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Abstract. In the medical imaging community, it is increasingly pop-
ular to train machine learning models for segmentation problems with
objectives based on the soft-Dice surrogate. While experimental stud-
ies have showed good performance with respect to Dice, there have also
been reports of some issues related to stability. In parallel with these
developments, direct optimization of evaluation metrics has also been
studied in the context of binary classification. Recently, in this setting, a
quasi-concave, lower-bounded and calibrated surrogate for the F1-score
has been proposed. In this work, we show how to use this surrogate in
the context of segmentation. We then show that it has some better the-
oretical properties than soft-Dice. Finally, we experimentally compare
the new surrogate with soft-Dice on a 3D-segmentation problem and get
results indicating that stability is improved. We conclude that the new
surrogate, for theoretical and experimental reasons, can be considered a
promising alternative to the soft-Dice surrogate.
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1 Introduction

With the introduction of the U-net [19], it became common in the medical imag-
ing community to train neural network models evaluated using Dice with the
cross-entropy loss [5,7,13]. However, because of problems associated with han-
dling small structures, it was later proposed that a loss based on a smoothed
version of Dice, referred to as soft-Dice, would yield better predictions [18]. This
was confirmed in several studies [3,6,8,21], but because of some reported prob-
lems associated with handling noisy data [4,8,16] and an increased risk of con-
vergence issues [8], it is common for practitioners to sacrifice some performance
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for some stability by using the sum of the soft-Dice loss and the cross-entropy
loss as the objective during training [8,9,24].

In parallel with these developments, several alternative performance metrics
to accuracy, i.e., the probability of correct predictions, have been investigated to
tackle the class imbalance problem in binary classification [11,14,15,17]. Since
these metrics do not in general reduce to a sum of per-sample scores, one cannot
in general consider the classical procedure of maximizing a concave approxima-
tion of the score without loosing statistical consistency [22]. However, for the
case of the fractional utility metrics, recent work showed that one can consider
such a procedure without loosing statistical consistency, provided concavity is
replaced with the weaker notion of quasi-concavity [1].

In this work we address the stability issues reported for soft-Dice by making
use of the recent progress in binary classification. More specifically, we propose
a new surrogate that is both quasi-concave and a calibrated lower bound to
Dice. We then prove that soft-Dice is neither quasi-concave nor a lower bound
to Dice. Finally, we compare the surrogates experimentally on a kidney segmen-
tation problem and report some evidence for improvement on the stability issues
reported for soft-Dice.

2 Surrogate Maximization

Given a pair of P-measurable random variables (X,Y ) taking values in X ×Y =
R

D × {±1} and a set of real valued functions F ⊂ R
X , the problem of binary

classification is to find an f ∈ F such that sgn(f(X)) predicts Y as good as
possible with respect to some score S:

f∗ = arg max
f∈F

S(f,X, Y ). (1)

However, due to the discrete nature of the score functions often used, direct
optimization is typically not feasible. Consequently, to simplify the problem, it
is common to approximate S with a concave surrogate S̃. In the sequel, we will
also refer to the less common situation when concavity is replaced with quasi-
concavity.

Definition 1. Let S̃ be some surrogate score.

1. S̃ is said to be concave if

S̃(αf1 + (1 − α)f2,X, Y ) ≥ αS̃(f1,X, Y ) + (1 − α)S̃(f2,X, Y ), (2)

for any measurable functions, f1, f2, random variables X,Y and α ∈ [0, 1].

2. S̃ is said to be quasi-concave if

S̃(αf1 + (1 − α)f2,X, Y ) ≥ min{S̃(f1,X, Y ), S̃(f2,X, Y )}, (3)

for any measurable functions f1, f2, random variables X,Y and α ∈ [0, 1].
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To ensure that a surrogate is well behaved, it needs to relate to the score in
some ways. For this purpose, it is common to consider the calibration property,
which ensures that any solution to the surrogate maximization problem is also a
solution to the original score maximization problem [2,20,23]. Another property
that can be considered is the lower-bound property. Note however that in order
for a lower-bound to be informative, it has to approximate the score closely.

