
Vehicle Routing Problem with Reverse
Cross-Docking: An Adaptive Large
Neighborhood Search Algorithm

Aldy Gunawan1(B), Audrey Tedja Widjaja1, Pieter Vansteenwegen2,
and Vincent F. Yu3

1 Singapore Management University,
80 Stamford Road, Singapore 178902, Singapore

{aldygunawan,audreyw}@smu.edu.sg
2 KU Leuven Mobility Research Center - CIB, KU Leuven,

Celestijnenlaan 300, Box 2422, Leuven, Belgium
pieter.vansteenwegen@kuleuven.be

3 Department of Industrial Management,
National Taiwan University of Science and Technology,

43, Section 4, Keelung Road, Taipei 106, Taiwan
vincent@mail.ntust.edu.tw

Abstract. Cross-docking is a logistics strategy that aims at less trans-
portation costs and fast customer deliveries. Incorporating an efficient
vehicle routing could increase the benefits of the cross-docking. In this
paper, the vehicle routing problem with reverse cross-docking (VRP-
RCD) is studied. Reverse logistics has attracted more attention due to
its ability to gain more profit and maintain the competitiveness of a
company. VRP-RCD includes a four-level supply chain network: suppli-
ers, cross-dock, customers, and outlets, with the objective of minimiz-
ing vehicle operational and transportation costs. A two-phase heuristic
that employs an adaptive large neighborhood search (ALNS) with var-
ious destroy and repair operators is proposed to solve benchmark
instances. The simulated annealing framework is embedded to discover
a vast search space during the search process. Experimental results show
that our proposed ALNS obtains optimal solutions for 24 out of 30 prob-
lems of the first set of benchmark instances while getting better results
for all instances in the second set of benchmark instances compared to
optimization software.

Keywords: Vehicle routing problem · Cross-docking · Reverse
logistics · Adaptive large neighborhood search

1 Introduction

In a supply chain network, suppliers deliver their products to customers in two
different ways, either through a direct shipment or a transhipment process.

c© Springer Nature Switzerland AG 2020
E. Lalla-Ruiz et al. (Eds.): ICCL 2020, LNCS 12433, pp. 167–182, 2020.
https://doi.org/10.1007/978-3-030-59747-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59747-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-59747-4_11

168 A. Gunawan et al.

This supply chain is a vital function since customers want to receive products
in quick and easy ways. In a direct shipment, each supplier may dispatch one
or more vehicles in order to fulfil all customer demands, resulting in long origin-
to-destination paths and a large number of vehicles dispatched [15]. On the
other hand, adopting an intermediate facility for a transshipment process can
improve supply chain performance as a whole and provide better delivery per-
formance to customers. Products from suppliers are first sent to a cross-dock,
sorted and consolidated according to customer demands, and then delivered to
customers afterwards. It can provide enhanced customer service and it can speed
up customer deliveries. Advantages of cross-docking will be enhanced by an effi-
cient vehicle routing [6]. It is important for a distribution network because it
reduces or eliminates the storage activities that belong to the warehousing sys-
tem. Products are not allowed to be stored inside the cross-dock. [14] compared
the performance between adopting the cross-docking strategy and direct ship-
ments. The experiments conclude that cross-docking is capable to achieve cost
savings compared to the direct-shipping under certain conditions.

The VRP plays an essential role in the field of supply chain management and
logistics. It is associated with important role in distribution management and
logistics, as well as the costs associated with operating vehicles with the objective
of finding optimal delivery from a warehouse to a set of customers with respect
to limited constraints. Customers are served by some identical vehicles with a
limited capacity from suppliers. This combined VRP and cross-docking model
is addressed as a vehicle routing problem with cross-docking (VRPCD) that has
been widely studied [4,11,19]. Many industries or companies have started to
pay more attention in reverse logistics as this concept has been recognized as a
source of profitability and competitiveness for their businesses [1,8,10]. Apple,
H&M, and Dasani are some examples of companies that implement reverse logis-
tics. In reverse logistics, the returned products from customers are collected and
sent back to the suppliers [9] for further processes such as break down or re-
manufacture process. Due to the advantages of adopting cross-docking in the
forward flow, [20] studied the VRPCD in reverse logistics flow, the so-called
VRP with reverse cross-docking (VRP-RCD). We then re-visit this VRP-RCD
which is suitable for companies with seasonal demand patterns, such as fashion,
books, and electronics, and which commercialize the returned (unsold) prod-
ucts through secondary channels (e.g. outlet stores). The practice of introducing
cross-docking as a viable strategy for handling returned products in the Euro-
pean apparel industry is highlighted by [22]. The main difference with the prob-
lem discussed in [9] is that VRP-RCD [20] happens in a four-level supply chain
network consisting of suppliers, customers, outlets, and a cross-dock, while [9]
only considers a three-level supply chain network: suppliers, customers, and a
cross-dock. Furthermore, VRP-RCD [20] considers a multiple product scenario
and a situation where some of the supplied products can be defective.

