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Abstract. The Inventory Routing Problem (IRP) is an integration
of two operational problems: inventory management and routing. The
Time-Dependent Travel-Time Constrained (TD-TC-IRP) is a new pro-
posed variant of the IRP where the travelling time between two locations
depend on the time of departure throughout the day and the length of
a trip is time-constrained. The real-world discontinuous time-dependent
data that we use will be modelled by a piece-wise linear continuous func-
tion. A mathematical formulation for the TD-TC-IRP is proposed, to
emulate such transformation. Numerical experiments are conducted, to
validate the mathematical formulation, on a new benchmark combining
benchmarks from the IRP and time-dependent routing problems litera-
ture.

Keywords: Inventory routing problem · Time-dependent routing ·
Travel-time constrained routing · Piece-wise travelling time function

1 Introduction

Vendor Managed Inventory (VMI) is a logistic system where the inventories of
the clients are controlled by the supplier. The supplier is thus able to glob-
ally optimise the replenishment plan while the client does not need to dedicate
specific resources for inventory management [1]. In this context, the Inventory
Routing Problem (IRP) emerges. It integrates inventory management and rout-
ing problems in order to decide, over a time horizon, when, how much and
following which route the clients are replenished.

The IRP has attracted a lot of scholars’ interests during the last decades. In
order for the IRP to be representative of real-life situations, new variants are
proposed in the literature, such as the IRP with time-windows, transshipment,
travel-time constrained or the parameters are considered as uncertain, such as
the clients’ demand or the travelling time. Other scholars focused on proposing
new efficient solving approaches due to the NP-hardness of the problem [2]. A
common point of all these works is that the travelling time between locations
is always considered constant. However, in urban logistics and last mile distri-
bution, the time it takes to travel from one location to another can vary a lot
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during the day due to traffic congestion. Thus, we identify the need of considering
time-dependent data for the routing component.

Time-dependent routing problems consider that the travelling time from one
location does not depend only on the destination but on the time of departure as
well. The literature of time-dependent routing problems, such as Travelling Sales-
man Problem (TSP), Vehicle Routing Problem (VRP) or Arc Routing Problem
(ARP), is quite rich [3]. However, from the literature and to the best of our
knowledge, it has never been considered for the IRP although the inventory
aspect can have an important impact on the structure of time-dependent IRP
solutions.

In this article, we present a new variant of the IRP, the Time-Dependent
Travel-Time Constrained IRP (TD-TC-IRP), where the travelling times are
time-dependent and the total duration of the trips are constrained. The real-
world discontinuous time-dependent data that we use will be modelled by a
piece-wise linear continuous function. The mathematical formulation for the TD-
TC-IRP that is proposed emulates this transformation. The numerical experi-
ments are conducted on a new benchmark that combines two benchmarks of
the IRP and TD-TSP literature, to investigate the advantages of considering
time-dependent travelling time functions over basic ones.

The article is organised as follows: Sect. 2 presents a brief literature review of
the IRP and time-dependent routing problems. Section 3 presents mathematical
formulations of the IRP and TD-TC-IRP and discusses the differences between
them; a discussion is proposed on the piece-wise continuity of the time-dependent
function. Section 4 shows and discusses the results of the numerical experiments
while Sect. 5 concludes and gives perspectives for future research.

2 Literature Review

The IRP is set in a network where a supplier delivers goods to its clients, over
a time horizon. The objective of the IRP is to decide for each period, whether
a client is served, with which quantity, and a route for the vehicles, while min-
imising the total cost (transportation and inventory costs). However, since the
actors and parameters of the IRP are multiple, this definition is hardly represen-
tative of all real-life situations. Therefore, many variants of the IRP exist: most
consider one vehicle only. Furthermore, the IRP is known to be an NP-hard
problem [2]. Consequently, scholars dedicated their work to find the most suit-
able solution approaches for these variants. In the following, a collection of the
most common variants of the IRP are presented. For a more detailed literature
review, interested readers can refer to [4–7]

IRP with time-windows: Due to constraints related to urban deliveries such
as rush hours or availability of parking slots, and to scheduling problems such
as workers availability, the clients may require to be visited in a certain time
interval. The IRP with time-windows is proposed in this context. A review of
the IRP with time-windows literature is presented in [8].
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IRP with transshipment: In order to design a network that is efficient in an
economical sense, but also ecological, reducing the number of vehicles used
to replenish the clients as well as reducing the total travelled distance is
necessary. [9] introduced the IRP with transshipment in this context, where
the replenishment is not only done from the supplier to a client but can also
be done from a client to another client.

