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Abstract. This paper develops a new hybrid electromagnetic-video
endoscope 3-D tracking method that introduces anatomical structure
constraints and historically observed differential evolution for surgical
navigation. Current endoscope tracking approaches still get trapped in
image artifacts, tissue deformation, and inaccurate sensor outputs dur-
ing endoscopic navigation. To deal with these limitations, we spatially
constraint inaccurate electromagnetic sensor measurements to the cen-
terlines of anatomical tubular organs (e.g., the airway trees), which can
keep the measurements physically inside the tubular organ and tackle
the inaccuracy problem caused by respiratory motion and magnetic field
distortion. We then propose historically observed differential evolution
to precisely fuse the constrained sensor outputs and endoscopic video
sequences. The new hybrid tracking framework was evaluated on clinical
data, with the experimental results showing that our proposed method
fully outperforms current hybrid approaches. In particular, the tracking
error was significantly reduced from (5.9 mm, 9.9◦) to (3.3 mm, 8.6◦).

Keywords: Image-guidance intervention · Endoscopy · Surgical
tracking and navigation · Differential evolution · Stochastic
optimization

1 Endoscope Tracking

Endoscope three-dimensional (3-D) motion tracking is the key of image-guided
minimally-invasive procedures that use endoscopes to visually examine and treat
diseases in the interior of the organ cavity (tubular structures) through a natural
orifice or transcutaneous port. Such a tracking aims to synchronize pre- and
intra-operative image spaces in real time to provide surgeons with on-line 3-
D visualization of tumor targets precisely located in the body and multimodal
images. Numerous tracking methods have been discussed in the literature.

Image-based tracking aligns 2-D endoscopic video images to 3-D pre-
operative volumetric data, especially performing 2-D/3-D registration to locate
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the endoscope [1]. Shen et al. [2] proposed to recognize typical structures to navi-
gate the endoscope, while Byrnes et al. [3] automatically summarized endoscopic
video images to indicate the endoscope’s position in the body. More recently, Luo
et al. [4] used multiple instance learning and a discrepancy similarity to esti-
mate the endoscope motion, while Shen et al. [5] recovered the context-aware
depth to predict the endoscopic camera pose. On the other hand, electromag-
netic (EM) tracking is widely used to endoscope 3-D tracking [6–8]. Hofstad
et al. [9] proposed a global to local registration method to improve the perfor-
mance of EM tracking, while Attivissimo et al. [10] discussed a new EM tracking
system for computer assisted surgery. Kugler et al. [11] established an experi-
mental environment to precisely evaluate the performance of the EM tracking
techniques. While image-based and EM-based endoscope tracking methods have
their own advantages, they still suffer from limitations [4,12], e.g., image uncer-
tainties, magnetic field distortion, tissue deformation, and patient movements
(e.g., breathing, coughing, and beating). To deal with these limitations, a joint
strategy of EM and image-based tracking provides a promising solution.

This work proposes a new hybrid strategy for smooth and accurate endoscope
tracking that incorporates three new principles. First, we propose an anatomical
constraint to spatially or physically limit EM sensor outputs inside anatom-
ical tubular structures (e.g., bronchus, colon, and nasal sinus). Based on the
segmented information from preoperative CT images, i.e., the centerline of the
organ cavity, we constrain the current EM sensor output to be on this centerline.
Such a constraint potentially keeps the EM sensor outputs inside the cavity inte-
rior under respiratory motion and tissue deformation. Next, we modify differen-
tial evolution and present a historically observed differential evolution (HODE)
method to stochastically optimize EM sensor outputs and simultaneously fuse
endoscopic video images. Additionally, a selective structural measure is intro-
duced to evaluate the HODE optimization, which is robust to image artifacts or
uncertainties and can accurately describe individual during iteration.

2 Approaches

The new joint EM-video endoscope tracking method consists of two main steps:
(1) anatomical constraint and (2) historically observed differential evolution with
parameter and fitness computation, all of which are discussed as follows.

Without loss of generality, we introduce some notations. Let Ii and (Pi,Qi)
be the endoscopic video image and EM sensor tracked camera 3-D pose (includ-
ing position and orientation) at time or frame i. The endoscopic camera’s position
is Pi and its orientation is represented by a unit quaternion Qi.

2.1 Anatomical Constraint

The idea of the anatomical constraint is to use the centerline of the hollow or
tubular organ to limit or project the EM tracked position and orientation on the
centerline. Hence, we first segment preoperative CT images to obtain a set of
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Fig. 1. Anatomical centerlines constrain the EM tracked pose inside the tubular struc-
ture to obtain the camera’s projected position and updated orientation.

centerlines (curves) C = {Ck = (Cs
k,Ce

k)}K
k=1 (K is the number of the extracted

centerlines, Cs
k and Ce

k are the centerline’s start and end points, respectively),
and actually Ck consists of a set of 3-D points Ck = {Cs

k, · · · ,Ce
k}.

