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Abstract. Consistency of the predictions with respect to the physi-
cal forward model is pivotal for reliably solving inverse problems. This
consistency is mostly un-controlled in the current end-to-end deep learn-
ing methodologies proposed for the Magnetic Resonance Fingerprint-
ing (MRF) problem. To address this, we propose PGD-Net, a learned
proximal gradient descent framework that directly incorporates the for-
ward acquisition and Bloch dynamic models within a recurrent learning
mechanism. The PGD-Net adopts a compact neural proximal model
for de-aliasing and quantitative inference, that can be flexibly trained on
scarce MRF training datasets. Our numerical experiments show that the
PGD-Net can achieve a superior quantitative inference accuracy, much
smaller storage requirement, and a comparable runtime to the recent
deep learning MRF baselines, while being much faster than the dictio-
nary matching schemes. Code has been released at https://github.com/
edongdongchen/PGD-Net.
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1 Introduction

Magnetic resonance fingerprinting (MRF) is an emerging technology that enables
simultaneous quantification of multitudes of tissues’ physical properties in short
and clinically feasible scan times [20]. Iterative reconstruction methods based on
Compressed Sensing (CS) have proven efficient to help MRF overcome the chal-
lenge of computing accurate quantitative images from the undersampled k-space
measurements taken in aggressively short scan times [3,10,11,30]. However, these
methods require dictionary matching (DM) that is non-scalable and can create
enormous storage and computational overhead. Further, such approaches often
do not fully account for the joint spatiotemporal structures of the MRF data
which can lead to poor reconstructions [14].
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Deep learning methodologies have emerged to address DM’s computational
bottleneck [9,15,24,27], and in some cases to perform joint spatiotemporal MRF
processing through using convolutional layers [4,8,12,13,17,18,26]. These mod-
els are trained in an end-to-end fashion without an explicit account for the known
physical acquisition model (i.e. the forward operator) and a mechanism for
explicitly enforcing measurement consistency according to this sampling model
which can be crucial in the safety-first medical applications. Further, ignoring
the structure of the forward model could lead to building unnecessary large
inference models and possible overfitted predictions, especially for the extremely
scarce labelled anatomical quantitative MRI datasets that are available for
training.

Our Contributions: we propose PGD-Net a deep convolutional model that is
able to learn and perform robust spatiotemporal MRF processing, and work with
limited access to the ground-truth (i.e. labelled) quantitative maps. Inspired by
iterative proximal gradient descent (PGD) methods for CS reconstruction [22],
we adopt learnable, compact and shared convolutional layers within a data-
driven proximal step, meanwhile explicitly incorporating the acquisition model
as a non-trainable gradient step in all iterations. The proximal operator is an
auto-encoder network whose decoder embeds the Bloch magnetic responses and
its convolutional encoder embeds a de-aliasing projector to the tissue maps’
quantitative properties. Our work is inspired by recent general CS methodolo-
gies [1,2,7,22,25] that replace traditional hand-crafted image priors by deep
data-driven models. To the best of our knowledge, this is the first work to adopt
and investigate the feasibility of such an approach for solving the MRF inverse
problem.

2 Methodology

MRF adopts a linear spatiotemporal compressive acquisition model:

y = H(x) + ξ (1)

where y ∈ C
m×L are the k-space measurements collected at L temporal frames

and corrupted by some noise ξ, and x ∈ C
n×L is the Time-Series of Magnetisa-

tion Images (TSMI) with n voxels across L timeframes. The forward operator
H : Cn×L → C

m×L models Fourier transformations subsampled according to a
set of temporally-varying k-space locations in each timeframe. Accelerated MRF
acquisition implies working with heavily under-sampled data m � n, which
makes H becomes ill-posed for the inversion.

Bloch Response Model: Per-voxel TSMI temporal signal evolution is
related to the quantitative NMR parameters/properties such as {T1v, T2v}
relaxation times, through the solutions of the Bloch differential equations xv ≈
ρvB(T1v, T2v), scaled by the ρv proton density (PD) in each voxel v [19,20].