Definition 2. Let S be a score function and S̃ be an associated surrogate.

1. S̃ is said to be a lower-bound to S if for any pair of random variables (X,Y )
and any measurable function f , it holds that S̃(f,X, Y ) ≤ S(f,X, Y ).

2. S̃ is said to be calibrated with respect to S if for any sequence of measur-
able functions {fl}l≥1 and any pair of random variables (X,Y ), it holds
that S̃(fl,X, Y ) → S̃∗ ⇒ S(fl,X, Y ) → S† when l → ∞, where S̃∗ .=
supf S̃(f,X, Y ) and S† .= supf S(f) are the suprema taken over all mea-
surable functions.

The framework of surrogate maximization was initially developed for the case
where the score function was taken to be accuracy:

SA(f,X, Y ) = EX,Y [1≥0(f(X)Y )], (4)

i.e., the probability of correct predictions. For this choice of score, several surro-
gates have been proposed and studied in the literature [2,22] . Among them is
the logistic surrogate defined by

S̃A
log(f,X, Y ) = EX,Y [log2(2 · σ(f(X)Y ))], (5)

where σ(t) = 1/(1 + e−t) is the sigmoid function. It can be shown that the
properties described above hold for this choice of score and surrogate, e.g., that
S̃A
log is concave and a calibrated lower-bound to SA.

Proposition 1. S̃A
log is concave and a calibrated lower-bound to SA.

Proof. See [2].

When the data is very imbalanced, as when the probability P[Y = +1] is much
higher than P[Y = −1] or vice versa, accuracy sometimes does not capture
the essence of what practitioners want to study and other alternative scores are
considered [11,14,15,17]. One such score is the F1-score, which is commonly also
referred to as Dice:

SD(f,X, Y ) =
EX,Y [2 · 1≥0(f(X)) · 1≥0(Y )]

EX,Y [2 · 1≥0(f(X)) · 1≥0(Y ) + 1<0(f(X)) · 1≥0(Y ) + 1≥0(f(X)) · 1<0(Y )]
.

(6)
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For this choice of score, it was recently shown in [1] that a surrogate given by

S̃D
cal(f,X, Y ) =

EX,Y [2 · φ(f(X)) · 1≥0(Y )]
EX,Y [2 · 1≥0(Y ) + (1 − φ(f(X))) · 1≥0(Y ) + (1 − φ(−f(X))) · 1<0(Y )]

,

(7)
where φ(t) = 1+log2(σ(max{t, t/3})), is a quasi-concave calibrated lower-bound.

Proposition 2. S̃D
cal is quasi-concave and a calibrated lower-bound to SD.

Proof. See [1].

We refer to this surrogate as cal-Dice.

3 Semantic Segmentation

Let (I, S) be a pair of P-measurable random variables taking values in I × S =
R

M1×···×MD × {±1}M1×···×MD and F : R
M1×···×MD → R

M1×···×MD×K be a
feature extraction function, extracting K features to each D-pixel (generalized
pixel in D-dimensions). Furthermore, let a pair of (conditional) random variables
(X|I,S , Y|I,S) be uniform over {(F (I)j , Sj)}j∈J , where J = {1, . . . , M1} × · · · ×
{1, . . . , MD}. Now, given a set of real valued functions F ⊂ R

K , the problem
of segmentation can be seen as to find an f ∈ F that maximizes some average
score:

f∗ = arg max
f∈F

EI,S [S(f,X|I,S , Y|I,S)]. (8)

Here, I represents an input image and S represents the associated ground truth.
Furthermore, if we consider a U-net in 3D that uses zero-padding [5], then F
can be thought of as zero padded patches surrounding each voxel and f can be
thought of as the convolutional-kernel to the whole U-net.

Because of the discrete nature of the score functions often considered, S
is typically approximated by some surrogate S̃. Furthermore, since we do not
have access to the full distribution P(I, S), we typically collect a set of samples
{(Ii, Si)}Ni=1

i.i.d.∼ P(I, S), and use the empirical distribution for approximation.
This together yields

EI,S [S(f,X|I,S , Y|I,S)] ≈ 1
N

N∑

i=1

S̃(f,X|I=Ii,S=Si , Y|I=Ii,S=Si). (9)

Classically in the segmentation community, it has been standard to train models
by minimizing the cross-entropy loss [5,7,13,19]:

LCE(f, F (Ii), Si) =

− 1

|J |
∑

j∈J
[1≥0(S

i
j) · log2(σ(f(F (Ii)j))) + 1<0(S

i
j) · log2(1 − σ(f(F (Ii)j)))].

