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Abstract. Witnessing the success of deep learning neural networks in
natural image processing, an increasing number of studies have been pro-
posed to develop deep-learning-based frameworks for medical image seg-
mentation. However, since the pixel-wise annotation of medical images
is laborious and expensive, the amount of annotated data is usually defi-
cient to well-train a neural network. In this paper, we propose a semi-
supervised approach to train neural networks with limited labeled data
and a large quantity of unlabeled images for medical image segmenta-
tion. A novel pseudo-label (namely self-loop uncertainty), generated by
recurrently optimizing the neural network with a self-supervised task, is
adopted as the ground-truth for the unlabeled images to augment the
training set and boost the segmentation accuracy. The proposed self-loop
uncertainty can be seen as an approximation of the uncertainty estima-
tion yielded by ensembling multiple models with a significant reduction
of inference time. Experimental results on two publicly available datasets
demonstrate the effectiveness of our semi-supervised approach.
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1 Introduction

Deep neural networks often require large quantity of labeled images to achieve
satisfactory performance. However, since annotating medical images requires
experienced physicians to spend hours or days to investigate, which is laborious
and expensive, the labeled medical images are often very deficient, especially
for the tasks requiring pixel-wise annotations (e.g., segmentation). To tackle
this problem, many researches [1,2,17,19] have been proposed to improve the
segmentation performance of deep neural networks through exploiting the infor-
mation from unlabeled data. Using pseudo-labels of unlabeled data (generated
automatically by a segmentation algorithm via uncertainty estimation) is one of
the potential solutions, which has been extensively studied. The most popular
approaches are: 1) softmax probability map [1], 2) Monte Carlo (MC) dropout
[17,19], and 3) uncertainty estimation via network ensemble [8]. Specifically,

c© Springer Nature Switzerland AG 2020
A. L. Martel et al. (Eds.): MICCAI 2020, LNCS 12261, pp. 614–623, 2020.
https://doi.org/10.1007/978-3-030-59710-8_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59710-8_60&domain=pdf
https://doi.org/10.1007/978-3-030-59710-8_60


Self-Loop Uncertainty 615

Bai et al. [1] proposed a semi-supervised approach for the cardiac magnetic res-
onance volume segmentation. The proposed approach first used a limited num-
ber of labeled data to train the neural network and then utilized the softmax
probability maps predicted by the neural network as the pseudo-label for the
unlabeled volumes to augment the training set. In a more recent study, Sedai
et al. [17] proposed an uncertainty guided semi-supervised learning framework
for the segmentation of retinal layers in optical coherence tomography images.
The pseudo-label for semi-supervised learning was generated using the Monte
Carlo (MC) dropout [4], which can be viewed as an approximation of Bayesian
uncertainty. Uncertainty estimation via model ensemble [8] is another form of
approximation of Bayesian uncertainty, which separately trained K networks
and combined the softmax probability map of each network k by averaging as
the ensemble uncertainty (i.e., 1

K

∑K
k=1 pk, where p is the probability map).

Due to the variety of existing uncertainty estimation methods, Jungo et al.
[7] conducted experiments to evaluate the reliability and limitation of existing
approaches and concluded several observations. Two of them cause our interests:
1) the widely-used MC-dropout-based approaches are heavily dependent on the
influence of dropout on the segmentation performance; 2) the computational-
expensive ensemble method yields the most reliable results and is typically a
good choice if the resources allow. To this end, an efficient way to yield the
reliable ensemble uncertainty is worthwhile to investigate.

