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Abstract. Breast screening is an effective method to identify breast can-
cer in asymptomatic women; however, not all exams are read by radiolo-
gists specialized in breast imaging, and missed cancers are a reality. Deep
learning provides a valuable tool to support this critical decision point.
Algorithmically, accurate assessment of breast mammography requires
both detection of abnormal findings (object detection) and a correct
decision whether to recall a patient for additional imaging (image classi-
fication). In this paper, we present a multi-task learning approach, that
we argue is ideally suited to this problem. We train a network for both
object detection and image classification, based on state-of-the-art mod-
els, and demonstrate significant improvement in the recall vs no recall
decision on a multi-site, multi-vendor data set, measured by concordance
with biopsy proven malignancy. We also observe improved detection of
microcalcifications, and detection of cancer cases that were missed by
radiologists, demonstrating that this approach could provide meaningful
support for radiologists in breast screening (especially non-specialists).
Moreover, we argue that this multi-task framework is broadly applicable
to a wide range of medical imaging problems that require a patient-level
recommendation, based on specific imaging findings.
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1 Introduction

Breast cancer is the leading cause of cancer death in women world wide [19].
Screening aims to increase early detection by identifying suspicious findings in
asymptomatic women, and has been shown to reduce the risk of dying from
breast cancer [17]. However, radiologists struggle to keep up with the volume of
breast screening, increasing the risk of burn-out and missed cancer [13]. Thus,
computer algorithms that can assist radiologists in reading mammography exams
have the potential for a significant impact on women’s health.
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The task of screening mammography is to decide whether or not to recall
a patient for additional work-up. This clinical decision is made on the basis
of abnormal findings within the breast, but may also be influenced by the
patient’s risk profile, which can be inferred from the mammogram’s overall
appearance [21]. Despite the dual nature of this problem, requiring both object
detection and image classification, and the vast literature on breast screening
decision support, we are aware of only one publication utilizing multi-task learn-
ing (MTL) [9].

Previous methods based on image classification have produced competitive
results [22], somewhat surprisingly, given the fact that suspicious findings may
occupy only 1% of a mammogram. Detection-based methods, on the other hand,
have the clear advantage that they are trained on highly discriminative find-
ings, and have demonstrated good results on detection of masses and calcifi-
cations [1,2,7]. However, local annotations are inherently subjective, and are
typically not as consistent as outcome-based ground truth used by classification.
Furthermore, we observe that detection-only approaches potentially overlook
ancillary findings, which can be unlabeled. There are many ancillary findings
that have significant implication for determining malignancy, such as skin thick-
ening, nipple retraction, neovascularity, adenopathy and multifocal disease.

A few notable publications have combined image classification and detec-
tion. In [8,12], the authors initialize a classification model from a patch-based
model pretrained on locally annotated data. However, weight sharing in this
approach is sequential, offering much less flexibility than MTL. In addition, sim-
ilar to classification methods mentioned above, these models can only provide
indirect evidence for their decision via saliency maps. In [4], the authors address
detection, segmentation and classification; however, similar to Mask R-CNN [5]
and RetinaMask [3], their method applies only to detection ROIs, and does not
address classification of the full image, a central focus of our paper. In [20], the
authors input heatmaps from a sliding-window classifier as an additional chan-
nel to a study-level classification model, whereas in [18], the authors combine a
sliding-window classifier and image classifier using a Random Forest, and in [14],
the authors employ ensemble averaging over multiple classification and detection
models; however, none of these approaches benefit from weight sharing across
tasks. The paper that is methodologically most similar to ours is [9]. This work
applies MTL of segmentation and image classification; however, they achieve a
smaller performance improvement, and only evaluate their model on DDSM.

In this paper, we combine both image classification and object detection in
a single multi-class MTL framework to derive the benefits of strong outcome-
based ground truth information, global image features, and highly discrimina-
tive, albeit possibly noisy, local annotations. Using this flexible approach, we
observe a significant performance boost in classification of malignant vs non-
malignant images, and an improvement in detection of malignant calcifications.
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2 Methods

2.1 Baseline RetinaNet Detector

We use the state-of-the-art RetinaNet model [11] as our baseline detection algo-
rithm. RetinaNet is a single-shot object detector that utilizes a novel focal loss
to counteract background-foreground imbalance, and has been used for object
detection in several fields, including medical [7,23]. The overall architecture is
composed of a ResNet34-Feature Pyramid Network (FPN) backbone, and two
sub-networks performing (i) classification, and (ii) coordinate regression, for each
of the candidate detections.

