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Abstract. Segmentation of objects of interest is one of the central tasks
in medical image analysis, which is indispensable for quantitative anal-
ysis. When developing machine-learning based methods for automated
segmentation, manual annotations are usually used as the ground truth
toward which the models learn to mimic. While the bulky parts of the
segmentation targets are relatively easy to label, the peripheral areas
are often difficult to handle due to ambiguous boundaries and the par-
tial volume effect, etc., and are likely to be labeled with uncertainty. This
uncertainty in labeling may, in turn, result in unsatisfactory performance
of the trained models. In this paper, we propose superpixel-based label
softening to tackle the above issue. Generated by unsupervised over-
segmentation, each superpixel is expected to represent a locally homoge-
neous area. If a superpixel intersects with the annotation boundary, we
consider a high probability of uncertain labeling within this area. Driven
by this intuition, we soften labels in this area based on signed distances
to the annotation boundary and assign probability values within [0, 1]
to them, in comparison with the original “hard”, binary labels of either
0 or 1. The softened labels are then used to train the segmentation mod-
els together with the hard labels. Experimental results on a brain MRI
dataset and an optical coherence tomography dataset demonstrate that
this conceptually simple and implementation-wise easy method achieves
overall superior segmentation performances to baseline and comparison
methods for both 3D and 2D medical images.
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1 Introduction

Segmentation of objects of interest is an important task in medical image analy-
sis. Benefiting from the development of deep neural networks and the accumula-
tion of annotated data, fully convolutional networks (FCNs) have demonstrated
remarkable performances [8,19] in this task. In general, these models assume
that the ground truth is given precisely. However, for tasks with a large num-
ber of category labels, the peripheral areas are often difficult to annotate due
to ambiguous boundaries and the partial volume effect (PVE) [2], etc., and are
likely to be labeled with uncertainty. With a limited number of data, FCNs
may have difficulties in coping with such uncertainty, which in turn affects the
performance. Taking brain MRI for example, in Fig. 1, we show a slice of a multi-
sequence MRI, in which the pink area shows barely or non-discernible boundaries
from its surroundings, causing great difficulties in the manual annotation.

Fig. 1. [llustration of ambiguous boundaries in medical images with a slice of a multi-
sequence brain MRI. The first three images show the MRI sequences, and the last
shows the ground truth annotation. As we can see, the boundaries of the tissue marked
in pink are barely or even not discernible from its surroundings. Best viewed in color.

To reduce the impact of imprecise boundary annotation, a potential solution
is the label softening technique, and at this moment, we are only aware of few of
them [5,10,11]. Based on the anatomical knowledge that the lesion-surrounding
pixels may also include some lesion level information, Kats et al. [11] employed
3D morphological dilation to expand the binary mask of multiple sclerosis (MS)
lesions and assigned a fixed pseudo probability to all pixels within the expanded
region, such that these pixels can also contribute to the learning of MS lesions.
Despite the improved Dice similarity coefficient in the experiments, the inherent
contextual information of images was not utilized when determining the extent
of dilation or exact value of the fixed pseudo probability. To account for uncer-
tainties in the ground truth segmentation of atherosclerotic plaque in the carotid
artery, Engelen et al. [5] proposed to blur the ground truth mask with a Gaussian
filter for label softening. One limitation of this work was that, similar to [11],
the creation of the soft labels was only based on the ground truth while ignoring
the descriptive contextual information in the image. From another perspective,
soft labels can also be obtained by fusing multiple manual annotations, e.g.., in
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[10] masks of MS lesions produced by different experts were fused using a soft
version of the STAPLE algorithm [22]. However, obtaining multiple segmenta-
tion annotations for medical images can be practically difficult. An alternative to
label softening is the label smoothing technique [16,20] which assumes a uniform
prior distribution over labels; yet again, this technique did not take the image
context into consideration, either.
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Fig. 2. Pipeline of our proposed method.

In this paper, we propose a new label softening method driven by the image
contextual information, for improving segmentation performance especially near
the boundaries of different categories. Specifically, we employ the concept of
superpixels [1] for the utilization of local contextual information. Via unsuper-
vised over-segmentation, the superpixels group original image pixels into locally
homogeneous blocks, which can be considered as meaningful atomic regions of
the image. Conceptually, if the scale of superpixel is appropriate, pixels within
the same superpixel block can be assumed belonging to the same category. Based
on this assumption, if a superpixel intersects with the annotation boundary of
the ground truth, we consider a high probability of uncertain labeling within the
area prescribed by this superpixel. Driven by this intuition, we soften labels in
this area based on the signed distance to the annotation boundary, producing
probability values spanning the full range of [0, 1]—in contrast to the original
“hard” binary labels of either 0 or 1. The softened labels can then be used
to train the segmentation models. We evaluate the proposed approach on two
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publicly available datasets: the Grand Challenge on MR Brain Segmentation at
MICCAT 2018 (MRBrainS18) [7] dataset and an optical coherence tomography
(OCT) image [3] dataset. The experimental results verify the effectiveness of our
approach.