In this paper, we propose a novel pseudo-label, namely self-loop uncertainty,
for the semi-supervised medical image segmentation. The proposed self-loop
uncertainty is generated by recurrently optimizing the encoder of a fully con-
volutional network (FCN) with a self-supervised sub-task (e.g., Jigsaw puzzles).
The benefits of integrating self-supervised learning into our framework can be
summarized in two folds: 1) the self-supervised learning sub-task encourages the
neural network to deeply mine the information from raw data and benefits the
image segmentation task; 2) the same network at different stages during the self-
supervised sub-task optimization can be seen as different models, which leads
our self-loop uncertainty to an approximation of ensemble uncertainty with much
lower computational cost. We evaluate the proposed semi-supervised learning
approach on two medical image segmentation tasks—nuclei segmentation and
skin lesion segmentation. Experimental results show that our self-loop uncer-
tainty can significantly improve the segmentation accuracy of the neural net-
work, which outperforms the currently widely-used pseudo-label (e.g., softmax
probability map and MC dropout).

2 Method

The proposed semi-supervised segmentation framework is illustrated in Fig. 1.
The training set for our semi-supervised framework consists of labeled data DL

and unlabeled data DU . The proposed semi-supervised framework involves three
losses (i.e., LSEG, LUG, and LSS) to supervise the network training with DL and
DU , respectively. The colored arrows in Fig. 1 represent the information flows of
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Fig. 1. The pipeline of our semi-supervised segmentation framework. The proposed
framework recurrently optimizes the encoder part of FCN by addressing the self-
supervised learning task (i.e., supervised by LSS) to generate the pseudo-label for the
unlabeled data. There are two losses, i.e., segmentation loss LSEG and uncertainty-
guided loss LUG, adopted in our framework to supervise the segmentation of labeled
and unlabeled data. Our framework generates Q permutations (P

′
1 , ... P

′
Q) for an image

(either labeled or unlabeled) and yields corresponding Q segmentation predictions (S1,
... SQ) for the estimation of self-loop uncertainty ysl (as illustrated in Algorithm 1).
(Color figure online)

DU (orange) and DL (cyan). For a batch containing images from DL and DU ,
we calculate the supervised segmentation loss LSEG (i.e., binary cross-entropy
loss in our experiment) for labeled data with pixel-wise annotation to ensure
the FCN has the segmentation capacity, self-supervised loss LSS for both DL

and DU to exploit rich information from raw data and generate the self-loop
uncertainty, and uncertainty-guided loss LUG for the unlabeled images to boost
the segmentation performance of FCN with unlabeled data.

2.1 Self-supervised Sub-task

As aforementioned, the self-supervised loss LSS aims to exploit rich information
contained in raw data and generate the self-loop uncertainty. Various pretext
tasks, such as rotation prediction [5] and colorization [9], can be adopted to
achieve this goal. In this study, we use Jigsaw puzzles [14] consisting of transla-
tion and rotation transformations as the self-supervised sub-task to recurrently
optimize the encoder of an FCN and yield the self-loop uncertainty.

Similar to the standard Jigsaw puzzles, we partition the image into several
tiles, e.g., nine tiles for 3 × 3 Jigsaw puzzles. To formulate the Jigsaw puzzles
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Algorithm 1. Generation of self-loop uncertainty.
1: Input:
2: Network weights: θe of the encoder and θd of the decoder.
3: Unlabeled data: x ∈ DU .
4: Function:
5: f(x; θ) neural network forward function.
6: update(.) backpropagation to update the neural network weights.
7: T (.) permuted transformation of Jigsaw puzzles.
8: T−1(.) inverse-permuted transformation.
9: LSS(p, g) calculation of the self-supervised loss with prediction p and self-

supervised signal g.
10: Procedure†:
11: Q permutations are randomly selected from P

′
: {P

′
1 , ..., P

′
Q ∈ P

′}.
12: for i ∈ {1, ..., Q} do
13: pi ← f(T

P
′
i
(x); θe); Si ← f(T

P
′
i
(x); {θe, θd});

14: li ← LSS(pi, gi); θi
e ← update(li);

15: θe ← θi
e.

16: end for
17: ysl =

∑Q
i=1 T−1

P
′
i

(Si) × norm(ωi), where norm(.) = ωi
∑Q

i=1 ωi
and ωi = 1 − li

∑Q
i=1 li

.

† S is the segmentation prediction of FCN.
† l is the calculated self-supervised loss.

