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Abstract. Combining datasets is vital for increased statistical power,
especially for neurological conditions where limited data is available.
However, variance due to differences in acquisition protocol and hard-
ware limits our ability to combine datasets. We propose an iterative
training scheme based on domain adaptation techniques, aiming to cre-
ate scanner-invariant features while simultaneously maintaining overall
performance on the main task. We demonstrate this on age prediction,
but expect that our proposed training scheme will be applicable to any
feedforward network and classification or regression task. We show that
not only can we harmonise three MRI datasets from different studies,
but can also successfully adapt the training to work with very biased
datasets. The training scheme should, therefore, be applicable to most
real-world data scenarios, enabling harmonisation for the task of interest.
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1 Introduction

Whilst a few very large projects, such as the UK Biobank [14] now exist,
the majority of dataset sizes in neuroimaging studies remain relatively small.
Therefore, combining datasets from multiple sites and scanners is vital to give
improved statistical power. However, this leads to greater variance in the data,
largely due to differences in acquisition protocol and hardware [6]. Thus, har-
monisation is required to achieve joint unbiased analysis of data from different
scanners.

One popular harmonisation method is ComBat [6], which performs post-hoc
normalisation using a linear model, making image-derived values comparable.
This was extended to incorporate a nonlinear model in [12] and explicitly to
encode bias caused by nonbiological variance in the model in [15]. The majority

c© Springer Nature Switzerland AG 2020
A. L. Martel et al. (Eds.): MICCAI 2020, LNCS 12262, pp. 369–378, 2020.
https://doi.org/10.1007/978-3-030-59713-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59713-9_36&domain=pdf
https://doi.org/10.1007/978-3-030-59713-9_36


370 N. K. Dinsdale et al.

of other methods for MRI harmonisation focus on making images produced on
one scanner look as if they came from another, with recent studies using deep
learning methods (eg. [4]). CycleGANS [18] have also been used to transform
images between domains [17].

Instead of harmonising the images, we propose to harmonise the features
extracted by deep learning networks using a joint domain adaptation approach.
Domain adaptation assumes that we have a source domain Ds with learning
task Ts and a target domain Dt with learning task Tt and either Ds �= Dt or
Ts �= Tt [3]; the success of the domain adaptation depends on the existence of
a similarity between the two domains [16]. For harmonisation, we consider the
case where Ds �= Dt; that is, when the data was collected on distinct scanners.
One of the most successful methods for domain adaptation is the DANN network
[8] which uses a gradient reversal layer [7] to train a discriminator adversarially,
creating a feature representation which is discriminative for the main task but
indiscriminate as to the domains. There is, however, little exploration of the
effect of domain adaptation on the performance on the source domain data,
whereas for harmonization it is vital that the network performs well across all
the datasets.

In [9] a method is proposed to solve both domain transfer and task transfer
simultaneously. Similarly to DANN, they complete domain adaptation using
adversarial methods but, rather than using a gradient reversal layer to update
the domain predictor in opposition to the task, they use an iterative training
scheme: they alternate between learning the best domain classifier with a given
feature representation and then minimise a confusion loss which aims to force the
domain predictions to become closer to a uniform distribution so it ‘maximally
confuses’ the domain classifier [9]. Compared to DANN-style networks it is also
better at ensuring an equally uninformative classifier across the domains [2]
because of the confusion loss, which is desirable for the harmonisation scenario.
This network is applied in [2] where iterative unlearning creates classifiers that
are blind to spurious variations in the data. These together form the inspiration
for this work.

In this work, we apply a framework similar to that introduced in [9] for
harmonisation, by posing the problem as a joint domain adaptation problem. We
aim to create a feature representation that is invariant to the scanner from which
the data were acquired and show that this network is still able to perform the
task of interest. By taking a joint domain adaptation approach, we also require
that the network is successful at all tasks and is not just driven by the larger
dataset; thus, we explore the effect of training with different datasets. We show
that scanner information can be successfully ‘unlearned’ in realistic scenarios,
allowing us to harmonise data for the main task of interest. The code is available
at: https://github.com/nkdinsdale/Unlearning for MRI harmonisation.

