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Abstract. Our current understandings reach the unanimous consensus
that the brain functions and cognitive states are dynamically changing
even in the resting state rather than remaining at a single constant state.
Due to the low signal-to-noise ratio and high vertex-time dependency in
BOLD (blood oxygen level dependent) signals, however, it is challeng-
ing to detect the dynamic behavior in connectivity without requiring
prior knowledge of the experimental design. Like the Fourier bases in
signal processing, each brain network can be summarized by a set of
harmonic bases (Eigensystem) which are derived from its latent Lapla-
cian matrix. In this regard, we propose to establish a subject-specific
spectrum domain, where the learned orthogonal harmonic-Fourier bases
allow us to detect the changes of functional connectivity more accurately
than using the BOLD signals in an arbitrary sliding window. To do so,
we first present a novel dynamic graph learning method to simultane-
ously estimate the intrinsic BOLD signals and learn the joint harmonic-
Fourier bases for the underlying functional connectivity network. Then,
we project the BOLD signals to the spectrum domain spanned by learned
network harmonic and Fourier bases, forming the new system-level fluc-
tuation patterns, called dynamic graph embeddings. We employ the clas-
sic clustering approach to identify the changes of functional connectivity
using the novel dynamic graph embedding vectors. Our method has been
evaluated on working memory task-based fMRI dataset and comparisons
with state-of-the-art methods, where our joint harmonic-Fourier bases
achieves higher accuracy in detecting multiple cognitive states.

Keywords: Brain state decoding · Graph learning · Functional
dynamics

1 Introduction

Empirical studies and emerging evidences suggest that human brain is a complex
network with very unique topological properties [16]. Different to the definition
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of structural network [3], functional connectivity (FC) is an essential statistical
concept to characterize the topological relationship between spatially separated
anatomical brain regions, which is usually estimated from the BOLD signals in a
series of functional MRI images [8,17]. Although plenty of efforts focus on static
functional brain networks by assuming FC remain stationary during a period
of data collection (aka static FC), the interest is shifting to study the dynamic
changes of FC (aka dynamic FC), which might provide more insight into the
fundamental properties of brain networks [10,11,19].

In the past decade, there are mainly two branches of approaches for the char-
acterization of function dynamic: (1) temporal change points model [6,18] and
(2) sliding window technique [1,5,7]. Dynamic connectivity regression (DCR)
method [6] is a typical example of temporal change points model, which first par-
titions the time course into intervals and then estimates connectivity networks
within each interval using statistical inference. Dynamic connectivity detection
method [18] further improved the DCR method by utilizing a sparse matrix
estimation approach and a hypothesis testing procedure to detect change points.
Although change points models provide a potentially powerful method for track-
ing dynamic FC, they are highly dependent on a greedy partitioning scheme for
determining change points and the corresponding FC states. Compared to these
statistical models, sliding window approach (SW) is computationally more effi-
cient which essentially identify changes of FC based on the clustering result of
FC matrices across sliding windows. However, SW is sensitive to the window size
and external noise in BOLD signals, resulting in less replicable results [9,13].

Most of current state-of-the-art change detection methods use the attributes
derived from BOLD signals. Due to the technical difficulty in imaging resolution
and signal acquisition, the low signal-to-noise ratio in BOLD signals is the major
difficulty in detecting FC changes [13]. Since brain functions are supported by the
collaboration of multiple regions, functional network exhibits more connectivities
than structural network. Such high node-to-node dependency in the network also
challenges the accuracy of change detection. In this regard, we propose to find a
new putative attribute descriptor to alleviate the noise and redundancy issue of
directing using the observed BOLD signals by projecting the BOLD signals to a
learned spectrum domain. As show in Fig. 1, we first propose a dynamic graph
learning method to jointly (1) estimate a graph Laplacian matrix based on the
intrinsic BOLD signals, and (2) smooth the BOLD signals more effectively in the
context of the latent functional connectivities. Since the topology of functional
network is largely governed by the harmonic bases derived from the underlying
Laplacian matrix, we present a novel dynamic graph embedding (displayed in
the middle of Fig. 1) to capture the fluctuation pattern at each time point using
a set of orthogonal harmonic-Fourier bases for the individual network. We fur-
ther integrate our dynamic graph embedding into a classic time series clustering
method and automatically detect the changes of functional connectivity without
knowing the experimental setup of fMRI studies. Experiments and comparison
with state-of-the-art methods show that the proposed method can achieve sig-
nificant performance improvement in identify changes of FC on task-based fMRI
data involving working memory.
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Fig. 1. The novel dynamic graph embedding (middle) is formed by projecting the
BOLD signals in each sliding window into a spectrum domain which is spanned by
learned joint Harmonic-Fourier bases. The new dynamic graph embeddings are used
to replace BOLD signals in detecting the changes of functional network by time series
clustering.

