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Abstract. Data-driven methods usually require a large amount of
labelled data for training and generalization, especially in medical imag-
ing. Targeting the colonoscopy field, we develop the Optical Flow Gener-
ative Adversarial Network (OfGAN) to transform simulated colonoscopy
videos into realistic ones while preserving annotation. The advantages
of our method are three-fold: the transformed videos are visually much
more realistic; the annotation, such as optical flow of the source video is
preserved in the transformed video, and it is robust to noise. The model
uses a cycle-consistent structure and optical flow for both spatial and
temporal consistency via adversarial training. We demonstrate that the
performance of our OfGAN overwhelms the baseline method in relative
tasks through both qualitative and quantitative evaluation.

Keywords: Colonoscopy · Optical flow · Generative adversarial
network · Domain transformation

1 Introduction

Deep learning achieves impressive performance in many machine learning tasks,
such as classification [14,26], semantic segmentation [24], and object detec-
tion [13]. Those remarkable models rely on large high-quality datasets, such
as ImageNet [7], Cityscape [5] and Pascal VOC [10]. However, the amount and
quality of labelled data for training is often a limiting factor. In medical imaging,
annotating real data is a challenging and tedious task; besides, medical data are
usually subject to strict privacy rules that impose a limitation on sharing. A
solution to this problem is generating synthetic data in a large quantity within
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Fig. 1. Forward cycle and identity loss of OfGAN. Gnext transforms the input to the
next frame of the target domain. It is trained by the temporal-consistent loss which
forces the reserved generation (Gself ) to be same as the ground-truth synthetic frame.

controlled conditions. However, the lack of realism of synthetic data might limit
the usefulness of the trained models when applied to real data. In this study, we
propose a novel, ConvNet based model to increase the realism of synthetic data.
We specifically work on simulated colonoscopy videos, but our approach can be
expanded to other surgical assistance simulations.

Deep convolutional networks achieve remarkable performance on extract-
ing low-dimensional features from image space [3]. Transforming one image to
another requires the model to “understand” both the input and output domain
in spatial domain. However, not only involving the spatial domain, our video
transformation task overcomes three more challenges: (1) How to transform the
input to the target domain while preserving the original annotation. (2) How to
capture the temporal information between frames to form a consistent video. (3)
How to synthesize near-infinite colonoscopy frames.

Generative Adversarial Networks (GANs) [12,20,23,25,28,29] fill the gap of
generating and transforming high-quality images [28]. Generally, GANs consist
of a generator and a discriminator. The generator is trained to generate a sample
approximating the target distribution while the discriminator learns to judge the
realness of the given sample. An elaborate adversarial training makes it possible
to fit or transform a complex distribution.

The domain distributions play a vital role in transformation. Hence, directly
transforming colonoscopy images to another domain is challenging when the dis-
tance in between is significant. Recently, Shrivastava et al. [25] refined synthetic
small-sized grayscale images to be real-like through their S+U GAN. After that,
Mahmood et al. [20] applied the idea of S+U GAN to remove patient-specific fea-
ture from real colonoscopy images. Both mentioned methods employ the target
domain in grayscale, which dramatically reduces the training burden.
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Combining adversarial training with paired images [1,15,23] usually fulfills
impressive results. However, rare paired datasets compel researchers to tackle
unpaired datasets, similar to our case, Zhu et al. [29] proposed the powerful
Cycle-consistent GAN (CycleGAN), which trained two complemented genera-
tors to form the reconstruction loss. Oda et al. [21] transformed endoscopy CT
images to the real domain by using CycleGAN with deep residual U-Net [24]. To
replace surgical instruments from surgical images, DavinicGAN [18] extended
CycleGAN with attention maps. Although, these methods achieve limited suc-
cess and are unable to achieve temporal consistency in the video dataset. To
solve video flickering, Engelhardt et al. [9] combined CycleGAN with temporal
discriminators for realistic surgical training. But it is difficult to ensure high
temporal consistency with only image-level discrimination. In terms of unpaired
video-to-video translation, existing methods [2,4] on general datasets utilized
similar structures as CycleGAN and novel networks for predicting future frames.
However, these methods do not restrict the transformed structure to its origin;
instead, they encourage novel realistic features. Our OfGAN improves Cycle-
GAN to temporal level by forcing the generator to transform the input frame
to its next real-alike frame while restricting the optical flow between two con-
tinuous output frames to be identical with their input counterparts. This setup
achieves remarkable performance at pixel-level in spatial as well as temporal
domain transformation.

