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Abstract. Histopathological image segmentation is a challenging and
important topic in medical imaging with tremendous potential impact
in clinical practice. State of the art methods rely on hand-crafted annota-
tions which hinder clinical translation since histology suffers from signif-
icant variations between cancer phenotypes. In this paper, we propose a
weakly supervised framework for whole slide imaging segmentation that
relies on standard clinical annotations, available in most medical sys-
tems. In particular, we exploit a multiple instance learning scheme for
training models. The proposed framework has been evaluated on multi-
locations and multi-centric public data from The Cancer Genome Atlas
and the PatchCamelyon dataset. Promising results when compared with
experts’ annotations demonstrate the potentials of the presented app-
roach. The complete framework, including 6481 generated tumor maps
and data processing, is available at https://github.com/marvinler/tcga
segmentation.

Keywords: Weakly supervised learning · Histopathological
segmentation · Multiple instance learning · Tumor segmentation

1 Introduction

In digital pathology, whole slide images (WSI) are considered the golden stan-
dard for primary diagnosis [13,16]. The use of computer-assisted image analysis
tools is becoming a mainstream for automatic quantitative or semi-quantitative
analysis for pathologists, including the discovery of novel predictive biomark-
ers [12]. However, a lot of challenges remain to be addressed for machine learning
methods because to the high variability of quality of tissue preparation and digi-
tal acquisition, and in tissue phenotype. A central objective in digital pathology
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is the accurate identification of cell or tissue of interest. For instance, com-
putational staining of tumor tissue could be used for slide screening in order
to increase the efficiency of pathologists. Automatically computed tumor maps
could identify regions of interest for whole slide image classification [5], or be
combined with automatic detection of lymphocytes [15] to further characterize
the tumor and immune micro-environment for predicting treatment response [3].

Traditionally, image segmentation is tackled by leveraging pixel-wise or
patch-wise ground-truth annotations [9]. This is highly problematic in digital
pathology due to the colossal size of WSIs with respect to the biological com-
ponents, implying that the annotation process is considerably time-consuming.
Moreover, the high variance of clinical samples contributes on the deficiency of
generalization, as illustrated in [4] where the front-runner solution of the CAME-
LYON16 challenge [2] has reportedly 4 times higher classification errors on the
same task for in-house data from the same location.

A standard multiple instance learning (MIL) scheme [8] deals with classi-
fying an entity (bag) from its constituents (instances). The MIL paradigm is
particularly suited to histopathological image analysis due to its ability on rea-
soning on subsets of data (patches) that is often a computational necessity in
histopathology. The general approach of MIL consists in learning a model that
embeds each instance of a bag into a latent space. Then, the collection (usually
of fixed size) of instances latent vectors is forwarded into an aggregating func-
tion which outputs the predicted bag probability, using different principles such
as max-pooling [8], support vector machine [1], or even attention-based neural
networks [11]. Recent large-scale histopathological studies provides promising
classification solutions based on the MIL scheme [4–6]. Such approaches gener-
ally indicate whether a slide is non-neoplastic (normal), or the predicted subtype
of apparent tumor tissue without accurately identifying the tumoral regions in
the slide.

There are two ways to interpret multiple instance learning: MIL for classify-
ing bags (or slides), or MIL for training an instance classifier model, apparent to
bag segmentation. In particular, studies such as [4–6] use max-pooling MIL and
its relaxed formulation [18] to first train an instance model, and then investigate
various ways to combine instance predictions into a slide prediction. These works
demonstrate that MIL schemes provide powerful formulations for the WSI clas-
sification, by reaching AUC for tumor versus normal slide classification higher
than 0.99. However, these studies lack extensive evaluation for a more detailed
MIL-driven segmentation performance since slide-based classification measures
could lead to erroneous assessment regarding instance-level performance.

In this paper, we propose a weakly supervised segmentation scheme that is
able to generate tumor segmentation models using annotations from the con-
ventional clinical practice of pathologists’ assessment. The contributions of this
paper are: (i) a generic meta-algorithm, generating labels from WSI binary
values intended to train detailed WSI segmentation models, (ii) a training
scheme providing instance-level predictions, trained only with binary WSI anno-
tations, (iii) the release of 6481 automatically generated tumor maps for publicly
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available slides of The Cancer Genome Atlas (TCGA), an order of magnitude
above previous released WSI tumor maps.

