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Abstract. Accurate segmentation of critical anatomical structures is at
the core of medical image analysis. The main bottleneck lies in gather-
ing the requisite expert-labeled image annotations in a scalable manner.
Methods that permit to produce accurate anatomical structure segmen-
tation without using a large amount of fully annotated training images
are highly desirable. In this work, we propose a novel contribution of
Contour Transformer Network (CTN), a one-shot anatomy segmentor
including a naturally built-in human-in-the-loop mechanism. Segmen-
tation is formulated by learning a contour evolution behavior process
based on graph convolutional networks (GCN). Training of our CTN
model requires only one labeled image exemplar and leverages additional
unlabeled data through newly introduced loss functions that measure
the global shape and appearance consistency of contours. We demon-
strate that our one-shot learning method significantly outperforms non-
learning-based methods and performs competitively to the state-of-the-
art fully supervised deep learning approaches. With minimal human-
in-the-loop editing feedback, the segmentation performance can be fur-
ther improved and tailored towards the observer desired outcomes. This
can facilitate the clinician designed imaging-based biomarker assessments
(to support personalized quantitative clinical diagnosis) and outperforms
fully supervised baselines.
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1 Introduction

Obtaining manual image segmentation labels or masks has often been an obstacle
in scaling up medical image segmentation applications. Without abundant pixel-
level fully annotated image data, the state-of-the-art CNN-based segmentation
methods cannot achieve their best performances [5,7,10,21,22,27,29]. However,
annotating segmentation masks for medical images is very time-consuming and
requires specialized expertise on human anatomy and its variations [28]. How to
train an accurate segmentation model with less labeled data demands prompt
solutions. In this paper, we tackle the problem on high-resolution anatomical
structure X-ray images and propose Contour Transformer Network, allowing to
learn from only one labeled exemplar image.

Several one-shot or few-shot segmentation methods have been proposed for
natural images [8,12,19,24,33] by extracting information from a few support
images to guide the segmentation of query images in testing. Nevertheless, the
training process still relies on large-scale annotated datasets such as PASCAL
VOC [9] and MS-COCO [16]. This condition renders them inapplicable directly
to the medical imaging domain, because such equivalent datasets do not exist
yet. Our problem is defined under a very different setting that only one pixel-level
annotated training image instance is available. Other problem settings could be
found in [20,34] where they attempt to alleviate the label shortage problem via
data augmentation. In contrast, our method is to train the segmentation model
with only one labeled exemplar and a set of unlabeled images.

The main challenge of one-shot segmentation is the lack of ground truth
image mask or contour labels. Regular training strategies of comparing predic-
tions with ground truth labels are no longer applicable. We adopt a new training
scheme in CTN. Because of the inherent regularized nature of anatomical struc-
tures, the same anatomy in different (X-ray) images may share some common
features or properties, such as the anatomical structure’s shape, appearance and
gradients along the structural object boundary. Although different images are
not directly comparable, we can compare their common features only and use the
exemplar segmentation to guide other unlabeled images partially, thus making
CTN trainable in a one-shot setting.

To leverage these shared anatomical properties, we represent the image seg-
mentation problem as learning a contour evolution behavior. Thus three dif-
ferentiable contour-based loss functions are proposed to describe the common
features. For each unlabeled image, CTN takes the exemplar contour as an ini-
tialization, then gradually evolves it to minimize the weighted loss. Furthermore,
we offer a naturally built-in human-in-the-loop mechanism to allow CTN to learn
from extra partial labels. If any part in the predicted contour is inaccurate, users
can correct them by drawing line segments, then CTN will format these correc-
tions as partial contours and incorporate them back into the training via an
additional Chamfer loss. In this way, we can improve and refine the segmenta-
tion performance with minimum annotation costs.

In summary, our contributions are three folds. (1) We propose a CNN-based
image segmentation framework that could be trained with only one labeled
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image. (2) We describe the contour perceptual loss and the contour bending loss
as two new optimization loss functions, to measure the similarity of two contours
in terms of the appearance or shape cues, respectively. (3) We demonstrate that
CTN achieves the state-of-the-art one-shot segmentation results; performs com-
petitively when compared to fully supervised alternatives; and can outperform
them with minimal human-in-the-loop feedback, on three datasets.

