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Abstract. Breast lesion segmentation in ultrasound images is a funda-
mental task for clinical diagnosis of the disease. Unfortunately, existing
methods mainly rely on the entire image to learn the global context infor-
mation, which neglects the spatial relation and results in ambiguity in
the segmentation results. In this paper, we propose a novel second-order
subregion pooling network (S?P-Net) for boosting the breast lesion seg-
mentation in ultrasound images. In our S2P-Net, an attention-weighted
subregion pooling (ASP) module is introduced in each encoder block of
segmentation network to refine features by aggregating global features
from the whole image and local information of subregions. Moreover, in
each subregion, a guided multi-dimension second-order pooling (GMP)
block is designed to leverage additional guidance information and multi-
ple feature dimensions to learn powerful second-order covariance repre-
sentations. Experimental results on two datasets demonstrate that our
proposed S?P-Net outperforms state-of-the-art methods.
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Second-order subregion pooling

1 Introduction

Breast cancer is a leading cause of women death in the world [17]. Ultrasound
imaging is an useful tool for breast cancer detection in clinical due to its ver-
satility, safety and high sensitivity [18]. Segmenting breast lesions from ultra-
sound imaging is an important step of computer-aided diagnosis systems, which
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Fig. 1. Schematic illustration of the proposed breast ultrasound lesion segmentation
network. Please see Fig.2 for the ASP module. Best viewed in color. (Color figure
online)

assists radiologists in the ultrasound-based breast cancer diagnosis [22]. How-
ever, accurate segmentation in ultrasound images is challenging due to the miss-
ing/ambiguous boundary, the inhomogeneous intensity distribution of breast
ultrasound image, the similar visual appearance between lesions and non-lesion
backgrounds, as well as the irregular shapes and complex variants of breast
lesions [10,22].

Early methods [2,16,20] mainly examine hand-crafted features for inferring
breast lesion boundaries in ultrasound images. Madabhushi [14] incorporated
empirical domain knowledge from radiologists and low-level image features (e.g.,
texture, intensity and directional gradient) into a deformable shape-based model
for the segmentation. Gémez-Flores et al. [6] segmented breast lesions by analyz-
ing textures of ultrasound images. Later, several methods based on convolution
neural networks (CNNs) [10,21] have achieved superior breast lesion performance
than early methods by learning discriminative features from annotated images.
Yap et al. [22] investigated the patch-based LeNet, U-Net, and transfer learn-
ing with a pre-trained FCN-AlecNet for segmenting breast ultrasound lesions.
Lei et al. [10] designed a boundary regularized encoder-decoder network for pre-
dicting segmentation maps. Unfortunately, due to diverse ambiguous boundaries
and complex shape variances, existing CNN-based methods mainly rely on the
entire ultrasound image to learn the global context information, which neglects
the spatial relation and results in ambiguity in the segmentation results.

In this work, we develop a second-order subregion pooling network (S2P-
Net) for boosting breast lesion segmentation performance by aggregating the
multi-context information from both the whole image and multiple subregions.
The contributions of this work could be summarized as: 1) A new second-order
subregion pooling network is proposed for boosting breast lesion segmentation
in ultrasound images. 2) The ASP module is utilized to attentively aggregate
global and multiple subregion representations for inferring breast lesion regions.
3) The GMP block is designed to leverage additional guidance information and
all three feature dimensions for modeling higher-order statistics for more discrim-
inative image representations. 4) Moreover, experimental results on two datasets
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Fig. 2. Schematic illustration of the ASP module at the m-th CNN layer. ®,, is the
feature map at the m-th CNN layer. Please see Fig. 3 for the details of the GMP block.
Note that W has 2 channels. The first channel is W; while the second channel is Ws.
D is an unit matrix (all elements are 1). Best viewed in color. (Color figure online)

demonstrate that our network sets a new state-of-the-art performance on breast
lesion segmentation in ultrasound images.

