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Abstract. Parkinson’s disease (PD) is a progressive neurological disor-
der primarily affecting motor function resulting in tremor at rest, rigid-
ity, bradykinesia, and postural instability. The physical severity of PD
impairments can be quantified through the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), a widely used
clinical rating scale. Accurate and quantitative assessment of disease pro-
gression is critical to developing a treatment that slows or stops further
advancement of the disease. Prior work has mainly focused on dopamine
transport neuroimaging for diagnosis or costly and intrusive wearables
evaluating motor impairments. For the first time, we propose a computer
vision-based model that observes non-intrusive video recordings of indi-
viduals, extracts their 3D body skeletons, tracks them through time, and
classifies the movements according to the MDS-UPDRS gait scores. Exper-
imental results show that our proposed method performs significantly
better than chance and competing methods with an F1-score of 0.83 and
a balanced accuracy of 81%. This is the first benchmark for classifying
PD patients based on MDS-UPDRS gait severity and could be an objective
biomarker for disease severity. Our work demonstrates how computer-
assisted technologies can be used to non-intrusively monitor patients
and their motor impairments. The code is available at https://github.
com/mlu355/PD-Motor-Severity-Estimation.

Keywords: Movement Disorder Society Unified Parkinson’s Disease
Rating Scale · Gait analysis · Computer vision

1 Introduction

Parkinson’s disease (PD) is a progressive neurological disorder that primarily
affects motor function. Early, accurate diagnosis and objective measures of dis-
ease severity are crucial for development of personalized treatment plans aimed
to slow or stop continual advancement of the disease [27]. Prior works aiming
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Fig. 1. Progressive PD impairments demonstrated by 3D gait (poses fade over time;
left/right distinguished by color) with MDS-UPDRS gait score shown below each skeleton.
Participants are taken from our clinical dataset. Classes 0 to 2 progressively decrease
in mobility with reduced arm swing and range of pedal motion (i.e., reduced stride
amplitude and footlift) while class 3 becomes imbalanced. (Color figure online)

to objectively assess PD severity or progression are either based on neuroim-
ages [1,4] or largely rely on quantifying motor impairments via wearable sensors
that are expensive, unwieldy, and sometimes intrusive [12,13]. With the rapid
development of deep learning, video-based technologies now offer non-intrusive
and scalable ways of quantifying human movements [7,16], yet to be applied to
clinical applications such as PD.

PD commonly causes slowing of movement, called bradykinesia, and stiff-
ness, called rigidity, that is visible during the gait and general posture of
patients. The Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) [10] is the most commonly used method in clinical and
research to assess the severity of these motor symptoms. Specifically, the
MDS-UPDRS gait test requires a subject to walk approximately 10 meters away
from and toward an examiner. Trained specialists assess the subject’s posture
with respect to movement and balance (e.g., ‘stride amplitude/speed’, ‘height of
foot lift’, ‘heel strike during walking’, ‘turning’, and ‘arm swing’) by observation.
MDS-UPDRS item 3.10 is scored on a 5-level scale that assesses the severity of PD
gait impairment, ranging from a score of 0 indicating no motor impairments to
a score of 4 for patients unable to move independently (see Fig. 1).

We propose a method based on videos to assess PD severity related to gait
and posture impairments. Although there exist a few video-based methods which
assess gait for PD diagnosis [8,11,30], we define a new task and a principled
benchmark by estimating the standard MDS-UPDRS scores. There are several chal-
lenges to this new setting: (1) there are no baselines to build upon; (2) since it is
harder to recruit patients with severe impairments, the number of participants
in our dataset is imbalanced across MDS-UPDRS classes; (3) clinical datasets are
typically limited in the number of participants, presenting difficulty for train-
ing deep learning models; (4) estimating MDS-UPDRS scores defines a multi-class
classification problem on a scale of scores from 0 to 4, while prior work only
focused on diagnosing PD vs. normal. To address these challenges, our 3D pose
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Fig. 2. The proposed framework: we first track the participant throughout the video
and remove other persons, e.g., clinicians. Then, we extract the identified participants’
3D body mesh and subsequently the skeletons. Finally, our proposed OF-DDNet esti-
mates the MDS-UPDRS gait score based on only the 3D pose sequence.