Cyclic IRP: The irregularities brought by scheduling on a large time horizon
inspired the cyclic IRP. The scheduling is done in a smaller time interval and
is reproduced over and over. A work in this context is presented in [10].

Multi-echelon IRP: For a globally optimised network, the IRP can be studied
in a multi-echelon environment where multiple layers of the supply chain are
included: a supplier, retailers and clients. [11] tackled this problem recently.

Travel-Time Constrained IRP Due to legal limitations of the work hours
per day, or the perishability of the products, the travel-time constrained IRP
emerges. [12] are the last to tackle this problem.

All the variants presented above consider that the travelling time from one
location to another is constant throughout the day. Since traffic volatility can be
a concern in real-life instances, a time-dependent variant is needed to account
for it. Given the fact that time-dependent IRP literature is nonexistent, we turn
to pure routing problems to better understand how this parameter is included.

The objective of time-dependent routing problems is to design the best routes
in a graph where the duration or cost of travelling an arc can vary according
to the time it is travelled. Interest over this area has spiked during the last
decades. In [3], the authors propose an extensive review of time-dependent rout-
ing problems in the literature. They show that the time-dependent aspect is
only considered for pure transportation problems such as: Time-Dependent TSP
(TD-TSP), Time-Dependent VRP (TD-VRP) and Time-Dependent ARP (TD-
ARP). They also show that the time-dependent problems are hard to solve in
comparison to their basic counterpart, thus the need for new efficient approaches
to solve them. The study concludes by stating that although the literature for
time-dependent routing problem is consequent, it is relatively recent and there
is still room for improvements. Perspectives for future research are given. In the
following, we cite a collection of works published after this review by [3].

In [13], the authors model the TD-TSP as a constraint programming (CP)
problem and propose a new global constraint called the “Time-Dependent no-
Overlap” that extends the no-Overlap constraint. The results show that includ-
ing this new constraint outperforms the CP models of the literature. In [14],
the TSP with time-dependent service times is presented. In this version, the
service time depends on the time a node is visited. The authors of [15] tackle
the problem of minimising the expected emissions of CO2 for a time-dependent
vehicle routing problem. The emission function depends in this case not only on
the travelling time between two nodes but on the load of the vehicle as well.
The results show that the improvement on emissions are proportionally larger
than the deterioration of the tour length. In [16], a new ILP formulation for
the TD-TSP is presented. Two tailored branch-and-cut algorithms are proposed
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with pre-processing rules, initial heuristics and valid inequalities. The proposed
approaches are able to prove the optimality of more than 300 new instances of
the literature and improve the number of nodes explored and the computational
times. The authors of [17] propose a partially time-expanded network formula-
tion that, instead of generating a time-expanded network in a static, a priori,
fashion, does so in a dynamic and iterative manner. They propose an algorithm
based on the dynamic discretisation discovery framework. The results show that
the algorithm outperforms those of the literature and that it is robust with
respect to all instance parameters, particularly the degree of travel time vari-
ability. In [18], the authors manage real-time perturbations on time-dependent
functions in the context of a vehicle routing problem with time-windows. When
perturbations occur and the delivery route is no longer feasible, due to time-
windows violations or the violation of the horizon length, the time-dependent
functions are updated and a re-optimisation with new-objectives is conducted.
Most recently, [19] propose a new real-life benchmark for routing problems based
on the traffic conditions of the city of Lyon, using a dynamic microscopic simu-
lator of traffic flow. The purpose of their study is to show the impact of space
granularity, i.e. the number of sensors deployed to monitor the traffic flow, and
time granularity, i.e. the number and length of time steps, on the quality of the
solutions for pick-up and delivery optimal tours. They conclude that when there
is a full space coverage, exploiting time-dependent travelling time functions leads
to better tours and that the smaller the time step, the better the tour gets.

The literature of the time-dependent routing problems provides benchmarks
and ideas on how to model and solve efficiently time-dependent problems that
are exploited throughout this paper.

3 IRP vs. Time-Dependent IRP (TD-IRP)

In this section, we discuss the difference between the IRP and the TD-IRP. A
mathematical formulation for the IRP is presented, a time-dependent travelling
time function and its properties presented and discussed and a mathematical
formulation for the TD-IRP proposed.