In this paper, we introduce a two-phase heuristic that employs an adaptive
large neighborhood search (ALNS) to solve the VRP-RCD [20]. ALNS was firstly
introduced by [16] as the extension of LNS [18]. It has been widely adopted to

Vehicle Routing Problem with Reverse Cross-Docking: An ALNS Algorithm 169

solve many variants of VRP such as the pollution-routing problem (PRP) [2],
the two echelon VRP (2E-VRP) [7], the VRP with drones [17] and the VRPCD
[4]. ALNS has also been implemented to perform the column generation process
in a matheuristic approach to solve the VRPCD with time windows [3] and the
VRPCD [5]. Due to the superiority of ALNS to solve various combinatorial opti-
mization problems, we adopted the ALNS used in [4] to solve the VRP-RCD.
However it should be noted that the algorithm needs several modifications due
to different assumptions in both problems, such as: 1) VRPCD assumes all nodes
are visited, while in VRP-RCD some nodes might not be visited, 2) VRPCD only
involves customer and supplier nodes, while VRP-RCD involves customer, sup-
plier, and outlet nodes, and 3) VRPCD considers an individual pickup (delivery)
process in supplier (customer) nodes, while VRP-RCD also considers the simul-
taneous pickup and delivery processes in outlet nodes. In general, ALNS employs
destroy and repair operators to repetitively remove some nodes from a solu-
tion and to re-insert these back to a more profitable position. We also employ
simulated annealing (SA) acceptance criteria that gives us a chance to accept a
worse solution rather than always reject it, so as in order not to get stuck in local
optima. The proposed ALNS performs well in solving the available benchmark
VRP-RCD instances. For the first set of instances, it is able to obtain optimal
solutions for 24 out of 30 instances. For the second set of instances which is a
larger set, it outperforms optimization software, CPLEX, by obtaining 38.81%
better results on average, with significantly faster computational times.

The rest of the paper is organized as follows. In the next section, we provide
the problem description of the VRP-RCD. Section 3 presents the proposed ALNS
algorithm. The computational results are presented in Sect. 4. Finally, Sect. 5
concludes the paper with our findings and directions of future research.

2 Problem Description

The VRP-RCD network (as shown in Fig. 1) involves |C| customers, |O| outlets,
|S| suppliers, and a cross-dock facility to handle the reverse logistics process.
In this problem, customers can be shops or wholesalers that are trying to sell
products, but may not be able to sell all. Since those products may almost reach
their end of life (EOL) period to be sold on the customers site, they are then
passed to the outlets for the second round of selling process with lower prices.
However, those products may not be sold in outlets and have to be replaced with
newer products, therefore they will be returned to the supplier who supplied
those products, for further processing (e.g. re-manufacture or break down).

Each connected arc between customer and cross-dock nodes has a travel
distance of e

′
ij and a travel time of t

′
ij . For outlet and cross-dock nodes, each

connected arc has a travel distance of e
′′
ij and a travel time of t

′′
ij . Finally, between

supplier and cross-dock nodes, we represent a travel distance of e
′′′
ij and a travel

time of t
′′′
ij for each connected arc. Let c represent the transportation cost per

unit distance.

170 A. Gunawan et al.

Fig. 1. VRP-RCD network

A set of homogeneous vehicles V = 1, 2, . . . , |V | with the same vehicle capac-
ity q and operational cost H is available at the cross-dock to perform any one
of three processes involved in VRP-RCD: 1) customer pickup process, 2) outlet
delivery and pickup process, and 3) supplier delivery process. Let r

′
ik be defined

as the amount of returned products k from customer i and r
′′
ik as the amount of

returned products k from outlet i.
In the first process, a vehicle starts from the cross-dock, visits one or more

customers to pick up any returned products r
′
ik, and back to the cross-dock at the

end of its trip. Among the returned products type k, pk percent is considered
as defective products, which hence, only (100 − pk) percent of the returned
products type k can be distributed to any outlet nodes for the reselling process.
Therefore, outlet i with demand of product type k as much as d

′′
ik may not be

able to receive all of its demand. If the non-defective unsold products k from
all customers are able to fulfil all outlets demand of product k, then, all outlets
with demands of product k will be visited. Otherwise, only several outlets will
be visited, which depends on the number of non-defective unsold products k.
The second process is thus implemented to cover this delivery process to outlet
nodes, as well as to pick up their returned products r

′′
ik. Finally, all returned and

defective products are sent back to each supplier that supplied that product in
the third process. It is assumed that one supplier supplies one type of product.
The VRP-RCD then aims to decide the number of vehicles used as well as to
construct the route sequence of the used vehicles such that all processes are done
within the Tmax time horizon, while minimizing the total costs in the process
(vehicle transportation and fixed operational costs). The VRP-RCD assumes a
synchronous arrival scenario where the second process can only be performed
after the first process is finished, and subsequently the third process can only
be performed after the second process is done. This assumption is adopted from
the original VRPCD [11,12,21].

The VRP-RCD addressed here is slightly different compared to the one of
[20] in terms of defining the amount of returned products from customers and
outlets. The VRP-RCD [20] considers the amount of customer returned products
as a fraction of their demand in the previous cycle, while the amount of outlet

Vehicle Routing Problem with Reverse Cross-Docking: An ALNS Algorithm 171

returned products was defined as a fraction of the amount of products they
received during the delivery process in the previous cycle. However, it might be
hard to find the relationship between those two values in practice. Therefore,
the VRP-RCD in this paper models the amount of returned products as known
parameters r

′
ik and r

′′
ik when the routing is planned, as how it is addressed in

the literature [9].