2 Method

The pipeline of our method is illustrated in Fig. 2. We employ the SLIC algorithm
[1] to produce superpixels, meanwhile converting the ground truth annotation
to multiple one-hot label maps (the “hard” labels). Soft labels are obtained by
exploiting the relations between the superpixels and hard label maps (the cross
symbol &) in Fig. 2). Then, the soft and hard labels are used jointly to supervise
the training of the segmentation network.

Superpixel-Guided Region of Softening. Our purpose is to model the
uncertainty near the boundaries of categories in the manual annotation for
improving model performance and robustness. For this purpose, we propose
to exploit the relations between superpixels and the ground truth annotation
to produce soft labels. Specifically, we identify three types of relations between
a superpixel and the foreground region in a one-hot ground truth label map
(Fig. 3): (a) the superpixel is inside the region, (b) the superpixel is outside the
region, and (c) the superpixel intersects with the region boundary. As the super-
pixel algorithms [1] group pixels into locally homogeneous pixel blocks, pixels
within the same superpixel can be assumed to belong to the same category given
that superpixels are set to a proper size. Based on this assumption, it is most
likely for uncertain annotations to happen in the last case, where the ground
truth annotation indicates different labels for pixels inside the same superpixel
block. Therefore, our label softening works exclusively in this case.

Formally, let us denote an image by © € RW*#  where W and H are the
width and height, respectively. (Without loss of generalization, x can also be a
3D image 2 € RW*HXT where T is the number of slices, and our method still
applies.) Then, its corresponding ground truth annotation can be denoted by
a set of one-hot label maps: Y = {y¢|y¢ € RW*H}C_ where C is the number
of categories, and y° is the binary label map for category ¢, in which any pixel
yé € {0,1}, where i € {1,..., N} is the pixel index, and N is the total number
of pixels; besides, we denote the foreground area in y© by ¢°. We can generate
superpixel blocks S(z) = {s(j)}éyil for z using an over-segmentation algorithm,
where M is the total number of superpixels. In this paper, we adopt SLIC [1]
as our superpixel-generating algorithm, which is known for computational effi-
ciency and quality of the generated superpixels. We denote the set of soft label
maps to be generated by Q. = {¢¢|¢¢ € RW*H}; note that ¢f € [0, 1] is a contin-
uous value, in contrast with the binaries in y°. As shown in Fig. 3, the relations
between any ¢¢ and s\7) can be classified into three categories: (a) s(9) is inside
#°; (b) s\9) is outside ¢¢; and (c) sV) intersects with boundaries of ¢°. For the
first two cases, we use the original values of y{ in the corresponding locations in
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q°. Whereas as for the third case, we employ label softening strategies to assign
a soft label ¢f to each pixel 7 based on its distance to boundaries of ¢¢, which is
described below.
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Fig. 3. Illustration of three types of relations between the foreground region in a binary
ground truth label map (GT) and a superpixel block (SP). (a) SP is inside GT; (b)
SP is outside GT; (c¢) SP intersects with boundaries of GT. We identity the region
enclosed by the SP in the third case for label softening, based on the signed distances
to GT boundaries.

Soft Labeling with Signed Distance Function. Assume a superpixel block
s intersects with the boundaries of a foreground ¢ (for simplicity, the superscripts
can be safely omitted here without confusion). For a pixel s; in s, the absolute
value of the distance d; from s; to ¢ is defined as the minimum distance among
all the distances from s; to all pixels on the boundaries of ¢. We define d; > 0 if s;
is inside ¢, and d; < 0 otherwise. As aforementioned, in the case of a superpixel
block intersecting with the boundaries of ¢, we need to assign each pixel in
this block a pseudo-probability as its soft label according to its distance to ¢.
The pseudo-probability should be set to 0.5 for a pixel right on the boundary
(i.e. d; = 0), gradually approach 1 as d; increases, and gradually approach 0
otherwise. Thus, we define the distance-to-probability conversion function as

1 d;
¢ = faist(di) = 3 (1 I + 1) , (1)

where ¢; € [0,1] is the obtained soft label for pixel i.

