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Abstract. Deformable image registration between Computed Tomog-
raphy (CT) images and Magnetic Resonance (MR) imaging is essen-
tial for many image-guided therapies. In this paper, we propose a novel
translation-based unsupervised deformable image registration method.
Distinct from other translation-based methods that attempt to convert
the multimodal problem (e.g., CT-to-MR) into a unimodal problem (e.g.,
MR-to-MR) via image-to-image translation, our method leverages the
deformation fields estimated from both: (i) the translated MR image
and (ii) the original CT image in a dual-stream fashion, and automati-
cally learns how to fuse them to achieve better registration performance.
The multimodal registration network can be effectively trained by com-
putationally efficient similarity metrics without any ground-truth defor-
mation. Our method has been evaluated on two clinical datasets and
demonstrates promising results compared to state-of-the-art traditional
and learning-based methods.

Keywords: Multimodal registration · Generative adversarial
network · Unsupervised learning

1 Introduction

Deformable multimodal image registration has become essential for many pro-
cedures in image-guided therapies, e.g., preoperative planning, intervention, and
diagnosis. Due to substantial improvement in computational efficiency over tra-
ditional iterative registration approaches, learning-based registration approaches
are becoming more prominent in time-intensive applications.

Related Work. Many learning-based registration approaches adopt fully super-
vised or semi-supervised strategies. Their networks are trained with ground-truth
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deformation fields or segmentation masks [5,12,13,16,19], and may struggle
with limited or imperfect data labeling. A number of unsupervised registration
approaches have been proposed to overcome this problem by training unlabeled
data to minimize traditional similarity metrics, e.g., mean squared intensity dif-
ferences [4,11,15,17,21,26]. However, the performances of these methods are
inherently limited by the choice of similarity metrics. Given the limited selection
of multimodal similarity metrics, unsupervised registration approaches may have
difficulties outperforming traditional multimodal registration methods as they
both essentially optimize the same cost functions. A recent trend for multimodal
image registration takes advantage of the latent feature disentanglement [18] and
image-to-image translation [6,20,23]. Specifically, translation-based approaches
use Generative Adversarial Network (GAN) to translate images from one modal-
ity into the other modality, thus are able to convert the difficult multimodal
registration into a simpler unimodal task. However, being a challenging topic
by itself, image translation may inevitably produce artificial anatomical features
that can further interfere with the registration process.

In this work, we propose a novel translation-based fully unsupervised mul-
timodal image registration approach. In the context of Computed Tomogra-
phy (CT) image to Magnetic Resonance (MR) image registration, previous
translation-based approaches would translate a CT image into an MR-like image
(tMR), and use tMR-to-MR registration to estimate the final deformation field
φ. In our approach, the network estimates two deformation fields, namely φs of
tMR-to-MR and φo of CT-to-MR, in a dual-stream fashion. The addition of the
original φo enables the network to implicitly regularize φs to mitigate certain
image translation problems, e.g., artificial features. The network further auto-
matically learns how to fuse φs and φo towards achieving the best registration
accuracy.

Contributions and advantages of our work can be summarized as follows:

1. Our method leverages the deformation fields estimated from the original mul-
timodal stream and synthetic unimodal stream to overcome the shortcomings
of translation-based registration;

2. We improve the fidelity of organ boundaries in the translated MR by adding
two extra constraints in the image-to-image translation model Cycle-GAN.

We evaluate our method on two clinically acquired datasets. It outperforms
state-of-the-art traditional, unsupervised and translation-based registration
approaches.

2 Methods

In this work, we propose a general learning framework for robustly registering
CT images to MR images in a fully unsupervised manner.

First, given a moving CT image and a fixed MR image, our improved Cycle-
GAN module translates the CT image into an MR-like image. Then, our dual-
stream subnetworks, UNet o and UNet s, estimate two deformation fields φo and
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φs respectively, and the final deformation field is fused via a proposed fusion
module. Finally, the moving CT image is warped via Spatial Transformation
Network (STN) [14], while the entire registration network aims to maximize the
similarity between the moved and the fixed images. The pipeline of our method
is shown in Fig. 1.

