
Robust Medical Image Segmentation from
Non-expert Annotations with Tri-network

Tianwei Zhang1, Lequan Yu2, Na Hu3, Su Lv3, and Shi Gu1(B)

1 Department of Computer and Engineering,
University of Electronic Science and Technology of China, Chengdu, China

gus@uestc.edu.cn
2 Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA

3 Department of Radiology/Huaxi MR Research Center (HMRRC),
West China Hospital of Sichuan University, Chengdu, China

Abstract. Deep convolutional neural networks (CNNs) have achieved
commendable results on a variety of medical image segmentation tasks.
However, CNNs usually require a large amount of training samples with
accurate annotations, which are extremely difficult and expensive to
obtain in medical image analysis field. In practice, we notice that the
junior trainees after training can label medical images in some medi-
cal image segmentation applications. These non-expert annotations are
more easily accessible and can be regarded as a source of weak anno-
tation to guide network learning. In this paper, we propose a novel
Tri-network learning framework to alleviate the problem of insufficient
accurate annotations in medical segmentation tasks by utilizing the non-
expert annotations. To be specific, we maintain three networks in our
framework, and each pair of networks alternatively select informative
samples for the third network learning, according to the consensus and
difference between their predictions. The three networks are jointly opti-
mized in such a collaborative manner. We evaluated our method on real
and simulated non-expert annotated datasets. The experiment results
show that our method effectively mines informative information from
the non-expert annotations for improved segmentation performance and
outperforms other competing methods.

Keywords: Non-expert annotations · Tri-network · Collaborative
learning · Segmentation

1 Introduction

Anatomical structure segmentation is one of the key problems in medical image
analysis field. In the past years, deep convolutional neural networks (CNNs) have
demonstrated promising successes in medical image segmentation tasks [2,8,13].
The high performance of CNNs often relies on a large amount of labeled train-
ing data. However, for medical image segmentation tasks, it is time-consuming
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and expensive to acquire enough reliable annotations, as the annotations are
needed to delineate by experienced experts in a slice-by-slice manner [6]. In clin-
ical practice, we noticed that junior trainees can label images after training by
a professional doctor. These non-expert annotations, which are typically more
easily accessible, can be regarded as a source of weak annotation that provides
coarsely spatial information but lacks accuracy in detail. Thus a natural question
that arises here is whether we can utilize these non-expert annotations to train a
segmentation network to alleviate the scarcity of accurate annotation in medical
image segmentation tasks. As directly training neural networks with noisy anno-
tations would severely degrade the performance of networks [17], there comes up
with the demand of designing special learning strategies that can mitigate the
impact of noise labels for deep network training [4,5,9,11,15].

Arpit et al. [1] demonstrated that deep networks could benefit by following an
‘easy-to-difficult’ training procedure under the assumption that the samples with
small loss were more likely to be clean. Further, Han et al. [4] proposed a frame-
work that co-trained two networks simultaneously and updated each network
alternately by the samples with small loss in the other one. Specific for the med-
ical image analysis tasks, Xue et al. [16] proposed a sample re-weighting frame-
work for noisy-labeled skin lesion classification, where they removed the high-loss
samples during the network training and employed a data re-weighting scheme to
weight every reserved sample in one mini-batch. Dgani et al. [3] added an addi-
tional noise layer to the network for the classification of breast microcalcifica-
tions, and Lehtinen et al. [7] proposed a learning-from-noisy-sample method and
applied it to MR image reconstruction from randomly-sampled data. Although
effective on image classification and detection tasks, these methods cannot be
straightforwardly applied to the segmentation task, because the noise in image
segmentation stands out within the image locally in addition to its label on the
global level. As an extension from global label to spatial map, Zhu et al. [18]
introduced a label quality evaluation strategy to enable neural networks to mea-
sure the quality of labels automatically, and Mirikharaji et al. [10] proposed
to generate a weight map to indicate the more useful pixels and alleviated the
influence of the noisy pixels by re-weighting them. Most of previous works pro-
vided weight strategy on samples and spatial information partially based on the
observation that lower error indicates more informative samples. However, this
assumption is arguable for the segmentation task considering that the most infor-
mative locations are the boundaries, which may carry a high noise level across
different samples. Thus it is necessary to refine the strategy of selecting samples
and pixels for the segmentation task by balancing the choices on noise-level and
informativity as they are no longer monotonously related due to the nature of
segmentation.