3.1 Mathematical Formulation of the IRP

Let G = (V,A) be a graph where vertex 0 ∈ V represents the supplier,
V ′ = V\{0} the set of clients and A a set of arcs. H = {1, 2, ..., |H|} is the
scheduling time horizon and H′ = {0} ∪ H the horizon including the period 0
which represents the initial state. p ∈ H′ represents the index of the period.
Each client i ∈ V ′ has a demand Dp

i for period p ∈ H, an initial inventory I0i
and a maximum inventory level Imax

i . The supplier has an unlimited inventory
capacity, an initial inventory I00 , Rp products available at each period p ∈ H and
a vehicle with a maximal capacity C. Keeping one item in inventory for a period
incurs a holding cost hi for each actor i ∈ V. Finally τij represents the duration
of travel through arc (i, j) ∈ A and c is the cost of one unit of time travelled.
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Variables: let xp
ij be a binary variable that equals to 1 if arc (i, j) ∈ A is travelled

in period p, 0 otherwise. yp
i a binary variable that is equal to 1 if client i ∈ V ′

is visited in period p, 0 otherwise. Ip
i ∈ R represents the inventory level of actor

i ∈ V at the end of period p ∈ H′ and qp
i ∈ R the quantity sent from the supplier

to client i ∈ V ′.

IRP

min objIRP = c × ∑

(i,j)∈A

∑

p∈H
τij × xp

ij +
∑

i∈V

∑

p∈H′
hi × Ip

i

s.t Ip
0 = Ip−1

0 − ∑

i∈V′
qpi + Rp ∀p ∈ H (1)

Ip
i = Ip−1

i + qpi − Dp
i ∀i ∈ V ′ , ∀p ∈ H (2)

Ip
i ≤ Imax

i ∀i ∈ V ′ , ∀p ∈ H (3)

qpi + Ip−1
i ≤ Imax

i ∀i ∈ V ′ , ∀p ∈ H (4)
qpi ≤ yp

i × Imax
i ∀i ∈ V ′ , ∀p ∈ H (5)

qp0 ≤ C × yp
0 ∀p ∈ H (6)∑

j∈V′
xp
i,j = yp

i ∀i ∈ V , ∀p ∈ H (7)

∑

j∈V′
xp
ji = yp

i ∀i ∈ V , ∀p ∈ H (8)

∑

(i,j)∈S

xp
ij ≤ |S | − 1 ∀S ⊆ A , t ∈ H (9)

xp
ij ∈ {0, 1} ∀(i, j) ∈ A , ∀p ∈ H (10)

yp
i ∈ {0, 1} ∀i ∈ V , ∀p ∈ H (11)

qpi ≥ 0 ∀i ∈ V ′ , ∀p ∈ H (12)
Ip
i ≥ 0 ∀i ∈ V , ∀p ∈ H (13)

The objective computes the total holding cost for each client i ∈ V and time
period p ∈ H′ and the total travelling cost for p ∈ H. Constraints (1) are flow
conservation constraints that compute the inventory level of the supplier at each
period p ∈ H from its previous inventory level, the quantity produced at p and
the quantities sent to the clients at p. Similarly, constraints (2) state the flow
conservation constraints regarding the clients. They compute the inventory level
of each client i ∈ V ′ for each period p ∈ H from its previous inventory level, the
quantity received from the supplier and its demand for period p. The inventory
capacity is enforced through several constraints: Constraints (3) state that the
inventory level of client i ∈ V ′ at any period p ∈ H must be lower than Imax

i ,
and constraints (4) state that a replenishment of this client at period p ∈ H
cannot exceed its maximal inventory level. Constraints (5) link variables yp

i with
qp
i , stating that a client i ∈ V ′ which receives a quantity at period p ∈ H, is

necessarily visited at p. Imax is used here as an upper bound for qp
i . Constraints

(6) works similarly for the supplier, stating that the quantity leaving supplier
0 at period p ∈ H is limited by the vehicle capacity C. Constraints (7) and
constraints (8) are flow conservation constraints for the routing component for
each i ∈ V ′ and respectively state that if a client is visited, one arc arrives to
it and another leaves from it. Constraints (9) eliminates sub-tours, where S
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Fig. 1. A travelling time function between two locations where M = 120

is a set of sub-tours. Finally, constraints (10) to (13) enforce integrality and
non-negativity conditions on the variables.