Fig. 1. Illustration of the proposed method. The entire unsupervised network is mainly
guided by the image similarity between rCT ◦ φos and rMR.

2.1 Image-to-Image Translation with Unpaired Data

The CT-to-MR translation step consists of an improved Cycle-GAN with addi-
tional structural and identical constraints. As a state-of-the-art image-to-image
translation model, Cycle-GAN [28] can be trained without pairwise aligned CT
and MR datasets of the same patient. Thus, Cycle-GAN is widely used in medical
image translation [1,9,25].

Fig. 2. Schematic illustration of Cycle-GAN with strict constraints. (a) The workflow
of the forward and backward translation; (b) The workflow of identity loss.
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Our Cycle-GAN model is illustrated in Fig. 2. The model consists of two
generators GMR and GCT, which can provide CT-to-MR and MR-to-CT trans-
lation respectively. Besides, it has two discriminators DCT and DMR. DCT is
used to distinguish between translated CT(tCT) and real CT(rCT), and DMR is
for translated MR(tMR) and real MR(rMR). The training loss of original Cycle-
GAN only adopts two types of items: adversarial loss given by two discriminators
(LDCT

and LDMR
) and cycle-consistency loss Lcyc to prevent generators from

generating images that are not related to the inputs (refer to [28] for details).
However, training a Cycle-GAN on medical images is difficult since the cycle-

consistency loss is not enough to enforce structural similarity between translated
images and real images (as shown in the red box in Fig. 3(b)). Therefore, we
introduce two additional losses, structure-consistency loss LMIND and identity
loss Lidentity, to constrain the training of Cycle-GAN.

MIND (Modality Independent Neighbourhood Descriptor) [8] is a feature
that describes the local structure around each voxel. Thus, we minimize the dif-
ference in MIND between translated images GCT (IrMR) or GMR(IrCT ) and real
images IrMR or IrCT to enforce the structural similarity. We define LMIND as
follows:

LMIND(GCT , GMR) =
1

NMR|R|
∑

x
||M(GCT (IrMR)) − M(IrMR)||1

+
1

NCT |R|
∑

x
||M(GMR(IrCT )) − M(IrCT )||1

(1)

where M represents MIND features, NMR and NCT denote the number of voxels
in IrMR and IrCT , and R is a non-local region around voxel x.

Fig. 3. CT-to-MR translation examples of original Cycle-GAN and proposed Cycle-
GAN tested for (a) pig ex-vivo kidney dataset and (b) abdomen dataset.

The identity loss (as shown in Fig. 2(b)) is included to prevent images already
in the expected domain from being incorrectly translated to the other domain.
We define it as:

Lidentity = ‖GMR(IMR) − IMR‖1 + ‖GCT (ICT ) − ICT ‖1 (2)

Finally, the total loss L of our proposed Cycle-GAN is defined as:

L = LDMR
+ LDCT

+ λcycLcyc + λidentityLidentity + λMINDLMIND (3)

where λcyc, λidentity and λMIND denotes the relative importance of each term.
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2.2 Dual-Stream Multimodal Image Registration Network

As shown in Fig. 3, although our improved Cycle-GAN can better translate CT
images into MR-like images, the CT-to-MR translation is still challenging for
translating “simple” CT images to “complex” MR images. Most image-to-image
translation methods will inevitably generate unrealistic soft-tissue details, result-
ing in some mismatch problems. Therefore, the registration methods that simply
convert multimodal to unimodal registration via image translation algorithm are
not reliable.

In order to address this problem, we propose a dual-stream network to fully
use the information of the moving, fixed and translated images as shown in Fig. 1.
In particular, we can use effective similarity metrics to train our multimodal
registration model without any ground-truth deformation.

Network Details. As shown in Fig. 1, our dual-stream network is comprised of
four parts: multimodal stream subnetwork, unimodal stream subnetwork, defor-
mation field fusion, and Spatial Transformation Network.

In Multimodal Stream subnetwork, original CT(rCT) and MR(rMR) are
represented as the moving and fixed images, which allows the model to propagate
original information to counteract mismatch problems in translated MR(tMR).

