, as the customer dissatisfaction exponentially increases
when the perceived waiting time increases [4]. When using step functions, penal-
ties remain constant when being outside the time window. The standard mod-
elling approach in case of AST is to use a time window around the preferred
visit time, and the assumption is that customer dissatisfaction is the same over
the whole interval, while this is not experienced in practice [4]. The quadratic
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Fig. 1. Quadratic and step penalty functions for two situations of customer preferences.

function uses increasing penalties with increasing deviations from the preferred
visit time mi, thereby pushing the model to schedule the visit closer to the pre-
ferred time. The dissatisfaction functions ensure the distinction between priority
and non-priority customers by letting the penalty value for priority customers
increase faster than for non-priority customers. This distinction can be achieved
by setting the parameter ai higher for priority customers than for non-priority
customers. When using the standard time window modeling approach, the width
of the time window, denoted by wi, is smaller for priority than for non-priority
customers.

In the following, we introduce the notation for the mathematical problem for-
mulation for the RVRP with customer prioritization. Besides the sets N , K, and
T as introduced before, we also use N0 to denote the set of customers including
the depot, i.e., N0 = N ∪ {0}. For the parameters solely related to customers, we
define for each customer i pickup demand pi, delivery demand di, and service time
si. For the parameters related to the arcs between two nodes i and j, we define
ti,j as the travel time and ci,j as the distance. For the parameters related to vehi-
cles, we define for each vehicle k, its capacity qk, driving time limit lk, time-related
costs tck, distance-related costs dck, and startup costs sck for using this vehicle.
Furthermore, we have a parameter α ∈ [0, 1] to set the weight of the two objectives
in the bi-objective goal function and a conversion factor β to convert the perceived
waiting time penalty into the costs equivalent. Next, we introduce the variables
in the mathematical model. The variable Xi,j,k indicates whether arc (i, j) is tra-
versed by vehicle k, Ai,k is the arrival time of vehicle k at customer i, Yi,j,k is the
demand picked up by vehicle k from customers up to node i and transported on arc
(i, j), and Zi,j,k is the demand to be delivered by vehicle k to customers routed after
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node i and transported on arc (i, j). As mentioned before, λi,t indicates whether
the arrival time at customer i is at time t.

We define the proposed mathematical problem formulation as follows:

min

⎛
⎝α

( ∑
(i,j)∈N0,k∈K

(
ci,jdck + (ti,j + sj) tck

)
Xi,j,k +

∑
j∈N ,k∈K

sckX0,j,k

)

+ (1 − α)

(
β

∑
i∈N ,t∈T

f̂i,tλi,t

))
(1)

s.t.

∑

i∈N0,k∈K
Xi,j,k = 1 ∀j ∈ N (2)

∑

i∈N0

Xi,j,k −
∑

i∈N0

Xj,i,k = 0 ∀j ∈ N0, ∀k ∈ K (3)

∑

j∈N
X0,j,k ≤ 1 ∀k ∈ K (4)

Ai,k + si + ti,jXi,j,k − Aj,k ≤ lk(1 − Xi,j,k) ∀i ∈ N , ∀j ∈ N0, ∀k ∈ K (5)
Aj,k ≥ t0,jX0,j,k ∀j ∈ N , ∀k ∈ K (6)

A0,k ≤ lk ∀k ∈ K (7)
∑

i∈N0,k∈K
Yj,i,k −

∑

i∈N0,k∈K
Yi,j,k = pj ∀j ∈ N (8)

∑

i∈N0,k∈K
Zi,j,k −

∑

i∈N0,k∈K
Zj,i,k = dj ∀j ∈ N (9)

Yi,j,k + Zi,j,k ≤ qkXi,j,k ∀(i, j) ∈ N0, ∀k ∈ K (10)
∑

t∈T

tλi,t = Ai,k ∀i ∈ N , ∀k ∈ K (11)

∑

t∈T

λi,t = 1 ∀i ∈ N (12)

Xi,j,k ∈ {0, 1} ∀(i, j) ∈ N0, ∀k ∈ K (13)
Aj,k ≥ 0 ∀j ∈ N , ∀k ∈ K (14)

Yi,j,k, Zi,j,k ≥ 0 ∀(i, j) ∈ N0, ∀k ∈ K (15)
λi,t ∈ {0, 1} ∀i ∈ N , ∀t ∈ T (16)