3.2 Time-Dependent Travelling Time Function

The main difference between the IRP and the TD-IRP resides in its routing com-
ponent. Let T be the length of a period p ∈ H. t ∈ T represent the granularity
in time for a period p ∈ H. For example, H can represent the days and T the
hours of the day. In IRP, for all t ∈ T , the travelling time between a location
i and j is constant and is equal to τij . However, for the TD-IRP, the travelling
time τ t

ij is no longer constant but depends on the time t when the vehicle leaves
from i.

Producing time-dependent functions for routing problems is a field that many
scholars took interest in. A variety of functions exist in the literature for the
Time-Dependent Travelling Salesman Problem (TD-TSP): some are artificial
while others are based on real traffic data. Rather than reviewing the time-
dependent functions in the literature, we refer to [19] who propose a compact
review of the functions available in the literature and their limitations and
present a new one based on the traffic conditions of the city of Lyon, using a
dynamic microscopic simulator of traffic flow. It consists of constant piece-wise
travelling time functions τ for each couple of locations with a number of time
steps |M| = {1, 12, 30, 60, 120} and lengths (respectively) L = {720, 60, 24, 12, 6}
minutes, where |T | = |M| × L. An example of a constant piece-wise travelling
time function between two locations with |M| = 120 time-steps and L = 6
minutes is presented in Fig. 1. In this case, the travelling time between any two
locations and for each time-step is computed as the shortest path and is given
in seconds. These travelling time functions will be used as the travelling time
functions of the TD-IRP in the remaining of the paper.

A problem is faced when handling constant piece-wise travelling time func-
tions is that the First In First Out (FIFO) property is not always satisfied.
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3.3 First in First Out (FIFO) Property

A travelling time function τ that enforces the FIFO property is such that:

t′ + τ t′
ij ≥ t + τ t

ij ∀(i, j) ∈ A,∀t, t′ ∈ T where t′ ≥ t

In other words, a travelling time function that enforces the FIFO property
ensures that if leaving i to j at t, it is impossible to arrive later than when
leaving i to j at t′ when t′ is later than t. The advantage of a travelling time
function that enforces the FIFO property is that it is more realistic than one
that does not. However, for constant piece-wise functions, the FIFO property is
not satisfied for all t ∈ T .

In the case of a piece-wise function, the length of a period T is split into |M|
discrete time steps of duration L (|T | = |M|×L). Let m ∈ M be the index of a
time-step. Each time step m ∈ M is identified in a time interval denoted by tm.
Let tm = [tmin

m ; tmin
m+1[ where tmin

m represents the beginning of interval tm. Finally,
let τm

ij be the travelling time of traversing arc (i, j) ∈ A when t ∈ tm. It is worth
noting that in a constant piece-wise function, for all t ∈ tm: τ t

ij = τm
ij .

When there is an increasing discontinuity between time-step m and its suc-
cessor m+1, i.e. τm

ij < τm+1
ij , the FIFO property is always satisfied in a piece-wise

function since for all t′ ∈ tm+1 and t ∈ tm: t′ > t and τm+1
ij > τm

ij . Therefore
t′ + τ t′

ij > t + τ t
ij . However, when a decreasing discontinuity occurs, an interval

exists in tm for which the FIFO property is not satisfied. This non-FIFO inter-
val is denoted by tFIFO

m where tFIFO
m ⊆ tm. We will demonstrate this through

an example of a constant piece-wise travelling time function, where M = 3
and L = 5, presented in Fig. 2. We also show how to define the interval tFIFO

m

and transform the travelling time function τ , into one that enforces the FIFO
property.

Following the non-FIFO travelling time function τ presented in Fig. 2, if we
leave i for j at tdeparture = 0, we arrive to j at tarrival = tdeparture+τm=1

ij = 0+2 =
2, whereas when we leave i at t′departure = 4, we arrive to j at t′arrival = t′departure+
τm=2
ij = 4+7 = 11. The FIFO property is satisfied in this case for all t ∈ tm=1 and

t′ ∈ tm=2 since it is an increasing discontinuity. Now, if we leave i at tdeparture =
4, we arrive to j at tarrival = tdeparture + τm=2

ij = 4 + 7 = 11. Whereas if we leave
i at t′departure = 8, we arrive to j at t′arrival = t′departure + τm=3

ij = 8+4 = 12. The
FIFO property is also satisfied. On the other hand, if we leave i at tdeparture = 6,
we arrive to j at tarrival = tdeparture + τm=2

ij = 6 + 7 = 13 whereas if we leave
i at t′departure = 8, we arrive to j at t′arrival = t′departure + τm=3

ij = 8 + 4 = 12.
In this case, the FIFO property is no longer satisfied since we arrive earlier by
departing later. The interval tFIFO

m for which the function no longer satisfies the
FIFO property is defined as tFIFO

m =
]
max

{
tmin
m , tmin

m+1 − (τm
ij − τm+1

ij )
}

; tmin
m+1

[
.

