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Abstract. The anatomical axis of long bones is an important reference
line for guiding fracture reduction and assisting in the correct place-
ment of guide pins, screws, and implants in orthopedics and trauma
surgery. This study investigates an automatic approach for detection
of such axes on X-ray images based on the segmentation contour of the
bone. For this purpose, we use the medically established two-line method
and translate it into a learning-based approach. The proposed method is
evaluated on 38 clinical test images of the femoral and tibial bone and
achieves a median angulation error of 0.19◦ and 0.33◦ respectively. An
inter-rater study with three trauma surgery experts confirms reliability
of the method and recommends further clinical application.

Keywords: Surgical planning · Orthopedics · Bone axis detection ·
X-ray imaging · Intra-operative guidance

1 Introduction

The reconstruction of anatomical joint surface and angular relationships is a
paramount aspect in surgical management of fractures or ligament injuries. Intra-
operative fluoroscopic guidance, 3D imaging, or navigation is typically used to
ensure anatomically and mechanically correct reduction, so that irregular joint
loading and complications caused by aberrant biomechanics can be alleviated or
avoided. Moreover, for technically demanding procedures, a pre-operative plan-
ning sketch is obligatory and helps the surgeon to achieve operational safety
[4]. In many of these planning and verification steps, the bone axis serves as

The authors gratefully acknowledge funding of the Erlangen Graduate School in
Advanced Optical Technologies (SAOT) by the Bavarian State Ministry for Science
and Art.

c© Springer Nature Switzerland AG 2020
A. L. Martel et al. (Eds.): MICCAI 2020, LNCS 12266, pp. 671–680, 2020.
https://doi.org/10.1007/978-3-030-59725-2_65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59725-2_65&domain=pdf
http://orcid.org/0000-0003-1240-5809
http://orcid.org/0000-0002-9550-5284
http://orcid.org/0000-0002-7021-2370
https://doi.org/10.1007/978-3-030-59725-2_65


672 F. Kordon et al.

an important reference line (Fig. 1). While planning such axes can be easily
done on pre-operative static data, doing so consistently on live images during
surgery is inherently more complex due to motion and a limited field of view.
In addition, non-sterile interaction with a planning software is unwanted. For
this reason, axial alignment is typically verified by visual inspection and use of
hardware-based solutions such as the cable method, alignment rods, goniometers,
or optical navigation amongst others [12,13,20]. However, these methods either
increase task complexity, are inherently imprecise, or require an open reduction
or additional incisions regardless of the surgical technique used. To this end,
several methods were proposed to automate detection of the bone axis on image
data. Tian et al. [18] compute the femoral shaft axis by using a combination of
contour extraction and analysis of intersecting line normals to the shaft contour.
They recover the contour by using Canny edge detection and identify the rele-
vant straight line sections with Hough transformation and active contour mode
via Gradient Vector Flow. While this approach can deal with truncated bones, it
prerequisites the bone to be oriented in an upward position on the X-ray image
to isolate the relevant intersection points. Donnelley et al. [3] use a scale-space
approach and approximate line straight parameters via Hough transformation.
To deal with ambiguous peak spread in the dual space encountered in real-world
radiographs, this methods relies on prior spread quantification which falls short
in the case of truncated bones. Subburaj et al. [17] use a 3D-reconstructed bone
model from pre-operative CT scans. They combine geometrically detected land-
marks and maximal inscribed sphere fitting to detect the medial axis, which is
then used for identification of anatomical and mechanical axes. Although very
accurate results can be achieved, such 3D information is oftentimes not available
and requires registration with the intra-operative 2D image.

To circumvent these limitations, we propose a simple and clinically motivated
image-guided approach for detection of the anatomical axis of long bones on 2D
X-ray images. We translate the established two-line/two-circle manual method
[6–8,10] to a learning based extraction of anatomical features and subsequent
geometric construction based on segmentation of the bone cortex outline. With
reference to [9], region of interest (ROI) encoding of the relevant contour sections
is used to cope with variability in image truncation and arbitrary image rotation.
Moreover, the segmentation results can directly be used for registration of the
detected axis on fluoroscopic live images. The method is evaluated for the femur
and tibia in the knee joint, which are amongst the most prominent anatomies
treated in trauma surgery. The reliability of the proposed method is evaluated
and confirmed in an inter-rater study with three expert trauma surgeons.
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(a) Palmar tilt and radial inclination an-
gle on the wrist joint [2, 11, 15, 22].

(b) Baumann angle on frontal radio-
graph of the elbow [16, 23].

(c) Angles for tibial intramedullary nail
insertion (solid) [5] and transtibial tun-
nel drilling (dashed) [6, 8].

(d) Approximation of knee flexion angle
based on femoral and tibial bone axes.

Fig. 1. Examples for using the shaft axis of long bones as reference line.

