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Abstract. Reconstructing Portal Vein and Hepatic Vein trees from con-
trast enhanced abdominal CT scans is a prerequisite for preoperative
liver surgery simulation. Existing deep learning based methods treat vas-
cular tree reconstruction as a semantic segmentation problem. However,
vessels such as hepatic and portal vein look very similar locally and
need to be traced to their source for robust label assignment. Therefore,
semantic segmentation by looking at local 3D patch results in noisy mis-
classifications. To tackle this, we propose a novel multi-task deep learn-
ing architecture for vessel tree reconstruction. The network architecture
simultaneously solves the task of detecting voxels on vascular centerlines
(i.e. nodes) and estimates connectivity between center-voxels (edges) in
the tree structure to be reconstructed. Further, we propose a novel con-
nectivity metric which considers both inter-class distance and intra-class
topological distance between center-voxel pairs. Vascular trees are recon-
structed starting from the vessel source using the learned connectivity
metric using the shortest path tree algorithm. A thorough evaluation
on public IRCAD dataset shows that the proposed method considerably
outperforms existing semantic segmentation based methods. To the best
of our knowledge, this is the first deep learning based approach which
learns multi-label tree structure connectivity from images.

Keywords: Deep learning · Vessel tree reconstruction · Vessel
segmentation · Liver vessel · Centerline detection · Computed
tomography

1 Introduction

Primary liver cancer is the third most common cause of cancer mortality [2].
Liver resection is currently the most prevalent treatment method with 5-year
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survival rates of up to 40% [11]. To perform a safe liver resection, preoperative
surgical simulations have been found to be very useful [17,19]. In these simula-
tions, a 3D model of the liver which shows the anatomical structures of portal
and hepatic veins together with tumour location is reconstructed. Using vascular
reconstructions, blood flow patterns around the tumour is analysed to compute
the resection region. The analysis of blood flow requires not just segmentation
of vascular structures but their representation as a tree structure.

Raw CT image Semantic segmentation results TopNet results

Fig. 1. Portal and hepatic vein structures obtained with semantic segmentation and
proposed TopNet. The red rectangles indicate vessel misclassifications. (Color figure
online)

Rule based methods for hepatic and portal vein reconstruction have been
studied and a comprehensive literature survey can be found in [6]. Most popu-
lar rule based methods are based on global optimization techniques like graph
cuts [1,20]. Graph cut based techniques use a handcrafted energy term between
vascular nodes. A downside of such methods is that they work well only in
conditions for which the rules were handcrafted. For instance when both por-
tal and hepatic veins are high in contrast [20]. Recently, deep learning-based
semantic segmentation methods have been proposed for liver vessel recognition
tasks [9,13,14]. In these methods, semantic segmentation is used to classify a
voxel by extracting information from a local 3D patch (also known as the net-
work’s receptive field) centered around it. However, since portal and hepatic veins
look very similar locally, these methods result in noisy vessel misclassifications
as shown in Fig. 1. Such noisy misclassifications magnify the tree reconstruc-
tion error. Additionally, within semantic segmentation literature, simultaneous
segmentation of portal and hepatic vein from CT volumes has not been tack-
led. Either only hepatic [13,14] or only portal vein [9] segmentation has been
targeted.

In this work, we propose TopNet, a deep metric learning method for vascular
tree reconstruction. The main idea is to learn the connectivity metric between
vascular voxel pairs rather than to assign absolute labels. Conceptually, TopNet
is a two stage network. The first stage computes center-voxels along the center-
lines of all the vessels. The second stage learns the connectivity metric between
center-voxel pairs in the form of topological distance between the voxels along
the vascular tree. To generate a global tree, center-voxels are connected consec-
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utively starting from the vessel source using the learned topology metric. We
summarize the main contributions of this work as follows:

1. Proposed a novel multi task architecture designed for tree reconstruction,
which detects nodes (voxels on vascular center lines) and estimates edges
(connectivity between center-voxels) in the tree to be reconstructed.

2. Proposed a novel topology metric which learns both inter-class distance and
intra-class topological distance between vascular voxel pairs in multiple trees.

3. Verified that the proposed method achieves higher accuracy than existing
methods with a large margin for portal and hepatic vein reconstruction.