Fig. 1. Contour Transformer Network. CTN is trained to fit a contour to the object
boundary by learning from one labeled exemplar. It takes the exemplar and an unla-
beled image as input, and predict a contour that has similar contour features with the
exemplar. Three losses are proposed to make this network “one-shot” trainable.

2 Methods

The problem of anatomical structure segmentation on images can be decomposed
into two steps: ROI (Region of Interest) cropping; and ROI segmentation. ROI
detection has been well-studied in past literature [4,6,15,29,31,32], so we focus
on achieving very high segmentation accuracy by taking the detected/cropped
ROI (with noise and errors) as input.

Assuming that a set of images I contains the same type of anatomical struc-
ture and only one of them is labeled, called the exemplar. Our goal is to learn
a segmentation model for this structure from I. As mentioned above, we frame
image segmentation as a process of contour evolution. Each contour is repre-
sented by N uniformly spaced vertices. Denote the exemplar image and its
contour by IE and CE , respectively. For any unlabeled image I ∈ I, its con-
tour is C = {p1,p2, . . . ,pN}. The exemplar contour is placed at the center of
I as the initial location of C; next CTN is employed to estimate the point-
wise offsets from the initial to the correct location, which is formulated by
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Fθ (I, IE , CE) = {Δp1,Δp2, . . . ,ΔpN} where Fθ denotes the CTN model with
weights θ.

Inspired by [17], we use a CNN-GCN network architecture to model the
contour evolution in CTN. From Fig. 1, CTN consists of two parts of an image
encoding block and cascaded contour evolution blocks. It takes an unlabeled
image I, an exemplar image IE and its ground truth contour CE as input, and
predicts the contour C of I. (1) We first place CE at the center of I as the initial
location of C, then the encoder outputs a feature map encoding the local image
appearance of I. ResNet-50 [11] is used as the backbone of CNN encoder. (2) The
cascaded GCN blocks are then employed to evolve the contour C step by step.
The GCN takes the contour graph with vertex features as input. Each vertex in
the contour is connected to four neighboring vertices, two on each side. These
vertex features are extracted from the feature map of I at the vertex locations via
interpolation. Each GCN block takes the output contour of the previous block
and updates it by predicting the point-wise coordinate offsets. We use five GCN
blocks with the same multi-layer GCN architecture, although weights are not
shared. The output of the 5th block is the predicted contour of CTN. (3) Three
one-shot trainable losses are utilized to optimize CTN, as the contour perceptual
loss Lperc, the contour bending loss Lbend and the edge loss Ledge. The total loss
of CTN in the one-shot setting is written as: L = λ1Lperc + λ2Lbend + λ3Ledge

where λ1, λ2, λ3 are the weighting factors of the three losses. We describe the
three employed losses in detail as follows.

Contour Perceptual Loss. We propose a new contour perceptual loss to mea-
sure the appearance dissimilarity between the visual patterns of the exemplar
contour CE and the predicted contour C, on the exemplar image IE or the tar-
get image I, respectively. Partially motivated by the original perceptual loss [14]
developed for image super-resolution, modeling the image perceptual similarities
in the feature space of VGG-Net [26], we measure the contour perceptual sim-
ilarities in the graph feature space. In particular, graph features are extracted
from the ImageNet pre-trained VGG-16 feature maps of the two images along
the two contours, and their L1 distance is calculated as the contour perceptual
loss: Lperc =

∑
i=1,...,N ‖P (pi) − PE(p′

i)‖1 where pi ∈ C, p′
i ∈ CE , and P and

PE denote the VGG-16 features of I and IE , respectively. The VGG-16 baseline
network weights are trained on ImageNet dataset [23].

The contour perceptual loss is used to guide the evolution of the contour in
CTN, by having several advantages. (1) Since VGG-16 network features can cap-
ture the image pattern of a neighboring area with spatial contexts (i.e., network
receptive field), the contour perceptual loss enjoys a relatively large capturing
range (i.e., the convex region around the minimum), making the CTN training
optimization easier. (2) The backbone VGG-16 model is trained on ImageNet
[23] for classification tasks, so that its learned features are less sensitive to noises
and illumination variations, which also benefits the training of CTN.