2.2 Proposed Multi-task Algorithm

Building from the baseline RetinaNet model, we added an image classifica-
tion subnet to ResNet34, to perform full image classification. In this way, the
ResNet34 weights were shared between the image classification and detection
tasks (Fig. 1). The image classification subnet matches the architecture of the
published ResNet34 classification model [6], consisting of global pooling followed
by a fully-connected layer. We experimented with additional Conv blocks fol-
lowed by multiple fully-connected layers; however, it did not further improve
performance. The final loss is a combination of categorical cross-entropy for
image classification, and the focal loss and regression loss for object detection.
We used a relative weighting factor, λ, to balance the two tasks. Best results
were obtained for λ = 0.2, and γ = 2 and α = 0.5 in the focal loss [11].

Lmulti-task = Lfocal + Lregression + λLcross entropy

Fig. 1. Architecture of our proposed algorithm. Starting from the state-of-the-art Reti-
naNet algorithm, we added a classification task with shared weights (ResNet34) and
multi-task loss. The trained algorithm outputs both detected findings, each with their
own classification (e.g., soft-tissue lesion vs calcification) and probability of malignancy,
as well as the probability of malignancy for the full image.

We also made multiple changes to the standard RetinaNet model underlying
our algorithm. All changes were applied consistently, for fair comparison of the
baseline and proposed algorithms.
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First, we addressed the issue that the RetinaNet model is initialized from pre-
trained ImageNet weights containing 3 color channels. The typical approach in
medical imaging is to replicate the grayscale image 3-fold to match the expected
input of ImageNet models. We observe that there is a much simpler and more
efficient solution. We take the ImageNet model, and sum each of the first layer
kernels over its channel dimension, reducing it to a single channel input. It is
trivial to show that this is mathematically equivalent to replicating the input
image, due to the linearity of the convolution operation.

Additional changes were made as follows: (i) To address the fact that findings
such as microcalcification clusters may have irregular shapes, yielding a low IoU
with the generated anchor boxes, we use the best matching policy of [3]. (ii) We
also use a wider range of aspect ratios {1:3, 1:2, 1:1, 2:1, 3:1} for the anchor
boxes to account for elongated findings. (iii) We modified the FPN architec-
ture by removing the highest resolution level, because the majority of anchors
from the highest level were “easy” background anchors that made negligible
contribution to the focal loss. In practice, we found that small findings could
be adequately explained with anchors from the second highest level, leading to
a more efficient network, without loss in performance. (iv) In the focal loss,
we normalized positive and negative anchors separately, whereas the original
implementation normalized both positive and negative anchors by the number
of positive anchors. By normalizing positive and negative anchors separately, we
gave a greater relative weight to positive anchors in the loss computation, which
we found to improve performance.

2.3 Model Training

Training experiments were conducted on hardware with 80 Intel(R) CPUs and
8 T V100-SXM2 GPUs with 32 GB memory per GPU. The training architec-
ture was developed in Python 3.7.6 using packages: Pytorch 1.3.0, Torchvision
0.4.2, and Apex 0.1 automatic mixed precision (AMP) from Nvidia. Using AMP
enabled training with a batch size of 4 full-sized images per GPU. The train-
ing environment was deployed in Docker 18.06.2-ce containers based on Ubuntu
Linux 18.04.2 LTS. Training time ranged from 3–6 days for up to 60 epochs. At
inference time, the model can be run with single-image batches, and fits on a
consumer-grade GPU card with 12 GB memory.

2.4 Dataset and Performance Evaluation

Model training and evaluation was done on a multi-site, multi-vendor in-house
research data set containing 8613 images (5825 negative, 2788 positive) from 2699
patients (1351 negative, 1348 positive) at 4 geographically distinct sites within
the USA. Images were acquired on Hologic (70%), Siemens (25%), and GE (3%)
machines (2% Fuji or undefined). Data was split 80/10/10 at the patient level for
training, validation and test, respectively, ensuring that images from the same
patient weren’t included in multiple splits. Images were scaled to a pixel size of
100 × 100µm, cropped to eliminate background, padded to match the largest



Multi-task Learning for Screening Mammography 245

image in the batch (approx. 2400× 1200 pixels), and then normalized to [−1, 1].
Training time augmentation was used, including zoom.