3 Proposed Algorithm

Our proposed algorithm is divided into two phases. The first phase aims to decide
the selected nodes and the second phase aims to construct the routing sequence
given the selected nodes from the first phase, such that the total transportation
and operational costs is minimized. The selected nodes from the first phase
will be treated as the input and will not be modified during the second phase.
Therefore, we carefully derive some rules to determine which nodes to be visited
in Sect. 3.1. The second phase, described in Sect. 3.2, employs an adaptive large
neighborhood search (ALNS) to find a set of routes sequence given the selected
nodes from the first phase.

3.1 Phase 1: Node Selection

Since not all nodes are mandatory to be visited in this problem, we need to
select which nodes to be visited. We define m

′
i equals to 1 if node i must be

visited during the customer pickup process; 0 otherwise (i ∈ C), m
′′
i equals to

1 if node i must be visited during the outlet delivery and pickup process; 0
otherwise (i ∈ O), and m

′′′
i equals to 1 if node i must be visited during the

supplier delivery process; 0 otherwise (i ∈ S). The decision of m
′
i is done in a

very straightforward rule, where customer i is visited (m
′
i = 1) if there is any

returned products from customer i, and m
′
i = 0 otherwise.

For deciding the value of m
′′
i , we need to calculate the amount of delivered

product k to node i in advance, denoted as ϑ
′′
ik. If the amount of non-defective

returned product k from all customers are more than outlets demand of product
k, we set ϑ

′′
ik = d

′′
ik ∀i ∈ O,∀k ∈ S. Otherwise, we apply a sorting criteria on the

outlets and then iteratively assign ϑ
′′
ik according to this sorting until the amount

of available units is reached. One of the following sorting criteria is randomly
selected to decide the amount of ϑ

′′
ik:

– outlet with the highest demand of product k
– outlets that have demand of product k by splitting the same amount of non-

defective returned product k from all customers to those outlets.
– outlet with demand of product k that is located nearest to the cross-dock and

any other outlets
– outlet with the highest product types demand
– outlet with the highest cumulative demand of all product types
– outlet with the lowest unique returned product types
– outlet with the lowest cumulative returned products of all product types

172 A. Gunawan et al.

Hence, outlet i will only be visited (m
′′
i = 1) if there is any delivered and/or

returned products from outlet i, and m
′′
i = 0 otherwise. Finally, supplier k is

visited (m
′′′
k = 1) if there is any returned products to supplier k, as formulated

in Eq. (1).

m
′′′
k =

{
1, if

∑
i∈C r

′
ik − ∑

i∈O ϑ
′′
ik +

∑
i∈O r

′′
ik > 0

0, if
∑

i∈C r
′
ik − ∑

i∈O ϑ
′′
ik +

∑
i∈O r

′′
ik = 0

∀k ∈ S (1)

3.2 Phase 2: Adaptive Large Neighborhood Search (ALNS)

A two-dimensional solution representation with each row v representing the route
sequence performed by a particular vehicle, v ∈ |V | is designed. Hence, a solution
has a fixed number of |V | rows and a different number of columns in each row
v, which depends on the number of visited nodes by vehicle v. This solution
representation is illustrated in Fig. 2. For example, starting from the cross-dock
(node 0), vehicle 1 visits suppliers 3, 2, 1, and 4 respectively, and returns back to
node 0. The amount of non-defective returned products from customers can only
fulfil demands of outlets 2 and 4, therefore only outlets 2 and 4 are visited by
vehicle 2. Due to the vehicle capacity and time horizon constraints, one vehicle
alone is unable to visit all customers. Vehicle 3 visits customers 3, 1, and 4, while
vehicle 4 visits customers 2, 6, and 5. In this example, in total four vehicles are
required to complete the entire process.

Fig. 2. Example of solution representation with |S| = 4, |O| = 5, |C| = 6, |V | = 5

3.2.1 Initial Solution
Based on the selected nodes from the first phase (Sect. 3.1), we perform the
following five steps to construct an initial solution:

STEP 1: Node allocation. We allocate nodes to vehicles by solving the fol-
lowing mathematical model.

– a
′v
i is a binary decision variable with value 1 indicating node i is visited by

vehicle v in the customer pickup process; 0 otherwise (i ∈ C, v ∈ V)
– a

′′v
i is a binary decision variable with value 1 indicating node i is visited by

vehicle v in the outlet delivery and pickup process; 0 otherwise (i ∈ O, v ∈ V)

Vehicle Routing Problem with Reverse Cross-Docking: An ALNS Algorithm 173

– a
′′′v
i is a binary decision variable with value 1 indicating node i is visited by

vehicle v in the supplier delivery process; 0 otherwise (i ∈ S, v ∈ V)
– x

′v is a binary decision variable with value 1 indicating vehicle v in used in
customer pickup process; 0 otherwise (v ∈ V)

– x
′′v is a binary decision variable with value 1 indicating vehicle v in used in

outlet delivery and pickup process; 0 otherwise (v ∈ V)
– x

′′′v is a binary decision variable with value 1 indicating vehicle v in used in
supplier delivery process; 0 otherwise (v ∈ V)

The objective function (2) minimizes the number of vehicles used.