2 Proposed Method

Figure 1 illustrates the architecture of the proposed breast lesion segmentation
network, which takes a breast lesion ultrasound image as the input and produces
a segmentation resultant image of breast lesions. In our method, the U-Net
architecture [15] is utilized as the backbone, which consists of the encoder and
decoder paths. Each CNN block of the encoder contains two 3 x 3 convolutional
layers and a max-pooling layer (stride=2), and decoder blocks have two 3 x 3
convolutional layers and a upsampling operation. After each CNN block of the
encoder, we introduce an attention-weighted subregion pooling (ASP) module
(see Fig.2) to refine the CNN features by learning second-order statistics from
multiple subregions. In each subregion, a guided multi-dimension second-order
pooling (GMP) block (see Fig.3) is designed to leverage guidance information
for learning second-order covariance matrices. Then, we iteratively merge two
adjacent layers by first upsampling the low-resolution feature map and then
applying two 3 x 3 convolutional layers. Finally, the feature map with the largest
spatial resolution is used to predict the final segmentation result.

2.1 Attention-Weighted Subregion Pooling (ASP) Module

Existing methods mainly rely on the entire ultrasound image to learn a global
information for inferring breast ultrasound lesions, which loses the spatial rela-
tions and tends to contain non-lesion regions or loss parts of breast lesions in
the segmentation result. We develop an ASP module (see Fig.2) to fuse the
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Fig. 3. Schematic illustration of the GMP block. Best viewed in color. (Color figure
online)

global second-order features from the whole image and the local second-order
features from multiple subregions together. Intuitively, image subregions have
less non-breast-lesion details than the whole input image, and thus reduce the
interference from non-lesion regions, resulting in a superior segmentation perfor-
mance via our ASP modules.

Figure 2 shows the detailed architecture of the ASP module at m-th CNN
layer. It refines the feature map (denoted as ®,,,) at m-th CNN layer by aggre-
gating features learned from different subregion separation branches. The first
branch of the ASP module uses a 1 x 1 separation on ®,,,. It passes the whole ®,,
to a GMP block to learn a second-order feature map, concatenates the resultant
features with ®,,,, and uses a 1 x 1 convolutional layer to produce a new feature
map (denoted as S1). The second branch separates the input ®,, into 4 (2 x 2)
subregions and then extracts second-order features from each subregion by feed-
ing its feature map into a GMP block. The resultant second-order features from
the four subregions are then combined together to form a feature map, which is
merged with ®,,, by using a concatenation and a 1 x 1 convolution to produce a
feature map (denoted as S2). To fuse the two feature maps, we generate an atten-
tion map (denoted as W; 2 channels) by employing two successive convolutional
layers (with 3 x 3 kernels) followed by a ReLU non-linear operation [9,26,27],
and the third layer (with 1 x 1 kernels and a sigmoid activation layer). Finally,
we split W into two maps (W; and W), multiply them with S; and Sy, add
two multiplication results, and apply a 1 x 1 convolutional layer on the addition
result to produce the output feature map (denoted as <i>m) of the ASP module.
Mathematically, we can compute &, as:

ciWL = fconv(Wl X Sl + W2 X SQ) ) (1)

where feony is the 1 X 1 convolutional parameters.
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2.2 Guided Multi-dimension Second-Order Pooling (GMP) Block

Breast lesion segmentation in ultrasound images is challenging due to the
ambiguous boundary, the inhomogeneous intensity distribution, and the com-
plex variants of breast lesions. CNN features in existing methods almost are
first-order, and tend to produce unsatisfactory results of the challenging breast
lesion segmentation in ultrasound. To enhance the segmentation accuracy, our
work introduces the second-order information into an end-to-end breast lesion
segmentation network. In this regard, we devise a novel guided multi-dimension
second-order pooling (GMP) block to leverage an entire feature map as a guid-
ance to provide more spatial information from other subregions for helping to
learn second-order covariances in each subregion of the entire features. More-
over, instead of considering only channel dimension, GMP further augments the
resulting second-order covariances by exploring element statistical dependencies
from all three feature dimensions. Hence, GMP enables our method to better
identify breast lesions than original second-order pooling [5]; see the ablation
study results in Table 3.

Given a 3D CNN feature map F (size: u X v X w), original second-order pool-
ing block [5] learns a w X w region covariance matrix from F by reformulating
F as a set of points {P; ;, 1 <i < w;1 < j < v}, and each point P, ; is a vec-
tor with w elements. The resulting covariance matrix represents the pair-wise
channel correlations among all w elements, and has a clear physical meaning,
i.e., its k-row ({1 < k < w}) indicates the statistical dependencies of the k-th
element (channel) with all w elements (channels). We argue that only exploring
element dependencies along the channel dimension suffers from a limited capa-
bility to capture the second-order statistics, due to ignoring other two feature
dimensions. On the other hand, as presented in classical guided filters [8,23],
incorporating additional information from a guidance image generates a better
filtering behavior.