estimation models are trained on large public datasets. Then, we use the trained
models to extract 3D poses (3D coordinates of body joints) from our clinical
data. Therefore, estimation of the MDS-UPDRS scores is only performed on low-
dimensional pose data which are agnostic to the clinical environment and video
background. To deal with data imbalance, we propose a model with a focal loss
[20], which is coupled with an ordinal loss component [26] to leverage the order
of the MDS-UPDRS scores.

Our novel approach for automatic vision-based evaluation of PD motor
impairments takes monocular videos of the MDS-UPDRS gait exam as input and
automatically estimates each participants’s gait score on the MDS-UPDRS stan-
dard scale. To this end, we first identify and track the participant in the video.
Then, we extract the 3D skeleton (a.k.a. pose) from each video frame (visualized
in Fig. 1). Finally, we train our novel temporal convolutional neural network
(TCNN) on the sequence of 3D poses by training a Double-Features Double-
Motion Network [31] (DD-Net) with the new hybrid ordinal-focal objective,
which we will refer to as hybrid Ordinal Focal DDNet (OF-DDNet) (see Fig. 2).

The novelties of our work are three-fold: (1) we define a new benchmark for
PD motor severity assessment based on video recordings of MDS-UPDRS exams; (2)
for the first time, we propose a framework based on 3D pose acquired from non-
intrusive monocular videos to quantify movements in 3D space; (3) we propose
a method with a hybrid ordinal-focal objective that accounts for the imbalanced
nature of clinical datasets and leverages the ordinality MDS-UPDRS scores.

2 Method

As shown in Fig. 2, the input consists of a monocular video of each participant
walking in the scene. First, we track each participant in the video using the
SORT (Simple Online and Realtime Tracking) algorithm [3] and identify the
bounding boxes corresponding to the participant. These bounding boxes along
with the MDS-UPDRS exam video are passed to a trained 3D pose extraction model
(denoted by SPIN) [18], which provides pose input to OF-DDNet.
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2.1 Participant Detection and Tracking

We first detect and track the participant since videos may contain multiple other
people, such as clinicians and nurses. To do this, we track each participant in the
video with SORT, a realtime tracking algorithm for 2D multiple object tracking
in video sequences [31]. SORT uses a Faster Region CNN (FrRCNN) as a detec-
tion framework [25], a Kalman filter [15] as the motion prediction component,
and the Hungarian algorithm [19] for matching the detected boxes. The partic-
ipant is assumed to be in all frames, hence we pick the tracked person who is
consistently present in all frames with the greatest number of bounding boxes
as the patient.

2.2 3D Body Mesh and Pose Extraction

Next, we extract the 3D pose from each frame by feeding the corresponding image
and the bounding box found in the previous step as input to SPIN (SMPL oPti-
mization IN the loop) [18]. SPIN is a state-of-the-art neural method for estimat-
ing 3D human pose and shape from 2D monocular images. Based on a single 2D
image, the Human Mesh Recovery (HMR) regressor provided by [16] generates
predictions for pose parameters θreg, shape parameters βreg, camera parameters
Πreg, 3D joints Xreg of the mesh and their 2D projection Jreg = Πreg(Xreg).
Following the optimization routine proposed in SMPLify [5], these are initial
parameters for the SMPL body model [21], a function M(θ, β) of pose parame-
ters θ and shape parameters β that returns the body mesh. A linear regressor W
performs regression on the mesh to find 3D joints Jsmpl. These regressed joint
values are supplied to the iterative fitting routine, which encourages the 2D pro-
jection of the SMPL joints Jsmpl to align with the annotated 2D keypoints Jreg

by penalizing their weighted distance. The fitted model subsequently provides
supervision for the regressor, forming an iterative training loop. In our proposed
method, we generate 3D pose for each video frame by performing regression on
the 3D mesh output from SMPL, which has been fine-tuned in the SPIN loop.
SPIN was initialized with pretrained SMPL [21] and HMR pretrained on the
large Human3.6M [14] and MPI-INF-3DHP [22] datasets, providing over 150k
training images with 3D joint annotations, as well as large-scale datasets with
2D annotations (e.g., COCO [20] and MPII [2]).

