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Abstract. A major challenge in clinical In-Vitro Fertilization (IVF) is
selecting the highest quality embryo to transfer to the patient in the
hopes of achieving a pregnancy. Time-lapse microscopy provides clini-
cians with a wealth of information for selecting embryos. However, the
resulting movies of embryos are currently analyzed manually, which is
time consuming and subjective. Here, we automate feature extraction
of time-lapse microscopy of human embryos with a machine-learning
pipeline of five convolutional neural networks (CNNs). Our pipeline con-
sists of (1) semantic segmentation of the regions of the embryo, (2) regres-
sion predictions of fragment severity, (3) classification of the developmen-
tal stage, and object instance segmentation of (4) cells and (5) pronuclei.
Our approach greatly speeds up the measurement of quantitative, bio-
logically relevant features that may aid in embryo selection.
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1 Introduction

One in six couples worldwide suffer from infertility [7]. Many of those couples seek
to conceive via In-Vitro Fertilization (IVF). In IVF, a patient is stimulated to
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produce multiple oocytes. The oocytes are retrieved, fertilized, and the resulting
embryos are cultured in vitro. Some of these are then transferred to the mother’s
uterus in the hopes of achieving a pregnancy; the remaining viable embryos
are cryopreserved for future treatments. While transferring multiple embryos to
the mother increases the potential for success, it also increases the potential
for multiple pregnancies, which are strongly associated with increased maternal
morbidity and offspring morbidity and mortality [25]. Thus, it is highly desirable
to transfer only one embryo, to produce only one healthy child [29]. This requires
clinicians to select the best embryos for transfer, which remains challenging [27].

The current standard of care is to select embryos primarily based on their
morphology, by examining them under a microscope. In a typical embryo, after
fertilization the two pronuclei, which contain the father’s and mother’s DNA,
move together and migrate to the center of the embryo. The embryo undergoes
a series of cell divisions, during the “cleavage stage.” Four days after fertilization,
the embryo compacts and the cells firmly adhere to each other, at which time
it is referred to as a compact “morula.” On the fifth day, the embryo forms a
“blastocyst,” consisting of an outer layer of cells (the trophectoderm) enclosing
a smaller mass (the inner-cell mass). On the sixth day, the blastocyst expands
and hatches out of the zona pellucida (the thin eggshell that surrounds the
embryo) [10]. Clinicians score embryos by manually measuring features such as
cell number, cell shape, cell symmetry, the presence of cell fragments, and blasto-
cyst appearance [10], usually at discrete time points. Recently, many clinics have
started to use time-lapse microscopy systems that continuously record movies
of embryos without disturbing their culture conditions [3,9,30]. However, these
videos are typically analyzed manually, which is time-consuming and subjective.

Previous researchers have trained convolutional neural networks (CNNs) to
directly predict embryo quality, using either single images or time-lapse videos
[26,32]. However, interpretability is vital for clinicians to make informed deci-
sions on embryo selection, and an algorithm that directly predicts embryo quality
from images is not interpretable. Worse, since external factors such as patient
age [12] and body-mass index [5] also affect the success of an embryo transfer, an
algorithm trained to predict embryo quality may instead learn a representation
of confounding variables, which may change as IVF practices or demographics
change. Some researchers have instead trained CNNs to extract a few iden-
tifiable features, such as blastocyst size [18], blastocyst grade [11,19,20], cell
boundaries [28], or the number of cells when there are 4 or fewer [17,21]. While
extracting identifiable features obviates any problems with interpretability, these
works leave out many key features that are believed to be important for embryo
quality. Moreover, these methods are not fully automated, requiring the input
images to be manually annotated as in the cleavage or blastocyst stage.

Here, we automate measurements of five key morphokinetic features of
embryos in IVF by creating a unified pipeline of five CNNs. We work closely with
clinicians to choose features relevant for clinical IVF: segmentation of the zona
pellucida (Fig. 1a), grading the degree of fragmentation (Fig. 1b), classification
of the developmental stage from 1-cell to blastocyst (Fig. 1c), object instance
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Fig. 1. Instead of performing one task, our unified pipeline extracts multiple features
from embryos. We first segment the image to locate the embryo (panel a), colored
according to segmentation. The segmentation provides a region-of-interest (ROI, white
box) for the other 4 networks, starting with embryo fragmentation (b); the image shown
has a predicted fragmentation score of 0.26. If the embryo’s fragmentation score is less
than 1.5, we classify the developmental stage (c); this image is classified as a 2-cell
embryo. We then detect cells in cleavage stage embryos (orange contours in d) and
pronuclei in 1-cell embryos (magenta contours in e). (Color figure online)

segmentation of cells in the cleavage stage (Fig. 1d), and object instance seg-
mentation of pronuclei before the first cell division (Fig. 1e). With the exception
of zona pellucida segmentation, all these features are used for embryo selec-
tion [1,2,24,27]; we segment the zona pellucida both to improve the other net-
works and because zona properties occasionally inform other IVF procedures [6].
The five CNNs work together in a unified pipeline, combining results to improve
performance over individual CNNs trained per task by several percent.