Model Training with Soft and Hard Labels. We adopt the Kullback-
Leibler (KL) divergence loss [13] to supervise model training with our soft labels:

1 N ¢ . ¢/
LkL = Nzizlzc:lqi log (¢;/p7) , (2)

where p{ is the predicted probability of the i-th pixel belonging to the class c,
and ¢f is the corresponding soft label defined with Eq. (1). Along with Lky,, we
also adopt the commonly used Dice loss Lpice [15] and cross-entropy (CE) loss
Lcg for medical image segmentation. Specifically, the CE loss is defined as:

1 <N c .
Lop = =5, D weti log(py), (3)
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where w, is the weight for class ¢. When w,. = 1 for all classes, Eq. (3) is the
standard CE loss. In addition, w, can be set to class-specific weli\ghts to coun-
teract the impact of class imbalance [17]: w. = 1/log(1.02 + > ;" ,y5/N), and
we refer to this version of the CE loss as weighted CE (WCE) loss. The final
loss is defined as a weighted sum of the three losses: £ = Lcg + aLpice + BLKL,
where o and [ are hyperparameters to balance the three losses. We follow the
setting in nnU-Net [8] to set a = 1.0, and explore the proper value of 8 in our
experiments, since it controls the relative contribution of our newly proposed
soft labels which are of interest.

3 Experiments

Datasets. To verify the effectiveness of our method on both 2D and 3D
medical image segmentation, we use datasets of both types for experiments.
The MRBrainS18 dataset [7] provides seven 3T multi-sequence (T1-weighted,
T1-weighted inversion recovery, and T2-FLAIR) brain MRI scans with the follow-
ing 11 ground truth labels: 0-background, 1-cortical gray matter, 2-basal ganglia,
3-white matter, 4-white matter lesions, 5-cerebrospinal fluid in the extracerebral
space, 6-ventricles, 7-cerebellum, 8-brain stem, 9-infarction and 10-other, among
which labels 9 and 10 were officially excluded from the evaluation and we follow
this setting. We randomly choose five scans for training and use the rest for eval-
uation. For preprocessing, the scans are preprocessed by skull stripping, nonzero
cropping, resampling, and data normalization. The other dataset [3] includes OCT
images with diabetic macular edema (the OCT-DME dataset) for the segmenta-
tion of retinal layers and fluid regions. It contains 110 2D B-scan images from 10
patients. Eight retinal layers and fluid regions are annotated. We use the first five
subjects for training and the last five subjects for evaluation (each set has 55 B-
scans). Since the image quality of this dataset is poor, we firstly employ a denoising
convolutional neural networks (DnCNN) [23] to reduce image noise and improve
the visibility of anatomical structures. To reduce memory usage, we follow He et
al. [6] to flatten a retinal B-scan image to the estimated Bruch’s membrane (BM)
using an intensity gradient method [14] and crop the retina part out.

Experimental Setting and Implementation. For the experiments on each
dataset, we first establish a baseline, which is trained without the soft labels.
Then, we re-implement the Gaussian blur based label softening method [5], in
which the value of ¢ is empirically selected, for a comparison with our proposed
method. Considering the class imbalance in both datasets, we present results
using the standard CE and WCE losses for all methods. We notice that the
Dice loss adversely affects the performance on the OCT-DME dataset, there-
fore those results are not reported. We use overlap-based, volume-based, and
distance-based mean metrics [21], including: Dice coefficient score, volumetric
similarity (VS), 95'® percentile Hausdorff distance (HD95), average surface dis-
tance (ASD), and average symmetric surface distance (ASSD) for a comprehen-
sive evaluation of the methods. We employ a 2D U-Net [19] segmentation model
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(with the Xception [4] encoder) for the OCT-DME dataset, and a 3D U-Net [§]
model for the MRBrainS18 dataset (patch-based training and sliding window
test tricks [9] are employed in the implementation). All experiments are con-
ducted with the PyTorch framework [18] on a standard PC with an NVIDIA
GTX 1080Ti GPU. The Adam optimizer[12] is adopted with a learning rate of
3x10~* and a weight decay of 10~°. The learning rate is halved if the validation
performance does not improve for 20 consecutive epochs. The batch size is fixed
to 2 for the MRBrainS18 dataset, and 16 for the OCT-DME dataset.

Results. The quantitative evaluation results are summarized in Table1 and
Table 2 for the MRBrainS18 and OCT-DME datasets, respectively. (Example
segmentation results on both datasets are provided in the supplementary mate-
rial.) As expected, the weighted CE loss produces better results than the stan-
dard CE loss for most evaluation metrics on both datasets. We note that the
Gaussian blur based label softening [5] does not improve upon the baselines
either with the CE or WCE loss, but only obtains results comparable to those of
the baselines. The reason might be that this method indiscriminately softens all
boundary-surrounding pixels with a fixed standard deviation without consider-
ing the actual image context, which may potentially harm the segmentation near
originally precisely annotated boundaries. In contrast, our proposed method con-
sistently improves all metrics when using the generated soft labels with the WCE
loss. In fact, with this combination of losses, our method achieves the best per-
formances for all evaluation metrics. It is also worth mentioning that, although
our method is motivated by improving segmentation near category boundaries, it
also improves the overlap-based evaluation metrics (Dice) by a noticeable extent
on the OCT-DME dataset. These results verify the effectiveness of our method in
improving segmentation performance, by modeling uncertainty in manual label-
ing with the interaction between superpixels and ground truth annotations.