The contributions of this exposition are:

1. Optical Flow GAN: Based on the standard cycle-consistent structure, we
create and implement the OfGAN, which is able to transform the domain
while keeping the temporal consistency of colonoscopy videos and rarely influ-
encing the original optical flow annotation.

2. Real-enhanced Colonoscopy Generation: Our method can be incor-
porated in a colonoscopy simulator to generate near-infinite real-enhanced
videos. The real generated videos possess very similar optical flow annotation
with the synthetic input. Frames inside the transformed videos are consistent
and smooth.

3. Qualitative and Quantitative Evaluation: The model is evaluated on
our synthetic and a published CT colonoscopy datasets [23] both qualitatively
and quantitatively. The transformation can be applied to annotation and thus
create labels associated with the new realistic data.

2 Methodology

Let us consider that we are given a set of synthetic colonoscopy videos S = s and
real colonoscopy videos R = r, where s = s1, s2, . . . , sn and r = r1, r2, . . . , rm,
then sn represents the n-th frame in the synthetic video and rm represents the
m-th frame in the real video. It should be noted that there is no real frame cor-
responding to any synthetic frame. Furthermore, we have ground-truth optical
flow F = f for all synthetic data, where f = f1,2, . . . , fn−1,n and fn−1,n indi-
cates the ground-truth optical flow between frame n − 1 and n. The goal is to
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learn a mapping G : S → R′ where R′ is a set of novel videos whose optical flow
is identical to S while keeping the structure of S unchanged. To achieve this, we
follow cycle-adversarial [29] training by using two generative models Gself and
Gnext, their corresponding discriminators Dsyn and Dreal as well as an optical
flow estimator Op to form an optical flow cycle-consistent structure.

2.1 Temporal Consistent Loss

Different from the reconstruction loss in CycleGAN, our model tries to recon-
struct the next frame of the given distribution. More specifically, forward cycle
is connected by two mapping functions: Gnext : sn → r′

n+1 and Gself : r′
n+1 →

srecn+1. Gnext tries to transform a given synthetic frame sn to be similar to a frame
from the real domain, at the same time it predicts the next frame to obtain r′

n+1.
In the reverse mapping, Gself transforms r′

n+1 to srecn+1. Further, our temporal
consistent loss narrows the gap between srecn+1 and sn+1. The generator Gnext

performs spatial and temporal transformation simultaneously while Gself only
involves spatial transformation. Besides we have a backward cycle obeying the
reverse mapping chain: rm → Gself → s′

m → Gnext → rrecm+1. We use �1 loss to
mitigate blurring. The overall temporal consistent loss is given by:

Lcyc(Gnext, Gself ) = Es∼Pdata(S)[||Gself (Gnext(sn)) − sn+1||1]
+ Er∼Pdata(R)[||Gnext(Gself (rm)) − rm+1||1]. (1)

2.2 Adversarial Loss

Adversarial loss [12] is utilized for both mapping functions described in the
previous section. For the mapping function Gnext : sn → r′

n+1 the formula of
adversarial loss is:

Ladv(Gnext,Dreal, S,R) = Er∼Pdata(R)[log Dreal(r)]
+ Es∼Pdata(S)[1 − log Dreal(Gnext(s))] (2)

For the reverse pair Gself and Dsyn, the adversarial loss is Ladv(Gself ,
Dsyn, R, S) where the positions of synthetic and real data are interchanged.

2.3 Perceptual Identity Loss

Nevertheless, the temporal-consistent loss itself is insufficient to force each gen-
erator to generate its targets. We use identity loss to force Gnext to strictly
generate the next frame and Gself to transform the current frame. Furthermore,
we find measuring the distance on the perceptual level achieves better results.
Finally, the formula is as follows:

Lidt(Gnext, Gself ) = Er∼Pdata(R)[θ(Gnext(rm)), θ(rm+1)]
+ Es∼Pdata(S)[(θ(Gself (sn)), θ(sn)] (3)

where the θ(·) indicates the perceptual extractor.
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2.4 Optical Flow Loss