Contour Bending Loss. If we operate under the assumption that an exemplar
contour is broadly informative to other data samples, then it should be beneficial
to use the exemplar shape to ground any predictions on other samples. To this
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end, we propose a novel contour bending loss to measure the shape dissimilarity
between contours. The loss is calculated as the bending energy of thin-plate
spline (TPS) warping [1] that maps CE to C. It is worth noting that TPS warping
achieves the minimum bending energy among all warpings that map CE to C.
Since the bending energy measures the magnitude of the second order derivatives
of the warping function, the contour bending loss penalizes more on the local and
acute shape changes, often associated with mis-segmentations. Given C and CE ,
the TPS bending energy can be calculated as follows. Define pi = (xi, yi), p′

i =

(x′
i, y

′
i), and K =

(∥
∥p′

i − p′
j

∥
∥2

2
· log

∥
∥p′

i − p′
j

∥
∥
2

)
, P = (1,x′,y′), L =

[
K P
PT 0

]

where x′ = {x′
1, x

′
2, . . . , x

′
N}T , y′ = {y′

1, y
′
2, . . . , y

′
N}T . The TPS bending energy

is written as Lbend = max
[

1
8π (xTHx + yTHy), 0

]
where x = {x1, x2, . . . , xN}T ,

y = {y1, y2, . . . , yN}T , and H is the N × N upper left submatrix of L−1 [30].

Edge Loss. Although the contour perceptual and bending losses can achieve
robust segmentation, they are inherently insensitive to (very) small segmenta-
tion fluctuations, such as minimal deviations from the correct boundary by a
few pixels. Therefore, in order to obtain desirably high segmentation accuracy
and adequately facilitate the downstream workflows like rheumatoid arthritis
quantification [13], we employ an edge loss that measures the image gradient
magnitude along the computed contour and attracts the contour toward edges
in the image naturally. The edge loss is written as: Ledge = − 1

N

∑
p∈C ‖∇I(p)‖2

where ∇ is the gradient operator.

2.1 Human-in-the-Loop

More labels are always helpful to enhance the model’s generalization ability and
robustness, if available. Benefiting from the contour-based setting, CTN offers
a natural way to incorporate additional user labels with a human-in-the-loop
mechanism. Assuming that we have a CTN model trained with one exemplar
image, we intend to finetune it with more segmentation annotations. We run this
model on a set of unlabeled images first, and select any number of images with
inaccurate predictions as new instances. Instead of drawing the whole contour
from scratch on these new images, the annotator only needs to redraw some
partial contours, to correct the previously undesirable predictions. The point-
wise training of CTN makes it feasible to learn from these partial corrections.

A partial contour matching loss is proposed to utilize the partial ground
truth contours during the CTN training. Denote Ĉ as a set of partial contours
in image I, each element of which is an individual contour segment. For each
contour segment Ĉi ∈ Ĉ, we build the point correspondence between Ĉi and
C. For each Ĉi, we find two points in the predicted contour C, closest to the
start and end points of Ĉi, then each predicted point between the two points
are assigned to the closest corrected point. Denote the corresponding predicted
contour segment by Ci (Ci ∈ C). We define the distance between C and Ĉi as
the Chamfer distance from Ci to Ĉi: D(Ĉi, C) =

∑
p∈Ci

minp̂∈Ĉi
‖p − p̂‖2 and

the partial matching loss of C is defined as Lpcm = 1
N

∑
Ĉi∈Ĉ D(Ĉi, C). In the
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human-in-the-loop scenario, we combine all losses to train the CTN, and rewrite
the loss function as L̂ = λ1Lperc + λ2Lbend + λ3Ledge + λ4Lpcm, which allows
CTN to be trained with fully labeled, partially labeled and unlabeled images
simultaneously and seamlessly. Whenever new labels are available, we can use L̂
to finetune the one-shot CTN model.

