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Abstract. CNN-based volumetric methods that label individual voxels
now dominate the field of biomedical segmentation. However, 3D sur-
face representations are often required for proper analysis. They can be
obtained by post-processing the labeled volumes which typically intro-
duces artifacts and prevents end-to-end training. In this paper, we there-
fore introduce a novel architecture that goes directly from 3D image vol-
umes to 3D surfaces without post-processing and with better accuracy
than current methods. We evaluate it on Electron Microscopy and MRI
brain images as well as CT liver scans. We will show that it outperforms
state-of-the-art segmentation methods.
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1 Introduction

State-of-the-Art volumetric segmentation techniques rely on Convolutional Neu-
ral Networks (CNNs) operating on an image volume [3,13,17]. However in clinical
and research practice, a mesh representation is often required to model the sur-
face morphology and to compute area-based statistics. Unfortunately, converting
volumes into surfaces relies on algorithms such as Marching Cubes [10] followed
by mesh smoothing, which is not differentiable, prevents end-to-end training,
and introduces artifacts.

We therefore introduce an end-to-end trainable architecture that goes directly
from volumetric images to 3D surface meshes. Our Voxel2Mesh architecture
is depicted by Fig. 1 (b). It comprises a voxel encoder, voxel decoder and a
mesh decoder. The two decoders communicate at all resolution levels and our
approach incorporates two innovative features that are key to performance.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-59719-1 30) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. L. Martel et al. (Eds.): MICCAI 2020, LNCS 12264, pp. 299–308, 2020.
https://doi.org/10.1007/978-3-030-59719-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59719-1_30&domain=pdf
https://doi.org/10.1007/978-3-030-59719-1_30
https://doi.org/10.1007/978-3-030-59719-1_30
https://doi.org/10.1007/978-3-030-59719-1_30


300 U. Wickramasinghe et al.

Fig. 1. Architectures (a) The Pixel2Mesh-3D architecture, a straightforward
extension of [19], uses a surface decoder but no voxel decoder. (b) By contrast, our
Voxel2Mesh architecture takes as input an image and spherical mesh. They are jointly
encoded and then decoded into cubes and meshes of increasing resolution. At each mesh
decoding stage, the decoder first receives as input the current mesh and a set of fea-
tures sampled from the cube of corresponding resolution. Then the mesh is deformed
and refined non-uniformly by adding vertices only where they are needed.

– Learned Neighborhood Sampling. The mesh decoder learns to sample the
output of the volume decoder only where needed, that is, in the neighborhood
of output vertices.

– Adaptive Mesh Unpooling. Accurately representing the surface requires
densely sampled mesh vertices in high-curvature areas but not elsewhere. We
introduce an adaptative mesh unpooling scheme that achieves this results and
eliminates the need for exponentially large amounts of memory that uniform
unpooling requires.

Our contribution therefore is a novel architecture that takes a 3D volume as input
and yields an accurate 3D surface without any post-processing. We evaluate it
on Electron Microscopy and MRI brain images as well as CT liver scans. We
will show that it outperforms state-of-the-art segmentation methods, especially
when the training set is relatively small.
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Fig. 2. Approach. (a) LearnedNeighborhood Sampling. (b)AdaptiveMeshUnpooling.

2 Related Work

CNN-based volumetric methods such as U-Net and its variants [3,6,13,17] now
dominate biomedical image segmentation. This is evident from the CHAOS chal-
lenge [2] and Medical Segmentation Decathlon [7] results. The winners of both
competitions used ensembles of methods relying on volumetric CNNs.

2.1 Importance of Surface Models

Many biological imaging tools are designed to study the morphology of structures
such as cells, organs, or tissues. Researchers usually prefer to visualize them as
3D surfaces at the required level of detail everywhere and are not limited by the
voxels resolution. Even though volumes and distances can be estimated using
voxels, analyzing surfaces is best accomplished using meshes.

But, state-of-the-art methods produce volumetric descriptions and therefore
must be converted to surface meshes. This conversion typically relies on algo-
rithms such as Marching Cubes [10] followed by mesh smoothing. This introduces
artifacts and prevents end-to-end training. We now turn to existing approaches
that mitigate these difficulties.

2.2 Deformable Models

Deformable surface models became popular in the 1990s to model biological
structures in volumetric data [5,12] and are still being developped [8,9,16]. They
are now used in conjunction with deep networks [11] trained to return the energy
function the deformed models should minimize.