The objective function (1) minimizes a weighted average of transportation
costs and perceived waiting times of the customers, where the transportation
costs consist of distance-related transportation costs, time-related transporta-
tion costs, and vehicle startup costs. Constraint (2) makes sure that each cus-
tomer is visited exactly once and constraint (3) ensures that a vehicle always
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departs from the node at which the vehicle arrives. Constraint (4) indicates that
a vehicle can be used only once, i.e., it can only leave the depot once. Sub-tours
are eliminated by constraint (5) and constraint (6) ensures that the arrival time
at a customer cannot be earlier than the driving time from the depot to that
customer. Constraint (7) ensures that the total driving time and service time
limit of each vehicle is not exceeded. The vehicle loads on each arc, for pickup
demand and delivery demand, respectively, are calculated by constraints (8)
and (9). Constraint (10) makes sure that the vehicle capacity is not exceeded.
Constraints (11) and (12) ensure that the correct input is used for the dissatis-
faction function. Finally, the domain restrictions for the variables are indicated
by constraints (13)–(16).

4 Heuristics

As the studied problem is NP-hard [10], we use heuristics to find good solutions
for large-size problem instances [17] in a short amount of time. To provide a
starting solution for the improvement heuristics, we use the Nearest Neighbor
Heuristic [14]. In the standard Nearest Neighbor Heuristic, a vehicle constructs
its route by inserting the closest customer until its driving time limit or capacity
limit is reached. So, the costs for adding customer j to the route of vehicle k
is calculated as follows: C(i, j, k) = ci,j , where the current location of vehicle
k is denoted by i. So, only the travel distance is taken into account. In our
problem, we also have to consider customer dissatisfaction and transportation
costs; therefore, we modify the standard Nearest Neighbor Heuristic such that
customer dissatisfaction and transportation costs are also taken into account.
We propose to calculate the costs for making a route between nodes i and j
with vehicle k with the following formula: C(i, j, k) = α(ci,jdck + ti,jtck) +
(1 − α)βf̂j,Aj,k

, where the current location of vehicle k is denoted by i. This
construction heuristic is executed in a parallel manner. This means that we
are gradually constructing the routes of all vehicles. In each iteration of the
construction heuristic, we loop over all customers j and vehicles k to find the
lowest value for C(i, j, k) and then add customer j to the route of vehicle k.
Then, we repeat this procedure until all customers are visited. If all customers
are visited, all vehicles return to the depot.

After that, we improve the starting solution with improvement heuristics. In
these improvement heuristics, we modify the current solution with neighborhood
operators. We consider the following two neighborhood operators: (i) a move-
operator, in which we insert a customer from a certain route into another route,
and (ii) a swap-operator, in which we swap two customers on the same route
or between different routes. When generating a neighbor solution, we select the
move-operator and the swap-operator with equal probability. We use the follow-
ing four improvement heuristics: (i) the standard version of Simulated Anneal-
ing [7], (ii) the standard version of Variable Neighborhood Search [12], (iii) the
standard version of Simulated Annealing combined with the standard version
of Variable Neighborhood Search [9], and (iv) a modified version of Simulated
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Annealing. In the modified version of Simulated Annealing, we generate mul-
tiple neighbor solutions and evaluate the best solution among these neighbor
solutions, as opposed to evaluating only one neighbor solution [7].

In Sect. 5, we benchmark (i) our proposed construction heuristic against the
standard version of the Nearest Neighbor Heuristic and (ii) these improvement
heuristics against the deterministic version of Simulated Annealing, which we
refer to as ‘Descent’. The Descent heuristic only accepts solutions that improve
the best solution so far. We use the modified Nearest Neighbor Heuristic before
using the improvement heuristics. We also apply a modeling trick to the con-
struction and improvement heuristic. We relax constraint (7) by allowing vehicles
to have overtime in which lk is exceeded. Based on the overtime, we add overtime
penalty costs to the objective function (1). This modeling trick helps to escape
from local optima but can cause the heuristic to find infeasible solutions having
vehicles with overtime. Therefore, it is possible that the construction heuristic
finds an infeasible solution, which the improvement heuristic uses as starting
solution. Moreover, it enables constructing good routes for large scenarios for
which a feasible solution is hard to find or non-existent.

Finally, we apply post-processing to the solutions found by the construction
heuristic and improvement heuristic. First, we improve the solution by swapping
customers within every single route. Second, we improve the solution by swap-
ping vehicles to find the best vehicle for each route, which might result in less
overtime.