3 Experimental Results

Datasets. We evaluate our method on three X-ray image datasets of knee, lung
and phalanx, respectively. The knee dataset contains 212 knee X-ray images
from the Osteoarthritis Initiative (OAI) database1, 100 for training and 112
for testing. The lung dataset is the public JSRT [25] of 247 posterior-anterior
chest radiographs, 124 for training and 123 for testing. The phalanx dataset
comes from hand X-ray images of patients with rheumatoid arthritis. 202 ROIs
of proximal phalanx are extracted automatically from hand joint detection [13],
randomly split into 100 training and 102 testing images.

Table 1. Performances of CTN and seven existing methods on three datasets.

Method Knee Lung Phalanx

IoU(%) HD(px) IoU(%) HD(px) IoU(%) HD(px)

Non- learning MorphACWE [2,18] 65.89 54.07 76.09 55.35 74.33 69.13

MorphGAC [3,18] 87.42 15.78 70.79 45.67 82.15 24.73

One-shot CANet [33] 29.22 175.86 56.90 73.46 60.90 67.13

Brainstorm [34] 90.17 29.07 77.13 43.28 80.05 30.30

CTN (Ours) 97.32 6.01 94.75 12.16 96.96 8.19

Fully supervised UNet [21] 96.60 7.14 95.38 12.48 95.76 10.10

DeepLab [5] 97.18 5.41 96.18 10.81 97.63 6.52

HRNet [29] 96.99 5.18 95.99 10.44 97.47 7.03

We evaluate the accuracy of segmentation masks by Intersection-over-Union
(IoU) metric and the corresponding object contour distance by the Hausdorff
distance (HD). For comparative methods not explicitly outputting the anatomy
contours, we extract the external contour of the largest segmented image region.
The hyperparameters are N = 1000, λ1 = 1, λ2 = 0.25, λ3 = 0.1, λ4 = 1. All
networks are trained using Adam optimizer with a learning rate of 1 × 10−4, a
weight decay of 1 × 10−4 and a batch size of 12 for 500 epochs. The one-shot
training and human-in-the-loop finetuning settings are the same.

The proposed CTN is compared with seven previous methods. The quanti-
tative results are reported in Table 1; qualitative results are given in Fig. 2.

1 https://nda.nih.gov/oai/.

https://nda.nih.gov/oai/
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Comparison with Non-Learning-Based Methods. We first compare with
two non-learning based methods of MorphACWE [2,18] and MorphGAC [3,18].
Both approaches are based on active contour models (ACMs), which evolves an
initial contour to the object by minimizing an energy function. The initial con-
tour is the same as ours. Quantitative results in Table 1 show that our method
significantly outperforms them. Specifically, in average CTN achieves 16.22%
higher IoU and 19.94 pixels less in HD than MorphGAC, the better of the two.
Visualization results in Fig. 2 show that these two approaches cannot localize
anatomical structures accurately, especially when the boundary of such struc-
tures are not clearly contrasted, such as in the lung image. Both methods are
based on ACMs and predict contours by minimizing some hand-crafted energy
functions for a single image. In contrast, CTN learns from an exemplar contour
to guide the contour transformation for all images in the entire training set.

Fig. 2. Segmentation results of three example images using eight methods. From top
to bottom, these images are from the knee, lung and phalanx testing sets, respectively.
The ground truth boundaries are drawn in green line for the ease of comparison.
(Color figure online)

Comparison With Other One-Shot Methods. Next, we compare with
two state-of-the-art one-shot segmentation methods: CANet [33] and Brain-
storm [34]. All one-shot approaches (including ours) use the same exemplar
image. For each training set, we compare the distance of each image to all other
images in the VGG network feature space and the exemplar is selected to be the
image with the smallest distance. CANet is proposed to perform one-shot seg-
mentation on unseen objects in testing, but it requires a fully annotated dataset
to train. Such that, we use the specific model [33] trained on PASCAL VOC
2012 dataset for comparison. From Table 1, CANet achieves only 49.01% IoU on
average. We speculate that the poor performance is caused by the domain gap
between natural images and medical images. Brainstorm [34] learns an image
augmentation model and is one-shot trainable. We follow its default procedure
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to train the segmentation models on three datasets. It yields reasonable results
with averaged 82.45% IoU and 34.22 HD, but still dramatically lower than ours.

