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Abstract. Deep learning approaches offer strong performance for radi-
ology image classification, but are bottlenecked by the need for large
labeled training datasets. Semi-supervised learning (SSL) methods that
can leverage small labeled datasets alongside larger unlabeled datasets
offer potential for reducing labeling cost. However, few studies have
demonstrated gains of SSL for real-world radiology image classifica-
tion. Here, we adapt three leading SSL methods (Mean Teacher, Virtual
Adversarial Training, Pseudo-labeling) for radiograph classification, and
characterize their performance on two public X-Ray and CT classifica-
tion benchmarks. We observe that Mean Teacher can achieve good per-
formance gains in the low labeled data regime, but is sensitive to hyper-
parameters and susceptible to confirmation bias. To address these issues,
we introduce a novel SSL method named NoTeacher. This method incor-
porates a probabilistic graphical model to maximize mutual agreement
between student networks, thereby eliminating the need for a teacher
network. We show that NoTeacher outperforms contemporary SSL base-
lines by enforcing better consistency regularization, and achieves over
90% of the fully supervised AUROC with less than 5% labeling budget.

Keywords: Semi-supervised deep learning · Classification ·
Multi-label · X-rays · CT · Mean teacher

1 Introduction

Deep learning approaches offer state-of-the-art performance for a range of image
classification applications in radiology. Recent successes include chest radio-
graph diagnosis, brain tumor prognostication, fracture detection, and breast can-
cer screening [7,11,14,21]. However, these efforts typically require large labeled
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training datasets assembled through resource-intensive labeling by specialized
domain experts. Further, as discordance between expert raters can result in noisy
labels, even more resource-intensive consensus rating across multiple blinded
raters is often required [6].

One way to reduce this labeling burden is to use semi-supervised learn-
ing (SSL) approaches. These approaches leverage large numbers of unlabeled
images alongside smaller numbers of labeled images for model development. The
best performing approaches are typically consistency-based ; these encourage a
classifier’s predictions to be consistent with a target on the unlabeled data.
For instance, the popular Mean Teacher (MT) method [26] enforces consistency
between predictions from two networks, termed the student and teacher, where
the teacher is a time-averaged version of the student and is used for inference at
test time. MT and other SSL approaches have been applied to computer vision
classification benchmarks and to radiology image segmentation [3,10,29]. By
contrast, few studies have demonstrated gains of these SSL methods for radiol-
ogy image classification.

Here, we focus on semi-supervised learning for the under-studied radiograph
(X-Ray and CT) classification task that typically involves detection of multiple
abnormality types in the same image. We adapt three leading semi-supervised
deep learning methods (Pseudo-labeling [9], Virtual Adversarial Training [15],
and Mean Teacher [26]) to this multi-label setting and characterize performance
using a realistic semi-supervised annotation and evaluation process. We observe
that MT offers good performance gains in the low labeled data regime, but
note its sensitivity to hyperparameters and vulnerability for confirmation bias.
These MT limitations are in part due to reliance on a time-averaged student as
a consistency target (teacher) that essentially leads the model to enforce self-
consistency. To address these issues, we introduce the NoTeacher method that
instead enforces consistency between two independent networks. Our method
is derived by marginalizing out a latent consistency variable in a probabilistic
graphical model. Results on the NIH-14 Chest X-Ray and RSNA Brain Hemor-
rhage CT datasets [4,22] show that NoTeacher outperforms competing methods
on both datasets with minimal hyperparameter tuning, and achieves over 90%
of the fully supervised AUROC with less than 5% labeling budget.

Related Work: We briefly introduce the methods characterized in this work.
Pseudo-labeling (PSU) [9] is a classic SSL algorithm that is simple and commonly
used. It is an iterative algorithm where one trains a model on labeled data, uses
this trained model to infer pseudo-labels on the unlabeled data, then includes
these pseudo-labels to enlarge the training set in the next iteration. Virtual
Adversarial Training (VAT) [15] regularizes the output posterior distribution
to be isotropically smooth around each input image. Mean Teacher (MT) [26]
enforces consistency between two networks: a student model and a teacher model
whose parameters are the exponential moving average (EMA) of the student’s.