In the case of the example, tFIFO
2 =]max{4, 8 − (7 − 4)}; 8[=]5; 8[.

Now that the interval tFIFO
m is identified, we need to transform this function

into one that satisfies the FIFO property. Several ways to transform a non-FIFO
function into a FIFO one exist; we use the one by [20] that simulates waiting
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Fig. 2. FIFO travelling function transformation procedure

times. Indeed, if for all t ∈ tFIFO
m , instead of leaving right away we wait for the

moment tmin
m+1, the FIFO property is always satisfied. In order to do this, the

constant piece-wise function τ is transformed into a linear piece-wise function
such as

τ t
ij = min

{
τ

m=� t
L �

ij ,min
f∈F

f(t)
}

∀t ∈ T ,∀(i, j) ∈ A

F is a set of linear functions f that are added for every decreasing discontinu-
ity. The full procedure for the FIFO transformation is described in Algorithm1.

3.4 Limits of the FIFO Travelling Time Function

Let xp
ijm be a binary variable that is equal to 1 if the vehicle leaves i ∈ V to

j ∈ V at time step m ∈ M and 0 otherwise, when the travelling time function
is constant piece-wise (non-FIFO). For an instance where |V| = 5, |H| = 3,
|M| = 120 and L = 360, the number of variables xp

ijm denoted by #xp
ijm is

equal to #xp
ijm = (|V| − 1)2 × |H| × |M| = 42 × 3 × 120 = 5, 760 variables.

Algorithm 1: FIFO transformation
1: input: a constant piece-wise travelling time function τ , an arc (i, j) ∈ A and an

empty set of linear functions F
2: for m ∈ M = {1, 2, ..., |M | − 1} do

3: if τm
ij > τm+1

ij then

4: create a linear function f such that f(t) =

⎧
⎨

⎩
−t + τ

tmin
m+1

ij + tmin
m+1 ∀t < tmin

m+1

+∞ ∀t ≥ tmin
m+1

5: add f to F
6: end if
7: end for
8: return τ and F
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Since the FIFO function is a linear step-wise function, knowing the time step
in which location i is left is no longer sufficient. It is necessary to know the exact
moment, in seconds. Therefore, discretising the length of the period into seconds
is needed. Let xp

ijt be a binary variable that is equal to 1 if the vehicle leaves
i ∈ V to j ∈ V at second t ∈ T and 0 otherwise, when the travelling time function
is linear piece-wise (FIFO). The problem faced in this case is the number of the
binary variables. Indeed, for the same instance, the number of variables xp

ijt

denoted by #xp
ijt is equal to (|V| − 1)2 × |H| × |M| × L = 42 × 3 × 120 × 360 =

2, 073, 600 variables. Optimising with such a number of variables, even though
they can be reduced by cleaning the graph, is a tedious task. However, since
the objective of our IRP is to minimise the cost of travelling but not the arrival
time, and since the FIFO function simulates waiting at nodes, it is possible to
produce solutions that satisfy the FIFO property with a non-FIFO function by
allowing waiting at nodes. This prevents using a huge number of variables.

Let us consider an example presented in Fig. 3 where |V| = 3, |M| = 3 and
L = 5 and for each arc (ij), a travelling time function is presented. Let us assume
that an optimal solution is to visit locations 1, 2, 3 in the order 1 → 2 → 3 → 1
and that the vehicle must leave location 1 at the beginning of the period, i.e.
at t = 0. Therefore, we need to determine at what time the vehicle leaves 2
for 3 and at what time it leaves 3 for 1. Three cases are displayed: (i) non-
FIFO travelling time function with no waiting allowed, (ii) FIFO travelling time
function with no waiting allowed and (iii) non-FIFO travelling time function
with waiting allowed. For (i) and (iii), the solution with minimum cost is to
depart from 1 at m = 1, from 2 at m = 1 and from 3 at m = 2. For (ii) more
than one optimal solution exist: leaving 1 at t = 0, leaving 2 at t ∈ {0, 1, 2, 3, 4}
and leaving 3 at t ∈ {5, 6, 7, 8, 9}. For (i) and (ii), these solutions are infeasible
since no waiting at nodes is allowed. The optimal feasible solution is to leave 1
at m = 1, 2 at m = 1 and 3 at m = 2 for (i) and leave 1 at t = 0, 2 at t = 1
and 3 at t = 2 for (ii). The problem in this case is that although the vehicle
leaves 3 at the same moment, it arrives later in the solution of (i) than in the
solution of (ii). Therefore, the FIFO property is not satisfied. However, leaving
1 at m = 1, 2 at m = 1 and 3 at m = 2 is feasible for (iii). In this case, the
arrival time in (ii) is equal to the arrival time in (iii), which means that the
FIFO property is satisfied. We can conclude from this example that we are able
to produce solutions that enforce the FIFO property while using a non-FIFO
travelling time function by allowing waiting at nodes.