2 Weakly Supervised Learning for Tissue-Type
Segmentation in Histopathological Images

Contextually, we consider a set S = {Si} of training whole slide images, where
each slide Si is associated with a label Ti = {0, 1} where 1 refers to tumor and
0 to normal. More precisely, Ti = 0 indicates that there is no apparent tissue
in the slide, and Ti = 1 indicates that some tissue is tumorous. The goal is to
learn a tumor segmentation model, or a patch classifier, using only those binary
annotations. To train a model in a fully supervised setup, a batch of patches
{ps} is randomly sampled from a WSI along with their annotations computed
beforehand. However, such microscopic annotations are impractical to obtain
when the number of whole slides images is in the hundreds or thousands, which
is necessary for good generalization. To deal with this limitation, the aim of the
proposed framework is to generate a set of proxy patch-level ground truth labels
by exploiting properties from the available global Ti labels.

By construction, a WSI with Ti = 0 indicates that all extracted patches are
of normal class (0). In that case, a proxy-label filled with 0 provides perfect
instance annotations, equivalent to a fully supervised learning scheme. However,
in slides with Ti = 1, tumor tissue could possibly be in any extent on the Si.
Alternatively, a WSI with Ti = 1, normal tissue can theoretically cover no pixel
up to the entire region in the slide except one pixel. We integrate this property
by proposing a training scheme in which two parameters α and β are used for
each training slide of Ti = 1 in the following deterministic process:

– assign a label 1 to the patches ensuring at least α% are of class 1
– assign a label 0 to the patches ensuring at least β% are of class 0
– discard other patches from the computation of the loss signal

In such a setup, α% represents the minimum assumed relative area of tumor
tissue in the WSI, and similarly for β% with the normal tissue extent. Because
the explicit process is deterministic, the framework is identified by the values of α
and β. Noteworthy, (α, β) such that (α+β) > 100% would produce contradictory
proxy labels for 100 − (α + β)%> 0 instances, which could impede training by
diminishing the signal-to-noise ratio. Therefore, the possible space of these two
parameters can be defined as F = {(α, β);α > 0, β ≥ 0, α + β ≤ 1}.

Formally, given a loss function L (e.g. binary cross-entropy), the formulated
framework aims at minimizing the following empirical risk on S:
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c0 ·
∑

Si∈S;
Ti=0

[ ∑

ps∼Si

L(f(ps), 0)

︸ ︷︷ ︸
RFP

]

+c1 ·
∑

Si∈S;
Ti=1

[ ∑

ps∼Si;
ps∈P (f(ps);α,100)

L(f(ps), 1)

︸ ︷︷ ︸
Rα

+
∑

ps∼Si;
ps∈P (f(ps);0,β)

L(f(ps), 0)

︸ ︷︷ ︸
Rβ

]

where P (f(ps); pmin, pmax) is defined as the subset of patches f(ps) for which the
predicted probability lies within the pminth and the pmaxth percentiles of the pre-
dictions f(ps), c0 and c1 are constants for batch averaging and class imbalance
for both classes, and Ti refers to the binary ground-truth of Si. Minimizing this
empirical risk will guide models into recalling enough positive tumoral patches
(Rα) per slide but not too much (Rβ) while maintaining a low level of false
positive in negative slides RFP. The formulated approach is generic, in the sense
that it can be used to train a large scope of machine learning models, including
neural networks, with patch-based or pixel-wise predictions, and it can be cou-
pled with most usual loss functions. It produces trained segmentation models,
readily available to produce heatmaps without intervention of the formulated
pipeline nor α% and β% parameters.

3 Implementation Details and Dataset

3.1 Framework Setup and Architecture Details

We perform a benchmark of a representative population of the framework param-
eters space F. Specifically, F is sampled starting from 0 with increment of 0.2
(or 20%) for both α and β (e.g. (0, 0), (0, 0.2), (0, 0.4) and so on), resulting in
6·7
2 = 21 configurations. Of those, the 6 configurations with α = 0 are discarded,

as this would imply that the framework provides only 0 labels contradicting
with the Ti = 1 assumption of our empirical risk formulation. At the end only
15 sampled configurations had been used.