While they can remove some of the artifacts introduced by converting vol-
umes to surfaces, their use makes the processing pipeline more complex and
still prevents end-to-end training. Furthermore, they are not well-suited to seg-
menting structures that exhibit high inter-sample shape variations, such as the
synaptic junctions used in our experiments.
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2.3 Deep Surfaces

In this context, the Pixel2Mesh [19] approach and its more recent variants [15,20]
are of particular interest. They are among the very few approaches that go
directly from 2D images to 3D surface meshes without resorting to an inter-
mediate stage. They take an image and encodes it into a set of progressively
smaller feature maps. This set is then used at each stage of the decoding process
to produce an increasingly accurate mesh. This approach is easily extended to
handle 3D image volumes using the architecture depicted by Fig. 1(a) and we
will refer to this extension as Pixel2Mesh-3D. Unfortunately, as we will see, it
was conceived for a different purpose and its design choices makes it suboptimal
for handling 3D image volumes.

3 Method

Our Voxel2Mesh architecture is depicted by Fig. 1(b). It takes an image vol-
ume as input and returns a 3D surface mesh. The image volume is first encoded
into smaller latent volumes that serves as input to the voxel decoder. Then the
voxel decoder generates a pyramid of cubes of increasing resolution whose voxels
contain feature vectors. Finally the mesh decoder generates increasingly pre-
cise deformations of an initial spherical mesh using feature vectors extracted
from voxel decoder. The voxel encoder and voxel decoder pictured at the top of
Fig. 1(b) are based on a standard U-Net [3] architecture.

A key specificity of our approach is that both the sampling of the voxel
features and the location and number of the new vertices needed to refine the
mesh are adaptive so that the final mesh is refined where it needs to be, and
only there.

3.1 Mesh Decoder

The input to the mesh decoder is a sphere mesh with 3D vertices forming facets
whose edges we use to perform graph convolutions. It learns to iteratively refine
the sphere mesh to match the target object.

Let us denote by l = 0 the input to the decoders and by 1 ≤ l ≤ L the output
of subsequent blocks. For each mesh vertex, we write

zl = hl(xl, zl−1,vl−1) and vl = vl−1 + Δl(zl), (1)

where vl are the 3D vertex coordinates after block l; xl and zl−1 are the feature
vectors produced by blocks l and l−1 in the voxel and mesh decoder, respectively;
hl and Δl are two functions implemented by 4 graph convolution layers each,
whose weight we learn during training. By convention, we take z0 to be an empty
feature vector. We write the graph convolutions as

f ′ = w1f +
1

|N (vl)|
∑

vi
l∈N (vl)

f iw2e
−d2

i/σ2
, (2)
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where f′ and f are the feature vector associated with the vertex vl before and
after the convolution. N (vl) is the set of neighborhood vertices of vl and y i is
the feature vector corresponding to the neighboring vertex vi

l . di =
√||vi

l − vl||.
w1,w2 and σ are weights learned during training.

Learned Neighborhood Sampling (LNS). The feature vector xl in Eq. 1 is
extracted from voxel features by feature sampling at locations that are functions
of the mesh vertices. Since voxel features lie on a discrete grid, we use tri-
linear interpolation to sample features and refer to this as point sampling. Cur-
rent approaches only sample at exact vertex locations [19] or in pre-determined
neighborhoods around the vertex [20]. This restricts the sampler’s ability to pool
information from its neighborhood.

Instead, we introduce our LNS strategy that learns optimum sampling loca-
tions. It first samples feature vector y at a given vertex vl using point sampling.
We then train a neural function to return the set of neighborhood points to
sample

U = {ui}Pi=1 = f(y,vl). (3)

Next, the set of features Y = {yi}Pi=1 are sampled at {ui}Pi=1, again using point
sampling. Finally, the feature vector xl corresponding to vertex vl is given by
another neural function

xl = g(Y,U,y,vl). (4)

As shown in Fig. 2 (a), LNS only samples from the voxel feature map corre-
sponding to the mesh deformation stage. This is in contrast to earlier sampling
strategies, that samples from all feature maps at each stage which yields graph
convolution networks with many more weights in their mesh deforming module
and thus over-fitting when trained with smaller datasets.