3.5 Mathematical Formulation of the TD-IRP

Let us start by defining a time-dependent path, using the definition by [21].

Definition 1. Let P =< v1, ..., vk−1, vk, vk+1, ..., vn > where vk ∈ V ′ and v1 =
vn = 0 the supplier. Let T =< m1, ...,mk−1,mk,mk+1, ..., vn−1 > be a set of
departure times. A time-dependent path [P, T ] is a combination of P and T
where T represents the departure times of vk ∈ P\{vn}.
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Fig. 3. Example 1: non-FIFO waiting not allowed vs. FIFO waiting not allowed vs.
FIFO waiting allowed

Let tvk
and svk

be, respectively, the earliest departure time and the service
time of location vk ∈ P where:

– tvk
=

⎧
⎨

⎩

0 + svk
vk = 0

max{tvk−1 + τ
� tvk−1

L �
vk−1,vk + svk

, tmin
mk

} ∀k ∈ P\{vn, v1}
– [P, T ] is infeasible ⇐⇒ ∃vk ∈ P : tvk

/∈ [tmin
mk

; tmin
mk+1[

Using this definition, infeasible paths can be detected and eliminated follow-
ing the mathematical formulation presented below.

TD-IRP

min objTD-IRP = c × ∑

(i,j)∈A

∑

p∈H

∑

m∈M
τm
ij × xp

ijm +
∑

i∈V

∑

p∈H′
hi × Ip

i

s.t. (1) to (13)∑

m∈M
xp
ijm = xp

ij ∀(i, j) ∈ A, ∀p ∈ H (14)
∑

j∈V′
xp
0j0 = yp

0 ∀p ∈ H (15)

∑

vk∈P\{vn}

∑

mk∈T

xp
vk,vk+1,mk

≤ |P | − 2 ∀P , T ∈ [P, T ], p ∈ H (16)

xp
ijm ∈ {0, 1} ∀(i, j) ∈ A, m ∈ M, ∀p ∈ H (17)
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Fig. 4. Example 2: non-FIFO waiting not allowed vs. FIFO waiting not allowed vs.
FIFO waiting allowed

The objective of the TD-IRP extends the objective of the IRP by incorpo-
rating the time dimension in the travelling cost. The model is extended with
constraints (14) to (17). Constraints (14) link the variables xp

ijm to variables xp
ij

stating that if an arc (i.j) ∈ A, it is travelled in one time step only. Constraints
(14) state that if a tour is scheduled, it starts from the supplier at the beginning
of the period. Constraints (16) eliminate the infeasible time-dependent paths
[P, T ]. Finally, constraints (17) enforce the integrality of variables xp

ijm.

3.6 Time-Travel Constrained TD-IRP

Let us take a look at another example presented in Fig. 4, which is an alternative
version of the example in Fig. 3. We reconsider the same three cases: (i) non-
FIFO travelling time function with no waiting allowed, (ii) FIFO travelling time
function with no waiting allowed and (iii) non-FIFO travelling time function
with waiting allowed.

For (i) and (ii) the optimal feasible solutions are the same: departing from
1 at t = 0, from 2 at t = 1 and from 3 at t = 2. For (iii), an optimal solution
is to depart from 1 at t = 0, from 2 at t = 1 and from 3 at t = 10. All these
solutions enforce the FIFO property. However, the solution of (iii) does not only
use waiting times to mimic the FIFO algorithm but uses it to improve the cost
of solution by waiting even more. The problem with this kind of solutions is that
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they are not satisfactory in real life. Therefore, in order to avoid such solutions, it
is necessary to constrain the total duration of travelling, hence the TD-TC-IRP.