Patient-level ground truth was defined as follows. Positive cases were screen-
ing exams with biopsy proven malignancy within 12 months. Negative exams
were either screening negative (BI-RADS 1 or 2 with 24–48 months of nor-
mal follow up), diagnostic negative (recalled with negative diagnostic exam), or
biopsy negative (screening exams with biopsy proven benign findings within 12
months). For positive cases, only the biopsied breast was used in training and
test, the contralateral breast was discarded due to lack of follow up.

Finding-level ground truth was generated by expert annotation of all biopsy
positive findings. No additional findings were annotated. During training and
test, annotated findings were assigned to two classes: (i) soft-tissue lesions
(masses and asymmetries; 1655 in train, 165 in test), and (ii) calcifications (980
in train, 102 in test). Architectural distortions were not included in this study.

To generate test results that are representative of performance on a screen-
ing population [10], inverse weighting [16] was applied to simulate the following
prevalence: screening negative (88.4%), diagnostic negative (9.9%), biopsy neg-
ative (1.2%) and biopsy positive (0.5%).

We also evaluated our algorithm on a separate, small data set containing 24
interval cancer cases, where the screening exam was assessed as negative by a
radiologist, and the patient returned with cancer within 12 months. These cases
were selected from a larger pool of interval cancers, on the basis that in each
case, the malignant finding is visible upon retrospective investigation.

3 Results

Below we demonstrate that our method improves both image classification per-
formance (Sect. 3.1), and detection performance (Sect. 3.2) over strong baseline
algorithms. All results are summarized in Table 1.

3.1 Image Classification Analysis

We compared five methods of image classification: (i) ResNet34, a popular clas-
sification architecture and the backbone of RetinaNet, (ii) RetinaNet, using the
max detection score as the image classification score, as in [15] (iii) an ensemble
of ResNet34 and the max detection score from RetinaNet, (iv) our proposed
method, using the max detection score from the detection head as the image
classification score, and (v) our proposed method, using the classification head.

Using the classification head from our proposed method increases the AUC
for image classification by 0.058 (p-value < 10−4), from 0.851 (95% CI (0.824–
0.876)) for the second-best performing algorithm (ensemble of ResNet34 and
RetinaNet) to 0.909 (0.890–0.927). Compared to the naive method of using the
maximum detection score from RetinaNet [15], we see an even greater improve-
ment of 0.195 (p-value < 10−4) from an AUC of 0.714 (0.679–0.750).
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We show all ROC curves with corresponding AUCs in Fig. 2. Our method
yields better performance for a continuum of operating points. For example, at an
operating point with sensitivity of 0.80, our method increases the specificity from
0.471 using the maximum finding output in RetinaNet, 0.495 using the maximum
finding output with our proposed architecture, 0.712 using ResNet34, and 0.723
using an ensemble of ResNet and RetinaNet, to 0.876 with the classification head
of our method (p-value < 10−4 in all cases).

Fig. 2. ROC analysis. ROC curves obtained for (i) ResNet34, (ii) baseline RetinaNet
using the max-detection score, (iii) ensemble of ResNet34 and the max-detection score
from baseline RetinaNet, (iv) our proposed method using the max-detection score, and
(v) our proposed method using the classification head.

3.2 Finding Detection Analysis

As reported in Sect. 2.4, we train the detection algorithm with two different kinds
of annotated findings: soft tissue lesions (masses and asymmetries) and calcifica-
tions. We report detection performance for each finding type individually, using
Free Response ROC Curve (FROC) analysis (Fig. 3).

In Table 1, we show the trade-off between sensitivity and the number of
FPPIs at different operating points for soft tissue lesions, calcifications, and
both finding types combined (average). For example, at a sensitivity of 0.7, the
number of FPPIs is reduced from 9.04 to 2.09 (77% reduction; p < 10−4) for
calcifications, from 1.38 to 1.39 (0.72% increase; not significant) for masses, and
from 3.08 to 1.65 (46% reduction; p < 10−4) for both finding types combined.
Similarly, at a fixed number of 2 FPPIs, the sensitivity increases from 0.58 to
0.7 for calcifications (21% increase; p 0.04), from 0.74 to 0.77 for masses (4%
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Fig. 3. FROC analysis. FROC curves show sensitivity against the average number
of false positives per image (FPPI) for detection of (a) soft-tissue lesions, and (b)
calcifications. Baseline: RetinaNet; proposed: detection head of our multi-task network.