5 Experiments

In this section, we present the experiments and their corresponding results.
In Sect. 5.1, we describe the data from the problem instances. In Sect. 5.2, we
present the experiments with the mathematical model. In Sect. 5.3, we give an
introduction to the experiments with the heuristics and present the parameter
settings for the heuristics. In Sect. 5.4, we present the results of the experiments
with the heuristics.

5.1 Description of Problem Instances

As mentioned in the introduction, we perform our experiments using real-life
instances from our case study. The involved company has 12 warehouses, but
for our experiments, we limit ourselves to one of these warehouses, which serves
approximately 300 customers, of which on average 120 distinct customers place
orders over six different delivery moments within day. The first vehicles leave
the depot at 8:00 AM and the last vehicles leave the depot at 3:30 PM. Trans-
portation costs include fuel costs, salaries, depreciation, vehicle packing costs,
service costs, and cleaning costs; these data are extracted from a full year of com-
pany data. Real (asymmetric) travel distances and (asymmetric) travel times are
extracted by using Google APIs. Besides that, a full year of GPS-data from the
company is used to generate a customer service time distribution. We extracted
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7 problem instances from company data, ranging from low demand (38 cus-
tomers) to high demand (95 customers); scenario-specific information regarding
the fraction of priority customers, volume of pickup demand pi, volume of deliv-
ery demand di, travel distance ci,j , travel time ti,j , and preferred visit time mi,
are presented in Table 2. For these parameters, we provide the mean value and
the standard deviation, of which the latter is presented between brackets. The
scenario number corresponds with the number of customers that placed an order
in this scenario.

Table 2. Scenario-specific information

Scenario Priority (%) Pickup demand Delivery

demand

Travel distance

(m)

Travel time (s) Preferred visit

time (s)

38 13.16 4.4 (3.2) 14.1 (4.8) 23170 (13265) 1268 (595) 2683 (664)

45 13.33 5.4 (3.2) 12.3 (4.8) 22674 (12574) 1289 (573) 2648 (655)

54 5.56 4.7 (3.4) 12.8 (5.2) 27462 (14979) 1457 (655) 2767 (857)

67 8.96 4.8 (3.2) 12.0 (4.8) 25335 (14376) 1375 (636) 2648 (708)

75 12.00 5.0 (3.1) 11.2 (5.0) 25013 (13854) 1361 (603) 2811 (662)

86 8.14 4.8 (3.2) 12.8 (4.7) 25009 (14013) 1370 (629) 2831 (791)

95 9.47 5.3 (3.1) 12.5 (4.8) 25712 (14161) 1397 (624) 2753 (682)

Other data that are extracted from a full year of company data are the same
for each scenario. These data include the (i) number of vehicles, which is 14,
(ii) service time si, which has an empirical distribution with a mean of 138 s, a
median of 107 s, and a standard deviation of 109 s, (iii) vehicle capacity qk = 500,
(iv) driving time limit of lk = 9000 s for the first 4 vehicles and lk = 5400 s for
the other 10 vehicles, (v) distance costs dck = e0.0001 per meter, (vi) time
costs tck = e0.0028 per second, and (vii) startup costs of a vehicle sck = e1.68
(equal to time costs for 10 min). Furthermore, as discussed in Sect. 3, α is the
weight assigned to the transportation costs, and 1 − α is the weight assigned
to the penalty costs for the perceived waiting time of customers. Increasing α
results in (i) a decrease in transportation costs and (ii) an increase in waiting
times. The parameter β is a conversion factor to convert the perceived waiting
time penalty into the cost equivalent. Increasing β results in (i) a decrease in
waiting times and (ii) an increase in transportation costs.

To allow the involved company to make a trade-off between transportation
costs and perceived waiting times, we performed a number of experiments with
different values of α and β. From the results, the involved company decided that
the values α = 0.5 and β = 100 resulted in the best overall objective.

For both the ASAP and AST situation we use (i) ai = 5×10−6.965 for priority
customers and ai = 1×10−6.85 for non-priority customers, and (ii) use a penalty
vi = 0.5. For the ASAP situation, we use wi = 600 and wi = 1200 for priority
customers and non-priority customers, respectively. For the AST situation, we
use the same wi values to set the width of the windows [lbi, ubi] around the
preferred time mi.
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5.2 Experiments with the Mathematical Model

For each scenario, we try to solve the mathematical model for the two situations
ASAP and AST. We try to solve both situations with the dissatisfaction function
approach and the standard time window modeling approach. To achieve this, we
implement the mathematical model in AIMMS using the general-purpose solver
CPLEX version 12.8, on a machine equipped with an Intel Hexa-Core 4.1 GHz
and 16 GB of RAM. We limit the computational time to 3600 s.