We then assign the closest centerline Ĉk to the position Pi by minimizing
the distance between the 3-D position or point Pi and centerline set C (Fig. 1)

Ĉk = arg min
Ck∈C

H(Pi,Ck), (1)

where the distance H(Pi,Ck) from the position Pi to Ck is calculate by

H(Pi,Ck) =

⎧
⎨

⎩

||Pi − Cs
k|| γ < 0

||Pi − Ce
k|| γ > Lk√||Pi − Cs

k||2 − γ2 otherwise
, (2)

where the centerline length Lk = ||Ce
k − Cs

k|| and γ denotes the length of the
vector (Pi − Cs

k) that is projected on the centerline Ck, which is computed by

γ = 〈Pi − Cs
k, Ce

k − Cs
k〉 /||Ce

k − Cs
k||, (3)

where γ < 0 and γ > Lk indicate that projected point P̂i is located on the
parent and child centerlines of the centerline Ck, respectively; otherwise, it will
be located on the centerline Ck, and 〈, 〉 denotes the dot product.

Note that we possibly obtain several closest centerlines {Ĉk}k=1,2,3,··· that
have the same distance to the point Pi after the minimization procedure (Eq. 1).
We compute the angle between the orientation Qi in z−direction Qz

i and cen-
terline direction (Ĉe

k − Ĉs
k)||Ĉe

k − Ĉs
k||−1 to determine optimal centerline C̃k:

C̃k = arg min
{Ĉk}k=1,2,3,···

arccos

〈
Ĉe
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〉
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After finding the optimal centerline C̃k, we project the EM sensor tracked
position Pi on the centerline C̃k and obtain the projected point P̃i by

P̃i = C̃s
k +

〈
Pi − C̃s

k, C̃e
k − C̃s

k

〉

||C̃e
k − C̃s

k||
(C̃e

k − C̃s
k)

||C̃e
k − C̃s

k|| . (5)

We also update the camera orientation in z−direction by the optimal centerline

Q̃z
i = (C̃e

k − C̃s
k)/||C̃e

k − C̃s
k||. (6)

Finally, we obtain the constrained camera position P̃i and orientation Q̃i that
are further updated by the following stochastic optimization procedure.

2.2 Historically Observed Differential Evolution

Differential evolution (DE) is a powerful tool for various stochastic optimization
problems and applications [13]. Basically, DE performs three main operators:
(1) mutation, (2) crossover, and (3) selection. The mutation and crossover oper-
ators play an essential role in DE, and balance convergence and computational
efficiency. Improper mutation and crossover potentially result in premature con-
vergence and local minima. The selection operator should be appropriate to
precisely evaluate the quality of the solution during stochastic optimization.

DE has no any strategies to recall historical solutions that are the best solu-
tions in the previous generation, while it also does not incorporate the cur-
rent observation (the current endoscopic image and camera pose) in mutation
and crossover. Moreover, accurate initialization of a population of target vectors
implies that all potential solutions are powerful and fast to find the optimal solu-
tion. Unfortunately, inaccurate initialization and improper mutation or crossover
possibly lead to get trapped in local minima with premature convergence. Our
idea is to recall historical best solutions and simultaneously introduce the current
observation into DE and presents a new version of DE discussed as follows.

Accurately Observed Initialization. Let Xg
i,j be an individual or target

vector in a population of vector cloud X g
i = {Xg

i,j ∈ RD}J
j=1 (J is the population

size) at generation or iteration g (g = 1, 2, 3, · · · , G) at frame i, and Xg
i,j =

(Xg
i,j,1,X

g
i,j,2,X

g
i,j,d, · · · ,Xg

i,j,D) in a D-dimensional space.
Before the target vector propagation (mutation and crossover), Xg

i,j is usually
initialized in accordance with the search space constrained by the prescribed
minimal and maximal bounds (Xg

i,min and Xg
i,max):

Xg
i,j,d = Xg

i,min,d + Rand[0, 1](Xg
i,max,d − Xg

i,min,d), d = 1, 2, · · · ,D, (7)

where Rand[0, 1] is a random number that yields uniform distribution between
0 and 1. This initialization has two potential problems: first is difficult to find
or determine the bounds of Xg

i,j in practice and second is that the population
gets trapped in a impoverishment problem which implies that the population
lose the diversity with weak exploration after several iteration.
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To avoid the impoverishment problem, we introduce the previous global best
Xg

i−1,best at generation g and current observation (pose), which is the constrained
camera position P̃i and orientation Q̃i obtained above, to initialize Xg

i,j

Xg
i,j = Xg

i−1,best
︸ ︷︷ ︸

History

+Rand[0, 1]Δ,Δ = [P̃i − P̃i−1, Q̃i − Q̃i−1]T
︸ ︷︷ ︸

Incremental observation

, (8)

which is a seven-dimensional vector (D = 7) and the transpose T .