Min
∑
v∈V

x
′v + x

′′v + x
′′′v (2)

All mandatory visited nodes are visited by exactly one vehicle, as addressed in
constraints (3) to (5). ∑

v∈V

a
′v
i = m

′
i ∀i ∈ C (3)

∑
v∈V

a
′′v
i = m

′′
i ∀i ∈ O (4)

∑
v∈V

a
′′′v
i = m

′′′
i ∀i ∈ S (5)

The vehicle capacity constraints are presented by constraints (6) to (8). Con-
straint (6) ensures that the amount of picked-up products from any customers
assigned to vehicle v does not exceed the vehicle capacity. Constraint (7) ensures
that the amount of max(picked-up, delivered) products from/to any outlets
assigned to vehicle v does not exceed the vehicle capacity. Constraint (8) ensures
that the amount of delivered products to any suppliers assigned to vehicle v does
not exceed the vehicle capacity. The amount of delivered products equals the sum
of (the difference between customers returned products and amount of products
delivered to outlets) and (outlets returned products).∑

i∈C

∑
k∈S

a
′v
i r

′
ik ≤ q ∀v ∈ V (6)

∑
i∈O

a
′′v
i × max

(∑
k∈S

ϑ
′′
ik,

∑
k∈S

r
′′
ik

)
≤ q ∀v ∈ V (7)

∑
k∈S

a
′′′v
k

(∑
i∈C

r
′
ik −

∑
i∈O

ϑ
′′
ik +

∑
i∈O

r
′′
ik

)
≤ q ∀v ∈ V (8)

Constraints (9) to (11) keep track of the used vehicle in each process and con-
straint (12) ensures that each vehicle is being used in at most one of the three
processes.

|C|x′v ≥
∑
i∈C

a
′v
i ∀v ∈ V (9)

174 A. Gunawan et al.

|O|x′′v ≥
∑
i∈O

a
′′v
i ∀v ∈ V (10)

|S|x′′′v ≥
∑
i∈S

a
′′′v
i ∀v ∈ V (11)

x
′v + x

′′v + x
′′′v ≤ 1 ∀v ∈ V (12)

STEP 2: Route sequence construction. We implemented a nearest neighbor
heuristic to construct a route sequence in each vehicle.
STEP 3: Time feasibility checking. It is done by recording the maximum
transportation time in each process, denoted as Tcpmax, Todpmax, and Tsdmax.
If the total of Tcpmax, Todpmax, and Tsdmax does not exceed time horizon, we
continue to STEP 5. Otherwise, go to STEP 4.
STEP 4: Repair time infeasibility. We remove a node from a vehicle that has
the highest total transportation time, and relocate this node to another vehicle
as long as it does not violate the vehicle capacity and time horizon constraints.
Otherwise, this node will be relocated to a new vehicle. This step is repeated
until time horizon constraint is satisfied.
STEP 5: Objective function value calculation. The objective function is
calculated by adding up the total of transportation and operational costs.

3.2.2 Algorithm
ALNS employs destroy and repair operators that aims to remove π nodes
from a solution and then to reinsert them back in a more profitable position,
such that a new solution is observed. The performance of each operator is then
evaluated and is given a higher score if it generates a better solution. This score
later becomes the base for calculating its weight, which adjusts its probability to
be selected in the following iterations. When a combination of destroy-repair
operators is able to generate a better solution, its score is increased and also
its weight and probability. Additionally, in order to escape from local optima,
we incorporate simulated annealing (SA) acceptance criteria by giving chance to
accept worse solution during the search process.

Let us define R = {Rr|r = 1, 2, . . . , |R|} and I = {Ii|i = 1, 2, . . . , |I|} as
the set of destroy and repair operators respectively (see Sect. 3.2.3). Every
time destroy and repair operators generate a new solution, we adjust its
score using Eq. (13), where δ1 > δ2 > δ3 [13]. In our implementation, we use
δ1 = 0.5, δ2 = 0.33, δ3 = 0.17.

sj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sj + δ1, if j is selected and the new solution is
the best found solution so far

sj + δ2, if j is selected and the new solution
improves the current solution

sj + δ3, if j is selected and the new solution
does not improve the current solution,
but it is accepted

∀j ∈ R ∪ I (13)

Vehicle Routing Problem with Reverse Cross-Docking: An ALNS Algorithm 175

After ηALNS iterations, we calculate each operators weight by following Eq. (14).
Subsequently, operators probability are adjusted by following Eq. (15).

wj =

{
(1 − γ)wj + γ

sj

χj
, if χj > 0

(1 − γ)wj , if χj = 0
∀j ∈ R ∪ I (14)

pj =

{ wj∑
k∈R wk

∀j ∈ R
wj∑

k∈I wk
∀j ∈ I

(15)

The pseudocode is presented in Algorithm 1. ALNS starts by setting the
current solution (Sol0), the best solution so far (Sol∗), and the starting solution
in each iteration (Sol′) equals to InitialSolution, which is constructed based
on Sect. 3.2.1 (line 1). The current temperature Temp is set as initial temperature
(T0) (line 2) which will be reduced by α after ηSA (line 32). FoundBestSol
is set as False in the beginning (line 4) and every ηSA iterations (line 31). Its
value will only be True if a new better than Sol∗ solution is found (lines 17–19).
Subsequently, when it is True, then NoImpr is reset as 0 (lines 28–30), otherwise
it is increased by one (lines 25–27). At the beginning, all operators are initialized
by the same score, weight, and probability (line 5).