2 Method

We explore two different data regimes and show that, by adapting the loss func-
tions, the same learning framework can be used in all scenarios. We consider

https://github.com/nkdinsdale/Unlearning_for_MRI_harmonisation
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Fig. 1. Network architecture. Xp and Xu represent the input data for the network,
Xp for the main task and Xu for unlearning. These can be the same data, subsets
of each other, or different datasets. For Xp the labels yp are the labels for the main
task and for Xu the labels are the domain labels du. Θrepr are the parameters of
the convolutional layers and first fully connected layer that form the encoder; Θp are
the parameters of the fully connected layers which predict the main task; Θd are the
parameters of the fully connected layers in the domain predictor.

both training with fully supervised data with similar distributions, and training
when the data distributions are biased for the main task label both for the task
of age prediction.

2.1 Standard Supervised Training

This data regime corresponds to the scenario where we have training labels for
the main task available for data from all scanners and the data distributions for
the main task are similar. In this case, Xp and Xu are a single dataset X which
is used to evaluate all of the training iterations.

The aim of the 3D network shown in Fig. 1 is to find a feature representation
Θrepr that maximises the performance on a primary task while minimising the
performance of a discriminator, which aims to predict the site of origin of the
data. In this case, we use age prediction (based on T1-weighted MRI scans) as an
example task, but the training procedure should generalise to any feedforward
architecture and task. Θrepr represents the parameters of the encoder which are
shared between the two output branches; Θp represents the parameters for the
primary age prediction task, and Θd represents the parameters of the domain
prediction branch. We consider the case of three datasets, each with input images
X ∈ R

W×H×D×1 and task labels y ∈ R, with different domains d, representing
scans acquired from three distinct scanners.

Three loss functions are used in the training of the network. The first loss is
for the main task and is conditioned on each domain:

Lp(X,y,d;Θrepr,Θp) =
N∑

n=1

1
Sn

Sn∑

j=1

Ln(yj,n, ŷj,n) (1)

where N is the number of domains and Sn is the number of subjects from
domain n such that yj,n is the true task label for the jth subject from the nth
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domain and Ln is the loss function for the main task evaluated for the data from
domain n. This loss takes the form of mean squared error (MSE) for the age
prediction task. The loss is calculated for each domain separately to prevent the
performance being driven by the larger dataset, especially when there is a large
imbalance in sample numbers. The domain information is then unlearned using
two loss functions in combination. The domain loss is simply the categorical
cross entropy:

Ld(X,d,Θrepr;Θd) = −
N∑

n=1

1[d = n]log(pn) (2)

which assesses how much domain information remains in Θrepr. pn are the
softmax outputs of the domain classifier and are used in the confusion loss to
remove information, by penalising deviations from a uniform distribution:

Lconf (X,d,Θd;Θrepr) = −
N∑

n=1

1
N

log(pn) (3)

Therefore the overall method minimises the total loss function L = Lp + αLd +
βLconf where α and β represent weights of the relative contributions of the
different loss functions. Eqs. (2) and (3) directly oppose each other and therefore
cannot be optimised in a single step. Therefore, we iterate through updating the
different loss functions, resulting in three forward passes per batch.

2.2 Biased Domains

Finally, we consider the scenario where there exists a large difference between the
two domains such that the main task label is highly indicative of the scanner and,
thus, unlearning scanner information leads to unlearning important information
for the main task. For example, consider the scenario where the age distributions
for two studies are only slightly overlapping or the scenario where nearly all the
subjects with a given condition were collected on one of the scanners: we show
that this problem can be reduced by unlearning the domain, using different
data to that used to train the main task. This is simple to train within the
same learning framework, only requiring Eqs. (2) and (3) to be evaluated across
a different dataset or subset of the data. For instance, in the case of slightly
overlapping age distributions, the domain information would be unlearned, only
using the overlapping section. For the case of a dataset being biased with more
subjects with a given pathology being from one scanner, the unlearning would
only be completed with the controls. In this case, the equations become:

Ld(Xu,du,Θrepr;Θd) = −
N∑

n=1

1[d = n]log(pn) (4)

Lconf (Xu,du,Θd;Θrepr) = −
N∑

n=1

1
N

log(pn) (5)
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where Xu and du are the input images and domain labels for the intersection
data, and can either be a subset of Xp or a further dataset of controls only
used to unlearn scanner information. It should be noted that task labels are not
required for this data, making it much easier to obtain. The main task is still
evaluated across the whole dataset Xp.

3 Experimental Setup

Fig. 2. Data distributions for the three
datasets, normalised so that the distri-
butions of the smaller datasets can be
seen.