Adaptive Mesh Unpooling. High accuracy requires enough vertices to
properly fit the underlying surface. We could start with a sphere with many
vertices but this is neither computationally nor memory efficient. Therefore,
Pixel2Mesh-3D and its variants use an uniform unpooling strategy that grad-
ually increase the vertex count. Unfortunately, the vertex count still increases
exponentially.

To prevent this, we introduce the adaptive unpooling strategy depicted by
Fig. 2 (b). First, we add candidate vertices using uniform unpooling strategy.
Then the mesh is deformed and we compute the shortest distance from each
candidate vertex to its parent edge as indicated by red and green arrows in
Fig. 2 (b). If the distance is greater than a threshold, we keep them, otherwise
we discard them. This looses edge connectivity making re-meshing necessary. To
this end, we exploit the fact that the mesh decoder learns a continuous mapping
from the surface points on the input sphere to those on the object surface. This
relationship enables us to find the corresponding points on the sphere’s surface
for each mesh vertex. We compute the convex hull to restore edge connectivity
E ′ between the points on the sphere. E ′ can then be directly transferred to the
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target mesh because the mapping is continuous. Since our remeshing only recom-
putes the neighbors of each vertex and does not perform any non-differentiable
operations on vertex variables, it preserves overall differentiability.

3.2 Loss Function

We use the cross entropy loss Lce with ground-truth volumes and the Chamfer
distance Lcf to points at the boundary of the same ground-truth volumes to
train the voxel and mesh decoders, respectively. Instead of using mesh vertices
when evaluating Lcf , we randomly sample points from the 3D mesh [14]. We
also introduce three regularization terms normal loss Ln, laplacian loss Llap,
and edge length loss Lel to improve convergence and smooth the output mesh
[19]. We write the complete loss as

L =
L∑

l=1

Ll
cf + λ1Lce + λ2Ln + λ3Llap + λ4Lel, (5)

where L is the number of stages in the mesh decoder.

4 Experiments

4.1 Datasets

We tested our approach on 3 datasets. We describe them below briefly and
provide more details on the training and testing splits in the supplementary
material.

Synaptic Junction Dataset. It comprises a 500×500×200 FIB-SEM image stack
of a mouse cortex. We extracted 13 volumes roughly centered around a synapse
for training and 13 for testing. The task is to segment the pre-synaptic region,
post-synaptic region, and synaptic cleft. They are shown in blue, green, and red
respectively in the first two rows of Fig. 4.

Hippocampus Dataset. It consists of 260 labeled MRI image cubes from the
Medical Segmentation Decathlon [18]. The task is to segment the hippocampus,
as depicted by the fourth row of Fig. 4.

Liver Dataset. It consists of 20 labeled CT image cubes from the CHAOS chal-
lenge [2]. The task is to segment the liver as shown in the third row of Fig. 4.

4.2 Baselines

As the architecture of Voxel2Mesh borrows from U-NET and Pixel2Mesh-
3D, they both constitute natural baselines. As state-of-the-art CNN based
approaches, we use TernausNet, LinkNet34, ResNet50 and ResNet50-SE,
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Fig. 3. Levels of resolution. (a) Pixel2Mesh-3D result (10422 vertices). (b)
Voxel2Mesh result (7498 vertices). With our adaptative unpooling, we obtain better
results with fewer vertices.

Table 1. Comparative results on three datasets using the IoU metric.

Liver Hippo. Synaptic junction

Pre-synap Synapse Post-synap

TernausNet [6] 84.4 ± 1.3 78.4± 1.2 73.5 ± 1.3 64.4± 0.5 78.4 ± 1.3

LinkNet34 [17] 82.8± 1.4 79.4± 0.8 72.3 ± 0.5 63.2± 1.2 78.2± 1.1

ResNet50 [1] 82.1± 0.7 80.7± 0.2 70.3± 0.8 63.3± 0.6 76.2± 1.4

ResNet50-SE [1] 82.6± 1.2 80.5± 1.3 71.3± 0.6 63.6± 0.7 76.3± 0.9

V-NET [13] 81.5± 1.4 75.3± 1.4 64.3± 0.7 65.2± 1.3 74.1± 0.7

U-NET [3] 84.2± 1.6 80.9 ± 1.5 73.6 ± 1.3 67.2 ± 0.8 78.2± 0.9

Best CNN + CLN 84.6± 1.7 81.1± 1.5 74.5± 1.2 67.6± 0.8 79.5± 0.9

Best CNN + FPP 84.3± 1.7 80.8± 1.5 74.2± 1.2 67.4± 0.8 79.3± 0.9

Voxel2Mesh 86.9± 1.1 82.3± 0.9 77.3± 1.2 65.3± 1.2 83.2± 1.6

Table 2. Comparative results against CNN based mesh deforming baselines.

