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Abstract. Intrinsic and parametric regression models are of high inter-
est for the statistical analysis of manifold-valued data such as images
and shapes. The standard linear ansatz has been generalized to geodesic
regression on manifolds making it possible to analyze dependencies of
random variables that spread along generalized straight lines. Neverthe-
less, in some scenarios, the evolution of the data cannot be modeled ade-
quately by a geodesic. We present a framework for nonlinear regression on
manifolds by considering Riemannian splines, whose segments are Bézier
curves, as trajectories. Unlike variational formulations that require time-
discretization, we take a constructive approach that provides efficient
and exact evaluation by virtue of the generalized de Casteljau algorithm.
We validate our method in experiments on the reconstruction of periodic
motion of the mitral valve as well as the analysis of femoral shape changes
during the course of osteoarthritis, endorsing Bézier spline regression as
an effective and flexible tool for manifold-valued regression.

Keywords: Shape trajectory · Manifold-valued Bézier curves · Spline
regression · Riemannian geometry

1 Introduction

Manifold-valued data arises in many medical applications, for example as image
data or in the form of 2D/3D shapes, and sophisticated tools for its analysis
have become increasingly important. Regression methods are central to modern
statistics and research for their applicability to nonlinear spaces is fuelled by an
ever-growing number of large longitudinal studies [11]. Consequently, geodesic
regression [9,20] was introduced as a generalization of linear regression. It allows
to test whether given instances in a Riemannian manifold can be well approxi-
mated by a generalized straight line. Nevertheless, there are processes that can-
not be accurately described by a geodesic, e.g., periodic motion or processes
with saturation which slow down after some time. In order to handle these
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cases, both non-parametric [8,17,23] and parametric models have been studied.
In the latter category, Riemannian polynomials [14] and splines [22] have been
considered for nonlinear regression. They are defined, for example by employing
variational principles, as solutions to differential equations involving curvature
terms. Therefore, evaluation and optimization is complicated and numerically
expensive since there are no closed-form solutions available in general.

As an alternative, we propose to use manifold-valued Bézier curves [18,21].
They coincide with polynomial curves in Euclidean space, are intrinsic to the
manifold (i.e., independent of a choice of coordinates) and more flexible than
geodesics. In contrast to Riemannian polynomials, Bézier curves allow for explicit
formulas, which enables us to evaluate them directly without time-discretization.
This can improve computational speed without suffering a loss of accuracy. Fur-
thermore, we can combine two such curves to a differentiable spline indepen-
dently of the degrees of the Bézier segments. This is again an advantage over
polynomial curves. While variational spline models allow for piecewise compo-
sition, there is no clear way to define them for even degrees [14]. Therefore,
the introduction of flexible, intrinsic splines is a key contribution of this work.
Our model features closed-form, numerically stable and efficient expressions for
the gradient of the regression objective in terms of concatenated adjoint Jacobi
fields [6]. In particular, we derive an algorithm that only requires basic Rieman-
nian operations: the exponential and logarithmic map as well as certain Jacobi
fields. Notably, closed-form expressions for these operations are available for
many manifolds; in particular, they are known for Kendall’s shape space [19]
and shape models based on differential [25] and fundamental [3] coordinates.

While the method can be generally applied to data on any manifold, we
provide two specific examples from shape analysis. First, we regress the data
of 100 highly resolved femur geometries with different severeness of osteoarthri-
tis against their grade in the Kellgren Lawrence grading system. Second, we
reconstruct the full motion cycle of a mitral valve from 3D geometries that were
derived from ultrasound images. To the best of our knowledge, we are the first
to present intrinsic regression results of such a periodic process.

2 Spline Regression

Tools from Riemannian Geometry. Before we introduce Bézier curves on
manifolds we recall some important facts from Riemannian geometry; for more
information see for example [7]. As is often done, we use “smooth” synonymously
with “infinitely often differentiable”.

A Riemannian manifold is a differentiable manifold M together with a Rie-
mannian metric 〈·, ·〉p that assigns to each tangent space TpM a smoothly varying
scalar product. As a result, a distance function d is induced on M . Every Rieman-
nian manifold comes with a unique connection ∇ called Levi-Civita connection.
Given two vector fields X,Y on M it yields a natural way to differentiate Y
along X; we denote the resulting vector field by ∇XY .