18: Output: self-loop uncertainty ysl of input x.

sub-task, we permute the tiles using the approach proposed by [14]—a small
subset P

′
of the large permutation pool, i.e., P = (P1, P2, ..., P9!) is formed by

selecting the K permutations with the largest Hamming distance between each
other. In each training iteration, the input image is repeatedly disarranged (Q
times in total where Q � K, Q = 10 and K = 100 in our experiments) by
one randomly selected permutation from P

′
. Meanwhile, the encoder of FCN is

recurrently updated to identify the selected permutation from the K options for
each disarranged image, which can be seen a classification task with K categories;
therefore, we employ the cross-entropy loss as LSS to supervise the sub-task.

The Jigsaw puzzles transformation adopted in our approach has two differ-
ences, compared to the one in [14]. First, to increase the diversity of permutation,
each of the tiles is randomly rotated by an angle a ∈ {0◦, 90◦, 180◦, 270◦} besides
the translation transformation. Second, to integrate the Jigsaw puzzles task into
the end-to-end semi-supervised framework, the input of self-supervised sub-task
is required to have the same size as that of the target segmentation task. Hence,
instead of using the shared-weight neural network for each tile, the permuted
tiles are first assembled to an image of the same size of the original image (i.e.,
{P

′
1, ..., P

′
Q} shown in Fig. 1) and then fed as input to the neural network for the

permutation classification.
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2.2 Estimation of Self-loop Uncertainty for Unlabeled Data

The generation procedure of our self-loop uncertainty is presented in Algorithm1.
The self-supervised sub-task is able to recurrently optimize the neural network in
an iteration, as the self-supervised signal can be self-driven without manual anno-
tation. The different stages (i.e., {θie, θd}, i ∈ {1, ..., Q}) of self-supervised opti-
mization are seen as different models, which enable the proposed self-loop uncer-
tainty to approximate the ensemble uncertainty with a single neural network. The
permutated images go through the FCN and yield a set of segmentation predic-
tions Si, i ∈ {1, ..., Q}. Since the calculated self-supervised loss (l) can explicitly
represent the difficulty of puzzled image for neural network to restore, we formu-
late l as the confidence of corresponding segmentation result S (via norm(.) and ω
defined in Algorithm 1) to revise its contribution to the final pseudo-label. Our self-
loop uncertainty thereby is the weighted average of the segmentation predictions
produced by different stages of self-supervised optimization.

Uncertainty-Guided Loss. The set of segmentation predictions {S1, ..., SQ} is
presented in Fig. 1, where the red color represents the high score of foreground.
The weight-averaged self-loop uncertainty ysl can be used as the guidance to
maintain the reliable predictions (i.e., high score) as target for the neural network
to learn from unlabeled data. To achieve this goal, we adopt the mean squared
error (MSE) loss as the uncertainty-guided loss LUG for the network optimization
with unlabeled data and pseudo-labels ysl, which can be defined as:

LUG(Sx, ysl) =

∑
H×W I(ysl > th)‖Sx − ysl‖2

∑
H×W I(ysl > th)

(1)

where I is the indicator function; H and W are the image height and width,
respectively; Sx is the segmentation prediction of input image x; and th is the
threshold to select the high score target.

2.3 Objective Function

Assuming a batch contains N labeled data ({(xj , yj)}Nj=1) and M unlabeled
data {xj}N+M

j=N+1, where xj ∈ R
H×W×C is the input image (H, W , and C are the

height, width, and channel of the image, respectively) and yj ∈ {0, 1}H×W , j =
1, 2, . . . , N is the ground-truth annotation, the objective function L for this batch
can be formulated as:

L =
N∑

j=1

LSEG(xj , yj) +
N+M∑

j=N+1

LUG(xj , ysl) +
N+M∑

j=1

Q∑

i=1

LSS(TP
′
i
(xj), gi). (2)

During network optimization, for the unlabeled data, we first fixed the
decoder of FCN and recurrently update the encoder with LSS to generate ysl.
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Then, the weight of the whole FCN is optimized by LUG. In other words, an
unsynchronized optimization of the encoder and decoder happens when using
the unlabeled data. For the labeled data, on the other hand, the network is
optimized with the LSEG and LSS simultaneously.