2 Methods

The anatomical axis of long bones in a 2D image plane can be described
by two auxiliary lines that follow the orientation of the anterior/posterior or
medial/lateral contour of the bone shaft. In contrast to conventional radiographs
with rather standardized imaging, this shaft area is usually truncated on intra-
operative images due to a limited field of view and a joint-centered acquisition
protocol. Furthermore, the largely linear shaft contour can suffer from structural
changes due to e.g. bony proliferation. To this end, first the relevant contour sec-
tions are estimated and extracted from the image. Subsequently, these sections
are masked based on positional probability and smoothed to reduce the influence
of outliers. Lastly, the clinically motivated two-line method is used to calculate
the bone axis.
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(a) Masking of segmentation contour K
by evaluation the predicted likelihood in
ROI and parametrization of the line seg-
ment.

(b) Vector projection of intermediary
line points onto the opposing segment
and geometric construction of the axis
points m1 and m2.

Fig. 2. Implementation of the two line method for bone axis estimation based on the
extracted segmentation contour.

2.1 Likelihood Encoding of Relevant Contour Regions

Given a binary bone segmentation mask S we extract the complete cortex con-
tour K by using a morphological erosion operation. With a cross-shaped 3 × 3
structuring element X = {(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0)} this equates to

K = XOR (S, erode(S,X)) . (1)

To constrain the relevant contour section, a ROI similar to [9] is constructed
(Fig. 1). Its bounds are defined by the start and end points of an additional line
segment. Positional variance both in the parallel as well as in the orthogonal
direction to this line segment is encoded by a 2D Gaussian distribution with
a standard deviation of σ = 6px and truncation bounds at 3σ. This gives us
a symmetrical fall-off in probability orthogonal to the line within a margin of
37 px. This spatial likelihood distribution is used to decide whether a contour
point should be considered part of the relevant contour region. Since we can
assume a mainly linear contour, we argue that using a threshold at 1σ retains
the most probable points while eliminating most outliers (Fig. 2a).

2.2 Axis Construction with Two-Line Method

The auxiliary contour extension lines are obtained by fitting two linear functions
to the pair of relevant contour regions. Since we cannot assume a designated
dependent variable due to unknown image rotation, major axis regression1 is
used [21]. Given these two lines, we can now perform a geometric construction

1 Ordinary least squares with dependent variable of highest variance is also possible.
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of the in-between axis based on the midpoints of two parallel and intersecting
line segments. This method is known as the two-line method and is a clinically
known and trusted procedure especially in pre-operative manual planning [6–
8,10]. First, a line segment is parametrized for each contour line which is bounded
by the relevant contour region. One of these segments is subdivided by two points
at distance d1 and d2 from the respective start and end points (Fig. 2a). The
actual distances can be selected depending on the target anatomical structure to
facilitate easier correction by the user. In a second step, these intermediary points
are then projected onto the opposing line segment (Fig. 2b). This procedure
allows for different orientation and length of each segment and is close to clinical
practice.

2.3 Neural Network Architecture

The proposed construction relies on a segmentation mask of the target long bone
and ROI encodings for both relevant contour regions. For combined prediction
we use a multi-task variant of the hourglass network architecture by Newell et al.
[9,14]. This network architecture allows to optimize a joint representation of both
tasks and benefits execution time and computational footprint upon inference.
We separate segmentation and prediction of ROIs into two tasks. The segmen-
tation task is trained with binary cross entropy to delineate the target bone
(foreground) and all other image content (background). The ROIs are optimized
by direct matching of the pixel intensity values with a mean squared error loss.
In addition, we employ gradient normalization [1,9] to cope with different loss
function characteristics and task difficulties. To limit the hardware requirements
in consideration of the intra-operative application area, we refrain from a stacked
network variant.

2.4 Data and Evaluation

Network training and geometric construction were evaluated for the femur and
tibia on a dataset of 221 clinical X-ray images of the knee joint. Each image
was acquired as a lateral standard projection where the outlines of both femoral
condyles are aligned. The ground truth segmentation masks and line segments
representing the ROIs were annotated by a medically-trained engineer with
the labelme annotation tool [19]. Our experiment and evaluation setup on this
dataset was two-fold.

1. Training of the network in three configurations (a) femur only, (b) tibia only,
(c) joint training of femur and tibia, followed by a quantitative evaluation of
the performance. For variant (c) the number of output channels for each task
head of the network was increased accordingly.