2 Related Work

TopNet uses deep metric learning to connect detected center-voxels. In this
regard, our approach is closer to deep metric learning approaches for image
instance segmentation tasks [4,5,15,18]. These methods map pixels from image
space to features space such that pixels belonging to the same instance are close
to each other and separated by a margin if they belong to different instances. The
methods differ in how they measure similarity in the feature space. Among the
similarity metrics, cosine similarity has been used extensively [15,18]. Another
way in which these methods differ is the way pixels are clustered in the learned
feature space to generate instances. In this work, the task is not just instance
segmentation (vessel segmentation) but to learn connectivity within the instance
(vessel trees). For this purpose, we propose a novel deep metric learning app-
roach.

3 TopNet

The proposed TopNet is a multi-task 3D Fully Convolutional Neural Network
(3D-FCN). All the tasks share a common base encoder and task specific decoders
as shown in Fig. 2. The proposed architecture is similar to 3D-UNet [3], with
the difference that our approach has three decoders for three different tasks
instead of one. Such Multi-task architectures with shared encoder and task spe-
cific decoders have also been proposed earlier [12]. For detailed architecture,
please refer to the supplementary material. The first task is extraction of all the
vessels from the image. The second task is assigning a centerness score to all the
voxels within the vessel mask such that the centermost voxel is assigned a min-
imum value. Using this centerness score, center-voxels are computed using non-
maximum suppression. The final task is learning connectivity between center-
voxels, which is proportional to topological distance between the center-voxels.
Figure 2 shows the conceptual representation of topological distance with solid
red lines. The network is trained by minimizing the sum of loss terms from
each of the three tasks. The formulation of loss for each task is described in the
following sections.
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Fig. 2. TopNet methodology with base encoder and three task specific decoders.

3.1 Vessel Extraction Decoder

The task of separating all the vessels from the background is formulated as a
semantic segmentation problem. The loss function used for this task is the dice
loss function which has shown to improve the accuracy in segmentation tasks
with severe class imbalance [16]. We compute vessel extraction loss Vloss as

Vloss = 1 − 2
∑N

i=1 viv
′
i

∑N
i=1 vi +

∑N
i=1 v′

i

, (1)

where the sums run over the N voxels, of the ground truth binary vessel volume
vi ∈ V , and predicted vessel volume v′

i ∈ V ′.

3.2 Centerness Decoder

The task of generating a centerness score map is formulated as a regression
problem. The ground truth centerness score map is the distance transform of
binary volume mi ∈ M representing the vessel center voxels. We consider the
centerness score map only within the ground truth binary vessel volume V . The
voxels outside the vessel region are masked out when computing the training loss.
The training loss for the regression task is formulated as weighted smoothL1 loss
between the ground truth centerness score Si and predicted centerness score S′

i

summed over the voxels belonging to vessel mask V . We use smoothL1 function
as defined in [8] and the weight is inverse square of true centerness score i.e. S2

i .
Mathematically, the centerness loss Closs is given as

Closs =
1

∑N
i=1 vi

∑

i|vi=1

1
S2

i

(smoothL1( Si − S′
i)). (2)

Weighting the loss function is essential because the loss would otherwise be
highly biased towards the voxels away from the center. During the inference, the
centerness score is masked using the predicted vessel mask. The vessel center-
points are extracted by first thresholding the centerness score map followed by
applying non-maximum suppression (NMS) on negative centerness score map.
In this work, we use a threshold of 1.5 and NMS window of 5 × 5 × 5.
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3.3 Topology Distance Decoder

Topological distance decoder outputs an 8-dimensional feature vector for each
voxel in CT volume. The network is trained to map vessel center-voxels into the
feature space such that the L2 norm between two center-voxels in the feature
space is proportional to the topological distance between along the vascular trees.
For voxel pairs belonging to different vascular trees, the L2 norm is greater than
a set margin. The pairwise loss between the two voxels i and j with associated
vessel labels li and lj is defined as

Top(xi, xj) =

{
smoothL1 (‖ xi − xj ‖ −αDij) ∀i, j | li = lj , i �= j,

γ ∗ max(0, [K− ‖ xi − xj ‖]) otherwise.
(3)

Here, ‖ xi − xj ‖ is the L2 norm between the feature representations of the two
voxels, Dij is the topological distance between the voxels along the vascular tree.
α and γ are constants whose values are explained subsequently. To compute the
topological loss, all such center voxel pairs which are in the local neighborhood
of each other are considered. The total loss then becomes