Table 1. Evaluation results on the MRBrainS18 dataset [7]. The KL divergence loss
is used by our method for model training with our soft labels.

Method |Losses Dice (%)1|VS (%)1 |HD95 (mm)] |ASD (mm)] | ASSD (mm)]

Baseline | CE+Dice 85.47 96.53 3.5287 0.9290 0.7722
WCE+Dice 85.56 96.55 3.5116 0.8554 0.7371

Engelen | CE+Dice 85.16 95.44 3.6396 0.9551 0.8004

et al. [5] | WCE+Dice 85.47 95.58 3.5720 0.8432 0.7502

Ours KL+CE+Dice |85.26 93.95 3.4684 0.9460 0.8061
KL4+WCE+Dice | 85.63 96.60 3.1194 0.8146 0.7153

Ablation Study on Number of Superpixels. The proper scale of the super-
pixels is crucial for our proposed method, as superpixels of different sizes may
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Table 2. Evaluation results on the OCT-DME dataset [3]. The KL divergence loss is
used by our method for model training with our soft labels.

Method | Losses Dice (%)1|VS (%)7 |HD95 (mm)] |ASD (mm)]| | ASSD (mm)]
Baseline | CE 82.50 96.52 3.22 1.075 1.075
WCE 82.82 96.44 3.27 1.082 1.087
Engelen |CE 82.69 96.38 3.24 1.092 1.092
et al. [5] | WCE 82.94 96.36 3.27 1.080 1.094
Ours KL+CE |82.72 96.41 3.25 1.081 1.087
KL+WCE 83.94 96.73 3.17 1.058 1.066

describe different levels of image characteristics, and thus may interact differ-
ently with the ground truth annotation. Since in the SLIC [1] algorithm, the size
of superpixels is controlled by the total number of generated superpixel blocks,
we conduct experiments to study how the number of superpixels influences the
performance on the MRBrainS18 dataset. In Fig. 4, we show performances of our
method with different numbers of superpixels ranged from 500 to 3500 with a
sampling interval of 500. As we can see, as the number of superpixels increases,
the performance first increases due to the more image details incorporated, and
then decreases after reaching the peak. This is in line with our intuition, since
the assumption that pixels within the same superpixel belong to the same cat-
egory can hold only if the scale of superpixels is appropriate. Large superpixels
can produce flawed soft labels. In contrast, as the number of superpixels grows
and their sizes shrink, soft labels will degenerate into hard labels, which does
not provide additional information.

—* 37 1.0 .
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Fig. 4. Performances of our method with different numbers of superpixels on the
MRBrainS18 dataset [7]. The HD95, ASD and ASSD are in mm. Best viewed in color.

Ablation Study on Weight of Soft Label Loss. The weight 3 controls
the contribution of the soft labels in training. To explore the influence of the
soft label loss, we conduct a study on the MRBrainS18 dataset to compare the
performance of our method with different values of 3. We set 5 to 1/4,1/2,1,2,4,
and 8. The mean Dice, HD95, ASD, and ASSD of our proposed method with
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Fig. 5. Performances of our method using different values of 3 on the MRBrainS18
dataset [7]. The HD95, ASD and ASSD are in mm. Best viewed in color.

these values of 8 are shown in Fig. 5. Note that the x-axis uses a log scale since
values of ¢ differ by orders of magnitude. Improvements in performance can be
observed when § increases from 1/4 to 1. When [ continues to increase, however,
the segmentation performances start to drop. This indicates that the soft labels
are helpful to segmentation, although giving too much emphasis to them may
decrease the generalization ability of the segmentation model.

4 Conclusion

In this paper, we presented a new label softening method that was simple yet
effective in improving segmentation performance, especially near the boundaries
of different categories. The proposed method first employed an over-segmentation
algorithm to group image pixels into locally homogeneous blocks called super-
pixels. Then, the superpixel blocks intersecting with the category boundaries
in the ground truth were identified for label softening, and a signed distance
function was employed to convert the pixel-to-boundary distances to soft labels
within [0, 1] for pixels inside these blocks. The soft labels were subsequently used
to train a segmentation network. Experimental results on both 2D and 3D med-
ical images demonstrated the effectiveness of this simple approach in improving
segmentation performance.
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