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Abstract. PURPOSE: Incomplete tumor resections leads to the pres-
ence of cancer cells on the resection margins demanding subsequent revi-
sion surgery and poor outcomes for patients. Intraoperative evaluations
of the tissue pathology, including the surgical margins, can help decrease
the burden of repeat surgeries on the patients and healthcare systems.
In this study, we propose adapting multi instance learning (MIL) for
prospective and intraoperative basal cell carcinoma (BCC) detection in
surgical margins using mass spectrometry. METHODS: Resected spec-
imens were collected and inspected by a pathologist and burnt with
iKnife. Retrospective training data was collected with a standard cautery
tip and included 63 BCC and 127 normal burns. Prospective data was
collected for testing with both the standard and a fine tip cautery. This
included 130 (66 BCC and 64 normal) and 99 (32 BCC and 67 nor-
mal) burns, respectively. An attention-based MIL model was adapted
and applied to this dataset. RESULTS: Our models were able to predict
BCC at surgical margins with AUC as high as 91%. The models were
robust to changes in cautery tip but their performance decreased slightly.
The models were also tested intraoperatively and achieved an accuracy
of 94%. CONCLUSION: This is the first study that applies the concept
of MIL for tissue characterization in perioperative and intraoperative
REIMS data.
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1 Introduction

A main step in the clinical management of major cancers includes surgical resec-
tion of the tumor. Incomplete resection of tumors and the presence of cancer cells
at the resection margins, otherwise known as “positive margins”, often demands
repeat surgery [10]. In some cancers, such as breast cancer, the positive surgical
margin rates can be as high as 20% [4]. The subsequent revision surgeries bur-
den the health care system with extra costs and wait times. They can also affect
the cosmetic outcome of the patient, causing distress and potentially delaying
life saving treatments such as chemotherapy or radiation therapy. Intraoperative
evaluation of the tissue, including surgical margins, is currently a challenging
task. Recent efforts have resulted in innovative perioperative and intraoperative
technologies that can assess tissue in a high throughput manner, and provide
surgeons with critical information on tissue pathology. The Intelligent Knife,
iKnife (Waters Corp., MA), a mass spectrometry-based technology, is one such
modality [2]. This technology is able to provide enriched feedback about the
chemical properties of the tissue at the surgical tooltip, in real time [7,9,11,12].
The smoke created by the surgical electrocautery device is used and its molecular
profiles such as lipids, fatty acids and small molecules, are analyzed through rapid
evaporative ionization mass spectrometry (REIMS) [5]. iKnife can be seamlessly
integrated into surgical workflows, as REIMS does not require sample prepara-
tion [13], and only a connection to the exhaust of the electrocautery device is
needed for molecular profiling of the tissue.

Due to the destructive nature of electrocautery that generates the smoke
for iKnife, pathology validated labels are difficult to attain. In practice, the
histopathology of the surrounding tissue to a “burn” is analyzed and the burn is
labelled based on an educated estimate of a pathologist. Since the data labels are
not conclusively determined, they are referred to as weak labels. The problem
of weakly annotated data is common to pathology where images and reports
are either grossly outlined, or annotations of collected data are vague. Intro-
duced two decades ago, multiple instance learning (MIL) [3], is a strategy for
dealing with weakly labeled data. Here, a single label is assigned to a “bag”
of multiple instances. The bag label is positive if it contains at least one posi-
tive instance, and negative otherwise. Using bags with different proportions of
positive instances, MIL methods learn signatures of positive instances. As weak
annotations result in noisy instance labels, considering a bag of instances, rather
than each individually, helps compensate for the effect of the weak labels. It
is important to identify instances that play a prominent role in predicting the
overall label of a bag. This is referred to as the attention of an instance-[8].
Recently, attention-based MIL has been used with deep learning for whole-slide
annotation of histopathology images of breast and colon cancer [6].