(10)
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By simple computation, it can be shown that:

LCE(f, (Ii), Si) = 1 − S̃A
log(f,X|I=Ii,S=Si , Y|I=Ii,S=Si), (11)

and so we have that minimizing LCE is equivalent to maximizing S̃A
log. Thus, if

the evaluation score considered is accuracy, then the theory from the previous
section motivates the choice.

For the more common situation where Dice is used for evaluation, it has
become increasingly popular during the last couple of years to consider a
smoothed version of Dice referred to as soft-Dice [3,6,8–10,18,21,24]:

S̃D
soft(f,X, Y ) =

EX,Y [2 · σ(f(X)) · 1≥0(Y )]
EX,Y [2 · σ(f(X)) · 1≥0(Y ) + (1 − σ(f(X)) · 1≥0(Y ) + σ(f(X)) · 1<0(Y )]

.

(12)
This choice of surrogate has been been shown to yield good results experimen-
tally [3,6,8,10,21]. However, because of some reported problems associated with
handling noisy data [4,8,16] and an increased risk of convergence issues [8], it
is common for practitioners to sacrifice some performance for some stability by
using the sum of the soft-Dice loss and the cross-entropy loss as the objective
during training [8,9,24].

While there does not to our knowledge exist any work proving that soft-Dice
is calibrated to Dice, we conjecture that this is the case because of how closely
they are related. As for the other properties discussed in the previous section,
we show in Theorem 1 that the surrogate in general is neither quasi-concave nor
a lower bound to Dice.

Theorem 1. S̃D
soft is neither quasi-concave, nor is it a lower-bound to SD.

Proof. See the supplementary document.

These theoretical considerations together with the experimental reports from
the previous works motivates the following hypotheses:

1. soft-Dice could yield better experimental results than cross-entropy when
evaluated with Dice because it might be calibrated to Dice,

2. soft-Dice could be less stable than cross-entropy because of properties related
to concavity.

In light of this, using a linear combination of soft-Dice and cross-entropy when
evaluated with Dice can informally be seen as trading some consistency for some
concavity. However, it is easy to verify that the resulting composite surrogate in
general is neither quasi-concave nor a calibrated lower bound to Dice.

To avoid sacrificing performance or stability, we propose to replace the soft-
Dice surrogate with the recently studied cal-Dice surrogate. Two arguments can
be made to support this. Firstly, cal-Dice has been proven to be calibrated to
Dice whereas soft-Dice, to the best of our knowledge, has only been conjectured
to be calibrated to Dice. Secondly, cal-Dice is a quasi-concave lower-bound to
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Dice whereas soft-Dice is neither quasi-concave nor a lower bound to Dice. If
the hypotheses are valid, cal-Dice will achieve similar performance to soft-Dice
without sacrificing stability. To see if this is the case, we proceed by comparing
cal-Dice to soft-Dice in a realistic segmentation experiment.

4 Experiments

For our experiments, we take the 100 first cases from the Kits2019 competi-
tion [7]. Volumes of 256 × 128 × 64 voxels with the kidney centered are then cut
out on a resolution of 0.15 × 0.15 × 0.35 (cm), where the last dimension is the
slice direction. We also pre-process the data in the same way as the winners of
the competition by clipping the CT-values to the interval (−79, 304), subtract-
ing by 101 and finally dividing by 76.9 [9]. In Fig. 1 we show an illustration of a
slice from one of the patients together with the associated ground truth of the
kidney.

Fig. 1. Illustration of one of the 64 slices in one sample patient. To the left is the CT
and to the right is the associated label map of the kidney.

