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Abstract. Nucleus segmentation is a fundamental task in digital pathol-
ogy analysis. However, it is labor-expensive and time-consuming to man-
ually annotate the pixel-level full nucleus masks, while it is easier to make
point annotations. In this paper, we propose a coarse-to-fine weakly-
supervised framework to train the segmentation model from only point
annotations to reduce the labor cost of generating pixel-level masks.
Our coarse-to-fine strategy can improve segmentation performance pro-
gressively in a self-stimulated learning manner. Specifically, to gener-
ate coarse segmentation masks, we employ a self-supervision strategy
using clustering to perform the binary classification. To avoid trivial solu-
tions, our model is sparsely supervised by annotated positive points and
geometric-constrained negative boundaries, via point-to-region spatial
expansion and Voronoi partition, respectively. Then, to generate fine seg-
mentation masks, the prior knowledge of edges in the unadorned image
is additionally utilized by our proposed contour-sensitive constraint to
further tune the nucleus contours. Experimental results on two public
datasets show that our model trained with weakly-supervised data (i.e.,
point annotations) achieves competitive performance compared with
the model trained with fully supervised data (i.e., full nucleus masks).
The code is made publicly available at https://github.com/tiankuan93/
C2FNet.

Keywords: Nucleus segmentation · Weakly-supervised learning ·
Point-based supervision

1 Introduction

The recent success of deep learning approaches for image segmentation in natu-
ral image analysis is generally supported by large-scale fully annotated datasets.
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Although several deep-learning-based nucleus segmentation methods have been
proposed [8,9,11,12], it is still challenging to segment nuclei from pathologi-
cal images, due to limited training data with full nucleus masks. Generally, it
is labor-expensive and time-consuming to perform the full mask annotation.
Alternatively, it is much easier to annotate the nuclei with points.

Currently, there are a few studies that focus on the problem of segment-
ing nuclei with point supervision. To train nucleus segmentation model with
only point annotations, extra supervised information, including geometric dia-
gram and clustering labels have been employed [2–4]. For example, Qu et al. [3]
proposed a weakly-supervised method for nucleus segmentation based on point
annotation in H&E histopathology images, which extracts pixel-level labels by
using the Voronoi diagram and k-means clustering algorithm. Then, Chamanzar
et al. [4] further modified this method to detect and segment nuclei in immuno-
histochemistry (IHC) images by using local pixel clustering in every Voronoi
sub-region and repel encoding. However, these methods do not pay attention to
the nucleus boundary. Differently, Nishimura et al. [2] proposed to a postpro-
cessing method to segment the individual nucleus with graph-cut after obtaining
the nucleus region map. Generally, it is difficult to rectify the large bias by inde-
pendent post-processing. Therefore, Yoo et al. [5] extended a blob generation
method (training with point supervision) [1] for nucleus segmentation with an
auxiliary network, in which an auxiliary network helps the segmentation network
to recognize nucleus boundaries. For the same purpose, Qu et al. [3] employed a
dense CRF loss for model refinement in nucleus segmentation.

Accordingly, we would like to develop a method that can integrate the
benefits of using pixel clustering and boundary attention. In this paper, we
propose a coarse-to-fine framework that can improve the segmentation perfor-
mance progressively in a self-stimulated learning manner. Specifically, to gener-
ate coarse segmentation masks, we employ a self-supervision strategy using clus-
tering to perform the binary classification. To avoid trivial solutions, our model
is sparsely supervised by annotated positive points and geometric-constrained
negative boundaries, via point-to-region spatial expansion and Voronoi partition.
Then, to generate fine segmentation masks, the prior knowledge of edges in the
unadorned image is additionally utilized by our proposed contour-sensitive con-
straint to further tune the nucleus contours. By doing so, both coarse information
(i.e., the roughly mask generated by stimulated learning from point annotation)
and contour information (i.e., the contour obtained by unadorned image) can
be progressively integrated into the learning model in the whole framework, by
utilizing our rectified supervisions. Experiments show that our model trained
with weakly-supervised data achieves competitive performance compared with
the model trained with fully supervised data on MoNuSeg and TNBC datasets.

2 Method

As shown in Fig. 1, our method has two major stages for training the fully
convolutional networks (FCN). The first stage obtains the initial coarse nucleus
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Fig. 1. Framework of our proposed method.

masks for all training data with self-supervised learning and estimated distance
maps. The second stage further refines the FCN with an additional contour
constraint. In the application stage, our FCN model can directly perform the
inference with the well trained FCN.