For none of the scenarios, the model is able to find an optimal solution;
the gap, the fractional difference between the lower bound and the incumbent
solution, is on average 89%. Therefore, we perform two modifications. First, we
set the time units to minutes (T = {1, . . . , 150}) by modifying constraint (11)
such that

∑
t∈T 60tλi,t ≥ Ai,k, resulting in a significant reduction in the number

of decision variables λi,t. Second, we also consider smaller scenarios, with 15
and 24 customers. For the scenario with 24 customers, the model still does not
find optimal solutions, and the gap is on average 63%. For the scenario with 15
customers, the model is able to find optimal solutions within 3600 s, taking 2735
s and 1895 s for the ASAP and AST situation, respectively. Note that changing
the time units from seconds to minutes results in an over-approximation of the
dissatisfaction penalty, causing an approximation error in the objective function.
Therefore, there is no guarantee that the optimal solutions found are the true
optima of the original problems.

5.3 Experimental Settings

As discussed in Sect. 5.2, it is hard to solve the instances to optimality by using
the mathematical model. Furthermore, the corresponding computational time is
not acceptable, as the company aims to serve customers within 1.5 h after order
acceptance. Therefore, we only consider the heuristics in the remaining experi-
ments. We refer to (i) the standard version of the Nearest Neighbor Heuristic as
‘NN’, (ii) the modified version of the Nearest Neighbor Heuristic as ‘NN-IMPR’,
(iii) the standard version of Simulated Annealing as ‘SA’, (iv) the standard
version of Variable Neighborhood Search as ‘VNS’, (v) the standard version of
Simulated Annealing combined with the standard version of Variable Neighbor-
hood Search as ‘SA-VNS’, and (vi) the modified version of Simulated Anneal-
ing as ‘SA-STPD’. Furthermore, we use the Descent improvement heuristic for
benchmarking purposes, which we refer to as ‘Descent’.

To find suitable parameter settings for the heuristics, we have conducted
experiments on all scenarios with a proper selection of parameter values. We
chose the parameter values that found the best solutions over 25 replications
(i.e., running every experiment 25 times with the same parameter settings to
provide statistically significant results) with regard to the following KPIs: (i) the
best objective value found, (ii) the average objective value found, (iii) the worst
objective value found, and (iv) the fraction of the solutions containing overtime,
i.e., where lk is exceeded at least once. After having found these parameter values,
we tried to minimize the computational time by varying the parameter values,
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taking into account that the performance on these KPIs should not diminish.
The resulting parameter settings for the heuristics are presented in Table 3.

Table 3. Parameter settings for the heuristics

Parameter Descent SA SA-STPD SA-VN VNS

Start temperature – 50 50 50 –

Decrease factor – 0.999 0.999 0.999 –

Length of the Markov Chain – 100 10 100 –

Temperature of lower bound – 0.5 0.5 0.5 –

Maximum neighborhood depth – – – 3 5

Maximum number of moves – – – 106 5 × 104

Number of neighbor solutions – – 15 – –

Maximum number of iterations 5 × 105 – – – 5 × 108

We perform experiments with the quadratic dissatisfaction function (DF=Q)
and the standard time window modeling approach (DF=S) for both the ASAP
and AST situation. For each experiment, we perform 25 replications, i.e., we
run every experiment 25 times with the same parameter settings, to provide
statistically significant results. When no feasible solution can be found within
one replication after running the combination of the construction heuristic and
improvement heuristic 25 times, the scenario is classified as ‘infeasible’ for that
heuristic. During the execution of the heuristics for a specific setting of the dis-
satisfaction function, the corresponding quadratic or step function is used dur-
ing the optimization, and afterwards the objective value is calculated assuming
a quadratic perceived waiting time function. We do not report the computa-
tion times as they are all negligible and do not deviate significantly among the
different improvement heuristics.