Through image translation, we obtain the translated MR(tMR) with similar
appearance to the fixed MR(rMR). Then, in Unimodal Stream, tMR and rMR
are used as moving and fixed images respectively. This stream can effectively
propagate more texture information, and constrain the final deformation field to
suppress unrealistic voxel drifts from the multimodal stream.

During the network training, the two streams constrain each other, while
they are also cooperating to optimize the entire network. Thus, our novel dual-
stream design allows us to benefit from both original image information and
homogeneous structural information in the translated images.

Fig. 4. Detailed architecture of UNet-based subnetwork. The encoder uses convolution
with stride of 2 to reduce spatial resolution, while the decoder uses 3D upsampling
layers to restore the spatial resolution.

Specifically, UNet o and UNet s adopt the same UNet architecture used in
VoxelMorph [4] (shown in Fig. 4). The only difference is that UNet o is with
multimodal inputs but UNet s is with unimodal inputs. Each UNet takes a
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single 2-channel 3D image formed by concatenating Im and If as input, and
outputs a volume of deformation field with 3 channels.

After Uni- and Multi-model Stream networks, we obtain two deformation
fields, φo (for rCT and rMR) and φs (for tMR and rMR). We stack φo and
φs, and apply a 3D convolution with size of 3 × 3 × 3 to estimate the final
deformation field φos, which is a 3D volume with the same shape of φo and φs.

To evaluate the dissimilarity between moved and fixed images, we integrate
spatial transformation network (STN) [14] to warp the moving image using φos.
The loss function consists of two components as shown in Eq. (4).

Ltotal(IrMR, IrCT , φos) = Lsim(IrMR, IrCT ◦ φos) + λLsmooth(φos) (4)

where λ is a regularization weight. The first loss Lsim is similarity loss, which is
to penalize the differences in appearance between fixed and moved images. Here
we adopt SSIM [22] for experiments. Suggested by [4], deformation regularization
Lsmooth adopts a L2-norm of the gradients of the final deformation field φos.

3 Experiments and Results

Dataset and Preprocessing. We focus on the application of abdominal CT-
to-MR registration.We evaluated our method on two proprietary datasets since
there is no designated public repository.

1) Pig Ex-vivo Kidney CT-MR Dataset. This dataset contains 18 pairs of CT
and MRI kidney scans from pigs. All kidneys are manually segmented by
experts. After preprocessing the data, e.g., resampling and affine spatial nor-
malization, we cropped the data to 144×80×256 with 1 mm isotropic voxels
and arbitrarily divided it into two groups for training (15 cases) and testing
(3 cases).

2) Abdomen (ABD) CT-MR Dataset. This 50-patient dataset of CT-MR scans
was collected from a local hospital and annotated with anatomical landmarks.
All data were preprocessed into 176 × 176 × 128 with the same resolution
(1mm3) and were randomly divided into two groups for training (45 cases)
and testing (5 cases).

Implementation. We trained our model using the following settings: (1) The
Cycle-GAN for CT-MR translation network is based on the existing implemen-
tation [27] with changes as discussed in Sect. 2.1. (2) The Uni- and Multi-modal
stream registration networks were implemented using Keras with the Tensorflow
backend and trained on an NVIDIA Titan X (Pascal) GPU.

3.1 Results for CT-to-MR Translation

We extracted 1792 and 5248 slices from the transverse planes of the Pig kidney
and ABD dataset respectively to train the image translation network. Parame-
ters λcyc, λidentity and λMIND were set to 10, 5, and 5 for training.
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Table 1. Quantitative results for image translation.

Pig Kidney Method PSNR SSIM ABD Method PSNR SSIM

Cycle-GAN 32.07 0.9025 Cycle-GAN 22.95 0.7367

Ours 32.74 0.9532 Ours 23.55 0.7455

Since our registration method is for 3D volumes, we apply the pre-trained
CT-to-MR generator to translate moving CT images into MR-like images slice-
by-slice and concatenate 2D slices into 3D volumes. The qualitative results are
visualized in Fig. 3. In addition, to quantitatively evaluate the translation per-
formance, we apply our registration method to obtain aligned CT-MR pairs and
utilize SSIM [22] and PSNR [10] to judge the quality of translated MR (shown
in Table 1). In our experiment, our method predicts better MR-like images on
both datasets.