Each configuration is used to train a ResNet50 architecture [10], which
has been extensively used for histopathology image analysis in a multitude of
tasks [14], and can be used without the global average pooling layer to yield
13 × 13 outputs per 224 pixel-wide input image. Pre-training is used with ini-
tialization on a well-performing snapshot on ImageNet [7]. At each epoch, each
training slide is sampled once. Upon sampling, a batch size of 150 patches of
size 224 × 224 are randomly sampled at 20x magnification in the tissue region
of a WSI. Data augmentation is used independently on each image, with ran-
dom rotations and flips while also applying channel-wise standard scaling from
training averages and variances, and color jitter. The model is then concurrently
inferred on the 150 patches of the batch, and a proxy-vector is constructed with
the formulated pipeline as illustrated for 10 patches in Fig. 1. Specifically, the
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Fig. 1. Illustration of the processing of a batch of 10 patches from a positive WSI. A
unique ResNet50 model with parameters θ is inferred on all images of the batch. For a
given configuration of (α, β) (here, (0.3, 0.2)), these predictions are first used to create
a proxy image-wise labels vector, then combined with the proxy label to compute batch
error for further parameters θ update with backpropagation.

�150 × α� patches of highest probabilities are associated with a proxy value
of 1, and the �150 × β� patches of lowest probabilities with a proxy value of
0. A masking vector of size 150 is concurrently filled such that patches with no
attributed label are discarded. The proxy vector is then coupled with the model’s
150 predictions minus the discarded ones, in order to compute patch-wise binary
cross-entropy loss which is then averaged and retro-propagated across all the non
masked predictions. The error signal is used to tune model parameters using
Adam optimizer with learning rate of 10−4 and default momentum parameters.
c0 and c1 are set to 1. Each configuration is trained for 20 epochs on 2 V100
NVIDIA GPU, for a training time of ∼16 h, or a total benchmark training time
of ∼240 h. The code is implemented with pytorch 1.5.0 and torchvision 0.4.0 on
python3.6.

3.2 Dataset

The dataset consists of 6481 flash-frozen whole slide images from TCGA, issued
from kidney (2334), bronchus and lung (2168) and breast (1979) WSIs locations.
These locations were selected on TCGA as the first 3 indexed, while no slide
filtering nor slide selection has been performed to be coherent with standard
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clinical practices. This dataset was divided in training, validation and testing
sets on a case basis, with 65%, 15%, and 20% of cases respectively. For the rest
of the paper this testing set is denoted as “In-distribution”. Each selected con-
figuration is trained using the training set, with hyper-parameters optimized on
the validation set. Then, their performance is assessed on the testing set. For
extensive quantitative performance assessment, expert pathologists annotated
130 slides from this testing set (45 breast, 40 kidney, 45 bronchus and lung),
thus measuring in-distribution generalization. Annotations were computed at
20x magnification by a junior pathologist on a in-house annotation tool by con-
touring tumor tissue regions which were then filled, and were modified until
validation by a senior pathologist.

The same protocol was applied on additional slides extracted from locations
which are not used in the previous cohort. Specifically, 35 WSIs from colon, 35
from ovary and 30 from corpus uteri are pixel-wise annotated and used to mea-
sure generalization performance of models to unseen tissue environments, which
we denote as the “Out-of-location” testing set. We pinpoint that these annota-
tions were not used during training nor validation, but only to assess testing seg-
mentation performance of the produced models. For training, we use diagnostic
labels extracted directly from TCGA, for which each slide name contain a code
indicating the type of specimen (e.g. “Solid Tissue Normal” or “Primary Solid
Tumor”)1. Notably, normal slides are explicitly discerned from slide with appar-
ent pathological tissue. In such context, each slide is associated with a binary
value indicating whether tumor tissue is apparent in the slide, or whether the
slide is of normal tissue only. To further compare with results from the commu-
nity, we infer all models on the PatchCamelyon dataset [17]. The dataset consists
in 96×96 patches extracted from formalin-fixed, paraffin-embedded (FFPE) tis-
sues from sentinel lymph nodes at 10x magnification. In PatchCamelyon, images
are labeled as 1 if their 32 × 32 center region contains at least 1 pixel of tumor
cell, otherwise 0. To accommodate with the 224×224 input at 20x magnification
of the learned models, these images were bi-linearly upsampled twice and padded
with 0. This testing set is particularly challenging for the benchmarked models,
since they are not trained on FFPE slides, which are visually highly different
from flash-frozen ones. Besides, the trained models did not include any tissue
extracted from sentinel lymph nodes, highlighting the generalization challenge
of the proposed framework.

4 Results and Discussion

For performance assessment, all 15 trained ResNet50 models are inferred on
the testing slides. The resulting heatmaps are compared to segmentations maps
provided by the pathologists. All configurations are found to converge to sup-
random In-distribution performance, except for the two extreme configurations
(α = 1, β = 0) and (0.2, 0.8), as displayed in Table 1. The average In-distribution
AUC is 0.675 ± 0.132, with optimal AUC of 0.804 for (α = 0.2, β = 0.2).
1 https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes.