5.4 Experimental Results

First, we show the results of the experiments for the ASAP situation. The results
for the different heuristics can be found in Table 4. Here we show the best objec-
tive value found, with in between brackets the increase when considering the
average objective value. With respect to the construction heuristics, we see that
NN-IMPR always outperforms NN, and is able to find feasible solutions for
more instances. All improvement heuristics can find feasible solutions. We see
that the SA approaches (SA, SA-STPD, SA-VN) outperform both Descent and
VNS. When comparing the dissatisfaction function approach and the standard
approach, we find that the dissatisfaction function approach significantly outper-
forms the standard approach regarding the objective and the average perceived
waiting times of customers.
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Table 4. Comparison of heuristics using the ASAP situation

DF Heuristic 38 45 54 67 75 86 95

Q NN 2232 (88) – – – – – –

Q NN-IMPR 144 (0) 223 (0) – 514 (0) – – –

Q Descent 133 (1) 158 (6) 205 (15) 268 (32) 431 (41) 541 (65) 760 (73)

Q SA 134 (2) 158 (3) 204 (4) 249 (12) 420 (14) 516 (24) 626 (47)

Q SA-STPD 134 (1) 158 (2) 204 (6) 250 (11) 419 (14) 518 (20) 625 (18)

Q SA-VN 133 (2) 158 (2) 204 (5) 256 (8) 424 (13) 521 (23) 632 (40)

Q VNS 133 (1) 158 (7) 208 (13) 262 (33) 427 (40) 521 (86) 705 (150)

S NN 2421 (241) – – – – – –

S NN-IMPR 207 (0) 263 (0) 273 (3) 421 (5) – – –

S Descent 181 (26) 219 (13) 248 (10) 308 (33) 2108 (296) 941 (382) 2898 (529)

S SA 175 (13) 200 (27) 241 (18) 288 (27) 453 (197) 761 (336) 1005 (574)

S SA-STPD 175 (18) 213 (17) 242 (19) 299 (17) 474 (216) 681 (577) 1034 (551)

S SA-VN 171 (17) 199 (24) 245 (15) 282 (34) 472 (190) 829 (404) 888 (482)

S VNS 173 (31) 222 (12) 248 (12) 303 (64) 2102 (332) 859 (464) 2224 (1144)

Next, by using the SA heuristic, we compare the effect of the dissatisfaction
function and the standard approach on the perceived waiting times of the prior-
ity and non-priority customers. The following results are shown in Table 5: (i) the
average objective value, referred to as ‘Obj’, (ii) the average perceived waiting
time, referred to as ‘Avg’, (iii) the standard deviation of the perceived wait-
ing time, referred to as ‘StDev’, and (iv) the maximum perceived waiting time,
referred to as ‘Max’. The results related to perceived waiting time are presented
for both priority and non-priority customers. When analyzing these results, we
find that the perceived waiting times for both the priority and non-priority cus-
tomers are significantly lower when using the dissatisfaction function approach.
Furthermore, we find that the perceived waiting times of priority customers are
significantly lower than for non-priority customers.

Table 5. Comparison of dissatisfaction functions using the ASAP situation

Scenario Quadratic function Step function

Priority Non-priority Priority Non-priority

Obj Avg Std Max Avg Std Max Obj Avg Std Max Avg Std Max

38 135 104 91 215 198 209 973 189 150 152 524 468 413 1197

45 161 88 143 437 274 256 1031 227 269 219 589 461 399 1195

54 208 131 112 344 321 303 1294 259 223 157 592 443 387 1197

67 261 149 155 638 394 342 1664 314 210 168 569 480 388 1198

75 434 190 206 750 584 473 1988 650 368 598 4527 658 609 5979

86 540 260 219 708 610 522 3206 1097 788 1047 6058 710 767 7137

95 673 181 193 847 708 558 3511 1579 476 785 4768 910 1069 7345

Average 345 158 160 563 441 380 1952 616 355 447 2518 590 576 3607
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The comparison of heuristics under the AST situation are shown in Table 6.
When comparing the two construction heuristics, we find that NN-IMPR out-
performs NN when using the dissatisfaction function approach. When using the
standard time window modeling approach, we find that NN-IMPR and NN can
only find feasible solutions for a small number of scenarios; therefore, no con-
clusion can be drawn whether one construction heuristic outperforms the other
construction heuristic. When comparing the improvement heuristics, we find that
only SA and SA-VN can find solutions for all scenarios. Regarding the objective
value, SA and SA-VN perform similarly and outperform the other improvement
heuristics. Furthermore, SA and SA-VN have similar perceived waiting times
for customers. SA-STPD outperformed VNS and Descent regarding the objec-
tive value and VNS outperformed Descent regarding the objective value. When
comparing the dissatisfaction function approach and the standard time window
modeling approach, we find that the dissatisfaction function approach signifi-
cantly outperforms the standard time window modeling approach regarding the
objective and the average perceived waiting times of customers.