Liver Hippocampus

IoU Cf. IoU Cf.

PS+UMU 83.3± 0.8 3.3 ×10−3 78.8± 1.1 2.9 ×10−3

HS+UMU 84.2± 0.6 2.8 ×10−3 79.9± 0.9 2.3 ×10−3

LNS+UMU 85.6± 0.9 2.1 ×10−3 81.2± 1.2 1.8 ×10−3

LNS+AMU (Voxel2Mesh) 86.9±1.1 1.3×10−3 82.3±0.9 1.1×10−3

which belong to the ensemble of architectures that won the CHAOS challenge.
U-NET was used as the base architecture by the winner of Medical Segmen-
tation Decathlon. We also use V-NET, a widely used variant of U-NET, as a
baseline. Since we are working with volumetric data, we use 3D variants of all
these architectures.
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(a) (b) (c) (d) (e)

Fig. 4. Qualitative results. (a) Input volumes. EM (row 1,2), CT (row 3), MRI
(row 4) (b) Ground truth (c) CNN baseline (d) CNN baseline + post processing (e)
Voxel2Mesh. The orange boxes highlight false positive regions. (Color figure online)

4.3 Comparative Results

Figure 4 and Fig. 3 depict our results qualitatively and we report quantitative
ones in Table 1. As all the baselines shown above the first thick line return
volumetric descriptions, we rasterize the mesh that Voxel2Mesh returns and
use intersection over union (IoU) score to compare all the results against the
ground truth. In all cases, we trained the networks three times with different
initializations and we report the mean IoU and its standard deviation.

For completeness, we simulated a post-processing pipeline by selecting the
best performing baseline for each of the three datasets, removing small false
positive regions outside the object by connected component analysis, running
Marching Cubes followed by smoothing using Algebraic Point Set Surfaces [4].
We refer to the result obtained by only removing the false positives as Best CNN
+ CLN and the one with full post-processing as Best CNN + FPP.

Voxel2Mesh performs best in all cases except the synaptic cleft, where it
comes second. This can ascribed to the fact that synaptic clefts sometimes have
holes in them, which a spherical mesh cannot capture. The improvement is most
significant in the two datasets—liver and synaptic junction—with fewer training
samples compared to the hippocampus dataset that features more training data.

The key challenge when training Voxel2Mesh is finding the correct amount
of regularization. If the regularization is not sufficient, it can result in vertices
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with large movements and faces with large area. If it is too much, it can result in
meshes that are over-smoothed. Therefore, the regularization coefficients should
be found using hyperparameter grid search.

4.4 Ablation Study

Pixel2Mesh-3D is the baseline closest to our approach because it directly out-
puts a 3D surface. Point Sampling (PS) and Uniform Mesh Unpooling (UMU)
are the two modules in that play the same role as our Learned Neighborhood
Sampling (LNS) and adoptive mesh unpooling (AMU). To check the impor-
tance of these strategies, we replaced them in our Voxel2Mesh pipeline by
the equivalent ones in Pixel2Mesh-3D. We also evaluate the performance of
Hypothesis Sampling (HS), the sampling strategy of [20] that relies on a fixed
neighborhood sampling. We report the results in Table 2 in Chamfer distance
terms. They demonstrate that our adaptative strategies LNS+AMU deliver a
clear benefit.

5 Conclusion

We have proposed an end-to-end trainable architecture that takes an image vol-
ume as input and outputs a 3D surface mesh. This makes the post processing
steps usually required to obtain such a mesh from a volumetric representation
unnecessary, while preserving accuracy. Our adaptative sampling and unpooling
strategies are key to this result. Not only does our architecture deliver good
results, it also bridges the gap between voxel-based and surface-based represen-
tations. In future work, we plan to extend our approach to structures with more
complex topologies, such as the synaptic cleft and its potential holes.
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