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Abstract. Semantic segmentation is an important task in medical
image analysis. In general, training models with high performance needs
a large amount of labeled data. However, collecting labeled data is typ-
ically difficult, especially for medical images. Several semi-supervised
methods have been proposed to use unlabeled data to facilitate learning.
Most of these methods use a self-training framework, in which the model
cannot be well trained if the pseudo masks predicted by the model itself
are of low quality. Co-training is another widely used semi-supervised
method in medical image segmentation. It uses two models and makes
them learn from each other. All these methods are not end-to-end. In
this paper, we propose a novel end-to-end approach, called difference
minimization network (DMNet), for semi-supervised semantic segmen-
tation. To use unlabeled data, DMNet adopts two decoder branches
and minimizes the difference between soft masks generated by the two
decoders. In this manner, each decoder can learn under the supervision
of the other decoder, thus they can be improved at the same time. Also,
to make the model generalize better, we force the model to generate
low-entropy masks on unlabeled data so the decision boundary of model
lies in low-density regions. Meanwhile, adversarial training strategy is
adopted to learn a discriminator which can encourage the model to gen-
erate more accurate masks. Experiments on a kidney tumor dataset and
a brain tumor dataset show that our method can outperform the base-
lines, including both supervised and semi-supervised ones, to achieve the
best performance.
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1 Introduction

Semantic segmentation is of great importance in medical image analysis, because
it can help detect the location and size of anatomical structures and aid in mak-
ing therapeutic schedule. With the development of deep learning, deep neural
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networks especially fully convolutional networks (FCN) [12] have shown promis-
ing performance in segmenting both natural images and medial images. The
models in these methods have millions of parameters to be optimized, thus a
large amount of labeled data with pixel-level annotations is typically needed for
training such models to achieve promising performance. However, it is generally
difficult to collect a large amount of labeled data in medical image analysis. One
main reason is that annotating medical images needs expertise knowledge but
few experts have time for annotation. Another reason is that it is time-consuming
to annotate medical images.

Semi-supervised learning can utilize a large amount of unlabeled data to
improve model performance. semiFCN [2] proposes a semi-supervised network-
based approach for medical image segmentation. In semiFCN, a network is
trained to predict pseudo masks. The predicted pseudo masks are then used
to update the network in turn. ASDNet [14] trains a confidence network to
select regions with high confidence in soft masks for updating the segmentation
network. Zhou et al. [18] propose to jointly improve the performance of disease
grading and lesion segmentation by semi-supervised learning with an attention
mechanism. Souly et al. [17] use weakly labeled data and unlabeled data to
train a generative adversarial network (GAN) [8], which can force real data to
be close in feature space and thus cluster together. These methods all use a
self-training framework, in which the model is updated using pseudo masks pre-
dicted by the model itself. If the pseudo masks predicted by the model itself
have low quality, the model will be updated using data with noise. On the other
hand, co-training [4] uses two models and each model is updated using unla-
beled data with pseudo masks predicted by the other model and labeled data
with ground truth. In this manner, each model in co-training is supervised by the
other model. So the two models can be improved in turn. Several methods [9,15]
explore co-training in deep learning. But they are not end-to-end methods.

In this paper, we propose a novel end-to-end approach, called difference
minimization network (DMNet), for semi-supervised semantic segmentation in
medical images. The contributions of our method can be listed as follows:

– DMNet is a semi-supervised segmentation model, which can be trained with
a limited amount of labeled data and a large amount of unlabeled data.

– DMNet adopts the widely used encoder-decoder structure [1,7,16], but it has
two decoder branches with a shared encoder. DMNet minimizes the difference
between the soft masks predicted by the two decoders to utilize unlabeled
data. Unlike co-training which is often not end-to-end, the two decoders in
DMNet can be updated at the same time in an end-to-end way.

– DMNet uses the sharpen [3] operation to force the model to generate pre-
dictions with low entropy on unlabeled data, which can improve the model
performance.

– DMNet adopts adversarial learning derived from GAN for further improve-
ment.

– Experiments on a kidney tumor dataset and a brain tumor dataset show that
our method can outperform other baselines to achieve the best performance.
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2 Notation

We use X ∈ RH×W to denote an image in the labeled training set, and Y ∈
{0, 1}H×W×K to denote the corresponding ground-truth label which is encoded
into a one-hot format. Here, K is the number of classes, H and W are the height
and width of the image respectively. DMNet has two segmentation branches,
and we denote the class probability maps generated by the two segmentation
branches as Ŷ (1), Ŷ (2) ∈ RH×W×K . Furthermore, we denote an unlabeled image
as U ∈ RH×W . We use [1 : N ] to denote [1, 2, · · · , N ].