2.3 Gait Score Estimation with OF-DDNet

Our score estimation model, OF-DDNet, builds on top of DD-Net [31] by adding
a hybrid ordinal-focal objective. DD-Net [31] was chosen for its state-of-the-art
performance at orders of magnitude smaller in parameter size than compara-
ble methods. OF-DDNet takes as input 3D joints and outputs the participant’s
MDS-UPDRS gait score. Our model has a lightweight TCNN-based architecture
that prevents overfitting. To address the variance of 3D Cartesian joints to both
location and viewpoint, two new features are calculated: (1) Joint Collection
Distances (JCD) and (2) two-scale motion features. JCD is a location-viewpoint
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invariant feature that represents the Euclidean distances between joints as a
matrix M , where Mk

ij = ‖Jk
i − Jk

j ‖ for joints Ji and Jj at frame k of total K
frames. Since this is a symmetric matrix, only the upper triangular matrix is
preserved and flattened to a dimension of

(
n
2

)
for n joints. A two-scale motion

feature is introduced for global scale invariance which measures temporal dif-
ference between nearby frames. To capture varying scales of global motion, we
calculate slow motion (Mslow

k ) and fast motion (Mfast
k )

Mslow
k = Sk+1 − Sk, k ∈ {1, 2, 3, ...,K − 1},

Mfast
k = Sk+2 − Sk, k ∈ {1, 3, 5, ...,K − 2},

(1)

where Sk = {Jk
1 , Jk

2 , ...Jk
n} denotes the set of joints for the kth frame. The JCD

and two-scale motion features are embedded into latent vectors at each frame
through a series of convolutions to learn joint correlation and reduce the effect of
skeleton noise. Then, the embeddings are concatenated and run through a series
of 1D convolutions and pooling layers, culminating with a softmax activation on
the final layer to output a probability distribution for each class.

2.4 Hybrid Ordinal-Focal Loss

To leverage the ordinal nature of MDS-UPDRS scores and to combat the natural
class imbalance in clinical datasets, we propose a hybrid ordinal (O) focal (F)
loss with a trade-off hyperparamter λ as L = F +λO. Although many regression
or threshold-based ordinal loss functions exist [23,26], this construction allows
its use in conjunction with our focal loss.
Focal Loss is introduced to combat class imbalance [20]. It was initially proposed
for binary classification, but it is naturally extensible to multi-class classification
(e.g., C > 2 classes). We apply focal loss for predicting label y with probability p:

F(y, p) =
C∑

i=1

−α(1 − pi)γyilog(pi). (2)

The modulating factor (1 − pi)γ is small for easy negatives where the model
has high certainty and close to 1 for misclassified examples. This combats class
imbalance by down-weighting learning for easy negatives, while preserving basic
cross-entropy loss for misclassified examples. We set the default focusing param-
eter of γ = 2 and weighting factor α = 0.25 as suggested by [20].
Ordinal Loss is used to leverage the intrinsic order in the MDS-UPDRS scores. We
implement a loss function that penalizes predictions more if they are violating
the order. This penalization incorporates the actual labels ȳ ∈ {0, 1, 2, 3} to
indicate order instead of the probability vectors used in cross-entropy. Given the
estimated label ˆ̄y ∈ {0, 1, 2, 3}, we calculate the absolute distance w = |ȳ − ˆ̄y|
and incorporate this with categorical cross-entropy to generate our ordinal loss:

O(y, p) = −1 + w

C

C∑

i=1

yilog(pi). (3)
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3 Experiments