In this paper, we aim to develop a learning framework to use noisy non-
expert annotations to reduce high-quality annotation effort and combat the
inherent noise in real clinical annotations. Following the inspiration of collab-
orative learning strategy, we propose an efficient framework by extending the
Co-teaching [4] to a Tri-teaching network, where two networks jointly select



Robust Medical Image Segmentation with Tri-network 251

Fig. 1. The pipeline of our Tri-network framework for medical image segmentation
from non-expert annotations. We show the procedure in one iteration for illustration.

samples and voxels under the novel strategies designed for two “teachers” rather
than one. The introduction of an additional network here not only stabilizes the
selecting procedure but also allows for the strategic space to balance noise-level
and informativity. To be specific, we train three networks simultaneously and
each pair of networks select informative “reliable” samples according to their
predictions to guide the third network learning in each iteration. To facilitate
the selection of “reliable” samples, we design two feasible strategies according
to the consensus and difference between two network outputs. After that, the
selected samples are fed into the third network to update its parameters. In
this way, three networks jointly learn from the non-expert annotations in a col-
laborative manner. We evaluate our method on real and simulated non-expert
annotation datasets, i.e., stroke lesion segmentation dataset with real noise and
public organ segmentation dataset with simulated noise. The results show that
our method can effectively use non-expert annotations to improve segmentation
performance and outperforms other competing methods.

2 Method

2.1 Overview

We illustrate the training procedure of Tri-network in Fig. 1. The key idea here
is to train three networks simultaneously, where each pair of networks guide the
third network to mine useful and reliable information from the non-expert anno-
tations. Given a mini-batch of input data, we separately feed them into three
networks (e.g., U-Net) at the same time, and acquire three different prediction
maps and the corresponding pixel-wise loss maps respecting to the noisy annota-
tions. Next, for each pair of networks (e.g., Network 1 and Network 2), we select
those reliable pixels based on the output of two networks with the proposed
sample selection strategy and generate one mask (e.g., Mask 12) to represent
those selected pixels. After that, we feed the mask to the third network (e.g.,
Network 3) and guide the network to utilize that useful information for parame-
ter updating. The same procedure is repeated for each network at each training
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iteration. In the testing stage, we feed the test data into three trained networks
and use the ensemble of the three outputs as the final prediction.

2.2 Sample Selection with Prediction Confidence

As mentioned above, in network training, we generate a mask to represent
selected pixel samples from each pair of networks. In other words, those use-
ful samples are which two source networks consider more valuable according to
the confidence of their predictions. We then use this mask to guide the train-
ing process of the third network so that it can focus more on these valuable
pixels, thereby reducing the impact of noisy annotations. Here we propose two
sample selection criteria, both of which prove to be effective in dealing with the
segmentation problem with non-expert noisy annotations.

Consensus-Based Selection. The first sample selection strategy is based on
consensus of network predictions. For each mini-batch data, the pair of networks
produce two pixel-wise prediction maps and we further get the corresponding
confidence map (or loss map) of each network by calculating loss for each pixel
between network prediction and the noisy annotations. For each loss map, we
sort those pixel-wise loss values and set a loss value threshold to get a binary
confidence map B, where one represents T percentage of small-loss pixels (i.e.,
high confidence) and zero indicates the loss values of corresponding pixels are
greater than the specific ratio (i.e., low confidence). Based on the binary confi-
dence map B1 and B2 of two networks, we further calculate one binary consensus
map Mcons = (B1 == B2). There are two kinds of pixels in the consensus map:
pixels with high prediction confidence (i.e., low loss value) in both two networks
and pixels with low prediction confidence (i.e., high loss value) in both two net-
works. The first kind of pixels can be regarded as “clean” pixels and the second
kind of pixels can be regarded as “informative” pixels. We feed both two kinds
of pixels into the third network and calculate the loss for back-propagation.

Difference-Based Selection. The second sample selection strategy is based
on difference of network predictions. Similar to the consensus strategy, we first
calculate the pixel-wise confidence map (or loss map) for each network prediction.
And then we calculate the loss difference map of two networks by subtracting
the two loss maps and take the absolute values. In this strategy, we mine useful
knowledge by choosing pixels that are greater than a specific proportion, i.e.,
T percentage of the large-loss-difference, in the above loss difference map and
generate a binary difference map Mdiff . Finally, we feed the binary difference
map into the third network and update its parameter with these pixels selected
by the other two networks which are the same as before.

