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Abstract. Automatic blood vessel extraction from 3D medical images
is crucial for vascular disease diagnoses. Existing methods based on con-
volutional neural networks (CNNs) may suffer from discontinuities of
extracted vessels when segmenting such thin tubular structures from
3D images. We argue that preserving the continuity of extracted vessels
requires to take into account the global geometry. However, 3D convolu-
tions are computationally inefficient, which prohibits the 3D CNNs from
sufficiently large receptive fields to capture the global cues in the entire
image. In this work, we propose a hybrid representation learning app-
roach to address this challenge. The main idea is to use CNNs to learn
local appearances of vessels in image crops while using another point-
cloud network to learn the global geometry of vessels in the entire image.
In inference, the proposed approach extracts local segments of vessels
using CNNs, classifies each segment based on global geometry using the
point-cloud network, and finally connects all the segments that belong
to the same vessel using the shortest-path algorithm. This combination
results in an efficient, fully-automatic and template-free approach to cen-
terline extraction from 3D images. We validate the proposed approach
on CTA datasets and demonstrate its superior performance compared to
both traditional and CNN-based baselines.
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1 Introduction

Extracting tubular objects, e.g., blood vessels, has become a crucial task
in computer-assisted diagnosis (CAD) of many diseases. For example, vessel
lumen segmentation and centerline extraction are prerequisites for vessel curved-
planar reconstruction (CPR) [6] from computed tomography angiography (CTA)
images, which further facilitates stenosis detection and plaque identification in
clinical diagnosis. However, it is usually time-consuming to segment vessel and
extract centerline from various medical images. Instead, automatic vessel seg-
mentation and centerline detection play a more and more important role for
quantitative analysis of vascular diseases. [1,7,26].

Recently, convolutional neural networks (CNNs) have been widely applied
in 3D medical image segmentation. However, segmenting vessels in 3D medical
images is still very challenging. The blood vessels have delicate tubular struc-
tures with a large variety in long-range topology, which cannot be captured by
slice-wise or patch-wise convolutional operations in most deep learning based seg-
mentation methods [5,9,24]. Moreover, at the presence of imaging artifacts which
often exist in medical images, CNN-based segmentation algorithms are prone to
missing some segments of vessels, resulting discontinuities in the extracted vessel
centerline [18,23,28]. To preserve the correct topology of the extracted vessels,
previous methods may rely on user input that annotates start and end points of
each vessel [17,22]. Then, a more complete vessel centerline can be found by a
minimal-cost path-based algorithm [2,4,8,10]. To avoid manual input, another
approach to ensure correct topology is to build an atlas or template of the target
vessels from training samples and register the template to the test image [27,28].
However, this approach is not very generalizable as the vascular structure of the
test sample might be very different from the template.

In this paper, we present a novel approach for vessel centerline extraction,
which is able to ensure the connectivity of extracted vessels without the need
of any manual input or vessel template. The key idea is to use a patch-wise
3D CNNs to segment vessel mask and regress vessel centerline heatmap from
the input image, and meanwhile use another point-cloud network to label the
extracted vessel segments, such that segments belonging to the same vessel can
be connected in a post-processing step. This hybrid approach makes the best use
of both worlds: patch-wise CNNs for local appearance learning and point-cloud
networks for global geometry learning, resulting in a robust and efficient algo-
rithm for automatic centerline extraction. We also propose a geometry-aware
grouping strategy to improve the performance of point-cloud network for ves-
sel labeling. The effectiveness of the proposed framework is validated on two
datasets: a public dataset of coronary artery CTA scans and an in-house dataset
of head and neck artery CTA scans. Experimental results show that our approach
outperforms existing baseline methods in terms of both accuracy and complete-
ness of extracted centerlines.

In summary, we make the following contributions: (1) A novel hybrid repre-
sentation learning approach for fully-automatic and template-free vessel center-
line extraction; (2) A geometry-aware grouping method that utilizes the skele-
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Fig. 1. Overview of the proposed approach. The framework consists of three
components: Vessel segmentation (blue block): the input CTA images are divided
into 3D patches with overlap and then a 3D CNNs are utilized to efficiently learn local
features of vascular objects. Vessel labeling (red block): vascular skeletons produced
by thinning the segmentation results are fed into a point-cloud network to learn the
global geometry of vessels and realize vascular branch labeling. Centerline extraction
(green block): based on a cost map, which is constructed from the centerline heatmap
and the labeled skeleton, a minimal cost path algorithm is finally utilized to extract
the complete vessel centerline. (Color figure online)

ton’s connection property to improve the performance of vessel labeling; (3) The
state-of-the-art performance on the public benchmark.