Aside from these methods that we characterized, other SSL methods have
been proposed. For example, MixMatch [2] is a consistency-based SSL method
which emphasizes data augmentation. However, the Mix-Up augmentation
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technique cannot be directly applied to medical images. Further, GAN-based
methods [23] learn the underlying distribution from unlabeled data, but do not
easily scale to high resolution images typical in radiology [12,13] and patch-wise
adaptations [8] neglect the necessary global context. Deep Co-training [20] com-
bines consistency and adversarial training in a multi-view framework, but the
official implementation is not released and the method is not easily adapted to
our multi-label setting. Finally, most related is GraphXNet [1], a graph-based
label propagation method for X-Ray classification, but it does not support the
multi-label setting and was not compared to other SSL methods.

2 Methods

Adaptations for Multi-label Classification: Radiology images may be asso-
ciated with more than one label, where each label presents a binary classification
task. Therefore, in our experiments, we used multi-task neural networks, trained
using the sum of binary cross-entropy losses, one per label. The adaptation of
VAT for our multi-label setting is described in the Supplement.

Mean Teacher Background: To provide context for our NoTeacher method,
we briefly review Mean Teacher [26]. We consider a semi-supervised single-label
classification task with image input x and binary output y ∈ {0, 1}. Mean
Teacher (MT) employs two networks with identical architecture: a student model
FS and a teacher model FT . A schematic illustration of the MT model is provided
in Fig. 1 (a). Given a batch x of training data, MT applies random augmenta-
tions ηS , ηT to generate inputs xS and xT for the corresponding model. During
the feed-forward pass, MT computes a total loss combining the usual supervised
cross-entropy (CE) classification loss and a consistency loss (mean-squared error
MSE on the posteriors):

LMT = CE
(
y, fLS

)
+ λconsMSE (fS , fT ) , (1)

where fS , fT are posterior outputs from the student and teacher networks, fLS is
the student’s posterior output on the labeled data, and λcons is a consistency
weight hyperparameter. The student model is updated directly by backpropaga-
tion using gradients of the loss LMT. Meanwhile, the teacher model updates its
parameters by computing an EMA over the student’s parameters. MT improves
over supervised learning when the teacher generates better expected targets, or
pseudo labels, to train its student. Recent papers have adapted MT for medical
imaging tasks such as MR segmentation [19,29] and nuclei classification [24].

However, because the teacher model is essentially a temporal ensemble of
the student model in the parameter space, MT has two potential drawbacks.
First, enforcing consistency of the student model with its historical self may
lead to confirmation bias or unwanted propagation of label noise [5]. Second, the
teacher model is sensitive to the choice of the EMA hyperparameter, causing per-
formance degradation when this hyperparameter is set outside a narrow range,
as seen in realistic evaluation regimes [18]. Moreover, since MT does not estab-
lish a systematic method to compute the consistency weight λcons, the process to
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tune this hyperparameter for varied datasets is unclear. Several variants of MT
therefore try to enforce consistency using other regularization schemes [19,24].

NoTeacher Overview: To address the above challenges, we introduce a new
method. Figure 1(b) illustrates the overall framework of NoTeacher (NoT), where
we have made two major changes: (a) we removed the EMA update so that the
networks are completely detached and (b) we trained the model with a novel loss
function LNoT based on a probabilistic graphical model to enhance consistency.
Since the two networks are treated equally, we index them numerically as F1

and F2.

Fig. 1. Training procedure of (a) MT and (b) NoT for one iteration of semi-supervised
learning. Double-line arrows denote random data augmentations, purple dotted arrow
represents EMA update, blue and red arrows are forward and backward passes, respec-
tively. NoT graphical model on a single (c) labeled and (d) unlabeled image.