3.1 Dataset

We collected video recordings from 30 research participants who met UK Brain
Bank diagnostic criteria of MDS-UPDRS exams scored by a board-certified move-
ment disorders neurologist. All videos of PD participants were recorded during
the off-medication state, defined according to previously published protocols [24].
All study procedures were approved by the Stanford Institutional Review Board
and written informed consent was obtained from all participants in this study.
We first extracted the sections of the video documenting the gait examination,
in which participants were instructed to walk directly toward and away from the
camera twice. The gait clips range from 17 s to 54 s with 30 frames per second.
Our dataset includes 21 exams with score 1, 4 exams with score of 2, 4 exams
with score of 3 and 1 exam with score 0. Participants who cannot walk at all or
without assistance from another person are scored 4, thus we exclude this class
from our analysis due to the difficulty in obtaining videos recordings of their gait
exam.

To augment the normal control cohort (i.e., score 0), we include samples from
the publicly available CASIA Gait Database A [28], a similar dataset with videos
of 20 non-PD human participants filmed from different angles. We extracted
corresponding videos where participants walk directly toward and away from
the camera, with length of minimum 16 and maximum 53 s. The underlying
differences between the datasets should not bias our analyses because all score
estimation algorithms operate on pose data with similar characteristics (same
view points and duration) across all classes and we normalize and center the
pose per participant by aligning temporal poses based on their hip joint.

3.2 Setup

We preprocess our dataset by 1) clipping each video into samples of 200 frames
each, where the number of clips per exam depends on its length, 2) supplying
two additional cropped videos per exam for sparse classes 2 and 3 and 3) joint
normalization and centering at the mid-hip. To address the subjective nature
of MDS-UPDRS scoring by clinicians, we incorporate a voting mechanism. Each
sub-clip is labeled same as the exam itself for training to independently exam-
ine each sub-part of the exam. This voting mechanism adds robustness to the
overall system and allows us to augment the dataset for proper training of the
TCNN. To account for the limited dataset size, all evaluations in this study were
performed using a participant-based leave-one-out cross-fold validation on all 50
samples. We note that the clips and crops for each exam are never separated by
the train/test split. Optimal hyperparameters for the gait scoring model were
obtained by performing a grid search using inner leave-one-out cross validation
and the Adam optimizer (β1 = 0.9, β2 = 0.999) [17]. Best performance was
achieved at 600 epochs, batch size of 64, filter size of 32 and an annealing learn-
ing rate from 1−3 to 1−6. For evaluation, we report per-class and macro average
F1, area under ROC curve (AUC), precision (Pre), and recall (Rec).
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Table 1. Per-class MDS-UPDRS gait score prediction
performance of our method.

Gait score F1 AUC Pre Rec

0 0.91 0.93 0.91 0.91

1 0.81 0.91 0.73 0.91

2 0.73 0.87 0.80 0.67

3 0.86 0.90 1.00 0.75

Macro average 0.83 0.90 0.86 0.81 Fig. 3. Confusion matrix of OF-
DDNet.

Table 2. Comparison with baseline and ablated methods. * indicates statistical differ-
ence at (p < 0.05) compared with our method, measured by the Wilcoxon signed rank
test [29]. Best results are in bold. See text for details about compared methods.