For the experiments in this work, T1
weighted MRI scans from three datasets
were used: UK Biobank [14] (Siemens
Skyra 3T) which had been processed using
the UK Biobank Pipeline [1] (5508 train-
ing, 1377 testing); healthy subjects from
the OASIS dataset [11] (Siemens Tesla
Vision 1.5T) at multiple time points, split
into training and test sets at the sub-
ject level (813 training, 217 testing), and
subjects from the Whitehall II study [5]
(Siemens Magnetom Verio 3T) (452 train-
ing, 51 testing). The input images for all
datasets were resized to 128 × 128 × 128
voxels and then every fourth slice was

retained, leaving 32 slices in the z direction, chosen so as to maximise cover-
age across the whole brain whilst minimising redundancy, and allowing a larger
batch size and number of filters to be used. The inputs were also normalised to
have zero mean and unit standard deviation. We chose to investigate the age
prediction task as this is a task for which accurate task labels are easy to obtain.
The data distributions can be seen in Fig. 2.

The network was implemented in Python 3.6 using PyTorch (1.0.1) and is
based on the VGG-16 architecture [13]; however, our proposed training procedure
is applicable to any feedforward network. A batch size of 16 was used throughout,
with each batch constrained to contain at least one example from each dataset,
increasing the stability during training. To achieve this, the smaller datasets
were oversampled. α and β were empirically set for the different experiments,
taking values between 1 and 20.
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Fig. 3. a) T-SNE [10] plot of the fully connected layer in Θrepr from before unlearn-
ing. It can be seen that the domains can be almost entirely separated, except for two
datapoints grouped incorrectly, showing that data from each scanner has its own dis-
tinct distribution. b) T-SNE plot of the fully connected layer in Θrepr after unlearning.
It can be seen that, through the unlearning, the distributions become entirely jointly
embedded.

Table 1. Results comparing unlearning to training the network in different combina-
tions on the datasets using Mean Absolute Error (MAE) as the metric for the task
of age regression. Scanner accuracy is the accuracy achieved by a domain predictor
given the fixed feature representation at convergence, evaluating only for the datasets
the network was trained on. The number in brackets indicates random chance. B =
Biobank, O = OASIS, W = Whitehall

Training data Biobank MAE OASIS MAE Whitehall MAE Scanner
classification

B O W accuracy (%)

Normal training

1. � × × 3.25 ± 2.36 16.50 ± 6.77 13.81 ± 5.42 –

2. × � × 5.61 ± 3.52 4.27 ± 3.79 6.73 ± 4.82 –

3. × × � 5.61 ± 3.65 5.22 ± 4.83 3.15 ± 2.81 –

4. � � × 3.30 ± 2.50 4.00 ± 2.78 4.71 ± 3.42 98 (50)

5. � × � 3.31 ± 2.49 4.45 ± 3.53 3.05 ± 2.84 100 (50)

6. × � � 5.71 ± 3.59 4.05 ± 3.71 3.21 ± 2.94 100 (50)

7. � � � 3.24 ± 2.47 4.19 ± 3.50 2.89 ± 2.70 96 (33)

Unlearning

8. � � × 3.41 ± 2.04 3.79 ± 2.99 4.60 ± 3.47 48 (50)

9. � × � 3.41 ± 2.58 4.07 ± 4.12 2.81 ± 2.57 52 (50)

10. × � � 3.38 ± 2.64 3.91 ± 3.53 2.82 ± 2.65 50 (50)

11. � � � 3.38 ± 2.64 3.90 ± 3.53 2.56 ± 2.47 34 (33)
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4 Results