3 Method

The framework of DMNet is shown in Fig. 1, which is composed of a segmentation
network with two decoder branches, a sharpen operation for unlabeled data and
a discriminator for both labeled and unlabeled data. Each component will be
described detailedly in the following subsections.

Fig. 1. The framework of DMNet

3.1 Segmentation Network

As shown in Fig. 1, the segmentation network in DMNet adopts the widely used
encoder-decoder architecture, which is composed of a shared encoder and two
different decoders. By sharing an encoder, our segmentation network has some
advantages. First, it can save GPU memory compared to the architecture in
which two decoders use separate encoders. Second, since the encoder is shared by
two decoders, it can be updated by the information from two decoders. Therefore
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it can learn better features from the difference between soft masks generated by
two decoders, which can lead to better performance. This will be verified by
our experimental results in Sect. 4. The two decoders in DMNet use different
architectures to introduce diversity. By adopting different architectures, the two
decoders will not typically output exactly the same segmentation masks and they
can learn from each other. By using labeled and unlabeled data in turn, DMNet
can utilize unlabeled data adequately to improve segmentation performance.
DMNet is a general framework, and any segmentation network with an encoder-
decoder architecture, such as UNet [16], VNet [13], SegNet [1] and DeepLab
v3+ [7], can be used in DMNet. In this paper, we adopt UNet [16] and DeepLab
v3+ [7] for illustration. The shared encoder can extract latent representation
with high-level semantic information of the input image. Then we use the ground
truth to supervise the learning of segmentation network for labeled data while
minimizing the difference between the masks generated by the two decoders to
let them learn from each other for unlabeled data.

We use Dice loss [13] to train our segmentation network on labeled data,
which is defined as follows:

Ldice(Ŷ (1), Ŷ (2),Y ; θs) =
2∑

i=1

(
1 − 1

K

K∑
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2
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where Yh,w,k = 1 when the pixel at position (h,w) belongs to class k, and
other values in Yh,w,k is set to be 0. Ŷ (i)

h,w,k is the probability that the pixel at
position (h,w) belongs to class k predicted by the segmentation branch i. θs is
the parameter of the segmentation network.

The loss function used for unlabeled data is described in Sect. 3.3.

3.2 Sharpen Operation

Given an unlabeled data U , our segmentation network can generate soft masks
Ŷ (1) and Ŷ (2). To make the predictions of the segmentation networks have low
entropy or high confidence, we adopt the sharpen operation [3] to reduce the
entropy of predictions on unlabeled data, which is defined as follows:

Sharpen(Ŷ (i)
h,w,c, T ) =

(Ŷ (i)
h,w,c)

1/T

∑K
i=1 (Ŷ (i)

h,w,i)1/T
∀h ∈ [1 : H], w ∈ [1 : W ], T ∈ (0, 1),

where Ŷ (i) is the soft mask predicted by decoder branch i and temperature T
is a hyperparameter.

3.3 Difference Minimization for Semi-supervised Segmentation

As described in Sect. 3.1, two decoders can generate two masks on unlabeled
data. If the two masks vary from each other, it means the model is unsure
about the predictions and thus the model cannot generalize well. Therefore,
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we minimize the difference between the two masks to make the two decoders
generate consistent masks on the same unlabeled data. In other words, the two
decoders can learn under the supervision of each other.

More specifically, given an unlabeled data U , the two decoder branches
can generate two probability masks Ŷ (1) and Ŷ (2) which are processed by the
sharpen operation. Since dice loss can measure the similarity of two segmenta-
tion masks and the loss can be backpropogated through two terms, we extend
dice loss to the unlabeled setting and get the corresponding loss Lsemi as follows:

Lsemi(U ; θs) = 1 − 1
K

K∑
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2
∑H

h=1

∑W
w=1 Ŷ
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.

From the definition of Lsemi, we can see that the two decoders can be updated
by minimizing the difference between the masks they generate.

3.4 Discriminator

In DMNet, we also adopt adversarial learning to learn a discriminator. Unlike the
original discriminator in GAN which discriminates whether an image is generated
or is real, our discriminator adopts a fully convolutional network (FCN). The
FCN discriminator is composed of three convolutional layers whose stride is 2 for
downsampling and three corresponding upsampling layers. Each convolutional
layer is followed by a ReLU layer. It can discriminate whether a region or some
pixels are predicted or from ground truth.