The Subspace Dimension-Reducing Model: In many MRF applica-
tions (including ours) a low s � L dimensional subspace V ∈ C

L×s embeds
the Bloch solutions B(.) ≈ V V HB(.). This subspace can be computed through
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PCA decomposition of the MRF dictionary [23], and enables re-writing (1) in
a compact form that is beneficial to the storage, runtime and accuracy of the
reconstruction [3,15]:

y = H(x) + ξ where, for each voxel xv ≈ ρvB(T1v, T2v), (2)

and x ∈ C
n×s is the dimension-reduced TSMI, H := H ◦ V and B = V HB

denotes the subspace-compressed Bloch solutions (for more details see [14]).
Tissue Quantification: Given the compressed measurements y, the goal of

MRF is to solve the inverse problem (2) and to compute the underlying multi-
parametric maps m = {T1, T2, ρ} (and x as a bi-product). Such problems are
typically casted as an optimisation problem of the form:

arg min
x,m

‖y − Hx‖22 + φ(x,m), (3)

and solved iteratively by the proximal gradient descent (PGD):

PGD :
{
g(t+1) = x(t) + α(t)HH(y − Hx(t)) → Gradient with step size α
{x(t+1),m(t+1)} = Proxφ(g(t+1)) → Proximal update

(4)

where the gradient updates encourage k-space fidelity (the first term of (3)),
and the proximal operator Proxφ(·) enforces image structure priors through a
regularisation term φ(·) that makes the inverse problem well-posed. The Bloch
dynamics in (2) place an important temporal constraint (prior) for per-voxel
trajectories of x. Projecting onto this model (i.e. a temporal Prox model) has
been suggested via iterative dictionary search schemes [3,10]. This approach
boost MRF reconstruction accuracy compared to the non-iterative DM [20],
however, DM is non-scalable and can create enormous storage and computational
overhead. Further, such approach processes data independently per voxel and
neglects important spatial domain regularities in the TSMIs and quantitative
maps.

3 PGD-Net for MRF Quantification

We propose to learn a data-driven proximal operator within the PGD mechanism
for solving the MRF problem. Implemented by compact networks with convo-
lutional layers, the neural Prox improves the storage overhead and the slug-
gish runtime of the DM-based PGD by orders of magnitudes. Further, trained
on quantitative MR images, the neural Prox network learns to simultaneously
enforce spatial- and temporal-domain data structures within PGD iterations.

Prox Auto-encoder: We implement Prox : g → {x,m} through a deep
convolutional auto-encoder network:

Prox := Bloch ◦ G, (5)

consisting of an encoder G : g → m and a decoder Bloch: m → x subnetworks.
The information bottleneck in the (neural) Prox auto-encoder corresponds to
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projecting multichannel TSMIs to the low-dimensional manifold of the tissues’
intrinsic (quantitative) property maps [14].

Decoder Network: Creates a differentiable model for generating the Bloch
magnetic responses. This network uses 1 × 1 filters to process image time-series
in a voxel-wise manner. Given quantitative properties mv = {T1v, T2v, γv},
the decoder approximates (dimension-reduced) Bloch responses in voxel v i.e.
Bloch(mv) ≈ ρvB(T1v, T2v). This network is trained separately from the
encoder. Training uses physical (Bloch) simulations for many combinations of
the T1, T2 and PD values which can flexibly produce a rich training dataset [14].

Encoder Network: Projects g the gradient-updated TSMIs in each iter-
ation (i.e. the first line of (4)) to the quantitative property maps m. Thus,
G must simultaneously (i) learn to incorporate spatial-domain regularities to
de-alias TSMIs from the undersampling artefacts, and (ii) resolve the temporal-
domain inverse mapping from the (noisy) TSMIs to the quantitative property
maps. For this, and unlike Bloch which applies pixel-wise temporal-only pro-
cessing, G uses multichannel convolution filters with wider receptive fields to
learn/enable spatiotemporal processing of the TSMIs.