2 Methods

2.1 Estimating the Joint Harmonic-Fourier Bases

A brain network can be represented as a graph structure G = (V, W ), where
V denotes the set of N nodes and W = [wij ]Ni,j=1 is the corresponding N × N
weighted adjacency matrix of the functional network. Here, we use LG = D − W
denotes the graph Laplacian matrix, where D is a diagonal matrix defined as
Dii =

∑N
j=1 wij . Supposing we have T acquisition time points, we can regard

xt ∈ RN as a signal on the graph G at acquisition time t. Then a N × T data
matrix X = [xt]t=1,...,T is used to denote the whole-brain BOLD time course by
concatenating each xt along the time T .

Given the data matrix X, we opt to establish a subject-specific spectrum
domain to capture dynamic functional fluctuation hidden behind BOLD sig-
nals X, which is spanned by the Fourier bases ΦT in the temporal domain and
network harmonic bases ΦG in the graph spectrum domain. Although there
are numerous solutions of ΦT and ΦG, we reckon the bases are governed by
the joint Eigensystem that emerges dynamic fluctuation of self-organized FCs.
Specifically, the time Laplacian matrix LT ∈ RT×T characterizes Eigensystem
of temporal domain, where XLT describes the second order temporal deriva-
tive of X, i.e., XLT |t = 2xt − xt−1 − xt+1 (change between forward difference
xt+1 − xt and backward difference xt − xt−1). Since LT is fixed and circulant
(xT+1 = x1), Eigen decomposition of LT = ΦT ΛT Φ�

T has the closed-form solu-
tion as the orthogonal Eigenvectors ΦT (t, k) = [e−j(2π(k−1)/T )t/

√
T ]t,k=1,...,T

and the diagonal Eigenvalue matrix ΛT (t, t) = λT (t) = 2(1 − cos(2π(t − 1)/T )).
It is clear that the Fourier bases ΦT of the temporal domain are exactly the clas-
sic Fourier waves. Similarly, the network harmonic bases ΦG is the Eigenvectors
after applying SVD (singular vector decomposition) on the latent LG.

Thus, the good estimation of latent graph Laplacian matrix LG becomes the
backbone of our method. Although it is efficient to obtain LG by constructing
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the function network based on the Pearson’s correlation of any two rows in X,
the substantial amount of external noise in X often undermines the reliability of
function network. In light of this, we propose to learn the graph Laplacian matrix
from X that can express the dynamic behaviors of functional connectivity. A
better understanding of the network topology also allows us to remove the noise
from X more effectively which eventually facilitates the graph learning.

First, we estimate the intrinsic BOLD signals Y = [yt]t=1,...,T which is
required to be close to the observed X. We use the l2-norm ‖X − Y ‖2F to mea-
sure the distance between X and Y . Then we estimate LG from the intrin-
sic BOLD signals Y . The following three constraints are used to turn the ill-
posed optimization problem into a well-posed objective function. (1) Tem-
poral smoothness on Y . Since human cognition is not supposed to change
rapidly in a short time period, it is reasonable to assume each BOLD time
course is smooth along time by penalizing the large change between yi

t and yi
t+1,

which can be quantified as ‖Y ‖LT
= tr(Y LT Y �) =

∑N
i=1

∑T
t=1(y

i
t+1 − yi

t)
2.

(2) Graph smoothness on Y . Instead of treating each yt as a data array,
we underline yt in the context of the latent functional network. Thus, the ith

node and jth node should have similar signal yi
t and yj

t if there is a strong
FC wij

G between these two nodes. Such graph smoothness can be quantified as
‖Y ‖LG

= tr(Y �LGY ) =
∑T

t=1

∑
ij wij(yi

t − yj
t )2. (3) Regularization term

on LG. To avoid trivial estimation of LG, we require l2-norm on LG and the trace
norm of LG equals to the number of nodes in the network, which prevents LG

degenerate to all zeros. By integrating above terms, the overall energy function
for estimating graph Laplacian matrix LG becomes:

arg min
Y,LG

‖X − Y ‖2F + μ1 ‖Y ‖LG
+ μ2 ‖Y ‖LT

+ η ‖LG‖2F , s.t. tr(LG) = N (1)

where μ1, μ2 control the strength of temporal and graph smoothness, and η
controls the L2-norm constraint on the graph Laplacian matrix LG.

To solve above optimization problem, an alternating optimization approach
with two steps is employed.