Comparison with Fully Supervised Methods. Last, we evaluate and com-
pare the performance of three fully supervised methods: UNet [21], DeepLab
v3+ [5] and HRNet W18 [29]. All of them are trained for 500 epochs using all
training image annotations in three datasets. On average, CTN performs com-
parably or better than UNet, and falls behind DeepLab (the best of the three),
by 0.66% in IoU and 1.21 pixels in HD, respectively. It demonstrates that CTN
while using only one training image can usually compete head-to-head with the
state-of-the-art fully supervised baselines [5,21,29]. Note that the heatmap-based
segmentation methods predict the per-pixel labels, which could cause the loss
of integrity of object boundaries, e.g., some small “islands” in the lung masks
of Fig. 2. On the other hand, CTN naturally retains the integrity of the object
segmentation, as an important aspect in assessing visual segmentation quality.

Incorporating Simulated Human Corrections. To evaluate the effective-
ness of the human-in-the-loop mechanism, we empirically simulate different
degrees of human-computer interactions. For each dataset, we first train a CTN
model with the default exemplar and run inference on the training set. We sort all
training images by their HD segmentation errors from high to low. Three subsets
are formed by selecting the top 10%, 25% or 100% training images; and fine-tune
the initial one-shot CTN model using these training subsets augmented by the
ground truth contours, respectively. This protocol results in four CTN models.
From Fig. 3, we observe that CTN consistently improves with more human cor-
rections. Specifically, when using 25% such corrected samples, CTN starts to
outperform DeepLab using all training images (IoUs of 97.17% vs 97.0%, and
HDs of 7.01 vs 7.58). With all samples, CTN reaches 97.33% on IoU and 6.5 on
HD. These results indicate that the human-in-the-loop mechanism can poten-
tially help CTN achieves better performance than fully supervised methods with
considerably less annotation efforts.

Fig. 3. Using 0, 10%, 25% and 100% human corrections to finetune the one-shot CTN
model, respectively (“0” means no finetuning).

Ablation Study. We conduct an ablation experiment to validate the effective-
ness of the three proposed losses. The results are shown in Table 2 where the
performance of our method is indeed impaired if any loss is removed, with mean
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IoU reductions of 4.32%, 4.12%, and 1.72% for Lperc, Lbend, and Ledge, respec-
tively. This validates the necessity of all three losses. An exception is the knee
dataset when Lbend is removed. Knee X-ray images share similar appearance
features along the contour so that they can be segmented robustly with just the
contour perceptual loss and edge loss. Thus, adding contour bending loss leads
to statistically insignificant decreases (i.e., IoUs of 97.32% vs 97.50%, HDs of
6.01 vs 5.87) in this particular scenario. However, such a regularization effect by
the contour bending loss is generally desired to alleviate the worst-case scenarios
and proves useful in the other two datasets.

Table 2. Ablation study. Remove one loss each time and re-train the model.

Lperc Lbend Ledge Knee Lung Phalanx

IoU(%) HD(px) IoU(%) HD(px) IoU(%) HD(px)

� � 94.62 8.28 87.45 26.51 94.01 15.81

� � 97.50 5.87 84.93 36.74 94.24 26.13

� � 94.43 11.90 92.99 16.22 96.45 9.84

� � � 97.32 6.01 94.75 12.17 96.96 8.19

4 Conclusion

In this paper, we propose a novel one-shot segmentation method, Contour Trans-
former Network, which takes one labeled exemplar and a set of unlabeled images
to train a segmentation model for anatomical structures in medical images. The
key idea that enables one-shot training is to guide the segmentation of unla-
beled images by utilizing their shared features with the exemplar image but not
ground truth masks. Experiments on three datasets demonstrate that CTN per-
forms competitively to state-of-the-art fully supervised approaches and outper-
forms them with minimal human corrections. Although CTN is for anatomical
structures, the idea of one-shot training is also applicable to other images with
shared features. In the future, we will explore its application in more medical
image analysis problems.
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