3 Experiments

MoNuSeg Dataset [13]. The dataset consists of diverse H&E stained tissue
images captured from seven different organs (e.g., breast, liver, kidney, prostate,
bladder, colon and stomach), which were collected from 18 institutes. The dataset
has a public training set and a public test set for network training and evalu-
ation, respectively. The training set contains 30 histopathological images with
hand-annotated nuclei, while the test set consists of 14 images. The size of the
histopathological images is 1000 × 1000 pixels.

ISIC Dataset [3]. The ISIC dataset is widely-used to assess the segmentation
accuracy of skin lesion areas of automatic segmentation algorithms. The dataset
contains 2,594 dermoscopic images. The skin lesion area of each image has been
manually annotated by the data provider. The image size varies from around
1000×1000 pixels to 4000×3000 pixels. We resize all the images to a uniform size
of 512× 512 pixels for network training and validation. The dataset is randomly
separated to training and test sets according to the ratio of 75:25.

Evaluation Criterion. The F1 score, i.e., the unweighted average classification
accuracy of the foreground and background tissues, which is widely-used in the
area of nuclei [11,15,20] and skin lesion [10,12,18] segmentation, is adopted as
the metric to evaluate the segmentation performance.

Baselines. Three popular uncertainty approaches—softmax probability map
[1], Monte Carlo (MC) dropout [17,19], and uncertainty estimation via ensem-
bling networks [8]—are involved as baselines in this study. Similar to [17], we
set the dropout rate to 0.2 and forward the image through the neural network
for ten times to generate MC dropout uncertainty. The ensemble uncertainty
is generated by ensembling ten models trained with different network initializa-
tions. Consistent with the baselines, we generate ten permutations for an image
to iteratively optimize the neural network and accordingly yield the self-loop
uncertainty. The widely used ResUNet-18 [6,16] is used as the backbone for
uncertainty estimation. For fair comparison, all the baselines are trained accord-
ing to the same protocol.

3.1 Evaluation of Pseudo-Label Quality

Compared to skin lesion segmentation, which contains a single target in each
image, the annotation of nucleus is more difficult and laborious. Hence, we mainly
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use the MoNuSeg dataset to evaluate the quality of pseudo-label yielded by
different approaches in this section.1

To quantitatively validate the accuracy of different pseudo-labels, we calcu-
late the F1 score between the pseudo-labels and ground-truth and present the
results in Table 1. The pseudo-labels are generated with different amounts (i.e.,
20% and 50%) of labeled data DL and the remaining training set is used as
unlabeled data DU . As shown in Table 1, our self-loop uncertainty outperforms
all the baselines under different amounts of labeled data, which are +2.27% and
+2.88% higher than the runner-up (i.e., MC Dropout) with 20% and 50% labeled
data, respectively. The pesudo-labels yielded by uncertainty via ensembling mod-
els achieve lower accuracy among the baselines. The underlying reason may be
that the MoNuSeg training set only contains 30 histopathological images, which
make the amount of labeled data (i.e., 20% and 50%) insufficient to well train
the neural network. Therefore, the ensembling of multiple unsatisfactory models
cannot improve the accuracy of uncertainty estimation.

Table 1. F1 score (%) between ground-truth and the pseudo-labels generated by dif-
ferent uncertainty approaches with different amounts of labeled data. The superscript
of SL is the number of permutations Q generated for self-supervised learning. (MC
D.—MC Dropout, SL—Self-loop)

Amount of DL Softmax MC D. Ensemble SL3 SL6 SL10

20% 67.48 72.42 67.46 73.90 74.68 75.24

50% 69.53 73.58 70.01 76.51 76.77 76.85

Ablation Study. We conduct an ablation study to investigate the relationship
between the number of permutation Q and the quality of pseudo-label. Q is set
to 3, 6, 10, respectively, for the generation of self-loop uncertainty. As shown in
Table 1, the self-loop uncertainty generated with a larger Q achieves the higher
F1 score. However, the improvement of F1 score provided by increasing Q from 6
to 10 becomes marginal (e.g., +0.08% using 50% labeled data), which illustrates
that Q may not be the larger the better for practical applications, when taking
the computational cost into account.