NoTeacher Graphical Model and Loss: For each image x, the networks
F1, F2 take as inputs two different images x1, x2 generated by applying ran-
dom augmentations η1, η2, respectively. Since x1, x2 are generated from the same
image, the network outputs f1 = F1(x1) and f2 = F2(x2) should be similar. Fur-
thermore, if the image is labeled, then those outputs should also match the label.
Because label y is binary, the network outputs can be interpreted as posteriors of
the label, e.g., f1 = Pr (y = 1|x1). Inspired by previous works in semi-supervised
regression [16] and kernel learning [30], we consider y, f1, f2 as random variables
and design an undirected graphical model to impose probabilistic constraints
on them. Figure 1 (c) and (d) show the NoT graphical models for labeled and
unlabeled images respectively. The observed variables y, f1, f2 are represented
by separate nodes, each is connected only to a latent variable called the consen-
sus function fc ∈ [0, 1]. As its name implies, fc enforces the mutual agreement
of the posteriors on both labeled and unlabeled data. When the label is avail-
able, fc acts as an information relay between the posteriors and y. For analytical
tractability, the differences f1 − fc and f2 − fc are assumed to follow Gaussian
distributions N (0, σ2

1) and N (0, σ2
2) respectively. To account for labeling noise,

we also assume the difference y − fc follows a Gaussian distribution N (0, σ2
y).
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Given a training batch of nL labeled and nU unlabeled images, the likelihood
can be expressed as follows

p (y|x) ∝ exp
(−λL

y,1‖fL1 − y‖2 − λL
y,2‖fL2 − y‖2) ·

exp
(−λL

1,2‖fL1 − fL2 ‖2 − λU
1,2‖fU1 − fU2 ‖2) ,

(2)

where fL• , fU• are vectors containing the posteriors on labeled and unlabeled data,
respectively, y is the vector of labels, and λL

y,1, λ
L
y,2, λ

L
1,2, λ

U
1,2 are derived as

detailed in Supplement. Maximizing the likelihood in (2) yields the following
loss function:

Lsq =λL
y,1‖fL1 − y‖2 + λL

y,2‖fL2 − y‖2
+ λL

1,2‖fL1 − fL2 ‖2 + λU
1,2‖fU1 − fU2 ‖2. (3)

To avoid vanishing gradients when using sigmoid activations with a squared loss,
on the labeled data, we apply CE loss on the posteriors instead. Our final NoT
loss is therefore

LNoT =λL
y,1CE

(
y, fL1

)
+ λL

y,2CE
(
y, fL2

)

+ λL
1,2MSE

(
fL1 , fL2

)
+ λU

1,2

nU

nL
MSE

(
fU1 , fU2

)
,

(4)

where we set nL = nU to cancel out the fraction in the last term. These changes
also enable a fair comparison with MT in our experiments. The first two terms
of LNoT represent the supervised losses while the last two terms enforce mutual
agreement between the classifiers, thus enhancing consistency of the predictions.

3 Experiment Setup

Datasets: We now describe the two datasets used in our experiments, and
provide statistical breakdowns in the Supplement.

NIH-14 Chest X-Ray [28]: The first dataset we used comprises 112,120 frontal
chest X-Ray images, where images are annotated for presence of one or more of
14 pathologies (14 binary labels). 53.9% of images are normal (negative for all
14 labels) and 46.1% abnormal; 40.1% of abnormal images are positive for more
than one pathology. We used publicly available training (70%), validation (10%)
and testing (20%) splits with no patient overlaps [31].

RSNA Brain CT [4]: The second dataset we used is a collection of 19,530 CT
brain exams from the Stage 1 training dataset of the RSNA 2019 Challenge,
where images are annotated for presence of one or more of 5 types of intracra-
nial hemorrhage (5 binary labels). We focus on slice-level classification, and
consider only one study per patient. 85.8% of images are normal (negative for
all 5 labels) while the remaining 14.2% are positive for bleeds; 30.1% of the
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abnormal images are positive for multiple bleeds. We derived random training
(60%), validation (20%) and testing (20%) splits with no patient overlaps. We
obtained pre-processed images from [17]. The pre-processing steps used are in
accordance with leading solutions in the RSNA Challenge [25] and include: (a)
converting the raw pixel values to Hounsfield Units using the slope and rescale
intercept from the original DICOM files, (b) windowing to restrict all pixel val-
ues to the width around the center as reported in the individual DICOM files,
(c) normalizing to range [0, 255], and (d) resizing to 256 × 256.