2.3 Technical Details

The framework was implemented with PyTorch on a TITAN Xp GPU. The three
networks in our framework share the same network architecture, i.e., U-Net [12].
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The whole framework was optimized with the SGD optimizer with a momentum
of 0.9 and a weight decay of 0.0001. The network was trained for 200 epochs with
learning rate 0.001 until convergence. To fit the limited GPU memory for training
three networks simultaneously, we set the mini-batch size as 8 and resized all the
input images to 256× 256 pixels. We generate the confidence map (or loss map)
by calculating the cross entropy loss for each pixel, and calculate the final loss
by averaging the CE loss on selected pixels for back-propagation. For the sample
selection strategies, we use all pixels to update all networks at the beginning,
and then gradually adjust the specific ratio T during training. Specifically, in
the Consensus-based strategy, we set the ratio T as 1 at the beginning, and then
linearly decreased it to 50% within 300 iterations and keep it unchanged during
the remaining iterations. While in the Difference-based strategy, we set T as 0 at
the beginning, and then linearly increased to 50% within the first 300 iterations.

3 Experiment

We evaluated our method on two datasets. We first validated the effectiveness of
our proposed method on the stroke lesion dataset with real non-expert annota-
tions and further analyzed the impact of noise level and ratio on a public organ
segmentation dataset with simulated non-expert annotations.

3.1 Experiment Setting

Real Clinical Dataset. The clinical stroke lesion segmentation dataset was
collected from a multi-modal imaging database of patients with suspected AIS
in West China Hospital. This dataset contained all MRI scan sequences of 186
Stroke emergency patients, and the image modality used in our experiments is
the FLAIR sequence. We randomly divided the dataset into training set (150
scans) and testing set (36 scans) for our experiments. To acquire the non-expert
annotations on the training set, we recruited a junior trainee to annotate all
the data after simple training. For the testing data, we invited a six-years-
experienced neuroradiologist to annotate the stroke lesion regions as the ground
truth.

Simulated Dataset. We employed the public dataset JSRT [14] as a multi-
class classification dataset to simulate noisy annotations to further evaluate and
analyze the capacity of our method. JSRT has three types of organ annotation
information: Lungs, Hearts, and Clavicles. The total of 247 X-ray scans was split
into 165 training scans and 82 evaluation scans. Considering that the manual
noise of organ segmentation mainly is the inaccurate contours, we simulated the
noisy non-expert annotations by randomly conducting morphological changes to
the original clean annotations. Specifically, the simulated noise was generated
by randomly eroding or dilating the contours of accurate annotations.
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Table 1. Comparison with other methods on the clinical stroke dataset.

Method Dice coefficient[%]

U-Net [12] 62.18

Ensemble U-Net 63.90

Xue et al. [16] 64.92

Co-teaching [4] 64.04

Tri-network (Consensus) 68.12

Tri-network (D-value) 67.88

Experiment Setting. We trained our framework on training data with non-
expert noisy annotations and evaluated the model on testing data by the Dice
coefficient score between the predicted segmentation and the accurate ground
truth annotations. We compared our Tri-network with multiple recent frame-
works including vanilla U-Net [12], ensemble model of U-Net, the loss re-
weighting method [16] and Co-teaching [4] under the same setting. For the JSRT
dataset, we reported the average results of 5 runs with random data splitting
per run.

3.2 Experiments on Real Clinical Stroke Dataset

Quantitative Analysis. We first evaluated the model performance and com-
pared with other related methods on the clinical stroke lesion segmentation
dataset (see Table 1). As a baseline, the single U-Net trained with non-expert
annotations achieved 62.18% Dice coefficient score on the test data. Among the
compared methods, our Tri-network with Consensus-based selection achieved the
highest Dice coefficient of 68.12% and Tri-network with Difference-based selec-
tion achieved a slightly lower score of 67.88%, both of which outperformed the
Ensemble U-net (63.9%), Xue et al. (64.92%), and Co-teaching (64.04%). Com-
pared to the baseline U-Net, all the other methods improved at a certain margin,
demonstrating that it was feasible and effective to utilize specialized learning
algorithms to train networks with noisy segmentation. For our Tri-network, its
improvement over the U-Net (Ensemble U-Net) indicated that the selection pro-
cedures made a difference besides the ensemble of models. In addition, it also
outperformed the sample re-weighting based method [16] and Co-teaching [4],
supporting our claim that the training and selection procedure of Tri-network
was more robust and adaptive to the segmentation problem.