A geodesic γ is a generalized straight line and its defining property is vanish-
ing of acceleration, i.e., ∇γ′γ′ = 0, where γ′ := d

dtγ. An important fact is that
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every point in M has a so-called convex neighbourhood U . Each pair p, q ∈ U
can be joined by a unique length-minimizing geodesic [0, 1] � t �→ γ(t; p, q)
that lies completely in U . In the following, we always assume to work in a con-
vex neighbourhood. Then, γ is also differentiable with respect to its starting
and end point. Explicit formula of these differentials involve the Riemannian
curvature tensor R (which intuitively measures local deviation from flat space;
see [7, Ch. 4]). It determines Jacobi fields J along γ as solutions to the linear
second order differential equation ∇γ′∇γ′J + R(J, γ′)γ′ = 0. Considering the
boundary value problem J(0) = X, J(1) = 0, we denote its solution by JX .
Then, the derivative of γ w.r.t. its starting point p in direction X ∈ TpM is
given by JX , i.e., dpγ(t; ·, q)(X) = JX(t) for all t ∈ [0, 1]. Furthermore, since
γ(t; p, q) = γ(1 − t; q, p), endpoint variations are given analogously [6, Sect. 3.1].

Another important map is the Riemannian exponential. Let X ∈ TpM such
that there is a geodesic [0, 1] � t �→ γ(t; p, q) in U with X = γ′(0; p, q). The expo-
nential map at p is then defined by expp(X) := q. Its inverse is the Riemannian
logarithm logp. In particular, we have logp(q) = γ′(0; p, q).

The adjoint A∗ of a linear operator A : TpM → TqM is given, as usual, by
the linear operator from TqM to TpM that conserves the scalar product, i.e.,
〈AX,Y 〉q = 〈X,A∗Y 〉p for all X ∈ TpM, Y ∈ TqM .

Later, we want to calculate the gradient of a composition of functions. If
f : M → M and g : M → R are smooth, then the chain rule for gradients reads
gradp(g ◦ f) = dpf

∗(gradf(p)g), i.e., the gradient of g at f(p) is “transported”
to the tangent space at p by the adjoint differential of f .

Bézier Curves. In the following we restrict the domain of definition to [0, 1] for
clarity. This does not influence generality as reparametrizations are always pos-
sible. In particular, geodesics γ can be defined on arbitrary intervals by changing
the speed of travel, i.e., the length of the velocity vector.

A set of k+1 control points p0, . . . , pk ∈ U defines a Bézier curve β : [0, 1] →
M of order k according to the generalized de Casteljau algorithm

β0
i (t) := pi,

βl
i(t) := γ(t;βl−1

i (t), βl−1
i+1(t)), l = 1, . . . , k, i = 0, . . . , k − l, (1)

by β(t) := βk
0 (t).

Note that β(0) = p0 and β(1) = pk. Furthermore, the velocities of β at these
points are

β′(0) = k logp0
(p1) and β′(1) = −k logpk

(pk−1); (2)

see [21, Thm. 1]. The algorithm is visualized on the left of Fig. 1. Whenever
of interest, we will make the dependence of β on its control points explicit by
writing β(t; p0, . . . , pk). Note that if there are only 2 control points p0, p1, then
β is just the geodesic from p0 to p1. In Euclidean space, the above algorithm is
the ordinary de Casteljau algorithm (because there geodesics are straight lines)
and it is a well known fact that then β is a curve with polynomials of order at
most k as entries.
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Fig. 1. Left: A cubic Bézier curve β on the sphere S2 and the construction of β(2/3)
by the de Casteljau algorithm. Right: A Bézier spline with 3 cubic segments on S2.

Property (2) allows us to fit Bézier curves of possibly different orders together
to a differentiable spline. For i = 0, . . . , L−1 let p

(i)
0 , . . . , p

(i)
ki

be the control points
of L Bézier curves such that

p
(i)
ki

= p
(i+1)
0 and γ

(
ki

ki + ki+1
; p(i)ki−1, p

(i+1)
1

)
= p

(i+1)
0 (3)

for all i = 1, . . . , L − 2. Then, we define the Bézier spline B by

B(t) :=

{
β(t; p(0)0 , . . . , p

(0)
k0

), t ∈ [0, 1],
β(t − i; p(i)0 , . . . , p

(i)
ki

), t ∈ (i, i + 1], i = 1, . . . , L − 1.
(4)

From (2) it follows that B is C1, i.e., we can make B differentiable by aligning the
three control points at the connections thereby removing one degree of freedom.
For more details see [13, Sect. 2.3]. Note that we could add further restrictions
to ensure that B is C2 [21, p. 119].