2 Dataset

We train the CNNs using data from the Embryoscope R©, the most widely-used
system for IVF with standardized, time-lapse microscopy [9]. Embryoscope R©

images are grayscale, and taken using Hoffman Modulation Contrast
microscopy [16], in which the intensity roughly corresponds to refractive index
gradients. In our dataset, the Embryoscope R© takes an image every 20 min at 7
focal planes, usually at 15µm increments. The recorded images provide views of
the embryo with different amounts of defocus; they do not provide 3D informa-
tion. The embryos are recorded for 3–5 days, corresponding to 200–350 images at
each focal plane (i.e., 1400–2450 images per embryo), although embryos are occa-
sionally removed from the incubation system for clinical procedures. To train the
CNNs, we curate a dataset with detailed, frame-by-frame labels for each task.

3 Our Pipeline

For each time-lapse video, we measure 5 morphokinetic features using 5 networks:
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Zona Pellucida Segmentation: We first perform semantic segmentation to
identify regions of the embryo, segmenting the image into four regions: pix-
els outside the well, inside the well, the zona pellucida, and the space inside
the zona pellucida (the perivitelline space and embryo; Fig. 2, left). We seg-
ment the images by using a fully-convolutional network (FCN [23]; based on
Resnet101 [15]) to predict a per-pixel class probability for each pixel in the
image. We train the FCN with images chosen from 203 embryos at 3,618 time
points; we use neither a separate validation set nor early stopping for the zona
segmentation.

The zona pellucida segmentation network in our pipeline takes the full
500 × 500 pixel image as input. We use the segmentation result to crop the
images to 328 × 328, centered around the embryo, as input for the other
networks.

Fragmentation Scoring: With the cropped image from the zona pellucida
segmentation, we score the embryo’s degree of fragmentation using a regression
CNN (InceptionV3 [31]). The network takes a single-focus image as input and
predicts a fragmentation score of 0 (0% fragments), 1 (<10%), 2 (10–20%), or
3 (≥20%), following clinical practice. We train the network to minimize the L1

loss on cleavage-stage images of 989 embryos at 16,315 times, each labeled with
an integer score from 0–3; we use a validation set of 205 embryos labeled at 3,416
times for early stopping [13]. For each time point in the movie we analyze, we
run the CNN on the three middle focal planes and take the average as the final
score (Fig. 3, left).

Counting and identifying cells in fragmented embryos is difficult, inhibit-
ing the labeling of train or test data for these embryos. Moreover, since high
fragmentation is strongly correlated with low embryo viability [1], in standard
clinical practice highly fragmented embryos are frequently discarded. Thus, we
only train the rest of the networks on embryos with fragmentation less than 2.

Stage Classification: For low fragmentation embryos, we classify the embryo’s
developmental stage over time using a classification CNN (ResNeXt101 [33]).
The classifier takes the three middle focal planes as input and predicts a 13-
element vector of class probabilities, with 9 classes for cleavage-stage embryos
(one each for 1–8 cells and one for ≥9 cells) and one class each for morula (M),
blastocyst (B), empty wells (E), and degenerate embryos (D; Fig. 4, left). To
account for inaccuracies in the training data labels, we trained the classifier
with a soft loss function modified from the standard cross-entropy loss

log (p(�|m)) = log

(∑
t

p(�|t)p(t|m)

)
, (1)

where t is the true stage of an image, � the (possibly incorrect) label, and m the
model’s prediction. We measured p(�|t) by labeling 23,950 images in triplicate
and using a majority vote to estimate the true label t of each image. This soft-
loss differs from the regularized loss in [31] by differentially weighting classes; for
instance, p(� = 1-cell|t = 1-cell) = 0.996 whereas p(� = 6-cell|t = 6-cell) = 0.907.
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Using the measured p(�|t), we then trained the network with 341 embryos labeled
at 111,107 times, along with a validation set of 73 embryos labeled at 23,381
times for early stopping [13]. Finally, we apply dynamic programming [4] to the
predicted probabilities to find the most-likely non-decreasing trajectory, ignoring
images labeled as empty or degenerate (Fig. 4, center).