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes
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Precision and recall are extracted after threshold selection on validation set
and displayed in Fig. 2. The α parameter seems to influence the recall at the
expense of precision. Upon performance introspection by location, all configu-
rations report the worse performance for the location bronchus and lung, with
twice as much AUC error compared to kidney and breast locations. Concerning
the Out-of-distribution cohort, the average AUC is 0.679 ± 0.154, which is close
to In-distribution performance, although lower when omitting bronchus and lung
location from the latter. There is no evident pattern for configurations that yield
improved Out-of-location results.

Table 1. Pixelwise AUC for the 15 (α, β) framework configurations on the hold-out
testing set (In-distribution) and the testing set from locations unseen in training (Out-
of-location). Grey results take background into account, black ones are computed by
completely discarding background from performance computation.

α = 0.2 0.4 0.6 0.8 1.0

β = 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0 0.2 0.4 0 0.2 0

.786 .804 .749 .681 .566 .720 .726 .767 .685 .766 .758 .650 .589 .619 .256
In-distribution

.964 .952 .960 .930 .874 .967 .953 .959 .935 .957 .960 .940 .946 .946 .926

.866 .732 .709 .583 .257 .783 .710 .762 .658 .790 .787 .673 .785 .695 .404
Out-of-location

.984 .974 .972 .958 .917 .980 .972 .978 .966 .981 .980 .968 .980 .970 .933

Fig. 2. Quantitative results for the 15 benchmarked configurations on the hold-out
testing set (In-distribution) from bronchus and lung, kidney, and breast locations.
Each subplot (4 in total) displays a pixelwise measure, as indicated in its sup-title, for
each configuration in a matrix format. AUC: area under the ROC curve.

Some visual representations of two different samples testing are presented on
Fig. 3. In particular, in the figure we present the WSI image together with the
pixel-wise annotations of the pathologist. Moreover, different segmentation maps
depending on the configuration are also presented. It can observed that there
are 3 or 4 configurations that are close to the expert’s annotations. These con-
figurations are in line with our quantitative results. Additional post-processing
strategies would potentially boost the performance of our framework.
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Fig. 3. Unfiltered predicted tumor maps on hold-out testing samples for the 15 bench-
marked framework configurations. 2 WSI and their corresponding results are displayed
in a matrix-format. The red and green images are the ground-truth.

To test the generalization of our method, we performed also experiments
on the PatchCamelyon dataset [17]. In particular we found the most of the
configurations (12 out of the 15) reporting quite low AUC, between 0.428 and
0.612. However, 3 configurations are found to generalize to some extent, that is
(α = 0.2, β = 0) with 0.672 AUC, (0.2, 0.2) with 0.802, and (0.4, 0) with 0.758.
Although these results are far from report AUC of 0.963 obtained with fully
supervised models specifically trained on this dataset [17], the results suggest
the presented framework could provide models which can grasp generic discrim-
inative cancer features from multiple types of slides in broad biological context.

5 Conclusion and Future Works

In this paper we propose a weakly supervised model which provides segmentation
maps of WSIs, trained only with binary annotations over the entire WSIs. From
our experiments we saw that usually 3 to 4 configurations are expected to yield
respectively high precision, high recall, and high overall performance for WSIs
of different organs and tumor coverage. The findings in this paper highlight the
potential of weakly supervised learning in histopathological image segmentation,
which is known to be heavily impeded by the annotation bottleneck. With the
complete open-source releases of both the complete WSI pre-processing pipeline,
the presented training framework, as well as the inference pipeline, the presented
approach can be used off-the-shelf for pan-cancer tumor segmentation using the
entire 18k flash-frozen WSI of TCGA, or other type of tissue segmentation such
as necrosis or stromal tissue. The public release of 6481 automatically generated
tumor maps, with an expected AUC above 0.932, should lower the barrier of
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entry to pathomics by bypassing tumor annotation efforts. All code and results
can be found at https://github.com/marvinler/tcga segmentation.

There are many ways to fine-tune a segmentation model using the formulated
framework, such as with more appropriate deep learning architectures or with
more extensive hyper-parameters optimization. We believe the most impactful
future works will revolve around the proxy-generation labels from more sophis-
ticated slide labels which would yield higher information while remaining fast to
obtain, essentially trading annotation time for performance.
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