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Abstract. 3D shape instantiation for reconstructing the 3D shape of
a target from limited 2D images or projections is an emerging tech-
nique for surgical navigation. It bridges the gap between the current
2D intra-operative image acquisition and 3D intra-operative navigation
requirement in Minimally Invasive Surgery (MIS). Previously, a general
and registration-free framework was proposed for 3D shape instantia-
tion based on Kernel Partial Least Square Regression (KPLSR), requir-
ing manually segmented anatomical structures as the pre-requisite. Two
hyper-parameters including the Gaussian width and component number
also need to be carefully adjusted. Deep Convolutional Neural Network
(DCNN) based framework has also been proposed to reconstruct a 3D
point cloud from single 2D image, with end-to-end and fully automatic
learning. In this paper, an Instantiation-Net is proposed to reconstruct
the 3D mesh of a target from its single 2D image, by using DCNN to
extract features from the 2D image and Graph Convolutional Network
(GCN) to reconstruct the 3D mesh, and using Fully Connected (FC) lay-
ers as the connection. Detailed validation on the Right Ventricle (RV),
with a mean 3D distance error of 2.21mm on 27 patients, demonstrates
the practical strength of the method and its potential clinical use.

Keywords: 3D shape instantiation · Intra-operative 3D navigation ·
Right Ventricle · Graph Convolutional Neural Network

1 Introduction

Recent advances in Minimally Invasive Surgery (MIS) bring many advantages
to patients including reduced access trauma, less bleeding and shorter hospi-
talization. However, they also impose challenges to intra-operative navigation,
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where acquisition of 3D data in real-time is challenging and in most clinical
practices, 2D projections or images from fluoroscopy, cross sectional Magnetic
Resonance Imaging (MRI) and ultrasound are used. It is difficult to use these
2D images to resolve complex 3D geometries and therefore there is a pressing
need to develop real-time techniques to reconstruct 3D structures from limited
or even a single 2D projection or image in real-time intra-operatively.

For example, pre-operative 3D context from MRI or Computed Tomography
(CT) was registered to intra-operative 2D ultrasound images with both spatial
and temporal alignment, which facilitates intra-operative navigation for cardiac
MIS [9]. Pre-operative 3D meshes from CT were adapted to intra-operative 2D
X-ray images with as-rigid-as-possible method, which acts as an arterial road
map for Endovascular Aneurysm Repair [14]. The 3D shape of a stent-graft at
three different status: fully-compressed [17], partially-deployed [16] and fully-
deployed [18] was instantiated from single 2D fluoroscopic projection with stent-
graft modelling, graft gap interpolation, the Robust Perspective-n-Point method,
Graph Convolutional Network (GCN), and mesh manipulation, which improves
the navigation in Fenestrated Endovascular Aneurysm Repair. A review of bony
structures reconstruction from multi-view X-ray images could be found in [7].

Recently, a general and registration-free framework for 3D shape instanti-
ation was proposed [20] with three steps: 1) 3D volumes were pre-operatively
scanned for the target at different time frames during the deformation cycle. 3D
meshes were segmented and expressed into 3D Statistical Shape Models (SSMs).
Sparse Principal Component Analysis (SPCA) was used to analyze the 3D SSMs
to determine the most informative and important scan plane; 2) 2D images were
scanned synchronously at the determined optimal scan plane. 2D contours were
segmented and expressed into 2D SSMs. Kernel Partial Least Square Regression
(KPLSR) was applied to learn the relationship between the 2D and 3D SSMs; 3)
the KPLSR-learned relationship was applied to the intra-operative 2D SSMs to
reconstruct the instantaneous 3D SSMs for navigation. Two deficiencies exist: 1)
manual segmentation is essential; 2) two hyper-parameters including the Gaus-
sian width and component number require to be carefully and manually adjusted.
To avoid these drawbacks, a one-stage and fully automatic Deep Convolutional
Neural Network (DCNN) was proposed to reconstruct the 3D point cloud of a
target from its single 2D projection with PointOutNet and Chamfer loss [19].
However, 3D mesh with more details of the surface is more helpful and vital
than point cloud.