Design of Realistic Semi-supervised Experiments: We model a realistic
annotation process where clinical raters extract a finite pool of N images for
model development, and proceed to label them systematically. First, we consider
a labeling budget of L = LT +LV images, where LT denotes the labeled subset of
the training data, and LV denotes the labeled validation set. A practical labeling
budget implies that LT � LV with LV very small. Second, for a given L, we
need to randomly sample a subset for labeling from the overall pool of N images.
Implicitly, this means the subset of L images cannot be chosen based on their
labels i.e., it is infeasible to fit any stratified class distribution requirements. For
lower budgets, this constraint requires repeatedly sampling and labeling images
until representative numbers are obtained for each class. Third, increases in L
require maintaining the existing labeled images, and progressively adding on
images and labeling them (implicitly decreasing unlabeled set size).

For our experiments, we had to align the above process to publicly available
data collections that were already split into training, validation and test sets.
Hence, for a given labeling budget L, we randomly sampled L images propor-
tionately from the training and validation splits. Then, for the unlabeled set, we
only considered the remaining portion of the training split to ensure that the
unlabeled validation split does not inform training. All our experiments assume
a fixed-size held out test set and do not count the test set definition as part of
labeling budget for model development. The above practical requirements pre-
clude the conveniences of large validation sets, stratified labeling, balanced class
distributions, fixed unlabeled budgets that are often encountered in standard
SSL benchmarking papers [18], and introduce additional challenges.

Implementation Details: We describe the supervised training setup and
hyperparameter tuning procedures. SSL validation details are in Supplement.

Supervised Training Backbone: We use the same backbone network architecture
for supervised (SUP) and semi-supervised methods to ensure fair comparisons:
DenseNet121 for NIH-14 Chest X-Ray as per [22] and DenseNet169 for RSNA
Brain CT (used by the leading RSNA Challenge solution [25]). In each case,
we initialized the network with weights pretrained on ImageNet. For train-time
augmentations, we employed random horizontal flipping, resizing, and center
cropping. We normalized all images based on ImageNet statistics, and used the
Adam optimizer (learning rate 10−4, β = [0.9, 0.999], ε = 10−8, and weight
decay 10−5).
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Hyperparameter Tuning: We tuned hyperparameters in accordance with litera-
ture norms for all semi-supervised methods to ensure fair comparisons. In partic-
ular, we tuned ε for VAT, EMA decay and consistency weight for MT, and con-
sidered variations required for different labeling budgets. For NoT, even though
there are four weights, only the ratio between the weights is of consequence –
hence only the ratio hyperparameter requires tuning. As the two networks have
similar architecture, we selected σ2

1 = σ2
2 and varied the labeling noise σ2

y. The
tuning process and final parameter choices are provided in Supplement.

Parameter Averaging: In order to enable fair comparison with MT, we keep an
EMA copy for the supervised baseline and VAT; and report the best result from
either the trained model or the EMA copy. This way, performance gains reported
are not just because of averaging but also due to the consistency mechanism.

4 Results

We systematically evaluate performance of each SSL algorithm as a function of
varying labeling budget L. We start L at 500 images of the development dataset
or the number required to have at least 1 positive image per label (whichever is
higher). For each labeling budget, we also evaluate performance of a comparable
supervised baseline (SUP) trained purely on the labeled images. All experiments
maintain the same held-out test set for rigorous comparison. As both classifi-
cation objectives are multi-label tasks, we compute the per-class AUROC and
report average across all classes.

Performance vs. Labeling Budget: Figures 2 and 3 show results on the NIH-
14 X-Ray and RSNA Brain CT datasets respectively. Detailed performance num-
bers are provided in Supplement.