In this paper, for the first time, we propose to extend the concept of attention-
based MIL to learn from weakly labelled REIMS data for detection of periop-
erative surgical margins. To create surgical smoke, the iKnife burns the tissue
in contact with the tool tip. The data created in a constant stream lends itself
well to the concept of bags. Each mass spectrum from a burn is considered as an
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Fig. 1. Overview: Molecular profiles of the cautery smoke aspirated at the tip of the
iKnife is preprocessed and augmented. The data is randomly divided into bags which
are labelled based on instances they contain. MIL models are trained for margin clas-
sification using the training and validation bag sets. Using the trained model, the test
bags are then predicted and evaluated. (Color figure online)

instance, and the stream of data from multiple burns are packed in bags. The
prediction of a positive bag is, hence, an indication of the presence of positive
margins. We demonstrate the accuracy of our models in prospective peropera-
tive data, and their robustness to changes in surgical cautery tips. Finally, we
investigate the feasibility of our developed approach to real time tissue typing,
intraoperatively. Our methods are presented in the context of surgical margin
detection for Basal Cell Carcinoma (BCC). BCC is the most commonly diag-
nosed cancer with a worldwide incidence rate of 2.75 million cases, and low
metastasis rate [14]. Therefore, it is an ideal application for evaluation of our
proposed surgical margin detection approach. Methods built on BCC data, can
be translated to other cancers where surgical margins are crucial to patient out-
comes.

2 Materials and Methods

Figure 1 depicts an overview of the proposed workflow. The cautery smoke aspi-
rated at the tip of iKnife is collected for each specimen. Its spectra are selected,
labelled, preprocessed, and augmented. The data is then represented as bags of
instances and used for training of a deep model that is capable of predicting the
bag label as well as the attention values of each instance of input spectra.

2.1 Data

Data was collected from 65 patients in 8 surgical clinic days, over a period of 10
months. Patients were recruited from the skin clinic at our institution, according
to a protocol approved by the institutional HREB. BCC lesions presented on
patients’ head, neck or back. The suspected BCC region was first outlined by
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the surgeon on the skin and then resected. The resected specimen was inspected
by a pathologist for perioperative point based data collection. Point burns were
acquired from a cross section of the specimen containing BCC, by contact of
the cautery tip with the tissue. Each burn was labelled by a derma-pathologist
based on a visual inspection of the tissue at the location of the burn. A standard
cautery tip was used for most of the data acquisition. To increase the specificity
of the burn location, a non-insulated fine tip was used for some of the resected
specimens. In Sect. 2.5, we describe how the data is divided for training and
prospective testing. Experiments were performed in a controlled environment
with the same operator, pathologist and surgeon at every clinic. An external
lock mass of leucine enkephalin (1 ng/µl) was used for iKnife calibration (mass
in negative-ion mode m/z 554.2615). The electrocautery was used on cut mode
with the generator at 35 W. A sample iKnife recording consisting of five burns
is shown in step 1 of Fig. 1. The chromatogram, in black, represents the total
ion current (z axis), recorded over the acquisition time (x axis). Each peak in
the chromatogram represents a burn. From each burn, the scan with the highest
signal to noise ratio is chosen as the representative of that burn. Each scan is a
mass spectral profile where the ion count, a measure of intensity, is plotted along
ion mass charge ratios m/z. Five mass spectral scans are also shown in color.

2.2 Preprocessing

Using the Offline Model Builder (OMB), a Waters Corp. software platform, each
scan was individually processed by normalizing, lock mass correcting and binning
the intensity values. REIMS typically ionizes small molecules with mass to charge
ratio of less than m/z 1200. Previous literature has reported that the majority
of the total ion current to be present below m/z 900 [2]; we determined that
85% of the total ion current was between m/z 100–900 in our data. Therefore,
we focused on this range for further analysis. Max binning was performed on
this region with a bin size of 0.1, meaning that for a spectrum, the maximum
intensity value for a m/z bin of size 0.1 is chosen to represent that range. For
the range of m/z 100–900, each spectra is represented by 8000 peaks. To reduce
the number of trainable parameters in the final model, we further applied max
pooling with window and stride size of 10 to reduce the number of peaks (features
of the spectra), to 800.

2.3 Intensity-Aware Augmentation

To avoid overfitting models to training data, it is essential to have a large number
of data samples. This is not always clinically feasible. We propose a new data
augmentation method for REIMS spectra that uses the inherent calibration error
and background noise to create new data. First, a random shift sampled from
a uniform distribution is added to the location of each peak in a spectrum. To
increase the variability between multiple augmentations from the same spec-
trum, the shift range is also selected randomly from 0 to 3 bin widths. Next,
random high-frequency Gaussian noise, multiplied by a random spline-smoothed
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low-frequency envelope is generated to mimic background noise. The standard
deviation of the Gaussian is randomly selected proportional to the standard
deviation of original spectrum. The generated noise is only added to the low-
intensity peaks in the data while for the high-intensity a different Gaussian noise
with half the standard deviation of the initial one is added. This intensity-aware
approach ensures that the inherent molecular signatures and peak-ratios of the
spectrum are preserved during augmentation.