2 Methods

Given a 3D CTA image consisted of a sequence of 2D slices, the objective is to
segment the arteries and delineate their centerlines. The state-of-the-art segmen-
tation methods are mostly based on CNNs. Due to the heavy computation of 3D
convolutions, an input 3D image needs to be divided into overlapped patches and
fed into the segmentation network separately. This leads to restricted local recep-
tive fields, which may not provide sufficient information to distinguish between
arteries and veins, resulting false detection. Moreover, there is no guarantee on
the connectivity of extracted vessel segments from patch-based CNNs. A solu-
tion is to connect the segments that belong to the same vascular branch in
post-processing. But to achieve this we need to label all the segments, which is
also difficult for a patch-based CNN as vessel labeling requires considering the
global geometry of the vessels.

To address these issues, we propose a hybrid approach that consists of
a patch-based CNNs for local vessel segmentation, a point-cloud network
for global vessel labeling and a path-finding algorithm for final centerline
extraction. Figure 1 provides an overview to our approach.

2.1 Vessel Segmentation

At first, we use a 3D CNNs to learn vascular local appearance features from 3D
patches of the original CTA images and produce a coarse vessel segmentation. An
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(a) Patch-based 3D CNN (b) Our hybrid approach
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Fig. 2. Comparison. Patch-based 3D
CNNs extract extra non-vascular tissues
and miss some true segments (left). Our
hybrid approach is able to remove non-
vascular tissues and connect the dis-
jointed segments (right).
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Fig. 3. Generated vessel skeletons.
Head and neck arteries (the top row)
are divided into 17 categories distin-
guished by color. Coronary artery (the
bottom row) are divided into 3 cat-
egories including a category for false
positives.

UNet [15] backbone architecture with an encoding-decoding module is selected
to transform the input image to the segmentation mask. Moreover, to explore
long-range contextual information inside 3D patches, we embed a dual attention
module [3] on top of the UNet backbone. Finally, a combination of a binary
cross-entropy loss and a Dice loss is used as the total segmentation loss. Please
refer to the supplementary for more details.

2.2 Vessel Labeling

Due to the lack of the global information in the patch-wise 3D CNNs, the vessel
segments obtained from the vessel segmentation procedure tend to contain some
false-positive results like veins and also miss some parts of tiny or tortuous
vessels. We propose to perform a vessel labeling procedure that classifies the
segmented vessels into different branches. Then such semantic labels can be used
to remove non-vascular segments and group discontinuous vessel segments, as
shown in Fig. 2. The vessel labeling procedure is implemented by first generating
a set of points which represent vascular skeleton from the vessel segmentation
results and then using a point-cloud network to predict labels of these skeleton
points.

Point-Cloud Generation. As it is inefficient to directly label vessel segments
in 3D volumes using CNNs, we propose to perform the labeling on vascular skele-
tons represented by a set of points, which can reduce complexity and preserve
original geometric information of vessels. To generate vascular skeletons from
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(a) MSG (b) GAG

Fig. 4. Comparison of points group-
ing methods. (a) Multi-scale group-
ing (MSG) in the PointNet++:
the grouping areas are multi-scale ε-
sphere and grouped points may come
from different skeleton components. (b)
Geometry-aware grouping (GAG):
the grouping areas trend to stretch along
the lines and group points from the same
islands. (Color figure online)
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Fig. 5. Centerline Extraction. (a)
Centerline heatmap: the heatmap
has larger value in point closer to the
centerline and the points laying out-
side the vascular radius are set to a
step-down low value. (b) Cost map:
the cost map is built by combining
the heatmap and the skeleton lines.
(c) Minimal cost path: based on the
cost map, a minimal cost path can be
extracted to connect the broken lines as
the complete vessel centerline. (Color
figure online)

the vessel segments, a 3D thinning algorithm [11] is applied to erode the ves-
sel segments and finally obtain single-voxel-width skeleton points, as shown in
Fig. 3. The generated skeletons are composed of discrete and unordered points
lying on the center of the vascular lumen, which represent vascular geometry.