Table 6. Comparison of heuristics using the AST situation

DF Heuristic 38 45 54 67 75 86 95

Q NN 1208 (20) – – – – – –

Q NN-IMPR 308 (0) 246 (0) – – – – –

Q Descent 185 (16) 203 (12) 268 (13) 259 (25) – – –

Q SA 167 (8) 178 (13) 208 (13) 224 (17) 305 (20) 357 (23) 387 (43)

Q SA-STPD 166 (9) 178 (14) 214 (14) 224 (27) 303 (22) – –

Q SA-VN 168 (9) 182 (11) 205 (15) 232 (9) 302 (23) 353 (26) 406 (30)

Q VNS 176 (23) 203 (11) 254 (27) 251 (27) – – –

S NN 1369 (291) – – – – – –

S NN-IMPR – – – 2820 (157) – – –

S Descent 514 (589) 361 (471) 436 (477) – – – –

S SA 308 (93) 305 (74) 336 (62) 393 (66) 500 (153) 619 (184) 748 (210)

S SA-STPD 318 (77) 312 (50) 339 (51) 380 (113) – – –

S SA-VN 272 (116) 298 (73) 334 (56) 386 (65) 529 (148) 630 (172) 717 (271)

S VNS 333 (159) 324 (227) 408 (331) – – – –

Finally, we compare the effect of the dissatisfaction function and the standard
time window modeling approach on the perceived waiting times of the priority
and non-priority customers, by using the SA heuristic. The corresponding results
are presented in Table 7. Similarly as in the ASAP situation, the dissatisfaction
function approach will result in lower average perceived waiting times for both
priority and non-priority customers. Furthermore, we find that the perceived
waiting times of priority customers are significantly lower than for non-priority
customers.
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Table 7. Comparison of dissatisfaction functions using the AST situation

Scenario Quadratic function Step function

Priority Non-priority Priority Non-priority

Obj Avg Std Max Avg Std Max Obj Avg Std Max Avg Std Max

38 175 507 312 957 827 598 2347 401 896 639 1861 990 666 2389

45 191 529 261 987 918 578 2097 379 676 508 1874 1017 665 2632

54 220 319 165 647 831 568 2325 399 587 399 1658 966 668 2575

67 241 373 297 1029 808 570 2325 459 642 473 1861 965 649 3549

75 325 352 296 988 886 575 2277 653 723 674 2040 954 652 2400

86 380 397 273 1098 868 598 2535 802 766 804 3732 1041 781 5649

95 430 434 330 1111 1002 677 3548 958 596 655 4633 1204 919 6131

Average 280 416 276 974 877 595 2493 579 698 593 2523 1020 714 3618

6 Conclusion

We proposed a bi-objective mathematical programming formulation for rich
vehicle routing problems, minimizing a combination of transportation costs and
customer dissatisfaction, distinguishing between priority and non-priority cus-
tomers. We modelled customer dissatisfaction with a non-linear function that
approximates the perceived waiting time of customers. The proposed mathe-
matical model could only solve instances up to 15 customers. To be able to
solve realistically sized instances, we used heuristics. We first created an initial
route with a construction heuristic and then improved this route with various
improvement heuristics. For the construction heuristic, we found that it is ben-
eficial to allow vehicles to violate restrictions, which later on would be repaired
by the improvement heuristic. For the improvement heuristics, we considered
Descent, Simulated Annealing, Modified Simulated Annealing, Variable Neigh-
borhood Search, and a combination of the last two. We found that Simulated
Annealing or the combination of Simulated Annealing with Variable Neighbor-
hood Search always provided the best results. Furthermore, we found that the
perceived waiting times for both the priority and non-priority customers are
significantly lower when using the dissatisfaction function approach, as opposed
to modeling standard time windows, with average savings of 48% and 20%,
respectively. With respect to the combined objective of transportation costs and
waiting time penalties, the dissatisfaction function approach resulted in average
savings over all experiments of 48%.

With respect to further research, we propose (i) the development of a
matheuristics that can help to find a good solution for the proposed mathemat-
ical problem in a shorter time and (ii) the use of Machine Learning techniques
to decrease the solution space of the mathematical problem formulation.
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