In this paper, we propose an Instantiation-Net to reconstruct the 3D mesh
of a target from its single 2D projection. DenseNet-121 is used to extract abun-
dant features from the 2D image input. Graph Convolutional Network (GCN)
is used to reconstruct the 3D mesh. Fully Connected (FC) layers are used as
the connection. Figure 1 illustrates the framework for 3D shape instantiation is
evolving from two-stage KPLSR-based framework [20], the PointOutNet [19], to
the Instantiation-Net proposed in this paper. 27 Right Ventricles (RVs), indi-
cating 609 experiments, were used for validation. An average 3D distance error
around 2mm was achieved, which is comparable to the performance in [20] but
with end-to-end and fully automatic training.
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Fig. 1. An illustration of the evolution of 3D shape instantiation from two-stage
approach based on KPLSR [20], PointOutNet based on deep learning [19] to the
Instantiation-Net that could reconstruct 3D mesh from 2D image in end-to-end fashion.

2 Methodology

The input of Instantiation-Net is a single 2D image I with a size of 192 × 256
while the output is a 3D mesh F with vertex V and the connectivity A. Three
parts including DCNN, FC and GCN consist of the proposed Instantiation-Net.
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2.1 DCNN

For an image input IN×H×W×C, where N is the batch size and is fixed at 1 in this
paper, H is the image height, W is the image width, C is the image channel and is
1 for medical images, multiple convolutional layers, batch normalization layers,
average-pooling layers and ReLU layers1 consist of the first part of Instantiation-
Net - DenseNet-121 [8] for extracting abundant features from the single 2D image
input. Detailed layer configurations are shown in Fig. 2.

Fig. 2. Detailed layer configurations of the proposed Instantiation-Net.

2.2 GCN

For a 3D mesh F with vertex of VM×3 and connectivity of AM×M, where M is
the number of vertex in the mesh, AM×M is the adjacency matrix with, Aij = 1
if the ith and jth vertex are connected by an edge, otherwise Aij = 0. The
non-normalized graph Laplacian matrix is calculated L = D − A, where Dii =∑M

j=1 Aij , Dij = 0, if i �= j, is the vertex degree matrix. For achieving Fourier
transform on the mesh vertex, L is decomposed into Fourier basis as L = UΛUT ,
where U is the matrix of eigen-vectors and Λ is the matrix of eigen-values. The
Fourier transform on the vertex v is then formulated as vw = UT v, while the
inverse Fourier transform is formulated as v = UT vw. The convolution in spatial
domain of the vertex v and the kernel s can be inversely transformed from the
spectral domain as v∗s = U((UT v)�(UT s)), where s is the convolutional filter.

1 For more details of these layers, please refer to [10,12].
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However, this computation is very expensive as it involves matrix multiplication.
Hence Chebyshev polynomial is used to reformulate the computation with a
kernel gθ:

gθ(L) =
K−1∑

k=0

θkTk(L̃) (1)

where L̃ = 2L/Λmax − In is the scaled Laplacian, θ is the Chebyshev coefficient.
Tk is the Chebyshev polynomial and is recursively calculated as [2]:

Tk(L̃) = 2L̃Tk−1(L̃) − Tk−2(L̃) (2)

where T0 = 1, T1 = L̃. The spectral convolution is then defined as:

yj = v ∗ s =
Fin∑

i=1

gθi,j(L)v (3)

where Fin is the feature channel number of the input V , j ∈ (1, Fout), Fout

is the feature channel number of the output Y . Each convolutional layer has
Fin × Fout × K trainable parameters.

Except graph convolutional layers, up-sampling layers are also applied to
learn the hierarchy mesh structures. First, the mesh F is down-sampled or sim-
plified to a simplified mesh with M//S vertices, where S is the stride, and is
set as 4 or 3 in this paper. Several mesh simplification algorithms can be used
in this stage, such as Quadric Error Metrics [13], and weighted Quadric Error
Metrics Simplification (QEMS) [5], The connectivity of the simplified meshes is
recorded and used to calculate L for the graph convolution at different resolu-
tions. The discarded vertexes during the mesh simplification are projected back
to the nearest triangle, with the projected position computed with the barycen-
tric coordinates. More details regarding the down-sampling, up-sampling and
graph convolutional layers can be found in [13].