2.4 MIL Model and Attention Mechanism

In the formulation of the MIL, a bag of instances is defined as X = {x1, ..., xn},
where the instances are not ordered or related to one another, and the size of
the bag n may vary. Every instance in a bag has an individual binary label
y, where Xlabels = {y1, ..., yn}. Each bag is also assigned a single binary label
Y = max(Xlabels). Positive bags, Y = 1, have one or more instances of the
target class while negative bags, Y = 0, have none. Considering the goal of
margin classification for BCC, all BCC spectra are labeled 1 as the target class.
In our architecture, similar to [6], we use a weighted average of instances where
the weights are determined by a neural network and indicate each instance’s
attention value. The weights sum up to 1 and are invariant to the size of the bag.
The proposed structure allows the network to discover similarities and differences
among the instances. Ideally, instances within a positive bag that are assigned
high attention values are those most likely to have label yi = 1. The attention
mechanism allows for easy interpretation of the bag label predictions by the
models.

Every bag is fed to the network with all of its instances. The overall structure
of the attention based MIL network consists of convolutional layers followed by
fully connected dense layers. As visualized in step 3 of Fig. 1, every bag is passed
through 5 convolutional layers (kernel size of 10) of 10, 20, 30, 40 and 50 filters.
ReLu activation and max pooling is performed between every convolution. The
final array is then flattened and passed through two dense layers of size 350 and
128 to get the final attention for each instance. The first dense layer and the
generated attention weights are then combined in final layer and using Sigmoid
activation the prediction of the bag label is outputted.

To define the sensitivity of the bag labels, we explored the minimum number
of cancerous instances that would be required in a bag during training to learn
the distinction between BCC and normal burns. Sweeping 2 parameters, we
adjusted mean length of the bag, between 3 and 10 (standard deviation of 1),
as well as the maximum involvement of cancerous instances in the positive bags
between 0.1 and 0.8. This created 64 trained models and their performances are
discussed in Sect. 3.1.

2.5 Experiments

To evaluate the models, we used the data from the first four clinic days as
retrospective set and stratified them into 5 training/validation folds, all collected
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Table 1. Table displaying the division of data into training/validation before augmen-
tation and the separate testing folds.

Fold #BCC Burns #Normal Burns Total Burns #Patients

Train fold-1 14 24 38 9

fold-2 6 30 36 7

fold-3 14 20 34 5

fold-4 12 25 37 6

fold-5 17 28 45 7

Test standard cautery 66 64 130 17

fine tip cautery 32 67 99 11

using the standard cautery tip. The division of this data and the separation
of the test sets is displayed in Table 1. The complete training set consisted of
63 BCC and 127 normal scans from 34 patients. All scans from a particular
patient were kept within the same fold. Before augmentation, each fold contained
approximately 1:2 ratio of cancer to normal spectra. Employing the proposed
data augmentation technique, the size of each cross-validation fold increased to
around 500 BCC and 500 normal scans.

For all of the experiments, the training folds were converted to a collection
of 600 bags (300 negative and 300 positive bags). Bags were randomly formed in
a way that an instance within a fold may be placed in more than one bag, but
no two bags may have the same combination of instances. An ensemble of the 5
models was used to predict the labels of test data. Each model in the ensemble
used 4 folds of the data for training and one for validation. The final label of a
test bag was predicted by averaging the bag probabilities over these five models.

The data collected from clinic days 5 through 8 was used to generate two
prospective test sets. The first test set contained burns collected with standard
cautery tip. The second set contained burns collected with the fine cautery tip.

Intraoperative: Intraoperative data was collected from patients recruited simi-
larly to the others in the study. During intraoperative resection, the surgeon
only uses the standard cautery blade. The iKnife was connected to the cautery
and smoke was collected throughout the procedure. To assess the feasibility of
real time deployment and the performance of our model, an intraoperative case
of neck lesion removal with continuous cut duration of 1.5 min was selected. The
data was processed similar to perioperative burns and was used to the test our
trained models.