Smooth Signals by Joint Filter. In this step, We optimize Y by fixing LG

and LT . The objective function of Y becomes:

arg min
Y

‖X − Y ‖2F + μ1 · tr(Y �LGY ) + μ2 · tr(Y LT Y �) (2)

Since all three terms in Eq. (2) are quadratic, Ŷ has the following closed-form
solutions:

vec(Ŷ ) = (μ1IT ⊗ LG + μ2LT ⊗ IG + I)−1
vec(X) (3)

where ⊗ is the Kronecker product operator to unify LT and LG. Since LG is
symmetric, we decompose the graph Laplacian LG into LG = ΦGΛGΦ�

G, where
ΦG and ΛG(n, n) = λG(n) are the eigenvectors and the corresponding eigenvalues
of Laplacian LG. In graph signal processing [15], graph Fourier transform of
BOLD signals is defined as GFT (X) = Φ�

GX, and the inverse transform is



Detecting Changes of Functional Connectivity by dGE Learning 493

GFT−1(X) = ΦGX. Thus, Eq. (3) can be understood as filtering BOLD signals
X on the temporal domain and graph spectrum domain as:

vec(Ŷ ) = h(LG, LT )vec(X) =
N,T∑

n=1,t=1

ΦJh(λG(n), λT (t))Φ�
J vec(X) (4)

where ΦJ = ΦT ⊗ ΦG describes the joint harmonic-Fourier bases of the smooth-
ing kernel. h(λG(n), λT (t)) = 1/(1 + μ1λG(n) + μ2λT (t)) is the parameters to
further characterize the shape of low-pass filter, where the inverse of Eigenvalues
in Eq. (5) indicates the preference of suppressing the high frequency part of X.

Optimize the Graph Laplacian. By fixing Y , the optimization of LG becomes
minimizing μ1 ‖Y ‖LG

+ η ‖LG‖2F . This optimization task is convex and can be
solved via Alternating Direction Method of Multipliers framework [4].

Given the learned graph Laplacian LG, the orthogonal column vectors in ΦG

form the bases of the network harmonic domain. Therefore, the joint harmonic-
Fourier bases ΦJ can be formed to capture the dynamic functional changes by
combining the learned harmonic bases ΦG and the Fourier bases ΦT , as follows.

2.2 Dynamic Graph Embedding

First, we encode a set of functional networks along sliding windows into the
dynamic graph J , as a multi-layer graph shown in the right of Fig. 2. It is clear
that the dynamic graph J is essentially the periodically duplicated copy of graph
G at each time t, where each node is connected to itself at time t − 1 and t + 1.
Thus, the spectrum of dynamic graph LJ is defined as a Cartesian product of the
time Laplacian LT and graph Laplacian LG, denoted as LJ = LT ⊗ IG + IT ⊗
LG. The Eigenvector of LJ can be derived by applying Eigen decomposition to
LJ as: ΦJ = ΦT ⊗ ΦG, which is the Kronecker product of learned ΦT and ΦG

in Sect. 2.1. Since ΦJ is orthogonal, it is straightforward to project the intrinsic
BOLD signals data Y into the joint spectrum domain as:

FY = Φ�
J vec(Y ) = (ΦT ⊗ ΦG)�Y = Φ�

GY ΦT (5)

Since FY characterizes the dynamics of functional network under the guid-
ance of joint harmonic-Fourier bases, we further present the dynamic graph
embedding vectors for the observed BOLD signals X in three steps. (1) Esti-
mate the latent graph Laplacian matrix LG and obtain the intrinsic BOLD
signals Y by optimizing Eq. (1). (2) Construct joint harmonic-Fourier bases ΦJ .
(3) For each time t, we construct a sliding window centered at t. Then we yield
the dynamic graph embedding vector FY (t) for the intrinsic BOLD signals Y (t)
within the sliding window by FY (t) = Φ�

J vec(Y (t)) by Eq. (5).
Next, we consider these dynamic graph embedding vectors {FY (t)}T

t=1 as the
input to the classic spectral clustering method and cluster them into the prede-
fined K clusters, where each cluster consists of very similar dynamic embedding
vectors. Based on the clustering result, we automatically detect the changes of
functional networks by examining the transition of cluster indexes along time.
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Fig. 2. The dynamic graph J is constructed by the Cartesian product of the graph G
and the temporal domain denoted as a cycle graph T .

3 Experiments

In our experiment, we first evaluate the accuracy and robustness of detecting
changes of functional networks using our proposed dynamic graph embeddings
(dGE) in Sect. 3.1. We compare our method with two counterpart methods: (1)
a recent dynamic brain state tracking method, i.e., sliding window correlation-
based (SWC) method [1] which uses original BOLD signals as the input, and (2)
our simplified method that only uses the learned harmonic bases ΦG, denoted
by (GE). The optimal parameters of μ and η are selected using cross validation
strategy. The number of clusters K is determined by utilizing silhouette criteria
for the task-based fMRI dataset [12]. In addition to change detection, we also
evaluate the discriminative power of our dynamic graph embeddings in recognize
different functional tasks in Sect. 3.2.