To further investigate whether the improvement over Co-teaching was solely
due to the increased number of networks, we re-trained the Tri-network with
degenerated consensus-based sample selection strategy where we only selected
small or large loss pixels rather than both. We found that the training pro-
cess was difficult to converge for the small-loss selection and resulted at 64.27%
Dice coefficient score for the large-loss selection. The divergence with small-loss
selection was probably caused by the fact that small loss pixels were mainly in
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Fig. 2. Visual examples on the clinical dataset. The green, red, and blue colors denote
the ground truth annotation, Tri-network, and the noisy annotation, respectively. Our
method generates more accurate contours than non-expert annotation (a) and success-
fully identify small lesions (b & c). (Color figure online)

the center of the lesion, while the most informative samples for segmentation
tasks were the pixels near the boundaries. This also supports our early claim
in the introduction that the spatial information with a sample distinguishes the
segmentation problem from the classification problem. The large-loss selection
improved over the baseline and provided a comparable result with Co-teaching
approaches, indicating that the efficiency of integrated rules of Tri-networks was
beyond the degenerated rule that simply extended Co-teaching to “Tri-teaching”
with model ensemble.

Overall, the comparisons we have done prove that both the extension to three
network components and integrated sample section strategies and necessary and
effective for segmentation with noise annotations.

Qualitative Analysis. In addition to the quantitative comparison, we showed
vivid segmentation results in Fig. 2, where the green, red, and blue color denoted
the ground truth annotation, Tri-network segmentation, and the non-expert
annotation, respectively. Due to the lack of professional medical knowledge, the
non-expert annotators often generate annotation noise, including marking areas
that are not lesions, missing areas that are lesions, and delineating inaccurate
contours of the marked lesions. Especially, in the task of stroke segmentation in
FLAIR sequence, where the lesion area was imaged as high signals, we noticed
that the non-experts often missed the tiny lesions around the demyelinating area
and also delineated inaccurate contours of relative large stroke areas (compare
the green v.s. the blue contours in Fig. 2). As we can see from the left panel, the
contour of our segmented results was more accurate than the non-expert anno-
tation. And the mid and right panels showed that our framework successfully
recognized small lesions near demyelinating area that the non-expert could miss.
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3.3 Experiments on Simulated Noisy Dataset

While we have proved the feasibility and effectiveness of our model on the stroke
lesion segmentation dataset, the noise-level on this real dataset was fixed. To
explore the model generalizability and its capacity to handle different levels of
noise, we conducted additional experiments on another public X-ray dataset with
simulated noisy label on different levels and ratios. We randomly selected 75%
training samples and further randomly eroded/dilated the contour with 5–10 pix-
els to simulate the non-expert circumstance Fig. 3(c). The U-Net trained with
clean labels (fist row in Table 2) performed fairly well and we set it as the upper
bound of performance here. Compared with the U-Net trained with clean labels,
the performance of U-Net trained with noise label severely decreased on all three
organs, especially on the hardest small clavicle. Our method achieved 6.04% and
6.62% average dice improvement with the consensus-based and difference-based
sample selection strategy, respectively, while the other learning from noisy label
methods produced slightly better performance than the baseline model on this
dataset with simulated noise Fig. 3(d). Especially for the clavicle segmentation,
our Tri-network achieves about 11% dice score improvement. The average Haus-
dorff distance for lung, heart, and clavicle is 6.16, 4.83, and 6.63 pixels, respec-
tively. These comparison results demonstrated the effectiveness of our method
to utilize noisy annotations on simulated data again.

Table 2. Comparison with other methods on JSRT dataset on Dice metric [%].

Method Lungs Heart Clavicles Mean

U-Net (no noise) 97.55 94.82 92.35 94.90

U-Net 83.35 86.52 53.29 74.39

Ensemble U-Net 84.52 86.19 58.81 76.51

Xue et al. [16] 85.17 86.38 57.11 76.22

Co-teaching [4] 85.06 86.64 57.78 76.49

Tri-network (Consensus) 87.79 88.54 64.98 80.43

Tri-network (D-value) 88.59 90.37 64.07 81.01

We also studied the performance of our method under different noisy level
and noisy rate. Specifically, we studied two noise levels: low noise level with
morphological change within 1 to 5 pixels and high noise level with morphological
change within 5 to 10 pixels. For each noisy level, we evaluated our method with
noisy rate at 25%, 50%, and 75%, where we conducted random morphological
operations for 25%, 50%, and 75% training samples. The clavicle segmentation
results are shown in Fig. 4. Compared with U-Net baseline, our method improved
the performance under different settings. Overall, our method outperforms other
compared methods and the improvement is more obvious at a high noisy rate.
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Fig. 3. Simulated noise example and visual result of JSRT Dataset. (a) Original X-ray
image. (b) Ground Truth annotation. (c) Two kinds of simulated noise: red contour
represents dilation and blue contour represents erosion. (d) Visual results of segmen-
tation results: the green, red, and blue colors denote the ground truth annotation,
Tri-network, and the noisy annotation, respectively. (Color figure online)

Fig. 4. The performance of clavicle segmentation of different methods on JSRT dataset
with different noise settings.