If L > 1 and the first and last segment of B are at least cubic, we can
consider closed Bézier splines. Then, B is C1 and closed if and only if (3) extends
cyclically, that is, we also have

p
(L−1)
kL−1

= p
(0)
0 and γ

(
kL−1

kL−1 + k0
; p(L−1)

kL−1−1, p
(0)
1

)
= p

(0)
0 .

In the following, we set

K :=

{
k0 + k1 + · · · + kL−2 + kL−1, B non-closed,
k0 + k1 + · · · + kL−2 + kL−1 − 1, B closed,

and denote the set of K + 1 distinct control points of B by p0, . . . , pK . In the
non-closed case this means

(p0, . . . , pK) :=
(
p
(0)
0 , . . . , p

(0)
k0

, p
(1)
1 , . . . , p

(1)
k1

, . . . , p
(L−1)
1 , . . . , p

(L−1)
kL−1

)
∈ MK+1,
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while p
(0)
0 is left out for closed B. An example of a C1 spline with three cubic

segments and 10 distinct control points is shown on the right of Fig. 1.

The Model. Let N data points qi ∈ U with corresponding scalar parame-
ter values ti (for example points in time) be given. We suppose that the data
points qi are realizations of an M -valued random variable Q that depends on
the deterministic variable t ∈ R according to the model

Q(t) = expB(t;p0,...,pK)(ε).

Here, ε is a random variable that takes values in the tangent space TB(t)M .
The control points p0, . . . , pK are the unknown parameters. In Euclidean space
it reduces to polynomial spline regression since Bézier curves and polynomials
coincide. Note that our model is a generalization of geodesic regression [9], which
it reduces to when B consists of a single segment with 2 control points.

Least Squares Estimation. Given N realizations (tj , qj) ∈ R × U , the sum-
of-squared error is defined by

E(p0, . . . , pK) :=
1
2

N∑
j=1

d
(
B(tj ; p0, . . . , pK), qj

)2

. (5)

Then, we can formulate a least squares estimator of the Bézier spline model
as the minimizer of this error, which under certain conditions agrees with the
maximum likelihood estimation [9]. We would like to emphasize that none of the
control points agrees with the data points as is the case in spline interpolation.

In general, minimizers of (5) are not known analytically, which makes itera-
tive schemes necessary. Therefore, we apply Riemannian gradient descent. (For
optimization on manifolds see [1].) The gradient of E can be computed w.r.t.
each control point individually. We write Bt(pi) for the map pi �→ Bt(pi) :=
B(t; p0, . . . , pi, . . . , pk) and define the functions p �→ τj(p) := d(p, qj)2. It is
known that gradpτj = −2 logp(qj) for each p ∈ U . When we consider the j-th
summand on the right-hand side of (5), the chain rule implies that its gradient
w.r.t. the i-th control point is given by

gradpi
(τj ◦ Btj ) = dpi

B∗
tj

(
gradBtj

(pi)τj

)
= −2 dpi

B∗
tj

(
logBtj

(pi)(qj)
)

.

Using (5) then gives the gradient of E . The operator dpi
B∗

t “mirrors” the con-
struction of the segment of B to which pi belongs by transporting the vector
logBti

(pi)(qj) backwards along the “tree of geodesics” defined by the de Castel-
jau algorithm (1). More precisely, the result is a sum of vectors in Tpi

M that are
values of concatenated adjoint differentials of geodesics w.r.t. starting and end
point. In symmetric spaces, for example, they are known in closed form. For a
detailed inspection of dpi

B∗
t we refer to [6, Sect. 4].