Data Description. In total 60 block-design working memory task-based fMRI
data are selected from the HCP (Human Connectome Project) database [2]. The
working memory task-based fMRI data consists of 2-back and 0-back task blocks
of body, place, face and tools, as well as a fixation period. Each working memory
data contains 393 scans, and are parcellated into 268 regions by the Shen 268
region atlas [14]. We specifically focus on 58 out of 268 brain regions that make
up the attention and default mode network (DMN) areas of the brain since these
regions are highly related to the working memory task.

3.1 Detection of Functional Connectivity Changes

Here, the performance of functional connectivity change detection on different
methods is compared by using the same change detection method (classic clus-
tering analysis method) but different embeddings (attributes). Since the SWC
method slides rectangle window with 22 TRs across the fMRI data to extract
functional connectivity embedding, in order to fairly compare the three methods,
we use the same sliding rectangle window with 22 TRs to obtain corresponding
embedding, then we perform the spectral clustering method on the obtained
embedding to identify the changes of functional connectivity. Figure 3 (a) shows
the detection results of functional connectivity changes on two randomly selected
working memory task-based fMRI data obtained by feeding our dynamic graph
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embedding vectors into the clustering method, the change points (red triangle)
we obtained are highly matched with the task event, that is, we are able to
detect the beginning and end of each task. Figure 3 (b) shows the clustering
accuracy results of all compared methods, our proposed method outperforms
all other compared methods with an average accuracy of 0.771, compared to
0.734 by SWC and 0.663 by GE method. Meanwhile, in order to examine the
sensitivity of sliding window size affects the performance of functional connec-
tivity changes detection, we perform tests by varying the window size from 10
to 60 TRs. As shown in Fig. 3 (c), our proposed method (red curve) is more
robustness to the selection of window size. Better performance of our method
is attributed to the following two aspects. First, different from existing change
detection methods that directly employ the attributes derived from noisy BOLD
signals, the proposed method estimates the intrinsic BOLD signals in the context
of the underlying functional connectivities, which alleviates the issue of detect-
ing spurious changes caused by noise. Second, the joint harmonic-Fourier bases
can better express the dynamic characteristics of functional connectivity than
using the raw BOLD signals. As shown in the detection result in Fig. 3 (b), dGE
achieves an improvement of 10.8% of clustering accuracy compared with the GE.

Fig. 3. Performance of detection of functional connectivity changes compared between
the sliding window correlation (SWC) method, graph embedding method (GE) and our
proposed method (dGE). (a) The detection performance of our proposed method on
two random selected test data: the bar plots with different color represent different task
events and the red triangles represent detected changes of functional connectivity. The
green curve denotes the total energy of dynamic graph embedding. (b) Comparison of
clustering accuracy using different embedding representation obtained from different
methods. Each box shows a summary statistics of accuracy computed on 60 testing
subjects. (c) Effect of the length of window size on the performance of detection of
functional connectivity changes. (Color figure online)
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3.2 The Performance of Classification on Different Task Events

We further investigate the classification ability of our graph embedding vectors
for classifying 2-back task event versus 0-back task event in working memory
task-based fMRI data. Since the ground truth of each task event are known in
advance, we can obtain dynamic graph embedding of each task event by utilizing
our proposed method on the subsequence of each task event in the time series of
fMRI data, and utilize these embeddings to train the SVM for classifying 2-back
task event and 0-back task event. In 10-fold cross validation strategy, the ROC
curves of classifying 2-back task event versus 0-back task event involving body,
place, face and tools are shown in Fig. 4. We can observe from the results that our
classification results outperform the counterpart methods on classifying 2-back
task event versus 0-back task event. The better classification ability shows that
we get more discriminated embedding to distinguish changes between different
back task events.

Fig. 4. ROC curves of 2-back versus 0-back task event classification involving body,
place, face, and tools task events compared between the three methods.

4 Conclusion

In this paper, we proposed a dynamic graph embedding learning approach for
detecting changes of functional connectivity. In this method, we first introduce a
dynamic graph learning method to simultaneously estimate the intrinsic BOLD
signals and estimate a set of harmonic bases based on the intrinsic BOLD signals.
Given the learned harmonic bases, we then capture the dynamic graph embed-
ding at each time point by using the joint harmonic-Fourier bases. Finally, a
classic clustering method is utilized on the dynamic graph embedding vectors
to detect changes of functional connectivity. We have evaluated our proposed
method on working memory task-based fMRI dataset. The results show that the
proposed method is effective to detect changes of functional connectivity.
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