Tloss =
1
n

∑

i|mi=1

∑

j∈Ni

Top (xi, xj) . (4)

Here, Ni is the set of voxels in the local neighborhood of voxel i and n is the
total number of such voxel pairs for which the loss is computed. In this work,
we use all voxel pairs which lie inside a 3D sphere of radius 15 voxels in the
image space. Thus, the topological distance is normalized from 0 to 1 using the
proportionality factor α = 1/15. This roughly means that the voxels belonging
to the same vascular tree will follow 0 ≤ ‖ xi − xj ‖≤ 1 and if they belong to
different vascular trees, then ‖ xi − xj ‖≥ 3. To balance out the two loss terms,
we use γ = 1/3.

3.4 Vascular Tree Reconstruction

Vascular tree is constructed by aggregating the center-voxels starting from the
vessel sources using the topological distance metric learned by the TopNet. We
train a separate network which outputs the location of portal and hepatic vein
sources (see supplementary material). Typical portal (pink disc) and hepatic vein
(blue disc) sources are shown in Fig. 1. For computed vessel sources, the vascular
trees are constructed using Dijkstra’s multi-source shortest path tree algorithm.
To that end, the undirected graph is formulated as follows. The vertices of the
graph are center-voxels. The weighted edges of the graph are given by the set{
(wij/α)2

}
wij≤2

. Here, wij = ‖ xi − xj ‖, i | mi = 1 and j | mj = 1 represents
two center-voxels in a local neighborhood defined by a 3D sphere of radius 15.
The term (wij/α)2 is essentially the square of topological distance between the
two center-voxels i and j. All the pairs for which wij≥2 are not considered as
feasible edges, since such edges most likely belong to different vascular trees.
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Table 1. Characteristics of INTERNAL and public dataset IRCAD.

Dataset Training Test Contrast phase Slice Thickness

INTERNAL 115 CT volumes 20 CT volumes Late portal 0.5–1.0 mm

IRCAD [10] None 20 CT volumes Late portal 1.0–4.0 mm

4 Experiments

We divide the experiments into comparison and ablation studies. The comparison
of TopNet is made against single task 3D-UNet [3] with the dice loss function [16]
baseline. This is a standard and competitive baseline for 3D image segmentation
and an upgrade over existing 2D-FCN based existing liver vessel segmentation
methods [9,13,14]. In the ablation study, we investigate the performance with
different learning metrics (dice loss based classification, cosine, and topology)
using the same multi-task architecture. For the Multi-task dice loss based classi-
fication approach, the last two layers of topology distance decoder are replaced
to output a two-channel probability map for each hepatic and portal vein. Here,
we use a 2 class dice loss summed over all the center-voxels. Multi-task cosine
metric learning method uses the exact same architecture as TopNet but uses
cosine metric following from similar works [15,18]. The network uses cosine met-
ric loss between voxel pairs i and j associated with feature vectors xi and xj

and vessel labels li and lj is defined as

L (xi, xj) =

{
1 − 0.5(1 + Sij) ∀i, j | li = lj , i �= j,

0.5(1 + Sij) otherwise.
(5)

where, Sij = ‖xT
i xj‖

‖xi‖‖xj‖ is the cosine similarity metric. To reconstruct vascular
tree using the learned metric as mentioned in Sect. 3.4, the weighted edges of
the graph are given by the set {Eij(1 − Sij)}Sij≤0.5 Here, Eij is the Euclidean
distance between the center-voxels.

4.1 Dataset and Preprocessing

We used an internal dataset for training and both the internal as well as public
IRCAD dataset for evaluation [10]. The characteristics of both the datasets is
shown in Table 1. For training, the CT values were normalized from 0 to 1, voxel
spacing in all three dimensions was normalized to 0.7 mm. We also crop the CT
volume using the liver region before setting it as input to the network.