4 Conclusion

In this work, we propose a Tri-network framework with integrated sample selec-
tion strategies to tackle the problem of leveraging non-expert annotations for
robust medical image segmentation. The Tri-network trains three deep networks
simultaneously and employs each pair of networks to guide the third network
to mine useful and informative samples during training. The whole framework
is optimized in a collaborative manner. As the key part of our framework, we
develop two effective sample selection strategies according to the consensus or
difference of two network predictions. We verify the effectiveness of our pro-
posed framework on both real non-expert annotated dataset and simulated noisy
dataset. The experimental results demonstrate that our method can improve the
performance of the network trained with the non-expert annotations and out-
perform other competing methods.

References

1. Arpit, D., et al.: A closer look at memorization in deep networks 2017. arXiv
preprint arXiv:1706.05394 (1938)

http://arxiv.org/abs/1706.05394


258 T. Zhang et al.

2. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and
medicine. J. Roy. Soc. Interf. 15(141), 20170387 (2018)

3. Dgani, Y., Greenspan, H., Goldberger, J.: Training a neural network based on
unreliable human annotation of medical images. In: 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018), pp. 39–42. IEEE (2018)

4. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely
noisy labels. In: Advances in Neural Information Processing Systems, pp. 8527–
8537 (2018)

5. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: MentorNet: learning data-
driven curriculum for very deep neural networks on corrupted labels. arXiv preprint
arXiv:1712.05055 (2017)

6. Kohli, M.D., Summers, R.M., Geis, J.R.: Medical image data and datasets in the
era of machine learning–whitepaper from the 2016 C-MIMI meeting dataset session.
J. Digit. Imaging 30(4), 392–399 (2017)

7. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data.
arXiv preprint arXiv:1803.04189 (2018)

8. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017)

9. Ma, X., et al.: Dimensionality-driven learning with noisy labels. arXiv preprint
arXiv:1806.02612 (2018)

10. Mirikharaji, Z., Yan, Y., Hamarneh, G.: Learning to segment skin lesions from
noisy annotations. In: Wang, Q., et al. (eds.) DART/MIL3ID - 2019. LNCS, vol.
11795, pp. 207–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
33391-1 24

11. Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., Qu, L.: Making deep neural
networks robust to label noise: a loss correction approach. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944–1952
(2017)

12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

13. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev.
Biomed. Eng. 19, 221–248 (2017)

14. Shiraishi, J., et al.: Development of a digital image database for chest radiographs
with and without a lung nodule. Am. J. Roentgenol. 174(1), 71–74 (2000)

15. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for
learning with noisy labels. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5552–5560 (2018)

16. Xue, C., Dou, Q., Shi, X., Chen, H., Heng, P.A.: Robust learning at noisy labeled
medical images: applied to skin lesion classification. In: 2019 IEEE 16th Inter-
national Symposium on Biomedical Imaging (ISBI 2019), pp. 1280–1283. IEEE
(2019)

17. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

18. Zhu, H., Shi, J., Wu, J.: Pick-and-learn: automatic quality evaluation for noisy-
labeled image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol.
11769, pp. 576–584. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32226-7 64

http://arxiv.org/abs/1712.05055
http://arxiv.org/abs/1803.04189
http://arxiv.org/abs/1806.02612
https://doi.org/10.1007/978-3-030-33391-1_24
https://doi.org/10.1007/978-3-030-33391-1_24
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1611.03530
https://doi.org/10.1007/978-3-030-32226-7_64
https://doi.org/10.1007/978-3-030-32226-7_64

	Robust Medical Image Segmentation from Non-expert Annotations with Tri-network
	1 Introduction
	2 Method
	2.1 Overview
	2.2 Sample Selection with Prediction Confidence
	2.3 Technical Details

	3 Experiment
	3.1 Experiment Setting
	3.2 Experiments on Real Clinical Stroke Dataset
	3.3 Experiments on Simulated Noisy Dataset

	4 Conclusion
	References