Cloud Mutation. The mutation operator aims to generate mutant or perturbed
vectors in accordance with Xg

i,j difference vectors and evolutionary factors, i.e.,
explore more potential solutions in the search space. Five mutation strategies
are most commonly used to generate the mutant vector Vg

i,j [13]. Basically, the
two-difference-vector based mutation strategies provide better perturbation than
others but their performance requires to be further investigated.

To exploratively propagate Xg
i,best, this work proposes a new mutation strat-

egy that integrates the cognitive and social elements defined as follows:

Vg
i,j = Xg

i,j + F1( Xg
i,local − Xg

i,j
︸ ︷︷ ︸

Cognitive element

) + F2(X
g
i,global − Xg

i,j
︸ ︷︷ ︸

Social element

), (9)

where Xg
i,local and Xg

i,global are the local and global best individuals at generation
g. While the cognitive part aims to make individuals exploring most competitive
solutions in the previous iteration, the social part establishes a good solution
where the population tends to reach. Two evolutionary factors F1 and F2 control
the perturbation of two differential variations and are adaptively calculated by

F1 = W(Ii,X
g
i,local)/W(Ii,X

g
i,low), F2 = W(Ii,X

g
i,global)/W(Ii,X

g
i,low), (10)

where W is a fitness function related to the current observed endoscopic image
Ii and Xg

i,lowest denotes the target vector with the lowest fitness value.

Cloud Crossover. The crossover operator aims to improve the population
diversity and avoid premature convergence and local minima by creating a set of
trial vector Ug

i,j = {Ug
i,j,1, U

g
i,j,2, U

g
i,j,d, · · · , Ug

i,j,D}. Traditional crossover oper-
ators like binomial distribution provide the target and mutant vectors without
any perturbation, resulting in a faster but premature convergence.

Based on our concept of using the current observation, we introduce a new
crossover operator with the incremental observation Δ (Eq. 8) to obtain Ug

i,j .

Ug
i,j =

{
Vg

i,j + Rand[0, 1]Δ if (Rand[0, 1] ≤ Cr) or (d = dr)
Xg

i,j + Rand[0, 1]Δ if (Rand[0, 1] ≥ Cr) or (d �= dr)
, (11)

where Cr is the crossover rate and dr is randomly selected from {1, 2, d, · · · ,D}.

History Update and Recall. After the mutation and crossover, we need to
update Xg

i,j by computing and comparing the fitness W of Ug
i,j and Xg

i,j .
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Algorithm 1: New hybrid electromagnetic-video endoscope tracking
Data: Endoscopic video sequences, EM sensor outputs, and 3-D CT images
Result: Endoscope 3-D position and orientation in the CT coordinate system

① Preprocessing: Segment CT images to obtain the centerline of the airway tree;
for i = 1 to N (frame or output number) do

② Perform anatomical constraint (Eqs. 5∼6): Obtain P̃i and Q̃i;
③ Accurately observed initialization (Eq. 8): Obtain target vector set X g

i ;
for g = 1 to G (iteration number) do

for j = 1 to J (population number) do
④ Cloud mutation (Eqs. 9∼10): Obtain mutant vector Vg

i,j ;

⑤ Cloud crossover (Eq. 11): Obtain trial vector Ug
i,j ;

j=j+1;

end
⑥ Calculate the fitness of each vector in two clouds X g

i and Ug
i (Eq. 12);

⑦ Find the best vector Xg
i from X g

i and Ug
i and store Xg

i in set Xi;

⑧ History update and recall: Generate new target vector set X g+1
i ;

g = g + 1;

end

⑨ Determine the estimated camera pose [P̃∗
i , Q̃

∗
i ]

T at frame i (Eq. 13) ;
i = i + 1;

end

For each vector in two clouds Ug
i = {Ug

i,j}J
j=1 and X g

i = {Xg
i,j}J

j=1, we
calculate its fitness W(Ii,X

g
i,j) that is defined as the similarity between the

current endoscopic image Ii and 2-D virtual image generated by the camera
pose (i.e., Xg

i,j or Ug
i,j) using volume rendering techniques:

W(Ii,X
g
i,j) =

1
M

∑

{Ωm
i }M

m=1

1
|Ωm

i |
∑

Ωm
i

(2μiμx + C1) (2σi,x + C2)
(μ2

i + μ2
x + C1) (σ2

i + σ2
x + C2)

, (12)

where σi,x is the correlation between images Ii and Ix(Xg
i,j) at region Ωm

i with
|Ωm

i | pixels (m = 1, 2, · · · ,M); μi and μx are the mean intensity, σi and σx are
the intensity variance, and C1 and C2 are constants. Our fitness function selects
specific structural regions Ωm

i on Ii to precisely compute the fitness value.
While we ascendingly sort all the vectors in Ug

i and X g
i in accordance with

their fitness values, we choose the half better-fitness vectors from X g
i (recall the

history) and select the half better-fitness vectors from Ug
i (update the history)

to generate new target vector X g+1
i = {Xg+1

i,j }J
j=1 for the next iteration.

After each iteration (generation), we select the best vector Xg
i with the best

fitness from Ug
i and X g

i at iteration g. This implies that we obtain the best vector
set Xi = {X1

i , · · · ,Xg
i , · · · ,XG

i } after iteration G. Therefore, the endoscope’s
position and orientation [P̃∗

i , Q̃
∗
i ]

T at frame i are determined by

X∗
i = arg max

Xg
i ∈Xi

W(Ii,X
g
i ), X∗

i �→ [P̃∗
i , Q̃

∗
i ]

T (13)
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Fig. 2. Tracking error and smoothness of different methods on Case 6

Eventually, we summarized our new tracking method that combines anatom-
ical constraint with historically observed differential evolution in Algorithm1.

3 Results

We validate our method on six patient datasets more than 9,000 frames and
compare it to several methods: (1) M1 [6], a hybrid method based on Kalman
filtering, (2) M2 [7]: a stochastic optimization based method, and (3) M3 [9]:
a global-to-local registration method. We manually generated ground truth and
calculate the position and orientation errors, while we define the smoothness
as the average Euclidean distance of the estimated positions among continuous
frames as well as the orientations to evaluate if a tracking is large jitter or jump.
Additionally, we investigate the fitness (similarity) of the compared methods.

Figure 2 shows the tracking error and smoothness of using the different meth-
ods. Table 1 quantitatively summarizes all the tracking results. The tracking
error was reduced from (5.9 mm, 9.9◦) to (3.3 mm, 8.6◦). Figure 3 visually com-
pares the tracked results of using the four methods. Based on volume rendering
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Table 1. Comparison of tracking error, smoothness, fitness, and runtime of using the
methods (the units of position and orientation are millimeter and degree)

Methods M1 [6] M2 [7] M3 [9] Ours

Error (5.9 mm, 9.9◦) (3.2 mm, 9.2◦) (4.9 mm, 9.8◦) (3.3 mm, 8.6◦)

Smoothness (4.3 mm, 4.7◦) (1.6 mm, 1.9◦) (3.3 mm, 5.8◦) (1.3 mm, 1.7◦)

Fitness 0.61 0.71 0.65 0.77

Runtime 1.8 s 2.0 s 2.5 s 2.6 s

Fig. 3. Visual comparison of the results on Case 2. The first row shows real images
and other rows illustrate 2-D virtual images generated by the estimated positions and
orientations of using M1 [6], M2 [7], M3 [9], and ours, respectively.

methods and the estimated position and orientation, we can generate 2-D vir-
tual images and check if they resemble real endoscopic video images: the more
closely resembling, the more accurately tracking. All the experimental results
demonstrate that our method significantly outperforms others.

4 Discussion and Conclusion

The objective of this work is to deal with the problems of image artifacts, patient
movements, and inaccurate EM sensor outputs in endoscope tracking. Our idea
to tackle these problems is to constrain the outputs and stochastically optimize
the endoscope pose based on a new algorithm of historically observed differential
evolution, and the experimental results demonstrate its effectiveness.

Although our proposed method is a promising and effective strategy, it still
has potential limitations. First, the anatomical constraint depends on the seg-
mentation accuracy of the bronchial tree. Next, low-quality endoscopic video
images with artifacts increase the error of the fitness computation. Moreover, we
further investigate the iteration and population size to improve the performance
of historically observed differential evolution. Additionally, the computational
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time of our method was 2.6 s per frame. We will further improve the computa-
tional efficiency to meet real-time requirement of clinical applications.

In summary, this work develops a new hybrid endoscope tracking method that
combines anatomical constraint and historically observed differential evolution.
The experimental results demonstrate that our methods outperforms others,
especially it reduced the tracking error from (5.9 mm, 9.9◦) to (3.3 mm, 8.6◦).
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