2. Assessment of clinical reliability of the automatic axis detection in an inter-
rater study. To this end, three expert trauma surgeons (one site) were asked
to annotate the femoral and tibial axes on all 38 evaluation images via two
axis control points.
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For both experiment series a hold-out test set of 38 images with a 3mm cal-
ibration sphere was defined. Representative variability in bone truncation and
absolute joint rotation was confirmed. The remaining data was split into training
and validation subsets of 167/16 images respectively. The data was split up in
such a way that disjoint patient groups are ensured in the training/validation
and test datasets. Optimization for the first experiment step was performed
using Stochastic Gradient Descent (SGD) with a batch size of 2 over 300 epochs
on a NVIDIA TITAN RTX graphics card in the PyTorch (v.1.2) Deep Learn-
ing framework. We used a learning rate of 2.5e−4 which we halved every 50
epochs. To aid generalization and to prevent early overfitting, we applied L2
weight decay with a factor of 5e−5 and a basic online augmentation sequence
during training. This sequence comprised affine transformations (scaling, rota-
tion, shearing, horizontal flipping) and margin crops of random strength. Upon
propagation in the network, min-max normalization to the interval of [0, 1] was
applied and the image resolution was standardized to 256 × 256 px by resizing
and a subsequent center-crop. All reported results are based on the respective
model parameters for which the minimum combined task error on the validation
split was observed.

3 Results and Discussion

Bone Segmentation. The results for bone segmentation by the multi-task
neural network variants are given in Table 1. In general we observe segmenta-
tion results which closely resemble the annotated ground truth. Despite missing
annotations of other bony structures in the knee joint, the single-anatomy model
is capable of delineating the target bone from other structures, even in ambigu-
ous overlap areas. On the other hand, prediction quality of the combined variant
does not suffer from a doubling of inference tasks which benefits fast execution
time and a smaller computational footprint. A very low contour error indicates
that the networks do not only learn the global shape but also successfully cap-
ture small details which are often caused by bony erosion and proliferation.
This allows for marginal error propagation into geometric axis construction.

Table 1. Evaluation of segmentation performance for the femur and tibia (DICE =
Sørensen–Dice coefficient; ASD = Average Surface Distance; HD = Hausdorff Dis-
tance).

DICE ASD (mm) HD (mm)
Bone Network Mean ± Std Mean ± Std Mean ± Std

Femur Single 0.99 ± 0.003 0.57 ± 0.45 7.91 ± 13.86
Comb. 0.99 ± 0.004 0.57 ± 0.58 11.38 ± 22.17

Tibia Single 0.99 ± 0.005 0.62 ± 0.53 7.07 ± 7.08
Comb. 0.99 ± 0.003 0.51 ± 0.16 4.23 ± 1.95
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Table 2. Angulation and displacement error for the femur and tibia in single/combined
anatomy training. Results are reported for the anterior/posterior auxiliary lines and
bone shaft axis. The displacement error is constructed as the mean orthogonal point-
to-line distance of predicted points s1/t1, s2/t2, m1/m2 onto the respective ground
truth axis and combines translation and angulation error components. The best results
for each axis are marked in bold (CI95 = 95% confidence interval).

Angulation (deg) Displacement (mm)

Axis Netw. Mean ± Std Median & CI95 Max Mean ± Std Median & CI95 Max

Ant. Single 0.55 ± 0.98 0.31 [0.18, 0.57] 6.17 0.57 ± 1.25 0.34 [0.25, 0.49] 8.09
Comb. 0.48 ± 0.64 0.34 [0.24, 0.52] 3.89 0.47 ± 0.79 0.31 [0.19, 0.44] 5.10

Post. Single 0.56 ± 0.38 0.49 [0.36, 0.68] 1.50 0.54 ± 0.33 0.43 [0.36, 0.55] 1.53
Comb. 0.64 ± 0.44 0.54 [0.38, 0.83] 1.94 0.59 ± 0.47 0.45 [0.36, 0.56] 2.71

Shaft Single 0.35 ± 0.42 0.21 [0.14, 0.36] 2.54 0.18 ± 0.22 0.13 [0.09, 0.16] 4.11
Comb. 0.28 ± 0.24 0.19 [0.11, 0.23] 0.98 0.15 ± 0.13 0.13 [0.07, 0.15] 2.65

(a) Femoral axes detection.

Angulation (deg) Displacement (mm)

Axis Netw. Mean ± Std Median & CI95 Max Mean ± Std Median & CI95 Max

Ant. Single 1.59 ± 1.99 0.64 [0.43, 1.59] 7.37 0.86 ± 0.95 0.48 [0.35, 0.92] 5.26
Comb. 1.43 ± 1.62 0.81 [0.67, 1.18] 6.98 0.75 ± 0.50 0.62 [0.52, 0.74] 1.93

Post. Single 0.66 ± 0.55 0.51 [0.32, 0.68] 1.98 0.38 ± 0.21 0.36 [0.25, 0.45] 0.95
Comb. 0.83 ± 0.84 0.52 [0.31, 0.81] 3.37 0.43 ± 0.28 0.33 [0.26, 0.46] 1.30

Shaft Single 0.78 ± 0.95 0.48 [0.32, 0.78] 4.11 0.21 ± 0.19 0.16 [0.11, 0.25] 0.96
Comb. 0.62 ± 0.66 0.33 [0.23, 0.69] 2.65 0.17 ± 0.11 0.17 [0.11, 0.21] 0.38

(b) Tibial axes detection.