Cell Object Instance Segmentation: For the images identified by the stage
classifier as having 1–8 cells, we next perform object instance segmentation on
each cell in the image. We train a network with the Mask R-CNN architec-
ture [14] and a ResNet50 backbone [15], using 102 embryos labeled at 16,284
times with 8 or fewer cells; we also use a validation set of 31 embryos labeled
at 4,487 times for early stopping [13]. Our instance segmentation model takes
as input a single-focus image cropped from the zona segmentation and resized
to 500 × 500. The segmentation model then predicts a bounding box, mask, and
confidence score for each detected cell candidate (Fig. 5, left). Both the ground-
truth labels and the predicted masks overlap significantly when the embryo has
2–8 cells (Fig. 5, center). We produce a final prediction by running our segmen-
tation model on the three central focal planes; we merge candidates found across
focal planes by using the one with the highest confidence score.

Pronucleus Object Instance Segmentation: Finally, in the images identified
as 1-cell by the stage classifier, we detect the presence of pronuclei. To do so,
we train another object instance segmentation network with the Mask R-CNN
architecture [14] and a ResNet50 backbone [15]. We use a training set of 151
embryos labeled at 9,250 times during the 1-cell stage, with a validation set of
33 embryos labeled at 1,982 times for early stopping [13]. Pronuclei are only
visible during a portion of the 1-cell stage; correspondingly, about 38% of the
training images contain 0, 6% contain 1, and 54% contain 2 pronuclei. The
pronuclei detector takes as input a single image, cropped from the zona pellucida
segmentation and resized to 500 × 500, and it predicts a bounding box, mask, and
confidence score for each detected candidate (Fig. 6, left). We run the pronuclei
detector on the three middle focal planes and merge candidates by using the one
with the highest confidence score.

4 Results

We now evaluate our pipeline’s performance, demonstrating the effect of each
design choice in the models with ablation studies.

Zona Pellucida Segmentation: Our zona pellucida network nearly optimally
segments the test set images, taken from 36 embryos at 576 times. The FCN cor-
rectly labels image pixels 96.7% of the time, with per-class accuracies between
93–99% (Fig. 2, right). The misclassified pixels arise mostly at region bound-
aries, roughly corresponding to the few-pixel human labeling inprecision at region
boundaries.
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Fig. 2. The zona pellucida network (ResNet101 FCN) performs semantic segmentation
on the input image, predicting four class probabilities for each pixel (colored as pur-
ple: outside well, pink: inside well, green: zona pellucida, cyan: inside zona). Middle:
12 representative segmentations of 3 embryos from the test set. Right: the per-pixel
accuracies of the segmentation on each class in the test set. (Color figure online)

Fig. 3. Left: The fragmentation network (InceptionV3 architecture) scores embryos
with a real number from 0–3; the image at left is scored as a fragmentation of 2.46.
Center: 8 representative fragmentation scores on the test set, shown as image: score
pairs. Right: The distribution of the network’s prediction given the ground-truth label
on the test set. The green distribution corresponds to images with a ground-truth label
of 0; orange those labeled as 1; blue, 2; pink, 3. (Color figure online)

Fragmentation Scoring: The network predicts a score with a mean-absolute
deviation of 0.45 from the test labels on the fragmentation test set of 216 embryos
labeled at 3,652 times (Fig. 3, right). When distinguishing between low- (<1.5)
and high- (≥1.5) fragmentation, the network and the test labels agree 88.9%
of the time. Our network outperforms a baseline InceptionV3 by 1.9%; focus
averaging and cropping to a region-of-interest each provide a 1–1.5% boost to
the accuracy (Table 1).

We suspect that much of the fragmentation network’s error comes from impre-
cise human labeling of the train and test sets, due to difficulties in distinguishing
fragments from small cells and due to grouping the continuous fragmentation score
into discrete bins. To evaluate the human labeling accuracy, two annotators label
the fragmentation test set in duplicate and compare their results. The two anno-
tators have a mean-absolute deviation of 0.37 and are 88.9% consistent in distin-
guishing low- from high- fragmentation embryos. Thus, the fragmentation CNN
performs nearly optimally in light of the labeling inaccuracies.
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Fig. 4. Left: The stage classification CNN (ResNeXt101) predicts a per-class proba-
bility for each image; the two bar plots show the predicted probabilities for the two
images. Center: We use dynamic programming to find the most-likely non-decreasing
trajectory (orange); the circled times t1 and t2 correspond to the predictions at left.
Right: The distribution of predictions given the true labels, measured on the test set.
(Color figure online)