In every iteration, π nodes are removed from Sol0 (lines 8–11) by a Destroy
operator. Those π nodes are then reinserted to Sol0 by a Repair operator (lines
12–15). A new solution is directly accepted if improves Sol∗ or Sol′. Other-

wise, it will only be accepted by a e
−(TC(Sol0)−TC(Sol′))

Temp chance (line 16), where
TC(x) represents the total cost of solution x. Subsequently, we update operators
score, weight, and probability. The ALNS terminates when there is no solution
improvements after θ successive temperature reductions.

3.2.3 Operators
We list down the operators used in the proposed algorithm:

Random removal (R1): randomly remove a node from Sol0.
Worst removal (R2): remove a node that has the xth highest removal gain (i.e.
the difference in objective function values between including and excluding this
node). x is decided by following Eq. (16), where y1 ∼ U(0, 1), p = 3, and ξ is the
number of candidate nodes which is formally formulated in Eq. (17), case 1.

x = �yp
1 × ξ	 (16)

ξ =

⎧⎪⎨
⎪⎩

|C| + |S| − RemovedNodes, for R2

|C| + |S| − RemovedNodes − 2, for R4, R5

RemovedNodes, for I9

(17)

Route removal (R3): randomly select a vehicle and remove z visited nodes.
z = min(π, β), where β is the number of nodes visited by that vehicle.

176 A. Gunawan et al.

Algorithm 1: ALNS pseudocode
1 Sol0, Sol∗, Sol′ ← InitialSolution
2 Temp ← T0
3 NoImpr, Iter ← 0
4 FoundBestSol ← False
5 Set sj and wj such that pj is equally likely
6 while NoImpr < θ do
7 RemovedNodes ← 0
8 while RemovedNodes < π do
9 Sol0 ← Destroy (Rr)

10 UpdateRemovedNodes(RemovedNodes, Rr)

11 end
12 while RemovedNodes > 0 do
13 Sol0 ← Repair (Ii)
14 UpdateRemovedNodes(RemovedNodes, Ii)

15 end

16 AcceptanceCriteria(Sol0, Sol∗, Sol′, Temp)
17 if Sol0 is better than Sol∗ then
18 FoundBestSol ← True
19 end
20 Update sj

21 if Iter mod ηALNS = 0 then
22 Update wj and pj

23 end
24 if Iter mod ηSA = 0 then
25 if FoundBestSol = False then
26 NoImpr ← NoImpr + 1
27 end
28 else
29 NoImpr ← 0
30 end
31 FoundBestSol ← False
32 Temp ← Temp × α

33 end
34 Iter ← Iter + 1

35 end
36 Return Sol∗

Node pair removal (R4): remove a pair of nodes that has the xth highest
transportation cost. x is determined by Eq. (16) while ξ follows Eq. (17) case 2.
The idea is to remove two adjacent nodes with a high transportation cost from
the Sol0, such that when repair reinserts them back to Sol0, they can be located
in better, probably separated, positions.

Worst pair removal (R5): similar to R2, but R5 chooses a pair of nodes
instead of only one node. The underlying difference between R4 and R5 is that
R4 only focuses in the transportation cost between two nodes, while R5 considers
the overall costs. x is determined by Eq. (16) while ξ is determined by Eq. (17)
case 2.

Shaw removal (R6): remove a node that is highly related with other removed
nodes in a predefined way, so as it is easier to replace the positions of one another
during the repair process. Let us define node i as the last removed node and node
j as the next candidate to be removed. The relatedness value of node j (ϕj) to
node i is calculated by Eq. (18), where φ1 to φ3 are weights given to each of the
related components in terms of travel distance, travel time, and node position

Vehicle Routing Problem with Reverse Cross-Docking: An ALNS Algorithm 177

(lij = −1 if nodes i and j are in the same vehicle; 1 otherwise). This means that
the lower the ϕj is, the more related node j to i is. Therefore, node j with lowest
ϕj is then selected and removed from Sol0. We implement φ1 = φ2 = φ3 = 1

3 .

ϕj =

⎧⎪⎨
⎪⎩

φ1e
′
ij + φ2t

′
ij + φ3lij , if i ∈ C

φ1e
′′
ij + φ2t

′′
ij + φ3lij , if i ∈ O

φ1e
′′′
ij + φ2t

′′′
ij + φ3lij , if i ∈ S

(18)

Greedy insertion (I1): insert a node to a position with the lowest insertion
cost (i.e. the difference in objective function values between after and before
inserting a node to a particular position).

k-regret insertion (I2, I3, I4): a regret value is defined as the difference in
objective function values when node j is inserted in the best position (denoted
as TC1(j)) and in the k-best position (denoted as TCk(j)). A node with the
largest regret value (see Eq. (19)) is then inserted in its best position.

argmax
j∈RemovedNodes

{
k∑

i=2

(TCi(j) − TC1(j))

}
(19)

Greedy insertion with noise function (I5): an extension of I1 by introducing
a noise function to the objective function value (20) when selecting the best
position of a node, where e is the maximum transportation cost between nodes
(problem-dependent), μ is a noise parameter (set to 0.1 in our case), and y2 ∼
U(−1, 1).