In this regard, our GMP block leverages all three dimensions to learn
the second-order covariance matrix by considering additional information from
another feature map (we call it “guidance feature map” ). Before going into details
of GMP block, we first present which information is employed as the guidance
feature map. As shown in Fig. 2, our ASP module uses two branches to divide
the input features (®,,). In the 1 x 1 subregion branch, we set the guidance
feature map (denoted as D in Fig.2) as an all-1 3D feature map (all elements
are 1) to bypass the filtering, while the guidance feature map for all the four
subregions in the 2 x 2 subregion branch is set as ®,,,. The reason behind is that
®,,, has information of all the four subregions, and thus can provide additional
spatial relations in other three subregions for each GMP block to better learn
second-order statistics.

Figure 3 shows the architecture of our GMP block, which takes the feature
map F (size: u X v X w) and guidance feature map G (size: 2u x 2v X w) as two
inputs and produces a refined feature map F. Specifically, we first apply a 1 x 1
convolution layer on F to reduce its feature dimension size into v’ x v x w’ (u/ <
u; v < v; w < w) for saving the computational cost, and take three copies of the
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resultant features for learnlng three region covariance representatlons along u, v
and w d1mens1ons au Xu covariance matrix (o, ), av X v covariance matrix
(o), and a w' X w' covariance matrix (). To do so, apart from considering
the w dimension in original second- order pooling [5], we reformulate F into v/
X w points {Q; ;, where 1 < i < v 11 < ] < w} and the vector @;; h

v’ elements. After that, we learn a u x u covariance matrix to capture the
statistical dependencies among all u’ elements in the vector Qi,;- Moreover, we
decompose F into v x w vectors {R; ;, wherel < i < u/; 1<j5< wl}7 and
each R; ; has v’ elements. Then, we learn a v x v covariance matrix to compute
the second-order statistics of all v~ elements of R; ;.

Similarly, we can learn three region covariance matrices from G along its
three dimensions. To this end, we first reduce the dimension of G to 2u’ x
20 x by applying a 1 x 1 convolutional layer on G and produce three covari-
ance matrices (i.e., a 2u" x 2u’ covariance matrix (3,), a 20 x 20" covariance
matrix (8,), and a w' x w  covariance matrix (8,)) from three copies of the
resized feature map. Once obtaining three covariance matrices from F and G
respectively, we multiply them (e.g., au, X () together to integrate the guid-
ance features for learning guided second-order covariance matrices. Note that (3,
(2u x 2u") and 3, (20" x 20v") have not the same size of o, (v x u') and ay, (v’
X v ) Hence, according to the 2 X 2 subregion partition manner in Fig.2, we
similarly split G, into four u oxou subreglon matrices, select the correspondmg
one (subregion) with the size of v x w, and multiply it with a,. The same
operations are applied to 3, and «,. After that, following [5], we use a row-
wise convolution, a 1 X 1 convolution, and a sigmoid activation function on each
resultant covariance matrix to produce three statistic weight vector (A, A,, and
Aw), which are then multiplied with the input F for scaling different channels,
in order to emphasize useful channel and suppress bad channel information for
detecting breast lesion boundaries. Finally, we concatenate the scaled feature
maps from three dimensions and the input F, followed by a 1 x 1 convolution,
to generate the output feature map (F) of the developed GMP block.

Implementation Details. We train our network from scratch and all the net-
work parameters are initialized by a normal distribution. All the training images
are randomly rotated, cropped, and horizontally flipped for data augmentation.
The focal loss [12] is employed to compute the total loss of our network, and
we utilize the Adam optimizer to minimize our total loss for training the whole
framework with 15,000 iterations. The learning rate is initialized as 0.0001 and
then reduced to 0.00001 at 3,000 iterations. We implement our network on Keras
and train it on two GPUs with a mini-batch size of 4. Our method In our exper-
iments, we empirically set u'=24, v'=24, and w' =128,

3 Experiments

Datasets. We used two breast ultrasound image datasets to evaluate the effec-
tiveness of the proposed network. The first one is a public dataset, BUSI [1],
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Table 1. The results (mean + variance) of different methods on our dataset.