As initial guess for the gradient descent, we choose (p0, . . . , pK) along the
geodesic polygon whose corners interpolate the data points that are closest to
knot points w.r.t. time.
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3 Experiments

Although physical objects themselves are embedded in Euclidean space, their
shape features are best described by more general manifolds requiring Rieman-
nian geometric tools for statistical analysis thereon; see for example [4,16,25].
To test our regression method for shape analysis, we apply it to two types of
3D data: (i) distal femora and (ii) mitral valves given as triangulated surfaces.
We perform the analysis in the shape space of differential coordinates [25]. That
is, for homogeneous objects given as triangular meshes in correspondence, we
choose their intrinsic mean [10] as reference template and view all objects as
deformations thereof. (We assume that the meshes are rigidly aligned, e.g., by
generalized Procrustes alignment [12].) On each face of a mesh, the correspond-
ing deformation gradient is constant and, therefore, can be encoded as a pair of a
rotation and a stretch, i.e., as an element of the Lie group of 3 by 3 rotation and
symmetric positive definite matrices SO(3) × Sym+(3). Denoting the Frobenius
norm by ‖ · ‖F , metrics are chosen such that the distance functions become
dSO(R1, R2) := ‖ log(RT

1 R2)‖F and dSym+(S1, S2) := ‖ log(S2) − log(S1)‖F ,
respectively. Suppose the number of triangles per object is m, then the full
shape space is the product space (SO(3) × Sym+(3))m. Using the product met-
ric, statistical analysis thereon can be done face-wise and separately for rotations
and stretches. We implemented a prototype of our method in MATLAB using
the MVIRT toolbox [5].

Distal Femora. Osteoarthritis (OA) is a degenerative disease of the joints that
is, i.a., characterized by changes of the bone shape. To evaluate our model, we
regress the 3D shape of distal femora against OA severity as determined by the
Kellgren-Lawrence (KL) grade [15]—an ordinal scale from 0 to 4 based on radio-
graphic features. Our data set comprises 100 shapes (20 per grade) of randomly
selected subjects from the OsteoArthritis Initiative (a longitudinal, prospective
study of knee OA) for which segmentations of the respective magnetic reso-
nance images are publicly available (https://doi.org/10.12752/4.ATEZ.1.0) [2].
In a supervised post-process, the quality of segmentations as well as the corre-
spondence of the extracted triangle meshes (8,988 vertices/17,829 faces) were
ensured.

Table 1. The computed R2
rel and R2 statistics of the regressed (w.r.t. KL grade)

geodesic, quadratic and cubic Bézier curve for data of distal femora

Order of Bézier curve R2 R2
rel

1 0.05 0.57

2 0.07 0.78

3 0.08 0.90

https://doi.org/10.12752/4.ATEZ.1.0
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For i = 0, . . . , 4, the shapes with grade i are associated with the value ti =
i/4. We use our method to compute the best-fitting geodesic, quadratic and
cubic Bézier curve. In order to compare their explanatory power, we calculate
for each the corresponding manifold-valued R2 statistic that, for r1, . . . , rN ∈
M and total variance var{r1, . . . , rN} := 1/N minq∈M

∑N
j=1 d(q, rj)2, is defined

by [10, p. 56]

R2 = 1 − unexplained variance
total variance

:= 1 −
2/NE(β)

var{r1, . . . , rN} ∈ [0, 1].

The statistic measures how much of the data’s total variance is explained by β.
For j = 1, . . . , 20 and l = 0, . . . , 4, let q

(l)
j be the j-th femur shape with KL

grade l. Note that, for the described setup, the unexplained variance is bounded
from below by the sum of the per-grade variances, i.e.,

∑4
l=0 var{q

(l)
1 , . . . , q

(l)
20 }.

In particular, for our femur data this yields an upper bound for the R2 statistic
of R2

opt ≈ 0.0962. Hence, we also provide relative values R2
rel := R2

/R2
opt for

comparison. The results are shown in Table 1.

Fig. 2. Cubic regression of distal femora. Healthy regressed shape (KL = 0) together
with subsequent grades overlaid wherever the distance is larger than 0.5 mm, colored
accordingly (0.5 3.0).

The computed cubic Bézier curve is displayed in Fig. 2. The obtained shape
changes consistently describe OA related malformations of the femur, viz., widen-
ing of the condyles and osteophytic growth. Furthermore, we observe only minute
bone remodeling for the first half of the trajectory, while accelerated progression
is clearly visible for the second half. The substantial increase in R2

rel suggests
that there are nontrivial higher order phenomena involved which are captured
poorly by the geodesic model. Moreover, as time-warped geodesics are contained
in the search space we can inspect time dependency. Indeed, for the cubic femoral
curve the control points do not belong to a single geodesic, confirming higher
order effects beyond reparametrization.