2.1 Coarse Segmentation Estimation

Our target is to generate coarse segmentation masks in the first training
stage. Intuitively, we can perform binary classification with clustering via self-
supervised learning (i.e., deep clustering [6]). However, typical clustering has the
problem of trivial solutions. An optimal decision boundary is to assign all pixels
to a single class. While point annotations provide us necessary positive pixels
that are too sparse and one class only. Therefore, we would like to transform
the point annotations to more informative supervision maps in the first place.
With the generated supervision maps, we can train an FCN model end-to-end
to obtain the coarse segmentation masks.
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Fig. 2. Sparse supervision maps for segmentation.

Maps for Supervision. We denote the image as I and the positive point
annotation map as P. We intend to generate two distance maps that focus on
reliable positive and negative pixels, respectively.

1) We propose a point distance map (i.e., D) focusing on positive pixels with
high confidence. We assume that the annotated point for each nucleus is near
the center of the nucleus. Then, we perform a distance filter to point annotations
to dilate the dot to a local region with decreasing response, which is considered
reliable nucleus supervision, as shown in Fig. 2(c). Mathematically, each element
di,j (i and j are the coordinates in the image space) in D is calculated as

di,j = max(0, 1 − α
√

(i − m)2 + (j − n)2)) (1)

where m and n are the coordinates of the nearest positive point in the positive
point annotation map P, and α is a scaling parameter to control the scale of
distribution. Note that, a Gaussian-like filter could also be employed in our
application to obtain the point distance map.

2) We propose another Voronoi edge distance map (i.e., V) focusing on neg-
ative pixels with high confidence. Since most nuclei are convex and have the
shape of ellipse, the Voronoi diagram, according to a given set of points, is an
ideal partition of a plane into blocks. Therefore, we employ the Voronoi diagram
to obtain the partition edges that are further dilated with the rapidly decreas-
ing response using a distance filter (Eq. 1). This Voronoi edge distance map is
utilized to describe reliable negative pixels, as shown in Fig. 2(d).

First Stage Sparsely Supervised Learning. To perform the self-supervised
learning, we employ the polarization loss to guide the update of the weights (i.e.,
W) in the FCN (denoted as f). Denote the output segmentation map as S, with
the probability value from 0 to 1, the polarization loss is calculated as

Lpolar(W) = ‖ (f(I) − H(S-0.5)) ‖2F , (2)

where the H(Heaviside step function) operation rectified the output segmenta-
tion map to the binary mask to realize the self-supervised learning. Note that, we
do not require the function H to be differentiable, since we employ this function
for generating the pseudo segmentation mask.

Besides, we calculate two sparse losses, named Lpoint and Lvoronoi, to guide
the update of W. Since the two maps only focus on partial positive and negative



Coarse-to-Fine Weakly-Supervised Nucleus Segmentation 303

FCN model

FCN model

FCN model

1st round

2nd round

3rd round

Training data Inference mask

Copy

Distance
filtering

Weight 
passing
Weight
passing

Distance
filff tering

Fig. 3. Point-to-region coarse segmentation method.

pixels. The pixels without responses are the unknown pixels that should not
be involved in calculating the loss. Therefore, the losses are sparsely calculated
according to the following equations:

Lpoint(W) = ‖ ReLU(D) · (f(I) − D) ‖2F , (3)

Lvoronoi(W) = ‖ ReLU(V) · (f(I) − 0) ‖2F , (4)

where · is the pixel-wise product, and the ReLU operation here is to extract
the reliable weight mask for sparse loss calculation. By doing this, Lpoint only
focuses on the assured positive pixels, and Lvoronoi only focuses on the assured
negative pixels.