3.2 Segmentation Performance Evaluation

To validate the effectiveness of pseudo-labels, we evaluate the performance of dif-
ferent semi-supervised frameworks on the test sets of MoNuSeg and ISIC. The
semi-supervised approaches are trained with different portions (i.e., 20% and
50%) of labeled data. The evaluation results are listed in Table 2. The perfor-
mance of fully-supervised approach with 100% labeled data is also assessed as the
1 For visual comparison between pseudo-labels, please refer to arxiv version.
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upper bound for the semi-supervised approaches. To validate the effectiveness of
self-supervised sub-task, the self-loop uncertainty without LSS is also involved
for comparison. We pass the ten permutated images through the FCN without
self-supervised optimization and yield the uncertainty by averaging the segmen-
tation predictions. Due to lack of extra information exploited by self-supervised
sub-task, the improvements yielded without LSS significantly decrease.

Nuclei Segmentation. As shown in Table 2, the performance of fully-
supervised approach significantly drops from 79.30% to 75.87% and 71.51%,
respectively, with the reductions (i.e., −50% and −80%) of manual annotations.
The application of pseudo-labels provides a consistent improvement to the seg-
mentation accuracy. Among them, the proposed self-loop uncertainty yields the
largest improvements, especially under the condition with 20% annotated data,
i.e., +5.6% higher than the fully-supervised approach. Furthermore, we notice
that our semi-supervised framework trained with 50% labeled data achieves com-
parable F1 score (79.10%) to that of 100% fully-supervised approach (79.30%),
which demonstrates the potential of our approach for reducing the workload of
manual annotations.

Table 2. F1 score (%) yielded by different semi-supervised approaches on the two
publicly available datasets.

MoNuSeg ISIC

20% 50% 100% 20% 50% 100%

Fully-supervised 71.51 75.87 79.30 81.49 84.86 86.58

Softmax [1] 73.65 76.18 - 82.81 85.11 -

MC Dropout [17] 75.31 77.98 - 83.68 85.74 -

Ensemble [8] 73.33 76.87 - 83.27 86.06 -

Self-loop w/o LSS 74.70 77.78 - 82.70 85.22 -

Self-loop (Ours) 77.11 79.10 - 84.92 86.17 -

Skin Lesion Segmentation. Similar trends of improvement are observed on
the ISIC test set. Due to the extra information provided by the unlabeled data,
the semi-supervised approaches outperform the fully-supervised one with limited
annotated data (20% and 50%). The framework adopted our self-loop uncer-
tainty as pseudo-labels achieves the highest F1 scores, i.e., 84.92% and 86.17%
with 20% and 50% labeled data, respectively, and the latter is comparable to
that of fully-supervied approach with 100% annotations (i.e., 86.17%). As ISIC
has much more training data, compared to MoNuSeg, the ensemble-uncertainty-
based framework achieves a comparable F1 score of 86.06% with 50% labeled
data. However, it is worthwhile to mention that the generation of ensemble uncer-
tainty requires 10 times of inferences during the test phase, as well as the MC
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dropout. Conversely, the proposed self-loop uncertainty can be generated with
a single inference, which significantly saves the computational cost.

4 Conclusion

In this paper, we proposed a semi-supervised approach to train neural networks
with limited labeled data and a large quantity of unlabeled images for medical
image segmentation. A novel pseudo-label (namely self-loop uncertainty), gen-
erated by recurrently optimizing the neural network with a self-supervised task,
is adopted as the ground-truth for the unlabeled images to augment the training
set and boost the segmentation accuracy.
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