The architecture used is a 3D U-net [5,19] with the following properties.
Each layer but the last uses instance normalization, relu-activations and has
a convolutional kernel of size 7 × 5 × 3. The last layer does not use instance
normalization or any activation function and furthermore has a convolutional
kernel of 1×1×1. The first layer uses 32 filters, then for each downsampling, the
number of filters is doubled. Five downsamplings and upsamplings are performed
in total using 2-strided convolutions and 2-strided transposed-convolutions, and
after each downsampling and upsampling there is one regular convolutional layer.

Since we in practice often only have access to a few cases for training, we
conduct a 10-fold study using only 10 patients for training and 90 for test. The
model is trained using the Adam optimizer [12] with a learning rate of 10−3 and
a batch size of 1. Furthermore, we shuffle the samples for each epoch and train
for 1000 epochs in total. The result from the experiments is depicted in Fig. 2
and Fig. 3.

Based on two observations, we argue that the outcome of the experiment sup-
port the claim that cal-Dice achieves similar performance to soft-Dice without
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Fig. 2. Illustration of the ten fold experiments when training on 10 patients and testing
on 90 patients. The whole red line illustrates the Dice score of the training data during
training when using the soft-Dice surrogate and the dashed red line illustrates the Dice
score of the testing data during training when using the soft-Dice surrogate. Similarly,
the whole green illustrates the Dice score of the training data during training when
using the cal-Dice surrogate and the dashed red line illustrates the Dice score of the
testing data during training when using the cal-Dice surrogate. (Color figure online)

Fig. 3. Average performance on the training set over all of the folds when using soft-
Dice and cal-Dice. The plot illustrates that cal-Dice pushes to perfect Dice whereas
soft-Dice on average starts to get unstable when getting close to perfect Dice. (Color
figure online)
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sacrificing stability. Firstly, in Fig. 2, a systematic improvement in generaliza-
tion is clearly visible. Since the training set is rather small, noise will affect the
training even though the problem is not considered a particularly noisy segmen-
tation problem. Hence, the improved generalization can be interpreted as an
improvement in handling noise. Secondly, in Fig. 3, the average performance on
the training set over all of the folds is depicted for soft-Dice and cal-Dice. We
see that the neural network when trained using cal-Dice is able to perfectly rep-
resent the training data, but also, that this on average is not the case when the
neural network is trained using soft-Dice. This can be interpreted as if cal-Dice
has less convergence issues than soft-Dice.

We end with a speculation of why these effects are observed. Consider a
segmentation problem with two pixels where the ground truth labels are both
positive. In Fig. 4, the analytic gradient path for such a problem is depicted from
a specific starting point for both soft-Dice and cal-Dice. Since the maximum Dice
is given when f(x1) ≥ 0 and f(x2) ≥ 0, both trajectories lead to an optimal
solution. However, soft-Dice focuses on improving one pixel at a time which
might encourage the learning of many concrete features. On the other hand, cal-
Dice, focuses on improving both pixels simultaneously, which might encourage
the learning of few abstract features. This might, since making decisions based on
few abstract features often is more robust to noise than making decisions based
on many concrete features, be the reason to why we observe better generalization
for cal-Dice than for soft-Dice. Furthermore, when learning pixels sequentially
compared to learning pixels simultaneously, there might be an increased risk of
getting into situations where a feature that is learnt to represent one pixel later
is forgotten when focus is on another pixel. This could explain why we observe
more convergence issues with soft-Dice than with cal-Dice.

Fig. 4. Illustration of analytic gradient trajectories for soft-Dice and cal-Dice in a two
pixel segmentation problem when the ground truth labels for both pixels are positive.
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5 Conclusion

In this work, we have gone through the theoretical background for surrogate
maximization and discussed a new surrogate for Dice that we refer to as cal-
Dice. We have theoretically compared cal-Dice with soft-Dice and showed that
cal-Dice has some better properties. Finally, we have shown some experimental
results that support the claim that cal-Dice improves on the stability issues
previously reported for soft-Dice. We conclude that cal-Dice, for theoretical and
for experimental reasons, can be considered a promising alternative to soft-Dice.

Acknowledgement. Marcus Nordström, Fredrik Löfman, Henrik Hult and Atsuto
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