Adversarial Loss for Discriminator. The objective function of discriminator
can be written as follows:

Ldis(Ŷ (1), Ŷ (2),Y ; θd) = Lbce(D(Ŷ (1)),0; θd) + Lbce(D(Ŷ (2)),0; θd)
+ Lbce(D(Y ),1; θd),

where θd is the parameter of the discriminator D(·). 1 and 0 are tensors filled
with 1 or 0 respectively, with the same size as that of the outputs of D(·). The
term Lbce(D(Y ),1) in Ldis(Ŷ (1), Ŷ (2),Y ; θd) is used only when the input data
is labeled and is ignored when the input data is unlabeled data. Lbce is defined
as follows:

Lbce(A,B; θ) = −
H∑

h=1

W∑

w=1

Bh,w logAh,w −
H∑

h=1

W∑

w=1

[(1 − Bh,w) log(1 − Ah,w)],

where θ is the parameter of A.

Adversarial Loss for Segmentation Network. In the adversarial learning
scheme, the segmentation network tries to fool the discriminator. Hence, there
is an adversarial loss Ladv for segmentation network to learn consistent features:

Ladv(O; θs) = Lbce(D(Ŷ (1)),1; θs) + Lbce(D(Ŷ (2)),1; θs),
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where O denotes either a labeled image or an unlabeled image, Ŷ (1) and Ŷ (2)

are the corresponding masks predicted by the two decoder branches in the seg-
mentation network.

3.5 Total Loss

Based on the above results, the loss function for the segmentation network can
be written as follows:

LS = Ldice + λ1Ladv + λ2Lsemi,

where λ1 and λ2 are two balance parameters. By integrating the discriminator,
the objective of DMNet can be written as follows:

L = min
θs,θd

{LS + Ldis}.

4 Experiments

We adopt two real datasets to evaluate DMNet and other baselines, including
supervised baselines and semi-supervised baselines.

4.1 Dataset and Evaluation Metric

We conduct our experiments on the KiTS191 dataset and BraTS182 dataset.
KiTS19 dataset is a kidney tumor dataset. It contains 210 labeled 3D computed
tomography (CT) images for training and validation, and 90 CT images whose
annotation is not published for testing. In our experiments, we use the 210 CT
images with annotation to verify the effectiveness of our DMNet.

BraTS18 dataset is a brain tumor dataset. It contains 385 labeled 3D MRI
scans and each MRI scan has four modalities (T1, T1 contrast-enhanced, T2 and
FLAIR). We use T1, T1 contrast-enhanced and T2 modality to form a three-
channel input. This dataset divides the brain tumor into four categories: whole
tumor, tumor core, enhancing tumor structures and cystic/necrotic components.
In our experiments, we combine these four categories so there are two classes in
our experiment: tumor and background.

For each patient in KiTS19 and BraTS18, we choose one slice with its ground-
truth label as a labeled image, and choose two slices as unlabeled images by
discarding their labels. We split all labeled data into three subsets for training,
validation and testing according to the proportion of 7:1:2. The unlabeled data
is used for training only. Training data, validation data and testing data have
no patient-level overlap to make sure that our model has never seen slices from
validation patient or testing patient during training.

Mean Intersection over Union (mIoU) [11] can measure the similarity of any
two shapes and is widely used in semantic segmentation. We also adopt mIoU
as the evaluation metric.
1 https://kits19.grand-challenge.org/.
2 https://www.med.upenn.edu/sbia/brats2018.html.

https://kits19.grand-challenge.org/
https://www.med.upenn.edu/sbia/brats2018.html
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4.2 Implementation Detail

We use Pytorch3 to implement DMNet on a workstation with an Intel (R) CPU
E5-2620V4@2.1G of 8 cores, 128G RAM and an NVIDIA (R) GPU TITAN Xp.
Our encoder network is ResNet101 [10] and we use it for all experiments. In the
training phase, we resize the input image to 224 × 224 for KiTS19 and 240 ×
240 for BraTS18, and randomly flip it horizontally with a probability of 0.5. In
the inference phase, we use the average result of two segmentation branches as
the final result. We train our model from scratch using Adam algorithm. The
initial learning rate for segmentation network and discriminator is set to be 1e-4
and 1e-5, respectively. The weight decay is set to be 5e-5. We train our model
for 150 epochs and decrease the learning rate according to a poly scheme [6]. In
our experiment, β in poly is set to be 0.9. Without explicit statement, we set λ1

and λ2 to be 0.01 and 0.1 respectively and set temperature T to be 0.5.

4.3 Baselines

Several semi-supervised methods are adopted as baselines for comparison. More
specifically, we compare DMNet to semiFCN [2] and SDNet [5]. semiFCN is a
relatively early method in semi-supervised segmentation used for medical image
analysis. SDNet is a state-of-the-art method in medical image segmentation. We
carefully reimplement semiFCN and SDNet. We adopt ResNet101 as backbone
for both methods for fair comparison.