Mitral Valve. Diseases of the mitral valve such as mitral valve insufficiency
(MI) are often characterized by a specific motion pattern and the resulting shape
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anomalies can be observed (at least) at some point of the cardiac cycle. In
patients with MI, the valve’s leaflets do not close fully or prolapse into the left
atrium during systole. Blood then flows back lowering the heart’s efficiency.

We compute regression with Bézier splines for the longitudinal data of a
diseased patient’s mitral valve. Sampling the first half of the cycle (closed to
fully open) at equidistant time steps, 5 meshes (1,331 vertices/2,510 faces) were
extracted from a 3D+t transesophageal echocardiography (TEE) sequence as
described in [24]. Let q1, . . . , q5 be the corresponding shapes in the space of differ-
ential coordinates. In order to approximate the full motion cycle we use the same
5 shapes in reversed order as data for the second half of the curve. Because of the
periodic behaviour, we choose a closed spline with two cubic segments as model
and assume an equidistant distribution of the data points along the spline, i.e.,
we employ {(0, q1), (1/4, q2), (1/2, q3), (3/4, q4), (1, q5), (5/4, q4), (3/2, q3), (7/4, q2)} as
the full set.

Fig. 3. Reconstructed meshes from regression of longitudinal mitral valve data covering
a full cardiac cycle. The spline consists of two cubic segments.

The regressed cardiac trajectory is shown in Fig. 3. Our method successfully
estimates the valve’s cyclic motion capturing the prolapsing posterior leaflet.
It shows the potential for improved reconstruction of mitral valve motion in
presence of image artifacts like TEE shadowing and signal dropout. This, in
turn, facilitates quantification of geometric indices of valve function such as
orifice area or tenting height.

4 Conclusion

We presented a parametric regression model that combines high flexibility with
efficient and exact evaluation. In practice, it can be used for many types of
manifold-valued data as it relies only on three basic differential geometric tools
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that can be computed explicitly in many important spaces. In particular, we have
presented two applications to shape data where we could model higher order
effects and cyclic motion. A remaining question is, which Bézier spline (number
of segments and their order) to choose for the analysis of a particular data
set. This problem of model selection poses an interesting avenue for future work.
Moreover, we plan to extend the proposed framework to a hierarchical statistical
model for the analysis of longitudinal shape data, where subject-specific trends
are viewed as perturbations of a population-average trajectory represented as
Bézier spline.
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composite Bézier-like curves and blended cubic splines. J. Math. Imaging Vis.
61(5), 645–671 (2019). https://doi.org/10.1007/s10851-018-0865-2

14. Hinkle, J., Fletcher, P.T., Joshi, S.: Intrinsic polynomials for regression on Rie-
mannian manifolds. J. Math. Imaging Vis. 50(1), 32–52 (2014). https://doi.org/
10.1007/s10851-013-0489-5

15. Kellgren, J.H., Lawrence, J.S.: Radiological assessment of osteo-arthrosis. Ann.
Rheum. Dis. 16(4), 494–502 (1957). https://doi.org/10.1136/ard.16.4.494

16. Kendall, D., Barden, D., Carne, T., Le, H.: Shape and Shape Theory. Wiley Series
in Probability and Statistics. Wiley, Hoboken (2009). https://doi.org/10.1002/
9780470317006

17. Mallasto, A., Feragen, A.: Wrapped Gaussian process regression on Rieman-
nian manifolds. In: 2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 5580–5588. IEEE Computer Society, Los Alamitos
(2018). https://doi.org/10.1109/CVPR.2018.00585

18. Nava-Yazdani, E., Polthier, K.: De Casteljau’s algorithm on manifolds. Comput.
Aided Geom. Des. 30(7), 722–732 (2013). https://doi.org/10.1016/j.cagd.2013.06.
002

19. Nava-Yazdani, E., Hege, H.C., Sullivan, T., von Tycowicz, C.: Geodesic analysis
in Kendall’s shape space with epidemiological applications. J. Math. Imaging Vis.
62, 549–559 (2020). https://doi.org/10.1007/s10851-020-00945-w

20. Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-
series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol.
6892, pp. 655–662. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23629-7 80
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