Fig. 1. Overview of the proposed proximal gradient descent network (PGD-Net) for
tissue quantification in the compressive MR fingerprinting.

PGD-Net: Fig. 1a shows the recurrent architecture of the proposed learned
PGD algorithm, coined as the PGD-Net. The trainable parameters within the
PGD-Net are those of the encoder network G (Fig. 1b) and the step sizes αt.
Other operators such as H,HH and Bloch (pre-trained separately, Fig. 1c)
are kept frozen during training. Further, G’s parameters are shared through all
iterations. In practice, a truncated T ≥ 1 recurrent iterations is used for training.
Supervised training requires the MRF measurements, TSMIs, and the ground
truth property maps to form the training input y and target x,m samples.

Note there are many arts of engineering to determine the optimal network
architecture, including different ways to encode temporal [17] or spatial-temporal
information [5], these aspects are somewhat orthogonal to the model consistency
question. Indeed, such mechanisms could also be incorporated in PGD-Net.
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Training Loss: Given a training set {xi,mi,yi}N
i=1, and T ≥ 1 recurrent

iterations of the PGD-Net (i.e. iterations used in PGD), the loss is defined as

L = γ
N∑

i=1

�
(
xi,x

(T )
i

)
+

∑

j∈{T1,T2,ρ}
βj
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�
(
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ij

)
+ λ
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)
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(6)
where � is the MSE loss defined with appropriate weights γ, βj , λ on the recon-
structed TSMIs x (which measures the Bloch dynamic consistency) and tissue
property maps m, as well as on y to maximise k-space data consistency with
respect to the (physical) forward acquisition model. In this paper, the scaling
between parameters γ, βj and λ were initialized based on the physics (see 4.3).

4 Numerical Experiments

4.1 Anatomical Dataset

We construct a dataset of brain scans acquired using the 1.5T GE HDxT scan-
ner with 8-channel receive-only head RF coil. For setting ground-truth (GT)
values for the T1, T2 and PD parameters, gold standard anatomical maps were
acquired using MAGIC quantification protocol [21]. Ground-truth quantitative
maps were acquired from 8 healthy volunteers (16 axial brain slices each, at the
spatial resolution of 128×128 pixels). From these parametric maps, we then con-
struct the TSMIs and MRF measurements using the MRF acquisition protocol
mentioned below to form the training/testing tuples (mi,xi,yi). Data from 7
subjects were used for training our models, and one subject was kept for perfor-
mance testing. We augmented training data into total 224 samples using random
rotations (uniform angles in [−8◦, 8◦]), and left-right flipping of the GT maps.
Training batches at each learning epoch were corrupted by i.i.d Gaussian noises
of 30 dB SNR added to y (we similarly add noise to the k-space test data).

4.2 MRF Acquisition

Our experiments use an excitation sequence of L = 200 repetitions which jointly
encodes T1 and T2 values using an inversion pulse followed by a flip angle sched-
ule that linearly ramps up from 1◦ to 40◦, i.e. ×4 truncated sequence than [14,16].
Following [16], we set acquisition parameters Tinv = 18 ms (inversion time), fixed
TR = 10 ms (repetition time), and TE = 0.46 ms (echo time). Spiral readouts
subsample the k-space frequencies (the 128 × 128 Cartesian FFT grid) across
200 repetition times. We sample spatial frequencies k(t) ∝ (1.05)

16πτ
1000 ej 16πτ

1000 for
τ = 1, 2, ..., 1000, which after quantisation to the nearest FFT grid, results in
m = 654 samples per timeframe. In every repetition, similar to [20], this spiral
pattern rotates by 7.5◦ in order to sub-sample new k-space frequencies. Given
the anatomical T1, T2 and PD maps, we simulate magnetic responses using the
Extended Phase Graph (EPG) formalism [29] and construct TMSIs and k-space
measurements datasets, and use them for training and retrospective validations.
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4.3 Reconstruction Algorithms