4.1 Supervised Unlearning

We compared our method to standard training on all three datasets individually
and on combinations of datasets and compare the mean absolute errors (MAEs)
between methods. The results can be seen in Table 1. It can first be seen that
training on all three datasets using normal training gives the best overall perfor-
mance of the different regimes for standard training as would be expected (row
7), giving the lowest MAE overall across the datasets. This, however, produces a
feature representation Θrepr in which the three datasets can be separated as is
shown in Fig. 3a, so information relating to the scanner is being used to inform
the age prediction. This would be particularly problematic if there was a large
correlation between task label and scanner as is shown in Sect. 4.2. On the other
hand, it can be seen from the results of unlearning on all three datasets (row 11)
that we are able to remove scanner information successfully, from the fact that
the scanner accuracy is approximately random chance. Simultaneously, there is
little decrease in performance across the datasets, showing that the unlearning
is not detrimental to performance. In fact, a lower MAE is achieved for the two
small datasets (OASIS and Whitehall) and only the performance on Biobank
decreases, probably because the network is no longer driven by its much larger
size. For reference, standard training using the loss function conditioned on each
dataset led to MAEs of 3.55±2.68, 3.90±3.53 and 2.62±2.65 years, respectively,
and so we are probably seeing improvement due to the unlearning process. This
is because, in essence, this method is a domain adaptation approach and so we
are harnessing information from each dataset to boost the network’s overall per-
formance by removing scanner differences. Figure 3b) confirms the success of the
harmonisation as the scanner domains can no longer be separated.

The comparison for training on two datasets and testing the trained network
on the third unseen dataset (e.g. comparing row 6 and 10) also shows that the
unlearning procedure helps the network to generalise better: the MAE values for
the unseen dataset in both cases are improved by unlearning. This shows that
by removing scanner information, preventing it from influencing the prediction,
the network learns features that are more applicable to other datasets.

4.2 Biased Datasets

We also assessed network performance when training with biased subsets of the
OASIS and Biobank datasets using: (i) a standard training regime and, (ii) näıve
unlearning (unlearning on the whole of both datasets) and (ii) unlearning on just
the overlap set. We considered three degrees of overlap: 5, 10 and 15 years. The
resulting networks were then tested on the full testing dataset, spanning across
the whole age range. Figure 4 shows the resulting errors. As expected, it can be
seen that the normal training regime produces large errors, especially outside
of the range of the Biobank training data, and is entirely driven by the larger
Biobank training data.
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Table 2. MAE results for Biobank and OASIS data from training with datasets with
varying degrees of overlap as shown in the first column. Scanner accuracy is calculated
by training a domain classifier on the fixed feature representation. Random chance is
given in brackets.

Method
Biobank
MAE

OASIS
MAE

Scanner
Classification
Accuracy (%)

5 Years
1. Standard 16.5 ± 5.94 15.5 ± 6.95 100 (50)
2. Näıve Unlearning 6.11 ± 3.99 4.44 ± 4.20 58 (50)
3. Unlearning on Overlap 5.49 ± 3.67 4.37 ± 4.05 53 (50)
10 Years
4. Standard 9.66 ± 5.83 13.6 ± 6.58 100 (50)
5. Näıve Unlearning 4.20 ± 2.90 4.29 ± 4.01 56 (50)
6. Unlearning on Overlap 3.93 ± 2.81 4.04 ± 3.86 52 (50)
15 Years
7. Standard 8.91 ± 5.31 10.4 ± 5.55 100 (50)
8. Näıve Unlearning 3.82 ± 2.84 4.39 ± 4.07 57(50)
9. Unlearning on Overlap 3.75 ± 2.78 3.99 ± 3.52 50 (50)

With näıve unlearning, the network is not able to correct for both scanners
and the results for the OASIS dataset are poor, whereas by using unlearning on
just the overlap subjects, the error is reduced across both datasets. The only
region which performs worse is the lower end of the OASIS dataset, probably
because when the network was being driven only by the Biobank data, the net-
work generalised to OASIS testing points from the same range. Näıve unlearning
also performs slightly less well at removing scanner information on the testing
domain. This probably indicates that the features learned also encode some age
information and so generalise less well across the whole age range.

These results show the power of the network to remove strong bias from the
data, with a large reduction in error across the dataset compared to standard
learning. There is also a clear improvement compared to unlearning on the whole
dataset, showing that information which was key to the age prediction task was
being removed when the whole dataset was used for unlearning, and this is
lessened by training on only the overlap dataset.

5 Discussion

We have shown that, through using an iterative training scheme to ‘unlearn’
scanner information, we can create features from which most scanner information
has been removed and, thus, harmonise the data for a given task. The training
regime is flexible and could be implemented with any feedforward network and
likely data scenarios such as biased datasets, meaning that unlearning should be
applicable for most real-world MRI harmonisation problems.
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Fig. 4. Errors for the three different training regimes: standard training, näıve unlearn-
ing and unlearning only on the overlap data (10 year case). It can be seen that unlearn-
ing only on the overlap dataset leads to much lower losses across both datasets.
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