Method F1 AUC Pre Rec

OF-DDNet (Ours) 0.83 0.90 0.86 0.81

1) Baseline CNN∗ 0.73 0.86 0.79 0.69

2) Baseline OF-CNN∗ 0.74 0.83 0.79 0.71

3) DD-Net∗ [31] 0.74 0.84 0.80 0.69

4) 2D joints∗ [6] 0.61 0.77 0.61 0.62

5) Ours w/o focal 0.79 0.83 0.83 0.76

6) Ours w/o ordinal 0.78 0.88 0.84 0.74

7) Regression∗ 0.67 n/a 0.70 0.65

8) DeepRank∗ [23] 0.74 0.80 0.79 0.71

3.3 Baseline Methods and Ablation Studies

We compare our results with several baselines: 1) we feed raw 3D joints from
SPIN directly into a 1D CNN modeled after DD-Net architecture sans double
features and embedding layer (see Fig. 2), 2) OF-CNN, the same as (1) but
with our OF loss, and 3) the original DD-Net [31] with basic cross-entropy loss.
We also conduct an ablation study on the choice of pose extraction method by
4) using 2D joints (instead of 3D) extracted with OpenPose [6] as input to OF-
DDNet. To evaluate the hybrid loss function, we separately examine our method
5) without the focal loss component and 6) without the ordinal component. We
further examine our ordinal component by replacing it with 7) a regression loss
(MSE) for DD-Net with an extra sigmoid-activated dense output layer and finally
with 8) DeepRank [23], a ranking CNN which cannot be combined with focal
loss.

3.4 Results

The results of our proposed OF-DDNet are summarized in Table 1. Our method
sets a new benchmark for this task with macro-average F1-score of 0.83, AUC
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of 0.90, precision of 0.86, and balanced accuracy (average recall) of 81%. As
seen in the confusion matrix (Fig. 3), the overall metrics for well-represented
classes control and class 1 are fairly high, followed by class 3 and then class
2. We observe that class 2 is strictly misclassified as lower severity. The results
of comparisons with baseline and ablated methods are summarized in Table 2.
Our proposed method achieves significantly better performance than many other
methods based on the Wilcoxon signed rank test [29] (p < 0.05), and consistently
outperforms all other methods. Our results show that all methods have higher
performance on 3D joints input than 2D input, as even a baseline 1D CNN has
better performance than the full DD-Net model with 2D joints. This demon-
strates that 3D joints provide valuable information for the prediction model,
which has not been explored before. Similarly, we note that on 3D joint input,
all classification methods outperformed the regression model, suggesting that
classification outperforms regression at this task. Regarding the loss function,
OF-DDNet significantly outperforms our baseline CNN with categorical cross-
entropy. Adding ordinal (Method 5 in the Table) and focal (Method 6) losses
to baseline DD-Net both improve accuracy, but their combined performance
(OF-DDNet) outperforms all. DeepRank (Method 7) had high confidence on
predictions and poor performance on sparse classes, suggesting an overfitting
problem that encourages the use of a simple ordinal loss for our small dataset.

4 Discussion

Our method achieves compelling results on automatic vision-based assessment of
PD severity and sets a benchmark for this task. We demonstrate the possibility
of predicting PD motor severity using only joint data as the input to a prediction
model, and the efficacy of 3D joint data in particular. Furthermore, we show the
effectiveness of a hybrid ordinal-focal loss for tempering the effects of a small,
imbalanced dataset and leveraging the ordinal nature of the MDS-UPDRS. How-
ever, it is necessary to note that there is inherent subjectivity in the MDS-UPDRS
scale [9] despite attempts to standardize the exam through objective criterion
(e.g., stride amplitude/speed, heel strike, arm swing). Physicians often disagree
on ambiguous cases and lean toward one score versus another based on subtle
cues. Clinical context suggests our results are consistent with physician experi-
ence. As corroborated in the results of OF-DDNet, the most difficult class to
categorize in clinical practice is score 2 since the MDS-UPDRS defines its distinc-
tion from score 1 solely by “minor” versus “substantial” gait impairment, shown
in Fig. 1. Control (class 0) exhibits high arm swing and range of pedal motion
while classes 1 and 2 have progressively reduced mobility and increased stiffness
(i.e., reduced arm swing and stride amplitude/foot lift). Class 3 exhibits high
imbalance issues with stooped posture and lack of arm swing, which aids mobil-
ity, presenting a high fall risk. In practice, class 3 is easier to distinguish from
the other classes because it only requires identifying that a participant requires
an assisted-walking device and cannot walk independently. Likewise, our model
performs well for class 3 except in challenging cases which may require human
judgement, such as determining what constitutes “safe” walking.
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This study presents a few notable limitations. A relatively small dataset
carries risk of overfitting and uncertainty in the results. We mitigated the for-
mer through data augmentation techniques and using simple models (DD-Net)
instead of deep or complex network architectures; and the latter with leave-one-
out cross validation instead of the traditional train/validation/test split used
in deep learning. Similarly, our classes are imbalanced with considerably fewer
examples in classes 2 and 3 than in classes 0 and 1, which we attempt to address
through our custom ordinal focal loss and by augmenting sparse classes through
cropping. Additionally, due to a shortage of control participants in our clinical
dataset, we include examples of non-PD gait from the public CASIA dataset.
The data is obfuscated by converting to normalized pose, which has similar
characteristics across both datasets. However, expanding the clinical dataset by
recruiting more participants from underrepresented classes would strengthen the
results and presents a direction for future work.