In addition to the above operations in the unsupervised situation, the optical
flow loss utilizes supervised information to preserve annotation and stabilize the
training. We restrict each two continuous real-alike frames to have the same
optical flow as their corresponding synthetic frames, as shown in Fig. 1. The
optical flow loss is:

Lop(Gnext) = Es∼Pdata(S),f∼Pdata(F )[||Op(r′
n, r′

n+1) − fn,n+1||1], (4)

where the Op(·) represents a non-parameteric model for optical flow estimation
and r′

n = Gnext(sn).
Therefore, the overall loss function can be presented as:

L(Gnext, Gself , Dsyn, Dreal) =Ladv(Gnext, Gself ) + λLcyc(Gnext, Gself )

+ βLidt(Gnext, Gself ) + σLop(Gnext), (5)

where we have λ, β and σ as the importance of each term. The target is to solve
the min-max problem of

G∗
next, G

∗
self = arg min

Gnext,Gself

max
Dsyn,Dreal

L(Gnext, Gself ,Dsyn,Dreal).

2.5 Implementation Details

To be fair with competing methods, we adopt many training parameters from
CycleGAN. We use an encoder-decoder structure for the generators and Patch-
GAN [19] for discriminators. Both generators consist of two down-sample and
two up-sample layers with six residual blocks in between. For extracting percep-
tual features, we use the output of the second convolution block of pre-trained
VGG-13 [26] on ImageNet. Similarly, the optical flow is estimated via pre-trained
PWC-Net [27]. Furthermore, to optimize the network, we employ Adam [17]
optimizer with beta equal to (0.5, 0.999) and a learning rate of 2e−4. The input
frames are resized to 256 × 256 while corresponding optical flow is re-scaled to
the proper value. We set λ = 150, β = 75 and σ = 0.1. The framework is imple-
mented in PyTorch [22] and trained on 4 Nvidia P100 GPUs for 100 epochs.

3 Experiments

The synthetic data we utilized is simulated by a colonoscopy simulator [6]. We
extracted 8000 synthetic colonoscopy frames from five videos with ground-truth
optical flow and 2741 real frames from 12 videos for training. Similarly, for
testing, 2000 unknown synthetic frames are captured from two lengthy videos.
The real data is captured from patients by our specialists. We perform fish-eye
correction for all the real data and discard the real frames with extreme lighting
conditions, wall-only images, and blurred images. Subsequently, we are left with
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Fig. 2. Qualitative evaluation of four successive frames of each model. Each row, from
top to bottom left to right, are input frames, results from the baseline, standard Cycle-
GAN plus our optical flow loss, temporal consistent loss only, complete OfGAN with
σ = 0.1 and σ = 5. Red rectangles highlight unseen features of one front frame. Differ-
ences are best viewed on zoom-in screen. (Color figure online)

1472 real images for training. Further, we also test our model on a published CT
colonoscopy dataset [23] qualitatively.

We present the qualitative and the quantitative evaluation on our test results.
The qualitative evaluation focuses on the single frame quality and temporal
consistency in a subjective manner. For quantitative analysis, we use an auxiliary
metric, Domain Temporal-Spatial score (DTS), to measure temporal and spatial
quality simultaneously.

3.1 Qualitative Evaluation

The single-frame quality measures are two-fold. On the one hand, it measures
if the transformed frame looks much more like real ones while, on the other
hand, it evaluates if it contains less noise. For temporal consistency, we select
four continuous frames and mainly concentrate on inconsistency among them.
We regard the famous CycleGAN as our baseline model and furnish four models
for ablation study. Results show that merely adding optical flow loss to the
model does not improve rather results in worse performance on both spatial and
temporal quality. The standard cycle structure does not involve in any temporal
information, besides no spatial and temporal information can be learned at the
same time. As a result, the black corner turns to be more obvious, and more
inconsistent white spots emerge. Furthermore, only applying temporal-consistent
loss (Fig. 2 row 1, column 5–8 ) intervenes in the converging of original training,
which produces large scale mask-like noises. The combination of both optical flow
loss and temporal-consistent loss gives much more realistic and consistent results
(Fig. 2 row 2, column 5–8 ). Almost no white spots appear on any frames where
the colon wall looks more bloody. A pale mask-like noise arises on the right. In
terms of single frame quality (Fig. 3b), our method achieves better realness than
the baseline method. By comparison, it is obvious that our method successfully
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Fig. 3. (a) Qualitative evaluation of CT colonoscopy outputs, CT input (top), and our
transformed results (bottom). (b) Qualitative assessment of the selected frame between
two selected pairs from the baseline (top) and our method (bottom). Zoomed zones
come from the detail inside the nearby red rectangles. (c) Qualitative evaluation on
five continuous CT frame pairs, CT input (top), and our transformed results (bottom).
(The images are best viewed on screen using zoom functionality). (Color figure online)

removes black corners and complements the detail in the deeper lumen. Besides,
the white spots are rare in our results. The surface of the baseline method is
so glossy that it looks far different from a human organ. On the contrary, our
method has more vivid light effect.