Method ‘#paras (M)‘ Dice 1 ‘ ADB | ‘ Jaccard T ‘ Precision 1 ‘ Recall T
FCN [13] 513 0.8289-£0.0007 | 7.1340+1.4860 | 0.746140.0008 | 0.860040.0005 | 0.8465+0.0002
U-Net [15] 30 0.7907+0.0003 | 14.428+ 3.2128 | 0.7020+0.0004 | 0.8212+ 0.0004 | 0.8168+0.0003

U-Net++ [25] 35 0.7933-+0.0003 |13.9142+3.0879 | 0.7036+0.0005 | 0.830040.0004 | 0.810140.0002
FPN [11] 52 0.8336+£0.0007 | 7.6704+4.8599 | 0.7548+0.0009 | 0.8742+0.0009 | 0.8438+0.0001
DeeplabV3+ [4] 159 0.8180-£0.0007 | 8.5677+3.4262 | 0.7318+0.0009 | 0.853340.0008 | 0.827140.0002
GSoP [5] 48 0.8361£0.0005 | 8.4699+5.6814 | 0.7540+0.0006 | 0.8640+0.0012 | 0.8473+0.0004
ConvEDNet [10] 310 0.8428+0.0003 | 6.2834+1.3013 | 0.765240.0004 | 0.884740.0005 | 0.848540.0003
Our method 96 0.8967+0.0001|5.5967+0.7930(0.8311+0.0001|0.9072+0.0003|0.9047+0.0002

Table 2. The results (mean =+ variance) of different methods on the BUSI dataset.

Method ‘#paras (M)‘ Dice 1 ‘ ADB | ‘ Jaccard 1 ‘ Precision | ‘ Recall T
FCN [13] 513 0.8259+0.0120 | 16.4322+0.7647 | 0.7412+0.0089 | 0.8551+ 0.0093 | 0.8435+0.0173
U-Net [15] 30 0.7660+0.0041 | 28.8543+4.0009 | 0.6710+0.0058 | 0.8326+0.0148 | 0.7799+0.0060

U-Net++ [25] 35 0.762140.0053 | 33.0030£2.1888 | 0.6664+0.0042 | 0.8267+0.0060 | 0.7802+0.0059
FPN [11] 52 0.79934+0.0033 | 22.5294+1.4860 | 0.70124+0.0083 | 0.8352+0.0171 | 0.82544+0.0154
DeeplabV3+ [4] 159 0.821040.0056 | 14.6643+1.3872 | 0.7321+£0.0024 | 0.864840.0113 | 0.8266+0.0100
GSoP [5] 48 0.8309+0.0062 | 13.0799+1.0415 | 0.7455+0.0050 | 0.874540.0109 | 0.8311+0.0044
ConvEDNet [10] 310 0.825440.0015 | 14.6643£1.8361 | 0.7386+0.0056 | 0.8408+0.0136 | 0.8516+0.0109
Our method 96 0.8470+0.0094|11.1760+0.9436|0.7639+0.0107|0.8762+0.0081|0.8551+0.0100

from the Baheya Hospital for Early Detection & Treatment of Womens Cancer
(Cairo, Egypt). It has a total of 780 tumor images from 600 female patients (25—
75 years old). Second, we collected 632 breast ultrasound images from Shenzhen
People’s Hospital to build the second dataset for evaluation, and informed con-
sent forms were obtained from all patients. We invited experienced clinicians to
manually annotate the breast lesion regions of each image. Moreover, we further
adopt the five-folder cross-validation to statistically test different segmentation
methods on the two datasets.

Evaluation Metrics. We employ widely-used segmentation metrics for quan-
titatively comparing different methods. They are Dice Similarity Coefficient
(Dice), Average Distance of Boundaries (ADB, in pixel), Jaccard, Precision, and
Recall; see [3,7,19,24] for details of these five metrics. A better segmentation
result shall have smaller ADB and larger values for all other four metrics.

3.1 Segmentation Performance

We validate our segmentation network by comparing with seven state-of-the-
art methods, including the fully convolutional network (FCN) [13], U-Net [15],
U-Net++ [25], feature pyramid network (FPN) [11], DeeplabV3+ [4], a very
recent second-order method (i.e., GSoP [5]), and a recent ultrasound breast
lesion segmentation method (i.e., ConvEDNet [10]). For a fair comparison, we
obtain the segmentation results of all the competitors by exploiting its public
implementations or implementing them by ourselves, and fine-tuning the network
training parameters for best segmentation results.
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(a) Inputs

Fig. 4. Comparing segmentation maps produced by different methods. (a) Breast
ultrasound lesion images. (b) Ground truths (denoted as GT). (c)—(g): Segmentation
results produced by our method, ConvEDNet [10] (denoted as CEDNet), GSoP [5],
U-Net++ [25], and U-Net [15], respectively.