3 Results and Discussion

3.1 Model Performance

The 64 trained models were tested on the prospective datasets of 500 bags gen-
erated with same parameters as their training equivalents. The AUC for each
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Fig. 2. Left: Exploring the two parameters of mean bag length and maximum involve-
ment of cancerous instances in a positive bag, 64 models were trained on the augmented
standard tip data. These models were tested on 500 standard tip bags and the mean
AUC of the ensemble models are displayed. Metrics from the 3 outlined models can
be seen in Table 1. Middle: Three outlined models from the left colormap, (L= length,
p=max involvement), tested on data with mean length of 7 and standard deviation
of 3 with varying max cancer involvement. Right: Same trained models from the left
graph but tested on 500 bags of data from fine tip cautery. Mean AUC of the ensemble
models are displayed.

model is visualized in the color maps of Fig. 2. The left color map displays the 64
models tested against the standard cautery tip test set. This figure demonstrates
that as the bag length and cancer involvement increases, the models better learn
the underlying patterns of the instances. Three models were selected (outlined)
from the left color map and their performance metrics including accuracy, speci-
ficity, sensitivity, and AUC are listed in Table 2.

To mimic the uncertainty of intraoperative predictions, we tested the three
selected models on bags of greater variability. All of the test bags in this case
had a mean length of size 7 with a standard deviation of 3, therefore ranging
from bags of size 1 to 15. The AUC, seen in the middle figure of Fig. 2, has the
same upwards trend with proportion of cancerous instances as in the left col-
ormap, even with the increased complexity of the test set. Finally, to determine
the robustness of the model against potential changes in the input spectra, we
examined the performance against the test dataset collected with the fine tip
cautery. The fine tip was used during data collection to ideally be more precise
with our burns and therefore attain better pathology guided labels. However,
we do not conclusively know how the tip change may affect the signal recorded
and therefore the ability of a model to perform. Trained on the same augmented
standard cautery tip as both previous experiments, the right colormap in Fig. 2
visualizes the results of this experiment. The AUC trend is similar to that of the
prospective standard cautery tip. However, the overall AUC is lower for most
models suggesting that there may be a difference in the recorded mass spectral
signal between the two tips.

As a comparison to baseline, we also implemented a standard MIL model
known as multi instance support vector machine (mi-SVM). This model was
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Table 2. Performance metrics of the 3 highlighted models from the left graph of Fig. 2,
with comparisons to the mi-SVM baseline model [1]. Each model was tested with the
prospective test set taken with the standard cautery tip. To reduce the sensitivity of
the results to bag selection, each evaluation was performed 10 times with 500 randomly
generated test bags.

Accuracy Sensitivity Specificity AUC

MIL (L=3, p=0.1) 0.72± 0.01 0.53± 0.02 0.92± 0.01 0.76± 0.02

MIL (L=6, p=0.5) 0.81± 0.01 0.71± 0.03 0.90± 0.01 0.86± 0.01

MIL (L=10, p=0.8) 0.81± 0.02 0.90± 0.01 0.72± 0.03 0.91± 0.01

mi-SVM (L=3, p=0.1) 0.69± 0.02 0.52± 0.04 0.85± 0.02 0.77± 0.02

mi-SVM (L=6, p=0.5) 0.71± 0.02 0.53± 0.06 0.89± 0.03 0.83± 0.01

mi-SVM (L=10, p=0.8) 0.75± 0.02 0.51± 0.03 0.99± 0.01 0.91± 0.01

presented by Andrews et al. in 2003 [1], based on an alternative generalization
of the maximum margin idea used in SVM classification. The goal of mi-SVM,
is to find both the optimal instance labelling as well as the optimal hyperplane.
The performance of this baseline on the same 3 models and set of test bags is
also listed in Table 2.

To demonstrate the true weakness of our labels, we performed a supervised
method of principal component and linear discriminant analysis, PCA/LDA.
Using the same training set, a PCA/LDA model was trained and tested on
each individual scan in the standard cautery testing set. This linear approach
performed at an accuracy of 75.7%. Although this method cannot be compared
directly to our results as it does not utilize the bagging approach, it demonstrated
the drop in performance when trying to use the instance level labels for direct
classification.

3.2 Attention

Ideally a positive bag alert would root from a positive instance being given a high
attention value. In a practical setting, this would alert the surgeon of a positive
margin. To quantify the performance of the attention network, we evaluated the
accuracy of correctly placing the highest attention value in a positive bag on a
positive instance. Using the model with the highest AUC on the standard cautery
tip test data (mean bag length of 10 and maximum cancerous involvement of
0.8), we were able to reach attention accuracy of 0.88 ± 0.04 on 500 test bags.