Generally, it is difficult to directly obtain satisfactory segmentation masks by
training with such sparse constraints. While we could receive initial segmentation
maps that are the expansion of our point annotations. Therefore, we iteratively
train the segmentation model with the expanded point distance maps, which
are updated by the latest trained model. The point distance map (i.e., D) is
updated according to Eq. 1, where the point annotation map P is replaced with
the estimated segmentation mask (i.e., Sc) from previous training round. The
operation repeats two additional times to achieve reliable segmentation masks.
As shown in Fig. 3, the silhouette of the nucleus gradually becomes clear by mul-
tiple training rounds. Note that, we employ the same Voronoi edge distance map
for three iterations. Importantly, because the nuclei differ significantly in size in
different images, it is a good idea to use the same size disk (up to the nucleus
scale) as the nucleus area. Small nuclei will provide wrong reliable positive pix-
els. Therefore, we gradually fit the coarse segmentation that is more suitable for
nuclei of different sizes.
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2.2 Contour Refinement

The contours of nuclei in coarse segmentation are not accurate. We propose to
use an additional contour-sensitive constraint to refine the contours.

Contour Map for Supervision. For the observation that the colors of nucleus
pixels are often different from the surrounding background pixels. We can extract
the apparent contour (not necessary to be the complete contours for nuclei) of
the input images as an additional supervision. Specifically, we first employ a
Sobel operator to detect edges from the original images. Not surprisingly, there
are lots of noisy edges in the edge map (i.e., E), as shown in Fig. 4(b). Then, we
refine the edge map by the coarse segmentation mask (i.e., Sc), obtained in the
first stage, to eliminate the unnecessary Sobel edges. The refined edge map (i.e.,
Er) is obtained as

Er = (dilation(Sc, k) − erosion(Sc, k))&E, (5)

where & is the pixel-wise AND operator, and dilation(·, k) and erosion(·, k) are
the morphological operations of image dilation and erosion in k pixels, respec-
tively. Sample images can be found in Fig. 4.

(a) Image (c) Coarse mask(b) Sobel edge (e) Sparse contour map(d) Contours from coarse mask

dilation(Sc,k) − erosion(Sc,k) ErScEI

Fig. 4. Supervision maps for contour refinement.

Second Stage Sparsely-Supervised Learning. To implement the supple-
ment boundary supervision, we propose an additional contour-sensitive loss (i.e.,
Lcontour) to the existing losses to fine-tune the nucleus contours. Similarly, we
also perform the supervision sparsely using our generated contour map. The
contour-sensitive loss is defined as

Lcontour(W) = ‖ ReLU(Er) · (sobel(f(I)) − Er) ‖2F , (6)

Note that, the sobel operation is differentiable, and thus W can be optimized
by backpropagation.
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2.3 Implementation Details

During the whole training process, the segmentation model is a unified FCN of
LinkNet [7], while different synergistic tasks with corresponding losses is applied
to the same model output. Our model is implemented based on Keras with
Tensorflow backend. The scaling parameter α is set to 0.05. The parameter k for
morphological operations is set to 5.

In our weakly-supervised framework, we initialized the network with pre-
trained parameters from an natural image segmentation dataset. Because of the
lack of training samples, random cropping, scaling, rotation, flipping, bright-
ness, and gamma transformation are utilized for data augmentation. We ran-
domly crop the input image into the size of 512 × 512 for training the model.
For every coarse segmentation iteration, we employ Lpoint, Lvoronoi, and Lpolar

with weights of 1.0, 0.1, 0.1, respectively, to train network in 200 epochs. While
in the contour estimation stage, we update the network by introducing an addi-
tional loss of Lcontour, to refine the model in 50 epochs. And the final loss weights
are 0.01, 0.01, 0.01, 1.0, respectively. We employ Adam optimizer with a learning
rate of 0.001 for both stages.

3 Experiments

3.1 Datasets

We evaluate our proposed weakly-supervised framework on two independent
nucleus segmentation datasets: MoNuSeg [8] and TNBC [9]. MoNuSeg consists
of 30 images of size 1000 × 1000, which are selected from the TCGA website
of different cancer types from multiple hospitals. And TNBC is comprised of 50
images of size 512×512, which are extracted from slides of a cohort of Triple Neg-
ative Breast Cancer (TNBC) patients, scanned with Philips Ultra Fast Scanner
1.6RA. Both MoNuSeg and TNBC have pixel-level mask annotations. There-
fore we can generate the points annotation for the training set by calculating
the central point (with a random bias) of each nucleus mask. We adopt tenfold
cross-validation for evaluation.

3.2 Evaluation Metrics

We use four metrics for evaluation, including two pixel-level criteria (i.e., pixel-
level IoU and F1 score) and two object-level criteria (i.e., object-level Dice coef-
ficient [10] and Aggregated Jaccard Index (AJI) [8]). The detailed definitions of
these metrics are provided in [3,8]. Note that, the pixel-level F1 score is also
known as the pixel-level Dice coefficient.