Table 3. Metric results of different components on the BUSI dataset.

Method

Dice T

ADB |

Jaccard T

Precision T

Recall T

w/o-GMP

0.801 + 0.0024

21.1114 4 3.5251

0.7113 + 0.0034

0.8436 + 0.0143

0.8199 + 0.0116

w/o-subregions

0.8315 + 0.0023

13.7236 4 1.8757

0.7463 + 0.0036

0.8635 + 0.0055

0.8397 + 0.0080

Ours-channelRC

0.834140.0151

12.9171 4 2.4227

0.7488 - 0.0170

0.8672 4 0.0145

0.8422 +0.0171

w/o-guidance

0.8410 + 0.0098

14.2395 + 3.4063

0.7547 4 0.0148

0.8709 4 0.0193

0.8485+0.0186

Our method

0.8470 + 0.0094

11.1760 £ 0.9436

0.7639 + 0.0107

0.8762 + 0.0081

0.8551+0.0100

Quantitative Comparisons. Tables 1 and 2 report the metric results of differ-
ent segmentation methods on our collected dataset and BUSI dataset, respec-
tively. Apparently, our method consistently and stably has the superior perfor-
mances of the mean and variance values of all the five metrics over all the com-
petitors. It indicates that our method has more accurate segmentation results
than all the competitors.

Visual Comparisons. Figure4 visualizes the segmentation results produced
by different methods. Apparently, the compared methods tend to neglect some
details of the breast lesion regions or include other non-lesion regions into their
predicted segmentation results, while our method can more accurately detect
the blurry breast lesion boundaries for the input images (1st row), and can
better detect the whole breast lesion regions for the images (last two rows) with
multiple intensity distributions. The superior segmentation results of our method
show that our subregion based second-order features have more discriminative
capabilities in inferring breast lesion regions from ultrasound images. Apparently,
our network is more complex than standard UNet, but the GMP blocks first
downsample the resolutions of the input feature map and the guidance features a
lot for computing second-order statistics. Thus our network does not increase the
inference time too much. As shown in Table 1, our method only has about a half
model size of the Deeplabv3+, but achieves a better breast lesion segmentation
performance.
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3.2 Ablation Study

We conduct the ablation study experiments to verify the major components
in our network design. Here, we consider four baseline networks, and report
their quantitative results on the BUSI dataset in Table3. (i) The first baseline
(denoted as “w/o-GMP”) removes all the GMP modules (see Fig.3) from our
network, while (ii) the second baseline (denoted as ‘w/o-subregions’) removes
the 2 x 2 subregions (the second branch of Fig.2) from our network, meaning
that we do not model the second-order representation from any subregion. (iii)
The third baseline (denoted as “Ours-1channelRC”) is to replace our GMP block
(see Fig. 3) with the original second-order block [5], which uses only the feature
channel dimension. (iv) The last baseline (denoted as “w/o-guidance”) is to
remove the guidance features from our GMP block (see Fig. 3).

Table 3 shows the comparison results. Apparently, our method has superior
metric results than “w/o-GMP” and “w/o-subregions”, which demonstrates that
both ASP module and GMP block have the contributions to the superior seg-
mentation results of our method. Our method can also more accurately segment
breast lesions than “Ours-channelRC” and “w/o-guidance”, showing that both
guidance feature and the multiple feature dimension help to learn more powerful
second-order features.

4 Conclusion

This paper presents a second-order subregion network for the breast lesion seg-
mentation from an ultrasound image by harnessing second-order statistics from
multiple feature subregions. Our key idea is to develop an ASP module at each
CNN layer to aggregate global features from the whole image and local high-
order features from multiple subregions, and a GMP block in each subregion to
leverage additional guidance information and all the three feature dimensions for
learning powerful second-order covariance features. Experiments on two datasets
demonstrate that our method clearly outperforms state-of-the-art methods. In
addition, the proposed segmentation network has the potential for other similar
medical image segmentation tasks, e.g., the prostate segmentation. Although our
method obtained best performance in two datasets (i.e., the Dice score is 0.847
for BUSI, and 0.8967 for our dataset), there is a large room to further improve
the segmentation accuracy.
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