For low labeling budgets, (a) the semi-supervised methods offer strong gains
over the supervised baseline, and (b) our NoT method outperforms the other
semi-supervised methods. To surpass 90% of the fully supervised AUROC, NoT
requires less than 5% labeling budget for NIH-14 X-Ray dataset and less than
2.5% labeling budget for RSNA CT dataset. First, For NIH-14, with 5% labeling
budget, NoT gains 6.4% over the corresponding supervised baseline and over
3.1% vs. other SSL methods. NoT also outperforms the comparable GraphXNet
result at 5% labeling budget [1]. For RSNA CT, with 2.5% labeling budget,
NoT gains 3.7% over the supervised baseline (SUP) and over 2.6% vs. other SSL
methods. Second, for higher labeling budgets, performance of all semi-supervised
methods converges, suggesting saturation of gain from unlabeled data. Across
all methods, NoT can achieve over 90% of the fully supervised AUROC with
less than 5% labeling budget. Third, at 5% labeling budget for NIH-14 and
2.5% labeling budget for RSNA CT, we compute the AUROC gain of each SSL
method over the corresponding supervised baseline (SUP). We plot these gains
for each class in a heatmap format, where conditions are ordered by number
of images in the labeled set. For rarer conditions with lower prevalence in the
labeled subsets, NoT gains much more than other SSL methods.
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(B)(A)
Fully Supervised AUROC

90% of Fully 
Supervised AUROC

Fig. 2. Performance Results for the NIH-14 Chest X-Ray Dataset.(A) Average AUROC
vs. Labeling Budget. AUROC evaluated with 1177, 1569, 3923, 7846, 15693, 39234
labeled images (with LT : LV set to 70:10). Fully supervised baseline (dash-dotted
line) is based on 78468 images. (B) Class-wise SSL vs. SUP AUROC gains for 5%
labeling budget. Hernia (10) indicates 10 images with hernia in labeled set.
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Fig. 3. Performance Results for the RSNA Brain CT Dataset. (A) Average AUROC
vs. Labeling Budget. AUROC evaluated with 749, 1777, 3495, 6744, and 17242 images.
Labeling budget set at scan level and selected scans have all slices labeled. LT : LV set
to 60:20. Fully supervised baseline (dash-dotted line) is based on 352839 images. (B)
Class-wise SSL vs. SUP AUROC gains for 2.5% labeling budget. Epidural (8) indicates
8 images with epidural bleed in labeled set.

Connections to Co-training and Label Propagation: We posit that these
gains arise from the multi-view formulation of NoT. While VAT, PSU and even
MT are essentially single-network models (the MT teacher network is learned
passively via EMA), NoT is a multi-view learning technique which benefits from
having multiple views of the data. Being a co-training method, NoT also has
connections with label propagation [27].
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Performance Analyses of NoT vs. MT: To understand how NoT improves
performance over MT, we train both models on the NIH-14 X-Ray dataset with a
5% labeling budget and save the predictions on validation data. We compare con-
sistency between the student-teacher networks of MT and the consensus between
networks F1 and F2 of NoT by reporting the disagreement count or the number
of validation images with different predictions (Fig. S1 in Supplement). On aver-
age, NoT reduces disagreement count by 51.87 % compared to MT. In addition,
after the first 400 iterations, NoT maintains an AUROC variance of 8.39×10−5,
while MT shows a much higher variance of 3.42 × 10−4.

5 Conclusion

We adapted and characterized three leading semi-supervised methods for multi-
label radiograph classification using a realistic annotation and evaluation pro-
cess. To further improve the best of these methods, MT, we introduce the
NoTeacher method (NoT) to better enforce consistency and reduce confirma-
tion bias. We demonstrate that NoT provides strong performance gains on two
public X-Ray and CT classification benchmarks, and achieves over 90% of the
fully supervised AUROC with less than 5% labeling budget. Our results suggest
feasibility for deep learning with minimal supervision on radiology images and
provide a strong benchmark for future developments.
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