Fig. 5. The cell detection network (Mask-RCNN, ResNet50 backbone) takes an image
(left) and proposes candidates as a combined object mask and confidence score from
0–1 (second from left). Center: The boundaries of the object mask represented as the
cell’s contours (orange, center). Second from right: 12 cell instance segmentations for
4 embryos from the test set (shown as orange contours overlaid on the original image).
Right: Histogram of the ratio of predicted to true areas for correctly identified cells in
the test set. (Color figure online)

Stage Classification: The stage classifier predicts the developmental stage with
a 87.9% accuracy on the test set, consisting of 73 embryos labeled at 23,850
times (Fig. 4, right). The network’s accuracy is high but lower than the human
labeling accuracy on the test set (94.6%). The network outperforms a baseline
ResNeXt101 by 6.7%; both the soft-loss and the dynamic programming each
improve the predictions by 2% (Table 1). The stage classifier struggles when there
are between 5 and 8 cells (66.9% accuracy for these classes). In contrast, the stage
classifier does exceedingly well on images with 1-cell (99.9%), 2-cells (98.7%),
empty wells (99.4%), or blastocysts (98.0%; Fig. 4, right). Despite measuring
significantly more developmental stages, our stage classifier outperforms previous
cell counting networks developed for human embryos [17,21].

Cell Object Instance Segmentation: We measure the accuracy of the cell
instance segmentation network using mean-average precision (mAP) [22], a stan-
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Table 1. Effect of design choices for the 4 more difficult tasks, illustrated by removing
one modification to the network at a time. Test-set scores are in percent correctly
classified (stage, fragmentation) and mean-average precision (blastomere, pronuclei).
The best scores are boldfaced. The last row shows the test set scores using all the
training data but no input from other networks and no modifications to the network.

Setting Fragmentation Stage Blastomere Pronuclei

(%) (%) (mAP) (mAP)

Full Setting 88.9 87.8 0.737 0.680

Single Focus 87.8 84.8 0.739 0.668

No ROI from Zona 87.4 84.9 0.733 0.666

Using 50% Training Data 87.7 85.3 0.718 0.656

No Soft Loss – 85.3 – –

No Dynamic Programming – 86.0 – –

Single-Task Baselines 87.0 81.1 0.737 0.647

[31] [33] [14] [14]

Fig. 6. The pronuclei detection network (Mask-RCNN, ResNet50 backbone) takes an
image (left) and proposes candidates as a combined object mask and confidence score
from 0–1 (second from left). Center: The boundaries of the object mask represented
as the pronuclei contours (magenta, center). Second from right: 12 pronuclei instance
segmentations for 4 embryos from the test set (shown as magenta contours overlaid
on the original image); the rightmost images illustrate true negatives after the pronu-
clei have faded. Right: Histogram of the ratio of predicted to true areas for correctly
identified pronuclei in the test set. (Color figure online)

dard metric for object instance segmentation tasks. Our network predicts cell
masks with a mAP of 0.737 on the test set, consisting of 31 embryos labeled at
4,953 times. The model identifies cells with a precision of 82.8% and a recall of
88.4%, similar to results from other work on fewer images [28]. For correctly-
identified candidates, the predicted cell area is within 17% of the true cell area
90% of the time (Fig. 5, right); much of this error arises when cells strongly
overlap late in the cleavage stage. Cropping to a region-of-interest provides a
marginal improvement to the network’s accuracy (Table 1).
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Pronucleus Object Instance Segmentation: The pronuclei segmentation
network predicts masks with a mAP of 0.680 on the test set of 33 embryos
labeled at 2,090 times. The network identifies pronuclei with a precision of 81.4%
and a recall of 88.2%. Much of the false positive detections are from vacuoles
inside the 1-cell embryo, which look similar to pronuclei. For correctly-identified
candidates, the predicted pronuclei area is within 16% of the true pronuclei area
90% of the time (Fig. 6, right). The pronuclei network’s mAP outperforms that
of a baseline Mask-RCNN by 0.03; averaging across focal planes and cropping
to a region-of-interest each improves the mAP by 0.01 (Table 1).

5 Conclusions

Our unified pipeline greatly speeds up the measurement of embryos: running
all five networks on a 300-image, five-day movie takes 6 min on a GTX Titan
X. In the future, we plan to make this pipeline even faster by combining all
five networks with multi-task learning [8]. Since we measure many of the key
morphological features used in clinical IVF, our unified pipeline has the potential
to reduce the time to grade embryos without sacrificing interpretability. Equally
as important, the automatic, high-quality data produced by our pipeline will
enable better retrospective chart studies for IVF, improving IVF by informing
better clinical practice.
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