Vessel Labeling Network. Given a set of vascular skeleton points generated
from vessel segments {Qi ∈ R

3, i ∈ 1, 2, ...,M}, the target of the vessel labeling
network is to predict the label of each point, f(Qi) → Yj (Yj ∈ Z, j ∈ 1, 2, ...,K),
as shown in Fig. 3. It is similar to point-cloud semantic segmentation tasks in
3D computer vision. Any point-cloud network can be adopted, such as the state-
of-the-art PointNet++ [14] and dynamic graph CNNs (DGCNN) [21]. We will
provide a comparison between them in experiments.

Geometry-Aware Grouping. A particular property of the skeleton points
compared to a general point cloud is the given connectivity among adjacent
skeleton points. Specifically, skeleton points can be divided into separated com-
ponents using a connected-component labeling (CCL) algorithm [12]. However,
both PointNet++ and DGCNN are realized to group points by k-nearest neigh-
bor (k-NN) algorithm based on L2 distance, which ignores the given geometry
of the vessel skeletons. As demonstrated in Fig. 4(a), the L2-based methods are
more likely to group points belonging to different components. To address this
issue and leverage the skeletons’ connection property, we propose a geometry-
aware grouping method (GAG) to modify the distance based on the connection
relationship. The modified distance between two points is computed by
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Di,j =

{
λn ‖xi − xj‖2 if xi,xj ∈ Cn.

(1 − λn) ‖xi − xj‖2 otherwise.
(1)

where λn (λn < 0.5) is a weight, Cn is the n-th component. As shown in Fig. 4(b),
the grouping area in GAG is prone to stretching along the skeleton lines and
the points belonging to the same connected component are more likely to be
grouped. This design facilitates local feature consistency in the same component
and consequently improves the accuracy of vessel labeling as evaluated in the
experiments.

2.3 Centerline Extraction

After vessel labeling, each vessel segment is assigned a semantic label. The
semantic label can be used to remove non-vascular tissues and provide the guid-
ance to connect disjointed vessel segments. Specifically, we first determine which
segments should be connected and then use a minimal cost path method to con-
nect them and output final centerlines based on a cost map. The cost map is
constructed by a centerline heatmap regressed from another 3D CNNs and the
labeled vessel skeletons.

Centerline Heatmap Regression. The centerline heatmap is defined as the
opposite of a distance map, where points closer to the vessel centerline have
larger values and points outside the vascular radius have a step-down low value,
as shown in Fig. 5(a). Considering that the probability map obtained from the
segmentation network has only learned the difference between background and
the vessel (e.g. edge features) rather than the centerline feature within the vessel
lumen, we adopt another 3D CNN similar to the network used in vessel segmen-
tation to regress the centerline heatmap. The mean square error (MSE) loss is
used to train the network. Based on the centerline heatmap, we construct a cost
map to guide the minimal cost path search algorithm as shown in Fig. 5(b). In
areas where vessel segments exist, the cost map directly assigns a large value
to the skeleton points (red lines in Fig. 5(b)) and a small value to the points
elsewhere (gray areas in Fig. 5(b)).

Minimal Cost Path. Given vessel skeletons and their labels, we successively
merge the disjointed segments with the same label. Paired boundary points with
the same label are put in a priority queue according to the distance between
the two points in the pair. We take a pair successively from the queue and then
the minimal cost path is found by Dijkstra algorithm [20] to connect the two
boundary points, as shown in Fig. 5(c). If the two segments represented by the
two points are connected in the previous step, we skip the pair and go on until
the queue is empty.

3 Experiments

We evaluate the proposed method on two datasets: a public coronary artery
dataset and a private head and neck artery dataset. The first dataset is mainly
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Table 1. Performance comparison of automatic coronary artery centerline extraction
methods. OV represents the completeness of extracted vessel centerline and is similar to
Dice coefficient. OF determines the ratio of a coronary artery that has been extracted
before making an error. OT gives an indication of how much the extracted centerline
overlaps with the clinically relevant centerline reference (radius ≥ 0.75 mm).

Methods OV (%) OF (%) OT (%)

ModelDrivenCenterline [28] 92.4 80.6 93.4

SupervisedExtraction [7] 90.6 70.9 92.5

GFVCoronaryExtractor [23] 93.7 74.2 95.9

DepthFirstModelFit [25] 84.7 65.3 87.0

AutoCoronaryTree [19] 84.7 59.5 86.2

Our approach 95.8 72.3 96.3

a MSG b GAG

Fig. 6. Comparison of different grouping
methods used in vessel labeling networks.
It can be seen that the proposed GAG
method achieves better local consistency
of the predicted vessel labels.