Since in an IRP, the longest tour would visit all the clients of the network,
we compute an upper bound of the solution of a TD-TSP for V with the FIFO
travelling time function. We refer to this upper bound as T new for the value in
seconds and |Mnew| for the one in time steps. This upper bound will serve as
a limit for the length of the tour. Therefore, T = max{T , T new} and |M| =
max{|M|, |Mnew|}. Since the original length of the period T is very large in
comparison to the computed upper bounds of the TD-TSP, the TD-IRP becomes
a TD-TC-IRP. Moreover, the model becomes smaller and easier to solve due to
a smaller number of variables.

4 Results and Discussion

All experiments are conducted on a CPU Intel Xeon E5-1620 v3 @3.5 Ghz with
64 GB RAM using a branch-and-cut procedure with an execution time limit
of 3600 s. The sub-tour elimination constraints as well as the time-dependent
infeasible paths constraints are added dynamically using Gurobi 9.0.2 as a solver
with the lazyConstraints parameter and the default number threads. As stated
before, in order to make the TD-IRP a TD-TC-IRP, we compute upper bounds
for the TD-TSP. To that purpose, a simple Iterated Local Search (ILS) algorithm
is used. All algorithms are implemented with Java.

The benchmark used for these experiments is the result of a combination
between the most commonly used benchmark of the IRP presented in [2] and
the benchmark of the TD-TSP presented in [19] and discussed in Subsect. 3.2.
The combination is made by replacing the euclidean coordinates in [2] with
constant travel time functions between each 2 locations from [19]. We tested
instances with a number of clients |V| ∈ {5, 10, 15, 20, 25, 30} and a number of
periods |H| = 3. For each value of |V|, 10 different instances are available. Each
instance is combined with 6 different travelling time functions depending on the
number of time steps |M| = {1, 12, 30, 60, 120}. The case |M| = 1 is the basic
IRP.

In order to see the impact of optimising with time-dependent travelling time
functions, we solve the basic problem and the time-dependent problems. More-
over, we also solve the time-dependent problem using the partial solution given
by the solution of the basic IRP. The partial solution here means that all the
values of variables xp

ij , qp
i , yp

i and Ip
i are fixed to the one found when solving the

basic IRP, leaving variables xp
ijm to be determined.

Table 1 presents the results of these experiments. Columns z, g and CPU(s)
present, respectively, the objective value, the gap and the execution time, in aver-
age, of the basic IRP. Columns zM, gM and CPUM(s) represent, respectively,
the objective value, the gap and the execution time, in average, of the TD-IRP.
Finally, column g represents the gap between the solutions found using the basic
solutions with time-dependent functions z to the time-dependent solutions zM
where g = zM−z