We also design several supervised counterparts of DMNet to demonstrate
the usefulness of unlabeled data and design some semi-supervised counterparts
to demonstrate the usefulness of each component of DMNet. Supervised DMNet
without adv denotes a supervised variant which adopts only labeled data for
training without adversarial learning. Supervised DMNet with adv denotes a
supervised variant which adopts only labeled data for training but the adver-
sarial learning is adopted. Both variants do not minimize the difference between
two decoder branches. Separate DMNet denotes a semi-supervised variant which
adopts two separate encoders. That’s to say, Separate DMNet is composed of two
separate encoder-decoder networks. DMNet wo adv wo sharpen denotes a semi-
supervised variant which does not adopt the adversarial training strategy and
sharpen operation. DMNet wo sharpen denotes a semi-supervised variant which
does not adopt the sharpen operation on unlabeled data but adopts adversarial
learning.

4.4 Comparison with Baselines

We compare our DMNet to baselines, including semiFCN [2] and SDNet [5], on
KiTS19 dataset and BraTS18 dataset. The results are shown in Table 1. From
the results, we can see that our DMNet outperforms these methods and achieves
the best results, when trained with different amount of labeled data. DMNet

3 https://pytorch.org/.

https://pytorch.org/
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has obvious advantage over other methods when the amount of labeled data
is limited. When we use only 10% of the labeled data and all unlabeled data,
DMNet can achieve 88.4% and 78.7% mIoU on KiTS19 and BraTS18, which
outperforms semiFCN by 12.3% and 15.1%, and outperforms SDNet by 5.2%
and 3.6%, respectively.

Table 1. mIoU on test set of KiTS19 and BraTS18 by different methods using 10%,
30%, 50% and 100% of the labeled data

KiTS19 BraTS18

10% 30% 50% 100% 10% 30% 50% 100%

semiFCN [2] 78.7% 84.4% 86.7% 87.9% 68.4% 78.8% 77.9% 82.7%

SDNet [5] 84.0% 85.9% 89.0% 89.9% 76.0% 80.2% 80.8% 82.9%

DMNet 88.4% 89.9% 90.2% 90.9% 78.7% 85.0% 85.4% 87.0%

4.5 Ablation Study

We also perform ablation study on BraTS18 to show the effectiveness of each
component used in DMNet.

Table 2 shows the results of Supervised DMNet without adv trained with 100%
of the labeled data using different loss functions. From the results of Table 2, we
can see that Dice loss can surpass the performance of cross entropy loss.

Table 2. Comparison between different loss functions

Loss function mIoU

Cross entropy 81.1%

Dice loss 84.5%

Table 3 shows the results of DMNet and its variants introduced in Subsect. 4.3.
From the results of Separate DMNet, we can see that our architecture design,
in which the two decoders share an encoder, has better performance than the
architecture in which two decoders use separate encoders. Therefore, it proves
that the architecture of DMNet has advantages. More specifically, it can save
GPU memory and achieve better performance. Comparing the results between
DMNet wo adv wo sharpen and DMNet wo sharpen, and the results between
Supervised DMNet without adv and Supervised DMNet with adv, we can see that
adversarial learning strategy can improve the performance whether in supervised
setting or semi-supervised setting. From the results of DMNet wo sharpen and
DMNet, we can see that the sharpen operation can benefit the learning on unla-
beled data. Comparing the results of DMNet to those of supervised variants,
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we can conclude that the proposed DMNet can utilize unlabeled data to improve
the segmentation performance, especially when the amount of labeled data is lim-
ited. When only 10% of labeled data is available, DMNet can improve the mIoU
from67.0%to78.7%.Whenall labeleddata is available, inwhich case the amount of
unlabeled data is almost the same as that of labeled data, DMNet can also improve
the mIoU from 84.2% to 87.0%.

Table 3. Comparison between DMNet and its variants

Method Amount of labeled data

10% 30% 50% 100%

Supervised DMNet without adv 59.3% 75.8% 79.4% 84.5%

Supervised DMNet with adv 67.0% 76.9% 79.8% 84.2%

Separate DMNet 76.1% 84.2% 84.4% 85.0%

DMNet wo adv wo sharpen 75.8% 82.0% 82.5% 86.8%

DMNet wo sharpen 76.9% 82.3% 83.9% 86.9%

DMNet 78.7% 85.0% 85.4% 87.0%

5 Conclusion

In this paper, we propose a novel semi-supervised method, called DMNet, for
semantic segmentation in medical image analysis. DMNet can be trained with
a limited amount of labeled data and a large amount of unlabeled data. Hence,
DMNet can be used to solve the problem that it is typically difficult to collect a
large amount of labeled data in medical image analysis. Experiments on a kidney
tumor dataset and a brain tumor dataset show that DMNet can outperform other
baselines, including both supervised ones and semi-supervised ones, to achieve
the best performance.
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