Table 1. Detection and classification results for baseline and proposed algorithms.
p-values are reported as follows: *(p < 0.05); **(p < 0.01); ***(p < 10−3)

Resnet34 RetinaNet Ensemble Proposed

Classification

AUCclassification 0.83 – 0.85 0.91***

AUCmax detection – 0.71 – 0.72

Detection average soft-tissue lesions and calcifications

Se @ FPPI = 2.0 – 0.67 – 0.76***

Se @ FPPI = 3.0 – 0.74 – 0.80**

FPPI @ Se = 0.6 – 1.51 – 0.89***

FPPI @ Se = 0.7 – 3.08 – 1.65***

Detection calcifications

Se @ FPPI = 2.0 – 0.58 – 0.70*

Se @ FPPI = 3.0 – 0.63 – 0.77**

FPPI @ Se = 0.6 – 2.66 – 1.12***

FPPI @ Se = 0.7 – 9.04 – 2.09***

Detection soft-tissue lesions

Se @ FPPI = 2.0 – 0.74 – 0.77

Se @ FPPI = 3.0 – 0.77 – 0.83*

FPPI @ Se = 0.6 – 0.54 - 0.69

FPPI @ Se = 0.7 – 1.38 - 1.39
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increase; not significant), and from 0.67 to 0.76 for both findings combined (13%
increase; p < 10−3).

We also evaluated our algorithm on a separate set of 24 interval cancer cases,
where the screening exam was assessed as negative by a radiologist, and the
patient returned with cancer within 12 months. At a threshold of 0.85, our
algorithm achieved a sensitivity of 0.67 with 1.4 FPPI for soft tissue lesions, and
a sensitivity of 0.5 with 3 FPPI for calcifications on the interval cancer cases.
In Fig. 4, we show example detections from our algorithm. Figure 4(a) is a case
of malignancy that was detected during screening, and Fig. 4(b) is a case of an
interval cancer.

Fig. 4. Example detections from our proposed method. Predicted boxes obtained with
a detection threshold of 0.85 are shown for soft-tissue lesions (prediction: red; ground
truth: green) and calcifications (prediction: yellow; ground truth: blue). (a) A mammo-
gram containing lesions detected during breast screening, with algorithm output over-
laid. Enlarged candidate detections show: (i) a true positive detection of a malignant
mass, (ii) a false positive detection of a malignant mass, (iii) a true positive detection of
malignant calcifications, and (iv) a false positive detection of malignant calcifications
(the calcifications are benign). (b) Detection, by our algorithm, of a malignant mass
that was missed by a radiologist. (Color figure online)

4 Conclusion

We have presented a flexible and efficient single-shot, multi-class MTL algorithm
that takes as input a screening mammogram and returns a probability of malig-



Multi-task Learning for Screening Mammography 249

nancy for the image, as well as detected findings. This method leverages both
subjective expert annotations and non-subjective outcome-based ground truth.

We tested our method on a simulated screening population and achieved an
AUC of 91% for image classification, an improvement of 6% (p < 10−4) over
the second-best performing method. We also observed an improvement in the
detection of malignant microcalcifications, but not for soft-tissue lesions. This
may be due to the fact that the baseline performance was much higher for soft-
tissue lesions, leaving less room for improvement. Compared to other published
results on public datasets [1,2,7], we achieved a lower detection performance;
however, this may be due to the challenging multi-site, multi-vendor nature of
our data.

In future, we plan to apply methods such as RetinaMask [3], to address the
issue of low IOU between findings and RetinaNet’s bounding box representation.
We anticipate this will further improve the detection performance. We will also
focus on detecting biopsy negative findings, which currently have a 10x higher
false positive rate compared to screening negative cases when evaluated at an
operating point with sensitivity of 80%.

We demonstrated the potential impact of our algorithm by using it to success-
fully detect cancer that was missed by radiologists during screening but visible
retrospectively. Moreover, we feel that this approach will be useful for a wide
range of medical imaging problems, where a clinical decision is made at a patient
or organ level, but finding-level information confers significant advantage, both
during training, and as a form of direct explanatory output at run time.
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