4.2 Evaluation Metrics and Results

We evaluate the results of portal and hepatic vein reconstruction by comparing
respective ground truth and predicted centerlines. When comparing the center-
lines, an exact overlap is not possible. For this, we introduce a variable tolerance
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Raw image Ground truth 3D-FCN TopNetClassification Cosine

Fig. 3. Comparison between 3D-UNet and proposed TopNet for hepatic and portal
vein extraction. Hepatic vein is shown in green while portal vein is shown in blue. Red
boxes show regions of interest for comparing misclassifications. (Color figure online)

term δ which is equal to the radius defined at a ground truth centerpoint fol-
lowing from [7]. Based on this, an illustration of True Positives (TP), False
Positives (FP), False Negatives (FN), and True Negatives (TN) of portal vessel
class is shown in the supplementary material. Using these metrics, we compute
the dice coefficient, sensitivity and specificity for hepatic and portal centerlines.
Predicted centerpoints for which there are no associated ground truth center-
points within the tolerance are ignored while computing the metrics. Usually,
these points would be counted as false positives but we ignore them because in
the IRCAD dataset, small vessels are often unlabelled.

The proposed TopNet considerably outperforms the baseline i.e. single task
3D-UNet method with over 7–8% improvement in all metrics as shown in Table 2.
When Multi-task dice loss classification is compared to single-task 3D-UNet
which also uses the dice loss, a performance improvement of 3–4% is seen. By
this, we can say that multi-stage vessel segmentation works better than single-
stage method. Within the Multi-task network architecture, TopNet gives the
best results. We observe that if not for topology metric learning, the problem
of abrupt change in vessel labels along the vascular tree (large and medium red
boxes) persists as shown in Fig. 3. Such misclassifications also occur when portal
and hepatic veins cross each other in close vicinity (small red boxes in second
and third row). We reason that such misclassifications arise because conven-
tional margin based techniques like semantic segmentation or even cosine metric
learning classify or seperate the center-voxels based on frequently seen vessel
patterns in different liver regions within the training dataset. If unique vessel
patterns are observed in test data, the classification fails. With Topology metric
learning on the other hand, we explicitly constrain the network to learn to trace
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the vessels. To verify this direction of reasoning, we show the similarity metric
field from a reference center-voxel to it’s neighborhood voxels in a misclassified
region in Fig. 3. It can be seen that the Topology metric shows a smooth tran-
sitioning of the similarity field as compared to cosine metric which shows an
abrupt change. Since the cosine metric learning method does not learn absolute
labels, such misclassifications propagate as shown with the yellow box in Fig. 4.
This explains why the cosine metric learning works poorly as compared to the
multi-task classification approach as shown in Table 2.

Ground Truth Cosine metric (result, metric field) Topology metric (result, metric field)

Fig. 4. Comparison between Topology and cosine metric learning. Hepatic vein is
shown in green while portal vein is shown in blue. Boxes show regions of interest
for comparing misclassifications. (Color figure online)

Table 2. Comparison between TopNet and existing methods.

Method Vessel IRCAD INTERNAL

Dice Specificity Sensitivity Dice Specificity Sensitivity

Single Task

3D-UNet Portal 0.84 0.85 0.82 0.88 0.86 0.87

[3] Hepatic 0.84 0.82 0.85 0.86 0.87 0.86

Multi Task

Classification Portal 0.87 0.85 0.88 0.92 0.93 0.90

Hepatic 0.86 0.88 0.85 0.91 0.90 0.93

Cosine metric Portal 0.85 0.85 0.81 0.88 0.84 0.9

Hepatic 0.80 0.82 0.86 0.85 0.90 0.84

TopNet Portal 0.91 0.96 0.91 0.95 0.96 0.94

Hepatic 0.92 0.91 0.96 0.94 0.94 0.96

5 Conclusion

We proposed a deep metric learning method which learns multi-label tree struc-
ture connectivity from images. We converted a hard problem of assigning abso-
lute labels to vessels to a simpler one. Topological metric learning is simpler
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because it just learns local connectivity and does not require global image con-
text. For global connectivity, we use the shortest path tree algorithm which uses
the learned metric to connect vascular voxels. The results show that using topo-
logical metric learning, the issue of noisy misclassifications is resolved. We believe
that the approach is general enough to be applicable to vessel segmentation tasks
in other organs. This is because the network is constrained to learn connectivity
rather than other absolute labels. There are a few downsides to this approach
as well. First, the method has multiple manually fine tuned parameters involved
both in detecting the center-voxels and creating vascular trees using the learned
topology metric. Second, the shortest path tree algorithm which is used to create
global connectivity is sensitive to misdetection of vascular center voxels. Due to
this, in the future it would be interesting to explore a method which can embed
tree generation algorithms like the shortest path into the training process.
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