Low Contrast

Artificial Noise

Fig. 7. Vessel curved-planar recon-
struction (CPR) of the coronary artery
based on the extracted centerline. Our
approach can extract complete center-
lines under serious imaging artifacts.

used to compare our method with existing baseline methods in literature. The
second dataset is mainly used for ablative study to verify our system designs. Fol-
lowing [16], extracted centerlines are evaluated based on three metrics, namely
total overlap (OV), overlap until first error (OF), and overlap with the clini-
cally relevant part of the vessel (OT). The stage-wise results for the proposed
framework are demonstrated in Fig. 8.

Implementation Details. In vessel segmentation, we randomly crop 3D
patches with the size of 256 × 256 × 32 for the head and neck dataset and
32 × 32 × 32 for the coronary artery dataset. The ResNet34 is used as the
encoder in the UNet architecture which starts with 32 feature channels that
are doubled in each scale, and the max-pooling layer is removed from the origi-
nal residual network. All convolutions are specified as 3 × 3 × 3 kernels, except
the last two ResNet blocks, which are 3 × 3 × 1 to reduce the parameter count.
We employ the Adam optimizer with a polynomial learning rate which equals
to 0.001 × (1 − iter

total iter )0.9. In vessel labeling, the inputs are skeleton points,
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Table 2. Performance comparison of different variants of vessel labeling networks on
the private head and neck artery dataset. Four metrics are reported: the accuracy of
vessel labeling and OV, OF and OT of four main vessel centerlines including left and
right common carotid artery (L/RCCA), left and right vertebral artery (L/RVA).

Vessel Labeling Accuracy (%) OV (%) OF (%) OT (%)

PointNet [13] 92.2 96.1 84.5 96.6

PointNet++ [14] 95.1 96.5 85.8 97.0

PointNet++ (GAG) 97.0 97.2 85.7 97.6

DGCNN [21] 96.5 96.6 84.4 97.1

DGCNN (GAG) 97.2 97.0 84.9 97.4

Vessel Segmentation Vessel Skeleton Labeling Labeled Vessel Vessel Centerline

Fig. 8. Vessel segmentation, labeling and centerline extraction. Top: head and
neck arteries. Note that the discontinuous RVA is connected in the centerline extraction
procedure. Bottom: coronary arteries. Note that the non-vascular tissues are removed
in the vessel labeling procedure and the discontinuous vessel segments are connected.

which are generated from vessel segments and resampled to 3000 points for each
sample. The inital learning rate is set to 0.001, which is reduced by half every
30 epochs. The weight λn in GAG is set to be 0.3.

Experiments on the Coronary Artery Dataset. This public dataset con-
tains 100 cardiac CT angiography (CCTA) scans collected from the clinic for
training and 32 CCTA scans from [16] for evaluation. We train the vessel seg-
mentation network and vessel labeling network on the annotated coronary artery
CTA images and the vessel skeletons are labeled as three categories including
right arteries, left arteries and false-positive venous vessels. According to the
ablation study in the head and neck artery dataset, we use the Pointnet++
with the GAG module as our vessel labeling network. The quantitative com-
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parison is listed in Table 1 and the visualization of results is showed in Fig. 7.
Our hybrid approach achieves the highest performance in terms of OV and OT,
respectively, indicating that the centerlines extracted by the proposed method
are more complete than those produced by other methods.

Experiments on the Head and Neck Artery Dataset. This private dataset
collected from the clinic contains 450 CTA scans, each of which has a manually
annotated vessel mask. The dataset is split into 380 scans for training, 20 for
validation and 50 for testing. In the dataset, vessel skeletons are labeled as
17 categories including left and right common carotid artery (L/RCCA), left
and right vertebral artery (L/RVA), etc. Table 2 shows the evaluation results
of several variants of our system with different point-cloud network designs. It
can be seen that, with the geometry-aware grouping (GAG) method, the vessel
labeling accuracy of both PointNet++ and DGCNN can be improved. Figure 6
shows the GAG can facilitate local consistency of the skeleton components.

4 Conclusions

We propose an automatic and template-free approach to 3D vessel centerline
extraction based on hybrid representations, which ensures the connectivity of
extracted centerlines. We show that the hybridization between learning local
appearance with patch-based CNNs and learning global geometry with point-
cloud networks results in an efficient and robust framework to extract geometric
objects from 3D data. We demonstrate superior performance on artery centerline
extraction from CTA images and believe that the proposed approach can also
be applied in other centerline or skeleton extraction tasks.
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