The choice of parameter σ is a trade-off between consistency and realness.
From values 0.1 to 5, results vary from the best realistic to the best consistent.
Hence, we can adjust it depending on specific application scenarios.

We also test our method on CT colonoscopy videos (Fig. 3a top row) whose
surface is coarse and texture-less compared with our synthetic data. In this case,
we have no ground-truth optical flow of the input; instead, we use the estimated
optical flow as the ground-truth for training. Our method successfully colors the
surface to be realistic. Besides, it also removes the coarse surface and adds more
realistic reflections of light inside the dark lumen. The lack of blood vessels is
due to our non-blood-vessel-rich real data. Sequential frames (Fig. 3c) show that
the innovative light reflection is consistent throughout these frames. In addition,
no apparent noise nor inconsistent features appear.

3.2 Quantitative Evaluation

The quantitative evaluation should combine temporal, spatial, and domain dis-
tance measurements to overcome the trade-off problem. Hence, we utilize the
DTS weighted by four normalized metrics, Average End point Error (AEPE) [8],
average perceptual loss (Lperc) [16], and average style loss (Lstyle) [11] as the
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auxiliary metric for combining spatial and temporal dimensions. AEPE is used
to measure how well two continuous outputs possess the same optical flow as the
corresponding inputs, which also indicates the consistency of temporal output.
We use AEPE-GT (Egt) and AEPE-Pred (Epred), which are AEPEs between the
result and ground-truth, and estimated optical flow of the input. Lperc and Lstyle

is for spatial quality and domain distance. The weight selection is depended on
the prior of each term. The coefficients are set up empirically based on the impor-
tance of each term. To calculate the mean, we randomly select ten samples from
the entire real dataset for each test data. Finally, these metrics are normalized on
36 test cases with different hyper-parameters. The smaller the DTS, the better
the performance. The overall formula of DTS is:

DTS =
3
8
N (Egt) +

1
8
N (Epred) +

1
4
N (Lperc) +

1
4
N (Lstyle) + 0.5, (6)

where N (·) means normalization, adding 0.5 to make every value positive.

Table 1. Quantitative evaluation on test cases, referring to Fig. 2.

Approach Egt Epred Lperc Lstyle(1e−3) DTS

Synthetic 0 0.15 3.31 11.19 1.47

Baseline 1.27 0.24 2.53 3.22 0.37

Cycle + op 1.53 0.81 2.43 2.82 0.40

Temp w/o op 2.85 2.35 2.39 2.37 0.77

sig=5 1.19 0.36 2.47 2.96 0.31

sig=0.1 1.22 0.31 2.49 2.64 0.27

The baseline method sacrifices the realness to achieve good consistency while
only using temporal consistent loss is contrary, and both cases obtain a worse
DTS (Table 1). Our method takes both advantages, even though not the best,
and beats the baseline on Egt, Lperc, Lstyle, and DTS. Notice that Egt relies on
the accuracy of the optical flow estimator, PWC-Net, as it has achieved state-
of-the-art Egt = 2.31 on MPI Sintel [27]. Even though we use different dataset,
we think our Egt = 1.22 (Table 1 last row) indicates the optical flow sufficiently
identical to the ground-truth.

4 Conclusion

Our proposed OfGAN extends labeled synthetic colonoscopy video to real-alike
ones. We have shown the performance of our OfGAN on our synthetic dataset
and published CT datasets. The transformed dataset has outstanding temporal
and spatial quality, which can be used for data augmentation, domain adapta-
tion, and other machine learning tasks to enhance the performance. In term of
the limitation, the performance of the proposed method might reduce if it fails
to transform a frame correctly in a sequence. This can cause a dramatic effect
on generating long videos, which needs to be dealt with in the future.
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