2.3 Instantiation-Net

For the DCNN part, DenseNet-121 from [8] is imported from Keras, with param-
eters pre-trained on ImageNet [3]. For the FC part, two FC layers with an output
feature dimension of 8 are used. For the GCN part, four up-sampling and graph
convolutional layers are adopted [13]. Detailed configurations of each layer are
shown in Fig. 2. An intuitive illustration of the example Instantiation-Net with
compacting multiple layers into blocks is shown in Fig. 3. The input is generated
by tiling the 2D MRI image three times along the channel dimension. A 3D mesh
can be reconstructed directly from the single 2D image input by the proposed
Instantiation-Net in a fully automatic and end-to-end learning fashion.
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[1,192,256,3]

Fig. 3. An intuitive illustration of the proposed Instantiation-Net with compacting
multiple layers into blocks.

2.4 Experimental Setup

The data used are the same as [19,20]. Following [19,20], Instantiation-Net was
trained patient-specifically with leave-one-frame-out cross-validation: one time
frame in the patient was used in the test set, while all other time frames were
used as the training set. Stochastic Gradient Descent (SGD) was used as the
optimizer with a momentum of 0.9, while each experiment was trained up to 1200
epochs. The initial learning rate was 5e−3 and decayed with 0.97 every 5 × M
iterations, where M is the number of time frame for each patient. The kernel size
of GCN was 3. For most experiments, the feature channel and stride size of GCN
were 64 and 4 respectively, except that some experiments used 16 and 3 instead.
The proposed framework was implemented on Tensorflow and Keras functions.
L1 loss was used as the loss function, because L2 loss experienced convergence
difficulty in our experiments. The average value of the 3D distance errors of all
the vertices is used as the evaluation metric.

3 Results

To prove the stability and robustness of the proposed Instantiation-Net to each
vertex inside a mesh and to each time frame inside a patient, the 3D distance
error for each vertex of four meshes and 3D distance error for each time frame
of 12 patients are shown in Sect. 3.1 and Sect. 3.2 respectively. To validate the
performance of the proposed Instantiation-Net, the PLSR-based and KPLSR-
based 3D shape instantiation in [20] are adopted as the baseline in Sect. 3.3.

3.1 3D Distance Error for a Mesh

Four reconstructed meshes were selected randomly, showing the 3D distance
error of each vertex in colors in Fig. 4. It can be observed that the error is
distributed equally on each vertex and does not concentrate or cluster on one
specific area. High errors appear at the top of the RV, which is normal, as the
vertex number at the RV mesh top is less in the ground-truth than other areas.
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Subject 18 Time Frame 15
(3D distance error 2.35mm)

Subject 27 Time Frame 22
(3D distance error 2.31mm)

Subject 4 Time Frame 2
(3D distance error 3.44mm)

Subject 8  Time Frame 6
(3D distance error 1.19mm)

Fig. 4. The 3D distance error of each vertex of four randomly-selected meshes. The
color bar is in a unit of mm.

3.2 3D Distance Error for a Patient

Figure 5 illustrates the 3D distance errors of each time frame of 12 subjects
selected randomly. We can see that, for most time frames, the 3D distance errors
are around 2mm. High errors appear at some time frames, i.e. the time frame 1
and 25 of subject 7, the time frame 11 of subject 9, the time frame 9 of subject
5, the time frame 18 and 20 of subject 15, the time frame 13 of subject 26.
This phenomenon was also observed in [19,20], which is the boundary effect. At
systole or diastole of the cardiac cycle, the shape of cardiac reaches its smallest
or largest size, resulting in extreme cases of 3D mesh compared with other time
frames. In the cross validation, if these extreme time frames are not seen in the
training data, but are tested, the accuracy of the prediction will be lower.
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3.3 Comparison to Other Methods

Figure. 6 shows the comparison of the reconstruction performance among the
proposed Instantiation-Net, PLSR- and KPLSR-based 3D shape instantiation
methods on the 27 subjects. These were evaluated by the mean of 3D distance
errors across all time frames. We can see that the proposed Instantiation-Net
out-performs PLSR-based 3D shape instantiation while under-performs KPLSR-
based 3D shape instantiation slightly for most patients. The overall mean 3D
distance error of the mesh generated by Instantiation-Net, PLSR-based and
KPLSR-based 3D shape instantiation are 2.21mm, 2.38mm and 2.01mm respec-
tively. In addition, the performance of the proposed Instantiation-Net is robust
across patients, no obvious outliers are observed.