Two DM baselines namely, the non-iterative Fast Group Matching (FGM) [6]
and the model-based iterative algorithm BLIP empowered by the FGM’s fast
searches, were used for comparisons. For this, a MRF dictionary of 113’781 finger-
prints was simulated over a dense grid of (T1, T2) = [100:10:4000] × [20:2:600] ms
values. We implemented FGM searches on GPU using 100 groups for clustering
this dictionary. The BLIP algorithm uses backtracking step size search and runs
for maximum 20 iterations if is not convergent earlier. Further, we compared
against related deep learning MRF baselines MRFCNN [8] and SCQ [12]. In
particular, MRFCNN is a fully convolutional network and SCQ mainly uses 3
U-nets to separately infer T1, T2 and PD maps. The input to these networks is
the dimension-reduced back-projected TSMIs HH(y), and their training losses
only consider quantitative maps consistency i.e. the second term in (6).

We trained PGD-Net with recurrent iterations T = 2 and 5 to learn appro-
priate proximal encoder G and the step sizes α(t). The architectures of G and
Bloch networks are illustrated in Fig. 1. Similar to [14], the MRF dictionary
was used for pre-training the Bloch decoder that embeds a differentiable model
for generating Bloch magnetic responses. A compact shallow network with one
hidden layer and 1 × 1 filters (for pixel-wise processing) implements our Bloch
model [14]. On the other hand, our encoder G has two residual blocks with 3× 3
filters (for de-aliasing) followed by three convolutional layers with 1×1 filters for
quantitative inference. The final hyper-parameters were β = [1, 20, 2.5], γ = 10−3

and λ = 10−2 selected via a multiscale grid search to minimize error w.r.t. the
ground truth. The inputs were normalized such that PD ranged in [0, 1]; smaller
weights were used for x and y since they have higher energy than PD; we set
λ > γ since x’s norm is larger than y; T1/T2 values typically exhibit different
ranges with T1 
 T2, justifying their relative weightings in β to balance these
terms. We used ADAM optimiser with 2000 epochs, mini-batch size 4 and learn-
ing rate 10−4. We pre-trained our encoder G using back-projected TSMIs to ini-
tialise the recurrent training, and also to compare the encoder alone predictions
to the PGD-Net. All algorithms use a s = 10 dimensional MRF subspace repre-
sentation for temporal-domain dimensionality reduction. The input and output
channels are respectively 10 and 3 for MRFCNN, SCQ and G. All networks were
implemented in PyTorch, and trained and tested on NVIDIA 2080Ti GPUs.

4.4 Results and Discussions

Table 1 and Fig. 2 compare the performances of the MRF baselines against
our proposed PGD-Net using T = 2 and 5 recurrent iterations. We also
include inference results using the proposed encoder alone G, without proxi-
mal iterations. Reconstruction performances were measured by the Normalised
RMSE = ‖T1−T1GT ‖

‖T1GT ‖ , MAE = |T1 − T1GT |, Structural Similarity Index Metric
(SSIM) [28], the required storage for the MRF dictionary (in DM methods) or
the networks, and the algorithm runtimes averaged over the test image slices.
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Ground truth (T1, T2, PD) anatomical maps acquired by the MAGIC gold
standard [21]

T1 (sec) T1 error T2 (sec) T2 error PD (a.u.) PD error

Fig. 2. A slice of the true T1, T2 and PD maps acquired by the gold standard MAGIC
(top), and the corresponding MRF reconstructions using (from top to bottom) FGM,
BLIP+FGM, MRFCNN, SCQ, encoder alone G, and the ProxNet with T = 2 and
T = 5 algorithms.