zM
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Table 1. Results

|V| |M| z g% CPU(s) zM gM% CPUM(s) g%

5 1 2182.21 0.00 0.01

12 1964.21 0.00 0.00 1959.81 0.00 0.01 0.22

30 1832.41 0.00 0.00 1832.21 0.00 0.01 0.01

60 1734.61 0.00 0.00 1729.21 0.00 0.04 0.31

120 1594.21 0.00 0.00 1575.16 0.00 0.09 1.21

10 1 3628.56 0.00 0.04

12 3373.66 0.00 0.00 3344.28 0.00 0.04 0.88

30 3234.86 0.00 0.01 3189.87 0.00 0.47 1.41

60 3059.26 0.00 0.02 3024.49 0.00 0.70 1.15

120 2844.16 0.00 0.05 2790.79 0.00 2.15 1.15

15 1 4592.76 0.00 0.26

12 4292.66 0.00 0.01 4278.56 0.00 0.55 0.33

30 4152.46 0.00 0.04 4132.36 0.00 3.61 0.49

60 3943.76 0.00 0.20 3898.75 0.00 12.88 1.15

120 3666.96 0.00 0.58 3598.49 0.00 58.09 1.90

20 1 5943.82 0.00 0.22

12 5561.62 0.00 0.02 5540.02 0.00 1.33 0.39

30 5384.82 0.00 0.15 5314.13 0.00 24.70 1.33

60 5147.72 0.00 0.78 5058.48 0.00 132.04 1.76

120 4863.22 0.00 11.64 4778.23 0.94 997.54 1.78

25 1 6838.12 0.00 0.27

12 6506.12 0.00 0.05 6477.61 0.00 10.54 0.44

30 6293.72 0.00 0.45 6256.21 0.00 591.80 0.60

60 6063.92 0.00 2.67 6018.49 1.67 1689.16 0.75

120 5769.52 0.06 747.36 5760.07 5.73 3600.06 0.76

30 1 8428.37 0.00 0.52

12 8061.97 0.00 0.19 8020.23 0.82 1247.00 0.52

30 7806.37 0.00 4.53 7773.43 0.87 2183.56 0.42

60 7543.67 0.00 434.07 7522.99 3.69 3135.61 0.27

120 7184.87 0.57 1964.32 6839.65 10.08 3600.08 5.05

We can see from Table 1 that the gaps g between the basic solution when
applied to a time-dependent travelling time-function and the time-dependent
solution are fairly small, as the largest gap is 5% for |V| = 30 and |M| = 120.
The reasons can be summarised in three points:

Departure Time From the Supplier: In this paper, we consider that the depar-
ture time from the supplier is always the beginning of the period, i.e. t = 0.
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Although for the constant case this parameter does not have an impact, since
the travelling times are constant over the entire length of the period, it can have
a big importance for the time-dependent case. The cost of the tour can heavily
decrease if leaving later avoids travelling during time intervals where the traffic
is congested.

Number of Clients: For |V| = {5, 10, 15, 20} the number of clients does not seem
influential as the gaps g are quite similar. This is due to the speed with which
we can visit all the clients and get back to the supplier. As seen from Fig. 1, the
travelling time function is not volatile in the first time-steps, and since it does
not take a long time to visit up to 20 clients, all of the clients can be visited
while avoiding congestion periods. However, for |V| = {25, 30} although the gaps
does not show a big difference since the instances are not solved to optimality
due to their hardness, we expect that the gaps will be bigger when optimality
is achieved (Instances where |V| = 30 and |M| = 120 give a glimpse of this
intuition). Indeed, when the number of clients is bigger, visiting all the clients
requires more time and therefore it is not possible to entirely avoid congestion
periods. This is where optimising with time-dependent travelling time functions
becomes useful.

Structure of Time-Dependent Solutions: We observed that optimal time-
dependent solutions are not very different from basic solutions, as the difference
only resides in the values of variables xp

ij and xp
ijm. This means that the same

clients are visited for each period with the same quantities. The only difference
is in the sequence in which the clients are visited. Therefore, since the gap in the
cost is only seen in the transportation cost, its impact is not of a big importance
as the inventory cost remains the same.

Note that the results presented in Table 1 can be heavily impacted by the
upper-bounds of the TD-TSP. If the TD-TSP is solved to optimality, then the
waiting times will be used only to mimic the FIFO transformation algorithm.
However, since in our case the TD-TSP upper bounds are generated using an ILS
algorithms, the performance of the algorithm has an impact on the TD-TC-IRP
solutions. Indeed, the better the ILS performs, the shorter |T | is, and vice-versa.

5 Conclusions and Perspectives

In this paper, we propose a new variant of the IRP, the TD-TC-IRP. In this vari-
ant, the travelling time between two locations is not constant throughout the
day but depends on the time the arc is travelled and the length of a trip is con-
strained. A constant piece-wise time-dependent travelling time function of the
TD-TSP literature is presented. We show that such functions do not necessarily
satisfy the FIFO property and present a way on how to transform it to a linear
piece-wise function that does. The limits of using a linear piece-wise function for
optimisation purposes are discussed. To cater for this, a mathematical formula-
tion for the TD-TC-IRP using a constant piece-wise function by allowing waiting
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at nodes, in order to always satisfy the FIFO property, is proposed. Numerical
experiments are conducted on a new proposed benchmark where benchmarks
from the literature of the IRP and the TD-TSP are combined using a branch-
and-cut procedure. The results show that solving the TD-TC-IRP is harder than
its basic counterpart. Moreover, it also shows that the solutions of the basic IRP
performs almost as well as time-dependent solutions in a time-dependent envi-
ronment. However, this last point can be the result of parameters such as the
departure time from the supplier and the number of clients visited.

A future work would be to enhance the solving method by proposing new
valid inequalities or new reformulations for the TD-IRP. Faster algorithms will
help with two points: solving larger instances and considering the departure
time from the supplier as a decision variable and no longer the beginning of the
period. Another perspective is to consider a dynamic service time which will not
be constant anymore but depends on the replenishment quantity.
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