Segmentation outliers indicated by higher Hausdorff error points are exclusively
caused by the inserted measuring spheres which are not represented in the train-
ing data.

Axes Detection. The performance of the proposed geometric axis construc-
tion is presented in Table 2. We observe an average angulation error of less than
0.65◦ for the anterior and posterior auxiliary lines on both bones and only minor
differences between single and combined training. This indicates that the pre-
dicted ROIs can provide masking of relevant contour sections on a sufficiently
fine scale. We can also qualitatively confirm that the likelihood distribution fol-
lows along the actual anatomical contour, albeit this area is only approximated
by a straight line in the ground truth annotations. These observations strengthen
our assumption that we can retain all relevant contour points by masking at a
likelihood threshold of 1σ. In addition, low values for the displacement error
(Table 2) indicate minor deviation of the line’s shift off the ground truth bone
contour. The constructed bone axes generally benefit from the combined train-
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Table 3. Comparison of automatically detected shaft axis (Auto) to the annotation
of three expert readers (E-1, E-2, E-3) and assessment of inter-rater variability. Due
to missing midpoints m1 and m2 in the expert reader annotations, the respective
displacement error is based on the two annotated control points. Here, �→ denotes a
mapping of the 1st rater’s control points on the predicted axis of the 2nd rater. ←�

marks a mapping in reverse order.

aibiTrumeF

1st

rater
2nd

rater
Angulation

(deg)
Displacement

(mm)
Angulation

(deg)
Displacement

(mm)

Auto E-1 0.61 [0.38, 1.01] 0.91 [0.57, 1.16] 1.48 [1.12, 2.23] 1.90 [1.36, 2.62]
Auto E-2 1.12 [0.63, 1.82] 0.58 [0.39, 0.72] 2.36 [1.68, 3.07] 1.68 [1.22, 2.13]
Auto E-3 0.49 [0.29, 0.68] 0.74 [0.43, 1.17] 5.76 [4.87, 6.44] 3.89 [3.38, 4.56]

E-1 E-2 0.93 [0.39, 1.32] �→ 1.85 [1.51, 2.21] 1.75 [1.01, 2.21] �→ 1.93 [1.60, 2.58]
←� 1.68 [1.52, 1.93] ←� 2.02 [1.72, 2.61]

E-1 E-3 0.70 [0.49, 1.06] �→ 1.38 [1.20, 1.77] 4.53 [3.47, 5.25] �→ 4.64 [3.72, 5.22]
←� 1.82 [1.35, 2.15] ←� 4.09 [3.27, 4.81]

E-2 E-3 1.02 [0.69, 1.29] �→ 1.41 [1.15, 1.74] 3.22 [2.40, 4.24] �→ 4.71 [3.33, 5.47]
←� 1.38 [1.20, 1.77] ←� 3.71 [2.85, 4.25]

ing variant and exhibit a comparatively lower maximum error bound (Table 2).
Furthermore, it can be observed that by training both anatomies together, the
respective confidence intervals taper off and follow the downward shift of the
position measure. Based on these results, we chose the combined network for
evaluation in the inter-rater study.

Inter-rater Comparison. The reliability of our method in comparison to
expert rater annotations is analyzed in Table 3. For the femur, low angulation
and displacement errors indicate reliable axis estimates which are independent of
the amount of truncation and rotation present in the image data. A significantly
higher angular deviation of the tibial axis can be explained by comparatively
more divergent contour lines. Together with structural variation of the anterior
tibia (tibial tuberosity), this leads to higher complexity and differences in the
individual approach to manual annotation. This reasoning is strengthened by
comparison with rater E-3 for whom a systematically more posterior position
and orientation can be observed. If compared to the differences between expert
raters (Table 3), the automatic approach yields very comparable performance
and achieves axis predictions that lie within the inter-rater error bounds. It
should be noted that agreement between raters could be further increased if a
dedicated tool for semi-automatic two-line planning is used.
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4 Conclusion

This study investigated a method for automatic detection of the shaft axis
on long bone X-rays. The experiments reveal encouraging results which match
expert rater performance. A major strength of the proposed method is the flexi-
bility of ROI masking which we use to select relevant sections of the bone contour
without strong prerequisites on image truncation and rotation. We see limita-
tions in that no evaluation was performed for bones that suffer from increased
antecurvation/recurvation (e.g. due to natural deformity or increased weight
bearing) or major occlusion of the contour by surgical implants. In addition,
future work should analyze potential extensions to our method to promote axis
estimation in cases of multi-fragment fractures.

Disclaimer. The methods and information presented here are based on research
and are not commercially available.
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