TCnew = TC + e × μ × y2 (20)

k-regret insertion with noise function (I6, I7, I8): an extension of I2, I3,
and I4 by applying a noise function to the objective function value (20) when
calculating the regret value.

GRASP insertion (I9): similar to I1, but instead of choosing a node with the
lowest insertion cost, I9 chooses a node that has the xth lowest insertion cost. x
is determined by Eq. (16) while ξ is determined by Eq. (17) case 3.

4 Computational Results

Our proposed ALNS is tested on the available benchmark VRP-RCD instances
introduced in [20]. The instances are available in https://www.mech.kuleuven.
be/en/cib/op/opmainpage#section-50. The benchmark VRP-RCD instances
consists of two sets, the first set of instances with 15 nodes and the second
set of instances with 40 nodes, each having 30 problems. Parameter values of
these instances are summarized in Table 1. OFAT (One-factor-at-a-time) method
is used to tune parameters by solving randomly selected instances. The best val-
ues for parameters are summarized in Table 2. The following experiments are
then conducted based on this setting.

https://www.mech.kuleuven.be/en/cib/op/opmainpage#section-50
https://www.mech.kuleuven.be/en/cib/op/opmainpage#section-50

178 A. Gunawan et al.

Table 1. VRP-RCD parameter values

Set 1 Set 2

|S| 4 7

|C| 6 23

|O| 5 10

|V | 10 20

q 70 150

c 1 1

H 1000 1000

Tmax 16 h 16 h

e
′
ij , e

′′
ij , e

′′′
ij U∼(48,560) U∼(48,480)

t
′
ij , t

′′
ij , t

′′′
ij U∼(20,200) U∼(20,100)

∑
k∈S d

′′
ik U∼(5,50) U∼(5,20)

∑
k∈S r

′
ik,

∑
k∈S r

′′
ik U∼(5,50) U∼(5,20)

pk U∼(0,0.05) U∼(0,0.05)

Table 2. ALNS parameter values

Parameter Value

T0 5, 10, 20

α 0.85, 0.9, 0.95

θ 10, 50, 100

γ 0.7, 0.8, 0.9

ηALNS 100, 200, 300

ηSA (|S| + |C| + |O|) × 1, (|S| + |C| + |O|) × 2, (|S| + |C| + |O|) × 3

The proposed ALNS is coded in C++ and run on a computer with Intel Core
i7-8700 CPU @ 3.20 GHz processor, 32.0 GB RAM. We perform 5 replications for
each instance and the best total cost (TC) obtained is recorded. Subsequently,
the average and total computational time of 5 replications are also presented.
Tables 3 and 4 summarize results on Sets 1 and 2 instances, respectively. Since no
state-of-the-art algorithms have been introduced to solve this problem, we com-
pare our TC results against those obtained by CPLEX by calculating Gap (%)
using the following Eq. (21). We also remark the lowest TC in each problem
instance by bold.

Gap (%) =
(TCALNS − TCCPLEX)

TCCPLEX
× 100 (21)

Vehicle Routing Problem with Reverse Cross-Docking: An ALNS Algorithm 179

Table 3. Results on Set 1 instances

Instance CPLEX ALNS

TC Time (s) TC Avg. time
(s)

Total time (s) Gap (%)

1 10982 81.98 10982 0.17 0.87 0.00

2 8304 21.18 8304 0.12 0.62 0.00

3 10076 50.54 10304 0.11 0.55 2.26

4 10753 38.52 10753 0.13 0.66 0.00

5 8584 20.97 8584 0.11 0.54 0.00

6 10965 45.93 10965 0.11 0.54 0.00

7 9703 45.68 9855 0.12 0.60 1.57

8 7630 5.04 8226 0.11 0.53 7.81

9 9519 13.63 9519 0.11 0.53 0.00

10 9486 24.41 9486 0.11 0.56 0.00

11 10581 74.32 10581 0.11 0.56 0.00

12 11381 24.01 11381 0.12 0.60 0.00

13 9432 7.69 9432 0.13 0.63 0.00

14 9428 23.28 9705 0.10 0.49 2.94

15 8993 17.43 8993 0.09 0.47 0.00

16 9591 33.46 9591 0.11 0.53 0.00

17 10049 5874.90 10049 0.09 0.43 0.00

18 9375 9372.26 9375 0.09 0.47 0.00

19 8012 23.42 8012 0.09 0.47 0.00

20 10881 18.83 10881 0.10 0.49 0.00

21 8235 22.67 8235 0.14 0.68 0.00

22 8875 13.25 8875 0.10 0.52 0.00

23 8728 866.68 9145 0.09 0.46 4.78

24 11719 28.07 11719 0.10 0.49 0.00

25 10686 21.81 10686 0.09 0.44 0.00

26 9042 60.50 9042 0.11 0.53 0.00

27 10545 23.81 10545 0.10 0.50 0.00

28 10636 38.19 10636 0.10 0.49 0.00

29 9130 64.07 9130 0.13 0.65 0.00

30 9700 30.11 10111 0.09 0.46 4.24

Avg. 566.22 0.11 0.55 0.79

Results on the first set of instances show that our proposed ALNS is able
to get the optimal solutions for 24 out of 30 problems with significantly shorter
computational times compared to CPLEX (around 0.1% of CPLEX computa-
tional time). For the second set of instances, ALNS provides better solutions than