3.3 Results and Comparison

We compare our method with three weakly-supervised methods [1,3,5]. It should
be noted that results from [3] are obtained by running the provided code, while
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Table 1. Ten-fold validation results on MoNuSeg and TNBC datasets

MoNuSeg

Methods Pixel-level Object-level

IoU F1 score Dice AJI

Issam et al. [1] 0.5710± 0.02 - - -

Yoo et al. [5] 0.6136± 0.04 - - -

Qu et al. [3] 0.5789± 0.06 0.7320± 0.05 0.7021± 0.04 0.4964±0.06

Our method 0.6239±0.03 0.7638±0.02 0.7132±0.02 0.4927± 0.04

Fully supervised 0.6494± 0.04 0.7859± 0.02 0.7358± 0.03 0.5169± 0.05

TNBC

Methods Pixel-level Object-level

IoU F1 score Dice AJI

Issam et al. [1] 0.5504± 0.04 - - -

Yoo et al. [5] 0.6038± 0.03 - - -

Qu et al. [3] 0.5420± 0.04 0.7008± 0.04 0.6931± 0.04 0.5181± 0.05

Our method 0.6393±0.03 0.7510±0.04 0.7413±0.03 0.5509±0.04

Fully supervised 0.6950± 0.03 0.8022± 0.03 0.7881± 0.02 0.6233± 0.03

Table 2. Comparison of different iterations

MoNuSeg

Iteration Pixel-level Object-level

IoU F1 score Dice AJI

First-stage-r1 0.2315± 0.05 0.3710± 0.06 0.3771± 0.06 0.2164± 0.04

First-stage-r2 0.4198± 0.06 0.5864± 0.06 0.5741± 0.05 0.3727± 0.05

First-stage-r3 0.5244± 0.03 0.6860± 0.02 0.6497± 0.03 0.4348± 0.05

First-stage-r4 0.5080± 0.04 0.6704± 0.03 0.6175± 0.04 0.3907± 0.06

Second-stage-r1 0.6239±0.03 0.7638±0.02 0.7132±0.02 0.4927±0.04

TNBC

Iteration Pixel-level Object-level

IoU F1 score Dice AJI

First-stage-r1 0.3426± 0.05 0.5053± 0.06 0.4984± 0.06 0.3303± 0.05

First-stage-r2 0.4836± 0.08 0.6417± 0.08 0.6403± 0.05 0.4412± 0.07

First-stage-r3 0.5424± 0.06 0.6662± 0.07 0.6568± 0.05 0.4523± 0.05

First-stage-r4 0.4362± 0.09 0.5895± 0.10 0.5664± 0.10 0.3450± 0.09

Second-stage-r1 0.6393±0.03 0.7510±0.04 0.7413±0.03 0.5509±0.04
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results for [1,5] are obtained from related paper [5]. Furthermore, we train a
fully supervised model to illustrate the upper limit of our method. As shown in
Table 1, in comparison with all weakly-supervised methods, our method almost
achieves the best segmentation performance (except AJI on MoNuSeg set) on
two datasets in terms of all evaluation criteria. Moreover, our method can achieve
a competitive result compared with the fully supervised model.

To illustrate the effect of the point-to-region stage and contour-refine stage,
Table 2 lists the results of each iteration. In the point-to-region stage, the accu-
racies of the first three iterations are gradually increased, while the fourth itera-
tion decreases the performance. This is because when the positive segmentation
results gradually reach the nucleus scale (even larger scale), certain negative pix-
els will be introduced into the positive point distance map according to Eq. 1,
thus leading to unreliable positive map. However, the last row of Table 2 shows
that after the contour-refinement stage, the segmentation model can better fit
the nucleus edges, thereby further improving the effectiveness of the segmenta-
tion model.

4 Conclusion

In this paper, we propose a weakly-supervised segmentation framework based
on point annotations. First, we train a sparse segmentation model through mul-
tiple iterations, and then we propose to use the additional contour-sensitive loss
for contour refinement. In the experiments, our method can obtain a superior
segmentation performance compared with the state-of-the-art weakly-supervised
methods using point supervision. It suggests the effectiveness of our proposed
coarse-to-fine learning framework.
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