3.2 Registration Results

Affine registration is used as the baseline method. For traditional method, only
mutual information (MI) based SyN [2] is compared since it is the only metric
(available in ANTs [3]) for multimodal registration. In addition to SyN, we imple-
mented the following learning-based methods: 1) VM MIND and VM SSIM
which extends VoxelMorph with similarity metrics MIND [8] and SSIM [22]. 2)
M2U which is a typical translation-based registration method. It generates tMR
from CT and converts the multimodal problem to tMR-to-MR registration. It’s
noteworthy that the parameters of all methods are optimized to the best results
on both datasets.

Two examples of the registration results are visualized in Fig. 5, where the
red and yellow contours represent the ground truth and registered organ bound-
aries respectively. As shown in Fig. 5, the organ boundaries aligned by the tra-
ditional SyN method have a considerable amount of disagreement. Among all
learning-based methods, our method has the most visually appealing boundary
alignment for both cases. VM SSIM performed significantly worse for the kid-
ney. VM MIND achieved accurate registration for the kidney, but its result
for the ABD case is significantly worse. Meanwhile, M2U suffers from artifi-
cial features in the image translation, which leads to an inaccurate registration
result.

The quantitative results are presented in Table 2. We compare different meth-
ods by the Dice score [7] and target registration error (TRE) [24]. We also provide
the average run-time for each method. As shown in Table 2, our method consis-
tently outperformed other methods and was able to register a pair of images in
less than 2 s (when using GPU).
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Fig. 5. Visualization results of our model compared to other methods. Upper: Pig
Kidney. Bottom: Abdomen (ABD). The red contours represent the ground truth organ
boundary while the yellow contours are the warped contours of segmentation masks.
(Color figure online)

Table 2. Quantitative results for Pig Kidney Dataset and Abdomen (ABD) Dataset.

Metric Organ Affine SyN M2U VM SSIM VM MIND Ours

Dice (%) Pig Kidney 89.53 89.87 90.21 93.75 96.48 98.57

ABD Kidney 80.03 82.36 78.96 82.21 84.58 85.66

Spleen 79.58 80.38 77.76 81.79 83.11 87.01

Liver 78.74 79.13 78.83 82.05 81.98 83.34

TRE (mm) ABD spleen 4.16 4.20 3.76 3.58 3.65 2.47

Liver 6.55 5.61 5.91 4.72 4.87 3.64

Time(s) GPU/CPU Pig −/103 −/121 1.08/20 1.06/20 1.07/20 1.12/21

ABD −/108 −/137 1.23/24 1.22/22 1.21/23 1.27/24

3.3 The Effect of Each Deformation Field

In order to validate the effectiveness of the deformation field fusion, we compare
φs, φo and φos together with warped images (shown in Fig. 6). The qualitative
result shows that φs from the unimodal stream alleviates the voxel drift effect
from the multimodal stream. While φo from the multimodal stream uses the
original image textures to maintain the fidelity and reduce artificial features
for the generated tMR image. The fused deformation field φos produces better
alignment than both streams alone, which demonstrates the effectiveness of the
joint learning step.
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Fig. 6. Visualizations of the deformation field fusion. (a) moving image; (h) fixed image;
(b/d/f) deformation fields; (c/e/g) images warped by (b/d/f), corresponding average
Dice scores (%) of all organs are calculated. The contours in red represent ground truth,
while yellow shows the warped segmentation mask. (Color figure online)

4 Conclusion

We proposed a fully unsupervised uni- and multi-modal stream network for CT-
to-MR registration. Our method leverages both CT-translated-MR and original
CT images towards achieving the best registration result. Besides, the registra-
tion network can be effectively trained by computationally efficient similarity
metrics without any ground-truth deformation. We evaluated the method on
two clinical datasets, and it outperformed state-of-the-art methods in terms of
accuracy and efficiency.
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