20 D. Chen et al.

Table 1. Average errors (NRMSE, SSIM, MAE), memory (for storing a dictionary or
a network) and runtimes (per image sclice) required for computing T1, T2 and PD
maps using the MRF baselines and our PGD-Net algorithm.

NRMSE SSIM MAE (msec) Time

(sec)

Memory

(MB)

T1 T2 PD T1 T2 PD T1 T2

FGM 0.475 0.354 1.12 0.614 0.652 0.687 350.0 14.6 1.29 8.81

BLIP+FGM 0.230 0.545 0.073 0.886 0.880 0.984 91.7 8.0 79.28 8.81

MRFCNN 0.155 0.158 0.063 0.943 0.972 0.987 80.3 5.4 0.083 4.72

SCQ 0.172 0.177 0.064 0.929 0.967 0.984 91.7 6.1 0.132 464.51

G (encoder alone) 0.142 0.155 0.065 0.948 0.973 0.987 77.1 5.6 0.067 0.55

PGD-Net (T = 2) 0.104 0.138 0.050 0.973 0.979 0.991 59.9 5.0 0.078 0.57

PGD-Net (T = 5) 0.100 0.132 0.045 0.975 0.981 0.992 50.8 4.6 0.103 0.57

The non-iterative FGM results in incorrect maps due to the severe under-
sampling artefacts. The model-based BLIP iterations improve this, however, due
to lacking spatial regularisation, BLIP has limited accuracy and cannot fully
remove aliasing artefacts (e.g. see T2 maps in Fig. 2) despite 20 iterations and
very long runtime. In contrast, all deep learning methods outperform BLIP not
only in accuracy but also in having 2 to 3 orders of magnitude faster recon-
struction times—an important advantage of the learning-based methods. The
proposed PGD-Net consistently outperforms all baselines, including DM and
learning-based methods, over all defined accuracy metrics. This is achieved due
to learning an effective spatiotemporal model (only) for the proximal operator
i.e. the G and Bloch networks, directly incorporating the physical acquisition
model H into the recurrent iterations to avoid over-parameterisation of the over-
all inference model, as well as enforcing reconstructions to be consistent with the
Bloch dynamics and the k-space data through the multi-term training loss (6).
The MRFCNN and SCQ over-parametrise the inference by 1 and 3 orders of
magnitude larger model sizes (the SCQ requires larger memory than DM) and
are unable to achieve PGD-Net’s accuracy e.g. see the corresponding over-
smoothed T2 maps in Fig. 2. Finally, we observe that despite having roughly the
same model size (storage), the encoder alone G predictions are not as accurate
as the results of the PGD-Net’s recurrent iterations. By increasing the number
of iterations T we observe that the PGD-Net’s accuracy consistently improves
despite having an acceptable longer inference time.

5 Conclusions

In this work we showed that the consistency of the computed quantitative maps
with respect to the physical forward acquisition model and the Bloch dynam-
ics is important for reliably solving the MRF inverse problem using compact
deep neural networks. For this, we proposed PGD-Net, a learned model-based
iterative reconstruction framework that directly incorporates the forward acqui-
sition and Bloch dynamic models within a recurrent learning mechanism with
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a multi-term training loss. The PGD-Net adopts a data-driven neural proxi-
mal model for spatiotemporal processing of the MRF data, TSMI de-aliasing
and quantitative inference. A chief advantage of this model is its compactness
(a small number of weights/biases to tune), which might makes it particularly
suitable for supervised training using scarce quantitative MRI datasets. Through
our numerical validations we showed that the proposed PGD-Net achieves a
superior quantitative inference accuracy, much smaller storage requirement, and
a comparable runtime to the recent deep learning MRF baselines, while being
much faster than the MRF fast dictionary matching schemes. In future work, we
plan to evaluate the non-simulated scanner datasets with higher diversities and
possible pathologies to further validate the method’s potential for clinical usage.
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