All experiments were performed with a CPU of Intel Xeon® E5-1650 v4
and a GPU of Nvidia Titan Xp. The GPU memory consuming was around 11G
which is larger than the 4G consumed by PointOutNet in [19], while PLSR-
based and KPLSR-based method in [20] were trained on a CPU. The training
time was around 1 h for one time frame which is longer than the 30mins of the
PointOutNet in [19], while PLSR-based and KPLSR-based method in [20] took
a few minutes. However, the inference of the end-to-end Instantiation-Net only
took 0.5 seconds to generate a 3D mesh automatically, while KPLSR-based 3D
shape instantiation needs manual segmentation.

4 Discussion

Due to limited coverage of the MRI images at the atrioventricular ring, less
vertexes and sparse connectivity exist at the top of the 3D RV mesh, resulting
in a higher error in this area, as shown in the right example in Fig. 4. In practical
applications, the training data will cover all time frames pre-operatively, which
can eliminate the boundary effect shown in Sect. 3.1.

DCNN has a powerful ability for feature extraction from images while GCN
has a powerful ability for mesh deformation with both vertex deformation and
connectivity maintenance. This paper integrates these two strong networks to
achieve 3D mesh reconstruction from single 2D image, which crosses modalities.
Based on the author’s knowledge, this is one of the few pioneering works that
achieve direct 3D mesh reconstruction from 2D images with end-to-end training.
In medical computer vision, this is the first work that achieves 3D mesh recon-
struction from single 2D image in an end-to-end and fully automatic training.

Apart from the baselines in this paper, there are also other works working on
similar tasks, i.e. [1,4,6,11,15,19]. However, 3D occupancy grid is reconstructed
in [1], point cloud is reconstructed in [4,11,19] and 3D volume is reconstructed
in [6,15]. 3D occupancy grid, point cloud and 3D volume are different 3D data
modalities compared to the 3D mesh reconstructed in this paper, hence it is
difficult to conduct a fair comparison with them. In addition, two orthogonal
X-rays are needed for a 3D volume reconstruction in [15] which can not work on
a single image input in this paper.
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Fig. 5. The mean 3D distance errors of each time frame of 12 randomly selected
patients.

One potential drawback of the proposed Instantiation-Net is that it requires
both the larger consumption in GPU memory and the longer training time than
that of the PointOutNet in [20] and the PLSR-based and KPLSR-based 3D
shape instantiation in [19], but, the inference is quick and fully automatic.
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Fig. 6. The mean 3D distance errors of the mesh of 27 subjects generated by the
proposed Instantiation-Net, PLSR- and KPLSR-based 3D shape instantiation.

5 Conclusion

In this paper, an end-to-end framework, called Instantiation-Net, was proposed
to instantiate the 3D mesh of RV from its single 2D MRI image. DCNN is used
to extract the feature map from 2D image, which is connected with 3D mesh
reconstruction part based on GCN via FC layers. The results on 609 exper-
iments showed that the proposed network could achieve higher/slightly lower
accuracy in 3D mesh than PLSR-based/KPLSR-based 3D shape instantiation
in [20]. According to the result, one-stage shape instantiation directly from 2D
image to 3D mesh can be achieved by the proposed Instantiation-Net, obtaining
comparable performance with the two baseline methods.

We believe that the combination of DCNN and GCN will be very useful in
the medical area, as it bridges the gap between the image and mesh modality. In
the future, we will work on extending the proposed Instantiation-Net to broader
applications, i.e., reconstructing 3D meshes directly from 3D volumes.
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