180 A. Gunawan et al.

Table 4. Results on Set 2 instances

Instance CPLEX ALNS

TC Time (s) TC Avg. time (s) Total time (s) Gap (%)

1 30988 7200 12239 1.69 8.44 −60.50

2 19270 7200 12522 1.38 6.88 −35.02

3 14062 7200 11366 1.27 6.37 −19.17

4 28668 7200 11841 1.43 7.16 −58.70

5 13945 7200 12011 1.40 6.99 −13.87

6 11837 7200 10439 1.24 6.20 −11.81

7 27184 7200 12415 1.35 6.76 −54.33

8 16111 7200 12430 1.30 6.49 −22.85

9 31137 7200 13020 2.28 11.41 −58.18

10 16107 7200 12168 1.00 5.02 −24.46

11 17817 7200 11935 1.17 5.83 −33.01

12 23026 7200 12251 1.31 6.54 −46.79

13 24684 7200 12114 1.36 6.82 −50.92

14 20889 7200 12073 2.16 10.79 −42.20

15 16497 7200 12246 1.76 8.79 −25.77

16 22017 7200 11706 1.00 4.98 −46.83

17 16256 7200 13108 1.10 5.49 −19.37

18 29582 7200 12465 1.48 7.38 −57.86

19 17653 7200 12008 1.16 5.80 −31.98

20 27966 7200 12624 0.97 4.83 −54.86

21 25482 7200 12334 0.90 4.52 −51.60

22 15263 7200 12510 1.08 5.40 −18.04

23 22747 7200 11753 1.36 6.80 −48.33

24 14834 7200 11942 2.52 12.62 −19.50

25 26117 7200 12762 1.00 5.00 −51.14

26 28020 7200 12974 1.23 6.17 −53.70

27 26497 7200 12786 1.16 5.80 −51.75

28 29305 7200 13228 1.36 6.79 −54.86

29 21786 7200 12281 1.26 6.30 −43.63

30 17600 7200 12332 1.04 5.19 −29.93

Avg. 7200 1.36 6.78 −38.81

CPLEX for all instances, with an average gap of 38.81% within again, only 0.1%
of CPLEX’s computational times. From the practical perspective, ALNS out-
performs CPLEX since it only needs a few seconds. For larger instances, ALNS
is expected to solve them within reasonable computational times. However, it
may be possible that ALNS could not solve all larger instances to optimality.

Vehicle Routing Problem with Reverse Cross-Docking: An ALNS Algorithm 181

5 Conclusion

This paper studies the reverse flow of the vehicle routing problem and cross-
docking, namely vehicle routing problem with reverse cross-docking (VRP-
RCD). The VRP-RCD considers a four level supply chain network involving sup-
pliers, cross-dock, customers, and outlets. There are three processes that must be
conveyed in the VRP-RCD, which are the customer pickup process, outlet deliv-
ery and pickup process, and supplier delivery process. We designed a two-phase
heuristic that employs an adaptive large neighborhood search (ALNS) to solve
the VRP-RCD. ALNS uses various destroy and repair operators to generate
neighborhood solutions. Furthermore, a simulated annealing (SA) framework is
embedded to discover a vast search space during the search process.

We tested our proposed ALNS by solving the available benchmark VRP-RCD
instances. Experimental results on the first set of instances show that our pro-
posed ALNS is able to obtain optimal solutions for 24 out of 30 problem instances
with significantly shorter computational time. When solving the second set of
instances, ALNS is able to obtain better solution for all problem instances with
an average improvement of 38.81% and only need 0.1% of CPLEX’s computa-
tional times. Generating and solving larger instances, e.g. with 100 or 200 nodes,
would be interesting for future research. It is noted that selecting which outlets to
visit is fixed and it is not a part of the routing problem in our problem. However,
this could be integrated in the future, but then the problem becomes much more
complicated if selecting the outlets is considered as part of the routing prob-
lem. Other possible extensions, such as introducing exact algorithms, imposing
penalties for unvisited nodes and partial deliveries, considering a mixture of
direct-shipping and cross-docking, asynchronous arrival scenario, multi-period
settings, can be further studied. Introducing new and larger instances can be
explored as well in order to represent real-sized problems faced by industries.

Acknowledgment. This research is supported by the Singapore Ministry of Educa-
tion (MOE) Academic Research Fund (AcRF) Tier 1 grant.