5 Conclusion

In this paper, we presented a proof-of-concept of the potential to assess PD sever-
ity from videos of gait using an automatic vision-based approach. We provide
a first benchmark for estimating MDS-UPDRS scores with a neural model trained
on 3D joint data extracted from video. This method works even with a small
dataset due to data augmentation, the use of a simple model and our hybrid
ordinal focal loss and has opportunity for application to similar video classifica-
tion problems in the medical space. Our proposed method is simple to set up
and use because it only requires a video of gait as input; thus, in remote or
resource-limited regions with few experts it provides a way to form estimates of
disease progression. In addition, such scalable automatic vision-based methods
can help perform time-intensive and tedious collection and labelling of data for
research and clinical trials. In conclusion, our work demonstrates how computer-
assisted intervention (CAI) technologies can provide clinical value by reliably
and unobtrusively assisting physicians by automatic monitoring of PD patients
and their motor impairments.

Acknowledgment. This research was supported in part by NIH grants AA010723,
AA017347, AG047366, and P30AG066515. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National Institutes of
Health. This study was also supported by the Stanford School of Medicine Department
of Psychiatry & Behavioral Sciences 2021 Innovator Grant Program and the Stanford
Institute for Human-centered Artificial Intelligence (HAI) AWS Cloud Credit.

References

1. Adeli, E., et al.: Joint feature-sample selection and robust diagnosis of Parkinson’s
disease from MRI data. NeuroImage 141, 206–219 (2016)



646 M. Lu et al.

2. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation:
new benchmark and state of the art analysis. In: Proceedings of the IEEE Confer-
ence on computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

3. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime
tracking. In: ICIP, pp. 3464–3468. IEEE (2016)

4. Bharti, K., et al.: Neuroimaging advances in Parkinson’s disease with freezing of
gait: a systematic review. NeuroImage: Clin. 24, 102059 (2019)

5. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it
SMPL: automatic estimation of 3D human pose and shape from a single image. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp.
561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1 34

6. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estima-
tion using part affinity fields. In: CVPR (2017)

7. Chiu, H.k., Adeli, E., Wang, B., Huang, D.A., Niebles, J.C.: Action-agnostic human
pose forecasting. In: 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 1423–1432. IEEE (2019)

8. Cho, C.W., Chao, W.H., Lin, S.H., Chen, Y.Y.: A vision-based analysis system
for gait recognition in patients with Parkinson’s disease. Expert Syst. Appl. 36(3),
7033–7039 (2009)

9. Evers, L.J., Krijthe, J.H., Meinders, M.J., Bloem, B.R., Heskes, T.M.: Measuring
Parkinson’s disease over time: the real-world within-subject reliability of the MDS-
UPDRS. Mov. Disord. 34(10), 1480–1487 (2019)

10. Goetz, C.G., et al.: Movement disorder society-sponsored revision of the unified
Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric
testing results. Mov. Disord.: Off. J. Mov. Disord. Soc. 23(15), 2129–2170 (2008)