3.3 Intraoperative Trial

We demonstrated the applicability of our model on intraoperative data. Before
deploying the model in the operating room, we wanted to evaluate its perfor-
mance and sensitivity. The intraoperative case selected was comprised of 83
scans, including burns and no-burns spectra acquired continuously. Prospective
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pathology validation of the excised specimen labelled all of the margins nega-
tive, implying the absence of BCC in the scans. We created bags using a sliding
window of size 10 to mimic bag creation from a continuous stream of data. For a
model trained on bags with a mean size of 10 and positive bag’s cancer portion of
0.8, the test on intraoperative data resulted an accuracy of 94% with a standard
deviation of 6%.

4 Conclusion

In this study we adapted the concept of attention-based MIL to REIMS data
analysis for perioperative margin evaluation for the first time. The framework
consisted of preprocessing, intensity-aware augmentation, instance/bag represen-
tation of mass spectrmetry data, and model training. Training on retrospective
BCC data, the performance of models with different bagging parameters was
investigated on prospective data collected with standard and fine tip cautery
blades. The feasibility of using the trained model on itraoperative data for mar-
gin assessment was also demonstrated. For future work, we plan to acquire more
fine tip data to investigate the effect of transfer learning on improving the model
predictive power. In practice, we are also looking at adaptive bag length selec-
tion during intraoperative data stream using the chromatogram signal. Another
challenge to address is the presence of non-burn spectra, recorded during time
intervals where the surgeon is not burning any tissue, along with burn signals
intermixed in the interaoperative data stream. Implementation of a real-time
burn screening algorithm to disregard the non-burn periods will increase the
model accuracy in margin detection.
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problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)

4. Fisher, S.L., Yasui, Y., Dabbs, K., Winget, M.D.: Re-excision and survival following
breast conserving surgery in early stage breast cancer patients: a population-based
study. BMC Health Serv. Res. 18, 94 (2018)

5. Genangeli, M., Heeren, R., Porta Siegel, T.: Tissue classification by rapid evapo-
rative ionization mass spectrometry (REIMS): comparison between a diathermic
knife and CO2 laser sampling on classification performance. Anal. Bioanal. Chem.
411, 7943–7955 (2019)

6. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning.
In: Proceedings of the 35th International Conference on Machine Learning, vol. 80,
pp. 2127–2136 (2018)



MIL for Improved BCC Margin Detection 53

7. Kinross, J.M., et al.: iKnife: rapid evaporative ionization mass spectrometry
(REIMS) enables real-time chemical analysis of the mucosal lipidome for diag-
nostic and prognostic use in colorectal cancer. Cancer Res. 76(14 Suppl.), 3977
(2016)

8. Liu, G., Wu, J., Zhou, Z.H.: Key instance detection in multi-instance learning. In:
Asian Conference on Machine Learning, vol. 25, pp. 253–268 (2012)

9. Marcus, D., et al.: Endometrial cancer: can the iknife diagnose endometrial cancer?
Int. J. Gynecol. Cancer 29, A100–A101 (2019)

10. Moran, M.S., et al.: Society of surgical oncology-American society for radiation
oncology consensus guideline on margins for breast-conserving surgery with whole-
breast irradiation in stages I and II invasive breast cancer. J. Clin. Oncol. 32(14),
1507–1515 (2014)

11. Phelps, D.L., et al.: The surgical intelligent knife distinguishes normal, border-
line and malignant gynaecological tissues using rapid evaporative ionisation mass
spectrometry (REIMS). Br. J. Cancer 118(10), 1349–1358 (2018)

12. St John, E.R., et al.: Rapid evaporative ionisation mass spectrometry of electro-
surgical vapours for the identification of breast pathology: towards an intelligent
knife for breast cancer surgery. Breast Cancer Res. 19(59) (2017)

13. Strittmatter, N., Jones, E.A., Veselkov, K.A., Rebec, M., Bundy, J.G., Takats, Z.:
Analysis of intact bacteria using rapid evaporative ionisation mass spectrometry.
Chem. Commun. 49, 6188–6190 (2013)

14. Verkouteren, J., Ramdas, K., Wakkee, M., Nijsten, T.: Epidemiology of basal cell
carcinoma: scholarly review. Br. J. Dermatol. 177(2), 359–372 (2017)


	Improved Resection Margins in Surgical Oncology Using Intraoperative Mass Spectrometry
	1 Introduction
	2 Materials and Methods
	2.1 Data
	2.2 Preprocessing
	2.3 Intensity-Aware Augmentation
	2.4 MIL Model and Attention Mechanism
	2.5 Experiments

	3 Results and Discussion
	3.1 Model Performance
	3.2 Attention
	3.3 Intraoperative Trial

	4 Conclusion
	References