References

1. de Brito, M.P., Dekker, R.: A framework for reverse logistics. In: Dekker, R., Fleis-
chmann, M., Inderfurth, K., Van Wassenhove, L.N. (eds.) Reverse Logistics, pp.
3–27. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24803-3 1

2. Demir, E., Bektaş, T., Laporte, G.: An adaptive large neighborhood search heuris-
tic for the pollution-routing problem. Eur. J. Oper. Res. 223(2), 346–359 (2012)

3. Grangier, P., Gendreau, M., Lehuédé, F., Rousseau, L.M.: A matheuristic based
on large neighborhood search for the vehicle routing problem with cross-docking.
Comput. Oper. Res. 84, 116–126 (2017)

4. Gunawan, A., Widjaja, A.T., Vansteenwegen, P., Yu, V.F.: Adaptive large neigh-
borhood search for vehicle routing problem with cross-docking. In: Proceedings of
the IEEE World Congress on Computational Intelligence (WCCI) (2020, accepted
for publication)

https://doi.org/10.1007/978-3-540-24803-3_1

182 A. Gunawan et al.

5. Gunawan, A., Widjaja, A.T., Vansteenwegen, P., Yu, V.F.: A matheuristic algo-
rithm for solving the vehicle routing problem with cross-docking. In: Kotsireas,
I.S., Pardalos, P.M. (eds.) LION 2020. LNCS, vol. 12096, pp. 9–15. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53552-0 2

6. Hasani-Goodarzi, A., Tavakkoli-Moghaddam, R.: Capacitated vehicle routing prob-
lem for multi-product cross-docking with split deliveries and pickups. Proc. - Soc.
Behav. Sci. 62, 1360–1365 (2011)

7. Hemmelmayr, V.C., Cordeau, J.F., Crainic, T.G.: An adaptive large neighborhood
search heuristic for two-echelon vehicle routing problems arising in city logistics.
Comput. Oper. Res. 39(12), 3215–3228 (2012)

8. Jayaraman, V., Luo, Y.: Creating competitive advantages through new value cre-
ation: a reverse logistics perspective. Acad. Manag. Perspect. 21(2), 56–73 (2007)

9. Kaboudani, Y., Ghodsypour, S.H., Kia, H., Shahmardan, A.: Vehicle routing and
scheduling in cross docks with forward and reverse logistics. Oper. Res. Int. J 20,
1589–1622 (2018). https://doi.org/10.1007/s12351-018-0396-z

10. Lambert, S., Riopel, D., Abdul-Kader, W.: A reverse logistics decisions conceptual
framework. Comput. Ind. Eng. 61(3), 561–581 (2011)

11. Lee, Y.H., Jung, J.W., Lee, K.M.: Vehicle routing scheduling for cross-docking in
the supply chain. Comput. Ind. Eng. 51(2), 247–256 (2006)

12. Liao, C.J., Lin, Y., Shih, S.C.: Vehicle routing with cross-docking in the supply
chain. Expert Syst. Appl. 37(10), 6868–6873 (2010)

13. Lutz, R.: Adaptive large neighborhood search. Bachelor thesis, Universität Ulm
(2015)

14. Nikolopoulou, A.I., Repoussis, P.P., Tarantilis, C.D., Zachariadis, E.E.: Moving
products between location pairs: cross-docking versus direct-shipping. Eur. J. Oper.
Res. 256(3), 803–819 (2017)

15. Rezaei, S., Kheirkhah, A.: Applying forward and reverse cross-docking in a multi-
product integrated supply chain network. Prod. Eng. 11(4–5), 495–509 (2017).
https://doi.org/10.1007/s11740-017-0743-6

16. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

17. Sacramento, D., Pisinger, D., Ropke, S.: An adaptive large neighborhood search
metaheuristic for the vehicle routing problem with drones. Transp. Res. Part C:
Emerg. Technol. 102, 289–315 (2019)

18. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

19. Wen, M., Larsen, J., Clausen, J., Cordeau, J.F., Laporte, G.: Vehicle routing with
cross-docking. J. Oper. Res. Soc. 60(12), 1708–1718 (2009). https://doi.org/10.
1057/jors.2008.108

20. Widjaja, A.T., Gunawan, A., Jodiawan, P., Yu, V.F.: Incorporating a reverse logis-
tics scheme in a vehicle routing problem with cross-docking network: a modelling
approach. In: 2020 7th International Conference on Industrial Engineering and
Applications, pp. 854–858. IEEE (2020)

21. Yu, V.F., Jewpanya, P., Redi, A.P.: Open vehicle routing problem with cross-
docking. Comput. Ind. Eng. 94, 6–17 (2016)

22. Zuluaga, J.P.S., Thiell, M., Perales, R.C.: Reverse cross-docking. Omega 66, 48–57
(2017)

https://doi.org/10.1007/978-3-030-53552-0_2
https://doi.org/10.1007/s12351-018-0396-z
https://doi.org/10.1007/s11740-017-0743-6
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1057/jors.2008.108
https://doi.org/10.1057/jors.2008.108

	Vehicle Routing Problem with Reverse Cross-Docking: An Adaptive Large Neighborhood Search Algorithm
	1 Introduction
	2 Problem Description
	3 Proposed Algorithm
	3.1 Phase 1: Node Selection
	3.2 Phase 2: Adaptive Large Neighborhood Search (ALNS)

	4 Computational Results
	5 Conclusion
	References