11. Han, J., Jeon, H.S., Jeon, B.S., Park, K.S.: Gait detection from three dimensional
acceleration signals of ankles for the patients with Parkinson’s disease. In: Pro-
ceedings of the IEEE The International Special Topic Conference on Information
Technology in Biomedicine, vol. 2628, Ioannina (2006)

12. Hobert, M.A., Nussbaum, S., Heger, T., Berg, D., Maetzler, W., Heinzel, S.:
Progressive gait deficits in Parkinson’s disease: a wearable-based biannual 5-year
prospective study. Front. Aging Neurosci. 11, 22 (2019)

13. Hssayeni, M.D., Jimenez-Shahed, J., Burack, M.A., Ghoraani, B.: Wearable sensors
for estimation of parkinsonian tremor severity during free body movements. Sensors
19(19), 4215 (2019)

14. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: large scale
datasets and predictive methods for 3D human sensing in natural environments.
IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

15. Kalman, R.E.: A new approach to linear filtering and prediction problems (1960)
16. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human

shape and pose. In: CVPR, pp. 7122–7131 (2018)
17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
18. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct

3D human pose and shape via model-fitting in the loop. In: ICCV (2019)
19. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.

Logist. Q. 2(1–2), 83–97 (1955)
20. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object

detection. In: CVPR, pp. 2980–2988 (2017)
21. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned

multi-person linear model. ACM Trans. Graph. 34(6), 1–16 (2015)

https://doi.org/10.1007/978-3-319-46454-1_34
http://arxiv.org/abs/1412.6980


Vision-Based Estimation of MDS-UPDRS Gait Scores 647

22. Mehta, D., et al.: VNect: real-time 3D human pose estimation with a single RGB
camera, vol. 36 (2017). http://gvv.mpi-inf.mpg.de/projects/VNect/

23. Pang, L., Lan, Y., Guo, J., Xu, J., Xu, J., Cheng, X.: DeepRank: a new deep
architecture for relevance ranking in information retrieval. In: Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, pp. 257–
266 (2017)

24. Poston, K.L., et al.: Compensatory neural mechanisms in cognitively unimpaired
Parkinson disease. Ann. Neurol. 79(3), 448–463 (2016)

25. Redmon, J.: DarkNet: open source neural networks in c (2013–2016). http://
pjreddie.com/darknet/

26. Rennie, J.D., Srebro, N.: Loss functions for preference levels: regression with dis-
crete ordered labels. In: IJCAI Workshop Advances in Preference Handling (2005)

27. Venuto, C.S., Potter, N.B., Ray Dorsey, E., Kieburtz, K.: A review of disease
progression models of Parkinson’s disease and applications in clinical trials. Mov.
Disord. 31(7), 947–956 (2016)

28. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for
human identification. PAMI 25(12), 1505–1518 (2003)

29. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson,
N.L. (eds.) Breakthroughs in Statistics, Springer Series in Statistics (Perspectives
in Statistics), pp. 196–202. Springer, New York (1992). https://doi.org/10.1007/
978-1-4612-4380-9 16

30. Xue, D., et al.: Vision-based gait analysis for senior care. arXiv preprint
arXiv:1812.00169 (2018)

31. Yang, F., Wu, Y., Sakti, S., Nakamura, S.: Make skeleton-based action recognition
model smaller, faster and better. In: ACM Multimedia Asia, pp. 1–6 (2019)

http://gvv.mpi-inf.mpg.de/projects/VNect/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-4612-4380-9_16
http://arxiv.org/abs/1812.00169

	Vision-Based Estimation of MDS-UPDRS Gait Scores for Assessing Parkinson's Disease Motor Severity
	1 Introduction
	2 Method
	2.1 Participant Detection and Tracking
	2.2 3D Body Mesh and Pose Extraction
	2.3 Gait Score Estimation with OF-DDNet
	2.4 Hybrid Ordinal-Focal Loss

	3 Experiments
	3.1 Dataset
	3.2 Setup
	3.3 Baseline Methods and Ablation Studies
	3.4 Results

	4 Discussion
	5 Conclusion
	References




